5,954 Matching Annotations
  1. Feb 2023
    1. Author Response

      Reviewer #3 (Public Review):

      The only substantial point I raise relates to the sexual selection (mate choice) part of the work. While it has no major effect on the overall conclusion, I think their interpretation needs to be reconsidered.

      When reporting the results of mate choice experiment (L219ff), the authors state that males of wild and Klara type preferred wild-type females, because 75% of laid eggs belonged to wild-type females. However, another possibility is that Klara females had reduced fecundity, and the lower share of eggs had nothing to do with mate choice. In the same way, "90% of eggs were fertilized by wild-type males" (L223) is used to conclude that they were preferred by females (active mate choice). However, male success in N. furzeri is largely driven by male dominance (and not female mate choice) and it is more likely (and more precise to state) that wild-type males were more successful in male-male competition for access to females (and fertilize their eggs). This is especially so because wild-type males were larger (L. 322) and body size plays a major role in establishing dominance between N. furzeri males. This is then also pertaining to interpretation in discussion (L 318).

      Concerning fecundity, we analyzed quantity and quality of eggs obtained from either klara or wild type breeding groups. As shown in Figure 3A we did not observe differences between klara and wild type fish. Thus, we conclude that fecundity is not reduced in klara females. Regarding males, we did not observe a size difference between the klara and wild type animals in this experiment (Fig. 3C), however, weight was different. As noted by the reviewer, this might influence male dominance and breeding success. We have been more explicit on this in the discussion of the revised version.

  2. Jan 2023
    1. Author Response

      Reviewer #1 (Public Review):

      This paper presents the results of two fragment screens of PTP1B using room-temperature (RT) crystallography, and compares these results with a previously published fragment screen of PTP1b using cryo-temperature crystallography. The RT screen identified fewer fragment hits and lower occupancy compared to the cryo screen, consistent with prior publications on other proteins. The authors attempted to identify additional hits by applying two additional layers of data processing, which resulted in a doubling in the number of possible hits in one of the screens. Because I am not an expert in panDDA modeling, however, I am unable to evaluate the reproducibility and potential potency of these fragment hits as protein binders or their potential use as starting points for follow-up chemistry.

      The fragment library used in this study was larger than those used in previously published RT crystallography experiments. Among the cryo hits that bound in RT, most fragments bound in the same manner as they did in cryo, while some bound in altered orientations or conformations, and two bound at different locations in RT compared to cryo. This level of variability is not surprising. However, one fragment was observed to bind covalently to lysines in RT, even though it showed no density in the cryo crystallization attempt. It is unclear from the provided information whether this fragment decayed during storage or if the higher temperatures accelerated the covalent chemistry. The authors also observed temperature-dependent changes in the solvation shell, and modifications to the protein structure upon fragment binding, including a distal modification.

      We thank the reviewer for the thorough summary of our manuscript.

      Regarding reproducibility of fragment hits, cryo structures are more variable than RT structures for proteins themselves (Keedy et al., Structure, 2014). Thus the variability of repeated cryo-temperature crystallography experiments is a relevant consideration when comparing cryo to RT structures for protein-ligand interactions. However, to our knowledge, no published papers have explored this issue. Our previous cryo fragment screen (Keedy, Hill, et al., eLife, 2018), as with many others, was focused on breadth (many fragments), not depth (replicates). Unpublished work by some of the authors of the present study suggests that fragment poses are robust in replicate cryo experiments; however, future studies focused on fragment reproducibility in terms of binding occupancy, pose, and site at cryo temperature would be useful contributions to the field.

      Regarding follow-up chemistry, there is growing evidence from multiple successful fragment-based inhibitor design studies (COVID Moonshot Consortium et al., bioRxiv, 2022; Gahbauer, Correy, et al., PNAS, 2023; etc.) that, although fragments usually bind too weakly to impact function on their own, they offer rich information to seed the design of high-affinity, potent functional modulators of proteins. As our study is the first to report many structures of fragments bound to proteins at RT, we cannot yet comment as to whether they offer unique advantages over cryo fragments in downstream fragment-based drug design efforts, but this is an open area for future study.

      Regarding the covalent lysine binder, we agree with the reviewer on this point; our manuscript includes a note to this effect. Unfortunately we were unable to obtain the original fragment sample for mass spectrometry analysis. Returning to the point above about follow-up chemistry, the path forward for this fragment hit is promising and clear, and includes confirming chemistry using the original nominal compound vs. what is observed in the electron density, fragment linking and/or expansion, functional assays, and structural biology, all hopefully leading to a potent covalent inhibitor of wildtype PTP1B.

      The current version of the paper is somewhat repetitive in its presentation of the results and could be clearer in its presentation of the variations and comparisons of the two different protocols. It would be helpful to have a more concise summary of the differences between the two protocols in the current paper, as well as a discussion of how they compare to the protocol used in the previously published cryo-temperature fragment screen.

      We agree that it would be helpful to cut down on any redundant text and more straightforwardly compare/contrast the different room-temperature screen methods vs. the previous cryo-temperature screen method. To address this suggestion, we deleted the Discussion paragraph about the strengths and weaknesses of the two methods relative to serial approaches, deleted the text in the Introduction that introduces the two screens, and placed new text at the start of the Results section in the subsection titled “Two crystallographic fragment screens at room temperature” to provide a concise summary in one location of the manuscript.

      While I appreciate the speculative nature of the discussion at the end of the paper, the evidence presented by the authors does not instil confidence that these results will correspond to meaningful binders that could be used to train future machine learning models. However, depending on the intended use, it may be acceptable to train ML models to predict expected densities under typical experimental conditions.

      Indeed, this part of the Discussion is speculative, and seeks to place our results into a possible broader context. The definition of “meaningful binders” in the context of fragment screening is a difficult one. As noted above in response to the comment about follow-up chemistry, one important measure of meaningfulfulness is the ability to successfully seed structure-based design of analogs that have potent functional effects, and many fragments do meet this definition. Regarding potential applications to machine learning, we agree it is not self-evident that structural data for small-molecule fragments will be readily translatable to AI/ML methods aimed at larger compounds. The reviewer’s point about predicting densities is an intriguing one, and is in line with the fragment screening ethos, including existing experimental as well as computational (e.g. Greisman, Willmore, Yeh*, et al., bioRxiv, 2022) approaches to mapping ligandable surface sites and regions. The number of RT structures we report here is high relative to most crystallography studies, but still is likely insufficient to explore questions about AI/ML training, and at any rate would be beyond the scope of the current report. However, it seems equally true that AI/ML methods trained on structures based on data from nonphysiological cryogenic conditions, with associated structural artifacts, may have some (previously unrecognized) limitations, and thus RT crystal structures can play a useful role in AI/ML training sets in the future. We have added new text to the Discussion paragraph in question to convey these points.

      Reviewer #2 (Public Review):

      The authors set out to understand how a room-temperature X-Ray crystallography-based chemical-fragment screen against a drug target may differ from a cryo screen. They carried out two room-temperature screens and compared the results with that of a cryo screen they previously performed. With a substantial set of crystallographic evidence they showed that the modes of protein-fragment binding are affected by temperature. The conclusion of the work is compelling. It suggests that temperature provides another dimension in X-ray crystallography-based fragment screening. In a practical sense, it suggests that room-temperature fragment screen is a promising new avenue for hit identification in drug discovery and for obtaining insights into the fragment binding. Room-temperature screening carries unique advantage over cryo screening. This work is confirmative to the notion, which seems not yet universally considered, that very weak protein-small molecule binding may be inherently fluid structurally, and that crystal structures of such weak binding, especially cryo structures, cannot be taken for granted without cross validation.

      We thank the reviewer for their clear summary and positive comments about our manuscript.

    1. Author Response

      Reviewer #2 (Public Review):

      In this study, The authors developed a mouse model to specifically investigate whether GC B cells that present nuclear protein (NucPr) could be specifically suppressed by Tfr cells. Most current mouse models that have been used in investigating Tfr functions are based on the overall readout of autoantibody production in the scenario of loss-of-function of Tfr cells. The proposed model of gain-of-function of Tfr cells is novel and valuable.

      The authors mainly compared two boosting immunizations by Strepatividin (SA) alone or SA-conjugated with nuclear proteins (SA-NucPr) and demonstrated SA-NucPr boosting immunization was able to expand Tfr cells, suppress overall and SA-specific GC/memory/plasma cell responses. The results are mostly convincing.

      One major concern is the conditions and controls used in the study. The control group (SA boosting immunization) would have enhanced T and B cell responses by this boosting. Unfortunately, there was no non-boosting control group so the level was unclear. It is therefore to strictly match such boosting condition in the SA-NucPr group. Notably, both SA and SA-NucPr were used at 10ug for boosting immunization. Considering NucPr were comparable or much larger (Nucleosome, about 200KDa) than SA (about 60KDa), the dose of SA in the SA-NucPr group was far less than that in the SA group. Due to this cavity, it is difficult to judge the difference between two groups was due to less SA boosting immunization or NucPr-induced Tfr function. This was a fundamental issue weakens the conclusion.

      The single cell analyses clearly demonstrated the expansion of Tfr clones. It remains unclear why other Treg populations other than Tfr cells were not expanded? The Treg cells in the CXCR5intPD-1int population were recently activated and should be able to respond to the boosting immunization. On an alternative explanation, the changes in Tfr cells could be indirectly driven by the changes in Tfh cells. For example, Tfh can produce IL-21 and restrict Tfr expansion (Jandl C, et al.2017). This could be the case of the reduction in Tfr cells in the SA-OVA group as compared to the SA group.

      As the reviewer, we were surprised not to detect significant increase in the levels of CXCR5intPD-1int Tregs in the original experiment after the boosting with SA-NucPrs(Fig.1). Our interpretation of this result was that the fraction of NucPr-specific CXCR5intPD-1int Tregs was small as compared to the total CXCR5intPD-1int Tregs and proliferation of this small fraction of cells would not be detectable by flow cytometry analysis of the total CXCR5intPD-1int Tregs numbers. Alternatively, the observed rapid accumulation of Tfrs was due to proliferation of the NucPr-specific Tfrs that may be abundant after a standard immunization with foreign antigen.

      In single cell analysis we have used only presorted CXCR5highPD1high follicular T cells so majority of CXCR5intPD-1int Treg population was excluded from the analysis.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors optimize a live cell imaging method based on the detection of FAD/NAD(P)H adopted from the fast-growing field of live metabolic imaging. They build upon a method described by KreiB et al 2020 that used metabolic ratio and collagen fiber second harmonic generation imaging. They follow by combining metabolic imaging with morphologic measurements to train a machine-learning model that is able to identify cell types accurately. Upon visualization, authors detected structures hypothesized and then proven to resemble the "goblet cell associated antigen passages" previously studied in intestinal epithelia.

      STRENGTHS

      • The manuscript is succinct, well written, and overall done rigorously.

      • The optimization of the method at multiple levels to the point of identifying both common and rare cell types is impressive.

      • Describes the elegant implementation of a sorely needed method in epithelial biology.

      • Provides an approach to studying the cholinergic response in epithelial cells, a poorly understood phenomenon despite broad clinical use for diagnosis and treatment.

      WEAKNESSES

      A) For what is in large part a methods-development paper, the methods are not explained or shared in a manner that facilitates reproducibility. For example:

      A.1.) The training and validation datasets seem to come from the same sample (or the source is not clearly described). Therefore, it is not clear whether the "96% accuracy" refers to accuracy within the sample measured, or whether it can extrapolate to other samples.

      In order to avoid any confusion, we further clarify that the machine learning training and validation data sets come from the same sample. We had split the total data set into 2 separate subsets for this purpose. This has been laid out in the text as follows:

      “In order to assess the performance of machine learning algorithms designed to distinguish cell types, we divided our data set into training and testing subsets. We utilized 75% of the total cells (154 cells) for machine learning training, leaving 25% (52 cells) for subsequent validation.”

      A.2.) It is unclear whether the model needs to be re-trained within each new sample measured, or if it's applicable to others. This has implications for method adoption by others. Either way is useful but needs to be clarified.

      This is a very interesting point and one that we further clarify in the Discussion noting that in both disease and non-diseased states the model needs to be re-trained in each particular experimental regime.

      A.3.) Code was only listed in a PDF file, which makes reproducing the analysis very cumbersome.

      We hope that all can utilize the code made for this methodology and have uploaded it to a publicly available GitHub account:

      https://github.com/vss11/Label-free-autofluorescence

      B) Whereas the optimization to improve cell type detection is very well described, the implementability of the approach could benefit from exploration (using the data already obtained) of the minimal set of measurements needed to identify cell types. For example, is the FAD/NAD(P)H ratio necessary? Or could just morphologic measurements achieve the same goal?

      This is an excellent point, and we appreciate the Reviewer’s suggestion for this analysis. We have added Figure 3 Supplement 5 where we perform modeling without autofluorescence data. This analysis reveals a dramatic reduction in accuracy with a Matthew’s correlation coefficient ranging from 0.66 to 0.78. This provides additional justification for the use of autofluorescence for cell type identification. Morphologic measurements are not sufficient for cell type identification alone.

      We also have determined the relative contribution of each characteristic to the cell type identification by the Xgboost algorithm in Figure 3 Supplement 4, which shows that autofluorescence signatures are amongst the top contributing characteristics to cell type identification by machine learning.

      C) Whereas the conclusions are overall supported by the data, need small adjustments in some cases:

      C.1.) For example, P3L80: Claims autofluorescence imaging is more specific than "functional markers", however, this is done in the setting of a very specific intervention that massively affects a protein often used as a secretory cell marker (CCSP aka SCGB1A1), which is known to be secreted (and depleted) in secretory cells upon stimulation.

      We agree with the Reviewer that secretory cell identification is a prime example where autofluorescence imaging may be superior to conventional staining, specifically due to the point the Reviewer makes regarding CCSP secretion. We discuss this concept in the Discussion while giving examples of CCSP staining being reduced in asthma, COPD, and smokers. It could be that these cells are missed due to depletion of CCSP. Indeed, we clarify that our methodological approach may be less affected by the loss of the category of specific markers that change with cell state. There are, of course, caveats with utilizing this approach in disease states, and we elaborate on this further below and add this point to the discussion.

      C.2.) Relatedly, it is unclear how the method's accuracy would be affected in conditions that affect redox/metabolic state; the approach may be highly affected in inflammation and injury, for example.

      As suggested by the Reviewer, we re-analyzed the data after Antimycin A + Rotenone and FCCP to determine if autofluorescence ratio is sufficiently different to identify ciliated and secretory cells and included this data in Figure 2 Supplement 1. This is an example where the redox/metabolic state is indeed altered. Though the autofluorescence ratio is affected, it is still useful for cell type identification after intervention as the ciliated and secretory cells have statistically different ratios.

      However, different disease states, particularly infection and inflammation may result in a more profound effect on autofluorescence signatures. For instance, previous work by Dilipkumar et. al, 2019 found changes in autofluorescence over days in repeated measurements in a mouse model of inflammatory bowel disease. Therefore, it is likely that the cell type identification methodology will need to be re-optimized for different experiments and diseased tissues. We include commentary to this effect in the discussion.

      D) The data used to describe "SAPs" is very cursory.

      To further elaborate on our description of SAPs we have included the following:

      1) SAP formation occurs in secretory cells in both stimulated and unstimulated conditions. We performed additional analysis of Figure 4C and determined that SAP formation does occur at baseline prior to stimulation in 9% of secretory cells. Methacholine addition results in 78% of secretory cells forming SAPs (Figure 4 Supplement 1). We have added Figure 5C to demonstrate that SAP formation occurs in the absence of stimulation and is enhanced after methacholine stimulation.

      2) We demonstrate that SAPs can uptake both FITC-dextran and FITC-ovalbumin in Figure 5E, and Figure 5 Supplement 2. We also now show that immune cells (CD11c antigen presenting cells) associate with SAPs containing FITC-dextran and FITC-ovalbumin in Figure 5E and Figure 5 Supplement 2. We have expanded the Discussion of SAPs.

      3) We now show 3 video examples and an XZ optical cross section of ALI that demonstrate uptake and secretion of FITC-dextran in Figure 5 Supplemental Videos 1-3 and Figure 5 Supplement 1.

      D.1.) Unclear if FITC dextran uptake occurs in other cells too, or in secretory cells prior to methacholine stimulation, or induced nonspecifically due to epithelia manipulation. Secretory and goblet cells are very sensitive to stimulation and often considered minimal, for example, see the paper by Abdullah et al DOI:10.1007/978-1-61779-513-8_16 in which extreme care had to be applied to prevent any secretion at all.

      Our autofluorescence methodology revealed the formation of “voids” of autofluorescence forming in secretory cells and we focused our experiments on this phenomenon. Based on the reviewer question, we generated Figure 5C to better characterize SAP formation. Figure 5C illustrates that SAP formation occurs in both unstimulated and methacholine stimulated conditions, but is dramatically increased following methacholine stimulation. This is analogous to the behavior of GAPs in the intestine (Knoop et al., 2015). Furthermore, we have reanalyzed Figure 4C to identify SAPs prior to stimulation and found that these structures are present in 9% of secretory cells. After methacholine stimulation this percentage increases to 78%.

      D.2.) A single image is provided for the SAP timeline (Figure 5C), which appears to be the same cell shown in the supplementary video.

      We now provide numerous example videos and optical XZ cross section of ALI demonstrating SAP uptake and secretion in Supplementary Videos 1-3 and Figure 5 Supplement 1.

      IMPACT AND UTILITY

      This is well-done work with high potential for widespread adoption within the epithelial biology community, particularly if the methods and code are shared in better detail.

      We indeed hope that this methodology can be utilized by others. We have posted analysis code, raw data, MATLAB algorithm, and other necessary files onto a publicly available GitHub link. https://github.com/vss11/Label-free-autofluorescence

      Reviewer #2 (Public Review):

      Shah and colleagues tackle a significant impediment to exploiting tissue culture systems that enable prospective ex vivo experimentation in real-time. Namely, the ability to identify and track dynamic and coordinated activities of multiple composite cell types in response to experimental perturbations. They develop a clever label-free approach that collects biologically-encoded autofluorescence of epithelial cells by 2-photon imaging of mouse tracheal explant culture over 2 days. They report the ability to distinguish 7 cell types simultaneously, including rare ones, by developing a machine-learning approach using a combination of fluorescence and cytologic features. Their algorithm demonstrates high accuracy by Mathew's Correlation Coefficient when applied to a test set. Lastly, they show the ability of their approach to visualize the dynamic uptake and expulsion of fluorescently-tagged dextran by individual secretory cells. Overall, the results are intriguing and may be very useful for specific applications.

      We thank the reviewers for their assessment and indeed hope that the methodology is useful and the discovery of the dynamics of SAP formation have important implications for airway mucosal immunology.

    1. Author Response

      Reviewer #1 (Public Review):

      Animal colour evolution is hard to study because colour variation is extremely complex. Colours can vary from dark to light, in their level of saturation, in their hue, and on top of that different parts of the body can have different colours as well, as can males and females. The consequence of this is that the colour phenotype of a species is highly dimensional, making statistical analyses challenging.

      Herein the authors explore how colour complexity and island versus mainland dwelling affect the rates of colour evolution in a colourful clade of birds: the kingfishers. Island-dwelling has been shown before to lead to less complex colour patterns and darker coloration in birds across the world, and the authors hypothesise that lower plumage complexity should lead to lower evolutionary rates. In this paper, the authors explore a variety of different and novel statistical approaches in detail to establish the mechanism behind these associations.

      There are three main findings: (1) rates of colour evolution are higher for species that have more complex colour phenotypes (e.g. multiple different colour patches), (2) rates of colour evolution are higher on island kingfishers, but (3) this is not because island kingfishers have a higher level of plumage complexity than their mainland counterparts.

      I think that the application of these multivariate methods to the study of colour evolution and the results could pave the way for new studies on colour evolution.

      We appreciate this positive comment about our manuscript.

      I do, however, have a set of suggestions that should hopefully improve the robustness of results and clarity of the paper as detailed below:

      1) The two main hypotheses tested linking plumage complexity and island-dwelling to rates of colour evolution seem rather disjointed in the introduction. This section should integrate these two aspects better justifying why you are testing them in the same paper. In my opinion, the main topic of the paper is colour evolution, not island-mainland comparisons. I would suggest starting with colours and the challenges associated with the study of colour evolution and then introducing other relevant aspects.

      We implemented this suggestion by reorganizing the introduction to introduce color/and challenges with studying it (para 1), then we discuss plumage complexity (para 2). We follow this with a paragraph about the importance of islands in testing evolutionary hypotheses (para 3), and onto kingfishers as a model system (para 4) and our hypothesis/predictions (para 5).

      2) Title: the title refers to both complex plumage and island-dwelling, but the potential effects of complexity should apply regardless of being an island or mainland-dwelling species, am I right? Consider dropping the reference to islands in the title.

      We removed “island” from the title.

      3) The results encompass a large variety of statistical results some closely related to the main hypothesis (eg island/mainland differences) tested and others that seem more tangential (differences between body parts, sexes). Moreover, quite a few different approaches are used. I think that it would be good to be a bit more selective and concentrate the paper on the main hypotheses, in particular, because many results are not mentioned or discussed again outside the Results section.

      We removed analyses that we felt were distracting from our main point (e.g., MCMCglmm) and streamlined our approach to use PGLS methods for both rates (phylolm) and multivariate color patterns (d-PGLS). The relevance of sex differences in coloration is also made more clear, as we added details about how we tested for a relationship between male and female coloration and that we use this strong correlation as a justification for averaging color by species (e.g., see lines 369-375).

      4) Related to the previous section, the variety of analytical approaches used is a bit bewildering and for the reader, it is unclear why different options were used in different sections. Again, streamlining would be highly desirable, and given the novel nature of the analytical approach (as far as I know, many analytical approaches are applied for the first time to study colour evolution) it would be good to properly explain them to the reader, highlighting their strengths and weaknesses.

      We appreciate the suggestion and have now included a workflow diagram, as suggested (see Figure 1). We further added considerable detail to the Methods (old length = 502 words, new length = 1355 words) and mention caveats of the approaches we have taken (e.g., line 308: “We used photosensitivity data for the blue tit (Hart et al., 2000) due to the limited availability of sensitivity data for other avian species”).

      5) The Results section contains quite a bit of discussion (and methods) despite there being a separate Discussion section. I suggest either separating them better or joining them completely.

      We appreciate this. We were following other eLife articles that include more discussion within the Results, therefore we would prefer to leave these aspects in place. However, we did move a considerable amount of information from the Results section to the Methods section. In addition, we also reorganized the Results to better match the logical flow of the Introduction. The end result, we hope, is a Results section that is considerably more streamlined.

      6) The main analyses of colour evolutionary rates only include chromatic aspects of colour variation. Why was achromatic variation (i.e. light to dark variation) not included in the analyses? I think that such variation is an important part of the perceived colour (e.g. depending on their lightness the same spectral shape could be perceived as yellow or green, black or grey or white). I realize that this omission is not uncommon and I have done so myself in the past, but I think that in this case, it is highly relevant to include it in the analyses (also because previous work suggests that island birds are darker than their mainland counterparts). This should be possible, as achromatic variation may be estimated using double cone quantum catches (Siddiqi et al., 2004) and the appropriate noise-to-signal ratios (Olsson et al., 2018). Adding one extra dimension per plumage patch should not pose substantial computational difficulties, I think.

      We incorporated this suggestion and we have now fully integrated achromatic color variation into all of our analyses. These new analyses let us compare results to previous work showing that island birds are darker than mainland counterparts. We further discuss the caveats of chromatic and achromatic channels (e.g., lines 313-317: “Although it is possible, in theory, to combine chromatic and achromatic channels of color variation in a single analysis (Pike, 2012), we opted to analyze them separately, as these different channels are likely under different selection pressures (Osorio and Vorobyev, 2005).”).

      7) The methods need to be much better explained. Currently, some methods are explained in the main text and some in the methods section. All methods should be explained in detail in the methods section and I suggest that it would be better to use a more traditional manuscript structure with Methods before Results (IMRaD), to avoid repetition (provided this is allowed by the journal). Whenever relevant the authors need to explain the choice of alternative approaches. Many functions used have different arguments that affect the outcome of the analyses, these need to be properly explained and justified. In general, most readers will not check the R script, and the methods should be understandable to readers that are not familiar with R. This is particularly important because I think that the methodological approach used will be one of the main attractions of the manuscript, and other researchers should be able to implement it on their own data with ease. Judging from the R script, there are quite a few analyses that were not reported in the manuscript (e.g. multivariate evolutionary rates being higher in forest species). This should be fixed/clarified.

      We clarified several methodological details in the manuscript (e.g., added package versions throughout, mention the permutation option used for compare.evol.rates, cited RPANDA) and modified the Methods section considerably to make logical connections among the sections. We also checked and cleaned up the R markdown file to ensure the analyses were in sync with the manuscript analyses.

      Reviewer #2 (Public Review):

      In "Complex plumages spur rapid color diversification in island kingfishers (Aves: Alcedinidae)", Eliason et al. link intraspecific plumage complexity with interspecific rates of plumage evolution. They demonstrate a correlation here and link this with the distinction between island and mainland taxa to create a compelling manuscript of general interest on drivers of phenotypic divergence and convergence in different settings.

      This will be a fantastic contribution to the literature on the evolution of plumage color and pattern and to our understanding of phenotypic divergence between mainland and island taxa. A few key revisions can help it get there. This paper needs to get, fairly quickly, up to a point where the difference between plumage complexity and color divergence is defined carefully. That should include hammering home that one is an intraspecific measure, while one is an interspecific measure. It took me three reads of the paper to be able to say this with confidence. Leading with that point will greatly improve the paper if that point gets forgotten then the premise of the paper feels very circular.

      We hope our considerable modifications throughout–including explicitly mentioning that complexity is an intraspecific measure whereas rates are interspecific (e.g., see lines 65, 140, 170, 667)–have made the premise of the paper more clear. We also added a new workflow figure (Figure 1) that includes example species pairs showing cases in which intraspecific plumage complexity and interspecific color divergence could show a negative relationship, rather than a positive one as we predict in the manuscript. We discuss this detail in lines 159-161 (“However, this is not necessarily the case, as there are examples within kingfishers that show simple plumages yet high color divergence, as well as complex plumages with little evolutionary divergence (Figure 1B).”).

      Also importantly, somewhere early on a hypothesized causal pathway by which insularity, plumage complexity, and color divergence interact needs to be laid out. The analyses that currently follow are good ones, and not wrong, but it's challenging to assess whether they are the right ones to run because I'm not following the authors' reasoning very well here. I think it's possible a more holistic analysis could be done here, but I'll refrain from any such suggestions until I better get what the authors are trying to link.

      We overhauled the Introduction. This included adding lines that connect the ideas of complexity and insularity (lines 65-58: “intraspecific plumage complexity (i.e., the degree of variably colored patches across a bird's body) could be a key innovation that drives rates of color evolution in birds and should be considered alongside ecological and geographic hypotheses.”) and insularity and color divergence (lines 69-85). We also rethought the analyses and now include PGLS analyses using tip-based rates that allow us to account for both insularity and complexity in the same analysis.

      We also need something near the top that tells us a bit more about the biogeography of kingfishers. Are kingfisher species always allopatric? I know the answer is no, but not all readers will. What I know less well though is whether your insular species are usually allopatric. I suspect the answer is yes, but I don't actually know.

      Great point. We have added details to the manuscript to clarify this (e.g., line 214: “The number of sympatric lineages ranged from 1–9 on islands, and 6–38 for mainland taxa.”).

      In short, how do the authors think allopatry/sympatry/opportunity for competition link to mainland vs. island link to plumage complexity? And rates of color evolution? Make this clear upfront.

      We believe our revised introduction makes these connections much clearer.

    1. Author Response

      Reviewer #2 (Public Review):

      The molecular characteristics of OCNs in normal or ototoxic conditions are poorly understood before. The strength of this study is that it provides the first single-cell RNA-seq database of OCNs as well as surrounding facial branchial motor neurons. By thoroughly analyzing the database, they found high heterogeneities within OCN populations and identified distinct markers that are enriched in different OCN subtypes. Furthermore, a few previously unknown neuropeptides are revealed, including Npy which is more enriched in the LOC-2 located on the medial side. They also found that neuropeptide expression levels and distributions are subjected to hearing experience and noise exposure. On the other hand, the weakness of the study is that the numbers of single-cell RNA-seq are not sufficient, and may underscore the MOC heterogeneity (Figure 3A). Moreover, the physiological functions of the LOC-2 are not revealed in this study, and no specific markers in one OCN subtype are identified that can predict the morphological or projecting axon features. Those might be addressed in the following studies.

      We agree that this study does not allow us to make conclusions about MOC heterogeneity or LOC2 functions. These are certainly interesting avenues to pursue in the future.

    1. Author Response

      Reviewer #3 (Public Review):

      Although initially discovered as axon guidance molecules in the nervous system, Semaphorins, signaling through their receptors the Neuropilins and Plexins, regulate a variety of cell-cell signaling events in a variety of cell types. In addition, cells often express multiple Semas and receptors. Thus, one important question that has yet to be adequately understood about these important signaling proteins is: how does specificity of function arise from a ubiquitously expressed signaling family?

      This study addresses that important question by investigating the role of cysteine palmitoylation on the localization and function of the Neuropilin-2 (Nrp-2) receptor. It was already known that Sema3F signaling through a complex of Nrp-2 and Plexin-A3 regulates pruning of dendritic spines in cortical neurons while Sema3A signals through Nrp-1/PlexA4 to regulate dendritic arborization. The major finding of this study which is well-supported by the data is that palmitoylation of Nrp-2 regulates its cell surface clustering and dendritic spine pruning activity in cortical neurons. Interestingly, palmitoylation of Nrp-1 at homologous residue does not appear to regulate its localization or known neuronal function.

      A clear strength of this manuscript is the many techniques that are utilized to examine the question: this study represents a tour de force of biochemical, molecular, genetic, pharmacological and cell biological assays performed both in vitro and in vivo. The authors carefully dissect the function of distinct palmitoylated cysteine residues on Nrp-2 localization and function, concluding that palmitoylation of juxtamembrane cysteines predominates over C-terminal palmityolyation for the Nrp-2 dependent processes assayed in this study. The authors also demonstrate that a specific palmityl transferase (DHHC15) acts on Nrp-2 but not Nrp-1 and is required for Nrp-2 clustering and dendritic spine pruning. These findings are important because they demonstrate one mechanism by which different signaling pathways, even from a related family of proteins, can achieve signaling specificity in the cell.

      A minor weakness of the paper is that one would like to see a connection between palmitoylation-dependent cell membrane clustering of Nrp-2 on the cell surface and Nrp-2 regulation of dendritic spine pruning. Although the two phenotypes frequently correlate in the data presented, there are a few notable exceptions: e.g. Nrp-2TCS forms larger clusters in cortical neurons while Nrp-2FullCS is diffuse on the cell surface; both mutants affect spine pruning. In the future, it would also be interesting to know if increased clustering of Nrp-2 was observed at spines that were eliminated, for example. Nonetheless this manuscript represents an important advance in our understanding of synaptic pruning and cellular mechanisms that constrain protein surface localization and signaling pathways.

      We agree that the reviewer’s comment on the need to show a direct association between palmitoylation-dependent Nrp-2 clustering on the cell surface and Nrp-2 regulation of dendritic spine pruning is very important. This underscores the need to develop new robust tools that can directly and specifically address the effects of palmitoylation on protein localization and neuronal morphology. For example, an antibody that is specific for palmitoylated Nrp-2, perhaps including site-specific Nrp-2 palmitoylation, would allow for direct visualization of palmitoylated protein localization at subcellular resolution, and if coupled with in vivo imaging, could help address questions related to spine dynamics with respect to Nrp-2 expression and palmitoylation. However, at present we consider this approach an important future direction.

      Regarding the Nrp-2 mutants TCS and Full CS, our experiments suggest the existence of a threshold for protein mislocalization beyond which Nrp-2 loses its function. In other words, the defect in protein localization imparted by the mutation of the three juxtamembrane cysteines (TCS Nrp-2 mutant) seems to be sufficient to cause Nrp-2 dysfunction. In addition, as noted above (Reviewer #1), the protein clustering assay is a useful but a more general localization assay; more sophisticated assays need to be developed to investigate palmitoylated proteins when they are mislocalized upon site-specific depalmitoylation, which could provide a more accurate association between a protein’s localization and function.

      The reviewer’s idea to look at the localization of Nrp-2 at dendritic spines and correlate this with the fate of spines during postnatal development, including relating to spine maintenance vs elimination, is an excellent suggestion that could link directly Nrp-2 to spine dynamics. To address this, however, again new assays with exogenous Nrp-2 expression will need to be developed, but with very low levels of protein expression to avoid saturation of spines with exogenous tagged-Nrp-2 protein and preserve functional specificity for spine regulation. Alternatively, robust in vivo tagging of ndogenous Nrp-2 protein using CRISPR approaches also provide another avenue to achieve this goal—of note, we are trying this approach but, thus far, we have not been successful in achieving labeling that is robust enough for such experiments.

    1. Author Response

      Reviewer #1 (Public Review):

      The current study melds computational and docking methods with functional measurements in a systematic approach: first, they analyze the mechanism of inhibitor binding to EAAT2; second, they mutate ASCT to resemble EAAT and show that the general binding pocket and inhibition mechanism are conserved; third, they perform an in silico screen to identify compounds that bind to the WT ASCT binding pocket; fourth, they perform electrophysiological assays showing that this novel compound allosterically modulates ASCT function. This is a complete and comprehensive study with extensive experimental support for the major conclusions. The authors identify an allosteric ASCT inhibitor, and although only partial inhibition is achieved, this study serves as proof-of-concept that this site can be targeted in diverse SLC-1 transporters as an allosteric inhibitory site.

      We would like to thank Reviewer #1 for the encouraging comments.

      Reviewer #2 (Public Review):

      This study set out to explore the nature of a previously described non-competitive and selective inhibitor of the human glutamate transporter, EAAT1 and to explore if this mechanism was conserved across the glutamate transporter family. The non-competitive nature of UCHPH-101 inhibition of EAAT1 has previously been demonstrated with both functional analysis and structures of EAAT1. Here, the authors use detailed electrophysiology analysis to confirm this mechanism of inhibition and to demonstrate that the inhibitor slows the steps of the transport cycle associated with substrate translocation, rather than substrate or sodium ion binding. These findings agree with previous studies that have shown that the compound binds at the interface of the transport and scaffold domains in EAAT1, two domains that are required to move relative to each other for the transport process to occur. UCPH-101 also prevents the transporter from entering an anion-conducting state, which agrees with a recent structure and MD simulations of EAAT1 that demonstrate movements of the transport domain relative to the scaffold domain are required for the EAAT1 to move into the anion-conducting state and support the mechanism of UCPH-101 inhibition confirmed in this study (PMID: 35192345; PMID: 33597752).

      While UCPH-101 has been shown to be selective for EAAT1 over other human glutamate transporter subtypes (notably EAAT2 and EAAT3), Dong et al., show that this inhibitor can also reduce transport by another member of the SLC1A family, a neutral amino acid exchanger, ASCT2. Using MD simulations and functional analysis, they show that UCPH-101 acts as a partial, low-affinity inhibitor of ASCT2 and identify two amino acid residues in the binding site that appear to be responsible for the different affinities for EAAT1 and ASCT2. Indeed, when these two residues are changed to the corresponding residues in EAAT1, UCPH-101 becomes a full inhibitor of ASCT2 with an increased affinity.

      ASCT2 is a neutral amino acid transporter that can transport glutamine and it is known to be upregulated in several cancers. Thus, finding new compounds and novel ways to inhibit ASCT2 is worthy of investigation. In the last section of this study, the authors conduct a virtual screen of 3.8 million compounds to identify other compounds that could bind to this allosteric site in ASCT2. One compound was identified, and while it had relative low affinity it provides the basis for further exploration of this site.

      We would like to thank Reviewer #2 for the thoughtful comments.

      Reviewer #3 (Public Review):

      Using whole-cell patch-clamp measurements, the authors nicely elaborate the competitive inhibition mechanism of UCPH-101 on EAAT1, concluding that it blocks conformational changes during transmembrane translocation, without inhibiting Na+/glutamate binding. The authors demonstrate that UCPH-101 binds to ASCT2 with strongly reduced affinity. Informed by sequence comparison between EAAT1 and ASCT2, the authors identify a pair of mutations, which makes the putative allosteric-binding pocket (which has been identified by crystallography earlier) in ASCT2 more similar to EAAT1 and restores the inhibitory effect of UCPH-101 in ASCT2. Overall, the electrophysiological experiments appear sound and convincing.

      We appreciate the kind words.

      Furthermore, using virtual screening against the UCPH-101 binding pocket in ASCT2, the authors identified a novel (non-UCPH-101-like) compound #302 that they experimentally demonstrate to also inhibit ASCT-2. However, the study lacks a detailed investigation of the inhibition mechanism of this compound and it remains unclear if #302 also mediates allosteric inhibition as the authors propose. Furthermore, the study lacks any experimental verification of the assumed binding site of #302.

      We agree. Therefore, we have now added more detailed experiments on compound #302 inhibition mechanism, confirming allosteric inhibition (new Fig. G and I).

      In addition, the study includes molecular-dynamics (MD) simulations on interactions of UCPH101 with EAAT1 and ASCT2. These simulations intend to support the interpretations of the electrophysiological experiments, i.e., relatively tight interactions of UCPH-101 with EAAT1 and weaker binding to ASCT2, which can be restored using two point-mutations in ASCT-2. Unfortunately, this is a relatively weak part of the study. Due to the lack of any convergence analysis, the statistical significance of the drawn conclusions remains unclear. Furthermore, since it is not reported how UCPH-101 has been parameterized, the chemical accuracy of these models is unclear.

      We now add information on the UCPH-101 parametrization protocol, and we have extended the time of MD simulations. Also, we have created additional trajectories for the atom distances between amino acid substrate and ASCT2 side chain in the substrate binding site, providing another data point on convergence in the substrate binding site, which should be unaffected by UCPH-101 binding, according to the experimental data.

    1. Author Response

      Reviewer #1 (Public Review):

      In this study, the protein composition of exocytotic sites in dopaminergic neurons is investigated. While extensive data are available for both glutamatergic and GABA-ergic synapses, it is far less clear which of the known proteins (particularly proteins localized to the active zone) are also required for dopamine release, and whether proteins are involved that are not found in "classical" synapses. The approach used here uses proximity ligation to tag proteins close to synaptic release sites by using three presynaptic proteins (ELKS, RIM, and the beta4-subunit of the voltage-gated calcium channel) as "baits". Fusion proteins containing BirA were selectively expressed in striatal dopaminergic neurons, followed by in-vivo biotin labelling, isolation of biotinylated proteins and proteomics, using proteins labelled after expression of a soluble BirAconstruct in dopaminergic neurons as reference. As controls, the same experiments were performed in KO-mouse lines in which the presynaptic scaffolding protein RIM or the calcium sensor synaptotagmin 1 were selectively deleted in dopaminergic neurons. To control for specificity, the proteomes were compared with those obtained by expressing a soluble BirA construct. The authors found selective enrichments of synaptic and other proteins that were disrupted in RIM but not Syt1 KO animals, with some overlap between the different baits, thus providing a novel and useful dataset to better understand the composition of dopaminergic release sites.

      Technically, the work is clearly state-of-the-art, cutting-edge, and of high quality, and I have no suggestions for experimental improvements.

      We thank the reviewer for this summary and for pointing out the high quality of the work.

      On the other hand, the data also show the limitations of the approach, and I suggest that the authors discuss these limitations in more detail. The problem is that there is very likely to be a lot of non-specific noise (for multiple reasons) and thus the enriched proteins certainly represent candidates for the interactome in the presynaptic network, but without further corroboration it cannot be claimed that as a whole they all belong to the proteome of the release site.

      We fully agree with the reviewer. Most importantly, we have changed the final section from “Conclusions” to “Summary of conclusions and limitations” (lines 501-518) to summarize the limitations with equal weight to the conclusions. In the revised manuscript, we also included many specific additional points in this respect throughout the discussion and the results: many hits could be noise (lines 458, 478-479), thresholding affects the inclusion of proteins in the release site dataset (lines 208-215), the seven-day time window could deliver interactors from the soma to the synapse (lines 493-495), specific oddities (for example histones, lines 482-485), iBioID does not deliver an interactome per se but is simply based on proximity (lines 505-508), and several more. We also clearly state that each specific hit needs follow-up studies (lines 501-503: ” Each protein will require validation through morphological and functional characterization before an unequivocal assignment to dopamine release sites is possible.”), and a similar statement was added on lines 374-375.

      Reviewer #2 (Public Review):

      The Kaiser lab has been on the forefront in understanding the mechanism of dopamine release in central mammalian neurons. assessing dopamine neuron function has been quite difficult due to the limited experimental access to these neurons. Dopamine neurons possess a number of unique functional roles and participate in several pathophysiological conditions, making them an important target of basic research. This study here has been designed to describe the proteome of the dopamine release apparatus using proximity biotin labeling via active zone protein domains fused to BirA, to test in which ways its proteome composition is similar or different to other central nerve terminals. The control experiments demonstrating proper localization as well as specificity of biotinylation are very solid, yielding in a highly enriched and well characterized proteome data base. Several new proteins were identified and the data base will very likely be a very useful resource for future analysis of the protein composition of synapse and their function at dopamine and other synapses.

      We thank the reviewer for this positive assessment of our work.

      Major comment:

      The authors find that loss of RIM leads to major reduction in the number of synaptically enriched proteins, while they did not see this loss of number of enriched proteins in the Syt1-KO's, arguing for undisrupted synaptome. Maybe I missed this, but which fraction of proteins and synaptic proteins are than co-detected both in the Syt1 and control conditions when comparing the Venn diagrams of Fig2 and Fig 3 Suppl. 2? This analysis may provide an estimate of the reliability of the method across experimental conditions.

      We thank the reviewer for proposing to be clear in the comparison of the control and Syt-1 cKODA data. A direct comparison of hit numbers is included on lines 323-324, with 37% overlap between control and Syt-1 cKODA (vs. 15% between control and RIM cKODA). A direct mapping of this overlap is included in Fig. 4E. We think that this direct comparison is complicated by a number of factors, as outlined below, and did our best to include these complications in the discussion, including the last section (lines 501-518).

      First, to assess overall similarity, the initial comparison should be to assess axonal proteins identified in the BirA-tdTomato samples. These datasets are quite similar, with 671 (control) and 793 (Syt-1 cKODA) proteins detected, and a high overlap of 601 proteins. We think that this indicates that the experiment per se is quite reproducible. The comparison of the release site proteome between control and Syt-1 cKODA is more complicated. We think that the main point of this comparison is that the overall number of hits is quite similar, with 450 hits in the Syt-1 cKODA proteome and 527 hits in the control proteome, and we now show that this similarity holds across multiple thresholds (lines 298-301; ≥ 1.5: Syt-1 cKODA 602 hits, control 991, ≥ 2.0: 450/527, ≥ 2.5: 252/348). Detailed analyses of overlap reveals that known active zone proteins such as Bassoon, CaV2 channels, RIMs, and ELKS proteins are present in both proteomes, but the overlap is partial and incomplete with 191 proteins found in both proteomes. As discussed throughout and summarized on lines 501-518, the reasons for this partial overlap may be manifold. Trivially, it could be explained by noise or non-saturation (“incompleteness”) of the proteome. We also think that the Syt-1 proteome is not expected to be identical because there is a strong release deficit in these mice. If Syt-1 has a dopamine vesicle docking function (which it does at conventional synapses [4]), this could influence the proteome. We note that protein functions in the dopamine axon are not well established, but inferred from studies of classical synapses.

      We have scrutinized the manuscript to not express that the control and Syt-1 cKODA proteomes are identical; we know they are not and discuss the example of α-synuclein specifically (Fig. 6, lines 347-362). Rather, the striking part is that the extent of the proteomes with high hit number, much higher than RIM cKODA, are similar. Specific hits have to be assessed in a detailed way, one hit at a time, in future studies, as expressed unequivocally on lines 501-503).

      Reviewer #3 (Public Review):

      In this study Kershberg et al use three novel in vivo biotin-identification (iBioID) approaches in mice to isolate and identify proteins of axonal dopamine release sites. By dissecting the striatum, where dopamine axons are, from the substantia nigra and VTA, where dopamine somata are, the authors selectively analyzed axonal compartments. Perturbation studies were designed by crossing the iBioID lines with null mutant mice. Combining the data from these three independent iBioID approaches and the fact that axonal compartments are separated from somata provides a precise and valuable description of the protein composition of these release sites, with many new proteins not previously associated with synaptic release sites. These data are a valuable resource for future experiments on dopamine release mechanisms in the CNS and the organization of the release sites. The BirA (BioID) tags are carefully positioned in three target proteins not to affect their localization/function. Data analysis and visualization are excellent. Combining the new iBioID approaches with existing null mutant mice produces powerful perturbation experiments that lead and strong conclusions on the central role of RIM1 as central organizers of dopamine release sites and unexpected (and unexplained) new findings on how RIM1 and synaptotagmin1 are both required for the accumulation of alpha-synuclein at dopamine release sites.

      We thank the reviewer for assessing our paper, for summarizing our main findings, and for expressing genuine enthusiasm for the approach and the outcomes.

      It is not entirely clear how certain decisions made by the authors on data thresholds may affect the overall picture emerging from their analyses. This is a purely hypothesis-generating study. The authors made little efforts to define expectations and compare their results to these. Consequently, there is little guidance on how to interpret the data and how decisions made by the authors affect the overall conclusions. For instance, the collection of proteins tagged by all three tagging strategies (Fig 2) is expected to contain all known components of dopamine release sites (not at all the case), and maybe also synaptic vesicles (2 TM components detected, but not the most well-known components like vSNAREs and H+/DA-transporters), and endocytic machinery (only 2 endophilin orthologs detected). Whether or not a more complete collection the components of release sites, synaptic vesicles or endocytic machinery are observed might depend on two hard thresholds applied in this study: (a) "Hits" (depicted in Fig 2) were defined as proteins enriched {greater than or equal to} 2-fold (line 178) and peptides not detected in the negative control (soluble BirA) were defined as 0.5 (line 175). How crucial are these two decisions? It would be great to know if the overall conclusions change if these decisions were made differently.

      We agree with the reviewer that the thresholding decisions are important and have now better incorporated the rationale for these decisions in the manuscript.

      Two-fold enrichment threshold. As outlined in the response to point 1 in the editorial decision letter, we now include figure supplements to illustrate the composition of the control proteome if we apply 1.5- or 2.5-fold enrichment thresholds (Fig. 2 – figure supplements 1 and 2) instead of the 2.0-fold threshold used in Fig. 2. This leads to more or less hits (991 and 348, respectively) compared to the 2.0-fold threshold (527 hits). It is noteworthy that the SynGO-overlap is the highest with the 2.0 threshold (37% vs. 31% at 1.5 and 33% at 2.5, Fig. 2 – figure supplement 3), justifying this threshold experimentally in addition to what was done in previous work [1,2]. These data are now described on lines 208-215 of the manuscript. When we apply these different thresholds to RIM and Syt-1 cKODA datasets, the finding that RIM ablation disrupts release site assembly persists. The following hit numbers were observed in the mutants at the 1.5, 2.0 and 2.5 enrichment thresholds, respectively: RIM cKODA 268, 198 and 82 hits; Syt cKODA 602, 450 and 252 hits. Hence, the extent of the release site proteome remains much smaller after RIM ablation independent of the enrichment threshold, bolstering the conclusion that RIM is an important scaffold for these release sites. This is included in the revised manuscript on lines 298301.

      Undetected peptides in BirA-tdTomato. We did not express this well enough in the manuscript. The undetected proteins were set to 0.5 such that a protein that was detected with a specific bait but not with BirA-tdTomato could be illustrated with a specific circle size, not to determine inclusion in the analyses. If the average peptide count across repeats with a specific bait was 1, this resulted in inclusion in Fig. 2 and consecutive analyses with the smallest circle size. Hence, this decision was made to define circle size. It did not affect inclusion in Fig. 2 beyond the following two points. If one were to further decrease it, this might result in including peptides that only appeared once as a single peptide for some of the experiments, which we wanted to avoid. If one would set it higher (to 1), this artificial threshold would be equal to proteins that were actually detected experimentally multiple times, which we wanted to avoid as well. We have now clarified this on lines 165-167 and lines 1119-1121.

      Expected proteins. In general, interpreting our dataset with a strong prior of expected proteins is difficult. The literature on release site proteins specifically characterized for dopamine is limited. We have found Bassoon, RIM, ELKS and Munc13 to be present using 3D-SIM superresolution microscopy [5,6], and we indeed found these proteins in the data as discussed on lines 227-232 and lines 423-445 in the revised manuscript. The prediction for vesicular and endocytic proteins is complicated. Release sites are sparse [5,7], and vesicle clusters are widespread in the dopamine axon, in some cases filling most of the axon (for example, see extended vesicle clusters filling much of the dopamine axon in Fig. 7E of [5]). Furthermore, docking in dopamine axons has not been characterized, and it is unclear how frequently vesicles are docked. Hence, it is not clear whether vesicular proteins should be concentrated at release sites compared to the rest of the axon (the BirA-tdTomato proteome we use for normalization). Similar points can be made for proteins for endocytosis and recycling of dopamine vesicles. Within the dopamine system, it is unclear whether the recycling pathway is close to the exocytic sites. One consistent finding across functional studies is that depletion after activity is unusually long-lasting in the dopamine system, for tens of seconds, even after only mild stimulation [5,8–13]. Hence, endocytosis and RRP replenishment might be very slow in these axons. It is not certain that endocytic factors are predeployed to the plasma membrane, and if they are, it is unclear how close to release sites they would be. As such, we agree with the reviewer that the proteome we describe is a hypothesisgenerator. With the limited knowledge on dopamine release, predictions beyond the previously characterized proteins in dopamine axons are difficult to make.

      We thank the reviewer for suggesting to include a better analysis of different thresholds and for giving us the opportunity to clarify the other points that were raised.

      Given the good separation of the axonal compartment from the somata (one of the real experimental strengths of this study), it is completely unexpected to find two histones being enriched with all three tagging strategies (Hist1h1d and 1h4a). This should be mentioned and discussed.

      We agree with the reviewer and have addressed this point in the manuscript. This could either reflect noise, or there could be more specific reasons behind it. The manuscript now states on lines 482-485: “It is surprising that Hist1h1d and Hist1h4a, genes encoding for the histone proteins H1.3 and H4, were robustly enriched (Fig. 2A). These hits might be entirely unspecific, or their co-purification could be due to biotinylation of H1 and H4 proteins (Stanley et al., 2001). It is also possible that there are unidentified synaptic functions of some of the unexpected proteins.” Ultimately, we do not know why these proteins are enriched, and we state clearly in the section “Summary of conclusions and limitations” that each new hit has to be validated in future studies (lines 501-503).

      It would also help to compare the data more systematically to a previous study that attempted to define release sites (albeit not dopamine release sites) using a different methodology (biochemical purification): Boyken et al (only mentioned in relation to Nptn, but other proteins are observed in both studies too, e.g. Cend1).

      We agree with the reviewer that Boyken et al, 2013 [14] is an important resource for our paper and for the assessment of the proteomic composition of release sites. We have now introduced links and citations to this paper multiple times (for example, on lines 231, 241, 430, 443, 481) and have expanded the discussion of overlap between these proteomes, including on Cend1 (lines 479482).

      We think that a systematic comparison with Boyken et al, 2013 [14] is complicated because (1) so little is known about dopamine release mechanics and (2) because the approach is very different between the two papers. In respect to (1), most prominently, it is not certain how frequently vesicles are docked in the dopamine axon. Only ~25% of the varicosities contain these release sites, and vesicle docking has not been characterized in striatal dopamine axons to the best of our knowledge. Hence, how a docking site at a classical synapse compares to a dopamine release site remains unclear at the outset. For point (2), the key difference is that “within dataset normalizations” are very different in these two studies. In our iBioID dataset, we normalize to soluble proteins defined as proximity to BirA-tdTomato. In ref. [14], the authors express enrichment over “light”, regular synaptic vesicles purified with the same approach. This has a major impact on the proteome that strongly influences a direct comparison of hits, because there are large differences in the normalization. While each normalization makes sense for the respective paper, it complicates direct comparison.

      With these points in mind, we have compared hits across both datasets class-by-class. For some classes, the datasets have reasonable overlap for ≥ 2-fold enriched proteins: for example for active zone proteins (3 of 7 hits in [14] appear in our control proteome) and adhesion and cell surface proteins (8 of 18). For other classes, the overlap is limited: for example for nucleotide metabolism/protein synthesis (0 of 16 hits in [14] appear in our dataset) and cytoskeletal proteins (5 of 29). We hope the reviewer agrees, that given these factors, the analyses and discussion needed for a systematic comparison goes beyond the scope of our paper. We have instead added a number of references to Boyken et al., 2013 [14], as outlined above, when direct comparison is meaningful.

    1. Author Response

      Reviewer #2 (Public Review):

      In this paper, Xiao et al. suggest that PASK is a driver for stem cell differentiation by translocating from the cytosol to the nucleus. This phenomenon is dependent on the acetylation of PASK mediated by CBP/EP300, which is driven by glutamine metabolism. Furthermore, this study showed that PASK interferes/weakens the Wdr5-APC/C interaction, where PASK interacts with Wdr5, resulting in repression of Pax7, leading to stem cell differentiation.

      There exist huge interest in maintaining adult stem cells and ES cells in their pluripotent form and the work painstakingly perform several experiments to present that PASK is a good target to achieve that goal.

      However, the work on the paper relies mostly on data from C2C12 cells as adult muscle stem cell models, in vivo experimental data, and primary myoblasts from mice. Using these models makes the story contextual in muscle stem cells. Authors have not tried to extrapolate similar claims in other adult stem cell models. This severely restricts the claim to muscle stem cells even though PASK is required for the onset of embryonic and adult stem cell differentiation in general. Their work could be much strengthened if it is also tried on mesenchymal stem cells as these cells are also as metabolically active as muscle cells.

      We thank reviewers for their enthusiasm for our studies using PASKi. We have previously shown that PASKi prevented differentiation of 10T1/2 cells into adipogenic lineage (Kikani et al, Elife, 2016). We used stem cells from embryonic (ESC) and adult (MuSCs) origin to show broad application of PASKi in preserving self-renewal independent of stem cell origin. We believe that PASK function to be conversed across different stem cell paradigms; and our results in this manuscript would provide framework to further study PASK in other stem cell paradigms.

      Reviewer #3 (Public Review):

      This manuscript entitled "PASK relays metabolic signals to mitotic Wdr5-APC/C complex to drive exit from selfrenewal" by Xiao et al presents an interesting story on the role of PASK in the control of muscle stem cell fate by controlling the decision between self-renewal and differentiation. While the biochemistry presented is fairly compelling, the experiments revolving around the myogenic cells are lacking in quality and data.

      Major concerns:

      1) The isolation method used by this group to isolate muscle stem cells is inappropriate for the experiments used and may contribute to the misinterpretation of some of the results. It is simply a preplating method that results in a very heterogenous cell population in terms of cell type, comprised of numerous fibroblasts. While preplating can be used to isolate muscle stem cells and culture them as myoblasts, it takes days of growth and multiple rounds of passaging that are not used in this paper in order to get a more pure population of myogenic cells. This would also explain the high number of Pax7 negative cells in their primary myoblast experiments (~50% in some conditions) as they are most likely fibroblasts, which the authors could show by staining for fibroblast markers. The increase in Pax7 cells in certain conditions could also simply be due to the loss of contaminating cell types due to the treatment. Every single experiment that was performed on myoblasts must be redone using a more appropriate cell isolation method (i.e. FACS) or by culturing these isolated cells for a much longer period of time to eventually get a more pure cell population. As it stands, none of the data from the primary myoblast experiments are trustworthy.

      We agree – and thus, we have reproduced our results using two different methods of purifying MuSCs from mice, as indicated above. We took care to stain each isolation method with vimentin (a marker for fibroblasts) to ensure the purity of our preparation. Data are included in the Essential revisions section.

      2) The authors possess a genetic mouse model where PASK is knocked out. However, the mouse model is never described and the paper that is referenced also does not describe it. Please detail your mouse model.

      3) The majority of experiments are performed on C2C12 cells. While C2C12s are adequate for biochemistry and proof of concepts, when it comes to biological significance primary myoblasts should be used. While the authors try to explain this use by claiming that primary myoblasts undergo precocious differentiation that can be avoided by using an appropriate growth media (F10, 20% FBS, 1% P/S, 5ng/mL of bFGF).

      Kindly see the response for this comment in the Essential revision section.

      4) The authors possess a genetic mouse model, yet performed RNA-Seq on C2C12 myoblasts that were either untreated or treated with a PASK inhibitor. It would be much more informative and valuable to sequence the primary myoblasts from WT and PASK KO mice, thereby providing a more biologically relevant model.

      We used C2C12 for several reasons for initial transcriptome analysis using PASKi and validated the results from that analysis in primary myoblasts. (1) C2C12 cells are an excellent model for performing biochemical pathway characterization, including discovering new substrate targets for PASK, finding PASK interacting partners, and measuring the biochemical activity of PASK under various conditions. Thus, it would form the basis for a longer-term study of the signaling functions of PASK in one cell system (myoblasts), which can be validated and compared with the primary cell system. (2) PASKi treatment can acutely inhibit PASK catalytic activity without the genetic loss of its protein level. For many enzymatic proteins, catalytic inhibition could have a different biological effect compared with genetic loss of protein (Weiss et al.; Nat Chem Biol. 2007 Dec; 3(12): 739–744.). Thus, we chose the PASKi and C2C12 myoblasts system to study the kinase activitydependent effect on the myoblast transcriptome. However, throughout the manuscript, we used PASKi, PASK siRNA, and PASKKO primary cells to cross-validate all our data. We believe the conditional loss of PASK in MuSCs specific manner will be a great model to repeat the RNA-seq analysis in the future and compare the data obtained with PASKi in cultured myoblasts.

      5) The KO mouse model is rarely used and the cells isolated from it would be very useful in determining the biological role of PASK in muscle cells. The authors should isolate WT and KO cells and perform basic muscle functional experiments such as EDU incorporation for proliferation, and fusion index for differentiation to see whether the loss of PASK has an effect on these cells.

      We have published the characterization of myogenesis phenotype of PASKKO model in our previous manuscript (Kikani et al, 2016). Thus, we erred by not redoing those experiment in the previous version. We have now reproduced those results and markedly extended the chacterization of PASKKO cells in vitro, including BrdU incorporation, myogenesis, Pax7 heterogeneity, Myogenin expression and PASK subcellular distribution using WT cells. We have also characterized regeneration phenotype of PASKKO mice. We thank the reviewer for helping strengthen the biological context of our manuscript.

      6) The authors never look at quiescent muscle stem cells and early activated muscle stem cells in terms of PASK protein expression and dynamics. The authors should isolate EDL myofibers and stain for PASK and PAX7 at 0, 24, 48, and 72-hour post isolation. This would allow the authors to quantify the changes in PASK expression and cell localization, as well as confirm the number of muscle stem cells in WT and KO mice, during quiescence and during the process of muscle stem cell activation, proliferation, and differentiation in a near in vivo context.

      As described in Figure 1-figure supplement 2A, PASK is not expressed in quiescent MuSCs. Therefore, we do not anticipate a functional role of PASK in initial activation of QSC. We do not propose that PASK plays a role in the maintenance of the QSC state or the exit and initial activation of MuSCs following muscle injury. PASK is transcriptionally activated in proliferating myoblasts during regeneration (Kikani et al, elife 2016) and upon isolation of MuSCs (Figure S1D). Therefore, we specifically focus on studying the biochemical functional role of PASK signaling in activated (proliferating) myoblasts isolated from mice or during early regeneration. We have ongoing studies examining the precise temporal kinetics of PASK transcription regulation in Pax7+ MuSCs as they are activated, and to identify its upstream transcriptional regulators. However, we respectfully suggest that these avenues are outside of the purview of this current manuscript that specifically explores the metabolic pathway that establishes progenitor population from activated myoblasts.

      7) Contrary to their claim, MyoD is not a stemness/self-renewal gene.

      We agree, and have corrected the text.

      8) The authors state that PASK is necessary for exit from self-renewal and establishment of a progenitor population, but this is a vast overstatement. In the genetic KO mouse model, the mice are able to regenerate their muscle after injury, therefore PASK cannot be a necessary protein for the formation of progenitor cells.

      During the muscle regeneration, we observed a significant inhibition of the early regenerative response in PASKKO mice, marked by severely reduced levels of eMHC. Concomittantly, we observed increased numbers of Pax7+ MuSCs at Day 5 of regeneration compared with WT muscles. We have extensively shown requirement of PASK for myogenin induction in vitro and in vivo (Kikani et al, 2016, Kikani et al, 2019). Based on these evidence, we propose that PASK is necessary for the exit from Pax7+ self-renewing stem cells and generation of Myog+ committed progenitor populations.

      9) In numerous figure panels, the y-axis represents the # of cells, rather than a percentage or ratio. This is uninformative as the number of cells will never be the same between conditions and experiments. These panels need to be replaced with a more appropriate y-axis.

      We have updated the axes to % cells where appropriate.

    1. Author Response

      Reviewer #1 (Public Review):

      Doostani et al. present work in which they use fMRI to explore the role of normalization in V1, LO, PFs, EBA, and PPA. The goal of the manuscript is to provide experimental evidence of divisive normalization of neural responses in the human brain. The manuscript is well written and clear in its intentions; however, it is not comprehensive and limited in its interpretation. The manuscript is limited to two simple figures that support its concussions. There is no report of behavior, so there is no way to know whether participants followed instructions. This is important as the study focuses on object-based attention and the analysis depends on the task manipulation. The manuscript does not show any clear progression towards the conclusions and this makes it difficult to assess its scientific quality and the claims that it makes.

      Strengths:

      The intentions of the paper are clear and the design of the experiment itself is simple to follow. The paper presents some evidence for normalization in V1, LO, PFs, EBA, and PPA. The presented study has laid the foundation for a piece of work that could have importance for the field once it is fleshed out.

      Weakness:

      The paper claims that it provides compelling evidence for normalization in the human brain. Very broadly, the presented data support this conclusion; for the most part, the normalization model is better than the weighted sum model and a weighted average model. However, the paper is limited in how it works its way up to this conclusion. There is no interpretation of how the data should look based on expectations, just how it does look, and how/why the normalization model is most similar to the data. The paper shows a bias in focusing on visualization of the 'best' data/areas that support the conclusions whereas the data that are not as clear are minimized, yet the conclusions seem to lump all the areas in together and any nuanced differences are not recognized. It is surprising that the manuscript does not present illustrative examples of BOLD series from voxel responses across conditions given that it is stated that it is modeling responses to single voxels; these responses need to be provided for the readers to get some sense of data quality. There are also issues regarding the statistics; the statistics in the paper are not explicitly stated, and from what information is provided (multiple t-tests?), they seem to be incorrect. Last, but not least, there is no report of behavior, so it is not possible to assess the success of the attentional manipulation.

      We appreciate the reviewer’s feedback on providing more information so that the scientific quality of our work can be assessed. We have now added a new figure including BOLD responses in different conditions, as well as how we expected the data to look and the interpretations. To provide extra evidence for data quality and reliability, we have included BOLD responses of different conditions for odd and even runs separately in the supplementary information.

      In order to avoid any bias in presentation, we have now visualized the results from all areas with the same size and in a more logical order. However, we have also modified all results to include only those voxels in each ROI that were active for the stimuli presented in the main task based on the comment of one of the reviewers. According to the current results, there is no difference in the efficiency of the normalization model in different regions, which we have reported in the results section.

      Regarding the statistics, we have corrected the problem. We have performed ANOVA tests, have corrected all results for multiple comparisons, and have added a statistics subsection in the methods section to explicitly explain the statistics.

      Finally, we have added the report of the reaction time and accuracy in the results section and the supplementary information. As stated, average performance was above 86% in all conditions, confirming that the participants correctly followed the instructions and that the attentional manipulation was successful.

      We hope that the reviewer would find the manuscript improved and that the new analyses, figures, and discussions would address the reviewer’s concerns.

      Reviewer #2 (Public Review):

      My main concern is in regards to the interpretation of these results has to do with the sparseness of data available to fit with the models. The authors pit two linear models against a nonlinear (normalization) model. The predictions for weighted average and summed models are both linear models doomed to poorly match the fMRI data, particularly in contrast to the nonlinear model. So, while I appreciate the verification that responses to multiple stimuli don't add up or average each other, the model comparisons seem less interesting in this light. This is particularly salient of an issue because the model testing endeavor seems rather unconstrained. A 'true' test of the model would likely need a whole range of contrasts tested for one (or both) of the stimuli, Otherwise, as it stands we simply have a parameter (sigma) that instantly gives more wiggle room than the other models. It would be fairer to pit this normalization model against other nonlinear models. Indeed, this has been already been done in previous work by Kendrick Kay, Jon Winawer and Serge Dumoulin's groups. So far, may concern above has only been in regards to the "unattended" data. But the same issue of course extends to the attended conditions. I think the authors need to either acknowledge the limits of this approach to testing the model or introduce some other frameworks.

      We thank the reviewer for their feedback. We have taken two approaches to answer this concern. First, we have included simulations of neural population responses to attended and unattended stimuli. The results demonstrate that with our cross-validation approach, the normalization model is only a better fit if the computation performed at the neural level for multiple-stimulus responses is divisive normalization. Otherwise, the weighted sum or the weighted average models are better fits to the population response when the neurons respectively sum or average responses. These results suggest that the normalization model provides a better fit to the data because the underlying computation performed by the neurons is divisive normalization, not because of the model’s non-linearity.

      In a second approach, we tested a nonlinear model, which was a generalization of the weighted sum and the weighted average models with an extra saturation parameter (with even more parameters than the normalization model). The results demonstrated that this model was also a worse fit than the normalization model.

      Regarding the reviewer’s comment on testing for a range of contrasts, as we have emphasized now in the discussion, here, we have used single-, multiple-, attended- and unattended-stimulus conditions to explore the change in response and how the normalization model accounts for the observed changes in different conditions. While testing for a range of contrasts would also be interesting, it would need a multi-session fMRI experiment to test for a range of contrasts with isolated and paired stimulus conditions in the presence and absence of attention. Moreover, the role of contrast in normalization has been investigated in previous studies, and here we added to the existing literature by exploring responses to multiple objects, and investigating the role of attention. Finally, since the design of our experiment includes presenting superimposed stimuli, the range of contrasts we can use is limited. Low-contrast superimposed stimuli cannot be easily distinguished, and high-contrast stimuli block each other.

      We hope that the reviewer would find the manuscript improved and that the new models, simulations, analyses, and discussions would address the reviewer’s concerns.

      Reviewer #3 (Public Review):

      In this paper, the authors model brain responses for visual objects and the effect of attention on these brain responses. The authors compare three models that have been studied in the literature to account for the effect of attention on brain responses to multiple stimuli: a normalization model, a weighted average model, and a weighted sum model.

      The authors presented human volunteers with images of houses and bodies, presented in isolation or together, and measured fMRI brain activity. The authors fit the fMRI data to the predictions of these three models, and argue that the normalization model best accounts for the data.

      The strengths of this study include a relatively large number of participants (N=19), and data collected in a variety of different visual brain regions. The blocked design paradigm and the large number of fMRI runs enhance the quality of the dataset.

      Regarding the interpretation of the findings, there are a few points that should be considered: 1) The different models that are being studied have different numbers of free parameters. The normalization model has the highest number of free parameters, and it turns out to fit the data the best. Thus, the main finding could be due to the larger number of parameters in the model. The more parameters a model has, the higher "capacity" it has to potentially fit a dataset. 2) In the abstract, the authors claim that the normalization model best fits the data. However, on closer inspection, this does not appear to be the case systematically in all conditions, but rather more so in the attended conditions. In some of the other conditions, the weighted average model also appears to provide a reasonable fit, suggesting that the normalization model may be particularly relevant to modeling the effects of attention. 3) In the primary results, the data are collapsed across five different conditions (isolated/attended for preferred and null stimuli), making it difficult to determine how each model fares in each condition. It would be helpful to provide data separately for the different conditions.

      We thank the reviewer for their feedback.

      Regarding the reviewer’s concern about the number of free parameters, we have introduced a simulation approach, demonstrating that with our cross-validation approach, a model with a higher number of parameters is not a good fit when the underlying neural computation does not match the computation performed by the model. Moreover, we have now included another nonlinear model with 5 parameters that performs worse than the normalization model. Besides, we have used the AIC measure in addition to cross-validation for model comparison, and the AIC measure confirms the previous results.

      Regarding the difference in the efficiency of the normalization model across conditions, after selecting the voxels that were active during the main task in each ROI (done according to the suggestion of one of the reviewers to compensate for the difference in size of localizer and task stimuli), we observed that the normalization model was a better fit for both attended and unattended conditions. However, since the weighted average model results were also close to the data in unattended conditions, we have discussed the unattended condition separately and have discussed the relevance of our results to previous reports of multiple-stimulus responses in the absence of attention.

      Finally, concerning model comparison for different conditions, we have calculated the models’ goodness of fit across conditions for each voxel. The reason for calculating the goodness of fit in this manner was to evaluate model fits based on their ability in predicting response changes with the addition of a second stimulus and with the shifts of attention. Since correlation is blind to a systematic error in prediction for all voxels in a condition, calculating the goodness of fit across voxels would lead to misinterpretation. We have now included a figure in the supplementary information illustrating the method we used for calculating the goodness of fit.

      We hope that the reviewer would find the manuscript improved and that the new analyses, simulations, figures, and discussions would address the reviewer’s concerns.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, Braet et al provide a rigorous analysis of SARS-CoV-2 spike protein dynamics using hydrogen/deuterium exchange mass spectrometry. Their findings reveal an interesting increase in the dynamics of the N-terminal domain that progressed with the emergence of new variants. In addition, the authors also observe an increase in the stabilization of the spike trimeric core, which they identify originates from the early D614G mutation.

      Overall this is a timely and interesting exploration of spike protein dynamics, which have so far remained largely unexplored in the literature.

      What I find a bit missing in this manuscript is a link between how the identified changes in protein dynamics lead to increased viral fitness. While there are some possibilities listed in the discussion, I think these should be elaborated upon further. In addition, it should also be discussed how understanding the changes in the spike protein dynamics could have implications for the development of small molecule inhibitors for the virus.

      We have included information in the introduction and conclusion to make the connection more clearly between our observations, function, and viral fitness of spike protein. We have also connected specific mutations to observed function. We have re-organized the discussion for increased clarity and to improve the correlation of our observations to viral fitness.

      Reviewer #2 (Public Review):

      The study systematically looks at dynamic differences across variants longitudinally and the authors appropriately only limit their analyses to peptides that are conserved across the different variants.

      There are some concerns listed below, particularly related to the ensemble heterogeneity that is reported and need considerable revision.

      1) The authors explain that cold-temperature treatment of the S trimer ectodomain constructs has been shown to lead to instability and heterogeneity. They also show this with a comparison of untreated vs. 3-hour 37 ℃ treated samples. I'm confused as to why "During automated HDXMS experiments protein samples were stored at 0 ℃". Will this not cause issues in protein heterogeneity, where the longer the protein sits at 0 ℃ the more potential heterogeneity there will be, and thus greatly confound the analysis?

      We thank the reviewer for highlighting this point. We have carefully examined and reevaluated our analysis of both wild -type and variant spike HDXMS. During automated HDXMS experiments, protein samples are indeed maintained at 0 ℃, in between runs and replicates for fixed periods of time (4 h per replicate). In the case of WT S, we did observe conformational heterogeneity between replicates (Figure 2- figure supplement 6), as correctly pointed out by the reviewer. We have repeated analysis of WT S without 0 ℃ incubation in automated HDXMS experiments. In the revised manuscript, Figure 2 shows the more homogenous conformation of WT S, when not incubated at 0 ℃ in between replicates. Extension of these analyses to D614G (Figure 2- figure supplement 7) and all subsequent variants that each contain D614G, showed almost no conformational heterogeneity.

      We have included a detailed description (lines 237-244) of the revised manuscript to describe in greater detail effects of 0 ℃ incubation on HDXMS of WT S.

      Our results revealed that WT S was more sensitive to cold denaturation as described previously [Costello et al. 2021] where the reported half-life for conformational transitions after 0 ℃ incubation was 17 hours. We had not anticipated conformational heterogeneity revealed by deuterium exchange when using an automated HDXMS setup. Upon further review, we see a significant ensemble shift in trimer stalk peptides for the second and third replicates which sat at 0 ℃ for 4 and 8 hours respectively. This is only observed in WT but not any of the other variant S samples. We thank the reviewer for pointing this out and strengthening our conclusions.

      2) The authors presume that the bimodal spectra that are observed reflect EX1 kinetics, however, there can be multiple reasons for an apparent bimodal distribution in the spectra. I agree that some of the spectra indicate that more than a single species is present, but what the two populations represent is murky. In Figure 2D, the apparent size of the highly deuterated population gets larger going from the 60 sec to the 600-sec spectra, as expected for an EX1 transition. However, in Figure 3D the WT highly deuterated population gets smaller going from the 60-sec to the 600-sec spectra. Were bimodal examples observed beyond those shown in Figure 2?

      We agree with the reviewer. The appearance of bimodal spectra in deuterium exchange of S protein peptides in WT S are not a result of EX1 kinetics alone. We have revised the explanation for the presence of the bimodal spectra. These are largely a consequence of automated HDXMS workflows, that included 0° C incubations for short periods of time in between replicates. We report new experiments where we have eliminated 0 °C incubations by incubating at 20 °C between replicates and observed a lot lower conformational heterogeneity.

      Consequently, the shifts in bimodal spectra in figure 3D for WT S are also likely a consequence of automated HDX MS experiments with 0 ℃ incubation. We have carried out new experiments without 0 ℃ incubation, and these are shown in a revised figure 3. Even without 0 ℃ incubation, we do see bimodal spectra for certain peptides [figure 2 – S5]. These reflect an ensemble of prefusion and splayed conformations of WT S. Lack of baseline resolution precludes application of HDexaminer to resolve spectral envelopes quantitatively.

      3) How were the spectra that appeared broadened analyzed? There is no description of this in the methods, and the only data shown for this is in table 1. The left/right percentages are reported without any description of how they were obtained. Are these solely from a single spectrum? The most alarming issue is that Table 1B reports 9.4% for the right population of the 988-998 peptide, but the corresponding spectra in Figure 3D doesn't seem to have any highly deuterated population at all.

      We agree with the reviewer. We have removed HD examiner analysis of spectral broadening. Some of the spectral broadening was a consequence of 0 ℃ incubation in automated HDX analyses. These have been revised in new supplemental figures for wild -type HDX MS. Baseline resolution precludes effective quantitation of spectral envelopes, Figure 2-figure supplement 5 highlights qualitatively the spectral broadening for the reader’s benefit.

      4) The authors state on page 12: "Replicate analysis of stabilized S trimers with incubation at 4C prior to deuterium exchange (see methods) showed a time-dependent reversal of stabilization as reported previously (Costello et al., 2022), most evident at the same peptides." Is this data shown anywhere? If not then it should be included somewhere, possibly in table 1 as I would expect the cold treatment to offset the left/right population sizes.

      We note that this statement was misleading and have revised the text. The time-dependent reversal of stabilization has previously been described (Costello et al., 2022 paper) and is not part of this study.

      5) The authors state that peptide 899-913 'exhibits a slow conformational interconversion (time scale ~ 15-30 min)'. Where did this estimated rate come from? From the data shown and the limited number of time points, I don't think there is sufficient sampling of this conformational transition to really narrow down the exact timescale, especially since the ratio of left/right populations is so dependent on the pre-treatment of the sample prior to deuterium exchange. (See 1st comment)

      We thank the reviewer. The heterogeneity in deuterium exchange is attributable to the variable 0 °C incubation times in our automated HDXMS workflow. We have removed any explanations of conformational interconversion occurring in our experimental timescales.

      6) The woods plots presented in the Supporting information: (Figures 2-S4, 2-S5, 3-S4, 4-S2, 5-S2, 6-S2) are not conventional Woods plots. Normally the plots would indicate a global threshold for what is deemed to be significant based on the overall error in the dataset. From what I gather the authors used error within an individual peptide to establish significance for each specific peptide, which would be okay, but the authors don't describe the number of replicates or how the p-value was calculated. I would strongly recommend that the authors instead rely on a hybrid significance testing approach, as described recently: (PMID 31099554). What's really alarming with the current approach is that several of the Woods plots shown have data points found to be significantly different that are right at zero on the y-axis.

      We thank the reviewer. We have replaced all of the Woods plots with volcano plots. We have now applied a hybrid significance testing approach as recommended by the reviewer.

      7) Table 1: The summary of the peptides with observed bimodal behavior should include data from the replicates, particularly for assessment of how consistent the left/right population sizes are across replicates. Instead of just a percentage, the table should report an average and the standard deviation from the replicate measurements. Furthermore, the table should also include peptides that are overlapping with those presented. Based on Figure 2-figure supplement 1, there are at least two other peptides that cover the 899-913 region. These additional peptides should show a similar trend with bimodal profiles and will be important for showing how reproducible the apparent EX1 kinetics are in the dataset.

      All available replicates and overlapping peptides should be analyzed to ensure that these percentages reported are consistent across the data. It is also odd that the authors choose to use the 3+ charge state of the WT, but the 2+ for the D614G mutant. If both charge states were present, then both of them should be analyzed to ensure the population distributions are consistent within different charge states.

      We thank the reviewers for their suggestion. We have removed Table 1 since bimodal spectra are not resolvable for quantitation as described previously. We instead show spectra of overlapping peptides in these regions for interpretation by the reader.

      We show charge states that provide highest intensity for the peptides (Figure 2-figure supplement 5, Figure 3-figure supplement 3, Figure 4-figure supplement 3, Figure 5-figure supplement 3, Figure 6-figure supplement 3).

      8) The method for calculating p-values used to assess the significance of a difference in observed deuterium uptake is not described. The manuscript mentions technical replicates, but no specific information as to how many replicates were collected for each time point. These details should be included as they are also part of the summary table that is recommended for the publication of HDX data.

      We have utilized hybrid significance testing as suggested by the reviewers to determine significance as outlined by Hageman et al. We have included this in table S3 and in the text.

    1. Author Response

      Reviewer #1 (Public Review):

      Major points:

      1) How STC1 controls changes in MSCs' ability for hampering CAR-T cell-mediated anti-tumor responses is unclear.

      In this study, we demonstrated that the presence of STC1 is critical for MSCs to exert their immunosuppressive role by inhibiting cytotoxic T cell subsets, activating key immune suppressive/escape related molecules such as IDO and PD-L1, and crosstalking with macrophages in the TME. These immunosuppressive functions of MSC could be significantly hampered when the STC1 gene was knockdown. Considering that staniocalcin-1 is glycoprotein hormone that is secreted into the extracellular matrix in a paracrine manner, we would conclude that the role of STC-1 is not to alter the function of MSCs intracellularly. Rather, it facilitates the immunosuppressive capabilities of MSCs through extracellular secretion into the TME as a pleiotropic factor, thus impacting the functioning of T cells, cancer cells and other immune cells.

      The reviewer's question is well taken, and we have added the points mentioned above to the Discussion section to ensure a more comprehensive conclusion. Moreover, a recent study published in Cancer Cell, which was suggested by the other reviewer, is consistent with our results. It has provided further mechanistic information on how stanniocalcin-1 impacts immunotherapy efficacy and T cell activation. The reference has been cited and discussed as shown below.

      "In this model, activated macrophages or stress signals during CAR-T therapy may prompt MSCs to secret staniocalcin-1 into the extracellular matrix of TME, serving as a pleiotropic factor to negatively impact the function of T cells and stimulate the expression of molecules that inactivate immune responses, ultimately providing an immunosuppressive effect of MSC." (page 22, highlighted). "In line with our study, it was recently reported that stanniocalcin-1 negatively correlates with immunotherapy efficacy and T cell activation by trapping calreticulin, which abrogates membrane calreticulin-directed antigen presentation function and phagocytosis [50]." (Page 20, highlighted)

      2) Is ROS important? It is not tested directly.

      ROS plays an important role during immune response, which are released by neutrophils and macrophages. Not only do they act as key mediators of the adaptive immune response, but they also have the ability to modulate the activation of B-cells and T-cells. In our study, we suggest that ROS may be involved in NLRP3 inflammasome activation and the expression and secretion of STC1. Although we did not pursue this line of inquiry further as it was beyond the scope of our paper, we have included additional relevant research in Discussion and a reference is provided.

      "It has been proved that the expression and secretion of STC1 in multiple cell lines can be stimulated by external stimuli, including cytokines and oxidative stress [26]." (Page 21, highlighted)

      3) The changes in CD8 and Treg are not convincing. Moreover, it is not tested how these changes can be elicited by the presence of MSCs.

      We have included additional in vivo data to assess the levels of Treg cells and CD8+ in this revised manuscript. This not only confirms the alterations of CD8 and Treg, but also offers additional line of evidence to further analyze the influence of MSCs on CAR-T in vivo. The findings are presented in Figure 4B, and the corresponding discussion can be found on Page 17 (highlighted).

      Reviewer #2 (Public Review):

      Major points:

      1) STC-1 is expressed and secreted by many human cancer cells. This should be discussed in the introduction or discussion with more inter-related background info on both its regulation in cancer cells and secretion pattern into TME. It is important because you state that the STC-1 secreted by MSC has such strong functions, then how about those produced and secreted by cancer cells? Are those also stimulated by macrophages or other components in TME? Do they have possible functions in helping cancer cell to escape the immune surveillance mechanisms?

      Thanks for the suggestion. We have added more details about the regulation and secretion of STC-1 in cancer cells (see below). The information is added to both the introduction and discussion (highlighted on pages 4 and 21), and all the above questions are addressed.

      "It was proved that STC1 is involved in several oxidative and cancer-related signaling pathways such as NF-κB, ERK, and JNK pathways [26,27]. The expression and secretion of STC1 in cancer tissue can be stimulated by external stimulus including external cytokines and oxidative stress [26]. Under hypoxia conditions, STC1 could be modulated by HIF-1 to facilitate the reprogramming of tumor metabolism from oxidative to glycolytic metabolism [28]. STC1 was also reported to participate in the process of epithelial-to-mesenchymal transition (EMT), which is associated with tumor invasion and the reshape the tumor microenvironment, as well as increasing therapy resistance [29]." (Page 4)

      "It has been proved that the expression and secretion of STC1 in multiple cell lines can be stimulated by external stimuli including cytokines and oxidative stress [26]." (Page 21)

      2) In Figure 4B, using a single marker of IL-1β to show the immune suppressive capability of MSC in vivo is not sufficient, staining for CD4+ and CD8+ should also be included to demonstrate whether MSC could modulate T cell compositions, which can give more direct evidence about MSC's impacts on CAR-T cell.

      The above experiments were done as suggested, and the data were presented in figure 4B. Explanations of the results are shown on page 17 Results section and page 21 Discussion section (highlighted).

      3) One of the major risks associated with CAR-T therapy is an excessive immune response that causes cytokine release syndrome. MSCs have been used in clinics as a way to suppress immune response including post-CAR-T. What does the author think about using MSC with STC-1 knockout? Can it still help reduce toxicity while maintaining CAR-T efficacy? This might be a potential application.

      This is definitely an interesting idea. Based on the data presented in the current study, it is clear that knockdown of STC-1 would abrogate the immune-suppressive impact of MSC, and therefore affect CAR-T efficacy. However, whether the presence of MSC can help reduce cytokine release syndrome when losing the function of STC-1 requires further study. We agree with the reviewer, and we had briefly discussed this possibility at the very end of the discussion as shown below (Page 22, highlighted).

      "… the findings we presented here are no doubt that would have potential clinical applications toward improving the efficiency of CAR-T therapy as well as reducing the excessive toxicity by modulating the level of STC1 in TME".

      4) There was a recent study published in Cancer Cell (Lin et al. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. 2021), and they also reported that STC1 negatively correlates with immunotherapy efficacy and patient survival. It should be cited, and in fact, it provided support to the authors' present study with completely different experimental settings.

      Thanks for providing this important information. It is an excellent study and consistent with our findings. The reference was added and discussed on page 20 (highlighted) as shown below.

      "In line with our study, it was recently reported that stanniocalcin-1 negatively correlates with immunotherapy efficacy and T cell activation by trapping calreticulin, which abrogates membrane calreticulin-directed antigen presentation function and phagocytosis [50]"

    1. Author Response

      Reviewer #1 (Public Review):

      This theoretical (computational modelling) study explores a mechanism that may underlie beta (13-30Hz) oscillations in the primate motor cortex. The authors conjecture that traveling beta oscillation bursts emerge following dephasing of intracortical dynamics by extracortical inputs. This is a well written and illustrated manuscript that addressed issues that are both of fundamental and translational importance.

      We are pleased by the reviewer’s judgement about the importance of the question that we consider and about the presentation of our manuscript.

      Unfortunately, existing work in the field is not well considered and related to the present work. The rationale of the model network follows closely the description in Sherman et al (2016). The relation (difference/advance) to this published and available model needs to be explicitly made clear. Does the Sherman model lack emerging physiological features that the new proposed model exhibits?

      We view the work of Sherman et al (2016) and ours as complementary. Sherman et al propose a model of a single E-I module, using the terminology of our manuscript, that is much more detailed than ours since it approximately accounts for the layered structure of the cortex using two layers of multi-compartment spiking neurons, each comprising 100 excitatory neurons and 35 inhibitory neurons. This allows a detailed comparison of the model with local MEG signals. We used a much simpler description and only describe the population behavior of local E and I neurons populations in each module. However, contrary to Sherman’s model, this allows us to address the spatial aspect of beta oscillations which is the main target of our work. Our simple description of a local E-I module allows us to consider several hundred E-I modules with a spatially-structured connectivity and to analyze the spatio-temporal characteristics of beta activity. We have now described the relation of our work with Sherman et al (2019) in the discussion section (lines 540-547).

      The authors may also note the stability analysis in: Yaqian Chen et al., “Emergence of Beta Oscillations of a Resonance Model for Parkinson’s Disease”, Neural Plasticity, vol. 2020, https://doi.org/10.1155/2020/8824760

      We thank the reviewer for pointing out this paper that had escaped our notice. It presents the stability analysis of a single E-I module with propagation delay (and instantaneous synapses). At the mathematical level, the analysis brings little as compared to the much older article of Geisler et al., J Neurophys (2005) that we cite. However, the model specifically proposes to describe beta oscillations in the motor cortex as arising from the interaction between excitatory and inhibitory neurons, as we do. Therefore, we included this reference as well as a reference to the previous work of Pavlides et al., PLoS Comp Biol (2015) where the model was developed.

      The model-based analysis of the traveling nature of the beta frequency bursts appears to be the most original component of the manuscript. Unfortunately, this is also the least worked out component. The phase velocity analysis is limited by the small number (10 x 10) of modeled (and experimentally recorded) sites and this needs to be acknowledged.How were border effects treated in the model and which are they?

      We thank the reviewer for these points which gave us the opportunity to clarify them and improve our manuscript. As described in Methods: Simulations (line 847 and seq.) and shown in Fig. S2 (Fig. S10 in the original submission), we actually simulated our model on a 24 × 24 grid and did all our measurements in a central 10×10 grid to take into account that the electrode covers only part of the motor cortex. In addition to minimize border effects, we added on each side of the 24×24 grid two rows of E-I modules kept at their (non-oscillating) fixed points of stationary activity, as depicted in Fig. S2. In order to address the concern of the reviewer, and to check that indeed border effects had a minimal impact on our results, we have performed a new set of simulations on a 24×24 grid with periodic boundary conditions. The results are shown in the new supplementary Fig. S9 and are indistinguishable from those reported in the main text and figures. In particular, the proportion of the different wave types and the wave speeds are unaffected by this change of boundary conditions. A paragraph has been added in the revised version (lines 371-378) to discuss this point.

      How much of the phase velocities are due to unsynchronized random fluctuations? At least an analysis of shuffled LFPs needs to be performed.

      The phase velocities are indeed due to unsynchronized random fluctuations (coming from the finite number of neurons in each of our modules as well as, and more importantly, from the uncorrelated local external inputs). In order to check that the spatial-structure of connectivity was important, we followed the suggestion of the reviewer and also performed a new set of simulations to provide a further test. As proposed by the reviewer, after performing the simulations we shuffled in space the signal of the different electrodes and also did a parallel analysis where we shuffled the signal from different electrodes in the recording. We then reclassified the shuffled simulations/recordings in exactly the same way as the original ones. As shown in the new additional Fig. S16, this resulted in the full elimination of time frames classified as “planar waves” both in the model and in the experimental recordings. Additionally, it little modified the proportion of “synchronized” or “random” episodes which is intuitively understandable since shuffling does not change the nature of these states. In order to further assess the impact of connections between modules, we also decided to suppress them, namely to put their range l to zero. In order to avoid modifying the working point of a local module by this manipulation, we focused on the case without propagation delay. Without long-range connection, the local dynamics of each module is little modified. However, as shown in the new Fig. S18a, synchronization between neighboring modules is strongly decreased and the proportion of the different wave types is entirely changed: synchronized states and planar waves disappear and are replaced by random states. These results are described in two new paragraphs (lines 401-414 and lines 431-435).

      Is there a relationship between the localizations of the non-global external input and the starting sites of the traveling waves?

      This is also an interesting question that parallels some asked by the other reviewers and which we did our best to address. As described in the “Essential revisions” point 5) above, we aligned all “planar wave events” in space and time with the help of the spatio-temporal phase maps of the oscillations. We did find that planar waves were preceded by an increase in the global synchronization index σp, both in simulations and in experiments. In simulations this increase also corresponded to a shift of the global inputs away from their mean, as depicted in the new Fig. 4 in the main manuscript. However, no significant average spatio-temporal profile of the local inputs emerged when we used these temporal alignments. This is presumably due to the large variability of local inputs that can give rise to planar waves. We have described these results in the new section “Properties of planar waves and characteristics of their inputs”.

      In summary, this work could benefit from a widening of its scope to eventually inspire new experimental research questions. While the model is constructed well, there is insufficient evidence to conclude that the presented model advances over another published model (e.g. Sherman et al., 2016).

      As described in the “Essential revisions” and the discussion section of the manuscript, our work highlights a number of questions that can (and hopefully will) inspire new experimental research. We also hope that we have clarified above that our model complements Sherman et al.’s model and advances it as far as the spatial aspects of beta oscillations in motor cortex are concerned.

      Reviewer #2 (Public Review):

      Kang et. al., model the cortical dynamics, specifically distributions of beta burst durations and proportion of different kind of spatial waves using a firing rate model with local E-I connections and long range and distance dependent excitatory connections. The model also predicts that the observed cortical activity may be a result of non stationary external input (correlated at short time scales) and a combination of two sources of input, global and local. Overall, the manuscript is very clear, concise and well written. The modeling work is comprehensive and makes interesting and testable predictions about the mechanism of beta bursts and waves in the cortical activity. There are just a few minor typos and curiosities if they can be addressed by the model. Notwithstanding, the study is a valuable contribution towards developing data driven firing rate.

      We really appreciate the positive comments of the reviewer and thank her/him for them. We have done our best to correct the typos and to address the questions raised by the reviewer.

      1) The model beautifully reproduces the proportion of different kind of waves that can be seen in the data (Fig 3), however the manuscript does not comment on when would a planar/random wave appear for a given set of parameters (eg. fixed v ext, tau ext, c) from the mechanistic point of view. If these spatio-temporal activities are functional in nature, their occurrence is unlikely to be just stochastic and a strong computational model like this one would be a perfect substrate to ask this question. Is it possible to characterize what aspects of the global/local input fluctuations or interaction of input fluctuations with the network lead to a specific kind of spatio-temporal activity, even if just empirically ?

      This is an important question that parallels some asked by the other reviewers and which we did our best to address. As described in the “Essential revisions” paragraph above, we aligned all “planar wave events” either in phase or at their starting time points. We did find that planar waves were preceded by an increase in the global synchronization index σp, both in simulations and in experiments. In simulations this increase also corresponded to a shift of the global inputs away from their mean, as depicted in the new Fig. 4 in the main manuscript. When we used the same alignment to average spatio-temporal local inputs, we did not see the emergence of any significant patterns. This presumably reflects the high variability of local inputs able to produce a planar wave.

      Do different waves appear in the same trial simulation or does the same wave type persist over the whole trial? If former, are the transition probabilities between the different wave types uniform, i.e probability of a planar wave to transit into a synchronized wave equal to the probability of a random wave into synchronized wave?

      In the same trial simulation, different types of waves indeed successively appear. The curiosity of the reviewer led us to investigate this interesting point. Since time frames classified as random or synchronized are much more numerous than the planar (and radial) wave ones, it is much more probable that a planar wave transits into a synchronized or a random pattern than the reverse process (i.e., synchronized and random patterns preferentially transit into each other). Nonetheless, we considered questions related to the one of the reviewer. What are the states preceding a planar wave event? Given that a planar wave episode is preceded by a random (or synchronous) episode, is it more likely to be followed by a random or by a synchronous event? We actually find that the entry state is prominently a synchronized state. Furthermore, when the entry state is synchronized, the exit state is also synchronized much more often than would be expected by chance. This shows that most often, planar waves are created from an underlying synchronized persistent state. This has been described in the revised manuscript (lines 443-451).

      2) Denker et al 2018, also reports a strong relationship between the spatial wave category, beta burst amplitude, the beta burst duration and the velocity (Fig 6E - Denker et. al), eg synchronized waves are fastest with the highest beta amplitude and duration. Was this also observed in the model ?

      We had long exchanges with Michael Denker about his analysis since there are some differences between his code and what is described in Denker et al. (2017), possibly because of several typos in the Method section of Denker et al (2017). We have checked that the results of our code agree with his but there are some differences with the results obtained on the available datasets and those reported in Denker et al from other data sets. We have now provided the detailed statistics of the different wave types as obtained by our analysis in the simulation of model SN (Fig. S9) and SN’ (Fig. S11) and in the recordings for monkey L (Fig. S10) and monkey N (Fig. S12). In the recording data, the amplitude and speed of the synchronized and planar waves are comparable and higher than in the radial and random wave types. The duration of synchronized events is longer than the one of planar waves and of the other waves types. Comparable results are obtained in the simulations with nonetheless a few differences: the mean amplitude of planar waves is somewhat larger than those of synchronized states, the hierarchy of duration in the different states is respected but the duration themselves are longer in the simulations than in the recordings (about 40 % for the planar waves and almost two times longer for the synchronized states). We attribute these differences to the fact synchronization is slightly less effective in the recordings than in the model. Long synchronization episodes in the recordings are often cut-off by a few time frames where the synchronization index goes below the threshold value for a synchronized pattern. This happens rarely enough not to affect much the global statistics of the different states but it as a much more visible effect on the measured duration of the synchronized states.

      Reviewer #3 (Public Review):

      In this manuscript, the authors consider a rate model with recurrently connections excitatory-inhibitory (E-I) modules coupled by distance-dependent excitatory connections. The rate-based formulation with adaptive threshold has been previously shown to agree well with simulations of spiking neurons, and simplifies both analytical analysis and simulations of the model. The cycles of beta oscillations are driven by fluctuating external inputs, and traveling waves emerge from the dephasing by external inputs. The authors constrain the parameters of external inputs so that the model reproduces the power spectral density of LFPs, the correlation of LFPs from different channels and the velocity of propagation of traveling waves. They propose that external inputs are a combination of spatially homogeneous inputs and more localized ones. A very interesting finding is that wave propagation speed is on the order of 30 cm/s in their model which is consistent with the data but does not depend on propagation delays across E-I modules which may suggest that propagation speed is not a consequence of unmylenated axons as has been suggested by others. Overall, the analysis looks solid, and we found no inconsistency in their mathematical analysis.

      We thank the reviewer for his comments and for his expert review.

      However, we think that the authors should discuss more thoroughly how their modeling assumptions affect their result, especially because they use a simple rate-based model for both theory and simulations, and a very simplified proxy for the LFPs.

      In the revised manuscript, we have performed additional simulations to test different modeling assumptions as suggested by the reviewer and discussed further below.

      The authors introduce anisotropy in the connectivity to explain the findings of Rubino et al. (2006), showing that motor cortical traveling waves propagate preferentially along a specific axis. They introduce anisotropy in the connectivity by imposing that the long range excitatory connections be twice as long along a given axis, and they observe waves propagating along the orthogonal axis, where the connectivity is shorter range. Referring specifically to the direction of propagation found by Rubino et al, could the authors argue why we should expect longer range connections along the orthogonal axis? In fact, Gatter and Powell (1978, Brain) documented a preponderance of horizontal axons in layers 2/3 and 5 of motor cortex in non-human primates that were more spatially extensive along the rostro-caudal dimension as compared with the medio-lateral dimension, and Rubino et al. (2006) showed the dominant propagation direction was along the rostro-caudal axis. This is inconsistent with the modeling work presented in the current manuscript.

      This is an important comment and we thank the reviewer for pointing out these data in Gatter and Powell (1978). Since the experimental data show that planar wave propagation directions are anisotropically distributed, we have tried and investigated what the underlying mechanism of this anisotropy could be in the framework of our model. Anisotropy in connectivity is an obvious possibility. Given our result, and the data of Gatter and Powell, it appears however that it is not the underlying cause of the observed anisotropy direction in the motor cortex (in the framework of our model). We have thus investigated another possibility, namely that the local external inputs are anisotropically targeting the motor cortex, being more spread out along a given axis (lines 510-529 and new Fig. 5g-l). We find that planar waves propagate preferentially along the orthogonal axis. This leads us to conclude that the observed propagation anisotropy could be of consequence of the external input being more spread out along the medio-lateral axis. Data addressing this issue could be obtained using retroviral tracing techniques.

      The clarity and significance of the work would greatly improve if the authors discussed more thoroughly how their modeling assumptions affect their result. In particular, the prediction that external inputs are a combination of local and global ones relies on fitting the model to the correlation between LFPs at distant channels. The authors note that when the model parameter c=1, LFPs from distant channels are much more correlated than in the data, and thus have to include the presence of local inputs. We wonder whether the strong correlation between distant LFPs would be lower in a more biologically realistic model, for example a spiking model with sparse connectivity and a spiking external population, where all connections are distant dependent. While the analysis of such a model is beyond the scope of the present work, it would be helpful if the authors discussed if their prediction on the structure of external inputs would still hold in a more realistic model.

      This is a legitimate question that we indeed asked ourselves. In a previous work with a simpler chain model, we only considered finite size fluctuations. We found good agreement between our simplified description of finite size fluctuations and simulations of a spiking network with fully connected modules and sparse distance-dependent connectivity. This leads us to believe that our description of finite-size fluctuations is reliable in this setting. Assuming that it is the case, we find that with 104 neurons or more per module finite size noise is not strong enough to replace our local external inputs. Even with 2000 neurons per modules the intrinsic fluctuations the network is very synchronized (new Fig. S15e-g). With 200 neurons per module, the intrinsic fluctuations are strong enough to replace the fluctuating local inputs (Fig. S15a-d) but this is quite a low number. Our description of local noise would have to underestimate the fluctuation in a more sparsely connected network by a significant amount for agreement with the data to be obtained without local inputs. Moreover, it seems to us quite plausible that different regions of motor cortex receive different inputs but, of course, this can only settled by further experiments. Together with the new Fig. S15, we have added a paragraph to address this question in the manuscript (lines 379-400).

    1. Author Response

      Reviewer #2 (Public Review):

      Weaknesses (major)

      1) Adding control groups (sham stimulation) to Experiment 5 and Experiment 8 would be needed to increase confidence that NITESGON's memory-enhancing effects do not depend on sleep but do depend on dopamine receptor activity.

      Thank you for highlighting this major weakness within our research; we will be sure to include control groups in future research if we conduct replication studies. Additionally, upon review of your comment, we have addressed the lack of control/sham groups in Experiment 5 and 8 in the Discussion section when acknowledging the limitations of the research.

      Please see the newly added text from the Discussion section on pages 21-22 below:

      “Moreover, it must also be acknowledged that Experiments 5 and 8 did not include a control-sham stimulation group, thus limiting the interpretation of these two experimental findings. Control-sham stimulation groups would increase our confidence in our findings that NITESGON’s memory-enhancing effects depend not on sleep but on DA receptor activity.”

      2) Task order in the interference study in Experiment 4 was randomized during the first visit for task training as well as during the memory test, however, the word-association and spatial navigation tasks used in Experiments 3 and 4 were not counterbalanced during training or memory testing. Thus, the authors cannot rule out the possibility of order effects.

      Upon reading your comment and reviewing the paper, we have decided to add a limitations paragraph to the paper which highlights the concern of Experiments 3 and 4 not being counterbalanced during training or memory testing. Additionally, the new section provides an explanation of how not counterbalancing Experiments 3 and 4 introduced the possibility of order effects being present in the results.

      Please see the new addition from the Discussion section on page 21 below:

      “When interpreting the current findings, it must be considered that some limitations exist within the research; limitations on experimental design are noted below, followed by a discussion of utilizing indirect proxy measures. The task order for Experiment 4 was randomized during the first visit for training and the recall-only memory test 7-days later; however, the word association and spatial navigation task used in Experiments 2 and 3 were not counterbalanced; therefore, the findings of Experiments 2 and 3 could have been impacted by a potential order effect.”

      3) It is unclear how Experiment 3 and Experiment 4 differ. Percent of words recalled is the measure of memory performance, however, there is not a clear measure of interference in Experiment 4 (i.e., words recalled during Memory task II that were from Memory task I).

      Thank you for highlighting the difficulty in distinguishing the differences between Experiment 3 and Experiment 4. To clarify what the differences are between Experiment 3 and Experiment 4, we explained in Experiment 4’s introductory paragraph that the object-location task used in Experiment 3 was replaced with a Japanese-English verbal associative learning task in Experiment 4.

      Please see the paragraph from the Experiment 4 subsection on page 10 below:

      “Experiments 2 and 3 revealed both retroactive and proactive memory effects 7-days after initial learning of the two tasks. To further explore if NITESGON is linked to behavioral tagging and evaluate if interference impacts NITESGON as the strong stimulus, Experiment 4 removed the object-location task used in Experiments 2 and 3 and replaced it with a Japanese-English verbal associative learning task similar to the Swahili-English verbal associative task. Considering how memory formation and persistence are susceptible to interference occurring pre-and post-encoding(37-39) and are heavily influenced by commonality amongst the learned and intervening stimuli(40); it is believed that conducting two consecutive, like-minded word-association (i.e., Swahili-English and Japanese-English) tasks will result in one’s consolidation process interfering with that of the other(41). Considering how our previous experiments suggest the effect obtained by NITESGON improves the consolidation of information via behavioral tagging, it is possible that NITESGON on the first task might help reduce the overall interference effect on the second task.”

      Additionally, we explained in further detail that comparing the percentage of correctly recalled word pairs on the second task 7-days after learning from the percentage of correctly recalled word pairs on the first task 7-days after learning was done to measure for an interference effect.

      Please see the adapted text from the Experiment 4 subsection on page 11 below:

      “Upon assessment for a potential interference effect, the active group displayed no significant difference in how many words participants were able to recall between the first and the second task (difference: .76 4.93) (F = .29, p = .60), whereas the sham group demonstrated the first task rendered an interference effect on the second task (difference: 5.16 5.99) (F = 14.11, p = .001).”

      Lastly, in the methods section describing how the interference effect was calculated was changed. The newly edited text better explains that the percentage of words pairs learned were subtracted from one another to measure the significance of interference one may have potentially had on the other.

      Please see the amended text in the Methods section on page 38 below:

      “In addition, an interference effect was calculated by subtracting the percentage of correctly recalled word pairs on the second task 7-days after learning from the percentage of correctly recalled word pairs on the first task 7-days after learning. This number gave a proxy of interference.”

      4) In Experiment 5 the learning and test phases for the two sleep groups were conducted at different times of day (sleep group: training at 8pm and testing the next morning at 8am, sleep deprivation group: training at 8am and testing at 8pm) which introduces the possibility of circadian effects between the two groups. Additionally, the memory test occurred at the 12h point for this experiment instead of the 7-day point. Therefore, the authors' conclusions are not addressed by this experiment, and it remains unclear whether the 7-day long-term memory effects of NITESGON are sleep-dependent.

      Upon reading your comment and reviewing the paper, we have decided to add a limitations paragraph to the paper which highlights the two sleep groups being conducted at different times of day and the memory test occurring at the 12-hour point as opposed to 7-days after initial learning. In addition to acknowledging these limitations, we have also provided explanations regarding what potential effects are introduced by having the sleep groups learn and test at different times of day, such as circadian effects between the two groups, and the memory tests occurring at 12-hours rather than 7-days after initial learning.

      Please see the new addition from the Discussion section on page 21 below:

      “Additionally, in Experiment 5, the learning and test phases for the two groups were conducted at different times of day (i.e., sleep group: training at 8 p.m. and testing at 8 a.m., sleep deprivation group: training at 8 a.m. and testing at 8 p.m.), thus introducing the potential for circadian effects between the two groups. Furthermore, the recall-only memory testing occurred at the 12-hour point rather than 7-days later, allowing us to conclude that the observed effect seen 12-hours later was not affected by sleep; however, it remains unclear whether the 7-day long-term memory effects of NITESGON are sleep-dependent.”

      Weaknesses (minor)

      1) Salivary amylase is being used as a proxy of noradrenergic activity; however, salivary amylase levels increase with stress as well, which impacts memory performance. It would be helpful if the authors addressed this and whether they measured other physiological indicators of stress/sympathetic nervous system activation.

      Upon review of your comment, we have edited the paper so that it includes text in the Discussion section that brings attention to the fact that stress can enhance salivary amylase and advises readers that this should be considered when interpreting results. We also add an additional measure which measure pupil size, a measure well-know for sympathetic measure. In addition we add also a VAS score to ask people about their stress levels.

      Please see the added new addition from page 22 below.

      “Although the use of indirect proxy measures, such as sAA for NA activity and sEBR for DA activity, enabled the tracking of LC-NA activity changes from baseline measurements and demonstrated the potential of an LC-DA relationship, caution must be advised when interpreting results considering these proxy measures are affiliated with limitations, such as being substantially variable, as well as the potential of other brain regions and monoamine neurotransmitters being associated with changes seen in sAA concentration levels(80), an enzyme that is provoked by both central parasympathetic and sympathetic nervous system activation, including acute stress responses(81). Additionally, although sEBR has been increasingly linked to DA, it has been defined as a more viable measure of striatal DA activity(52, 82). At the same time, some evidence suggests that sEBR and DA levels may be unrelated(83, 84), thus requiring further validation as a behavioral proxy measure.”

      2) Insufficient details of how the blinding experiment was conducted make it difficult to determine whether participants had awareness or subjective responses during the NITESGON stimulation. Adding physiological indicators of heart rate, skin conductance, and respiration would provide a better indicator of a sympathetic nervous system response. Additionally, a series of randomized stimulation and sham trials delivered to the participant would provide a more objective measure of the detectability of the stimulation.

      Thank you for your comment regarding the portion of the experiments that were included to determine the efficacy of the measures taken to ensure the experiments were well blinded. After reviewing the comment and reading over the paper, we were concerned that it was not clear enough to the reader that the efficacy of blinding was determined by having each participant of every experiment complete the same single-answer questionnaire after all NITESGON and testing had been experienced. Therefore, we edited the wording below to elucidate that there was not an individual blinding experiment but that there was a questionnaire for every participant in every experiment to help determine the efficacy of blinding for each experiment and the research.

      Please see the text from the Blinding section on pages 17-18 below:

      “Blinding. To determine if the stimulation was well blinded, all participants in Experiments 1-7 were asked to guess if they thought they were placed in the active or control group (i.e., what stimulation participants received compared to what participants expected). Our findings demonstrated that participants could not accurately determine if they were assigned to the active or sham NITESGON group in each experiment, suggesting that our sham protocol is reliable and well-blinded (see fig. 8).”

      Additionally, please see the text in the Methods section that has been reworded to clarify how the questionnaire of blinding was conducted on page 47 below:

      “Blinding: To determine if the stimulation for all experiments was well blinded, all participants who participated in Experiments 1-7 were asked to complete a single-response questionnaire after the conclusion of the NITESGON procedure. Here, participants were asked to guess if they thought they were placed in the active or control group. A χ2 analysis was used to determine if there was a difference between what stimulation participants received compared to what participants expected.”

      3) It would be appreciated if the authors could speak to the possible role of the amygdala in the memory-enhancing effects of NITESGON, as this region is a well-known modulator of many types of memory consolidation and is implicated in noradrenergic-related memory enhancement.

      Upon consideration of your comment, we added text providing the reader with insight into how NITESGON has activated the amygdala in previous research, similar to the VTA in the current study, and how the LC and amygdala were shown to be activated during emotionally arousing stimuli in another study. Furthermore, we have acknowledged that the amygdala is understood to have modulatory implications in long term memory and how future investigations are needed to establish the amygdala’s role with NITESGON.

      Please see the text from the Discussion section on page 20 below:

      “Additionally, it is well-known that the amygdala is not the final place of memory storage, but rather has major modulatory influences on the strength of a memory(74). Similar to the VTA in the current study, prior research has shown that the amygdala is activated during NITESGON but ceased post-stimulation; however, NITESGON was not accompanied by a task during the experiment(14). Moreover, a recent fMRI study spotlights the dynamic behavior of the LC during arousal-related memory processing stages whereby emotionally arousing stimuli triggered engagement from the LC and the amygdala during encoding; however, during consolidation and recollection stages, activity shifted to more hippocampal involvement(75). Considering the impact the VTA and amygdala can have on memory, future experimental investigations are needed to establish their role in the memory-enhancing effects of NITESGON.”

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, Cover et al. examine the role of thalamic neurons of the rostral intralaminar nuclei (rILN) that project to the dorsal striatum (DS) in mice performing a reinforced action sequence task. Using patch-clamp electrophysiology, they find that neurons from the three rILN (CM, PC, and CL) have similar electrophysiological properties. Using fiber photometry recordings of calcium activity from rILN neurons that project to DS, they show that these neurons increase in activity at the first lever press and reward acquisition in mice performing a lever pressing operant task. They additionally demonstrate that this action initiation and reward-related activity exists more generally in mice performing other movements or rewarded tasks. Building on their lab's previous work, the authors further find that by optogenetically activating or inhibiting these rILN-DS neurons, mice will increase or decrease task performance, respectively. Lastly, the authors show that a variety of cortical and subcortical areas have input to rILN-DS neurons suggesting that these neurons might act as an integrator of signals from such areas during task performance.

      • The authors beautifully show that the electrophysiological properties of CM, PC, and CL neurons are similar and go on to treat the rILN as one homogenous nucleus for functional fiber photometry recordings and optogenetic stimulations. It seems that these recordings and stimulations were only performed in CL, as indicated in the images (Fig. 2A, 4A). Is this the case, or were CM, PC, and CL neurons sampled? It would be helpful to clarify if DS projecting neurons from all rILN nuclei show the reported action initiation and reward acquisition activity or only CL neurons.

      The arrangement of the rILN nuclei presents a technical challenge for experiments attempting to selectively record from or manipulate a single nucleus in this grouping. Based on our findings that the three nuclei do not differ in electrophysiological properties, we approached the in vivo experiments with the intent to target the rILN as a unit. As the reviewer points out, the medial-lateral coordinate for optic fiber placement tended to align above the CL and PC nuclei. However, variability in fiber placement and spread of light within tissue resulted in inclusion of CM activity as well. Given the spread of light through tissue (Shin, et al., 2016; PMID: 27895987), it would be very difficult to confidently determine from histology which photometry recordings were primarily obtained from CL vs PC vs CM neuronal activity. We agree with the reviewer that these three nuclei may differently signal during reward-driven behavior. Our di-synaptic tracing study supports this possibility as it revealed unique afferent connectivity to rILNDS projecting neurons. We now mention this limitation of our approach in the discussion (lines 324 - 330).

      • Along similar lines, to what extent of rILN was targeted for optogenetic activation and inhibition? It seems that the authors implanted a total of 4 optic fibers, two on each side (please clarify in methods). What was the reasoning behind this? Please show that only rILN and not PF was activated/inhibited.

      We apologize for the confusion in our description of this method. For our optogenetic experiments, we infused viruses at four locations (bilateral striatum and rILN) and implanted only two fibers (bilateral rILN) to selectively target striatally-projecting rILN neurons. We have added clarification on this detail to the methods section.

      To prevent inadvertent modulation of Pf neurons, we used virus injection coordinates and volumes that prevented viral spread to the Pf and furthermore implanted the optic fibers in the more rostral regions of the rILN. We histologically confirmed viral expression and fiber placement for all mice and excluded any mice with viral spread to the Pf or off-target fiber placement. We include these criteria for post-hoc exclusion in the methods.

      • While AAV1 is becoming a popular tool for transsynaptic labeling, performing confirmatory patch-clamp recordings with optogenetic activation of inputs, would provide better evidence for the synaptic connection between upstream regions, such as ACC and OFC, and rILN neurons.

      We agree that electrophysiological confirmation of these inputs to the rILN would complement our tracing study. As our focus for this experiment was to specifically identify inputs that synapse on striatally-projecting rILN neurons, we interrogated putative afferents that were already established to project to the rILN. There are several studies that demonstrate the physiological circuits from some of these afferent projections to the rILN (without di-synaptic specificity), such as the SNr  rILN projection (Rizzi & Tan, 2019; PMID: 31091455).

      • In addition, the transsynaptic tracing experiments would benefit from showing the cell count quantifications in CM, PC, and CL. It seems that the authors have already performed this quantification for constructing their diagrams on the right. To make any point about the relative strength of afferent innervation to rILN-DS neurons showing such quantification would be necessary.

      Thank you for this suggestion, we now include cell counts for 2 cases per investigated afferent (Supplemental Table S2).

      • Why is the injection site for the retrograde cre-dependent tdTomato AAV (Fig. 5 middle left panels) showing expression? Is the cre coming through transsynaptic AAV1 from direct projections of each AAV1 injection site (AAV1 is not supposed to spread across a second synapse)? The diagrams suggest that not all regions (e.g. SUM or SC) have direct projections to DS.

      We apologize for this confusion. The tdTomato fluorophore expression observed in the striatum may arise from several possible circuit configurations. To survey just a couple: 1) tdTomato expression in the DS arises from direct projections from the afferent bypassing the thalamus (e.g. ipsilateral ACC→Striatum), which would result in labeled striatal somata (ACC pyramidal neurons delivering AAV1-cre to an MSN, and those local MSN collaterals retrogradely picking up rAAV-DIO-tdtomato) and ACC labeled axon terminals in the DS (ACC interneurons delivering AAV1-cre to DS-projecting ACC pyramidal neurons that pick up rAAV-DIO-tdtomato); 2) terminal projections arising from the labeled rILN neurons shown in the middle-right panels (i.e. ACC→rILN→Striatum).

      Reviewer #2 (Public Review):

      This manuscript details the role of the rILN to the DS pathway in the onset of operant behavior that promotes the delivery of a reward and in the ultimate acquisition of that reward. The strengths of the paper are in the detailed fiber photometry study that encompasses several behavioral domains that correlate to the signal observed in the rILN to DS pathway. I am especially interested in how the "encoding" shifts across time as the animals refine their behavior both in a temporal sense and in the magnitude of the signal. Further, the authors demonstrate then that this is dependent on action, as they do not observe signals in a Pavlovian behavioral task, but do observe reward-based signals in a "free consumption" task (the strawberry milk). The examination into devaluation also enhances the understanding of this pathway, even though there were no differences between a valued and devalued task. Finally, the authors examine bi-directional optogenetic manipulation of the pathway, and its impact on how the trials are completed, omitted, or incomplete. They find that manipulation alters the % completed trials and regulates trial omission. This paper really does not have any glaring weaknesses to point out, however, the physiological assessment does seem to have a few strong trends and even though the studies are well powered, and included both sexes, sex as a biological variable was not commented on that I could find. My estimation of the data doesn't suggest strong sex differences in any metric measured. Additionally, the data that included projections to the rILN were very interesting, and future studies looking into the physiology of these neurons, and/or how the physiology of these neurons adapt after operant training may be very interesting to understand plasticity within the adaptation across the training from FR1 to FR5 with time limits.

      Thank you for your review. We analyzed our data for sex differences but did not identify any significant differences between male and female subjects for any of the experiments.

    1. Public Review

      Reviewer #1 (Public Review):

      1) “In fact, it is not surprising that the collagen mutants display a detached cuticle, because the extracellular domains of MUP-4 and MUA-3 (the transmembrane receptors of apical hemidesmosomes that are primarily responsible for tethering the epidermis to the cuticle) both contain vWFA collagen-binding domain (Hong et al., JCB 2001; Bersher et al., JCB 2001). Hence loss of certain collagens in the cuticle directly affects cuticle-epidermis attachment due to defective ligand-receptor interactions is a much more plausible explanation.”

      We agree with the reviewer that a specific molecular interaction likely mediates the attachment of the cuticle to the epidermis, not only in the area above the hemidesmosomes, but also in the area of the meisosomes. The collagens that potentially associate with MUP-4 and/or MUA-3 in the muscle regions have not been identified, nor in the main epidermal region, where the putative receptor is not known. We have modified the text accordingly.

      “Likewise, it is more resonable to propose that lack of certain collagens in the cuticle directly affects cuticle stiffness, rather than working indirectly through epidermal meisosomes.”

      We agree with the reviewer that the loss of specific structural components of the cuticle could well affect stiffness directly, especially if the furrows are affected; non-furrow collagen mutants do not show this phenotype. An analogy might be the increased stiffness that corrugation provides. We have modified the text accordingly. Our future research aims precisely at modelling these physical aspects.

      2) “VHA-5::GFP does not co-localize with fluorescent markers for MVB, recycling endosomes and autophagolysosomes. By claiming this, the authors made a huge assumption that the overexpressed VHA-5::GFP fusion protein can only possibly associate with four types of organelles (meisosomes, MVB, recycling endosomes and autophagolysosomes) but not any other known or to-be-identified subcellular structures. In addition, a previous study did report that VHA-5 is localized in several other places besides the apical membrane stacks (Liegeois et al., JCB 2006).”

      The reviewer cites the Liegeois paper that we mention above, which, in our opinion, and that of reviewer 2 (“VHA-5 is well known to localise to the apical membrane stacks (Liegeois 2006) and could be served as marker of apical membrane structure”), provides extremely strong support for our position. In Liegeois et al., 2006, there is a quantification of immunogold staining that shows that >85% of VHA-5 is found in meisosomes (Fig S5D). By providing the results of co-localisation analyses with 3 cytoplasmic vesicular markers, we simply wanted to illustrate the specificity of the signal to the non-initiated. Importantly, we now provide strong evidence that VHA-5::GFP marker co-localises with apical plasma membrane macrodomains revealed by both a PH domain of PLCδ and a CAAX marker. As our ultrastructural analyses demonstrate that meisosomes are composed by apical membrane folds, this again is wholly consistent with VHA-5 being a bonafide marker of meisosomes.

      Reviewer #2 (Public Review):

      The reviewer questioned the need to give another name to the “apical membrane stacks”. We made this proposition after consultation with a broad community of researchers in the field. We believe that this simpler name provides a link to an analogous structure in yeast, the eisosome, also at the interface between the aECM and the cell.

      The reviewer wrote, “The major problem of this paper is that there is not much new information”, that it was known, for example, that “"furrowless" dpy mutants result in complete disorganization of the epidermis”. In addition to demonstrating that the furrowless Dpy mutants have very particular and specific phenotypes, without affecting the presence of hemidesmosomes (PMID: 33033182), nor different vesicular markers (FIgure 6S2), we would like to point out that reviewer #1 commented, “the work presented by Aggad et al. is rich in novelty”, and Reviewer #3, “The major strengths of the paper are the novelty”. We have re-written and reorganised the text and hope Reviewer #2 appreciates the novelty more in the revised version.

    1. Author Response

      Reviewer #2 (Public Review):

      Wu Yang et al. investigated how exophers (large vesicles released from neuronal somas) are degraded. They find that the hypodermal skin cells surrounding the neuron break up the exophers into smaller vesicles that are eventually phagocytosed. The neuronal exophers accumulate early phagosomal markers such as F-actin and PIP2, and blocking actin assembly suppressed the formation of smaller vesicles and the clearance of neuronal exophers. They show the smaller vesicles are labeled with various markers for maturing phagosomes, and inhibiting phagosome maturation blocked the breakdown of exophers in to smaller vesicles. Interestingly, they discover that GTPase ARF-6, effector SEC-10/Exocyst, and the phagocytic receptor CED-1 in the hypodermis are required for efficient production of exophers by neurons.

      Strength

      The study clearly demonstrates that exophers are eliminated via hypodermal cellmediated phagocytosis. Exophers are broken down into smaller vesicles that accumulate phagocytic markers, and inhibiting this process shows that exophers are not resolved. The paper does a thorough examination of various markers and mutants to demonstrate this process.

      The hypodermal cells not only engulf these small vesicles, but they also play a role in the formation of exophers. Exopher production is reduced when ARF-6, SEC-10, or CED-1 are knocked down in the hypodermis. This is intriguing because phagocytosis is a critical step in the final elimination of cells, but in this unique situation, it appears that the neuron fails to extrude the exopher without phagocytes.

      Weakness

      Non-professional phagocytes engulfing cell corpses and many other types of cellular debris (e.g. degenerating axons) have been shown in multiple systems and the observations here are not surprising. Many of the markers used in the study are wellestablished phagocytic markers and do not bring forward a new technological advance.

      What's interesting is that the breakdown of exophers into smaller vesicles and eventual clearance follows a different sequence of events than macrophages. Exophers appear to undergo phagosomal fission before interacting with lysosomes. This would be difficult to appreciate by a general reader.

      While the paper has strengths, it appears that the message is not clear. The title suggests that the reader will learn about how ARF-6 and CED-1 control exopher extrusion. Although this observation is intriguing and maybe the main point of the paper, there does not appear to be a substantial amount of data to support this claim. The only data to back this up is in the final figure and the majority of the paper is focused on how hypodermal cells phagocytose exophers.

      The title has been revised.

      To show exopher secretion is dependent on the hypodermal cells-

      1) Could authors induce exopher production through other means? And test any involvement of CED-1? For example, authors note exopher production increases under stress conditions including expression of mutant Huntingtin protein. It would be intriguing if loss of CED-1 would be sufficient to block or reduce exopher production in that context and would highlight an exciting role for phagocytic cell types.

      We interpreted this question as an inquiry into whether the neuron intrinsic exopher inducer was relevant to reliance on hypodermal interaction for exophergenesis, given our use of aggregating mCherry as the inducer. Unfortunately, our Huntingtin expressor lines now display high levels of transgene silencing, precluding their use in this experiment. To address this concern, we switched to a low toxicity GFP expressing transgene from the Chalfie lab, uIs31[Pmec17::GFP]. We found that arf-6 mutations suppressed exophers in this background as effectively as they did in previous mCherry experiments, indicating that our results are not dependent upon the particular transgene marking the touch neurons, or the specific protein they express (Fig 6E).

      2) It is not clear if the CED-1 localization to the exopher is due to CED-1 expression during phagocytosis or is it involved in the extrusion. Perhaps the basal level of CED-1 is important for the extrusion but the strong expression is important for recognition of the exopher.

      In the experiments we performed we used a constitutively expressed hypodermisspecific CED-1::GFP to show localization to exophers, so the recruitment of CED1::GFP in hypodermal membranes to the site where the neighboring neuron is producing an exopher is not caused by changes in expression, but rather is more likely to reflects protein recruitment. We now point this out more explicitly in the text. Added text: “Since the hypodermal CED-1DC::GFP we used is constitutively expressed, we attribute the exopher surrounding CED-1DC::GFP signal to CED-1 recruitment by exopher-surface signals."

      3) While the data with ttr-52 and anoh-1 alleles is compelling, do we know that exophers actually expose PS? Especially since at a certain point, the exopher is still attached to the neuronal soma. Is PS still exposed by exopher in CED-1 background?

      We are also very interested in this. Unfortunately, we have had difficulty obtaining sufficient MFGE8 PS-biosensor expression in the adult to test this question directly.

      4) What is the fate of a neuron that is unable to produce exophers? Could one look at lifespan of ALMR neuron in CED-1, ARF-6 or Sec-10 allele (potentially with specificity to hypodermis)?

      To address this question we measured the function of the mechanosensory touch neurons, using the classic gentle touch response assay in mCherry expressing animals, comparing controls to arf-6 and ced-1 mutants. For both arf-6 and ced-1 alleles, we found reduced response to gentle touch in older adults (Ad10), indicating a deficit in neuronal function. These results are consistent with exopher production maintaining neuronal health into old age, but interpretation is limited since neither ced-1 or arf-6 act specifically in exophergenesis and therefore also affect the animals in additional ways. Currently, there are no known genetic perturbations that act specifically in exophergenesis, so there is no better approach to do the analysis. We had already published similar results in our 2017 Nature paper that first described exophers, showing that gentle touch response is better preserved in a touch neuron HttQ128::CFP strain that produced a touch neuron exopher than in the same mutant background in which the touch neurons that had not produced an exopher.

    1. Author Response

      Reviewer 2 (Public Review):

      The authors’ coarse-grained mathematical model is based upon proteome partitioning constraints. Similar models have been developed in the past, although the authors do an excellent job distinguishing their work. The interdependence among growth rate, growth yield, and carbon transport (together with the comparatively few state variables) makes the proposed model an attractive general framework for predictive metabolic engineering and strain optimization in bio-manufacturing.

      Strengths:

      1) The recognition that the constant biomass concentration (1/beta) can be used to recast the growthrate versus growth yield trade-off in terms of a growth rate versus carbon uptake trade-off (lines 147-155, Eq. 2), and coupling of the growth- and carbon uptake-rates through proteome partitioning, are powerful ideas. They transform the traditional (false) dichotomy of a negative correlation between growth and yield into a feasible space of growth-yield combinations (e.g. Figs 2BC).

      2) The authors calibrate the model for E. coli (BW25113) grown in glycerol/glucose, batch/continuousculture (lines 157-164), then apply the model to an impressive variety of E. coli strains. This is not typically done with semi-mechanistic models and elevates the authors’ approach by implying that their model is sufficiently-general so as to apply across strains, yet sufficiently-constrained so as to provide quantitative predictions.

      Weaknesses:

      1) The tension between generality and constraint leads to some category errors where strain-specific empirical invariants are taken as general strain-independent operating conditions. This happens at least twice: a minor case involving the growth-rate threshold for acetate overflow, and a serious case where the magnitude of the ’housekeeping’ proteome fraction φq is taken to be strain- and condition-independent.

      a) (lines 82-86) The growth-rate threshold for the acetate overflow switch in E. coli was observedin ’studies with a single strain in different conditions’ [i.e. different carbon sources in batch]. The interpretation provided in the references cited (lines 83-84) is that the threshold is a manifestation of a tipping point between carbon uptake rate and the costs of energy generation. The carbon uptake rate is implicitly strain-dependent; there is no reasonable expectation that all strains growing in glucose will be fermenting (or all respiring). The conclusion (line 84) that ’the model predicted no correlation between growth rate and acetate secretion rate in the case of different strains growing in the same environment’ is tautological when the carbon uptake rate (vmc) is used by the authors to distinguish among strains. This error is easily fixed by simply changing the wording, but it serves to illustrate how constraints operating at the strain level can be tacitly (and erroneously) applied at the genus level.

      The emphasis we put on the comparison between batch growth on glucose of different strains vs batch growth in different environments of a single strain may have been misleading. The point we wanted to make was that the occurrence of fermentation (acetate overflow) during fast growth on glucose is not a necessary consequence of intrinsic physical constraints on metabolism, but the consequence of strain-specific regulatory mechanisms. This is demonstrated by the existence of E. coli strains that do not ferment while growing on glucose, but that have essentially the same metabolic capacities as strains that do. When we started this study, we did expect (perhaps naively) that growth on glucose at a high rate necessarily comes with low yield due to the higher relative acetate overflow, that is, the ratio of the acetate secretion and glucose uptake rates (Supplementary Figure 4 in the revised manuscript).

      In the new version of the manuscript, we have modified the analysis of the glucose uptake and acetate secretion data, by plotting them against growth rate and growth yield in separate 2D plots, as suggested by Reviewer 1. This has led to a perspective that is more in line with the comment of this reviewer that the model explores different ways in which a carbon uptake rate can be converted into a growth rate, depending on the selected resource allocation strategy, and that this gives rise to trade-offs between growth rate and growth yield. In the context of this analysis, we do come back to the original point we wanted to make, but phrased differently (and hopefully more clearly this time).

      Changes in manuscript: The comparison between batch growth on glucose of different strains and batch growth on different carbon sources of a single strain is less emphasized. We have rewritten the section and rephrased our claims accordingly throughout the paper (notably in the Abstract, Introduction, and Discussion).

      b) The second example of this strain-genus confusion is more serious, and perhaps is enough to unravel the model. One of the strengths of the current framework is that although there are four degrees of freedom via the proteome allocation parameters, the model is sufficiently-constrained that the behavior can be meaningfully projected onto lower-dimensional observables like growth rate and yield (e.g. Figs 2BC).

      One of the main constraints in the model that allows this meaningful projection is the assumption that the fraction of ’housekeeping’ proteins φq is constant irrespective of strain and growth conditions (line 172) and that these proteins carry flux synthesizing non-protein macromolecules (lines 141-142). Neither of these claims is supported by the references provided.

      The ’housekeeping’ fraction φq was inferred in Scott et al. 2010 (line 172) from a nearly-growthmedium-independent maximum in the RNA/protein ratio under translation limitation of strain MG1655. The magnitude of that intercept is highly strain-dependent and can vary nearly 2-fold, especially in ALE strains. Furthermore, subsequent proteomic data (e.g. Hui et al. 2015 cited by the authors) has clarified that this ’housekeeping’ fraction is, for the most part, composed of growth-rate independent offsets in the metabolic proteins.

      The origin of these offsets is thought to be related to substrate-saturation (Eqs. 1 and 2 of Dourado et al. 2021 cited by the authors) and consequently, these offsets (and by extension most of φq) carry no flux. Substrate saturation is perhaps at the root of the discrepancy in the Fig. 4 fits that necessitates adjustment of the catalytic constants (line 338). It is not correct to say that ’external substrate concentration S is assumed constant’ (bottom p. 25) therefore the catabolic rate vmc is an environment-dependent [i.e. substrate-concentration-independent] parameter. The ’mc’ proteins include carbon uptake and metabolism (e.g. Fig 1, or Table 2) so that intracellular changes in S could arise from strain differences thereby affecting vmc and the magnitude of the ‘housekeeping’ fraction.

      It is not clear to me how the predictive power of the model will be affected by relaxing the constant φq assumption and replacing it with the more justifiable assumption that all metabolic proteins contribute some small fraction to φq based upon substrate saturation.

      The reviewer criticizes two assumptions made in the construction and analysis of the model: (i) the fraction of housekeeping proteins is constant irrespective of strain and growth conditions, and (ii) the housekeeping proteins carry flux because they synthesize macromolecules other than proteins. Below, we summarize how we have tried to clarify these assumptions and which additional work we have performed to build model variants relaxing the assumptions.

      We identified the housekeeping protein category with the Q-sector in the original paper of Scott et al. [13], which was misleading. The Hwa group indeed defines the Q-sector as not carrying flux [7], whereas we do allow this for the housekeeping protein category. Our housekeeping protein category, which we refer to as ”other proteins” or ”residual proteins” (Mu) in the new version of the manuscript, consists of all proteins not labelled as proteins in the categories of ribosomes and translation-affiliated proteins (R), enzymes in central carbon metabolism (Mc), or enzymes in energy metabolism (Mer+Mef). Mu carries flux, because it includes (among other things) the machinery for DNA and RNA synthesis (DNA polymerase, RNA polymerase, ...). When plotting the proteome fraction of this category determined from the data of Schmidt et al. [12], we found that the fraction remains approximately constant over a large range of growth conditions. This motivated the simplifying assumption to keep the proteome fraction for Mu constant in the simulations.

      The reviewer is right, however, that this may not be the case when considering a variety of E. coli strains growing on glucose, especially the strains resulting from laboratory evolution experiments. We have therefore redone the simulations while allowing the Mu category to vary, by a percentage corresponding to experimentally-observed variations of this category over the range of growth conditions considered by Schmidt et al. [12] (Supplementary Figure 1). In comparison with the original results, the relaxation of this condition enlarges the attainable range of growth rates by about 10%, but the overall shape of the cloud of rate-yield phenotypes remains the same. These new simulation results are shown in the main figures of the revised manuscript.

      In parallel, we have developed a model variant that includes a Q category in the sense of Scott et al., defined by the (growth-rate independent) offsets of the linear relations between growth rate and protein fractions [7]. We have retained an Mu category of other proteins in the model, interpreted as consisting of the growth-rate dependent fraction of other proteins, including the molecular machinery responsible for the synthesis of other macromolecules. Whereas the Mu category carries a flux, this is not the case for the Q category. We have calibrated the model variant from the same data as the original model, and predicted the admissible rate-yield phenotypes. While the cloud of predicted rate-yield phenotypes is slightly displaced in comparison with the reference model, the overall qualitative shape is the same. We explain this robustness by the fact that, despite the different interpretation of the protein categories, the models are structurally very similar and calibrated from data for the same reference strain. This gives rise to different values of the catalytic constants, which compensate for the differences in protein concentrations. Note that more data are needed for the calibration of the model with the Q category, because it requires estimation of the growth-rate-independent proteome fraction for all individual protein categories. In particular, in addition to carbon limitation, conditions of nitrogen and sulfur limitation are necessary [7]. In the absence of such data, additional assumptions need to be made, as we have explained in the new version of the manuscript.

      We could not find a discussion of the relation between substrate saturation and growth-rate independent offsets in proteomics data in the paper by Dourado et al. [2]. In the revised version of the manuscript, however, we have exploited their idea to compare substrate saturation for different predicted and observed rate-yield phenotypes. As a prerequisite, this has required a refinement of the estimation of the half-saturation constants during model calibration, for which we have used the dataset of Km values collected by Dourado et al. [2]. The finding that high-rate, high-yield growth comes with high substrate saturation, indicating an efficient utilization of proteomic resources, has been given more emphasis in the revised manuscript. Note that each resource allocation strategy will give rise to a different concentration of metabolites, and therefore to a different level of substrate saturation of the enzymes.

      The reviewer is right that the phrase ”the external substrate concentration S is assumed constant” is not correct for batch growth, although it approximately holds for continuous growth in a chemostat. In the case of balanced growth in batch, the external substrate concentration S is much higher than the half-saturation constant ), so that the kinetic equation for the macroreaction can be approximated by vmc = mc es, where es = kmc. In the revised manuscript, we have explicitly distinguished between these two situations (batch and continuous growth). Note that S is not the intracellular, but the extracellular concentration of substrate.

      Changes in manuscript: We have better explained the meaning of the residual protein category Mu and corrected the misleading identification of this category with the Q-sector of Scott et al. [13] in the section Coarse-grained model with coupled carbon and energy fluxes and in Appendix 1. In new subsections of Appendix 1 and Appendix 2, we discuss the construction and calibration of a model variant with an additional growth-rate independent protein category corresponding to the Q-sector of Scott et al.. In the Discussion, we explain that the rate-yield predictions obtained from this model and the reference model are essentially the same, indicating the robustness of the model predictions.

      We have redone all simulations using a resource allocation parameter for the housekeeping protein fraction Mu that is allowed to vary within experimentally-determined bounds (Coarsegrained model with coupled carbon and energy fluxes and Methods). The bounds are determined from the data of Schmidt et al. [12], as shown in the new Supplementary Figure 1. These simulations also include refined estimates for the half-saturation constants in the metabolic macroreactions.

      In the final Results section, Resource allocation strategies enabling fast and efficient growth of Escherichia coli, we develop the point that higher saturation of enzymes and ribosomes is key to high-rate, high-yield growth of E. coli, in agreement with observations from other recent studies [2, 5, 9]. In Appendix 1, we emphasize that S is the extracellular substrate concentration and we distinguish between simplifications of vmc for batch and continuous growth.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors sought to identify the relationship between social touch experiences and the endogenous release of oxytocin and cortisol. Female participants who received a touch from their romantic partner before a stranger exhibited a blunted hormonal response compared to when the stranger was the first toucher, suggesting that social touch history and context influence subsequent touch experiences. Concurrent fMRI recordings identified key brain networks whose activity corresponded to hormonal changes and self-report.

      The strengths of the manuscript are in the power achieved by collecting multi-faceted metrics: plasma hormones across time, BOLD signal, and self-report. The experiment was cleverly designed and nicely counterbalanced. Data analysis was thorough and statistically sophisticated, making the findings and conclusions convincing.

      This work sheds new light on potential mechanisms underlying how humans place social experiences in context, demonstrating how oxytocin and cortisol might interact to modulate higher-level processing and contextualizing of familiar vs. stranger encounters.

      Thank you very much for this generous evaluation of the study.

      Reviewer #2 (Public Review):

      To test how oxytocin impacts the brain and the psychological, neural, and hormonal response to touch, the authors tested human females during two counterbalanced fMRI sessions wherein females were stroked on the arm or the palm, by a real-world romantic partner or a stranger, while blood levels of oxytocin and cortisol were collected at multiple time points.

      This combination of measures, and the number of hypotheses that could be tested with them, is remarkable - virtually unheard of. This impressive, difficult, and more ecological design than is typical for the field is a major strength of the study, which allowed the authors to test many important hypotheses concurrently and to show contextual effects that could not otherwise be observed. The only potential drawback perhaps is that with such a large design, including many measures, the authors produced so many significant interactions and results that it could be hard for the casual reader to appreciate the importance of each.

      The authors supported their hypothesis that oxytocin effects are context-sensitive, as they found a key interaction wherein experiencing the partner first increased oxytocin for the partner relative to when they came first the OT levels were low but then increased if they were preceded by the partner (excepting one timepoint). Cortisol responses (which reflect hormonal stress) were also higher when the stranger came first than when he was preceded by the partner). In addition, touch was experienced more positively on the arm than on the palm, supporting the role of c-fibers in conveying specifically felt responses to warm, tender touch.

      These data indicate significant context sensitivity with real-world implications. For example, experiencing warm touch on the arm can make us more receptive to other people in subsequent encounters. Conversely, when strangers try to approach and get close to us "out of the blue" people experience this as stressful, which reduces the pleasantness of the interaction and may reduce trust in the moment...perhaps even subsequently.

      This research is critical to the basic science of neurohormonal modulation, given that most of this research occurs in rodents or in simplified studies in humans, usually through intranasal oxytocin administration with unclear impacts on circulating levels in the brain and blood. Oxytocin in particular has suffered from oversimplification as the "love drug" - wherein people assume that it always renders people more loving and trusting. The reality is more complex, as they showed, and these demonstrations are needed to clarify for the field and the public that neurohormones adaptively shift with the context, location, and identity of the social partner in an adaptive way. These results also help us understand the many null effects of oxytocin on trusting strangers in human neuroeconomic studies. In a modern world that is characterized by significant loneliness, interactions with strangers and outsiders, and touch-free digital interactions, our ability to understand the human need for genuine social contact and how it impacts our response to outsiders (welcomed in versus a source of stress) is critical to human health and the wellbeing of individuals and society.

      Thank you very much for this nice summary of the study and its implications.

      As you pointed out, the design was ambitious and involved a broad range of measures and levels of hypothesis-testing. This presented challenges in reporting the results. In this paper we have tried to provide interpretation of the basic results, such as that social encounters (even in the scanner environment) are sufficient to evoke changes in endogenous oxytocin levels over the course of the experimental session, and that various interactions arise due to an influence of contextual factors such as the familiarity of the person and the recent social interaction history. For the more complex results, such as the nature of relationships between BOLD signal change and the degree of change in individuals’ plasma oxytocin levels, we have tried to outline provisional interpretations.

      We hope that the picture will gradually become more filled-in by work from ours and others’ labs—maybe these findings and interpretations will look very different in a few years’ time. We consider this study a starting point for future research into the dynamics and function of human endogenous oxytocin.

      Reviewer #3 (Public Review):

      In an ambitious, multimodal effort, Handlin, Novembre et al. investigated how the endogenous release of oxytocin and cortisol as well as functional brain activity are modulated by social touch under different contextual circumstances (e.g. palm vs. arm touch, stranger vs. partner touch) in neurotypical female participants.

      Using serial sampling of plasma hormone levels in blood during concurrent functional MRI neuroimaging, the authors show that the familiarity of the interactant during social touch not only impacts current hormonal levels but also subsequent hormonal responses in a successive touch interaction. Specifically, endogenous oxytocin levels are significantly heightened (and cortisol levels dampened) during touch from a romantic partner compared to touch from an unfamiliar stranger, at least during the first touch interaction. During the second touch interaction, however, oxytocin levels plummeted when being touched by a stranger following partner touch (although a recovery was made), whereas the normally elevated oxytocin responses to partner touch were dampened when following stranger touch. These results are paralleled by similar familiarity- and order-related effects in neural regions involving the hypothalamus, dorsal raphe, and precuneus.

      However, an important distinction to be made is that, although a significant main effect of familiarity was encountered in several brain regions when taking peak plasma oxytocin levels into account, subsequent t-tests showed no activation differences in the BOLD response between partner and stranger touch within the same subjects. Significant interaction maps seem thus mainly driven by between-subject effects at the different time points, which is arguably due to differences between subjects in their initial calibration of neural/hormonal responses, and not session-to-session changes within the same subjects.

      A similar comment can be made for the reported covariance between (changes in) maximal oxytocin levels and (changes in) BOLD activity for the hypothalamus.

      In an effort to delineate the complex cascade of responses induced by afferent tactile stimulation, the authors report an exploratory regression analysis to identify BOLD activation that precedes the pattern of serial plasma changes in oxytocin levels (looking backwards; i.e. implying changes in brain activation drive changes in hormonal plasma levels). Although the authors are appropriately modest about the significance of the encountered effects, additional control analyses could bring further clarifications about the temporal (e.g., can similar covariations also be found when looking forward) and hormonal specificity (e.g. can similar findings be found for cortisol-variations) of the encountered results. Nevertheless, despite the 'dynamically' covarying relationships between BOLD and max plasma oxytocin levels (i.e. dynamic as in the sense across conditions, not across timepoints), claims about the directionality of this effect (i.e. 'hormonal neuromodulation' vs. 'neural modulation of hormonal levels') remain speculative.

      A particular strength of this study is the employment of a "female-first" strategy since experimental data concerning endogenous oxytocin levels in women are sparse. Adequate control analyses are reported to take potential variability due to differences in contraception and phase in the hormonal cycle into account.

      Thank you for your attentive reading of the study, and for raising several very important points.

      You are right that the BOLD activation maps showing interactions between the change in OT levels and other factors (familiarity, order) reflect differences between subjects in the two runs of the experiment. The effect of familiarity emerged from the full model for the whole group (all participants, whether they started with partner or stranger), as an interaction between the partner/stranger factor and the change in OT. As you point out, this reflects interindividual-level covariation between OT changes and BOLD changes. For example, individuals showing greater OT increase were also more likely to show higher BOLD in certain clusters during partner compared to stranger touch. Similarly, the partner vs stranger contrast showing hypothalamus and Raphe reflects greater OT-BOLD covariance in the stranger first compared to the partner fist groups: in the stranger first group, BOLD was greater the lower the mean OT was across individuals.

      The t-tests with OT as covariate further indicate that the interaction was driven by group differences in the second run. As you point out, within groups (partner or stranger first), there was no significant change in the OT-BOLD covariance from the first to the second run, though these relationships were different between groups. We agree with you that this lack of difference in within-group OT-BOLD covariance from the first to the second run is likely because responses in the first run biased responses in the second run—but in different ways depending on whether the partner or the stranger was presented first. Both groups did show a meaningful correlation in mean OT levels between the first and the second run (we have now included this information in the paper).

      In general, we agree that it is very important to make clear that, as in many covariation/correlation effects in fMRI studies, the effects are driven by interindividual differences for a given covariant relationship, rather than the within-subject BOLD response increasing or decreasing.

      We also agree that it is not possible to determine the direction of modulation from these results. The creation of the temporal OT regressor as “backward-looking” was informed by evidence from animal models for central-to-peripheral effects from hypothalamus to pituitary to bloodstream. We assumed this directionality in the analysis. Given the exploratory nature of this regressor, “looking forward” from temporal OT sample patterns to BOLD patterns with different time intervals would be an equally valid approach. It could reveal activation related to any systematic influence of peripheral OT levels on cortical responses. As the premise of the temporal OT regressor analysis in the present study was any assumed central-to-peripheral modulation, we have kept this as the focus but will explore any specific peripheral-to-central covariation in future work.

      We believe that the full causal picture is likely to involve bidirectional modulation: a modulatory loop (or even loops) in which peripheral and central changes influence one another. Unfortunately, it is difficult to address such temporal feedback with the poor time resolution of fMRI.

    1. Author Response

      Reviewer #1 (Public Review):

      This is one of the most careful analyses of sexual dimorphism in dinosaurs, based on a remarkable assemblage of 61 ornithomimosaur fossils from the Early Cretaceous of western France. The dimorphism is expressed in variations in the shaft curvature and the distal epiphysis width, analysed appropriately here and plausible because these are the kinds of morphological features that vary between males and females among birds and crocodilians, among others.

      In the Introduction, it is right to highlight the shortage of convincing cases of demonstrated sexual dimorphism (SD) in dinosaurs. But note the points made by Hone, Saitta and others that SD can exist in many species today without major morphological differences, making it hard to demonstrate in fossils with such types of dimorphism. Also, some proposed statistical tests to ensure that SD has been convincingly demonstrated in fossils are so stringent they would be hard ever to pass (requiring enormous and constant morphological distinctiveness). In other words, we are conditioned not to find SD in dinosaurs, and yet may be massively under-reporting it because of preservation difficulties (of course) but also because of some overly rigorous demands for proof. These issues help argue that the current study is especially valuable because the data set is large (itself a rarity), and 3D bone shape analysis and proper statistical testing have been applied.

      We are grateful that Reviewer 1 raised this point regarding the occurrence of many subtle sexual dimorphism among modern populations, and added a sentence in the introduction, to further emphasize the importance of a large dataset composed of coeval organisms.

      It's interesting the dinosaur example shows the same two dimorphic traits (femoral obliquity = bicondylar angle; width of distal epiphysis = bicondylar breadth) seen in mammals (MS, lines 117-123), where the femur angle may vary because of the need for broader hips in the female to accommodate the birth canal, and yet dinosaurs laid eggs. These are small dinosaurs, so perhaps their eggs were relatively large in proportion to body size. Perhaps the authors could comment on this. There is some discussion with regard to modern birds at MS lines 187-199.

      We agree with comments from Reviewer 1 and we raise the question of egg possibly constraining the pelvic and proximal hindlimb morphology from line 170 to 189 and how it relates to modern archosaurs from line 189 to 202. We also originally intended to discuss how the Kiwi hindlimb morphology accommodates large eggs, but no significant dimorphism was demonstrated in the pelvic and hindlimb morphology of this bird.

    1. Author Response

      Reviewer #2 (Public review):

      Ansari et al. describe a web-based software for the design of guide RNA (gRNA) sequences and primers for CRISPR-Cas-based identification of single nucleotide variants (SNVs). The use of CRISPR-Cas to rapidly identify specific mutations in both cancer and infection is an evolving field with good potential to play a role in future research and diagnostics.

      The software described by Ansari et al. is easy to use for the design of guide RNAs. The most important question is how good the gRNAs that the software suggests are. As such, the manuscript would benefit from better describing the parameters used for the gRNA design as well as including more validation experiments. Clearly, the scope of the manuscript is not about developing different detection methods, but I would argue that performing more wet lab experiments is needed to support the usability of the software.

      We thank the reviewer for taking interest in this manuscript and raising an important point about increasing the number of targets for our wet lab experiments. To address this, we have tried to include more supporting data in the updated version of the manuscript.

      Reviewer #3 (Public review):

      This manuscript by Ansari and coworkers describes CriSNPr, a tool for designing gRNAs for CRISPR-based diagnostics for SNP detection. CriSNPr allows one to design assays to detect human and SARS-CoV-2 mutations, positioning the mismatches for optimal detection based on results from the literature. Designs can be generated for six different CRISPR effector proteins. The authors test their approach by designing assays to detect a single SNV using three different CRISPR effectors. A strength of the manuscript is that the method does appear to work, at least for the E484K mutation, for multiple CRISPR effector proteins.

      The weaknesses of this manuscript are the lack of data demonstrating that the method works. There is only one very small experimental demonstration using a single mutation (Figure 4) and some very high-level analyses using two SNP/SNV databases (Figure 5). The authors do not provide any data to answer any basic questions about how well their designs work, how fast and easy it is to run their method, or which designs are predicted to work better than others. These weaknesses ultimately limit the impact of the work on the field, as it is not clear what the benefits of using the author's approach are versus simply applying the rules for the individual CRISPR effector proteins outlined in Figure 1 of the manuscript.

      We thank the reviewer for taking interest in this manuscript and appreciate the constructive feedback and suggestions. In the new version of this paper, we've added more data to back up other SNVs with different CRISPR systems and the CriSNPr pipeline for sgRNA design. Even in these datasets, we see that for particular SNVs, the choice of the CRISPR system used might affect the sensitivity of detecting the mutation (Figures 5 and 6). This would be a huge task to do again for multiple targets and targeting systems, which is outside the scope of this study. Importantly, such large datasets are currently missing for the different CRISPRDx systems since we have not come across studies where users have comparatively determined the best methodology for their assay. In our opinion, criSNPr gives users this opportunity by providing a unified platform, and our validation assays show how this can be done in a relatively fast manner.

      A stand-alone version of the server is made available for download at https://github.com/asgarhussain/CriSNPr to increase its speed and accessibility for the end user.

      Addressing the point of determining which crRNAs work best for a given assay requires a large amount of data on target SNPs for individual Cas systems, which is currently scarce. In the current version of CriSNPr, we have considered prioritizing crRNA mismatch-sensitive positions based on original published studies. For example, for AaCas12b, mismatch positions are ranked as follows: 1&4 > 1&5 > 4&11 > 4&16 > 5&8 > 5&11 > 16&19. Similarly, crRNA mismatch-sensitive positions for individual Cas systems (as shown in Figure 1) have been used to prioritize crRNAs. Improving on these design principles further would require studying the biology of individual Cas:DNA/RNA interactions, which is beyond the scope of this study. However, in the updated version of the CriSNPr, we attempted to improve the scoring algorithm by taking into account off-targets for a crRNA design, and priority is given to the combinatorial positions with the fewest off-targets as well as the weightage of their efficacy.

    1. Author Response:

      We would like to thank both reviewers and editors for their time and effort in reviewing our work, and the thoughtful suggestions made.

      Reviewer #1 (Public Review):

      […] The experiments are well-designed and carefully conducted. The conclusions of this work are in general well supported by the data. There are a couple of points that need to be addressed or tested.

      1) It is unclear how LC phasic stimulation used in this study gates cortical plasticity without altering cellular responses (at least at the calcium imaging level). As the authors mentioned that Polack et al 2013 showed a significant effect of NE blockers in membrane potential and firing rate in V1 layer2/3 neurons during locomotion, it would be useful to test the effect of LC silencing (coupled to mismatch training) on both cellular response and cortical plasticity or applying NE antagonists in V1 in addition to LC optical stimulation. The latter experiment will also address which neuromodulator mediates plasticity, given that LC could co-release other modulators such as dopamine (Takeuchi et al. 2016 and Kempadoo et al. 2016). LC silencing experiment would establish a causal effect more convincingly than the activation experiment.

      Regarding the question of how phasic stimulation could alter plasticity without affecting the response sizes or activity in general, we believe there are possibilities supported by previous literature. It has been shown that catecholamines can gate plasticity by acting on eligibility traces at synapses (He et al., 2015; Hong et al., 2022). In addition, all catecholamine receptors are metabotropic and influence intracellular signaling cascades, e.g., via adenylyl cyclase and phospholipases. Catecholamines can gate LTP and LTD via these signaling pathways in vitro (Seol et al., 2007). Both of these influences on plasticity at the molecular level do not necessitate or predict an effect on calcium activity levels. We will expand on this in the discussion of the revised manuscript.

      While a loss of function experiment could add additional corroborating evidence that LC output is required for the plasticity seen, we did not perform loss-of-function experiments for three reasons:

      1. The effects of artificial activity changes around physiological set point are likely not linear for increases and decreases. The problem with a loss of function experiment here is that neuromodulators like noradrenaline affect general aspects neuronal function. This is apparent in Polack et al., 2013: during the pharmacological blocking experiment, the membrane hyperpolarizes, membrane variance becomes very low, and the cells are effectively silenced (Figure 7 of (Polack et al., 2013)), demonstrating an immediate impact on neuronal function when noradrenaline receptor activation is presumably taken below physiological/waking levels. In light of this, if we reduce LC output/noradrenergic receptor activation and find that plasticity is prevented, this could be the result of a direct influence on the plasticity process, or, the result of a disruption of another aspect of neuronal function, like synaptic transmission or spiking. We would therefore challenge the reviewer’s statement that a loss-of-function experiment would establish a causal effect more convincingly than the gain-of-function experiment that we performed.

      2. The loss-of-function experiment is technically more difficult both in implementation and interpretation. Control mice show no sign of plasticity in locomotion modulation index (LMI) on the 10-minute timescale (Figure 4J), thus we would not expect to see any effect when blocking plasticity in this experiment. We would need to use dark-rearing and coupled-training of mice in the VR across development to elicit the relevant plasticity ((Attinger et al., 2017); manuscript Figure 5). We would then need to silence LC activity across days of VR experience to prevent the expected physiological levels of plasticity. Applying NE antagonists in V1 over the entire period of development seems very difficult. This would leave optogenetically silencing axons locally, which in addition to the problems of doing this acutely (Mahn et al., 2016; Raimondo et al., 2012), has not been demonstrated to work chronically over the duration of weeks. Thus, a negative result in this experiment will be difficult to interpret, and likely uninformative: We will not be able to distinguish whether the experimental approach did not work, or whether local LC silencing does nothing to plasticity.

        Note that pharmacologically blocking noradrenaline receptors during LC stimulation in the plasticity experiment is also particularly challenging: they would need to be blocked throughout the entire 15 minute duration of the experiment with no changes in concentration of antagonist between the ‘before’ and ‘after’ phases, since the block itself is likely to affect the response size, as seen in Polack et al., 2013, creating a confound for plasticity-related changes in response size. Thus, we make no claim about which particular neuromodulator released by the LC is causing the plasticity.

      3. There are several loss-of-function experiments reported in the literature using different developmental plasticity paradigms alongside pharmacological or genetic knockout approaches. These experiments show that chronic suppression of noradrenergic receptor activity prevents ocular dominance plasticity and auditory plasticity (Kasamatsu and Pettigrew, 1976; Shepard et al., 2015). Almost absent from the literature, however, are convincing gain-of-function plasticity experiments.

      Overall, we feel that loss-of-function experiments may be a possible direction for future work but, given the technical difficulty and – in our opinion – limited benefit that these experiments, would provide in light of the evidence already provided for the claims we make, we have chosen not to perform these experiments at this time. Note that we already discuss some of the problems with loss-of-function experiments in the discussion.

      2) The cortical responses to NE often exhibit an inverted U-curve, with higher or lower doses of NE showing more inhibitory effects. It is unclear how responses induced by optical LC stimulation compare or interact with the physiological activation of the LC during the mismatch. Since the authors only used one frequency stimulation pattern, some discussion or additional tests with a frequency range would be helpful.

      This is correct, we do not know how the artificial activation of LC axons relates to physiological activation, e.g. under mismatch. The stimulation strength is intrinsically consistent in our study in the sense that the stimulation level to test for changes in neuronal activity is similar to that used to probe for plasticity effects. We suspect that the artificial activation results in much stronger LC activity than seen during mismatch responses, given that no sign of the plasticity in LMI seen in high ChrimsonR occurs in low ChrimsonR or control mice (Figure 4J). Note, that our conclusions do not rely on the assumption that the stimulation is matched to physiological levels of activation during the visuomotor mismatches that we assayed. The hypothesis that we put forward is that increasing levels of activation of the LC (reflecting increasing rates or amplitude of prediction errors across the brain) will result in increased levels of plasticity. We know that LC axons can reach levels of activity far higher than that seen during visuomotor mismatches, for instance during air puff responses, which constitute a form of positive prediction error (unexpected tactile input) (Figures 2C and S1C).  The visuomotor mismatches used in this study were only used to demonstrate that LC activity is consistent with prediction error signaling. We will expand on these points in the discussion as suggested.

      Reviewer #2 (Public Review):

      […] The study provides very compelling data on a timely and fascinating topic in neuroscience. The authors carefully designed experiments and corresponding controls to exclude any confounding factors in the interpretation of neuronal activity in LC axons and cortical neurons. The quality of the data and the rigor of the analysis are important strengths of the study. I believe this study will have an important contribution to the field of system neuroscience by shedding new light on the role of a key neuromodulator. The results provide strong support for the claims of the study. However, I also believe that some results could have been strengthened by providing additional analyses and experimental controls. These points are discussed below.

      Calcium signals in LC axons tend to respond with pupil dilation, air puffs, and locomotion as the authors reported. A more quantitative analysis such as a GLM model could help understand the relative contribution (and temporal relationship) of these variables in explaining calcium signals. This could also help compare signals obtained in the sensory and motor cortical domains. Indeed, the comparison in Figure 2 seems a bit incomplete since only "posterior versus anterior" comparisons have been performed and not within-group comparisons. I believe it is hard to properly assess differences or similarities between calcium signal amplitude measured in different mice and cranial windows as they are subject to important variability (caused by different levels of viral expression for instance). The authors should at the very least provide a full statistical comparison between/within groups through a GLM model that would provide a more systematic quantification.

      We will implement an improved analysis in the revised version of the manuscript.

      Previous studies using stimulations of the locus coeruleus or local iontophoresis of norepinephrine in sensory cortices have shown robust responses modulations (see McBurney-Lin et al., 2019, https://doi.org/10.1016/j.neubiorev.2019.06.009 for a review). The weak modulations observed in this study seem at odds with these reports. Given that the density of ChrimsonR-expressing axons varies across mice and that there are no direct measurements of their activation (besides pupil dilation), it is difficult to appreciate how they impact the local network. How does the density of ChrimsonR-expressing axons compare to the actual density of LC axons in V1? The authors could further discuss this point.

      In terms of estimating the percentage of cortical axons labelled based on our axon density measurements: we refer to cortical LC axonal immunostaining in the literature to make this comparison. In motor cortex, an average axon density of 0.07 µm/µm2 has been reported (Yin et al., 2021), and 0.09 µm/µm2 in prefrontal cortex (Sakakibara et al., 2021). Density of LC axons varies by cortical area, with higher density in motor cortex and medial areas than sensory areas (Agster et al., 2013): V1 axon density is roughly 70% of that in cingulate cortex (adjacent to motor and prefrontal cortices) (Nomura et al., 2014). So, we approximate a maximum average axon density in V1 of approximately 0.056 µm/µm2. Because these published measurements were made from images taken of tissue volumes with larger z-depth (~ 10 µm) than our reported measurements (~ 1 µm), they appear much larger than the ranges reported in our manuscript (0.002 to 0.007 µm/µm2). We repeated the measurements in our data using images of volumes with 10 µm z-depth, and find that the percentage axons labelled in our study in high ChrimsonR-expressing mice ranges between 0.012 to 0.039 µm/µm2. This corresponds to between 20% to 70% of the density we would expect based on previous work. Note that this is a potentially significant underestimate, and therefore should be used as a lower bound: analyses in the literature use images from immunostaining, where the signal to background ratio is very high. In contrast, we did not transcardially perfuse our mice leading to significant background (especially in the pia/L1, where axon density is high - (Agster et al., 2013; Nomura et al., 2014)), and the intensity of the tdTomato is not especially high. We therefore are likely missing some narrow, dim, and superficial fibers in our analysis.

      We also can quantify how our variance in axonal labelling affects our results: For the dataset in Figure 3, there doesn’t appear to be any correlation between the level of expression and the effect of stimulating the axons on the mismatch or visual flow responses for each animal (Figure R1: https://imgur.com/gallery/Yl60hnT), while there is a significant correlation between the level of expression and the pupil dilation, consistent with the dataset shown in Figure 4. Thus, even in the most highly expressing mice, there is no clear effect on average response size at the level of the population. We will add these correlations to the revised manuscript.

      To our knowledge, there has not yet been any similar experiment reported utilizing local LC axonal optogenetic stimulation while recording cortical responses, so when comparing our results to those in the literature, there are several important methodological differences to keep in mind. The vast majority of the work demonstrating an effect of LC output/noradrenaline on responses in the cortex has been done using unit recordings, and while results are mixed, these have most often demonstrated a suppressive effect on spontaneous and/or evoked activity in the cortex (McBurney-Lin et al., 2019). In contrast to these studies, we do not see a major effect of LC stimulation either on baseline or evoked calcium activity (Figure 3), and, if anything, we see a minor potentiation of transient visual flow onset responses (see also Figure R2). There could be several reasons why our stimulation does not have the same effect as these older studies:

      1. Recording location: Unit recordings are often very biased toward highly active neurons (Margrie et al., 2002) and deeper layers of the cortex, while we are imaging from layer 2/3 – a layer notorious for sparse activity. In one of the few papers to record from superficial layers, it was been demonstrated that deeper layers in V1 are affected differently by LC stimulation methods compared to more superficial ones (Sato et al., 1989), with suppression more common in superficial layers. Thus, some differences between our results and those in the majority of the literature could simply be due to recording depth and the sampling bias of unit recordings.

      2. Stimulation method: Most previous studies have manipulated LC output/noradrenaline levels by either iontophoretically applying noradrenergic receptor agonists, or by electrically stimulating the LC. Arguably, even though our optogenetic stimulation is still artificial, it represents a more physiologically relevant activation compared to iontophoresis, since the LC releases a number of neuromodulators including dopamine, and these will be released in a more physiological manner in the spatial domain and in terms of neuromodulator concentration. Electrical stimulation of the LC as used by previous studies differs from our optogenetic method in that LC axons will be stimulated across much wider regions of the brain (affecting both the cortex and many of its inputs), and it is not clear whether the cause of cortical response changes is in cortex or subcortical. In addition, electrical LC stimulation is not cell type specific.

      3. Temporal features of stimulation: Few previous studies had the same level of temporal control over manipulating LC output that we had using optogenetics. Given that electrical stimulation generates electrical artifacts, coincident stimulation during the stimulus was not used in previous studies. Instead, the LC is often repeatedly or tonically stimulated, sometimes for many seconds, prior to the stimulus being presented. Iontophoresis also does not have the same temporal specificity and will lead to tonically raised receptor activity over a time course determined by washout times.

      4. State specificity: Most previous studies have been performed under anesthesia – which is known to impact noradrenaline levels and LC activity (Müller et al., 2011). Thus, the acute effects of LC stimulation are likely not comparable between anesthesia and in the awake animal.

      Due to these differences, it is hard to infer why our results differ compared to other papers. The study with the most similar methodology to ours is (Vazey et al., 2018), which used optogenetic stimulation directly into the mouse LC while recording spiking in deep layers of the somatosensory cortex with extracellular electrodes. Like us, they found that phasic optogenetic stimulation alone did not alter baseline spiking activity (Figure 2F of Vazey et al., 2018), and they found that in layers 5 and 6, short latency transient responses to foot touch were potentiated and recruited by simultaneous LC stimulation. While this finding appears more overt than the small modulations we see, it is qualitatively not so dissimilar from our finding that transient responses appear to be slightly potentiated when visual flow begins (Figure R2). Differences in the degree of the effect may be due to differences in the layers recorded, the proportion of the LC recruited, or the fact anesthesia was used in Vazey et al., 2018.

      Note that we only used one set of stimulation parameters for optogenetic stimulation, and it is always possible that using different parameters would result in different effects. We will add a discussion on the topic to the revised manuscript.

      In the analysis performed in Figure 3, it seems that red light stimulations used to drive ChrimsonR also have an indirect impact on V1 neurons through the retina. Indeed, figure 3D shows a similar response profile for ChrimsonR and control with calcium signals increasing at laser onset (ON response) and offset (OFF response). With that in mind, it is hard to interpret the results shown in Figure 3E-F without seeing the average calcium time course for Control mice. Are the responses following visual flow caused by LC activation or additional visual inputs? The authors should provide additional information to clarify this result.

      This is a good point. When we plot the average difference between the stimulus response alone and the optogenetic stimulation + stimulus response, we do indeed find that there is a transient increase in response at the visual flow onset (and the offset of mismatch, which is where visual flow resumes), and this is only seen in ChrimsonR-expressing mice (Figure R2: https://imgur.com/gallery/cqN2Khd). We therefore believe that these enhanced transients at visual flow onset could be due to the effect of ChrimsonR stimulation, and indeed previous studies have shown that LC stimulation can reduce the onset latency and latency jitter of afferent-evoked activity (Devilbiss and Waterhouse, 2004; Lecas, 2004), an effect which could mediate the differences we see. We will add this analysis to the revised manuscript.

      Some aspects of the described plasticity process remained unanswered. It is not clear over which time scale the locomotion modulation index changes and how many optogenetic stimulations are necessary or sufficient to saturate this index. Some of these questions could be addressed with the dataset of Figure 3 by measuring this index over different epochs of the imaging session (from early to late) to estimate the dynamics of the ongoing plasticity process (in comparison to control mice). Also, is there any behavioural consequence of plasticity/update of functional representation in V1? If plasticity gated by repeated LC activations reproduced visuomotor responses observed in mice that were exposed to visual stimulation only in the virtual environment, then I would expect to see a change in the locomotion behaviour (such as a change in speed distribution) as a result of the repeated LC stimulation. This would provide more compelling evidence for changes in internal models for visuomotor coupling in relation to its behavioural relevance. An experiment that could confirm the existence of the LC-gated learning process would be to change the gain of the visuomotor coupling and see if mice adapt faster with LC optogenetic activation compared to control mice with no ChrimsonR expression. Authors should discuss how they imagine the behavioural manifestation of this artificially-induced learning process in V1.

      Regarding the question of plasticity time course: Unfortunately, owing to the paradigm used in Figure 3, the time course of the plasticity will not be quantifiable from this experiment. This is because in the first 10 minutes, the mouse is in closed loop visuomotor VR experience, undergoing optogenetic stimulation (this is the time period in which we record mismatches). We then shift to the open loop session to quantify the effect of optogenetic stimulation on visual flow responses. Since the plasticity is presumably happening during the closed loop phase, and we have no read-out of the plasticity during this phase (we do not have uncoupled visual flow onsets to quantify LMI in closed loop), it is not possible to track the plasticity over time.

      Regarding the behavioral relevance of the plasticity: The type of plasticity we describe here is consistent with predictive, visuomotor plasticity in the form of a learned suppression of responses to self-generated visual feedback during movement. Intuitive purposes of this type of plasticity would be 1) to enable better detection of external moving objects by suppressing the predictable (and therefore redundant) self-generated visual motion and 2) to better detect changes in the geometry of the world (near objects have a larger visuomotor gain that far objects). In our paradigm, we have no intuitive read-out of the mouse’s perception of these things, and it is not clear to us that they would be reflected in locomotion speed, which does not differ between groups (manuscript Figure S5). Instead, we would need to turn to other paradigms for a clear behavioral read-out of predictive forms of sensorimotor learning: for instance, sensorimotor learning paradigms in the VR (such as those used in (Heindorf et al., 2018; Leinweber et al., 2017)), or novel paradigms that reinforce the mouse for detecting changes in the gain of the VR, or moving objects in the VR, using LC stimulation during the learning phase to assess if this improves acquisition. This is certainly a direction for future work. In the case of a positive effect, however, the link between the precise form of plasticity we quantify in this manuscript and the effect on the behavior would remain indirect, so we see this as beyond the scope of the manuscript. We will add a discussion on this topic to the revised manuscript.

      Finally, control mice used as a comparison to mice expressing ChrimsonR in Figure 3 were not injected with a control viral vector expressing a fluorescent protein alone. Although it is unlikely that the procedure of injection could cause the results observed, it would have been a better control for the interpretation of the results.

      We agree that this indeed would have been a better control. However, we believe that this is fortunately not a major problem for the interpretation of our results for two reasons:

      1. The control and ChrimsonR expressing mice do not show major differences in the effect of optogenetic LC stimulation at the level of the calcium responses for all results in Figure 3, with the exception of the locomotion modulation indices (Figure 3I). Therefore, in terms of response size, there is no major effect compared to control animals that could be caused by the injection procedure, apart from marginally increased transient responses to visual flow onset – and, as the reviewer notes, it is difficult to see how the injection procedure would cause this effect.

      2. The effect on locomotion modulation index (Figure 3I) was replicated with another set of mice in Figure 4C, for which we did have a form of injected control (‘Low ChrimsonR’), which did not show the same plasticity in locomotion modulation index (Figure 4E). We therefore know that at least the injection itself is not resulting in the plasticity effect seen.

      References:

      • Agster, K.L., Mejias-Aponte, C.A., Clark, B.D., Waterhouse, B.D., 2013. Evidence for a regional specificity in the density and distribution of noradrenergic varicosities in rat cortex. Journal of Comparative Neurology 521, 2195–2207. https://doi.org/10.1002/cne.23270

      • Attinger, A., Wang, B., Keller, G.B., 2017. Visuomotor Coupling Shapes the Functional Development of Mouse Visual Cortex. Cell 169, 1291-1302.e14. https://doi.org/10.1016/j.cell.2017.05.023

      • Devilbiss, D.M., Waterhouse, B.D., 2004. The Effects of Tonic Locus Ceruleus Output on Sensory-Evoked Responses of Ventral Posterior Medial Thalamic and Barrel Field Cortical Neurons in the Awake Rat. J. Neurosci. 24, 10773–10785. https://doi.org/10.1523/JNEUROSCI.1573-04.2004

      • He, K., Huertas, M., Hong, S.Z., Tie, X., Hell, J.W., Shouval, H., Kirkwood, A., 2015. Distinct Eligibility Traces for LTP and LTD in Cortical Synapses. Neuron 88, 528–538. https://doi.org/10.1016/j.neuron.2015.09.037

      • Heindorf, M., Arber, S., Keller, G.B., 2018. Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback. Neuron 0. https://doi.org/10.1016/j.neuron.2018.07.046

      • Hong, S.Z., Mesik, L., Grossman, C.D., Cohen, J.Y., Lee, B., Severin, D., Lee, H.-K., Hell, J.W., Kirkwood, A., 2022. Norepinephrine potentiates and serotonin depresses visual cortical responses by transforming eligibility traces. Nat Commun 13, 3202. https://doi.org/10.1038/s41467-022-30827-1

      • Kasamatsu, T., Pettigrew, J.D., 1976. Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science 194, 206–209. https://doi.org/10.1126/science.959850

      • Lecas, J.-C., 2004. Locus coeruleus activation shortens synaptic drive while decreasing spike latency and jitter in sensorimotor cortex. Implications for neuronal integration. European Journal of Neuroscience 19, 2519–2530. https://doi.org/10.1111/j.0953-816X.2004.03341.x

      • Leinweber, M., Ward, D.R., Sobczak, J.M., Attinger, A., Keller, G.B., 2017. A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions. Neuron 95, 1420-1432.e5. https://doi.org/10.1016/j.neuron.2017.08.036

      • Mahn, M., Prigge, M., Ron, S., Levy, R., Yizhar, O., 2016. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat Neurosci 19, 554–556. https://doi.org/10.1038/nn.4266

      • Margrie, T.W., Brecht, M., Sakmann, B., 2002. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498. https://doi.org/10.1007/s00424-002-0831-z

      • McBurney-Lin, J., Lu, J., Zuo, Y., Yang, H., 2019. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neurosci Biobehav Rev 105, 190–199. https://doi.org/10.1016/j.neubiorev.2019.06.009

      • Müller, C.P., Pum, M.E., Amato, D., Schüttler, J., Huston, J.P., De Souza Silva, M.A., 2011. The in vivo neurochemistry of the brain during general anesthesia. Journal of Neurochemistry 119, 419–446. https://doi.org/10.1111/j.1471-4159.2011.07445.x

      • Nomura, S., Bouhadana, M., Morel, C., Faure, P., Cauli, B., Lambolez, B., Hepp, R., 2014. Noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex. Front Cell Neurosci 8. https://doi.org/10.3389/fncel.2014.00247

      • Polack, P.-O., Friedman, J., Golshani, P., 2013. Cellular mechanisms of brain-state-dependent gain modulation in visual cortex. Nat Neurosci 16, 1331–1339. https://doi.org/10.1038/nn.3464

      • Raimondo, J.V., Kay, L., Ellender, T.J., Akerman, C.J., 2012. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat Neurosci 15, 1102–1104. https://doi.org/10.1038/nn.3143

      • Sakakibara, Y., Hirota, Y., Ibaraki, K., Takei, K., Chikamatsu, S., Tsubokawa, Y., Saito, T., Saido, T.C., Sekiya, M., Iijima, K.M., n.d. Widespread Reduced Density of Noradrenergic Locus Coeruleus Axons in the App Knock-In Mouse Model of Amyloid-β Amyloidosis. J Alzheimers Dis 82, 1513–1530. https://doi.org/10.3233/JAD-210385

      • Sato, H., Fox, K., Daw, N.W., 1989. Effect of electrical stimulation of locus coeruleus on the activity of neurons in the cat visual cortex. Journal of Neurophysiology. https://doi.org/10.1152/jn.1989.62.4.946

      • Seol, G.H., Ziburkus, J., Huang, S., Song, L., Kim, I.T., Takamiya, K., Huganir, R.L., Lee, H.-K., Kirkwood, A., 2007. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55, 919–929. https://doi.org/10.1016/j.neuron.2007.08.013

      • Shepard, K.N., Liles, L.C., Weinshenker, D., Liu, R.C., 2015. Norepinephrine is necessary for experience-dependent plasticity in the developing mouse auditory cortex. J Neurosci 35, 2432–2437. https://doi.org/10.1523/JNEUROSCI.0532-14.2015

      • Vazey, E.M., Moorman, D.E., Aston-Jones, G., 2018. Phasic locus coeruleus activity regulates cortical encoding of salience information. Proceedings of the National Academy of Sciences 115, E9439–E9448. https://doi.org/10.1073/pnas.1803716115

      • Yin, X., Jones, N., Yang, J., Asraoui, N., Mathieu, M.-E., Cai, L., Chen, S.X., 2021. Delayed motor learning in a 16p11.2 deletion mouse model of autism is rescued by locus coeruleus activation. Nat Neurosci 24, 646–657. https://doi.org/10.1038/s41593-021-00815-7

    1. Author Response

      Reviewer #2 (Public Review):

      Weaknesses: The authors do not make a direct link between TOR and REPTOR2 signalling. This seems important since REPTOR2 is a novel gene that arose from the duplication of REPTOR.

      We have added several experiments to strengthen the connection between TOR and REPTOR2, and determined the effect of co-silencing of TOR and REPTOR2 on autophagy and proportion of the winged morph. Please see the details below in your comments point 3.

    1. Author Response

      Reviewer #2 (Public Review):

      This paper has collected an impressive data set of the visual response properties of neurons in the visual layers of the mouse superior colliculus. There are 3 main findings of the study. First, the authors identify 24 functional classes of neurons based on the clustering of each neuron's visual response properties. Second, unlike in the retina where each cell type is regularly spaced, functional classes in the superior colliculus appear to cluster near each other. Third, visual representation has a lower dimensionality in the superior colliculus compared to the retina. The dataset has the potential to support the conclusions of the paper, but further analysis is required to make the claims convincing.

      Strengths:

      The main strength of the paper is its impressive dataset of more than 5000 neurons from the visual layers of the superior colliculus. This data set includes recordings from both an interesting set of genetically labelled classes of cells and from a reasonably large portion of the superior colliculus. This dataset offers the opportunity to support the major claims of the paper. This includes i) the identification of 24 functional classes of neurons, ii) the intriguing possibility that functional classes form local patches within the superior colliculus and iii) that the representation of visual information in the superior colliculus has a lower dimensionality compared to the retina.

      Weaknesses:

      The weakness of the paper is that its main claims are not adequately supported by the presented data or analysis. First, support for the existence of 24 functional classes is not clear enough. Our major concern is that it is not clear that each class of neurons was distributed across different mice. Are certain cell types overrepresented in individual animals, or do you find examples of each cell type in most animals?

      The new Supplementary Figure 7G shows how individual mice contribute to the functional types for all neurons. Further, the new Supplementary Figure 12 shows the receptive field locations derived from recordings in each of the animals.

      In addition, it should be made explicit how the responses of each genetically labeled class of neurons are distributed among the 24 functional clusters.

      We have added a new Figure 5D to show this.

      Second, the analysis of the spatial clustering of functional cell types is not complete. Do the same functional clusters sample the same retinotopic locations in different mice? How are clusters of the functional type distributed in visual space?

      Please see our point-by-point responses below to the concerns.

      Third, the lower dimensionality of representation in the superior colliculus may be the result of selective projections of retinal ganglion cells, not all retinal ganglion cell types project to the superior colliculus. Please estimate the dimensionality of the visual representation of those retinal ganglion cell types that projects to the superior colliculus.

      Certainly part of the dimensionality reduction may come from the incomplete retino-geniculate projection; we have added discussion on this topic.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, the authors describe a one-step genome editing method to replace endogenous EB1 with their previously-developed light-sensitive variant, in order to examine the effect of acute and local optogenetic inactivation of EB1 in human neurons. They then attempt to assess the effects of EB1 inactivation on microtubule growth, F-actin dynamics, and growth cone advance and turning. They also perform these experiments in neurons that are lacking EB3, in order to determine whether EB1 can function in a direct and specific way without possible EB3 redundancy.

      First, the experiments depicting the methodology are rigorous and compelling. Most previous studies of +TIP function use knockout or knockdown studies in which the proteins are inactivated over many hours or days in non-human systems. This is the first study to acutely and locally inactivate a +TIP in human neurons. While this group previously published the effects of replacing endogenous EB1 with the light-sensitive variant, the novelty in this current study is that they use a one-step gene editing replacement method (using CRISPR/Cas9) along with using human neurons derived from iPSCs. After proving their new experimental system works, the authors next seek to test the effect that acutely inactivating EB1 (alongside chronic EB3 knockdown) has on microtubule dynamics, and they observe a marked reduction in MT growth and MT length. They then seek to investigate whether F-actin dynamics are immediately affected by EB1 inactivation.

      While measured F-actin flow rates are not significantly affected, which leads the authors to conclude that EB1 inactivation does not have any immediate effect, the included figures and movies show a different phenotype, which is not discussed. Finally, they examine the effect of EB1 inactivation on growth cone advance and growth cone turning, and find that both are affected. However, the lack of certain controls in these final experiments (specifically for Figures 3, 4, and 5) reduces the strength of their findings.

      Thus, the first part of this paper describing the new methodology is very compelling and should be of interest to a wide readership, while the second part describing the functional analysis is mostly solid, with very high-quality imaging data. However, additional analysis and controls would be needed to increase confidence in their conclusions.

      1) Analysis of F-actin dynamics is not thorough, and their claim is not completely supported by the data. Figure 3 only depicts F-actin dynamics data from growth cones of π-EB1 EB3-/- i3Neurons and does not [include] control growth cones (to compare dark and light conditions). While their conclusion is that F-actin dynamics are not affected, there do appear to be immediate changes in the F-actin images, other than flow rates. For example, the F-actin bundles do not appear to emanate straight out with the light condition, compared to the dark condition. There also appears to be more F-actin intensity in the transition domain of the growth cone, compared to the dark condition. If the reason is due to the effects of four minutes of blue light exposure, this would be made clear by doing this experiment with control growth cones as well.

      In Figure 3, we wanted to specifically test if π-EB1 photoinactivation has an immediate effect on growth cone leading edge actin polymerization (for example because of rapid changes in Rho GTPase activity) by measuring F-actin retrograde flow. Because of photobleaching, these experiments are limited to relatively short time-lapse data sets, and within 4-5 min of blue light exposure, we found no significant difference between the dark and light conditions. As requested by this and another reviewer, we added a few more data points as well as a wild-type control. Statistical analysis by ANOVA shows no difference in retrograde flow between any of the four groups.

      We did not see a consistent difference in overall F-actin organization after a few minutes of blue light, and we now include control and π-EB1 growth cones in Fig. 3 that are more similar to one another with the dark image shown more immediately before blue light exposure. The growth cone that we had in the original figure (and that remains in Video 5 to illustrate retrograde flow and how dynamic these growth cones are) was a poor choice for this figure as it undergoes quite dramatic F-actin reorganization before the blue light is turned on, and the morphology immediately before blue light exposure is much more similar to the growth cone during blue light compared with the -5 min time point that we had originally shown.

      Lastly, the apparent relocalization of F-actin to the growth cone center is seen in both control and experimental conditions and we believe that has to do with photobleaching of the F-actin probe at the relatively high frame rates required to observe retrograde flow. We agree with the reviewer that it is important to know this, and we included a note in the figure legend.

      2) Analysis of the effect of EB1 inactivation on growth cone advance and growth cone turning. Figure 4C, showing the neurite unable to cross the blue light barrier, is potentially quite compelling data, but it would be even more convincing if there were also data showing that the blue light barrier has no effect on a control neurite. Given that a number of previous recent studies have shown a detrimental effect of blue light on neurons, it seems important to include these negative controls in this current study.

      The experiment growing neurites on a micropatterned laminin surface in combination with photoinactivation in (now) Figure 4D is incredibly low throughput but serves to illustrate repeated retraction from blue light over many hours of imaging. To show that blue light barriers do not affect control cells we have instead included a quantification of the retraction response of control and π-EB1 neurites growing randomly on a laminin-coated surface (not micropatterned stripes) in new Fig. 4C. It is also worth noting that the dose of blue light used for π-EB1 photoinactivation is much lower than what is typically used for fluorescence imaging (we analyzed and discussed this in great detail in our original π-EB1 publication), and especially in experiments with a blue light barrier, cells are not exposed to any blue light before they hit the barrier.

      3) This concern also holds true for the final experiment, in which the authors examine whether localized blue light would lead to growth cone turning. The authors report difficulty with performing this technically challenging experiment of accurately targeting the light to only a localized region of the growth cone. Thus, the majority of the growth cones (72%) were completely retracted, and so only a small subset of growth cones showed turning. However, this data would be more compelling if there were also a control condition of blue light with neurons that are not expressing the light-inactivated EB1. Another useful control would be to examine whether precise region-of-interest blue light leads to localized loss of EGFP-Zdk1-EB1C on MT plus-ends within the growth cone, or if the loss extends throughout the growth cone. Either outcome would be helpful to potential readers.

      We modified Fig. 5 to include control i3Neurons in this experiment. We also included a supplement to Fig. 5 showing that π-EB1 photodissociation remains localized to the blue light-exposed region. However, because in our π-EB1 line the C-terminal π-EB1 half is EGFP-tagged, we cannot show before and after images of local π-EB1 photodissociation.

      Reviewer #3 (Public Review):

      The major strength of the study was the approach of using photosensitive protein variants to replace endogenous protein with the 1-step Crispr-based gene editing, which not only allowed acute manipulation of protein function but also mimicked the endogenous targeted protein. However, the same strategy has been used by the same first author previously in dividing cells, somewhat reducing the novelty of the current study. In addition, the results obtained from the study were the same as those from previous studies using different approaches. In other words, the current study only confirmed the known findings without any novel or unexpected results. As a result, the study did not provide strong evidence regarding the advantage of the new experimental approach in our understanding of the function of EB1. Some specific comments are listed below.

      1) In Figure 1, to show that the photosensitive EB1 variant did not affect stem cell properties and their neuronal differentiation, Oct4 staining and western blot of KIF2C and EB3 were not strong evidence. Some new experiments more specifically related to stem cell properties or iPSC-derived neurons are necessary.

      While we did not attempt to fully characterize stemness in our π-EB1 edited i3N lines, we believe, most importantly, we show that π-EB1 i3N hiPSCs differentiate normally into i3Neurons. We show this morphologically as well as by immunoblotting and RT-qPCR experiments looking at marker proteins also including DCX, a well-established neuronal differentiation marker. Although not directly related to stemness, we included one additional RT-qPCR experiment more carefully analyzing the expression level of π-EB1 in the edited lines compared with EB1 in control i3N hiPSCs (new Fig. 1E).

      In addition, the effect of EB1 inactivation on microtubule growth was quantified in stem cells but not in differentiated neurons, which supposed to be the focus of the study.

      Quantification of MT dynamics in the hiPSCs parallels our previous experiments in cancer cell lines to demonstrate that π-EB1 photoinactivation had a similar inhibitory effect on MT growth in interphase cells. This serves as an additional control that our new system works as expected. Because of our inability to efficiently transfect i3Neurons, we could not measure MT growth in i3Neurons with the same method (i.e. automated EB1N tracking). However, as further outlined below we have added a quantification of MT growth rates in i3Neuron growth cones by additional manual tracking of SPY555-tubulin-labelled growth cone MTs after at least one minute of blue light exposure.

      In Figure S2D, quantification is needed to show the effect of blue light-induced EB1 inactivation in growth cones.

      Fig. 1 – supplement 2D (together with Video 3, and Fig. 2A) is simply to illustrate that the C-terminal π-EB1 half dissociates in blue light as expected. We previously characterized the kinetics of π-EB1 photodissociation and do not think redoing this would add substantially to the current manuscript. The remainder of the manuscript, however, examines the functional consequences of π-EB1 photoinactivation in i3Neurons.

      2) In Figure 2, the effect of blue light on microtubule retraction in the control cells was examined, showing little effect. However, it is still unclear if the blue light per se would have any effect on microtubule plus end dynamics, a more sensitive behavior than that of retraction. In Figure 2C, the length of individual microtubules in different growth cones was presented, showing microtubule retraction after blue light. Quantification and statistical analysis are necessary to draw a strong conclusion.

      Figure 2 shows that growth cone MTs in π-EB1 lines shorten in response to blue light and we did this by analyzing MTs that were visible in a short time window before and after blue light exposure. In response to another reviewer’s comment, we have redesigned this figure to better illustrate this result. We have now included statistical analysis comparing relative MT length 20 s before and during blue light exposure. In control cells that was not statistically significantly different. We also report statistical difference between control and π-EB1 lines at the 20 s by ANOVA in the text. Lastly, we also measured MT growth rates after at least one minute of blue light exposure showing that MT growth is greatly attenuated in π-EB1 lines (new Fig. 2D).

      The results showed that EB3 did not seem to contribute to stabilizing microtubules in growth cones. It was discussed that EB3 might have a different function from that of EB1 in the growth cone, although they are markedly up-regulated in neurons. In the differentiated neuronal growth cones examined in the study, does EB3 actually bind to the microtubule plus ends? In the EB3 knockout cells without the blue light, the microtubules were stable, indicating that EB3 had no microtubule stabilization function in these cells. Is such a result consistent with previous studies? If not, some explanation and discussion are needed.

      Other papers have shown that EB3 localizes to growth cone MT ends; for example, in rat cortical neurons (Poobalasingam et al., 2022). We did not test if endogenous EB3 is present on MT ends in i3Neurons, but transfected EB3 certainly is. Interestingly, it was reported by multiple groups that EB1 and EB3 do not bind to the exact same place near MT ends. EB3 trails behind EB1, which would be consistent with functional differences especially in controlling MT growth. We have expanded the discussion of such differences in the text, and thank Phillip Gordon-Weeks, who reminded us of this in a comment on the bioRxiv preprint.

      3) In Figure 3, for the potential roles of EB1 on actin organization and dynamics, only the rates of retrograde flow were measured for 5 min. and no change was observed. However, based on the images presented, it seemed that there was a reduced number of actin bundles after blue light and the actin structure was somewhat disrupted. Some additional examination and measurement of actin organization are necessary to get a clear result.

      This point was also raised by reviewer #1, and we now include images and quantification of retrograde flow in control growth cones and we increased the number of data points. We still see no difference in retrograde flow between all these groups. The original π-EB1 growth cone in Fig. 3A was a poor example because it underwent large morphological changes before the blue light was even turned on and just before light exposure is a lot more like the end point image. We therefore replaced this image with a different growth cone that is more similar to the wild-type growth cone shown, and also show images more immediately before blue light exposure. The bottomline is that we do not see a consistent difference in overall F-actin organization after a few minutes of blue light.

      4) In Figure 4, the effect of blue light and EB1 inactivation on neurite extension need to be quantified in some way, such as the neurite length changes in a fixed time period, and the % of growth cones passing the blue light barrier compared with growth cones of the control cells.

      We have included a statistical comparison (by ANOVA) at the 15 min time point, and a quantification of neurite retraction of growth cones encountering a blue light barrier.

      5) For the quantification of growth cone turning, a control condition is needed to show that blue light itself has no effect on turning.

      We have also added a control experiment to Fig. 5.

    1. Author Response

      Reviewer #1 (Public Review):

      1) The role of increased temperature on immunity and homeostasis in cold-blooded vertebrates is an understudied yet important field. This work not only examines how immunity is impacted by fever, but also incorporates an infection model and examines resolution of the response. This work can serve as a model for other groups interested in the study of hyperthermia and immunity.

      Thank you very much.

      2) Generally speaking, I agree with the authors' strategy and interpretations of the data.

      • In the Introduction, the authors chose to begin with how fever in endotherms impact the immune system. Considering that this work exclusively examines the response of a teleost (goldfish), the authors might consider flipping the way they present this work. After all, cold-blooded vertebrates rely on this response because of their basic physiology.

      We chose to begin with a description of fever in endotherms because we know less about those immune mechanisms impacted by fever in ectotherms. The goal was to provide points of comparison based on published datasets. Indeed, we also expect differences between cold- and warm-blooded vertebrates based on their basic physiologies. However, it is interesting that despite different physiologies and thermoregulatory strategies, common biochemical pathways appear to regulate fever across cold- and warm-blooded vertebrates. This is now captured more clearly in the Introduction section (lines 134-136). Added support also comes from the work that we present in this study, including fever inhibition experiments using ketorolac tromethamine (lines 244-253; Figure 3C).

      3) I thought the set up of the work in figure 1 was innovative and could provide an example of how to study such a problem.

      Thank you. Very much appreciated.

      4) Figure 2 was (to me) unexpected. One would not expect such tight response to hyperthermia and infection. This experiment in and of itself was quite interesting, and worth following up in future experiments (by the authors and other groups).

      The level of homogeneity in the behavioural responses shown in Figure 2 was a big part of why we pursued this work. It was striking that fish would display such consistency in behaviour during the febrile window, regardless of whether they were evaluated in groups or individually. To us, this suggested that the temperature chosen and the kinetics of this thermal preference are central for modulation of downstream biological processes. Added support for the importance of precise thermal selection comes from "failed" experiments during this study where incoming aquatic facility water temperatures fluctuated due to factors outside of our control. This caused temporary disruption to the temperatures available to these fish in the annular thermal preference tank. In these cases, we noted disruption of both classical behaviours shown in Figure 2 as well as downstream benefits.

      • The other work, on the response to infection and the resolution of infection were unique to this paper, and (sorry to be repetitive) can be an example of how to devise such studies.

      Thank you.

      • On the other hand, I am not sure this is a study of "fever." That implies how increased temperature impacts immunity and resolution in endotherms. Perhaps the authors could temper the comparisons between cold- and warm-blooded vertebrates regarding the response to hyperthermia.

      We believe that for those mechanisms that are evolutionarily conserved, the teleost system will offer an opportunity for novel insights into the effects of fever induction and disruption. Indeed, this animal model offers multiple advantages. But we agree that much work remains to establish the extent of this conservation and now highlight this issue more clearly (lines 454-455).

      An additional note on hyperthermia versus fever: although both terms are sometimes used interchangeably in the literature, we make a distinction between them. Hyperthermia captures an increase in core body temperature. However, this alone is not sufficient to engage the CNS (representative results shown in Figure 3-figure supplement 1). Consistent with prior descriptions of fever (e.g. Nat Rev Immunol (2015)15:335-49; Arch Intern Med (1998)158:1870-81), we also show that our model results in CNS engagement (Figure 3A), induces systemic pyrogen release (Figure 3B), triggers classical sickness behaviours (Figure 2), and promotes immune function (Figures 4-7).

    1. Author Response

      Reviewer 1 (Public Review):

      The authors in this manuscript investigate the effect of co-substrate cycling on the metabolic flow. The main finding is that this cycling can limit the flux through a pathway. The authors examine implications of this effect in different simple configurations to highlight the potential impact on metabolic pathways. Overall, the manuscript follows logical steps and is accessible. Once the main point-reduction in flux of a pathway with limited pool of a cycled co-substrate-is established, some of the following steps become expected (e.g. the fraction of the flux in a branched pathway). Nevertheless, it is understandable that the authors have picked a few simple examples of the metabolic network motifs to highlight the implications. The results presented in the manuscript overall support the conclusions. One weakness is that some of the details of the assumptions (e.g. the choices of rates) are not explicitly spelt out in the manuscript. This work is impactful because it brings into light how cycling of some of the intermediates in a pathway can influence metabolic fluxes and dynamics. This is a factor in addition to (and separate from) reaction rates which are often considered as the main driver of metabolic fluxes.

      We thank the reviewer for this accurate summary. Regarding the effect of parameters on the presented results, we note that the first part of the results are based on analytical solutions provided in the Appendix (formerly the SI). These results are given as inequalities comprising parameters, allowing direct evaluation of parameter effects. We have now made this point explicit in the presentation of the results.

      In the second part of the results, we utilise numerical simulations and in this case, the observed results can possibly depend on parameters. We have explored effects of key parameters, that is kin and total substrate concentration through presented 'phase diagram' style figures - see Figure 2 and 4. For additional parameters, we have now included additional simulations exploring their effects - e.g. see Appendix - Figure 11 and Appendix – Figure 13.

      Reviewer 2 (Public Review):

      The cycling of "co-substrates" in metabolic reactions is possibly a very important but often overlooked determinant of metabolic fluxes. To better understand how the turnover dynamics of co-substrates affect metabolic fluxes the authors dissect a few metabolic reaction motifs. While these motifs are necessarily much simpler than real metabolic networks with dozens or hundreds of reactions, they still include important characteristics of the full network but allow for a deeper mathematical analysis. I found this mathematical approach of the manuscript convincing and an important contribution to the field as it provides more intuitive insights how co-substrate cycling could affect metabolic fluxes. In the manuscript, the authors stress particularly how the pool sizes of co-substrates and the enzymes involved in the cycling of those can constrain metabolic fluxes but the presented results also go substantially beyond this statement as the authors further illustrate how turnover characteristics of substrates in branches/coupled reactions can affect the ratio of produced substrates.

      The authors further present an analysis of previously published experimental data (around Figure 3). This is a very nice idea as it can in principle add more direct proof that the cycling of co-substrates is indeed an important constraint shaping fluxes in real metabolic networks and (instead of being merely a theoretical phenomena which occurs only in unphysiological parameter regimes). However, the way currently presented, it remained unclear to which extent the data analysis is adding convincing support that co-cycling substantially constrains metabolic fluxes. Particularly, it remains unclear for which organisms and conditions the used experimental dataset holds, how it has been generated, and with what uncertainty different measured values come. For example, the comparison requires an estimation of v_max. How can these values determined in-vivo? Are (expected) uncertainties sufficiently low to allow for the statement that fluxes are higher than what enzyme kinetics predict? Furthermore, I am wondering to which extent the correlations between co-substrate pool levels and flux is supporting the idea that co-substrate cyling is important. The positive relation between ATP/AMP/ADP levels for example, is a nice observation. However, it remains a correlation which might occur due to many other factors beyond the limitations of cosubstrate cycling and which might change with provided conditions.

      We thank the reviewer for this accurate summary. Although, we would like to clarify that we do not observe nor analyse any relation between ATP/AMP/ADP levels. Rather, in the analysis presented in Fig. 3B-D, we are looking at the relation between fluxes in co-substrate utilising reactions and the pool size of that co-substrate (e.g. total ATP, AMP, and ADP level for reactions utilising any one of these three co-substrates).

      In their summary, the reviewer raises several valid points about the data analysis and its possible limitations. We address them here point by point:

      How are Vmax values gathered/estimated? We have now added more information regarding how the Vmax values were gathered and from which organisms and conditions. Specifically, we used previously published values of Vmax from (Davidi et al. 2016) where it was estimated by multiplying the in vitro determined kcat by the concentration of the enzyme from proteomic measurement under different conditions - all for model organism Escherichia coli. See also below, reply to recommendation 2.

      Are (expected) uncertainties sufficiently low? It is difficult to have an estimate for the uncertainty since much of the error in the previous analysis probably comes from the fact that the kinetic parameters determined in vitro are used to estimate fluxes under in vivo conditions - the main source of error is expected to be this discrepancy, which is hard to estimate. However, since the plot is in log-scale, we highlight only gaps that are more than 1 order of magnitude (dashed diagonal lines) and hopefully the uncertainty is lower than that. Furthermore, high uncertainty would probably contribute equally to over- and under-estimating the maximal flux, while we can clearly see that the flux rarely exceeds the Vmax. We have now included a statement in the revised text capturing this point.

      Correlations offer weak evidence. Unfortunately, as we do not have measurements on co-substrate pool sizes and cycling kinetics under all conditions, our analyses of experimental data from cycling-involving reactions are admittedly limited. However, they do show that (1) measured fluxes are lower than those predicted by kinetics of the primary enzyme (i.e. enzyme involved in co-substrate and substrate conversion) alone, and (2) there is - for some cycling-involving reactions - a correlation between flux and co-substrate pool size. Both observations could indicate co-substrate pool sizes and/or co-substrate cycling dynamics being limiting. As the reviewer points out, we cannot state this as a certainty.

      Other possible limitations include thermodynamic effects, i.e. limitation by the concentration of both substrate or product, or substrate saturation. We already explored the latter possibility and found that there is still a lower flux when taking into account the primary substrate saturation (see Fig. S6). The former effect is very difficult to analyse without more data, as calculating reaction thermodynamics requires knowledge of concentrations for all substrates and products, as well as enzyme Michaelis-Menten constants in both forward and backward directions. This information is currently not available except for few of the reactions among the ones we analysed. Nevertheless, to give as much insight as possible on the thermodynamic effect, we added a new figure (Appendix – Figure 8) where we plot the physiological Gibbs free energy (is calculated assuming that all reactants are at 1 mM and pH=7) against the normalized flux. The plot shows that although in few cases, such as malate dehydrogenase (MDH), the normalised flux seems to be greatly reduced by the thermodynamic barrier, the general picture is that there is little correlation between physiological Gibbs free energy and normalised flux. We have now included the resulting figure and associated discussion in the revised manuscript.

      In relation to all these points on data-based support of the theory, we would also like to point out the comments from reviewer 3 and the fact that our theoretical work provides motivation for further future experimental studies of co-substrate cycling dynamics. Our main analysis about co-substrate dynamics becoming limiting is based on analytical solutions. These solutions provide an inequality of system parameters relating pathway influx, co-substrate pool size, and co-substrate related enzymatic parameters. When this inequality is satisfied, there will be flux limitation due to cosubstrate cycling. Future experimental studies can now be devised to explore this inequality under different conditions by measuring the key parameters more explicitly. This key point and aspects of the above replies are incorporated at the relevant points in the main text. In addition, we have included a new paragraph in the Discussion section (see reply to second recommendation of reviewer 3) and the following paragraph at the end of the Results section:

      In summary, these results show that for reactions involving co-substrate cycling (1) measured fluxes are lower than those predicted by kinetics of the primary enzyme (i.e. enzyme involved in substrate conversion) alone, and (2) there is - for some reactions - a correlation between flux and co-substrate pool size. Both observations could indicate co-substrate pool sizes and/or co-substrate cycling dynamics being a main limiting factor for flux. We can not state this as a certainty, however, as there are possibly other factors acting as the extra limitation, including thermodynamic effects. These points call for further experimental analysis of co-substrate cycling within the study of metabolic system dynamics.

      Reviewer 3 (Public Review):

      In the study, the authors present a mathematical framework and data analysis approach that revisits an "old" idea in cell physiology: The role of co-substrate cycling as potential key determinant of reaction flux limits in enzyme-catalyzed reaction systems. The aim of the study is to identify metabolic network properties that indicate potential global flux regulatory capacities of co-substrate cycling.

      The authors approached this aim in two steps. First, a mathematical framework, which is based on ODEs was developed and which reflects small abstract metabolic pathways including kinetic parameters of the involved reactions. While the modeled pathways are abstract, the considered pathway motifs are motivated by structures of known existing pathways such as glycolysis (as example of a linear pathway) and certain amino acid biosynthesis pathways (as example of branched pathways). The developed ODE-based models were used for steady state analysis and symbolic and numerical simulations of flux dynamics. As a main result of the first step, the authors highlight that co-substrate cycling can act as mechanism which limits specific metabolic fluxes across the metabolic network and that co-substrate cycling can facilitate flux regulation at branching points of the network. Second, the authors re-analyzed data on flux rates (experimental measurements and flux-balance-analysis predictions) from previous publications in order to assess whether the predicted role of co-substrate cycling could explain the observed flux distributions. In this data analysis, the author provide evidence that the fluxes of specific reactions in central metabolism could be constrained by co-substrate cycling, because their observed fluxes are often lower than expected by the kinetics of the corresponding enzymes.

      A particular strength of the study is that the authors highlight that co-substrates are not limited to ATP and NAD(P)H, but could include a range of other metabolites and which could also be organism-specific. Building on this broad definition of cosubstrates, the authors developed an abstract mathematical framework that can be used to study the general potential 'design principle' of co-substrate cycling in cellular metabolism and to adapt the framework to study different co-substrates in specific organisms in future works.

      Experimental data (i.e. measured fluxes using mass-spectrometry data and labeled substrates) that is available to date is limited and therefore also limits the broad evaluation of the developed mathematical framework across various different organisms and environmental conditions. However, with advances in metabolomics and derived metabolic flux measurements, the mathematical framework will serve as a valuable resource to understand the potential role of co-substrate cycling in more biological systems. The framework might also guide new experiments that generate data for a systematic evaluation of when and to what extent co-substrate cycling governs flux distributions, e.g. depending on growth rates or response to environmental stress.

      We thank the reviewer for this accurate summary. We agree with the reviewer's final comments on limitations of current testing of our theory, due to limitations in existing data, and that this analysis will now motivate further experimental study of co-substrate dynamics. We have already included revisions of the manuscripts to further highlight and discuss limitations of the data-based analysis.

    1. Author Response

      Reviewer #1 (Public Review):

      This study investigates the psychological and neurochemical mechanisms of pain relief. To this end, 30 healthy human volunteers participated in an experiment in which tonic heat pain was applied. Three different trial types were applied. In test trials, the volunteers played a wheel of fortune game in which wins and losses resulted in decreases and increases of the stimulation temperature, respectively. In control trials, the same stimuli were applied but the volunteers did not play the game so that stimulation decreases and increases were passively perceived. In neutral trials, no changes of stimulation temperature occurred. The experiment was performed in three conditions in which either a placebo, or a dopamineagonist or an opioid-antagonist was applied before stimulations. The results show that controllability, surprise, and novelty-seeking modulate the perception of pain relief. Moreover, these modulations are influenced by the dopaminergic but not the opioidergic manipulation.

      Strengths

      • The mechanisms of pain relief is a timely and relevant basic science topic with potential clinical implications.

      • The experimental paradigm is innovative and well-designed.

      • The analysis includes advanced assessments of reinforcement learning.

      Weaknesses

      • There is no direct evidence that the opioidergic manipulation has been effective. This weakens the negative findings in the opioid condition and should be directly demonstrated or at least critically discussed.

      We agree that we cannot provide direct evidence on the effectiveness of the opioidergic manipulation in our study. However, previous literature strongly suggests that a dose of 50 mg naltrexone (p.o.) is effective in blocking 𝜇-opioid receptors in humans. Using positron emission tomography, Weerts et al. (2013) found a blockage of 𝜇-opioid receptors of more than 90% with 50 mg naltrexone (p.o.) although given repeatedly 4 days in a row. In addition, convincing effects on behavioral functions have been reported with comparable doses that support the efficacy of the opioidergic manipulation. For example, Chelnokova et al. (2014) found attenuating effects of 50 mg naltrexone (p.o.) on wanting as well as liking of social rewards, implicating the involvement of endogenous opioids in the processing of rewarding stimuli. The same dose was also found to attenuate reward directed effort exerted in a value-based decision-making task (Eikemo et al., 2017). Moreover, 50mg of naltrexone (p.o.) have been shown to reduce endogenous pain inhibition induced by conditioned pain modulation (King et al., 2013) and to reduce the perceived pleasantness of pain relief (Sirucek et al., 2021). Thus, based on the available literature we assume the effectiveness of our opioidergic manipulation. A corresponding reasoning including a note of caution on the of the lack of a direct manipulation check of the opioidergic manipulation can be found in the manuscript in the Discussion:

      “The doses and methods used here are comparable to those used in other contexts which have identified opioidergic effects. Using positron emission tomography, Weerts et al. (2013) found a blockage of opioid receptors of more than 90% by 50 mg of naltrexone (p.o.) in humans given repeatedly over 4 days. In addition, effects on behavioral functions have been reported with comparable doses that support the efficacy of the opioidergic manipulation. Chelnokova et al. (2014) found attenuating effects of 50 mg naltrexone (p.o.) on wanting as well as liking of social rewards, implicating the involvement of endogenous opioids in the processing of rewarding stimuli. The same dose was also found to attenuate reward directed effort exerted in a value-based decision-making task (Eikemo et al., 2017). Moreover, 50 mg of naltrexone (p.o.) have been shown to reduce endogenous pain inhibition induced by conditioned pain modulation (King et al., 2013). Thus, based on the literature we assume that the opioidergic manipulation was effective in this study, although we do not have a direct manipulation check of this pharmacological manipulation. Despite its effectiveness in blocking endogenous opioid receptors, the effect of naltrexone on reward responses was found to be small (Rabiner et al., 2011). Hence, a lack of power may have limited our chances to find such effects in the present study.”

      • The negative findings are exclusively based on the absence of positive findings using frequentist statistics. Bayesian statistics could strengthen the negative findings which are essential for the key message of the paper.

      We agree with the reviewers that the power may not have been sufficient to detect potentially small effects of the pharmacological manipulations. The power calculation was based on the design and the medium effect size found in a previous study using a comparable experimental procedure for assessing pain-reward interactions (Becker et al., 2015). To acknowledge this weakness, we clarified in the manuscript the description of the a priori sample size calculation as follows:

      “The power estimation was based on the design and the finding of a medium effect size in a previous study using a comparable version of the wheel of fortune game without pharmacological interventions (Becker et al., 2015). The a priori sample size calculation for an 80% chance to detect such an effect at a significance level of 𝛼=0.05 yielded a sample size of 28 participants (estimation performed using GPower (Faul et al., 2007 version 3.1) for a repeated-measures ANOVA with a three-level within-subject factor)."

      Further, we did not aim to claim that endogenous opioids do not affect the perception of pain relief. Our phrasing in describing the results was in several instances too bold. The aim of the pharmacological manipulations was to investigate effects of dopamine and endogenous opioids on endogenous modulation of perceived intensity of pain relief. Here, we expected dopamine to enhance such endogenous modulation and naltrexone to reduce this modulation. The higher average pain modulation under naltrexone compared to placebo found in VAS ratings (naltrexone: -10.09, placebo: -7.31, see Table 1) suggests an increase in pain modulation by naltrexone compared to placebo, although this did not reach statistical significance, which is the opposite of what we had expected (see comment #11). Therefore, we concluded that we have no evidence to support our hypothesis of reduced endogenous modulation of pain relief by naltrexone. We do not want to claim that there are no effects of endogenous opioids on pain modulation. Although Bayesian statistics might be used to support such an interpretation, we think this might be misleading in our context here due to the considerations on the lack of power (which also affects null-hypothesis testing in Bayesian statistics) and the lack of a direct manipulation check mentioned above. Since we expected opposite effects of levodopa and naltrexone on pain modulation, we did not intend to compare these effects directly to avoid a distortion of the results. According to our hypotheses, we expected to see increased modulation of pain relief with enhanced dopamine availability and decreased modulation of pain relief with blocking of opioid receptors (see also comment #11). However, we had no a priori assumptions on potential differences in the absolute changes induced by the drug manipulations. Based on these considerations, we did now not include further direct comparisons of the effects of both drugs. Rather, we carefully went through the manuscript to tone down the descriptions and interpretations of our null findings and adjusted the respective section of the discussion to better reflect this interpretation.

      • The effects were found in one (pain intensity ratings) but not the other (behaviorally assessed pain perception) outcome measure. This weakens the findings and should at least be critically discussed.

      We thank the reviewers for highlighting this important aspect. We have considered the two outcome measures as indicative of two different aspects or dimensions of the pain experience, based also on previous results in the literature. Within our procedure, the ratings indicate the momentary perception of the stimulus intensity after phasic changes in nociceptive input (outcomes), while the behavioral measure indicates perceptual within-trial sensitization or habituation in response to the tonic stimulation within each trial. Supporting the assumption of such two different aspects, it has been shown before that pain intensity ratings and behavioral discrimination measures can dissociate (Hölzl et al., 2005). In line with the assumption that both outcome measures assess different aspects of the pain experience, a differential effect of controllability on these two outcome measures is conceivable. Similarly, Becker et al. (2015), using a very similar experimental paradigm, did only find endogenous pain facilitation in the losing condition of the wheel of fortune game in pain ratings but not in the behavioral outcome measure, while they found endogenous inhibition in both measures. Compared to Becker et al. (2015), we implemented here smaller changes in stimulation intensity as outcomes in the wheel of fortune game (-3°C vs -7°C for win trials, +1°C vs +5°C for lose trials), potentially resulting in the differential effects here. Nevertheless, we agree that this reasoning needs a more explicit discussion in the manuscript and we included the following sentences to the Discussion section:

      “Although we did not assess the affective component of the relief experience, we implemented two outcome measures that are assumed to capture independent aspects of the pain experience: VAS ratings indicate perception of phasic changes (outcomes), while the behavioral measure indicates perceptual within-trial sensitization or habituation in response to the tonic stimulation within each trial. We found enhanced endogenous modulation by controllability and unpredictability in the VAS ratings, in line with the view that endogenous modulation enhances behaviorally relevant information. In contrast, the within-trial sensitization did not differ between the active and passive conditions under placebo. In contrast, in a previous study using a similar experimental paradigm Becker et al. (2015) found a reduction of within-trial sensitization after pain relief outcomes by controllability. Compared to this study, we implemented here smaller changes in stimulation intensity as outcomes in the wheel of fortune (-3 °C vs -7 °C for pain relief), potentially explaining the differential results.“

      • The instructions given to the participants should be specified. Moreover, it is essential to demonstrate that the instructions do not yield differences in other factors than controllability (e.g., arousal, distraction) between test and control trials. Otherwise, the main interpretation of a controllability effect is substantially weakened.

      Thanks for pointing out that specific information on instructions given to the participants was missing. We agree that factors other than controllability would confound the interpretation of differences between test and control trials. We aimed minimizing nonspecific effects of arousal and/or distraction while still giving all needed information with our instructions (see below). In addition, control and test trials were kept as similar as possible. In order to check for unspecific effects of arousal and/or distraction, we also included lose trials in the game as an additional control condition. For clarifying participants’ instructions, we added the following paragraph to the Materials and methods section: “The participants were instructed that there were two types of trials: trials in which they could choose a color to bet on the outcome of the wheel of fortune and trials in which they had no choice. Specifically, they were told that in the first type of trials they could use the left and right mouse button, respectively, to choose between the pink and blue section of the wheel of fortune. Participants were further instructed that if the wheel lands on the color they had chosen they will win, i.e. that the stimulation temperature will decrease, while if the wheel lands on the other color, they will lose, i.e. that the stimulation temperature will increase. For the second type of trials, participants were instructed that they could not choose a color, but were to press a black button, and that after the wheel stopped spinning the temperature would by chance either increase, decrease, or remain constant.”

      In general, both arousal and distraction can be assumed to affect pain perception. If the active condition in the wheel of fortune resulted in higher arousal and/or distraction this should result in comparable effects on intensity ratings in both the win and lose outcomes compared to the passive condition. In contrast, controllability is expected to have opposite effects on pain perception in win and lose trials (decreased pain perception after winning and increased pain perception after losing in the active compared to the passive condition). These opposite effects of controllability are tested by the interaction ‘outcome × trial type’ when fitting separate models for each drug condition, which should be zero if unspecific effects of arousal and/or distraction predominated. Instead, we found a significant interaction in these models, confirming opposing effects of controllability in win and lose outcomes and contradicting such unspecific effects. We added this reasoning, marked in red here, to the Results section to better highlight this line of reasoning, as follows:

      “To test whether playing the wheel of fortune induced endogenous pain inhibition by gaining pain relief during active (controllable) decision-making, a test condition in which participants actively engaged in the game and ‘won’ relief of a tonic thermal pain stimulus in the game was compared to a control condition with passive receipt of the same outcomes (Figure 1). As a further comparator the game included an opposite (‘lose’) condition in which participants received increases of the thermal stimulation as punishment. This active loss condition was also matched by a passive condition involving receipt of the same course of nociceptive input. Comparing the effects of active versus passive trials between the pain relief and the pain increase condition (interaction ‘outcome × trial type’) allowed us to test for unspecific effects such as arousal and/or distraction. If effects seen in the active compared to the passive condition were due to such unspecific effects, then actively engaging in the game should affect comparably pain in both win and lose trials. In contrast, if the effects were due to increased controllability, pain inhibition should occur in win trials and pain facilitation in lose trials.”

      • The blinding assessment does not rule out that the volunteers perceived the difference between placebo on the one hand and levodopa/naltrexone on the other hand. It is essential to directly show that the participants were not aware of this difference.

      We based our assessment of blinding on the fact that for none of the drug conditions the frequency of guessing correctly which drug was ingested was above chance (see Results section, page 8, lines 201ff). In addition, the frequency of side effects reported by the participants did not differ between the three drug conditions, supporting this notion indirectly. However, we agree with the reviewer that this does not rule out completely that participants may have perceived a difference between the placebo and the levodopa/naltrexone conditions. We ran additional analyses to test whether participants were more likely to answer correctly that they had ingested an active drug and whether they were more likely to report side effects in the active drug conditions compared to the placebo condition. In 7 out of 28 placebo sessions (25%) the participants assumed incorrectly to have ingested one of the active drugs. In 12 out of 43 drug sessions (21.8%) the participants assumed correctly that they had ingested one of the active drugs. These frequencies did not differ between placebo sessions on the one hand and the levodopa and naltrexone active drug sessions on the other hand (𝜒)(1) = 0.11, p = 0.737). In 9 out of 28 placebo sessions (32.1%) and in 23 out of 55 drug sessions (41.8%) participants reported to be tired at the end of the session. The frequency of reporting tiredness did not significantly differ between placebo sessions on the one hand and drug sessions on the other hand (𝜒)(1) = 1.06, p = 0.304). No other side effects were reported. We added the following information, marked in red here, to the Results section:

      “In 32 out of 83 experimental sessions subjects reported tiredness at the end of the session. However, the frequency did not significantly differ between the three drug conditions (𝜒)(2) = 2.17, p = 0.337) or between the placebo condition compared to the levodopa and naltrexone condition (𝜒)(1) = 1.06, p = 0.304). No other side effects were reported. To ensure that participants were kept blinded throughout the testing, they were asked to report at the end of each testing session whether they thought they received levodopa, naltrexone, placebo, or did not know. In 43 out of 83 sessions that were included in the analysis (52%), participants reported that they did not know which drug they received. In 12 out of 28 sessions (43%), participants were correct in assuming that they had ingested the placebo, in 6 out of 27 sessions (22%) levodopa, and in 2 out of 28 sessions (7%) naltrexone. The amount of correct assumptions differed between the drug conditions (𝜒)(2) = 7.70, p = 0.021). However, posthoc tests revealed that neither in the levodopa nor in the naltrexone condition participants guessed the correct pharmacological manipulation significantly above chance level (p’s > 0.997) and the amount of correct assumptions did not differ significantly between placebo compared to levodopa and naltrexone sessions (𝜒)(1) = 0.11, p = 0.737), suggesting that the blinding was successful.”

      • The effects of novelty seeking have been assessed in the placebo and the levodopa but not in the naltrexone conditions. This should be explained. Assessing novelty seeking effects also in the naltrexone condition might represent a helpful control condition supporting the specificity of the effects in the naltrexone condition.

      We thank the reviewer for this interesting suggestion. Indeed, we did not report the association of pain modulation with novelty seeking in the naltrexone condition, because we did not have an a-priori hypothesis for this relationship. We now included correlations for all three drug conditions, testing if higher novelty seeking was associated with greater perceptual modulation in the active vs. passive condition. In line with comment 3, we applied a correction for multiple comparisons here (Bonferroni-Holm correction). This correction caused the correlation in the placebo condition to be no longer significant with an adjusted p-value of 0.073 (r = -0.412), while the correlation stays significant in the levodopa condition (r = -0.551, p = 0.013). Because of a reasonable effect size of the correlation under placebo (i.e. r = -0.412), we still report this correlation to highlight the increase under levodopa, while emphasizing that this correlation not significant We carefully toned down the interpretation of this correlation to reflected the change in significance with the correction for multiple testing.

      We added the following information, marked in red here, in the Results section:

      “Previous data suggest that endogenous pain inhibition induced by actively winning pain relief is associated with a novelty seeking personality trait: greater individual novelty seeking is associated with greater relief perception (pain inhibition) induced by winning pain relief (Becker et al., 2015). Similar to these results, we found here that endogenous pain modulation, assessed using self-reported pain intensity, induced by winning was associated with participants’ scores on novelty seeking in the NISS questionnaire (Need Inventory of Sensation Seeking; Roth & Hammelstein, 2012; subscale ‘need for stimulation’ (NS)), although this correlation failed to reach statistical significance after correction for multiple comparisons using Bonferroni-Holm method (r = -0.412, p = 0.073). A significant association between novelty seeking and endogenous pain modulation was found in the levodopa condition (r = 0.551, p = 0.013). More importantly, the higher a participants’ novelty seeking score in the NISS questionnaire, the greater the levodopa-related endogenous pain modulation when winning compared to placebo (NISS NS: r = -0.483, p = 0.034 Figure 7). In contrast, higher novelty seeking scores were not correlated with stronger pain modulation induced by winning in the naltrexone condition (r = 0.153, p = 0.381) and the naltrexone induced change in pain modulation showed no significant association with novelty seeking (r = 0.239, p = 0.499). Pain modulation after losing was not associated with novelty seeking in placebo (r = 0.083, p = 0.866), levodopa (r = -0.164, p = 0.783), or naltrexone (r = 0.405, p = 0.133).

      No significant correlations with NISS novelty seeking score were found for behaviorally assessed pain modulation in the placebo, levodopa and naltrexone conditions during pain relief or pain increase (|r|’s < 0.35, p’s > 0.238). Similarly, the difference in pain modulation during pain relief or pain increase between the levodopa and the placebo condition and between the naltrexone and the placebo condition did also not correlate with novelty seeking (|r|’s < 0.22, p’s > 0.576).” <br /> We also edited the interpretation of the correlation in the Discussion:

      “Overall, all three predictions were largely borne out by the data: relief perception as measured by VAS ratings was enhanced by controllability, unpredictability and showed a medium sized - although not significant - association with the individual novelty-seeking tendency,”

      • The writing of the manuscript is sometimes difficult to follow and should be simplified for a general readership. Sections on the information-processing account of endogenous modulation in the introduction (lines 78-93), unpredictability and endogenous pain modulation in the results (lines 278-331) are quite extensive and add comparatively little to the main findings. These sections might be shortened and simplified substantially. Moreover, providing a clearer structure for the discussion by adding subheadings might be helpful.

      We have reworked the manuscript to make it easier to follow. Specifically, we reworked the Introduction section to simplify it and to make it more concise. Further, we also shortened the extensive descriptions of modeling procedures that are not central for understanding the main findings. We think that these additions make it easier to follow the manuscript and our line of arguments, and to understand the applied analysis strategies.

      • Effect sizes are generally small. This should be acknowledged and critically discussed. Moreover, effect sizes are given in the figures but not in the text. They should be included to the text or at least explicitly referred to in the text.

      We agree that the effect sizes we report appear generally small. Importantly, the effect sizes were calculated by dividing differences in marginal means by the pooled standard deviation of the residuals and the random effects to obtain an estimate of the effect size of the underlying population rather than only for our sample. This procedure was used for the purpose of achieving more generalizable estimates. Due to considerable variance between subjects in our sample, this procedure resulted in comparatively small effect sizes. Nevertheless, we think this calculation of effects sizes results in more informative values because they can be viewed as estimates of population effects. We added specific information on the calculation of the effect sizes and a brief explanation that this procedure results in comparatively small effect sizes estimates to the Materials and methods and to the Results section (see below). In addition, we included standardized effect sizes whenever we report the respective post-hoc comparisons in the Results section.

      “Effects sizes were calculated by dividing the difference in marginal means by the pooled standard deviation of the random effects and the residuals providing an estimate for the underlying population (Hedges, 2007).” (Materials and methods section)

      “We used post-hoc comparisons to test direction and significance of differences in either outcome condition and report standardized effect sizes for these differences. Note that all reported effect sizes account for random variation within the sample, providing an estimate for the underlying population; due to considerable variance between participants in the present study, this results in comparatively small effect sizes.” (Results section)

      • The directions of dopamine and opioid effects on pain relief should be discussed.

      We amended our explanation of the hypothesis on the expected drug effects. As outlined there, we indeed expected opposite effects of levodopa and naltrexone on endogenous pain modulation in the active vs. the passive condition of the wheel of fortune.

      Reviewer #2 (Public Review):

      This study used the tonic heat stimulation combined with the probabilistic relief-seeking paradigm (which is a wheel of fortune gambling task) to manipulate the level of controllability and predictability of pain on 30 healthy participants. The authors focused on the influence of controllability and unpredictability on pain relief using pain reports and computational models and examined the involvement of dopamine and opioids in those effects. For that, the authors conducted the three-day experiments, which involved placebo, levodopa (dopamine precursor), and naltrexone (opioid receptor antagonist) administration on separate days. Lastly, the authors examined the relationship between dopamine-induced pain relief and novelty-seeking traits.

      This is a strong and well-performed study on an important topic. The paper is well-written. I really enjoyed reading the introduction and discussion and learned a lot. Below, I have a few minor comments.

      First, given that the Results section comes before the Methods section, it would be helpful to include some method and experimental design-related information crucial for the understanding of the results in the Results section. For example, how long was the thermal stimulus? What was the baseline temperature? etc. Maybe this information can be included in the caption of Figure 1.

      We thank the reviewer for this helpful suggestion. We agree that due to the order of the manuscript sections, more information on experimental design and the statistical analysis strategies should be included in the results section. Accordingly, we included more detailed information on the analysis strategies in the Results section (please see responses to comments #5 & #9). In addition, we added more detailed information on the experimental design and information such as the duration of the stimuli and the baseline temperature, marked in red below, to the caption of Figure 1 (Results section).

      “Figure 1: Time line of one trial with active decision-making (test trials) of the wheel of fortune game. Experimental pain was implemented using contact heat stimulation on capsaicin sensitized skin on the forearm. In each trial, the temperature increased from a baseline of 30 °C to a predetermined stimulation intensity perceived as moderately painful. In each testing session, one of the two colors (pink and blue) of the wheel was associated with a higher chance to win pain relief (counterbalanced across subjects and drug conditions). Pain relief (win) as outcome of the wheel of fortune game (depicted in green) and pain increase (loss; depicted in red) were implemented as phasic changes in stimulation intensity offsetting from the tonic painful stimulation. Based on a probabilistic reward schedule for theses outcomes, participants could learn which color was associated with a better chance to win pain relief. In passive control trials and neutral trials participants did not play the game, but had to press a black button after which the wheel started spinning and landed on a random position with no pointer on the wheel. Trials with active decision-making were matched by passive control trials without decision making but the same nociceptive input (control trials), resulting in the same number of pain increase and pain decrease trials as in the active condition. In neutral trials the temperature did not change during the outcome interval of the wheel. Two outcome measures were implemented in all trial types: i) after the phasic changes during the outcome phase participants rated the perceived momentary intensity of the stimulation on a visual analogue scale (‘VAS intensity’); ii) after this rating, participants had to adjust the temperature to match the sensation they had memorized at the beginning of the trial, i.e. the initial perception of the tonic stimulation intensity (‘self-adjustment of temperature’). This perceptual discrimination task served as a behavioral assessment of pain sensitization and habituation across the course of one trial. One trial lasted approximately 30 s, phasic offsets occurred after approximately 10 s of tonic pain stimulation. Adapted from Becker et al. (2015).”

      Second, it would be helpful if the authors could provide their prior hypotheses on the drug effects. It could be a little bit confusing that the goal of using these drugs given that levodopa is a precursor of dopamine, whereas naltrexone is the opioid antagonist, i.e., the effects on the target neurotransmitters seem the opposite. Then, I wondered if the authors expected to see the opposite effects, e.g., levodopa enhances pain relief, while naltrexone inhibits pain relief, or to see similar effects, e.g., both enhance pain relief. Clarifying which direction of expected effects would be helpful for novice readers.

      We thank the reviewer for pointing out that information on the expected drug effects should be explained in more detail. Indeed, we expected opposite effects of levodopa and naltrexone with respect to the effect of controllability on pain relief. Levodopa, as a precursor of dopamine, enhances dopamine availability and thus, phasic release of dopamine in response to events, for example, the reception of reward. Accordingly, we hypothesized that endogenous modulation by relief outcomes are increased in the active (reward) compared to the passive condition. In contrast, naltrexone blocks opioid receptors and as such it has been reported that naltrexone blocks placebo analgesia as a type of endogenous pain inhibition. Correspondingly, we hypothesized that naltrexone decreases endogenous pain modulation induced by actively winning pain relief compared to the passive condition. We expanded the explanation of these hypotheses in the Introduction section as follows:

      “We expected increased dopamine availability to enhance phasic release of dopamine in response to rewards, and hence, to increase the effect of active compared to passive reception of pain relief. In contrast, we expected the inhibition of endogenous opioid signaling to decrease the effect of active controllability on pain relief. The latter is based on the observation that blocking of opioid receptors attenuates other types of endogenous pain inhibition such as placebo analgesia (Benedetti, 1996; Eippert et al., 2009) or conditioned pain modulation (King et al., 2013). “

      Third, on the "Behaviorally assessed pain perception" results in Figs. 2D-F, I wonder why the results for the "pain increase" were still positive. Were the y values on the plots the temperature that participants adjusted (i.e., against the temperature right before the temperature adjustment)? or are the values showing the differences from the baseline (i.e., against the baseline temperature)?

      The behavioral measure was calculated as the difference in temperatures between the memorization interval at the beginning of the trial (i.e. the predetermined temperature perceived as moderately painful) minus the self-adjusted temperature at the end of the trial so that positive values indicate sensitization (i.e. an increase in sensitivity) and negative values indicate habituation (i.e. a decrease in sensitivity) across the stimulation within on trial (i.e. approx. 30 seconds of stimulation). In general, for a stimulation of approximately 30 seconds with intensities perceived as painful, perceptual sensitization is expected to occur (Kleinböhl et al., 1999).

      The outcome of the wheel of fortune game, i.e. the phasic decrease (winning) or increase (losing) in stimulation intensity, should indeed have opposite effects on this sensitization. A decrease in nociceptive input negatively reinforces pain perception, as seen in stronger sensitization in win trials, while an increase in nociceptive input punishes pain perception, as seen in reduced perceptual sensitization in lose trials. Using the a very similar task, Becker et al. (2015) found values indicating habituation within trials with temperature increases in lose outcomes. However, in this previous study, increases of +5°C were used for lose outcomes (as compared to +1 °C in the present study). Thus, in the present study the comparatively small increase in absolute stimulation temperature may not have been sufficient to induce within trial habituation to the tonic heat pain stimulation.

      Nevertheless, independent of the effect of the outcome (increase or decrease of the stimulation intensity) our focus was on the additional effect that controllability (active vs. passive condition) had on the perception of the underlying tonic stimulation within each outcome condition (i.e. on the same nociceptive input). Here we expected to see endogenous inhibition after winning and endogenous facilitation after losing in the active compared to the passive condition.

      We added more detailed information on the calculation of the behavioral measure and the expected perceptual modulation within each trial due to the stimulus duration in the Methods section as well as in the Results section.

      Methods section:

      “After this rating, participants had to adjust the stimulation temperature themselves to match the temperature they had memorized at the beginning of the trial. This self-adjustment operationalizes a behavioral assessment of perceptual sensitization and habituation within one trial (Becker et al., 2011, 2015; Kleinböhl et al., 1999). Participants adjusted the temperature using the left and right button of the mouse to increase and decrease the stimulation temperature. The behavioral measure was calculated as the difference in temperatures in the memorization interval at the beginning of each trial minus this selfadjusted temperature at the end of each trial. Positive values, i.e. self-adjusted temperatures lower than the stimulation intensity at the beginning of the trial, indicate perceptual sensitization, while negative values indicate habituation.” Results section:

      “Positive values (i.e. lower self-adjusted temperatures compared to the stimulation intensity at the beginning of the trial) indicate perceptual sensitization across the course of one trial of the game, negative values indicate habituation. For tonic stimulation at intensities that are perceived as painful, perceptual sensitization is expected to occur (Kleinböhl et al., 1999). Differences between the outcome conditions (win, lose) reflect the effect of the phasic changes on the perception of the underlying tonic stimulus. Differences between active and passive trials reflect the effect of controllability on this perceptual sensitization within each outcome condition.”

      Lastly, I wonder if it is feasible or not, but examining the effects of dopamine antagonists will be helpful for obtaining a more definitive answer to the role of dopamine in information-related pain relief. This could be a good suggestion for future studies.

      We thank the reviewer for this suggestion. We agree that antagonistic manipulation of the dopaminergic system could provide further insights and confirm the role of dopamine in shaping pain related perception and behavior. Moreover, we think that bidirectional manipulations of opioidergic signaling could also provide valuable insights and should be used for future research. We added the following sentences to the Discussion section:

      “Because the mechanisms underlying learning from pain and pain relief and their recursive influence on pain perception may contribute to the development and maintenance of chronic pain, it is crucial to better understand the roles of dopamine and endogenous opioids in these mechanisms. Accordingly, bidirectional manipulations of both transmitter systems should be used in future studies to better characterize their respective roles in shaping behavior and perception.“

    1. Author Response

      Joint Public review:

      1) Line 215: The authors state that pairing TCRseq with RNAseq reflects the magnitude of TCR signaling. This is absolutely not the case. TCR sequencing does not reflect TCR signaling strength.

      Thanks for the comments and we apologize for the usage of this misleading description. Actually in this part, we were trying to quantitatively assess the activation states of CD8 T cells based on the average expression of previously described activation-related gene signatures1 (also shown in Supplementary file 3). Therefore, TCRseq data was not involved in this analysis and the magnitude of TCR signaling could neither be reflected. We apologize again for this mistake and have corrected the corresponding texts and figures as follows (line 210-217): "Meanwhile, the activation states of CD8 T cell subpopulations were quantitatively assessed based on the average expression of previously described activation-related gene signatures1 (also shown in Supplementary file 3). Our results showed that the T-Tex cluster was the most activated, followed by the two P-Tex clusters (Fig. 2b left). In addition, CD8 T cells in tumor tissues were more activated than those in adjacent normal tissues (Fig. 2b, right top). And no significant difference in T cell activation states was observed between HPV-positive and HPV-negative samples (Fig. 2b right bottom)."

      2) A lot of discussion around "activation" is presented, but there is no evidence to support which genes or gene programs are associated with "activation".

      Thanks for the comments. The activation states of CD8 T cell subpopulations were quantitatively assessed based on the average expression of previously described activation-related gene signatures1 (also shown in Supplementary file 3). More specifically, activation-related gene signatures are as follows: "CD69, CCR7, CD27, BTLA, CD40LG, IL2RA, CD3E, CD47, EOMES, GNLY, GZMA, GZMB, PRF1, IFNG, CD8A, CD8B, CD95L, LAMP1, LAG3, CTLA4, HLA-DRA, TNFRSF4, ICOS, TNFRSF9, TNFRSF18".

      3) Line 249: It is unclear why the authors are indicating that TCRseq was used in pseudotime analysis. This type of analysis does not take TCRs into account but rather looks at the proportion of spliced mRNA of individual genes from the DGE data.

      Thanks for the comments and we apologize for the usage of this misleading description. As acknowledged by the reviewer, pseudotime analysis has nothing to do with TCRseq data. Actually in this part, we separately performed clonality analysis of CD8 T cells based on TCRseq data and pseudotime analysis based on RNAseq data. Shared TCRs were identified among certain cell subclusters, which could partially validate the potential lineage relationships simulated by pseudotime analysis. Therefore, we have corrected the texts as follows to avoid the misunderstanding that TCRseq was used in pseudotime analysis: "Given the clonal accumulation of CD8 T cells was a result of local T cell proliferation and activation in the tumor environment2, we further conducted clonality analysis of CD8 T cells based on TCRseq data. " (line 246-248) and "To further investigate their lineage relationships, we performed pseudotime analysis for CD3+ T cells on the basis of transcriptional similarities (Fig. 3j-l, Figure 3-figure supplementary 2d)." (line 277-279).

    1. Author Response

      Reviewer #1 (Public Review):

      The authors develop and freely disseminate the THINGS-data collection, a large-scale dataset incorporating MRI, MEG, eye-tracking, and 4.7 million similarity ratings for 1,854 object concepts. Demonstrating the reliability of their data, the authors replicate nearly a dozen previous neuroimaging papers. This "big data" approach significantly advances our ability to link behavioral measures with neuroimaging at scale, with the potential to spark future insights into how the mind represents objects.

      I thought that the article was well-written, with a sound methodological approach, high-quality results, and well-supported conclusions. I am overall enthusiastic about this work, and I think THINGS will provide an important benchmark for future big data approaches in cognitive and computational neuroscience.

      However, I thought it was also important to articulate more directly the potential insights this dataset can offer to the field. Although the authors mentioned that they "provided five examples for potential research directions", it was not clear to me what these new research directions were, given that the authors entirely describe replications in the results.

      We thank Reviewer 1 for their positive evaluation and the enthusiasm for our work! We have revised the manuscript to articulate more clearly and directly some potential research directions for the dataset. There are two aspects to consider: What sets these datasets apart from traditional small-scale research? And what sets them apart from other large-scale research? We elaborate on these two aspects in response to specific comments below.

      Reviewer #2 (Public Review):

      Hebart et al., present a large-scale multi-model dataset consisting of fMRI, EEG, and behavioral similarity measures towards the study of object representation in the mind and brain. The effort is immense, the methods are rigorous, and the data are of reasonable quality, the demonstrative analyses are extensive and provocative. (One small note regarding one leg of this multi-modal dataset is that the fMRI design consisted of a single image presentation for 0.5s without repetitions for most of the images; this design choice has particular analysis implications, e.g. the dataset will have more power when leveraging a priori grouping of images. However, unlike other datasets of this kind, here the number of images and how they were selected does support this analysis mode, e.g. multiple exemplars per object concept, and rich accompanying meta-data and behavioral data.)

      The manuscript is well-written, and the THINGs website that lets you explore the datasets is easy to navigate, delivering on the promise of making this an integrated, expanding worldwide initiative. Further, the datasets have clear complementary strengths to recent other large-scale datasets, in terms of the ways that the images were sampled (not to mention being multi-modal)-thus I suspect that the THINGs dataset will be heavily used by the cognitive/computational/neuroscience research community going forward.

      We would like to thank the reviewer for their positive evaluation of our work! We agree that the dataset has more power when leveraging a priori grouping of images, which is specifically the design choice we made here. We also agree that we can better highlight the strength of our dataset with respect to existing datasets regarding multiple exemplars per object concept and the semantic breadth of the included object categories.

      Reviewer #3 (Public Review):

      This manuscript presents a highly valuable dataset with multimodal functional human brain imaging data (fMRI and MEG) as well as behavioural annotations of the stimuli used (thousands of images from the THINGS collection, systematically covering multiple types of concrete nameable objects).

      The manuscript presents details about the dataset, quality control measures, and a careful description of preprocessing choices. The tools and approaches that were used follow the state of the art of the field in human functional brain imaging and I praise the authors for being transparent in their methodological approaches by also sharing their code along with the data. The manuscript also presents a few analyses with the data: 1) multi-dimensional embedding of perceived similarity judgments 2) decoding of neural representations of objects both with fMRI and MEG 3) A replication of findings related to visual size and animacy of objects 4) representation similarity analysis between functional brain data and behavioural ratings 5) MEG-fMRI fusion.

      We thank the reviewer for their overall positive assessment of our work!

    1. Author Response

      Reviewer #2 (Public Review):

      In this manuscript, Polyák et al. report detailed and systematic functional, electrocardiographic, electrophysiologic (both in vivo and in vitro experiments) and histological analysis in a large animal (canine) model of exercise to assess risk of ventricular arrhythmia susceptibility. They find that exercise-trained dogs have a slower heart rate (not accounted by heightened vagal tone alone and consistent with recent work from Denmark), an increased ventricular mass and fibrosis, APD lengthening due to repolarisation abnormality, enhanced HCN4 expression and decreased outward potassium channel density together with increased ventricular ectopic beats and ventricular fibrillation susceptibility (open-chest burst pacing). The authors suggest these changes as underlying the risk of VA in athletes, and appropriately caution against consigning the beneficial effects of exercise. In general, this study is well done, reasonably well-written, with reasonable conclusions, supported by the data presented and is much needed. There are some methodological, however, given the paucity of experimental data in this area, I think it would still be additive to the literature.

      Strengths:

      1. This is an area with very limited experimental data- this is an area of need.

      2. The study, in general seems to be well-conducted with two clear groups

      3. The use of a large animal model is appropriate

      4. The study findings, in general, support the authors conclusions

      5. The authors have shown some restraint in their conclusions and the limitations section is detailed and well written.

      Weaknesses:

      1. There are some methodological issues:

      a. Authors should explain what the conditioning protocol was and why it was necessary.

      In order to cause as little discomfort as possible to the animals, we selected animals that were naturally cooperative with the researchers and not afraid of the noise of the treadmill. This selection period lasted about three weeks, during which the animals were not exercised in a formal setting, but familiarized with the experimental setting and walked on the treadmills for a few minutes. During the conditioning period, both control and trained animals were equally handled.

      Following your remarks the corresponding part of the text was extended properly explaining the training protocol in more detail.  

      b. The rationale for the exercise parameters chosen needs to be presented.

      Experimental data on large animal models are very limited. Sled dogs are considered the highest elite of dog exercise. The distances they run are taken as a reference, although this protocol is not exactly the same due to the conditions of training, sledding, and weather. The most widely known races are the Norwegian Finnmarksløp and the Alaskan Iditarod, take place on snow and cover distances ranging from 500–1569 km in a continuous competition lasting for up to 14 days to be completed. (Calogiuri & Weydahl, 2017)

      Based on these data, preliminary experiments were conducted to determine the maximum running time and intensity that dogs can sustain without distress, injuries, or severe fatigue. We increased the intensity of exercise in line with the animals' performance. The detailed training protocol and the daily running distances applied are presented in Table 1. Now, a new figure, Figure 1, and a new table, Table 1, illustrate a detailed experimental timeline in the revised manuscript.

      Reference:

      Calogiuri, G., & Weydahl, A. (2017). Health challenges in long-distance dog sled racing: A systematic review of literature. Int J Circumpolar Health, 76(1), 1396147. https://doi.org/10.1080/22423982.2017.1396147

      c. Open chest VF induction was a limitation, and it was unnecessary.

      d. A more refined VT/VF induction protocol was required. This is a major limitation to this work.

      C, D: Thank you for the reviewer’s comment. For a detailed explanation of the VF induction procedures, please see our responses to question 11 of Reviewer #2.

      e. The concept of RV dysfunction has not been considered in the study and its analysis.

      Thank you for the suggestion. The complexity of our study and the capacity of our laboratory limited the work that could be carried out, but we are planning to perform additional studies involving the RV.

      f. The lack of a quantitative measure for fibrosis is a limitation.

      At the Department of Pathology, there was no opportunity to analyze myocardial fibrosis quantitatively. As described by Mustroph et al., quantitative analysis of fibrosis can be based on appropriate software measuring the amount of fibrotic area per total area on digitized slides. Such software was not available during the evaluation. This is a limitation of the study; however, the semi-quantitative assessment in histology reports is widely accepted in human pathology (Mustroph et al., 2021).

      Reference:

      Mustroph, J., Hupf, J., Baier, M. J., Evert, K., Brochhausen, C., Broeker, K., Meindl, C., Seither, B., Jungbauer, C., Evert, M., Maier, L. S., & Wagner, S. (2021). Cardiac Fibrosis Is a Risk Factor for Severe COVID-19. Front Immunol, 12, 740260. https://doi.org/10.3389/fimmu.2021.740260

      1. Statistical analysis requires further detail (checking of normality of the data/appropriate statistical test).

      Thank you for this comment. This question has been answered in response to question 12 of Reviewer #2 and the statistical part of the methodology in the manuscript has been updated.

      1. The use of Volders et al. study as a corollary in the discussion does not seem justified given that this study used AV block induced changes as an acquired TdP model.

      We agree with the reviewer that the two models involve completely different mechanisms. Therefore, in order to avoid misunderstandings, we have deleted the part of the discussion that made the comparison with the study by Volders et al.(Volders et al., 1998; Volders et al., 1999) Nevertheless, the exercise-induced compensatory adaptive mechanisms of the athlete's heart have been considered as a phenomenon completely distinct from pathological conditions, yet the electrical remodeling observed in our model indicates important similarities with the experimental model of long-term complete AV block. For example, both resulted in profound bradycardia, compensated cardiac hypertrophy, prolonged QTc interval, APD prolongation, and increased spatial and temporal dispersion of repolarization. These changes were attributed to the downregulation of potassium currents and were associated with increased ventricular arrhythmia susceptibility. Therefore, we hypothesized that the mechanisms of increased propensity for ventricular fibrillation in this model may have a similar electrophysiological background to the compensated hypertrophy studies of Volders et al. However, the autonomic changes, the potential impairment of the conduction system of the athlete’s heart, and the electrophysiological background require further, more detailed investigations.

      References:

      Volders, P. G., Sipido, K. R., Vos, M. A., Kulcsar, A., Verduyn, S. C., & Wellens, H. J. (1998). Cellular basis of biventricular hypertrophy and arrhythmogenesis in dogs with chronic complete atrioventricular block and acquired torsade de pointes. Circulation, 98(11), 1136-1147. https://doi.org/10.1161/01.cir.98.11.1136

      Volders, P. G., Sipido, K. R., Vos, M. A., Spatjens, R. L., Leunissen, J. D., Carmeliet, E., & Wellens, H. J. (1999). Downregulation of delayed rectifier K(+) currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes. Circulation, 100(24), 2455-2461. https://doi.org/10.1161/01.cir.100.24.2455

    1. Author Response

      Reviewer #1 (Public Review):

      This article is aimed at constructing a recurrent network model of the population dynamics observed in the monkey primary motor cortex before and during reaching. The authors approach the problem from a representational viewpoint, by (i) focusing on a simple center-out reaching task where each reach is predominantly characterised by its direction, and (ii) using the machinery of continuous attractor models to construct network dynamics capable of holding stable representations of that angle. Importantly, M1 activity in this task exhibits a number of peculiarities that have pushed the authors to develop important methodological innovations which, to me, give the paper most of its appeal. In particular, M1 neurons have dramatically different tuning to reach direction in the movement preparation and execution epochs, and that fact motivated the introduction of a continuous attractor model incorporating (i) two distinct maps of direction selectivity and (ii) distinct degrees of participation of each neuron in each map. I anticipate that such models will become highly relevant as neuroscientists increasingly appreciate the highly heterogeneous, and stable-yet-non-stationary nature of neural representations in the sensory and cognitive domains.

      As far as modelling M1 is concerned, however, the paper could be considerably strengthened by a more thorough comparison between the proposed attractor model and the (few) other existing models of M1 (even if these comparisons are not favourable they will be informative nonetheless). For example, the model of Kao et al (2021) seems to capture all that the present model captures (orthogonality between preparatory and movement-related subspaces, rotational dynamics, tuned thalamic inputs mostly during preparation) but also does well at matching the temporal structure of single-neuron and population responses (shown e.g. through canonical correlation analysis). In particular, it is not clear to me how the symmetric structure of connectivity within each map would enable the production of temporally rich responses as observed in M1. If it doesn't, the model remains interesting, as feedforward connectivity between more than two maps (reflecting the encoding of many more kinematic variables) or other mechanisms (such as proprioceptive feedback) could well explain away the observed temporal complexity of neural responses. Investigating such alternative explanations would of course be beyond the scope of this paper, but it is arguably important for the readers to know where the model stands in the current literature.

      Below is a summary of my view on the main strengths and weaknesses of the paper:

      1) From a theoretical perspective, this is a great paper that makes an interesting use of the multi-map attractor model of Romani & Tsodyks (2010), motivated by the change in angular tuning configuration from the preparatory epoch to the movement execution epoch. Continuous attractor models of angular tuning are often criticised for being implausibly homogeneous/symmetrical; here, the authors address this limitation by incorporating an extra dimension to each map, namely the degree of participation of each neuron (the distribution of which is directly extracted from data). This extension of the classical ring model seems long overdue! Another nice thing is the direct use of data for constraining the model's coupling parameters; specifically, the authors adjust the model's parameters in such a way as to match the temporal evolution of a number of "order parameters" that are explicitly manifested (i.e. observable) in the population recordings.

      I believe the main weakness of this continuous attractor approach is that it - perhaps unduly binarises the configuration of angular tuning. Specifically, it assumes that while angular tuning switches at movement onset, it is otherwise constant within each epoch (preparation and execution). I commend the authors for carefully motivating this in Figure 2 (2e in particular), by showing that the circular variance of the distribution of preferred directions is higher across prep & move than within either prep or move. While this justifies a binary "two-map model" to first order, the analysis nevertheless shows that preferred directions do change, especially within the preparatory epoch. Perhaps the authors could do some bootstrapping to assess whether the observed dispersion of PDs within sub-periods of the delay epoch is within the noise floor imposed by the finite number of trials used to estimate tuning curves. If it is, then this considerably strengthens the model; otherwise, the authors should say that the binarisation reflects an approximation made for analytical tractability, and discuss any important implications.

      We thank the reviewer for the suggested analysis. We have included this new analysis in Fig. S1.

      First of all, in Fig 2e of the previous version of the manuscript, we were considering three time windows during preparation and two time windows during movement execution. We are now using a shorter time window of 160ms, so that we can fit three time windows within either epoch. The results do not change qualitatively, and the results of the bootstrap analysis below do not change based on the definition of this time window.

      The bootstrap analysis is described in detail in the second paragraph of the Methods sections (“Preparatory and movement-related epochs of motion”). The bootstrap distribution is generated by resampling trials with repetitions (and keeping the number of trials per condition the same as in the data), while shuffling the temporal windows in time, within epochs. For example: for condition 1, we have 43 trials in the data. In one trial of the bootstrap distribution for condition 1, each one of the 3 time windows of the delay period is chosen at random (with repetitions) between the possible 43*3 windows from the data. The analysis shows that the median variance of preferred directions from the data is significantly larger than the one from the bootstrap samples.

      This suggests that neurons do change their preferred direction within epochs, but these changes are smaller in magnitude than changes that occur between the epochs. We explicitly comment on this in the methods, and in the main text we point out that considering only two epochs is a simplifying assumption, and as such it can be thought as a first step towards building a more complete model that shows dynamics of tuning within both preparatory and execution epochs. Note, however, that this simple framework is enough for the model to recapitulate to a large extent neuronal activity, both at the level of single-units and at the population level.

      2) While it is great to constrain the model parameters using the data, there is a glaring "issue" here which I believe is both a weakness and a strength of the approach. The model has a lot of freedom in the external inputs, which leads to relatively severe parameter degeneracies. The authors are entirely forthright about this: they even dedicate a whole section to explaining that depending on the way the cost function is set up, the fit can land the model in very different regimes, yielding very different conclusions. The problem is that I eventually could not decide what to make of the paper's main results about the inferred external inputs, and indeed what to make of the main claim of the abstract. It would be great if the authors could discuss these issues more thoroughly than they currently do, and in particular, argue more strongly about the reasons that might lead one to favour the solutions of Fig 6d/g over that of Fig 6a. On the other hand, I see the proposed model as an interesting playground that will probably enable a more thorough investigation of input degeneracies in RNN models. Several research groups are currently grappling with this; in particular, the authors of LFADS (Pandarinath et al, 2018) and other follow-up approaches (e.g. Schimel et al, 2022) make a big deal of being able to use data to simultaneously learn the dynamics of a neural circuit and infer any external inputs that drive those dynamics, but everyone knows that this is a generally ill-posed problem (see also discussion in Malonis et al 2021, which the authors cite). As far as I know, it is not yet clear what form of regularisation/prior might best improve identifiability. While Bachschmid-Romano et al. do not go very far in dissecting this problem, the model they propose is low-dimensional and more amenable to analytical calculations, such that it provided a valuable playground for future work on this topic.

      We agree with the reviewer that the problem of disambiguating between feedforward and recurrent connections from observation of the state of the recurrent units alone is a degenerate problem in general.

      By explicitly looking for solutions that minimize the role of external inputs in driving the dynamics, we argued that the solutions of Fig 4d/g are favorable over the one of Fig 4a because they are based on local computations implemented through shorter range connections compared to incoming connections from upstream areas; as such, they likely require less metabolic energy.

      In the new version of the paper, we discuss this issue more explicitly:

      Degeneracy of solutions. We considered the case where parameters are inferred by minimizing a cost function that equals the reconstruction error only (this corresponds to the case of very large values of the parameter α in the cost function). Figure 4—figure supplement 2 shows that after minimizing the reconstruction error, the cost function is flat in a large region of the order parameters. We also added Figure 5—figure supplement 5, to show that the dynamics of the feedforward network looks almost indistinguishable from the one of the recurrent network (Fig.5) - although the average canonical correlation coefficient is a bit lower for the purely feedforward case.

      Breaking the degeneracy of solutions. We added Figure 4—figure supplement 1 to show that for a wide range of the parameter α, all solutions cluster in a small region of parameter space. Solutions are found both above and below the bifurcation line. Note that all solutions are such that parameters jA and jB are close to the bifurcation line that separate the region where tuned network activity requires tuned external input, and the region where tuned network activity can be sustained autonomously. Furthermore, the weight of recurrent-connections within map B (j_B) is much stronger than the corresponding weight for map A (j_A). Hence, we observe that external inputs play a stronger role in shaping the dynamics during motor preparation than during execution, while recurrent inputs dominate the total inputs during movement execution, for a broad range of values of alpha. This prediction needs to be tested experimentally, although it is in line with the results of ref. 39, as we explain in the Discussion, section “Interplay between external and recurrent currents”, last paragraph.

      3) As an addition to the motor control literature, this paper's main strengths lie in the modelcapturing orthogonality between preparatory and movement-related activity subspaces (Elsayed et al 2016), which few models do. However, one might argue that the model is in fact half hand-crafted for this purpose, and half-tuned to neural data, in such a way that it is almost bound to exhibit the phenomenon. Thus, some form of broader model cross-validation would be nice: what else does the model capture about the data that did not explicitly inspire/determine its construction? As a starting point, I would suggest that the authors apply the type of CCA-based analysis originally performed by Sussillo et al (2015), and compare qualitatively to both Sussillo et al. (2015) and Kao et al (2021). Also, as every recorded monkey M1 neuron can be characterized by its coordinates in the 4-dimensional space of angular tuning, it should be straightforward to identify the closest model neuron; it would be very compelling to show side-by-side comparisons of single-neuron response timecourses in model and monkey (i.e., extend the comparison of Fig S6 to the temporal domain).

      We thank the reviewer for these suggestions. We have added the following comparisons:

      ● A CCA-based analysis (Fig 5.a) shows that the performance of our model is qualitatively comparable to the Sussillo et al. (2015) and Kao et al (2021) at generating realistic motor cortical activity (average canonical correlation ρ = 0.77 during movement preparation and 0.82 during movement execution).

      ● For each of the 141 neurons in the data, we selected the corresponding one in the model that is closest in the eta- and theta- parameters space:

      a) A side-by-side comparison of the time course of responses shows a good qualitative agreement (Fig 5.c).

      b) We successfully trained a linear decoder to read the responses of these 141 neurons from simulations and output trial-averaged EMG activity recorded from a monkey performing the same task Fig 5.b.

      c) Figure 5—figure supplement 4 shows that simulated data presents sequential activity, as does the recorded data.

      In our simulations, the temporal variability in single-neuron responses is due to the temporal evolution of the inferred external inputs, and to noise, implemented by an Ornstein-Uhlenbeck (OU) process that is added to the total inputs. Another source of variability could be introduced in the synaptic connectivity: one could add a gaussian random variable to each synaptic efficacy, for example. We checked that this simple extension of our model is able to reproduce the dynamics of the order parameters seen in the data. A full characterization of this extended model is beyond the scope of our paper.

      4) The paper's clarity could be improved.

      We thank the reviewer for his feedback. We have significantly rewritten most sections of the paper to improve clarity.

      Reviewer #2 (Public Review):

      The authors study M1 cortical recordings in two non-human primates performing straight delayed center-out reaches to one of 8 peripheral targets. They build a model for the data with the goal of investigating the interplay of inferred external inputs and recurrent synaptic connectivity and their contributions to the encoding of preferred movement direction during movement preparation and execution epochs. The model assumes neurons encode movement direction via a cosine tuning that can be different during preparation and execution epochs. As a result, each type of neuron in the model is described with four main properties: their preferred direction in the cosine tuning during preparation (denoted by θ_A) and execution (denoted by θ_B) epochs, and the strength of their encoding of the movement direction during the preparation (denoted by η_A) and execution (denoted by η_B) epochs. The authors assume that a recurrent network that can have different inputs during the preparation and execution epochs has generated the activity in the neurons. In the model, these inputs can both be internal to the network or external. The authors fit the model to real data by optimizing a loss that combines, via a hyperparameter α, the reconstruction of the cosine tunings with a cost to discourage/encourage the use of external inputs to explain the data. They study the solutions that would be obtained for various values of α. The authors conclude that during the preparatory epoch, external inputs seem to be more important for reproducing the neuron's cosine tunings to movement directions, whereas during movement execution external inputs seem to be untuned to movement direction, with the movement direction rather being encoded in the direction-specific recurrent connections in the network.

      Major:

      1) Fundamentally, without actually simultaneously recording the activity of upstream regions, it should not be possible to rule out that the seemingly recurrent connections in the M1 activity are actually due to external inputs to M1. I think it should be acknowledged in the discussion that inferred external inputs here are dependent on assumptions of the model and provide hypotheses to be validated in future experiments that actually record from upstream regions. To convey with an example why I think it is critical to simultaneously record from upstream regions to confirm these conclusions, consider two alternative scenarios: I) The recorded neurons in M1 have some recurrent connections that generate a pattern of activity that is based on the modeling seems to be recurrent. II) The exact same activity has been recorded from the same M1 neurons, but these neurons have absolutely no recurrent connections themselves, and are rather activated via purely feed-forward connections from some upstream region; that upstream region has recurrent connections and is generating the recurrent-like activity that is later echoed in M1. These two scenarios can produce the exact same M1 data, so they should not be distinguishable purely based on the M1 data. To distinguish them, one would need to simultaneously record from upstream regions to see if the same recurrent-like patterns that are seen in M1 were already generated in an upstream region or not. I think acknowledging this major limitation and discussing the need to eventually confirm the conclusions of this modeling study with actual simultaneous recordings from upstream regions is critical.

      We agree with the reviewer that it is not possible to rule out the hypothesis that motor cortical activity is purely generated by feedforward connectivity.

      In the new version of the paper, we discuss more explicitly the fact that neural activity can be fully explained by feedforward inputs, and we added Figure 5—figure supplement 5 to show that the dynamics of the feedforward network looks almost indistinguishable from the one of the recurrent network (Fig.5), provided their parameters are appropriately tuned. Notice, however, that a canonical correlation analysis comparing the activity from recording with the one from simulations shows that the average canonical correlation coefficient is slightly lower for the case of a purely feedforward network (Fig.5.a vs Fig.S12.a).

      A summary of our approach is:

      • We observe that both a purely feedforward and a recurrent network can reproduce the temporal course of the recordings equally well (see also our answer to question 5 below);

      • We point out that a solution that would save metabolic energy consumption is one where the activity is generated by recurrent currents (with shorter range local connections) rather than by feedforward inputs from upstream regions (long-range connections).

      • We study the solution that best reproduces the recorded activity and minimizes inputs from upstream regions.

      In the Discussion, we included the Reviewer’s observation that our hypothesis needs to be tested by simultaneous recordings of M1 and upstream regions, as well as measures of synaptic strength between motor cortical neurons. See the second paragraph of page 14: “ Our prediction (…) will be necessary to rule out alternative explanations”. Yet, we think that the results of reference [51] are consistent with our results.

      One last point we would like to stress is that external inputs drive the network's dynamics at all times, even in the solution that we argue would save metabolic energy consumption: untuned inputs are present throughout the whole course of the motor action, also during movement execution, and they determine the precise temporal pattern of neurons firing rates.

      2) The ring network model used in this work implicitly relies on the assumption that cosinetuning models are good representations of the recorded M1 neuronal activity. However, this assumption is not quantitatively validated in the data. Given that all conclusions depend on this, it would be important to provide some goodness of fit measure for the cosine tuning models to quantify how well the neurons' directional preferences are explained by cosine tunings. For example, reporting a histogram of the cosine tuning fit error over all neurons in Fig 2 would be helpful (currently example fits are shown only for a few neurons in Fig. 2 (a), (b), and Figure S6(b)). This would help quantitatively justify the modeling choice.

      We thank the reviewer for this observation. Fig.S2.e-f shows the R^2 coefficient of the cosine fit; in particular, we show that the R^2 of the cosine fit strongly correlates with the variables \eta, which represent the degree of participation of single units to the recurrent currents. Units with higher \eta (the ones that contribute more to the recurrent currents) are the ones whose tuning curves better resemble a cosine. However, the plot also shows that the R^2 coefficient of the cosine fit is pretty low for many cells. To show that a model with cosine tuning can yield this result, we repeated the same analysis on the units in our simulated network. In our simulations, all neurons receive a stochastic input mimicking large fluctuations around mean inputs that are expected to occur in vivo. We selected the 141 units whose activity more strongly resembled the activity of the 141 recorded neurons (see figure caption for details). We then looked at the tuning curves of these 141 units from simulations, and calculated the R^2 coefficient of the cosine fit. Figure 5—figure supplement 2.c shows that the result agrees well with the data: the R^2 coefficient is pretty low for many neurons, and correlates with the variable \eta. To summarize, a model that assumes cosine tuning, but also incorporates noise in the dynamics, reproduces well the R^2 coefficient of the cosine fit of tuning curves from data. We added the paragraph “Cosine tuning “ in the Discussion to comment on this point.

      3) The authors explain that the two-cylinder model that they use has "distinct but correlated"maps A and B during the preparation and movement. This is hard to see in the formulation. It would be helpful if the authors could expand in the Results on what they mean by "correlation" between the maps and which part of the model enforces the correlation.

      We thank the reviewer for this comment. By correlation, we meant the correlation between neural activity during the preparatory and movement-related temporal intervals. In the model, the correlation between the vectors θA and θB induces correlation in the preparatory and movement-related activity patterns. To make the paper easier to read, we are not mentioning this concept in the Results; in the Discussion, we explicitly refer to it in the following two paragraphs:

      “A strong correlation between the selectivity properties of the preparatory and movement-related epochs will produce strongly correlated patterns of activity in these two intervals and a strong overlap between the respective PCA subspaces.” (Discussion, section Orthogonal spaces dedicated to movement preparation and execution)

      “The correlation between the vectors θAand θB (Discussion, section Interplay between external and recurrent currents)”

      4) The authors note that a key innovation in the model formulation here is the addition ofparticipation strengths parameters (η_A, η_B) to prior two-cylinder models to represent the degree of neuron's participation in the encoding of the circular variable in either map. The authors state that this is critical for explaining the cosine tunings well: "We have discussed how the presence of this dimension is key to having tuning curves whose shape resembles the one computed from data, and decreases the level of orthogonality between the subspaces dedicated to the preparatory and movement-related activity". However, I am not sure where this is discussed. To me, it seems like to show that an additional parameter is necessary to explain the data well, one would need to compare fit to data between the model with that parameter and a model without that parameter. I don't think such a comparison was provided in the paper. It is important to show such a comparison to quantitatively show the benefit of the novel element of the model.

      We thank the reviewer for this comment.

      ● The key observation is that without the parameters eta_A, eta_B, the temporal evolution of all neurons in the network is the same (only the noise term added to the dynamics is different). To show this, we have performed a comparison of the temporal evolution of the firing rates of single neurons of the model with data. Fig 5.c shows a comparison between the time-course of single neurons firing rates from data and simulations (good agreement), while Figure 6—figure supplement 2.a shows the same comparison for a model in which all neurons have the same value of the eta_A, eta_B parameters (worse agreement: the range of firing rates is the same for all neurons). In summary, the parameters eta_A, eta_B introduce the variability in the coupling strengths that is necessary to generate heterogeneity in neuronal responses.

      ● At the end of section “PCA subspaces dedicated to movement preparation and execution”, we refer to (Figure 6—figure supplement 2).c, showing that a model with eta_A=1=eta_B for all neurons yields less orthogonal subspaces.

      5) The model parameters are fitted by minimizing a total cost that is a weighted average of twocosts as E_tot = α E_rec + E_ext, with the hyperparameter α determining how the two costs are combined. The selection of α is key in determining how much the model relies on external inputs to explain the cosine tunings in the data. As such, the conclusions of the paper rely on a clear justification of the selection of α and a clear discussion of its effect. Otherwise, all conclusions can be arbitrary confounds of this selection and thus unreliable. Most importantly, I think there should be a quantitative fit to data measure that is reported for different scenarios to allow comparison between them (also see comment 2). For example, when arguing that α should be "chosen so that the two terms have equal magnitude after minimization", this would be convincing if somehow that selection results in a better fit to the neural data compared with other values of α. If all such selections of α have a similar fit to neural data, then how can the authors argue that some are more appropriate than others? This is critical since small changes in alpha can lead to completely different conclusions (Fig. 6, see my next two comments).

      All the points raised in questions 5 to 8 are interrelated, and we address them below, after Major issue 8.

      6) The authors seem to select alpha based on the following: "The hyperparameter α was chosen so that the two terms have equal magnitude after minimization (see Fig. S4 for details)". Why is this the appropriate choice? The authors explain that this will lead to the behavior of the model being close to the "bifurcation surface". But why is that the appropriate choice? Does it result in a better fit to neural data compared with other choices of α? It is critical to clarify and justify as again all conclusions hinge on this choice.

      7) Fig 6 shows example solutions for 2 close values of α, and how even slight changes in the selection of α can change the conclusions. In Fig. 6 (d-e-f), α is chosen as the default approach such that the two terms E_rec and E_ext have equal magnitude. Here, as the authors note, during movement execution tuned external inputs are zero. In contrast, in Fig. 6 (g-h-i), α is chosen so that the E_rec term has a "slightly larger weight" than the E_ext term so that there is less penalty for using large external inputs. This leads to a different conclusion whereby "a small input tuned to θ_B is present during movement execution". Is one value of α a better fit to neural data? Otherwise, how do the authors justify key conclusions such as the following, which seems to be based on the first choice of α shown in Fig. 6 (d-e-f): "...observed patterns of covariance are shaped by external inputs that are tuned to neurons' preferred directions during movement preparation, and they are dominated by strong direction-specific recurrent connectivity during movement execution".

      8) It would be informative to see the extreme case of very large and very small α. For example, if α is very large such that external inputs are practically not penalized, would the model rely purely on external inputs (rather than recurrent inputs) to explain the tuning curves? This would be an example of the hypothetical scenario mentioned in my first comment. Would this result in a worse fit to neural data?

      We agree with the reviewer that it is crucial to discuss how the choice of the parameter alpha affects the results, and we have strived to improve this discussion in the revised manuscript.

      I. When we looked for the coupling parameters that best explain the data, without introducing a metabolic cost, we found multiple solutions that were equally good (see Figure 4—figure supplement 2 and our answer to question (1) above). These included the solution with all couplings set to zero ( j_s^B = j_s^A = j_a = 0), as well as many solutions with different values of synaptic couplings parameters. The solution with the strongest couplings is close to the bifurcation line, in the area where j_s^B > j_s^A.

      II. We then introduced a metabolic cost to break the degeneracy between these different solutions. The cost function we minimized contains two terms; their relative strength is modulated by alpha. The case of very small alpha (i.e., only minimizing external input) yields a very poor reconstruction of neural dynamics and is not interesting. The case of very large alpha reduces to the case (I) above. We added Figure 4—figure supplement 1 to show the results for intermediate values of alpha - alpha is large enough to yield a good reconstruction of neural dynamics, yet small enough to ensure that we find a unique solution. For these intermediate values of alpha, the two terms of the cost function have comparable magnitudes. Although slight changes in the selection of alpha do change whether the solutions are above or below the bifurcation surface, Figure 4—figure supplement 1 shows that all solutions are close to the bifurcation surface. In particular, the value of j_s^B is close to its critical value, while we never find solutions where j_s^A is close to its critical value - we never find solutions in the lower-right region of the plot in Figure 4—figure supplement 1. The critical value for j_s^B is the one above which no tuned external inputs are necessary to sustain the observed activity during movement execution. For values of j_s^B close to the bifurcation line but below it (for example, Fig.4g) inferred tuned inputs are still much weaker than the untuned ones, during movement execution. Also, the inferred direction-specific couplings are strong and amplify the weak external inputs tuned to map B, therefore still playing a major role in shaping the observed dynamics during movement execution.

      We have rewritten accordingly the abstract, introduction and conclusions of the paper. Instead of focusing on only one solution for a particular value of alpha, we now discuss all solutions and their implications.

      9) The authors argue in the discussion that "the addition of an external input strengthminimization constraint breaks the degeneracy of the space of solutions, leading to a solution where synaptic couplings depend on the tuning properties of the pre- and post-synaptic neurons, in such a way that in the absence of a tuned input, neural activity is localized in map B". In other words, the use of the E_ext term, apparently reduces "degeneracy" of the solution. This was not clear to me and I'm not sure where it is explained. This is also related to α because if alpha goes toward very large values, it would be like the E_ext term is removed, so it seems like the authors are saying that the solution becomes degenerate if alpha grows very large. This should be clarified.

      We thank the reviewer for pointing this out. By degeneracy of solution, we mean that the model can explain the data equally well for different choices of the recurrent couplings parameters (j_s^A, j_s^B, j_a). In other words, if we look for the coupling parameters that best explain the data, there are many equivalent solutions. When we introduce the E_ext term in the cost function, we then find one unique solution for each choice of alpha. So by “breaking the degeneracy”, we mean going from a scenario where there are many solutions that are equally valid, to one single solution. We added this explanation in the paper, along with the explanation on how our conclusion depends on the ‘choice of alpha’.

      10) How do the authors justify setting Φ_A = Φ_B in equation (5)? In other words, how is the last assumption in the following sentence justified: "To model the data, we assumed that the neurons are responding both to recurrent inputs and to fluctuating external inputs that can be either homogeneous or tuned to θ_A; θ_B, with a peak at constant location Φ_A = Φ_B ≡ Φ". Does this mean that the preferred direction for a given neuron is the same during preparation and movement epochs? If so, how is this consistent with the not-so-high correlation between the preferred directions of the two epochs shown in Fig. 2 c, which is reported to have a circular correlation coefficient of 0.4?

      We would like to stress the important distinction between the parameters \theta and the parameters Φ. While the parameters \theta_A and \theta_B represent the preferred direction of single neurons during preparatory and execution epochs, respectively, the parameters Φ_A, Φ_B represent the direction of motion that is encoded at the population level during these two epochs. The mean-field analysis shows that Φ_A = Φ_B, even though single neurons change their preferred direction from one epoch to the next. We added a more extensive explanation of the order parameters in the Results section.

      Reviewer #3 (Public Review):

      In this work, Bachschmid-Romano et al. propose a novel model of the motor cortex, in which the evolution of neural activity throughout movement preparation and execution is determined by the kinematic tuning of individual neurons. Using analytic methods and numerical simulations, the authors find that their networks share some of the features found in empirical neural data (e.g., orthogonal preparatory and execution-related activity). While the possibility of a simple connectivity rule that explains large features of empirical data is intriguing and would be highly relevant to the motor control field, I found it difficult to assess this work because of the modeling choices made by the authors and how the results were presented in the context of prior studies.

      Overall, it was not clear to me why Bachschmid-Romano et al. couched their models within a cosine-tuning framework and whether their results could apply more generally to more realistic models of the motor cortex. Under cosine-tuning models (or kinematic encoding models, more generally), the role of the motor cortex is to represent movement parameters so that they can presumably be read out by downstream structures. Within such a framework, the question of how the motor cortex maintains a stable representation of movement direction throughout movement preparation and execution when the tuning properties of individual neurons change dramatically between epochs is highly relevant. However, prior work has demonstrated that kinematic encoding models provide a poor fit for empirical data. Specifically, simple encoding models (and the more elaborate extensions [e.g., Inoue, et al., 2018]) cannot explain the complexity of single-neuron responses (Churchland and Shenoy, 2007), and do not readily produce the population-level signals observed in the motor cortex (Michaels, Dann, and Scherberger, 2016) and cannot be extended to more complex movements (Russo, et al., 2018).

      In both the Introduction and Discussion, the authors heavily cite an alternative to kinematic encoding models, the dynamical systems framework. Here, the correlations between kinematics and neural activity in the motor cortex are largely epiphenomenal. The motor cortex does not 'represent' anything; its role is to generate patterns of muscle activity. While the authors explicitly acknowledge the shortcomings of encoding models ('Extension to modeling richer movements', Discussion) and claim that their proposed model can be extended to 'more realistic scenarios', they neither demonstrate that their models can produce patterns of muscle activity nor that their model generates realistic patterns of neural activity. The authors should either fully characterize the activity in their networks and make the argument that their models better provide a better fit to empirical data than alternative models or demonstrate that more realistic computations can be explained by the proposed framework.

      Major Comments

      1) In the present manuscript, it is unclear whether the authors are arguing that representing movement direction is a critical computation that the motor cortex performs, and the proposed models are accurate models of the motor cortex, or if directional coding is being used as a 'proof of concept' that demonstrates how specific, population-level computations can be explained by the tuning of individual neurons.

      If the authors are arguing the former, then they need to demonstrate that their models generate activity similar to what is observed in the motor cortex (e.g., realistic PSTHs and population-level signals). Presently, the manuscript only shows tuning curves for six example neurons (Fig. S6) and a single jPC plane (Fig. S8). Regarding the latter, the authors should note that Michaels et al. (2016) demonstrated that representational models can produce rotations that are superficially similar to empirical data, yet are not dependent on maintaining an underlying condition structure (unlike the rotations observed in the motor cortex).

      If the authors are arguing the latter - and they seem to be, based on the final section of the Discussion - then they need to demonstrate that their proposed framework can be extended to what they call 'more realistic scenarios'. For example, could this framework be extended to a network that produces patterns of muscle activity?

      We thank the reviewer for raising these issues.

      Is our model a kinematic encoding model or a dynamical system?

      Our model is a dynamical system, as can be seen by inspecting equations (1,2). The main difference between our model and recently proposed dynamical system models of motor cortex is that the synaptic connectivity matrix in our model is built from the tuning properties of neurons, instead of being trained using supervised learning techniques (we come back to this important difference below). Since the network’s connectivity and external input depend on the neurons’ tuning to the direction of motion (eq 5-6), kinematic parameters emerge from the dynamic interaction between recurrent and feedforward currents, as specified by equations (1-6). Thus, kinematic parameters can be decoded from population activity.

      While in kinematic encoding models neurons’ firing rates are a function of parameters of the movement, we constrained the parameters of our model by requiring the model to reproduce the dynamics of a few order parameters, which are low-dimensional measures of the activity of recorded neurons. Our model is fitted to neural data, not to the parameters of the movement.

      Although we observed that a linear decoder of the network’s activity can reproduce patterns of muscle activity without decoding any kinematic parameter (see below), discussing whether tuning in M1 plays a computational role in controlling muscle activity is outside of the scope of our work. Rather, the scope of our paper is to discuss how a specific connectivity structure can generate the observed patterns of neural activity, and which connectivity structure requires minimum external inputs to sustain the dynamics. In our approach, the correlations between kinematics and neural activity in the motor cortex are not merely epiphenomenal, but emerge from a specific structure of the connectivity that has likely been shaped by hebbian-like learning mechanisms.

      Can the model generate realistic PSTHs and patterns of muscle activity? Yes, it can. As suggested, we have added the following comparisons:

      ● A CCA-based analysis (Fig 5.a) shows that the performance of our model is qualitatively comparable to the Sussillo et al. (2015) and Kao et al (2021) at generating realistic motor cortical activity (average canonical correlation ρ = 0.77 for motor preparation, 0.82 for motor execution).

      ● For each of the 141 neurons in the data, we selected the corresponding most similar unit in the model (the closest neurons in the eta- and theta- parameters space, i.e. the one with smallest euclidean distance in the space defined by (\theta_A, \theta_B, \eta_A, \eta_B)). A side-by-side comparison of the time course of responses (Fig 5.c) shows a good qualitative agreement.

      ● We successfully trained a linear decoder to read the responses of these 141 units from simulations and output trial-averaged EMG activity recorded from a monkey performing the same task (Fig 5.b).

      ● The model displays sequential activity and rotational dynamics (Fig. S10) without the need to introduce neuron-specific latencies (Michaels, Dann, and Scherberger, 2016).

      Can our model explain the complexity of single-neuron tuning?

      We have shown that our model captures the heterogeneity of neural responses. Yet, it has been shown that neurons’ tuning properties depend on many features of movement. For example, the current version of the model does not describe the dependence of tuning on speed (Churchland and Shenoy, 2007). However, our model could be extended to incorporate it. Preliminary results suggest that in a network model in which neurons differ by the degree of symmetry of their synaptic connectivity the speed of neural trajectories can be modulated by external inputs targeting preferentially neurons that are asymmetrically connected. In our model, all connections are a sum of a symmetric and an asymmetric term. We could extend our model to incorporate variability in the degree of symmetry in the connections, and speculate that in such a model tuning would depend on the speed of movement, for appropriate forms of external inputs. We leave this study to future work.

      Can our model explain neural activity underlying more complex trajectories? When limb trajectories are more complex than simple reaches (Russo, et al., 2018), a single neuron’s activity displays intricate response patterns. Our work could be extended to model more complex movement in several ways. A simplifying assumption we made is that the task can be clearly separated into a preparatory phase and one movement-related phase. A possible extension is one where the motor action is composed of a sequence of epochs, corresponding to a sequence of maps in our model. It will be interesting to study the role of asymmetric connections for storing a sequence of maps. Such a network model could be used to study the storing of motor motifs in the motor cortex (Logiaco et al, 2021); external inputs could then combine these building blocks to compose complex actions.

      In summary, we proposed a simple model that can explain recordings during a straight-reaching task. It provides a scaffold upon which we can build more sophisticated models to explain the activity underlying more complex tasks. We point out that a similar limitation is present in modeling approaches where a network is trained to perform specific neural or muscle activity. The question of whether/how trained recurrent networks can generalize is not yet solved, although currently under investigation (e.g., Dubreuil et al 2022; Driscoll et al 2022).

      What is the advantage of the present model, compared to an RNN trained to output specific neural/muscle activity?

      Its simplicity. Our model is a low-rank recurrent neural network: the structure of the connectivity matrix is simple enough to allow for analytical tractability of the dynamics. The model can be used to test specific hypotheses on the relationship between network connectivity, external inputs and neural dynamics, and to test hypotheses on the learning mechanisms that may lead to the emergence of a given connectivity structure. The model is also helpful to illustrate the problem of degeneracy of network models. An interesting future direction would be to compare the connectivity matrices of trained RNNs and our model.

      We addressed these points in the Discussion, in sections: “Representational vs dynamical system approaches” and “Extension to modeling activity underlying more complex tasks.”

      2) Related to the above point, the authors claim in the Abstract that their models 'recapitulatethe temporal evolution of single-unit activity', yet the only evidence they present is the tuning curves of six example units. Similarly, the authors should more fully characterize the population-level signals in their networks. The inferred inputs (Fig. 6) indeed seem reasonable, yet I'm not sure how surprising this result is. Weren't the authors guaranteed to infer a large, condition-invariant input during movement and condition-specific input during preparation simply because of the shape of the order parameters estimated from the data (Fig. 6c, thin traces)?

      We thank the reviewer for this comment. Regarding the first part of the question: we added new plots with more comparisons between the activity of our model and neural recordings (see the answer above referring to Fig 5).

      Regarding the second part: It is true that the shape of the latent variables that we measure from data constrains the solution that we find. However, a “condition-invariant input during movement and condition-specific input during preparation” is not the only scenario compatible with the data. Let’s take a step back and focus on the parameters that we are inferring from data. We are inferring both the strength of external inputs and the couplings parameters. This is done in a two-step inference procedure: we start from a random guess of the couplings parameters, then we infer the strength of the external inputs, and finally we compute the cost function, which depends on all parameters. This is done iteratively, by moving in the space of the coupling parameters; for each point in the space of the coupling parameters, there is one possible configuration of external inputs. The space of the coupling parameters is shown in Fig 4.a, for example (see also Fig. S4). The solutions that we find do not trivially follow from the shape of the latent variables. For example, one possible solution could be: large parameter j_s^A, small parameter j_s^B, which correspond to a point in the lower-right region of the parameter space in Fig 4.a (Fig. S4). The resulting external input would be a strong condition-specific external input during movement execution, but a condition-invariant input during movement preparation: the model is such that, for example, exciting for a short time-interval a few neurons whose preferred direction corresponds to the direction of motion would be enough to “set the direction of motion” for the network; the pattern of tuned activity could be sustained during the whole delay period thanks to the strong recurrent connections j_s^A. We could not rule out this solution by simply looking at the shape of the latent variables. However, it is a solution we have never observed. We only found solutions in the region where j_s^B is large and close to its critical value. This implies the presence of condition-specific inputs during the whole delay period, and condition-invariant external inputs that dominate over condition-specific ones during movement execution.

      3) In the Abstract and Discussion (first paragraph), the authors highlight that the preparatory andexecution-related spaces in the empirical data and their models are not completely orthogonal, suggesting that this near-orthogonality serves an important mechanistic purpose. However, networks have no problem transferring activity between completely orthogonal subspaces. For example, the generator model in Fig. 8 of Elsayed, et al. (2016) is constrained to use completely orthogonal preparatory and execution-related subspaces. As the authors point out in the Discussion, such a strategy only works because the motor cortex received a large input just before movement (Kaufman et al., 2016).

      We thank the reviewer for this observation. We would like to stress the fact that we are not claiming that having an overlap between subspaces is necessary to transfer activity. Instead, our model shows that a small overlap between the maps can be exploited by the network to transfer activity between subspaces without requiring direction-specific external inputs right before movement execution. A solution where activity is transferred through feedforward inputs is also possible. Indeed, one of the observations of our work (which we highlight more in the new version of the paper) is that by looking at motor cortical activity only, we are not able to distinguish between the activity generated by a feedforward network, and one generated by a recurrent one. However, we argue that a solution where external inputs are minimized can be favorable from a metabolic point of view, as it requires fewer signals to be transmitted through long-range connections. This informs our cost function, and yields a solution where activity is transferred through recurrent connections, by exploiting the small correlation between subspaces.

    1. Author Response

      Reviewer #1 (Public Review):

      DeRisi and colleagues used a new phage-display peptide platform, with 238,068 tiled 62-amino acid peptides covering all known P falciparum coding regions (and numerous other entities), to survey seroreactivity in 198 Ugandan children and adults from two cohorts. They find that the breadth of responses to repeat-containing peptides was twofold higher in children living in the high versus moderate exposure setting, while no such differences were observed for peptides without repeats. Additionally, short motifs associated with seroreactivity were extensively shared among hundreds of antigens, with much of this driven by motifs shared with PfEMP1 antigens.

      Malaria immunity is complex, and this new platform is a potentially valuable addition to the toolkit for understanding humoral responses. The two cohorts differed in fundamental ways: 1) high versus moderate exposure to infective bites; 2) samples drawn at the time of malaria for most donors in the high zone versus ~100 days after the last malaria episode in the moderate zone. The effect of acute malaria to boost short-term cross-reactive antibodies can confound the ability to draw inferences when comparing the two cohorts, and this should be further explored to understand its role in the patterns of seroreactivity observed.

      We thank the reviewer for this very insightful comment. In endemic areas, this potential confounder is a natural occurrence – in areas of higher transmission, people will on average be more likely to have an active or recent infection. The question is whether the differences seen in repeat-containing peptides are due to cumulative exposure or recency/active exposure. To address this point, we have added new analyses, as suggested, taking into account infection status in both exposure settings. In the moderate exposure setting, we find that the breadth of response in children to repeat containing peptides significantly narrows between the most recently exposed subjects, and those that have been infection free for >240 days, indicative of a short-lived response. This difference was not observed for peptides without repeats. (New figure: Figure 5, Supplement 4). We also observe an increase in breadth for repeat-containing peptides in high vs. moderate exposure settings, regardless of infection status (New figure: Figure 5, Supplement 3), a difference that was absent in non-repeat containing peptides. Overall, these data suggest that responses to repeats are not only more exposure-dependent, but also short-lived relative to non-repeats in children. We have included this new analysis (lines 409-435.)

      Reviewer #2 (Public Review):

      This work profiles naturally acquired antibodies against Plasmodium falciparum proteins in two Ugandan cohorts, at incredibly high resolution, using a comprehensive library of overlapping peptides. These findings highlight the ubiquity and importance of intra- and inter-protein repeat elements in the humoral immune response to malaria. The authors discuss evidence that repeat elements reside in more seroreactive proteins, and that the breadth of immunity to repeat-containing antigens is associated with transmission intensity in children.

      A key strength and value added to publicly available data are the breadth of proteome coverage and unprecedented resolution from using tiling peptides. The authors point out that a known limitation of PhIP-seq is that conformational and discontinuous-linear epitopes cannot be detected with short linear peptides. In addition, disulfide linkages and post-translational modifications would be absent in the T7 representations.

      Several significant conclusions drawn from the results in this study are based on the humoral response to repeat elements that are present in multiple locations, including different genes. If antibodies to these regions are cross-reactive as described, it is not clear how the assay can differentiate antibodies that were developed against one or many of these loci. This potential confounding could change the conclusions about inter-protein motifs.

      • We thank the reviewer for their comments on the study. We have added a note about post-translational modifications to the text (Line 675-676) as recommended.

      • With regards to interprotein motifs (Figure 6), we only suggest a potential for antibody cross-reactivity across these motifs based on sequence similarity alone. We do not claim direct evidence that they are indeed cross-reactive, especially given the complex polyclonal nature of the response we are measuring. We present this sequence analysis only as a landscape of potential cross-reactivity among linear epitopes in the proteome, derived from the pool of seroreactive peptides enriched in this cohort.

      • Regardless, we have included a new analysis following the suggestion of Reviewer #1 to determine whether reactivity to these shared motifs indeed correlates between peptides from different proteins sharing a motif within the same individual. While this analysis shows apparent cross reactivity within individuals, we point out that the data is derived from complex polyclonal repertoires inherent to each individual, and thus these observations must be taken in that context and do not definitively establish cross reactivity. Along with the new analysis (Line 495-503), we have sought to be clear on these limitations (Line 632-635).

      Reviewer #3 (Public Review):

      This work provides a new tool, a comprehensive PhIP-seq library, containing 238,068 individual 62-amino acids peptides tiled every 25-amino acid peptide covering all known 8,980 proteins of the deadliest malaria parasite, Plasmodium falciparum, to systematically profile antibody targets in high resolution. This phage display library has been screened by plasma samples obtained from 198 Ugandan children and adults in high and moderate malaria transmission settings and 86 US controls. This work identified that repeat elements were commonly targeted by antibodies. Furthermore, extensive sharing of motifs associated with seroreactivity indicated the potential for extensive cross-reactivity among antigens in P. falciparum. This paper provides a new proteome-wide high-throughput methodology to identify antibody targets that have been investigated by protein arrays and alpha screens to date. Importantly, only this methodology (PhIP-seq library) is able to investigate repeat-containing antigens and cross-reactive epitopes in high resolution (25-amino acid resolution).

      Strengths:

      1) Novel technology

      Firstly, the uniqueness of this study is the use of novel technology, the PhIP-seq library. This PhIP-seq library in this study contains >99.5% of the parasite proteome and is the highest coverage among existing proteome-wide tools for P. falciparum. Moreover, this library can identify antibody responses in high resolution (25 amino acids).

      Secondly, the PhIP-seq converts a proteomic assay (ie. protein array and alpha screen) into a genomic assay, leveraging the massive scale and low-cost nature of next-generation short-read sequencing.

      Thirdly, the phage display system is the ability to sequentially enrich and amplify the signal to noise. Finally, a high-quality strategic bioinformatic analysis of PhIP-seq data was applied.

      2) Novel findings

      The major findings of this study were obtained only by using this novel technology because of its full-proteome coverage and high resolution. Repeat elements were the common target of naturally acquired antibodies. Furthermore, extensive sharing of motifs associated with seroreactivity was observed among hundreds of parasite proteins, indicating the potential for extensive cross-reactivity among antigens in P. falciparum.

      3) Usefulness for the future research

      Importantly, plasma samples from longitudinal cohort studies will give the scientific community important insights into protective humoral immunity which will be important for the identification of vaccine and exposure-marker candidates in the near future.

      Weaknesses:

      Although the paper does have strengths in principle, the weaknesses of the paper are the insufficient description of the selected parasite proteins and seroreactivity ranking of the selected proteins such as TOP100 proteins.

      We thank the reviewer for their comments, corrections, and suggestions. We have made a number of changes and added new analyses, all of which have improved the work. These changes include the following:

      • Analysis of breadth of seroreactivity to repeat and non-repeat regions taking into account infection status in both exposure settings.

      • Analysis to test whether reactivity to peptides with interprotein motifs correlates within the same individual

      • A table listing top 100 proteins in terms of their seropositivity % in response to the reviewer’s comment (Supplementary table 2b).

    1. Author Response

      Reviewer #1 (Public Review):

      This well-done platform trial identifies that ivermectin has no impact on SARS-CoV-2 viral clearance rate relative to no study drug while casirivimab lead to more rapid clearance at 5 days. The figures are simple and appealing. The study design is appropriate and the analysis is sound. The conclusions are generally well supported by the analysis. Study novelty is somewhat limited by the fact that ivermectin has already been definitively assessed and is known to lack efficacy against SARS-CoV-2. Several issues warrant addressing:

      1) Use of viral load clearance is not unique to this study and was part of multiple key trials studying paxlovid, remdesivir, molnupiravir, and monoclonal antibodies. The authors neglect to describe a substantial literature on viral load surrogate endpoints of therapeutic efficacy which exist for HIV, hepatitis B and C, Ebola, HSV-2, and CMV. For SARS-CoV-2, the story is more complicated as several drugs with proven efficacy were associated with a decrease in nasal viral loads whereas a trial of early remdesivir showed no reduction in viral load despite a 90% reduction in hospitalization. In addition, viral load kinetics have not been formally identified as a true surrogate endpoint. For maximal value, a reduction in viral load would be linked with a reduction in a hard clinical endpoint in the study (reduction in hospitalization and/or death, decreased symptom duration, etc...). This literature should be discussed and data on the secondary outcome, and reduction in hospitalization should be included to see if there is any relationship between viral load reduction and clinical outcomes.

      This is an important point and we thank the reviewer for raising it. We agree that there is a rich literature on the use of viral load kinetics in optimizing treatment of viral infectious diseases, and we are clearly not the first to think of it! We have added the following sentence in the discussion.

      “The method of assessing antiviral activity in early COVID-19 reported here builds on extensive experience of antiviral pharmacodynamic assessments in other viral infections.”

      We agree that more information is needed to link viral clearance measures to clinical outcomes. We have addressed this in the discussion as follows:

      “Using less frequent nasopharyngeal sampling in larger numbers of patients, clinical trials of monoclonal antibodies, molnupiravir and ritonavir-boosted nirmatrelvir, have each shown that accelerated viral clearance is associated with improved clinical outcomes [1,4,5]. These data suggest reduction in viral load could be used as a surrogate of clinical outcome in COVID-19. In contrast the PINETREE study, which showed that remdesivir significantly reduced disease progression in COVID-19, did not find an association between viral clearance and therapeutic benefit. This seemed to refute the usefulness of viral clearance rates as a surrogate for rates of clinical recovery [16]. However, the infrequent sampling in all these studies substantially reduced the precision of the viral clearance estimates (and thus increased the risk of type 2 errors). Using the frequent sampling employed in the PLATCOV study, we have shown recently that remdesivir does accelerate SARS-CoV-2 viral clearance [17], as would be expected from an efficacious antiviral drug. This is consistent with therapeutic responses in other viral infections [18, 19]. Taken together the weight of evidence suggests that accelerated viral clearance does reflect therapeutic efficacy in early COVID-19, although more information will be required to characterize this relationship adequately.”

      2) The statement that oropharyngeal swabs are much better tolerated than nasal swabs is subjective. More detail needs to be paid to the relative yield of these approaches.

      The statement is empirical. We know of other studies in progress where there are high rates of discontinuation because of patient intolerance of repeated nasopharyngeal sampling. Not one of 750 patients enrolled to date in PLATCOV has refused sampling, which we believe is useful information for research involving multiple sampling. This is clearly a critical point for pharmacodynamic studies.

      We agree that the optimal site of swabbing for SARS-CoV-2 and relative yields for the given test requirements (sensitivity vs quantification) need to be considered, although the literature on this is large and sometimes contradictory.

      We have added the following line:

      Oropharyngeal viral loads have been shown to be both more and less sensitive for the detection of SARS-CoV-2 infection. Although rates of clearance are very likely to be similar from the two body sites, this should be established for comparison with other studies.

      3) The stopping rules as they relate to previously modeled serial viral loads are not described in sufficient detail.

      The initial stopping rules were chosen based on previously modelled data (reference 11). We have added details to the text (lines 199-219):

      “Under the linear model, for each intervention, the treatment effect β is encoded as a multiplicative term on the time since randomisation: eβT, where T=1 if the patient was assigned the intervention, and zero otherwise. Under this specification β=0 implies no effect (no change in slope), and β>0 implies increase in slope relative to the population mean slope. Stopping rules are then defined with respect to the posterior distribution of β, with futility defined as Prob[β<λ]>0.9; and success defined as Prob[β>λ]>0.9, where λ≥0. Larger values of λ imply a smaller sample size to stop for futility but a larger sample size to stop for efficacy. λ was chosen so that it would result in reasonable sample size requirements, as was determined using a simulation approach based on previously modelled serial viral load data [11]. This modelling work suggested that a value of λ=log(1.05) [i.e. 5% increase] would requireapproximately 50 patients to demonstrate increases in the rate of viral clearance of ~50%, with control of both type 1 and type 2 errors at 10%. The first interim analysis (n=50) was prespecified as unblinded in order to review the methodology and the stopping rules (notably the value of λ). Following this, the stopping threshold was increased from 5% to 12.5% [λ=log(1.125)] because the treatment effect of casirivimab/imdevimab against the SARS-CoV-2 Delta variant was larger than expected and the estimated residual error was greater than previously estimated. Thereafter trial investigators were blinded to the virus clearance results. Interim analyses were planned every batch of additional 25 patients’ PCR data however, because of delays in setting up the PCR analysis pipeline, the second interim analysis was delayed until April 2022. By that time data from 145 patients were available (29 patients randomised to ivermectin and 26 patients randomized to no study drug).”

      4) The lack of blinding limits any analysis of symptomatic outcomes.

      We added this line to the discussion:

      “Finally, although not primarily a safety study, the lack of blinding compromises safety or tolerability assessments.”

      5) It is unclear whether all 4 swabs from 2 tonsils are aggregated. Are the swabs placed in a single tube and analyzed?

      The data are not aggregated but treated as independent and identically distributed under the linear model. 4 swabs were taken at randomization, followed by two at each follow-up visit. We have added line 183:

      “[..] (18 measurements per patient, each swab is treated as as independent and identically distributed conditional on the model).”

      Swabs were stored separately and not aggregated.

      6) In supplementary Figure 7, both models do well in most circumstances but fail in the relatively common event of non-monotonic viral kinetics (multiple peaks, rebound events). Given the importance of viral rebound during paxlovid use, an exploratory secondary analysis of this outcome would be welcome.

      Thank you for the suggestion. We agree, although the primary goal is to estimate the mean change in slope. Rebound is a relatively rare event and tends to occur after the first seven days of illness in which we are assessing rate of clearance.

      Nevertheless, we agree that this is an important point. It remains unclear how to model viral rebound. In over 700 profiles now available from the study, only a few have strong evidence of viral rebound.

      Reviewer #2 (Public Review):

      This manuscript details the analytic methods and results of one arm of the PLATCOV study, an adaptive platform designed to evaluate low-cost COVID-19 therapeutics through enrollment of a comparatively smaller number of persons with acute COVID-19, with the goal of evaluating the rate of decrease in SARS-CoV-2 clearance compared to no treatment through frequent swabbing of the oropharynx and a Bayesian linear regression model, rather than clinical outcomes or the more routinely evaluated blunt virologic outcomes employed in larger trials. Presented here, is the in vivo virologic analysis of ivermectin, with a very small sample of participants who received the casirivimab/imdevimab, a drug shown to be highly effective at preventing COVID-19 progression and improving viral clearance (during circulation of variants to which it had activity) included for comparison for model evaluation.

      The manuscript is well-written and clear. It could benefit however from adding a few clarifications on methods and results to further strengthen the discussion of the model and accurately report the results, as detailed below.

      Strengths of this study design and its report include:

      1) Selection of participants with presumptive high viral loads or viral burden by antigen test, as prior studies have shown difficulty in detecting effect in those with a lower viral burden.

      2) Adaptive sample size based on modeling- something that fell short in other studies based on changing actuals compared to assumptions, depending on circulating variant and "risk" of patients (comorbidities, vaccine state, etc) over time. There have been many other negative studies because the a priori outcomes assumptions were different from the study design to the time of enrollment (or during the enrollment period). This highlight of the trial should be emphasized more fully in the discussion.

      3) Higher dose and longer course of ivermectin than TOGETHER trial and many other global trials: 600ug/kg/day vs 400mcg/kg/day.

      4) Admission of trial participants for frequent oropharyngeal swabbing vs infrequent sampling and blunter analysis methods used in most reported clinical trials

      5) Linear mixed modeling allows for heterogeneity in participants and study sites, especially taking the number of vaccine doses, variant, age, and serostatus into account- all important variables that are not considered in more basic analyses.

      6) The novel outcome being the change in the rate of viral clearance, rather than time to the undetectable or unquantifiable virus, which is sensitive, despite a smaller sample size

      7) Discussion highlights the importance of frequent oral sampling and use of this modeled outcome for the design of both future COVID-19 studies and other respiratory viral studies, acknowledging that there are no accepted standards for measuring virologic or symptom outcomes, and many studies have failed to demonstrate such effects despite succeeding at preventing progression to severe clinical outcomes such as hospitalization or death. This study design and analyses are highly important for the design of future studies of respiratory viral infections or possibly early-phase hepatitis virus infections.

      Weaknesses or room for improvement:

      1) The methods do not clearly describe allocation to either ivermectin or casirivimab/imdevimab or both or neither. Yes, the full protocol is included, but the platform randomization could be briefly described more clearly in the methods section.

      We have added additional text to the Methods:

      “The no study drug arm comprised a minimum proportion of 20% and uniform randomization ratios were then applied across the treatment arms. For example, for 5 intervention arms and the no study drug arm, 20% of patients would be randomized to no study drug and 16% to each of the 5 interventions. Additional details on the randomization are provided in the Supplementary Materials. All patients received standard symptomatic treatment.”

      2) The handling of unquantifiable or undetectable viruses in the models is not clear in either the manuscript or supplemental statistical analysis information. Are these values imputed, or is data censored once below the limits of quantification or detection? How does the model handle censored data, if applicable?

      We have added lines 185-186:

      “Viral loads below the lower limit of quantification (CT values ≥40) were treated as left-censored under the model with a known censoring value.”

      3) Did the study need to be unblinded prior to the first interim analysis? Could the adaptive design with the first analysis have been done with only one or a subset of statisticians unblinded prior to the decision to stop enrolling in the ivermectin arm?

      The unblinded interim analysis was done on the first 50 patients enrolled in the study. The study at that time was enrolling into five arms including ivermectin, casirivimab-imdevimab, remdesivir, favipiravir, and a no study drug arm (there were exactly 10 per arm as a result of the block randomization).

      The main rationale for making this interim analysis unblinded was to determine the most reasonable value of λ (this defines stopping for futility/success), which is a trade-off between information gain, reasonable sample size expectations, and the balance between quickly identifying interventions which have antiviral activity versus the certainty of stopping for futility.

      Once the value of 12.5% was decided, the trial investigators remained blinded to the results until the stopping rules were met and the unblinded statistician discussed with the independent Data Safety and Management Board who agreed to unblind the ivermectin arm.

      4) Can the authors comment on why the interim analysis occurred prior to the enrollment of 50 persons in each of the ivermectin and comparison arms? Even though the sample sizes were close (41 and 45 persons), the trigger for interim analysis was pre-specified.

      After the first interim analysis at 50 patients enrolled into the study, they were planned every additional 25 patients (i.e. very frequently). The trigger for the interim analysis was not 50 patients into a specific arm, but 50 patients in total, and thereafter were planned to occur with every 25 new patients enrolled into the study. In practice there were backlogs in the data pipeline (which we explain), and interim analyses occurred less frequently than planned- the second one being in April 2022.

      5) The reporting of percent change for the intervention arms is overstated. All credible intervals cross zero: the clearance for ivermectin is stated to be 9% slower, but the CI includes + and - %, so it should be reported as "not different." Similarly, and more importantly for casirivimab/imdevimab, it was reported to be 52% faster, although the CI is -7.0 to +115%. This is likely a real difference, but with ten participants underpowered- and this is good to discuss. Instead, please report that the estimate was faster, but that it was not statistically significant. Similarly, the clearance half-life for ivermectin is not different, rather than "slower" as reported (CI was -2 to +6.6 hours). This result was however statistically significant for casirivimab/imdevimab.

      Thank you for your comments. The confidence interval for casirivimab/imdevimab did not cross zero and was +7.0 to +115.1%, and we thank the reviewer for picking up the error in the results section (it was correct in the abstract) where it was written -7.0 to +115.1%. We have made this correction. Elsewhere, we have provided more precise language to discriminate clinical significance from statistical significance, as per the essential revisions.

      6) While the use of oropharyngeal swabs is relatively novel for a clinical trial, and they have been validated for diagnostic purposes, the results of this study should discuss external validity, especially with respect to results from other studies that mainly use nasopharyngeal or nasal swab results. For example, oropharyngeal viral loads have been variably shown to be more sensitive for the detection of infection, or conversely to have 1-log lower viral loads compared to NP swabs. Because these models look for longitudinal change within a single sampling technique, they do not impact internal validity but may impact comparisons to other studies or future study designs.

      We have added the following sentence to the discussion:

      “Oropharyngeal viral loads have been shown to be both more and less sensitive for the detection of SARS-CoV-2 infection. Although rates of viral clearance are very likely to be similar from the two sites, this should be established for comparison with other studies.”

      7) Caution should be used around the term "clinically significant" for viral clearance. There is not an agreed-upon rate of clinically significant clearance, nor is there a log10 threshold that is agreed to be non-transmissible despite moderately strong correlations with the ability to culture virus or with antigen results at particular thresholds.

      We agree. We have addressed this partly in our response to Reviewer 1.

      8) Additional discussion could also clarify that certain drugs, such as remdesivir, have shown in vivo activity in the lungs of animal models and improvement in clinical outcomes in people, but without change in viral endpoints in nasopharyngeal samples (PINETREE study, Gottlieb, NEJM 2022). Therefore, this model must be interpreted as no evidence of antiviral activity in the pharyngeal compartment, rather than a complete lack of in vivo activity of agents given the limitations of accessible and feasible sampling. That said, strongly agree with the authors about the conclusion that ivermectin is also likely to lack activity in humans based on the results of this study and many other clinical studies combined.

      As above this has been addressed in our response to Reviewer 1.

      Reviewer #3 (Public Review):

      This is a well-conducted phase 2 randomized trial testing outpatient therapeutics for Covid-19. In this report of the platform trial, they test ivermectin, demonstrating no virologic effect in humans with Covid-19.

      Overall, the authors' conclusions are supported by the data.

      The major contribution is their implementation of a new model for Phase 2 trial design. Such designs would have been ideal earlier in the pandemic.

      We thank the reviewer for their encouraging comments.

    1. Author Response

      Reviewer #2 (Public Review):

      1) The manuscript assumes an understanding of both economic terminology and statistical approaches that will not be familiar to most of the audience, if I am a representative example. This begins in the abstract, much of which I found incomprehensible. I still am not sure about the definition of "nominal costs ", and I certainly have no idea what they mean by a "wholly non-parametric machine learning regression". This continues throughout-presenting much of the data as Log10-transformed costs means that many of the graphs become impossible for a normal mortal like me to interpret.

      We agree with the reviewer. We provide definitions of terms in the Introduction (lines 29-41) and explain the regression methods in greater detail in the text (lines 173-182) and appendix (Tables 1 and 2).

      2) The version presented is written like some early outline draft. Rather than using narrative to guide the reader through the data, it reads like a series of Figure legends. For example, I literally thought the text on page 4 were the Figure legends, but they are not. "Figure 2 shows...." "Table 1 shows...". The Discussion is similarly difficult to follow. Given the complexity and importance of the data they present, this is a major missed opportunity/

      We agree with the reviewer. We have extensively rewritten the text as recommended by the reviewer.

      3) What will most interest my own part of the NIH-community is the assertion that "real dollar adjusted" grant funding has not decreased, but has instead remained flat. Few people I know will believe this. The authors address in a less-than-clear fashion some of the reasons for this-solicited versus non-solicited awards, clinical trials, etc, but do not dig into their own data to identify what are likely to be other issues. I doubt any one of the 20+ NIH-funded researchers in my Department (predominantly NIGMS funded) has a grant that reaches the "median level"-I do not after 32 years of continuous NIH-funding. Most new NIGMS-funded researchers, including many in my Department, are coming in funded by MIRA grants, which at $250K are half the median grant size. They do spend a few moments on disparities in Figure 7, but much more could be pulled out of this data set. Digging into issues like this-distributions in different NIH Institutes, at different career levels, etc, would make this work much more impactful.

      We agree with the reviewer. We provide additional data on R01-equivalent awards (as previously noted) and on the $250K and $500 nominal values. See new Tables 2 and 4. We acknowledge that our analysis is based on NIH as an agency, not on individual Institutes and Centers (lines 259-260).

    1. Author Response

      Reviewer #1 (Public Review):

      The authors devised a new mRNA imaging approach, MASS, and showed that it can be applied to investigate the activation of gene expression and the dynamics of endogenous mRNAs in the epidermis of live C. elegans. The approach is potentially useful, but this manuscript will benefit by addressing the following questions:

      We thank the reviewer for spending time reviewing our manuscript and for the insightful comments.

      Major comments:

      1) In Figure 1-figure supplement 1, the authors claimed that MASS could verify the lamellipodia-localization of beta-actin mRNAs. However, the image showed the opposite of the authors' claim as the concentration of beta-actin mRNA was lower in lamellipodia than the rest of the cytosol. This result disagreed with ref. 17 (Katz, Z.B. et al., Genes and Development, 2012). Hence, the authors cannot make the statement that "MASS can be readily used to image RNA molecules in live cells without affecting RNA subcellular localization". To thoroughly test this notion, the authors should image beta-actin mRNA using MASS and the conventional MS2 system side by side and calculate the polarization index in the same way as shown in Katz, Z.B. et al., Genes and Development, 2012.

      We noticed that b-ACTIN mRNAs were less polarized in our image compared to that shown in Katz, Z.B. et al. (Genes and Development, 2012). It is likely due to different cell lines being used. In the previous study, mouse embryonic fibroblasts (MEFs) were used. In our initial experiment, HeLa cells were used. Our data showed b-that ACTIN mRNAs labeled with MASS could be localized to the lamellipodia.

      As suggested by the reviewer, we performed new experiments to image b-ACTIN mRNAs using MASS and the conventional MS2 system side by side in NIH3T3 cells, a mouse fibroblast cell line (MEF cells are not available in our lab). We did not find cells with extensively polarized b-ACTIN mRNAs localization, potentially due to different cell lines. We, therefore, did not calculate the polarization index. However, we found that b-ACTIN mRNAs detected by both methods showed a similar localization pattern. These new data suggest that MASS does not affect RNA subcellular localization. We added the new results and updated Figure 1-figure supplement 3.

      2) The experiments that validate this new RNA imaging method are not sufficient. The authors need to systematically compare MASS and the MS2 system, including their RNA signal intensity, signal-to-background ratio.

      We have systematically compared MASS and the conventional MS2 system, including signal intensity and signal-to-noise ratio, and measured the velocities of mRNA movement. We found that MASS showed a similar signal-to-noise ratio and higher signal intensity to the conventional MS2 system. We have now revised the information in the text on pages 4 and 5, and in Figure 1-figure supplement 4, 5, and 6.

      3) In line with this, does beta-actin mRNA display the same behavior as in (Figure 1C-F) when the mRNA was imaged with the MS2 system? The movies do not indicate the type of motility expected of mRNA. For instance, it seems that almost all of the GFP dots, which are presumably single beta-actin mRNAs, stayed stationary over a time course of tens of seconds (Movie 1). This seems to be very different from what has been observed before. It's not clear that the dots are real mRNAs molecules. This further stresses the importance for them to compare their new imaging system with the conventional MS2 application.

      We noticed that the mobility of b-ACTIN mRNAs vary in different cells. It is possible that the mobility of mRNAs was regulated in a cell context-dependent manner.

      To confirm that the GFP foci detected are real mRNA molecules, we performed MASS combined with single-molecule RNA FISH. We found that MASS detected a similar number of GFP foci compared to the spots detected by smFISH. In addition, the majority (72%) of GFP foci colocalized with the smFISH spots of b-ACTIN-8xMS2 mRNAs. It is reported that not all MS2 stem-loop will be bound by the MCP (Wu et al., Biophysical journal 2012). As only 8xMS2 was used in MASS, it is likely that some mRNAs were not entirely bound by MCP and were not detected. On the other hand, only sixteen probes were used in the smFISH experiment, and it is possible that some mRNAs were miss labeled by smFISH. Therefore, 100% colocalization of MASS foci with the smFISH spots was hard to achieve. Thus these results suggest that GFP dots are real mRNA molecules. We have added the new data in Figure 1, Figure 1-figure supplement 1, and the text on page 3.

      We measured the velocity of (b-ACTIN mRNA movement tracked by MASS and the conventional MS2 system. We added this information in Figure 1-figure supplement 5 and to the text on pages 4 and 5. With the conventional MS2 system, we observed similar behavior to those observed by MASS.

      4) The authors claimed that a major advantage of MASS is that it has only 8xMS2 stemloops (350 nt) and overcomes "the previous obstacle of the requirement of inserting a long 1,300 nt 24xMS2". This statement lacks experimental support in this manuscript. The authors need to quantitatively compare the genomic tagging efficiency of 8xMS2 and 24xMS2.

      It has been reported by several decent studies that the knock-in efficiency decreases dramatically with increasing insert size. For example:

      ~10-fold decrease of knockin frequency with a 1085 bp compared to a 767 bp insertion of DNA fragment (Extended Data Fig.8. Wang, J. et al. Nature methods, 2022).

      ~30-fold decrease of knockin frequency with an 1122 bp compared to a 714 bp insertion of DNA fragment (Figure 3 and Table S1. Paix, A. et al. PNAS, 2017).

      In this study, we did not directly examine the knock-in efficiency of 8xMS2 and 24xMS2. Based on published data from other laboratories, we assumed that the efficiency of the knock-in of 8xMS2 (350 nt) would be higher than that of 24xMS2 (~1300 nt).

      5) MASS has the same strategy as SunRISER (Guo, Y. & Lee, R.E.C., Cell Reports Methods, 2022). Both methods use Suntag to amplify signals of MS2- or PP7-tagged RNA. The authors need to elaborate the discussions and describe the similarities and differences of the two studies. In particular, the Guo paper needs to be properly referenced.

      We have cited the paper and discussed the similarities and differences between our method and the SunRISER (page 7). Taking both studies together, Guo and we demonstrated that it is an efficient strategy to combine the MS2 system and the Suntag system as a signal amplifier for long-term and endogenous mRNA imaging in live cells.

      6) In Guo, Y. & Lee, R.E.C., Cell Reports Methods, 2022, they showed that 8XPP7 with 24XSunTag configuration led to fewer mRNA per cell (Figure 5B of the Cell Reports Methods paper). Does MASS, which has 8xMS2 with 24xSunTag, similarly lead to few mRNAs? The authors should compare the number of mRNAs detected by MASS and the conventional MS2, or by FISH.

      We compared the number of mRNAs detected by MASS and by smFISH. We performed MASS combined with single-molecule RNA FISH and found that MASS detected a similar number of GFP foci compared to the spots detected by smFISH.

      In addition, the majority (72%) of GFP foci colocalized with the smFISH spots of b-ACTIN8xMS2 mRNAs. It is reported that not all MS2 stem-loop will be bound by the MCP. As only 8xMS2 was used in MASS, it is likely that some mRNAs were not entirely bound by MCP and were not detected. On the other hand, only sixteen probes were used in the smFISH experiment, and it is possible that some mRNAs were miss labeled by smFISH. Therefore, 100% colocalization of MASS foci with the smFISH spots was hard to achieve. These data indicated that MASS could label the majority of mRNAs from a specific gene in live cells.

      We have added the new data in Figure 1, Figure 1-figure supplement 1, and the text on page 3.

      Reviewer #2 (Public Review):

      Hu et al. developed a new reagent to enhance single mRNA imaging in live cells and animal tissues. They combined an MS2-based RNA imaging technique and a Suntag system to further amplify the signal of single mRNA molecules. They used 8xMS2 stem-loops instead of the widely-used 24xMS2 stem-loops and then amplified the signal by fusing a 24xSuntag array to an MS2 coat protein (MCP). While a typical 24xMS2 approach can label a single mRNA with 48 GFPs, this technique can label a single mRNA with 384 GFPs, providing an 8-fold higher signal. Such high amplification allowed the authors to image endogenous mRNA in the epidermis of live C. elegans. While a similar approach combining PP7 and Suntag or Moontag has been published, this paper demonstrated imaging endogenous mRNA in live animals. Data mostly support the main conclusions of this paper, but some aspects of data analysis and interpretation need to be clarified and extended.

      Strengths:

      Because the authors further amplified the signal of single mRNA, this technique can be beneficial for mRNA imaging in live animal tissues where light scattering and absorption significantly reduce the signal. In addition, the size of an MS2 repeat cassette can be reduced to 8, which will make it easier to insert into an endogenous gene. Also, the MCP24xSuntag and scFv-sfGFP constructs can be expressed in previously developed 24xMS2 knock-in animal models to image single mRNAs in live tissues more easily.

      The authors performed control experiments by omitting each one of the four elements of the system: MS2, MCP, 24xSuntag, and scFV. These control data confirm that the observed GFP foci are the labeled mRNAs rather than any artifacts or GFP aggregates. And the constructs were tested in two model systems: HeLa cells and the epidermis of C. elegans. These data demonstrate that the technique may be used across different species.

      We thank the reviewer for spending time reviewing our manuscript and for the insightful comments.

      Weaknesses:

      Although the paper has strength in providing potentially useful reagents, there are some weaknesses in their approach.

      Each MCP-24xSunTag is labeled with 24 GFPs, providing enough signal to be visualized as a single spot. Although the authors showed an image of a control experiment without MS2 in Figure 1B, the authors should at least mention this potential problem and discuss how to distinguish mRNA from MCP tagged with many GFPs. MCP-24xSunTag labeled with 24 GFPs may diffuse more rapidly than the labeled mRNA. Depending on the exposure time, they may appear as single particles or smeared background, but it will certainly increase the background noise. Such trade-offs should be discussed along with the advantage of this method.

      With MCP-24xSuntag, in theory, there will be up to 24 GFP molecules tethered to one MCP molecule, which may lead to the formation of GFP puncta. However, under our imaging conditions (100 ms to 500 ms) with a spinning disk confocal microscopy, puncta of MCP24xSuntag were not detected. As the reviewer suggested, it might be because MCP24xSuntag is diffusing too fast to be detected as a spot.

      For the signal-to-noise ratio, we did more experiments and analyses. We imaged overexpressed b-ACTIN mRNAs using the conventional 24xMS2 system or MASS with different repeats of Suntag arrays (MCP-24xSuntag, MCP-12xSuntag, MCP-6xSuntag). For the conventional 24xMS2 system, we followed the previous protocol that added a nuclear localization signal (NLS) to MCP, and b-ACTIN mRNAs were nicely detected with a signal-to-noise ratio of 1.21.

      We found that MASS showed a comparable or better signal-to-noise ratio than the conventional 24xMS2 system. (MASS with MCP-24xSuntag: 1.79, MASS with MCP12xSuntag: 1.48, MASS with MCP-6xSuntag: 1.42). These data indicate that using Suntag as a signal amplifier did not increase background noise.

      Also, more quantitative image analysis would be helpful to improve the manuscript. For instance, the authors can measure the intensity of each GFP foci, show an intensity histogram, and provide some criteria to determine whether it is an MCP-24xSuntag, a single mRNA, or a transcription site. For example, it is unclear if the GFP spots in Figure 2D are transcription sites or mRNA granules.

      Under our imaging conditions, MCP-24xSuntag was not detected as GFP foci.

      We performed MASS combined with single-molecule RNA FISH and found that MASS detected a similar number of GFP foci compared to the spots detected by smFISH.

      In addition, the majority (72%) of GFP foci colocalized with the smFISH spots of b-ACTIN8xMS2 mRNAs. It is reported that not all MS2 stem-loop will be bound by the MCP. As only 8xMS2 was used in MASS, it is likely that some mRNAs were not entirely bound by MCP and were not detected. On the other hand, only sixteen probes were used in the smFISH experiment, and it is possible that some mRNAs were miss labeled by smFISH. Therefore, 100% colocalization of MASS foci with the smFISH spots was hard to achieve. These data indicated that MASS could label the majority of mRNAs from a specific gene in live cells.

      We have added the new data in Figure 1, Figure 1-figure supplement 1, and the text on page 3.

      The GFP spots in Figure 2D are not transcription sites, as they were localized in the cytoplasm, not in the nucleus. We imaged exogenous BFP-8xMS2 mRNAs in the epidermis of C. elegans and found that the size of the GFP foci of endogenous C42D4.38xMS2 mRNAs is larger than that of BFP-8xMS2 mRNAs. Those data suggest that the GFP spots in Figure 2D (C42D4.3-8xMS2 mRNA) are mRNA granules. We added those new data in Figure 2-figure supplement 5 and the text on page 7.

      Another concern is that the heavier labeling with 24xSuntag may alter the dynamics of single mRNA. Therefore, it would be desirable to perform a control experiment to compare the diffusion coefficient of mRNAs when they are labeled with MCP-GFP vs MCP- 24xSuntag+scFv-sfGFP.

      We thank the reviewer for raising this critical issue. We have performed live imaging of bACTIN mRNA using the conventional 24xMS2 system or MASS with different lengths of Suntag arrays (MCP-24xSuntag, MCP-12xSuntag, MCP-6xSuntag). We then measured the velocity of mRNA movement in each imaging condition. We found that compared to the conventional 24xMS2 system, mRNA labeled with MCP-24xSuntag or by MCP-12xSuntag showed a smaller velocity, indicating that heavier labeling affected mRNA movement speed.<br /> In contrast, we found that mRNAs labeled with MCP-6xSuntag showed a similar velocity to that tagged with the conventional 24xMS2 system. Those data pointed out that when MASS is used to measure the speed of mRNA movement, a short Suntag array (MCP6xSuntag) should be used. We added those new data in Figure 1-figure supplement 5 and to the text on pages 4, 5.

      The authors could briefly explain about the genes c42d4.3 and mai-1. Why were these specific genes chosen to study gene expression upon wound healing? Did the authors find any difference in the dynamics of gene expression between these two genes?

      The function of C42D4.3 and mai-1 is currently not known. Through mRNA deep sequencing, It has been shown that the expression level of C42D4.3 and mai-1 was quickly increased after wounding of the epidermis of C. elegans. We, therefore, choose those two mRNAs for imaging. We added more information about C42D4.3 and mai-1 to the text on page 6.

      We observed similar dynamics of gene expression between C42D4.3 and mai-1 (Video 7 ,8, 9).

      Reviewer #3 (Public Review):

      It is a brilliant idea to combine the MS2-MCP system with Suntag. As the authors stated, it reduces the copies of the MS2 stem loops, which can create challenges during cloning process. The Suntag system can easily amplify the signal by several to tens of folds to boost the signal for live RNA tagging. One of the best ways to claim that MASS works better than the MS2 system by itself is to compare their signal-to-noise ratios (SNRs) within the same model system, such as HeLa cells or the C. elegans epidermis. Because the authors' main argument is that they made an improvement in live RNA tagging method, it is necessary to compare it with other methods side-by-side. The authors claim that MASS can significantly improves the efficiency of CRISPR by reducing the size of the insert, it still requires knocking in several transgenes, which can be even more challenging in some model systems where there are not many selection markers are available. Another possible issue is that the bulky, heavy tagging (384 scFv-sfGFP along with 24xSuntag) can affect the mobility or stability of the target mRNAs. If it also tags preprocessed RNA in the nucleus, it may affect the RNA processing and nuclear export. A few experiments to address these possibilities will strengthen the authors' arguments. I am proposing some experiments below in detailed comments.

      We thank the reviewer for spending time reviewing our manuscript and for the insightful comments.

      1) For the experiments with HeLa cells, it is not clear whether the authors used one focal plane or the whole z-stack for their assessment of mRNA kinetics, such as fusion, fission, and anchoring. If it was from one z-plane, it was possible that many mRNAs move along the z-axis of the images to assume kinetics. If the kinetics is true, is it expected by the authors? Are beta-actin mRNAs bound to some RNA-binding proteins or clustered in RNP complexes?

      One focal plane was used in the experiments showing mRNAs' fusion, fission, and anchoring behavior. We have now added this information in the figure legend of figure 1. Yes, b-ACTIN mRNA are bound to specific RNA-binding proteins, for example, ZBP1, and it has been reported that ZBP1 forms granules with b-ACTIN mRNAs (Farina, K.L., et al., Journal of cell biology, 2003).

      2) Some quantifications on beta-actin mRNA kinetics, such as a plot of their movement speed or fusion rate, etc., would help readers better understand the behaviors of the mRNAs and assess whether the MASS tagging did not affect them.

      We thank the reviewer for raising this critical issue. We have performed live imaging of bACTIN mRNA using the conventional 24xMS2 system or MASS with different lengths of Suntag arrays (MCP-24xSuntag, MCP-12xSuntag, MCP-6xSuntag). We then measured the velocity of mRNA movement in each imaging condition. We found that compared to the conventional 24xMS2 system, mRNA labeled with MCP-24xSuntag or by MCP-12xSuntag showed a smaller velocity, indicating that heavier labeling affected mRNA movement speed.<br /> In contrast, we found that mRNAs labeled with MCP-6xSuntag showed a similar velocity to that tagged with the conventional 24xMS2 system. Those data pointed out that when MASS is used to measure the speed of mRNA movement, a short Suntag array (MCP6xSuntag) should be used. We added those new data in Figure 1-figure supplement 5 and the text on pages 4 and 5.

      3) Using another target gene for MASS tagging would further confirm the efficacy of the system. Assuming the authors generated a parental strain of HeLa cell, where MCP24xSuntag and scFv-sfGFP are already stably expressed (shown in Fig. 1B), CRISPR-ing in another gene should be relatively easy and fast.

      For exogenous genes, in addition to b-ACTIN, we imaged mRNAs from three more genes, C-MYC, HSPA1A, and KIF18B, with MASS in HeLa cells. For endogenous genes, we imaged C42D4.3 and mai-1 in the epidermis of C. elegans. These data indicated that MASS is able to image both exogenous and endogenous mRNAs in live cells. We have now added those new data in Figure 1-figure supplement 2, Figure 2-figure supplement 2, and to the text on pages 3, 4, and 6.

      4) Adding a complementary approach to the data presented in Fig. 1, such as qRT-PCR for beta-actin, with or without the MASS system would ensure the intense tagging did not affect the mRNA expression or stability.

      To address this question, we performed more experiments to test whether MASS affected the mRNA expression and stability. Because b-ACTIN mRNA is very stable; thus it is not suitable for measuring mRNA stability. We, therefore, tested three genes, including C-MYC, HSPA1A, and KIF18B, which were reported as medium-stable mRNAs. We found that MASS did not affect the stability of those three mRNAs in HeLa cells. We also tested the expression level and the stability of endogenous C42D4.3 mRNA in the epidermis of C. elegans and found that both the expression and the stability were not affected by MASS. We have now added those new data in Figure 1-figure supplement 2, Figure 2-figure supplement 2, and to the text on pages 3, 4, and 6.

      5) For experiments with the C. elegans epidermis, including at least one more MASS movie clip for C42D4.3 and a movie for mai-1 would be helpful for readers to appreciate the RNA labeling and its dynamics.

      We showed two movies (video 7 and video 8) and the snapshots for C42D4.3 mRNA (Figure 2D and Figure 2-figure supplement 3). We also added a movie (Video 9) for mai-1.

      6) The difference between Fig. 2D and Fig. 2-fig supp. 3 is unclear. The authors should address the different patterns of RNA signal propagation. Is it due to the laser power used too much, resulting in photobleach in Fig. 2D?

      We have noticed the difference between Figure 2D and Figure 2-figure supplement 3. In Figure 2D, GFP foci did not appear within the injury area after wounding. In Figure 2-figure supplement 3, GFP foci quickly appeared within the injury area. Although we kept the laser power setting constant when performing the laser wounding experiment, there are indeed variations in the actual laser power used. As the reviewer suggested, the difference may be due to photobleaching in Figure 2D. Alternatively, it is possible that the location of the injury site or the degree of injury could affect the dynamics of gene expression.

      However, we would like to point out that the dynamics of gene expression pattern in Figure 2D (Video 7) and Figure 2-figure supplement 3 (Video 8) is similar. GFP foci of C42D4.3 mRNAs were first detected around the injury sites. Then GFP foci gradually appeared from the area around the injury site to distal regions.

      7) Movie 7 is the key data the authors are presenting, but there are a few discrepancies between their arguments and what is seen from the movie. The authors say the RNAs are "gradually spread" (the line 120 in the manuscript). However, it seems that the green foci just appear here and there in the epidermis and the majority of them stay where they were throughout the timelapse. This pattern seems to be different from the montage in Fig. 2-fig supp. 3, which indeed looks like the mRNA spots are formed around the lesion and spread overtime. Additional explanation on this will strengthen the arguments. Given the dramatic increase of c42d4.3 mRNA abundance 1 min. after the laser wounding, there must be a tremendous boost of transcription at the active transcription sites, which should be captured as much bigger and fewer green foci that are located inside the nucleus. Is this simply because those nuclear sites are out of focus or in a similar size as mRNA foci? Regardless, this should be addressed in the discussion.

      We apologize for the confusing description of our original data. We wrote "gradually spread", but we did not mean that mRNAs were transcribed at the wounding site and moved to the distal regions. We actually mean that GFP foci first appeared close to the wounding site and more GFP foci gradually appeared at the distal regions. We have changed our writing to "the appearance of GFP foci gradually spreads from the area around the injury site to distal regions".

      For the difference between Figure 2D and Figure 2-figure supplement 3, please see our discussion for comment 6.

      For transcription, we also expected a boost of transcription after wounding. However, we failed to detect the appearance of bigger GFP foci in the nucleus. We agree with the reviewer that this is because the active nuclear sites are out of focus. The epidermis of C. elegans is a syncytium with 139 nuclei located in different regions and focal planes. With our microscopy, we were able to image only one focal plane, in which there are usually only four to ten nuclei. Therefore, it is likely that the nuclei with active transcription were out of focus. We have now discussed this point in the revised manuscript (page 6).

      8) One clear way to confirm that MASS labels mRNAs and does not affect their stability/localization is to compare the imaging data with single-molecule RNA fluorescence in situ hybridization (smFISH) that the Singer lab developed decades ago. The authors can target the endogenous c42d4.3 or mai-1 RNAs using smFISH and compare their abundance and subcellular localization patterns with their data.

      To confirm that the GFP foci detected are real mRNA molecules, we performed MASS combined with single-molecule RNA FISH and found that MASS detected a similar number of GFP foci compared to the spots detected by smFISH. In addition, the majority (72%) of GFP foci colocalized with the smFISH spots of b-ACTIN-8xMS2 mRNAs. It is reported that not all MS2 stem-loop will be bound by the MCP. As only 8xMS2 was used in MASS, it is likely that some mRNAs were not fully bound by MCP and were not detected. On the other hand, only sixteen probes were used in the smFISH experiment, and it is possible that some mRNAs were miss labeled by smFISH. Therefore, 100% colocalization of MASS foci with the smFISH spots was hard to achieve. These data indicated that MASS could detect single mRNA molecules and label the majority of mRNAs from a specific gene in live cells. We have now added the new data in Figure 1, Figure 1-figure supplement 1, and to the text on page 3.

      We performed more experiments to test whether MASS affected the mRNA expression and stability. Because b-ACTIN mRNA is very stable; thus it is not suitable for measuring mRNA stability. We, therefore, tested three genes, including C-MYC, HSPA1A, and KIF18B, which were reported as medium-stable mRNAs. We found that MASS did not affect the stability of those three mRNAs in HeLa cells. We also tested the expression level and the stability of endogenous C42D4.3 mRNA in the epidermis of C. elegans and found that both the expression and the stability were not affected by MASS. We have now added those new data in Figure 1-figure supplement 2, Figure 2-figure supplement 2, and to the text on pages 3, 4, and 6.

      To test whether MASS affected the mRNA localization, we performed new experiments to image b-ACTIN mRNAs using MASS and the conventional MS2 system side by side in NIH3T3 cells, which is a mouse fibroblast cell line. We found that b-ACTIN mRNAs showed similar localization in both methods. These new data suggest that MASS does not affect RNA subcellular localization. We have now added the new results in Figure 1-figure supplement 2.

      9) One of the main purposes to live image RNAs is to assess their dynamics. Adding some more analyses, such as the movement speed of the foci, would be helpful to show how effective this system is to assess those dynamics features.

      We thank the reviewer for raising this critical issue. We have performed live imaging of bACTIN mRNA using the conventional 24xMS2 system or MASS with different lengths of Suntag arrays (MCP-24xSuntag, MCP-12xSuntag, MCP-6xSuntag). We then measured the velocity of mRNA movement in each imaging condition. We found that compared to the conventional 24xMS2 system, mRNA labeled with MCP-24xSuntag or by MCP-12xSuntag showed a smaller velocity, indicating that heavier labeling affected mRNA movement speed.

      In contrast, we found that mRNAs labeled with MCP-6xSuntag showed a similar velocity to that tagged with the conventional 24xMS2 system. Those data pointed out that when MASS is used to measure the speed of mRNA movement, a short Suntag array (MCP6xSuntag) should be used. We added those new data in Figure 1-figure supplement 5 and to the text on pages 4 and 5.

      Reviewer #4 (Public Review):

      Hu et al introduced the MS2-Suntag system into C. elegans to tag and image the dynamics of individual mRNAs in a live animal. The system involves CRISPR-based integration of 8x MS2 motifs into the target gene, and two transgene constructs (MCP-Suntag; scFv-sfGFP) that can potentially recruit up to 384 GFP molecule to an mRNA to amplify the fluorescent signal. The images show very high signal to background ratio, indicating a large range of optimization to control phototoxicity for live imaging and/or artifacts caused by excessive labeling. The use of epidermal wound repair as a case study provides a simplified temporal context to interpret the results, such as the initiation of transcription upon wounding. The preliminary results also reveal potentially novel biology such as localization of mRNAs and dynamic RNP complexes in wound response and repair. On the other hand, the system recruits a large protein complex to an mRNA molecule, an immediate question is to what extent it may interfere with in vivo regulation. Phenotypic assays, e.g., in development and wound repair, would have been a powerful argument but are not explored. In all, C. elegans is powerful system for live imaging, and the genome is rich in RNA binding proteins as well as miRNAs and other small RNAs for rich posttranscriptional regulation. The manuscript provides an important technical progress and valuable resource for the field to study posttranscriptional regulation in vivo.

      We thank the reviewer for spending time reviewing our manuscript and for the insightful comments.

    1. Author Response

      Reviewer #1 (Public Review):

      Auxin-induced degradation is a strong tool to deplete CHK-2 and PLK-2 in the C. elegans germ line. The authors strengthen their conclusions through multiple approaches, including rescuing mutant phenotypes and biochemical analyses of CHK-2 and PLK-2.

      The authors overcame a technical limitation that would hinder in vitro analysis (low quantity of CHK-2) through the clever approach of preventing its degradation via the proteasome. In vitro phosphorylation assays and mass spectrometry analysis that establishes that CHK-2 is a substrate of PLK-2 nicely complement the genetic data.

      The authors argue that the inactivation of CHK-2 by PLK-2 promotes crossover designation; however, the data only indicate that PLK-2 promotes proper timing of crossover designation.

      We thank the reviewer for this point of clarification. While we believe that PLK activity is essential to inactivate CHK-2 and trigger CO designation, we agree that this has not been firmly established with the tools available to us, as elaborated below. We have revised the text to avoid overstating the conclusions.

      It is not clear whether the loss of CHK-2 function with the S116A and T120A mutations is the direct result of the inability to phosphorylate these residues or whether it is caused by the apparent instability of these proteins, as their abundance was reduced in IPs compared to wild-type. Agreed. The instability of the mutant proteins was a source of significant frustration during the course of this work, and limits the strength of our conclusions.

      The mechanism of CHK-2 inactivation in the absence of PLK-2 remains unclear, though the authors were able to rule out multiple candidates that could have played this role.

      Reviewer #2 (Public Review):

      In this manuscript, Zhang et al., address the role of Polo-like kinase signaling in restricting the activity of Chk2 kinase and coordinating synapsis among homologous chromosomes with the progression of meiotic prophase in C. elegans. While individual activities of PLK-2 and CHK-2 have been demonstrated to promote chromosome pairing, and double-strand break formation necessary for homologous recombination, in this manuscript the authors attempt to link the function of these two essential kinases to assess the requirement of CHK-2 activity in controlling crossover assurance and thus chromosome segregation. The study reveals that CHK-2 acts at distinct regions of the C. elegans germline in a Polo-like kinase-dependent and independent manner.

      Strengths:

      The study reveals distinct mechanisms through which CHK-2 functions in different spatial regions of meiosis. For example, it appears that CHK-2 activity is not inhibited by PLK's (1 and 2) in the leptotene/zygotene meiotic nuclei where pairing occurs. This suggests that either CHK-2 is not phosphorylated by PLK-2 in the distal nuclei or that it has a kinase-independent function in this spatial region of the germline. These are interesting observations that further our understanding of how the processes of meiosis are orchestrated spatially for coordinated regulation of the temporal process.

      Weaknesses:

      While the possibilities stated above are interesting, they lack direct support from the data. A key missing element in the study is the actual role of PLK-2 signaling in controlling CHK-2 activity and thus function. I expand on this below.

      Throughout the manuscript, the authors test the role of each of the kinases (CHK-2 or PLK-1, or 2) using auxin-induced degradation, which would eliminate both phosphorylated and unphosphorylated pools of proteins. This experiment thus does not test the role of PLK-2 signaling in controlling CHK-2 function or the role of CHK-2 activation. To test the role of signaling from PLK-2 or CHK-2, the authors need to generate appropriate alleles such as phospho-mutants or kinase-dead mutants. The authors do generate unphosphorylatable and phosphomimetic versions of CHK-2, however, they find that the protein level for both these alleles is lower than wild-type CHK-2 (which the authors state is already low). The authors conclude that the lower level of protein in the CHK-2 phospho-mutants is because the mutations cause destabilization of the protein. I am sympathetic with the authors since clearly these results make interpretations of actual signaling activity more challenging. But there needs to be some evidence of this activity, for example through the generation of a phosphor-specific antibody to phosphorylated CHK-2. While not functional, at least the phosphorylation status of CHK-2 would provide more information on its spatial pattern of activation and inactivation. In addition, it would still be of interest to the readership to present the data on these phosphor-mutant alleles with crossover designation and COSA-1::GFP. Is the phenotype of the WT knockin, and each of the phosphomutant knock-ins similar to auxin-induced degradation of CHK-2?

      We thank the reviewer for these comments. We have made several attempts over the past decade that have failed to elicit a CHK-2 antibody that works for either immunofluorescence or western blots, likely due to the very low abundance of CHK-2. This has discouraged us from investing yet more resources to try to develop a phospho-specific antibody. Moreover, our evidence suggests that phosphorylation may promote CHK-2 degradation. Since the phosphomutants of CHK-2 are not stable, we do not think knock-in of these phosphomutants will provide new insights.

      Given that the CHK-2 phosphomutants did not pan out for assessing the signaling regulation of PLK-2 on CHK-2, to directly assess whether PLK-2 activity restricts CHK-2 function in mid-pachytene but not leptotene/zygotene, the authors should generate PLK-2 kinase dead alleles. These alleles will help decouple the signaling function of PLK-2 from a structural function.

      Similarly, to assess the potentially distinct roles of CHK-2 in leptotene/zygotene and mid-pachytene it would be important to assess CHK-2 kinase-dead mutant alleles. At this time, all of the analysis is based on removing both active CHK-2 and inactive CHK-2 (i.e. phosphorylated and unphosphorylated pool) using auxin-induced degradation. The kinase-dead alleles will help infer the role of the kinase more directly. The authors can then superimpose the auxin-induced degradation and assess the impact of complete removal of the protein vs only loss of its kinase function. These experiments may help clarify the role of signaling outcomes of these proteins, vs their complete loss. For example, what does kinase dead PLK-2 recruitment to the synapsed chromosomes appear like? Are their distinct activities for active and inactive PLK-2 that are spatially regulated? The same can be tested for CHK-2.

      A kinase-dead allele of plk-2 has been generated in previous work and we have used it for other purposes. However, the fact that CHK-2 and PLK-2 are required for homolog pairing and synapsis, which are prerequisites for crossover designation, precludes their use here.

    1. Author Response

      Reviewer #2 (Public Review):

      This is an interesting manuscript establishing a role for Ecdysone signaling in the control of sleep. The authors show that the Ecdysone receptor EcR is required primarily in cortex glia for the control of sleep and that its target E75 is also involved in sleep regulation. This is a novel function for both cortex glia and steroid signaling in Drosophila. The authors also present evidence that Ecdysone signaling would be important for response to starvation, and that lipid droplet mobilization would mediate the effect of ecdysone on sleep. This work is certainly innovative. However, the main conclusions need to be strengthened. In particular: variability in sleep amounts in certain strains could complicate interpretation, the idea that ecdysone modulates sleep response to starvation is not sufficiently well supported, and genetic evidence for mobilization of lipid droplets being the mechanism linking steroid signaling to sleep is currently quite weak.

      Major concerns:

      1) I have concerns with the variability observed with the GS drivers (whether nSyb or repo). This is particularly striking in figure S3 when comparing experiments conducted with EcR-c and the Ecl RNAi. Daytime is most affected, but even nighttime looks significantly different. Definitely, nighttime quantification should be shown in addition to total sleep in figure S3. However, I feel that confirming the key results of this study with an additional driver would be reassuring. Could repo-GAL4 combined with GAL80ts be used to drive EcR RNAi, instead of repo-GS? The same combination could help determine whether glia is responsible for the 20E-mediated increase in sleep after starvation (figure S4A).

      We have updated the old Figure S3 source data (now Figure 2 - source data 5) with both daytime and nighttime sleep and the conclusion is similar, please also see our response to essential revision question 1. Regarding the GAL80ts experiment, as noted in our detailed response to essential revision question 1, we conducted this experiment and confirmed that adult-specific knockdown of EcR in glia affects sleep. We also tried to do this experiment under starvation conditions (Figure 3 – figure supplement 1A), but this is more challenging to conduct and interpret as it requires temperature shifts, ecdysone treatment and starvation. In particular, high temperature coupled with starvation turned to be an extreme stressor for Repo-Gal4; TublinGal80ts>EcR RNAi #1 flies, as 8 of 12 flies died after 1 day in our first run; thus, we did not proceed with this experiment.

      2) The idea that ecdysone might suppress the response to starvation is interesting, but the results are not convincing. First, there is an important control missing. It is important to test the effect of Ecdysone on fed flies, to ensure that Ecdysone does not simply make flies sleepy. Second, it is not clear that EcR RNAi has a specific effect on starved flies. Starvation reduces sleep, but is this reduction really exaggerated in flies expressing EcR RNAi than in control flies? It seems to me that starvation reduces sleep by the same amount when comparing results in panels 3D and E. The effect of EcRNAi and starvation might be simply additive, which would suggest that 20E impacts sleep independently of starvation.

      We now show effects of exogenous ecdysone on fed flies. As expected, and previously, shown, ecdysone promotes sleep in fed and starved flies (Figures 3 and 6). We agree with the reviewer that 20E impacts sleep independently of starvation. The major point we made with this experiment was that robust effects of starvation on sleep are maintained in RepoGS-EcR RNAi flies. The fact that these two manipulations together virtually eliminate sleep suggests that glial ecdysone signaling is required for the sleep that remains during starvation.

      3) The material and method section needs to be improved. In particular, it is not clear to me how the starvation/ecdysone feeding assay was done. There are some additional explanations in the figure legend, but the approach is still not clear to me. Indicate clearly when the flies were starved, and when they were exposed to Ecdysone.

      We rewrote the ecdysone treatment and starvation assay section with more details in Methods. We hope it is now clear.

      4) I am not convinced that the Lsd2 results necessarily support the idea that this gene is required for the effect of 20E on sleep. Sleep is dramatically reduced during the day in the Lsd2 mutant. This is actually an interesting observation, but this strong effect on baseline sleep might be masking the ability of 20E to modulate sleep.

      Thanks so much for this great comment. As noted in our response to essential revision question 4, we now demonstrate that lsd2 mutants respond effectively to GABA, showing that their sleep can be modulated.

    1. Author Response:

      Reviewer #2 (Public Review):

      The manuscript reports on the complex variability of expression, trafficking, assembly/stability, and peptide loading among different MHC I haplotypes. In particular by analyzing two distinct MHC I molecules as representative members of groups of allotypes, that favor canonical or non-canonical assembly modes, the PI reports on preferential cytosolic or endo-lysosomal MHC I loading. Overall, the data shed light on the intersection between MHC I conformation and subcellular sites of peptide loading and help explain MHC I immunosurveillance at a different subcellular location.

      In the first series of experiments the authors report an uneven surface expression of HLA-B vs HLA-A, and C on circulating monocytes, with HLA-B being expressed 4 times higher, also they report that as compared to the TAP-dependent allotype B*08:01 the TAP-independent allotype B*35:01 has a lower surface half-life and if often present as an empty molecule. These data set the basis for the author's hypothesis that B*35:01 could traffic in Rab11+ compartment and be involved in cross-presentation, which indeed is demonstrated in a series of pulse-chase peptide experiments and using cathepsin inhibitors.

      Overall, the experiments could be improved by performing subcellular fractionation and organelle purification to conclusively demonstrate the differential trafficking of B*08:01 vs B*35:01, as well as quantitative mass spectrometry to determine cytosolic vs endosomal processing for one selected epitope presented by the different haplotypes.

      We thank the reviewer for this suggestion, and agree that this would be a powerful method for further validating differential HLA-B trafficking and antigen processing. Unfortunately, we were unable to perform subcellular fractionation experiments for mass spec, as protocols for fractionation require upwards of 10 million cells to obtain endosomal fractions. For our donor samples, we typically obtain 1- 2 million moDCs after isolation and differentiation, greatly limiting the types of experiments we can perform with primary cells from specific donors. We considered performing these experiments in a cell line but were concerned that ER as well as endosomal trafficking and processing pathways might differ between cell lines and primary cells, which would necessitate a number of additional studies to validate use of the cell lines.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors set out to answer the standing mystery of an origin of a unique and complex system that is hagfish slime. They formulated a cogent scenario for the co-option of epidermal thread cells and mucous cells into slime and slime glands. Both histology and EM images back this up. It is a delight to see detailed and careful morphological analysis of both the cells and the secretion. The weakness of the manuscript lies in: a) the absence of an alternative hypothesis (therefore the lacking sense of hypothesis testing); and b) oversimplification and insufficient description of results in transcriptomic and phylogenetic comparison.

      These are both key elements of the narrative. Because all the data "support" the only scenario considered in this paper, it could risk giving the impression of a just-so story. My reading of the results of their transcriptomic and phylogenetic analyses is more nuanced than explained in the paper. For example, the authors didn't explain in sufficient detail how the data summary in Fig. 5 "demonstrate" that the epidermal thread cells are "ancestral", and that the diversity of alpha and gamma thread biopolymer genes is a prerequisite to slime (without a functional analysis), or that the gene duplication events facilitated the origin of hagfish slime.

      Thank you for these thoughtful comments.

      We have made extensive changes to address the two issues raised by the reviewer. For the first one, we added discussion of an alternative hypothesis, namely a cloacal origin of hagfish slime glands (see Line 369). For the second, we added new transcriptomic data from a second species (E. stoutii), and provided more detailed phylogenetic analyses and explanations. Details are provided below and can be seen in the revised manuscript.

      Reviewer #2 (Public Review):

      The study is a careful investigation of the physical properties of hagfish slime and the underlying cellular framework that enables this extraordinary evolutionary innovation. I appreciate the careful and detailed measurements and images that the authors provide. The results presented here will surely be extremely important for researchers working on this particular organism and those interested in understanding the evolution, biomedical relevance, and biochemistry of mucus. However, I had difficulty contextualizing the findings in broader biological questions (e.g., the evolution of functional novelty, the adaptive processes, and the links between genetic and phenotypic evolution). I also think that the conclusions on the evolutionary origins and underlying genetics of hagfish slime based on comparative transcriptomic data may be premature.

      Thank you for the thoughtful comments. In this revision, we have rewritten several sections and reorganized the Introduction for clearer readability. Also, we added discussion of an alternative hypothesis that the slime glands might be derived from cloacal glands (see Discussion, Line 369). Further, we provided more detailed transcriptomic data and phylogenetic analyses, along with enriched interpretations, to address the evolution of thread genes.

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript aims to provide a comprehensive insight into the development of the tuberal hypothalamus of the chick by carefully analyzing the expression patterns of a plethora of proteins involved and perturbation of BMP signaling.

      Strengths:

      This manuscript presents the results of an in-depth analysis aimed to unravel the expression of a variety of transcription factors, and the role of signaling molecules, in particular BMP, SHH and Notch, and, and the role of BMP for the development of the tubular hypothalamus. For this, the authors applied a variety of methods, including in-situ RNA hybridizations to chick embryos, fate mapping, explant cultures, and loss and gain-functions studies in embryos, complemented by carefully mining previously performed scRNA-Seq data. From the data they derive a model, which explains the dynamic changes of expression of signaling molecules and transcription factors from anterior to posterior during chick development. In addition, they show that fate specification and growth occur concomitantly. Overall, the data provide a plethora of information on expression patterns and consequences of BMP signaling perturbation, which will be valuable for scientists interested in the events taking place during the development of the chick tubular hypothalamus.

      We thank the reviewer for recognising the value of this study for development of the chick tuberal hypothalamus.

      Weaknesses:

      The plethora of data presented makes it very difficult for a reader, who is not familiar with this system, to follow the major conclusions from each of the panels. This difficulty is enhanced by the lack of a concise, simple and focused summary at the end of most chapters, which, from my point of view, still contains too many details. Similarly, the discussion too often refers to details presented in the figures of the Results section, rather than giving a broader and focused summary and pointing out to novel conclusions.

      We have extensively revised the manuscript, to ensure that it is easier to follow and is less detailed. We have tightened and shortened the Introduction, without losing content or context. We have revised the narrative in the Results section, to reflect revisions to figures (detailed below and in response to Reviewer 2 comments), cut back on detail, and summarised each section. We have streamlined the Discussion, so that the broader points and novel conclusions are more prominent.

      Revisions to figures are as follows:

      1. Several main Figures and associated Supplementary Figures have been rearranged so that the text and figures are easier to follow. The rearrangements mean that the reader can follow critical conceptual points without having to jump from main to supplementary figures. Key rearrangements have been made between Figure 1 and Figure 1-figure supplement 1; Figure 2 and Figure 2-figure supplement 1; Figure 2 and Figure 2-figure supplement 2; Figure 6 and Figure 6 supplement 1.

      2. Throughout the manuscript, we have added new images/replaced previous images in cases where key points were not coming across clearly (see Reviewer 2 comments). New data is shown in Figures 1F, G, T-T”; Figures 2G-P’; Figure 2-figure supplement 1 (panels A and E); Figure 2-figure supplement 2 (panels B, E-G; Q-T).

      3. Throughout the manuscript we have improved the schematics, making it easier to follow key domains and, separately, gene expression patterns

      4. Finally, in light of the comment on the plethora of data, detail and the overall difficulty in following the manuscript, we have removed in situ data that was not needed for our central arguments (previous panels 1F-J and 1R-T).

      I also suggest that the authors check the Materials and Methods section, which does not always contain the information required. For example, in the chapter on "Chicken HCR": I guess they used the HCR IHC kit from Molecular Instruments? What kind of "modification" of the Molecular Instruments protocol did they introduce?

      We have revised the Material and Methods section as required. We followed the Molecular Instrument Protocol HCRv3-Chicken, but included a methanol dehydration step, which we have now added.

    1. Author Response

      Reviewer #1 (Public Review):

      This is an interesting article that uses the power of drosophila to explore how organisms work with their symbionts to adapt to a changing environment. The authors show that reducing some nonessential amino acids that cannot be produced by the "symbiont" Lactobacillus can nevertheless be rescued by the presence of this bacteria. They suggest it is not through provisioning from the bacteria using genetic screens in the bacteria, they find four bacterial strains that have a reduced ability to restore the delay. They then show that the mutants have transposon insertions in r/tRNA loci and reduced rRNA levels. These mutants and a newly generated deletion allele shows similar phenotypes (although very modest (~1day change). due to imabalance. Experiments next demonstrate that colonization with Lp leads to induction of an ATF4 reporter independent of diet. But that colonization of the mutant Lp, has reduced activation during a balanced diet but not in an imbalanced diet. This was also the case for a mutant identified in the screen. Next the authors explore the role of enterocyte GCN2. They show that there are selective requirements for GNC2 depending on the diet and aa imbalance. This is very complicated. As the depletion of GCN2 by one allele does not impact GF pupation on an imbalanced diet, it does for other alleles. And they find that this activity is independent of ATF4 and 4EBP, two known members of the pathway.

      Major strengths include the screen for bacterial mutants and demonstration that depletion of specific amino acids have specific dependencies (both bacterial and host). However, there is a disconnect between the bacterial mutants and the host physiology. How do the mutants impact host biology? Is it through an RNA signal? If so how does this get sensed? Is GCN2 involved, and if so by what mechanism?

      We thank the reviewer for his/her evaluation. The connection between the L. plantarum (Lp) mutants and host physiology is mostly established by the following observations:

      1) bacterial mutants for r/tRNAs failed to activate GCN2 to the same extent as WT bacteria. Although the difference on imbalanced diet is not significant (p-value=0.069, new Fig. 5A-B), there is a trend towards a decreased activation with the r/tRNA deletion mutant. We also observed this trend with the r/tRNA insertion mutant (new Fig. S4A-B). This decrease reached statistical significance when we performed short-term association (new Fig. S4E-F) or on balanced diet (new Fig. 5C-D and new Fig. S4C-D).

      2) providing tRNAs to larvae supports activation of GCN2 in enterocytes (new Fig. 5E-F).

      3) knocked-down of GCN2 in enterocytes using RNAi triggers a growth delay in larvae (new Fig. 6A, new Fig. S5A-B).

      4) when we knocked-down GCN2 using RNAi, we did not observe any difference between the growth of larvae associated with Lp WT and the r/tRNA mutant (new Fig. 6H-I).

      We believe these results strongly indicate that the phenotype of delayed growth upon association with r/tRNA mutant relies at least partly on a decreased GCN2 activation in enterocytes. Given the mechanism of activation of GCN2 (GCN2 is activated by structured RNA such as tRNAs or rRNAs) we propose that GCN2 is a sensor of bacterial r/tRNAs. This is supported by our new finding that Lp produces extracellular vesicles containing r/tRNAs (new Fig. 3). However, we agree that this point remains speculative. We amended our Abstract and Discussion accordingly (L30, L924-929) to clarify that direct activation of GCN2 by Lp’s r/tRNAs remains speculative.

      Reviewer #2 (Public Review):

      This manuscript investigates an intriguing observation, the data are strong, and the manuscript is clearly written. The authors very convincingly demonstrate that regions of the chromosome that encode L. plantarum tRNAs are also necessary for activation of D. melanogaster GCN2 and accelerated development in the setting of AA imbalance and that this effect on development is dependent on GCN2. They further provide transcriptomic data that broaden our understanding of the host intestinal response to L. plantarum in the setting of AA imbalance. In other host-microbe interactions such as the squid-Vibrio fischeri symbiosis, the bacterial RNA has been visualized in host cells, suggesting transport. Here, experimental data demonstrating bacterial RNA in host cells is lacking and then direct interaction of GCN2 with prokaryotic tRNAs is hypothesized but not proven. As a result, the basis of the observed effect of bacterial tRNAS remains vague. Open questions such how/if the bacterial tRNA enters the host enterocytes, whether these interact with GCN2, and whether other bacterial products are required for the response remain to be answered.

      We thank the reviewer for his/her interest in our work. Association with LpΔopr/tRNA leads to reduced activation of GCN2 in enterocytes, and tRNAs feeding activate GCN2. Given the mechanism of activation of GCN2, we speculate that tRNAs produced by Lp directly interacts with GCN2 in enterocytes. We add new data showing that Lp produces extracellular vesicles, and these vesicles contain r/tRNAs (new Fig. 8). Since extracellular vesicles can transport molecules from bacteria to hosts (Brown et al. 2015) this observation supports our model: enterocytes may acquire Lp’s r/tRNAs from extracellular vesicles.

      Reviewer #3 (Public Review):

      The strength of this study relies on the use of a chemically well-defined diet of the host and of the identification of Lp mutants that fail to rescue the noxious effects of an imbalanced amino-acid regimen. Thus, the genetic approach in both host and symbiont is a major asset of this study. The results are surprising as an imbalance of one essential amino-acid in the diet, valine, can nevertheless be compensated by Lp, even though it is itself unable to synthesize this amino-acid. The experiments are well-conducted and conclusions are appropriate.

      We thank the reviewer for his/her kind words and for his/her interest in our work.

      This study however does not identify how GCN2 promotes growth in this context. There is just a descriptive transcriptomics approach that is however not validated at the functional level (and also not by RTqPCR experiments) as it does not provide obvious leads beyond a Gene Ontology exploitation of the data.

      To answer the reviewer’s questions, we have further characterized one hit from our RNAseq analysis: Lp association causes down-regulation of the growth repressor fezzik. We show that fezzik knock-down in enterocytes improves larval growth, which suggests that Lp improves growth partly through GCN2-dependant r/tRNA-dependent repression of fezzik expression (new Fig. 8 and new Fig. S8).

      The authors propose that Lp promotes a more thorough absorption of valine, a possibility that makes sense but is not backed up by any data.

      We now provide new data showing that association with Lp increases the amounts of Valine in larva’s hemolymph (new Fig. 1E). Since Lp cannot produce Valine, this supports our model of increased nutrient absorption by the gut of Lp-associated larvae.

      Also, how Lp releases r/tRNAs is not addressed experimentally.

      We now provide new data showing that Lp produces extracellular vesicles that contain r/tRNAs (new Fig. 3).

      A minor logical flaw is the use of GCN2 pathway activation read-outs that are actually not required to mediate Lp's beneficial action.

      Our hypothesis is that GCN2 activation leads to both activation of ATF4, which is not required to mediate Lp’s beneficial action, and induction of other targets (e.g. fezzik repression, EGFR activation) that are required to mediate Lp’s beneficial action. We showed that ATF4 activation is a good readout of GCN2 activation (GCN2 knock-down completely suppresses the reporter’s expression in the anterior midgut, new Fig. 4C-F).

      The authors claim that GCN2 action is not mediated through ATF4 or Thor based on RNA interference experiments. However, in contrast to the GCN2 case, they have not validated the RNAi lines and tested also only one for each.

      To address the reviewer’s concerns, we have used two lines of 4E-BP loss-of-function alleles. These lines do not show a growth delay on imbalanced diet (new Fig. S5I). Regarding ATF4, we used the RNAseq to validate the ATF4-RNAi: the Mex>ATF4RNAi-Lp condition shows a statistically significant ~8 fold reduction in ATF4 expression compared to the control-Lp condition (N.B. ATF4 is annotated as crc in our dataset).

    1. Author Response

      Reviewer #1 (Public Review):

      The data presented throughout are solid, however, some of the structures drawn of the oxysterols in Figure 1 are not chemically correct. 24(S)HC is drawn as 24(R)HC and visa versa, also the oxysterol sulfate should have a bond between C-3 and the O of OSO3H. It would also help the reader if the vehicle for oxysterol additions was clarified.

      We thank the reviewer for pointing out these embarrassing errors! All structures have been corrected. The vehicle for oxysterol (ethanol) is indicated in the Methods.

      The data presented in Figures 2 and 3 show that inhibition of SREBP processing by 25HC is important for the long-term maintenance of depletion of plasma membrane accessible cholesterol, but I wonder if activation of LXR may also be important here. I appreciate that the data in Figure 2 points against LXR being involved in the rapid depletion of accessible cholesterol in HEK293 cells, but perhaps it is important for the long-term depletion of accessible cholesterol. Could there be some cell type specificity here?

      We agree with the reviewer that 25HC’s effects on multiple signaling pathways complicates mechanistic interpretations. Our studies suggest that ACAT activity is absolutely required for the rapid depletion of accessible PM cholesterol and LXRs play a minor role at this stage. The long-term contributions could very well arise from any of the other 25HC targets, including LXRs, and the relative contributions of ACAT, SREBPs, and LXRs could vary between cell types.

      Something that always concerns me when the antimicrobial activity of 25HC is discussed is the fact that 25HC is usually a minor side-chain oxysterol compared to 24(S)HC and 27HC (and 22(R)HC in steroidogenic tissue), except for a short time after infection. Perhaps any long-term antimicrobial activity, and diminishment of accessible cholesterol, results from these other side-chain oxysterols. This may be worthy of some additional discussion.

      We agree with the reviewer that we cannot rule out the contribution of other oxysterols to long-term antimicrobial activity. While we have kept our focus on 25HC in this study, we point out in the Discussion that other ACAT-activating oxysterols such as 20(R)HC, 24(R)HC, 24(S)HC, and 27HC, all of which diminish accessible cholesterol, could also have long-term immunological effects.

      Reviewer #2 (Public Review):

      The paper describes a fairly complete set of experiments describing a mechanism by which 4-hour treatment with 25HC can provide reductions in plasma membrane cholesterol for up to 22 hours. The basic finding is that 25HC depletes the ER of cholesterol by stimulating esterification and that SREBP activation is also inhibited. This effect is associated with the slow loss of 25HC from the cells.

      The paper describes detailed studies of the long-lasting effects of a 4-hour exposure to 25HC on the loss of plasma membrane cholesterol. The paper characterizes the effects on SREBP processing to account for this. The possible long-lasting effects of ACAT stimulation were not investigated but may play an equal role.

      The paper presents data that the effects on plasma membrane cholesterol can account for the inhibitory effects on some bacterial toxins and viruses.

      We thank the reviewer for their positive comments.

      Reviewer #3 (Public Review):

      The paper uses multiple approaches in cultured cells to show that the rapid depletion of accessible plasma membrane cholesterol by 25-hydroxycholesterol is mediated by the activation of the cholesterol-esterifying enzyme acylCoA:cholesterol acyltransferase (ACAT). They carefully consider and exclude other potential mechanisms that could explain the effects of 25-OH cholesterol on the plasma membrane cholesterol pool, such as decreased cholesterol biosynthesis or activation of LXR transcription factors. Cell lines with mutations in ACAT and in cholesterol homeostatic factors are used in an ingenious fashion to support the role of ACAT and exclude these other mechanisms. The in vivo relevance of accessible membrane cholesterol and ACAT is then demonstrated for toxic cytolysin binding to cells, Listeria infection in vivo, and Zika and Coronavirus infections of cultured liver cells. Overall, the evidence is exceptional that ACAT modulates the plasma membrane accessible cholesterol pool as a strategy of the host to protect against various infectious agents. The discussion of the paper could be broadened to include other mechanisms that are known concerning the role of 25-OH cholesterol in infectious processes and the body's responses.

      We thank the reviewer for their positive assessment.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors Rem et al., examine the mechanism of action of APP, a protein implicated in Alzheimer's disease pathology, on GABAB receptor function. It has been reported earlier that soluble APP (sAPP) binds to the Sushi domain 1 of the GABAB1a subunit. In the current manuscript, authors examine this issue in detail and report that sAPP or APP17 interacts with GABABR with nano Molar affinity. However, binding of APP to GABAB receptor does not influence any of the canonical effects such as receptor function, K+ channel currents, spontaneous release of glutamate, or EPSC in vivo. The experimental evidence provided to support the conclusions is thorough and statistically sound. The range of techniques used to address each of the aims has been carefully curated to draw meaningful conclusions.

      The authors use HEK293T heterologous cell line to confirm the affinity of APP17 for the receptor, ligand displacement, and receptor activation. They also use this method to study PKA activation downstream of the GPCR. They use slice electrophysiology to measure changes in glutamatergic transmission EPSC and then in vivo 2-photon microscopy to measure functional changes in vivo.

      The work is significant for the field of Alzheimer's and also GABAB receptor biology, as it has been assumed for sAPP acts via GABAB receptors to influence neurotransmission in the brain. The results presented here open up the question yet again, what is the physiological function of sAPP in the brain?

      The manuscript is clearly written and easy to follow. The main criticism would be that the manuscript fails to identify the mechanism downstream of APP17 interaction with GB1a SD1.

      Our results show that APP17 does not influence GABAB receptor signaling in heterologous expression systems, neuronal cultures and anesthetized mice. Thus, our data do not support the existence of a “mechanism downstream of APP17 interaction with GB1a SD1”. As discussed in our manuscript, full-length APP controls GABAB receptor trafficking and surface stability in axons (Dinamarca et al., 2019), thus already providing a biological function for binding of APP to GB1a.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors studied Eurasian perch in an experimental setup facilitated by a nuclear cooling plant to provide a natural laboratory. The heated area of the ecosystem raised in temperature by 8 degrees centigrade, while a reference area remained unheated. The authors provide a thorough and convincing description that the two areas are segregated such that individuals could not escape from one area to another prior to 2004, and such use data only until 2003 to test their hypotheses. The authors used both length-at-catch and age-increment data in a series of Bayesian mixed effects models to estimate the growth rate and length-at-age. They find that in the warmed area, both younger, smaller fish and older adults grew faster, contrary to the prediction of the temperature-size rule as well as many predictions and observations from other systems that fish reach smaller terminal body sizes in warmer environments due to increased metabolic demands. The authors furthermore combine the estimated body sizes with a mortality rate to determine the size-spectrum slope for both areas and determine the increased growth and increased mortality combine to essentially leave the size-spectrum slope observed in the ecosystem unchanged.

      This is a thorough and interesting paper presented clearly and succinctly. These authors present a strong and thorough analysis of how temperature affects growth when all other ecosystem factors remain unchanged in a population. The dataset is a powerful one to support this type of analysis, and the statistical analysis methods the authors used appear to be robust and thorough. The diagnostics and visualizations are complete and inspire confidence in the convergence and accuracy of the modeling approach. The use of the size spectrum exponent to roll up individual-level changes across the population into a single metric was useful and interesting.

      The estimates of the von Bertalanffy growth parameters in the results and discussion are less convincing than the growth increment and length-at-age estimates which seem much more robust. The presentation of estimates of the von Bertalanffy growth parameters in Figure S6 exhibit the high negative correlation between the k and L infinity parameters that are typical whenever multiple VBGF models are fit to subsets of data. It is difficult to determine which changes in parameters correspond to actual differences in early vs late life stage growth when, in any given year, if k is estimated low, L infinity will skew high simply due to the model structure. An example of this can be seen in 1995-1997 where L infinity is quite high but k is estimated quite low concurrently - in this case, it seems more reasonable to conclude the likelihood surface is quite flat between different parameter values than that fish suddenly reached a larger asymptotic size in these three years than all of the rest. The data in this case so strongly show larger growth in the heated area even without the VBGF results, and it would be more credible to base the discussion and results of this paper on the growth rate or observed length-at-age (e.g. Figure S4) estimates which are so clear.

      We agree with the limitations of the von Bertalanffy growth equation (VBGE), and we agree with you and with Reviewer #2, that the estimated parameters for cohorts 1995–1997 are different, in particular for the L_infinity parameter in the heated area (see also reply to Reviewer#2 for a longer reply to that issue). The main reason for the size-at-age analysis in addition to growth-at-size is because the growth rates in theory could become similar between the areas for a given size, but if the initial growth rates were higher, there would still be a difference in the size-at-age, and size-at-age is an important trait in the context of the temperature-size rule (TSR). We could overcome the issues with the 3-parameter VBGE model by fitting multiple linear models to size-at-age for one age at the time. However, such models would not account for that cohorts may share similar growth trajectories. Therefore, we suggest instead to still use the VBGE growth equation, but put less emphasis on the specific parameter estimates, and instead present the results of the predictions of length-at-age only in that figure. We also wish to clarify that the size-at-age figure referred to here (Figure 2-figure supplement 4) is the predicted size-at-age from the VBGE model, rather than just the data or predictions from some other model.

      In summary, we have downplayed the role of the specific parameter estimates and instead focused on the predicted size-at-age. Part of Figure 2 has been made a supporting figure (Figure 2-figure supplement 8). We have also conducted sensitivity analysis with respect to cohorts 1995–1997. This extra analysis shows that omitting these cohorts still results in a clear difference in size-at-age between the areas but reduces the predicted difference in size-at-age by a few percentage points. See first paragraph of the results, and lines 373–378. a

    1. Author Response

      Reviewer #1 (Public Review):

      Caetano and colleagues describe the changes caused by periodontal inflammation in terms of tissue structure and provide additional evidence to understand the involvement of fibroblasts in altering the immune microenvironment.

      While interesting and a concise study, the authors should improve their work on two major points:

      1) To improve the resolution, the authors introduced a method that addresses improving the resolution by combining more information from the neighbour structure and the existing database. This raises the question of whether the lack of previous gingival tissue spatial transcriptome sequencing results weakens the reliability of this method. Does it miss the identification of some gingival tissue-specific cells? Is the failure to match two populations of fibroblasts between single-cell sequencing and spatial transcriptome sequencing of gingival tissue fibroblasts related to this?

      Thank you for raising these concerns. We don’t think that the lack of previous spatial transcriptome data of oral mucosa tissue affects the reliability of this method; however, as the technology matures our limitations will be overcome particularly regarding resolution. Understanding the exact cellular and molecular mechanisms of oral mucosa cellular remodelling processes in disease in their spatial context will be key to improve our current understanding of oral mucosa physiology. In contrast to single-cell RNA sequencing methods, we are not treating or digesting the tissue with enzymes or extracting cells from their local environment, therefore the impact on gene expression is substantially inferior compared to single-cell RNA sequencing. Because of this key difference, we expect differences between single-cell RNA sequencing and spatial data, which can preclude successful data integration. We were not successful in mapping all fibroblasts using one strategy (anchor-based integration) because this integration is performed on low resolution Visium datasets which is unable to uncover fine cell subtypes, such as fibroblasts. When we performed integration using a higher spatial resolution method, we could map these cells. In our initial single-cell RNA sequencing datasets, some gingiva cells were indeed missing due to technical limitations; for example, neutrophils were not captured given their fragile nature and low RNA content. With the spatial data, we could detect these and other immune cell types that were originally undetected. In conclusion, for a robust and unbiased molecular characterisation of human oral mucosa, spatial transcriptome data is essential.

      2) Although the authors did the identification of the captured tissues, the results seem to require more analysis. Take Figure 5A as an example, there is a clear overlap between endothelial cells and basal cells. In addition, it is suggested that the authors indicate the specific location of the 10 clusters of cells in Figures 1D and 2C.

      Thank you for your comment. Endothelial cells in Figure 5A have a predominantly subepithelial location as shown; however, these also localise in interpapillary regions which can be confounded with basal areas given the current resolution. We highlight that these analyses are not single-cell resolution. We applied a deconvolution method to increase the original spatial data resolution (55 µm), but it is still not true single-cell resolution.

      In Figure 1D and 2C we are not showing clusters of cells, but spatial/anatomical cluster regions; for example, epithelial and stromal regions. These regions contain, especially stromal areas, information of multiple cell types. We can map epithelial regions as these are generally well defined (Figure 2F), but validating stromal regions becomes more difficult. To address this, we mapped individual cell types (Figures 5 and 6) and focused on locating and validating our cell type of interest (Fibroblast 5).

    1. Author Response

      Reviewer #3 (Public Review):

      In this manuscript, Kim et al. use a deep generative model (a Variational Auto Encoder previously applied to adult data) to characterize neonatal-fetal functional brain development. The authors suggest that this approach is suitable given the rapid non-linear development taking place in the human brain across this period. Using two large neonatal and one fetal datasets, they describe that the resultant latent variables can lead to improved characterization of prenatal-neonatal development patterns, stable age prediction and that the decoder can reveal resting state networks. The study uses already accessible public datasets and the methods have been also made available.

      The manuscript is clearly written, the figures excellent and the application in this group novel. The methods are generally appropriate although there are some methodological concerns which I think would be important to address. Although the authors demonstrate that the methods are broadly generalisable across study populations - however, I am unsure about the general interest of the work beyond application of their previously described VAE approach to a new population and what new insight this offers to understanding how the human brain develops. This is a particular consideration given that the major results are age prediction (which is easily done with various imaging measures including something as simple as whole brain volume) and recapitulation of known patterns of functional activity in neonates. As such, the work will be of interest to researchers working in fMRI analysis methods and deep learning, but perhaps less so to a wider neuroscience/clinical readership.

      Specific comments:

      1) (M1) If I understand correctly, the method takes the functional data after volume registration into template space and then projects this data onto the surface. Given the complexities of changing morphology of the development brain. would it not be preferable to have the data in surface space for standard space alignment (rather than this being done later?). This would certainly help with one of the concerns expressed by the authors of "smoothing" in the youngest fetuses leading to a negative relationship between age and performance.

      While projecting onto the cortical surface has its advantages, as suggested here18, several studies have also shown that with careful registration, such as in the current study, volumetric registration can yield comparable performance19. Regardless, we did attempt to directly generate cortical surfaces for our fetuses. We refer the reviewer to our response to the RE-M2 [page 9].

      Regarding the “smoothing” effect in the youngest fetuses, we want to clarify that the smoothing effect in the scans of young fetuses is not unique to the choice of registration method. In other words, the same smoothing effect must be seen with cortical registration as well. Regarding this perspective, we kindly refer the reviewer to our response to RE-M1 [page 7]. Regarding the specific change made in the revised manuscript, we kindly refer to our response to R1-m5 [p21] or [page 9 line 191-213] in the main manuscript.

      2) (M2) A key limitation which I feel is important to consider if the method is aiming to be used for fetuses is the effects of the analysis being limited only to the cortical surface - and therefore the role of subcortical tissue (such as developmental layers in the immature white matter and key structures like the thalami) cannot be included. This is important, as in the fetal (and preterm neonatal) brain, the cortex is still developing and so not only might there be not the same kind of organisation to the activity, but also there is likely an evolving relationship with activity in the transient developmental layers (like the subplate) and inputs from the thalamus.

      The reviewer raises an important point. We agree with the reviewer that the subcortical region plays a critical role in fetal and newborn neurodevelopment. Unfortunately, our current VAE model cannot utilize such information without a major change in the model structure. We added this as a limitation of our study and discussed why our VAE model, in its current form, did not include subcortical areas. Please see our detailed response to RE-M1 [page 4] or [page 25 line 558-570] in the main manuscript.

      3) (M3) As the authors correctly describe, brain development and specifically functional relationships are likely evolving across the study time window. Beyond predicting age and a different way of estimating resting state networks using the decoding step, it is not clear to me what new insight the work is adding to the existing literature - or how the method has been specifically adapted for working with this kind of data. Whilst I agree that these developmental processes are indeed likely non-linear, to put the work in context, I think the manuscript would benefit from explaining how (or if) the method has been adapted and explicitly mentioning what additional neuroscientific/biological gains there are from this method.

      We appreciate the reviewer’s critical insights. In the revised paper, we included additional results that, we hope, can address the reviewer’s concerns. We believe that the strength of the VAE model is that, relative to linear models, it can be more generalizable across different datasets and ages (adult vs. full-term babies vs. preterm babies vs. fetuses). In the original manuscript, this was supported by the superior age prediction performance of the VAE over linear models when applied to different datasets covering the fetal to neonatal periods. Age prediction could also be done using other imaging modalities, as the reviewer pointed out. However, we do not think this undermines the potential impact of having the ability to accurately estimate age based on functional connectivity patterns. Brain function-structure relationships may not exactly be one-to-one20. It is entirely possible that for one disease, brain functional connectivity alterations precede structural changes such that delayed growth trajectories will first manifest in the functional space. There are also certain aspects of brain function that cannot be mapped directly to its structural characteristics (i.e., structural connectivity patterns). For example, brain changes its functional connectivity patterns dynamically over different brain states (resting vs. task-engaging)21, mental disorders (depression22, anxiety23, Schizophrenia24), cognitive traits25, 26, and individual uniqueness25, etc. Therefore, we believe that estimating the functional age of fetuses and neonates given their functional connectivity profiles may provide a biomarker for tracking neurodevelopment trajectories, allowing clinicians to identify deviations early and intervene in a timely manner if necessary. For these reasons, we believe that superior age prediction performance of the VAE model compared to linear models is scientifically significant.

      The value of the VAE lies in its ability to capture FC features that are otherwise not modeled by linear strategies. For example, here, we showed that only the VAE model can extract latent variables representing brain networks that are similar across different datasets. In contrast, linear models, showed higher network pattern similarity between full-term and preterm infants within the dHCP dataset. This suggests that the VAE model can be a very useful tool for capturing common brain networks in datasets acquired using different recording parameters and preprocessing steps. Moreover, the VAE representations predicted age with higher accuracy compared to linear representations. Together, these findings show that the methodology is effective in extracting functionally relevant features of the brain. Please see RE-M1 [page 3] and R1-m13 regarding the specific changes made in the revised manuscript.

      4) (M4) The unavoidable smoothing effect of VAE is very noticeable in the figures - does this suggest that the method will be relatively insensitive to the fine granularity which is important to understand brain development and the establishment of networks (such as the evolving boundaries between functional regions with age) - reducing inference to only the large primary sensory and associative networks? This will also be important to consider for the individual "reconstruction degree" - (which it would likely then overstate - and would need careful intersubject comparison also) if it was to be used as a biomarker or predictor of cognition as suggested by the authors.

      Regarding the first concern, yes. Greater smoothing will tend to yield less granular network patterns; this is true for all representational models (not only VAE, but also models like ICA or PCA). This effect becomes ever more pronounced when representations consist of fewer components (e.g., IC50); the smoothing effect becomes stronger, leading to coarser brain patterns (see Fig. 3 in the revised manuscript). In this regard, higher number of components is desired, but on the flipside, IC maps with higher components are generally less interpretable. In short, there will always be trade-offs between interpretability and spatial resolution. Also, higher components tend to cause over-fitting issue, as shown in our age prediction performance across different datasets (worse performance in the IC300 vs. IC50). In this sense, what matters for the representations is how informative each latent variable (or component) is. In the revised Fig. 2, we showed that latent variables from the VAE model were more informative in representing rsfMRI than linear representations. It is also noteworthy that the smoothing effect of the VAE is comparable to IC300 (similar effect to manual smoothing at the level of FWHM=5mm; revised Fig. 3). Given above results, we believe the VAE model may be more suitable for investigating finer scale of brain networks, than linear models. The above perspective was updated in the revised manuscript as [page 23 line 506-511]:

      "Another interesting observation was that the smoothing effect of the VAE is comparable to IC300 (similar effect to manual smoothing at the level of FWHM=5mm; Fig. 3). Given the above, we believe the VAE model may be more suitable for investigating finer scale of brain networks, than linear models. Perhaps, the VAE model with a greater number of latent variables (e.g., 512 or 1024 instead of 256 in the current VAE) can be utilized to find brain networks at finer scale."

      On top of the points raised above, network mapping with linear models is limited when it comes to mapping the spatial evolution of brain networks over aging due to their linear nature. This limitation can be observed in the ICA study with dHCP dataset (Fig. 4 in 7). On the other hand, thanks to its nonlinearity nature, the VAE model may have a potential to observe the spatial gradient of brain network over aging, while this expectation needs confirmation. To that end, we revised our discussion to reflect our perspective. We refer the full change made in the revised manuscript to our response to R1-m13.

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript by Shaikh and Sunagar addresses the question of the origin of spider venom proteins. It has been known for many years that an important component of spider venoms is a diverse group of small proteins known as disulfide-rich peptides (DRPs). However, it has not been clear whether this group of proteins has a common origin or evolved convergently in different lineages. The authors collected sequences of the genes encoding these proteins from publicly available genomes of spiders from a range of families. They aligned the sequences using the structural cysteines as guides and carried out a phylogenetic analysis of the different sequences, ultimately classifying the different proteins into over 50 super-families. One thing that is not clear from the text or from the references cited (I am not an expert on spider venom) is how many of these superfamilies were known before and how many are novel. There is also no clear indication of what criteria were used to define a subset of sequences as a superfamily. Nonetheless, the authors show that all these superfamilies have a single common ancestor, predating the divergence of araneomorphs and mygalomorphs and that the DRPs underwent independent diversification in each of these two lineages.

      We have identified 78 novel superfamilies in this study and 33 were previously identified (Pineda et al. 2020 PNAS). We had previously described information in lines 90, 101 and 106 regarding the description of novel superfamilies from previous studies and the ones described in this study.

      Line 90 “Recently, using a similar approach, 33 novel spider toxin superfamilies have been identified from the venom of the Australian funnel-web spider, Hadronyche infensa (9).”

      Line 101 “This approach enabled the identification of 33 novel toxin superfamilies along the breadth of Mygalomorphae (Figures S1 and S2).”

      Line 106 “Moreover, analyses of Araneomorphae toxin sequences using the strategy above resulted in the identification of 45 novel toxin superfamilies from Araneomorphae, all of which but one (SF109) belonged to the DRP class of toxins (Figures S3 and S4).”

      Spider toxin superfamilies have been named after gods/deities of death, destruction and the underworld based on nomenclature introduced by Pineda et al. (2014 BMC genomics). We have now included this explanation in the manuscript under the methods and results sections. We have also provided additional details pertaining to this nomenclature in Table S1.

      The authors also looked at selective forces acting on the sequences using dN/dS analyses. They reach the conclusion that there are different modes of selection acting on different sequences based on their role - defensive or predatory venoms - building on previous work by the lead author on venom sequence evolution in diverse animals.

      All in all, this is an admirable piece of molecular evolution work, providing new data on the evolution of spider venom proteins. There are some confusions in terminology that need to be cleared up, and somewhat more context needs to be given for non-specialists as detailed in the points below:

      We thank the reviewer for their constructive and critical suggestions, as well as the kind words of encouragement. Their suggestions have helped us in significantly improving the quality of our work.

      Suggestion 1) Common names of the main spider infraorders should be given.

      We thank the reviewer for their helpful input. We have now introduced spider infraorders with well-known spiders and their common names under the introduction section. Furthermore, we have also included a schematic representation of the spider phylogeny, and highlighted lineages under investigation as Figure 1.

      Suggestion 2) Opisthothelae is not the common ancestor of Mygalomorphae and Araneamorphae, but the clade that encompasses those two clades. This incorrect statement appears in several places. Further on, it is stated that Opisthothelae is the common ancestor of all extant spiders. This is wrong both from a terminological point of view (a clade cannot be ancestral to another clade) and from a factual point of view, since there are extant spiders not included in Opisthothelae.

      We thank the reviewer for pointing out this oversight. We have now corrected it to suborder Opisthothelae as the clade encompassing Mygalomorphae and Araneomorphae spiders.

      Suggestion 3) Several proteins and proteins families are mentioned without being introduced, e.g. knottin. Please provide short descriptions.

      We have now provided a short introduction to terms such as Knottin.

      Reviewer #2 (Public Review):

      This interesting study looks into the evolution of putative spider venom toxins, specifically disulfide-rich peptides (DRPs). The authors use published sequence data to gain new insights into the evolution of DRPs, which are the major component of most spider venoms. Through a series of sequence comparisons and phylogenetic analyses they identify a substantial number of new spider toxin superfamilies with distinct cysteine scaffolds, and they trace these back to a primitive scaffold that must have been present in the last common ancestor of mygalomorph and araneomorph spiders. Looking at the taxonomic distribution of these putative venom DRPs, they conclude that mygalomorph and araneomorph DRPs have evolved in different ways, with the former being recruited into venom at the level of genera, and the latter at the level of families. In addition, they perform selection analyses on the DRP superfamilies to uncover the surprising result that mygalomorph and araneomorph DRPs have evolved under different selective regimes, with the evolution of the former being characterised by positive selection, and the latter by purifying (negative) selection.

      However, I don't think that in the current state of the manuscript these conclusions are robustly supported for several reasons. First, it seems that not all previously published data were included in the phylogenetic analyses that were used to identify new superfamilies of DRPs.

      We have, indeed, analysed all spider toxin sequences available to date. We have relied on the signal and propeptide regions for identifying novel superfamilies, which is an accepted convention: Pineda et al. (2014 BMC Genomics); Pineda et al. (2020 PNAS).

      Although many additional superfamilies can be identified, we have only retained those sequences for which there were at least 5 representatives for the identification of toxin superfamilies, and 15 representatives for selection analyses to ensure robustness. This filtering step ensured that the generated alignments, phylogenetic trees, and evolutionary assessments were robust and devoid of noise that stems from single-representative groups. Adding in those sequences would have enabled us to identify many more superfamilies, solely based on the signal and propeptide examination, but it wouldn’t have been possible to support them with other lines of evidence that were provided for all other superfamilies in this study, jeopardising the overall quality of the manuscript. Nonetheless, there is strong evidence that the left-out sequences are also related to the ones analysed in this study (Figure S10). In future, when more transcriptomes are sequenced, it would be possible to designate these newer toxin superfamilies with much stronger support.

      Second, much of the data were obtained from whole-body transcriptome data, which leaves a degree of uncertainty that these data indeed derive from the venom glands that produce the toxins.

      We respectfully disagree with the reviewer that ‘much of the data’ are from the whole-body transcriptomes. Nearly all sequences in our study are sourced from Pineda et al. (2014 BMC Genomics and 2020 PNAS), Sunagar et al (2013 Toxins), Cole and Brewer (2020 bioRxiv) and transcriptome sequence assembly data from established online repositories NCBI (NR and TSA) and ENA. All the above-mentioned studies (KS is a part of many of these) under their methods section clearly state that the transcriptomes were generated using mRNA isolated from venom gland tissue (BioProject accessions: PRJEB14734; PRJEB6062; PRJNA189679, PRJNA587301 and PRJNA189679, where source tissue type is designated as venom gland).

      We would like to direct the reviewer’s attention to the following excerpts from reference papers from which data for this study has been sourced:

      1. Pineda S et al. (2020 PNAS): “Three days later, they were anesthetized, and their venom glands were dissected and placed in TRIzol reagent (Life Technologies). Total RNA from pooled venom glands was extracted following the standard TRIzol protocol.”
      2. Sunagar et al (2013 Toxins): “Paired venom glands were dissected out and pooled from nine mature females on the fourth day after venom depletion by electrostimulation. Total RNA was extracted using the standard TRIzol Plus method ...”
      3. Cole and Brewer (2020 bioRxiv): “... the venom glands of each ctenid were dissected out, whole RNA was isolated from the venom glands …”

      We would also like to point out that hexatoxins are widely studied and are some of the most well-understood spider venom toxins. Many representatives have been functionally characterised and shown to be potent in affecting prey and predatory species [Sunagar et al (2013 Toxins); Pineda et al. (2014 BMC Genomics and 2020 PNAS); Volker, et al. (2020 PNAS) - KS is a part of most of these studies as well]. However, the current technologies do not permit the high-throughput screening of the enormous diversity of toxins in spiders, which is why not every toxin sequence identified from the venom gland is functionally characterised. Nonetheless, venom researchers will not contest the role of these highly expressed venom gland proteins in envenoming, especially given that they share significant sequence identities with toxins that are functionally well-characterised.

      The only exception to the above is non-ctenid araneomorph toxin superfamily sequences, which are retrieved from whole-body transcriptomes (Cole and Brewer; 2020 bioRxiv). The authors of the paper indicated these as putative toxins. As explained above, homologs of these peptides are well-characterised to be venom toxins. Additionally, in our phylogenetic trees (Figures 3, 4, S6 and S9), they are nested within the toxin clades, reaffirming their identity.

      Third, the taxonomic representation of mygalomorph and araneomorph diversity in this study is so sparse that it becomes impossible to distinguish whether toxin recruitments have happened at the level of genera, families, or even higher-level taxa.

      We respectfully disagree with this suggestion. The taxonomic breadth investigated in this study isn’t sparse. Analysed sequences belong to groups across the breadth of the spider phylogeny. To address this criticism, we are now including a schematic representation of spider phylogeny, where lineages under investigation are highlighted (Figure 1A). Given this broader taxonomic breadth, all of our interpretations are parsimoniously extendable to their common ancestors. For instance, we establish the common origin of all DRPs in the members of these widespread spider families. Therefore, not including sequences from other sister groups will not invalidate this hypothesis, and the most parsimonious explanation will be that the missing members too are likely to have DRPs in their venom (which is also a common understanding of the spider venom research). Whether DRPs dominate the venoms of these missing groups will only come to light upon investigation, but their presence in the venom is highly likely. Moreover, please do note that we have analysed nearly all sequences available in the literature to date.

      As for the recruitment of the toxin superfamily at the taxon level, we would like to point out the phylogenies in Figures 2 and 3 that clearly show the differential recruitment events. We would also like to point out lines 120 and 136 state that this may not only be a result of recruitment and could arise from differential rates of diversification (also evident in other analyses presented in Figures 5 and Tables S2 and S3).

      Line 120 “Interestingly, the plesiotypic DRP scaffold seems to have undergone lineage-specific diversification in Mygalomorphae, where the selective diversification of the scaffold has led to the origination of novel toxin superfamilies corresponding to each genus (Figure 2).”

      Line 136 “However, we also documented a large number of DRP toxins (n=32) that were found to have diversified in a family-specific manner, wherein, a toxin scaffold seems to be recruited at the level of the spider family, rather than the genus. As a result, and in contrast to mygalomorph DRPs, araneomorph toxin superfamilies were found to be scattered across spider lineages (Figure 3; Figure S6; node support: ML: >90/100; BI: >0.95).”

      Adding any number of missing lineages will neither change the fact that araneomorphs ‘appear’ to have recruited these superfamilies at the genera level, nor the family-level recruitment of toxin superfamilies in a large number of examined mygalomorphs.

      We have now introduced a new figure (Figure 7) that highlights the different scenarios that explain the observed differences in the evolution of mygalomorph and araneomorph spider toxins. We have also included additional text in the manuscript to explain this better.

      Fourth, only a selection of DRP superfamilies was used for natural selection analyses, without the authors explaining how this selection was made. Yet, they attempted to draw general conclusions about toxin evolution in mygalomorphs and araneomorphs, even though most of the striking differences they found were restricted to just two mygalomorph genera, and one family of araneomorphs.

      From our experience and previous reports [Sunagar and Moran (2015, PLoS genetics); Sunagar, et al. (2012, MBE); Yang, Z. (2007, MBE)], the unavailability of enough sequences from datasets results in inaccurate estimation of omega values. For instance, if there are only a couple of sequences in a superfamily, both of which are slightly different from one another, then even these minor differences in them would be exaggerated. Hence, we have resorted to performing selection analysis on datasets for which there are at least 15 sequences. No doubt that this conservative approach reduces the number of datasets analysed, but it also ensures that our findings are well-supported. We have now clarified this in our manuscript under the methods section.

      However, we did previously include sequences from all toxin superfamilies described to date in our alignment figure (Fig S10) and analysed their signal and propeptide regions. They were only excluded from selection analyses. It can be seen that they too are DRPs, but they belong to distinct superfamilies from the ones being described here.

      If these concerns are addressed this study can shed important new light on venom toxin evolution in one of the most diverse venomous taxa on Earth.

      We thank the reviewer for their constructive inputs and suggestions which have enabled us to make this manuscript more accessible to a wider audience.

      Reviewer #3 (Public Review):

      This work aims to elucidate the evolutionary origins of disulfide-rich spider toxin superfamilies and to determine the modes of natural selection and associated ecological pressures acting upon them. The authors provide a compelling line of evidence for a single evolutionary origin and differing factors (e.g., prey capture strategies and methods of anti-predator defense) that have shaped the evolution of these toxins. Additionally, the two major spider infraorders are claimed to have experienced differing selective pressures regarding these toxins.

      The results presented here are novel and generally well-presented. The evidence for a single origin of DRP toxins in spiders is exciting and changes the paradigm of spider venom evolution.

      The data are well analyzed, but the methods lack enough detail to reproduce the results. More information regarding the parameters passed to each software package, version numbers of all software employed, and models of molecular evolution employed in phylogenetic analyses are among the necessary missing information.

      We thank the reviewer for their kind words and constructive and critical suggestions. Their suggestions have contributed towards improving the quality of our work. Upon their suggestion, we have now expanded the methods section to include more details.

      The differences in the evolutionary pressures between mygalomorphs and RTA-clade spider DRP toxins are clear, but expanding RTA results to all araneomorphs may be overreaching. Additional araneomorph sequence data is available, despite the claims within this manuscript (e.g., see Jiang et al.. 2013 Toxins; He et al.. 2013 PLoS ONE; and Zobel-Thropp et al.. 2017 PEERJ). These papers include cDNA sequences of spider venom glands and contain representatives of inhibitory cysteine knot toxins, which are DRP toxins. These data would greatly enhance the strengths of the results presented herein.

      In response to the expansion of RTA results to araneomorphs, we would like to point out that RTA comprises about 50% of the diversity recorded in Araneomorphae. The araneomorph data analysed in our study covers a range of araneomorph family divergence time Agelenidae (<70 MYA), Pisauridae (<50 MYA) and Theridiidae (~200 MYA, Magalhaes 2020, Biological Reviews 95.1). We report a strong signature of purifying selection influencing the evolution of araneomorph toxin SFs, despite the long evolutionary time separating them (50 - 200 MYA). We firmly believe that further addition of toxin sequence data from other groups will not deviate from the general trend of molecular evolution observed in both these lineages across such large period of time; barring certain certain exceptions (such as SF13 a defensive toxin identified from Hadronyche experiencing purifying selection; Volker, et al. 2020 PNAS).

      We had initially excluded non-ctenid datasets from our analyses on account of poor sequence annotation and lack of representative sequence data. However, we have now incorporated Dolomedes mizhoanus (DRP) (Jiang et al. 2013 Toxins) and Latrodectus tredecimguttatus (non-DRP) (He et al. 2013 PLoS ONE) toxin dataset into our analyses, following reviewer’s suggestion. This has led to identification of 5 novel superfamilies, providing additional support to our spider venom evolution hypothesis.

    1. Author Response

      Reviewer #1 (Public Review):

      Lin et al. characterise cellular pathologies in PLA2G6 mutant patient-derived neuronal cells (neuronal progenitor cells, NPCs, and IPSc-derived dopaminergic neurones) and a novel compound heterozygous PLA2G6 mutant mouse model. They build on their previous findings in an INAD fly model (lacking PLA2G6) to show that lysosomal and mitochondrial defects are evolutionary conserved in PLA2G6 deficiency. The authors proceed to use their INAD fly model and to screen a number of compounds that are predicted to modulate endo-lysosomal function using a bang sensitivity assay. They then show that the drugs that can rescue this fly behavioural phenotype also reduce LAMP2 expression in patientderived NPCs on Western blot analysis. Lastly, the manuscript reports the creation of new genetic constructs that express human PLA2G6 and study expression levels in a human kidney cell line as well as in patent-derived NPCs. In the latter neuronal model, they show that expression of human PLA2G6 can rescue mitochondrial fragmentation associated with PLA2G6 loss-of-function. Lin et al then show that ICV (intracerebroventricular) and IV (intravenous) injection of a human PLA2G6-containing construct is able to partially rescue the rotarod phenotype in PLA2G6 transheterozygous PLA2G6 mutant mice between ~110 and 150 days. There is also an associated improvement in lifespan and body weight.

      The strengths of this work are that the authors use a number of different model organism systems, including patient-derived neuronal cells, Drosophila models (INAD flies) and mouse models to study PLA2G6-associated neurodegeneration (PLAN) at the cellular level. They also screen drug compounds that are predicted to target endo-lysosomal trafficking and sphingolipid metabolic pathways to ameliorate PLAN, thus identifying potential new therapeutic strategies. The work in mice, showing that gene therapy with human PLA2G6 can rescue a behavioural phenotype and lifespan is the first proof-ofconcept of such an advancement. This work will hopefully lead to further studies for optimisation toward clinical advancement.

      We thank the reviewer and editor for the positive comments about our manuscript.

      The major weaknesses are that the pathogenic mechanisms shown in the patient-derived neuronal cells and mice do not extend as far as those previously shown in the fly model published by the authors. Of note, ceramide levels and retromer function are not studied, both key pathologies described in the previous fly models. In addition, the drug screening is limited by its testing in one fly behavioural assay and LAMP2 Western blot analysis on patient derived NPCs.

      The results, in general, support the conclusions of the authors and represent well-performed work. However, the significance of elevated glucosylceramide levels is not clear in the present study. Although this was previously found to be elevated in INAD flies, it was ceramide levels that were thought to be the main toxic insult, with drugs aimed at reducing ceramide levels being shown to rescue INAD flies.

      We addressed these concerns. Please refer to our response to each of the specific point listed below.

      This work will no doubt be of significant interest to the field, confirming several previous findings in the Drosophila model of PLA2G6 (iPLA2-VIA) knockout. It also extends upon the fly work by identifying compounds that can be further studied for potential drug-re-purposing for the treatment of PLA2G6associated disease. The gene therapy studies are also very interesting and a first proof-of-principle in PLAN using ICV and IV delivery in a mouse model.

      We thank the reviewers and editor as addressing all these concerns really improved the manuscript.

      Reviewer #2 (Public Review):

      This article aims to extend human disease-related studies of PLA2G6 from fly models to iPS-neurons, mouse models, to look for drugs that suppress phenotypes and test them, and to attempt AAV whole body rescue. Generally, each of these questions/aims/experiments is excellent, but as presented, it's a bit of an underdeveloped hodgepodge of results, with each experiment somewhat underdeveloped or analyzed for the respective phenotype, in my opinion. I think the general thrust of the experiments is excellent. But the data are relatively cursory in many instances. Further development and characterization of the phenotypes would require quite a bit of work but vastly improve the paper.

      We thank the reviewer for the positive comments about our manuscript. We have addressed most of the concerns.

    1. Author Response

      Reviewer #1 (Public Review):

      Like other sensory organs, the inner ear has a rich population of pericytes, essential for sensory hair cell heath and normal hearing. In this study, using an inducible and conditional pericyte depletion mouse (PdgfrbCreERT2/iDTR) model, the authors demonstrate that the pericytes play critical roles in maintaining vascular volume and integrity of spiral ganglion neurons (SGNs) in the cochlea. Moreover, using the coculture models, they show vigorous vascular and neuronal growth in neonatal SGN explants in the presence of exogenous pericytes. Mechanistically, this study demonstrates that these roles are achieved mainly through the interactions between pericyte-released exosomes containing VEGF-A and VEGFR2-expressing the vessels and SGNs.

      Overall, the data are analyzed thoroughly, and the conclusions are novel and convincing. It is mechanistically solid. The study is somewhat translationally limited. Nevertheless, understanding the roles of organ-specific pericytes is paramount, making this study timely and significant.

      We thank Reviewer #1 for the positive comment. We agree the pericyte depletion model is not a translational disease model. However, pericyte pathologies, including the decline in pericyte number, pericyte migration, and pericyte trans-differentiation, are frequently seen in aging and noise-induced hearing loss animal models. Moreover, hearing dysfunction due to pericyte pathology has been demonstrated in recent studies (Hou et al., 2020; Hou et al., 2018; Neng et al., 2015).

      Reviewer #2 (Public Review):

      The present study from Xiaorui Shi's lab investigated the effect of pericyte depletion on spiral ganglion neurons and auditory function. Results in vitro culture system proposed that pericyte-derived exosomes contain VEGF, and promote not just vascular stability but neuronal survival through Flk1. This study is an extension of their previous study showing pericyte depletion causes auditory dysfunction, which is ameliorated by VEGF gene therapy (Zhang et al., JCI insight 2021). Overall, the data are clear and sophisticated and promote our understanding of the biological roles of pericytes in neuronal function. Several points should be thoroughly discussed or supported by definitive experiments like analysis of neuron-specific Flk1 KO mice.

      We thank Reviewer #2 for the encouraging positive comments on our study. We especially appreciated the reviewer’s view that there would be value in using neuron-specific Flk1 KO mice to consolidate the results. However, since our in vitro adult SGN neuron cell culture model cearly demonstrates the direct role of exosome-VEGF-A signaling on adult SGN health, as shown in Figs. 5D & E and Figs. 9C & E, we are confident our conclusion is valid. A recent study used neuron-specific Flk1 conditional KO mice to demonstrate neuronal atrophy and dysfunction in memory impairment (Deyama et al., 2020). We do presume disruption of neuronal VEGF/FLK1 signaling in a specific neuronal Flk-1 deletion animal model would cause similar spiral ganglion death and subsequent hearing loss. To test this possibility, we are seeking a Cre-SGN driver animal model from the auditory community and Flk1 floxed mice from the larger research community. Of course, obtaining these models and setting up for a future study will require some time. Nevertheless, reviewer #2’s suggestion is excellent, we have added discussion of the suggestion to the Discussion section.

      Reviewer #3 (Public Review):

      Zhang et al focus on investigating the role of pericytes in the vasculature of the inner ear. They propose that pericyte-derived VEGF is required for vessels and SGN survival. Functionally, they show that pericyte ablation leads to hearing loss.

      This work is interesting to the scientific community. It describes a very specific organ vasculature and its potential crosstalk with the neuronal compartment in the peripheral nervous system.

      Major strengths and weaknesses:

      • The study is well explained, written, and discussed;

      • The design of the experiments is adequate;

      • The study is performed in vivo, in vitro, and with functional readouts;

      • Results are convincing.

      We thank the reviewer for the positive comments on our study. We especially appreciate the reviewer’s suggestions for improving the soundness and quality of the study. We address Review#3’s specific concerns below.

      The main conclusion of the study is that pericyte-derived VEGF acts on inner ear vessels and SGNs to maintain their functionality and survival. While all presented data supports this model, there could be other potential interpretations that should be tested and validated with further evidence:

      The in vitro experiments are performed with SGN explants. Using this system the authors see that pericyte-derived conditioned medium or exosomes lead to increase vessel branching and SGN neurite outgrowth. As explants contain vessels and neurons, there is the possibility that VEGF is primarily acting on endothelial cells, which then in turn signal to neurons (independent of VEGF, even when neurons express VEGFR2). This should be tested. Perhaps by targeting VEGFR2 specifically in neurons, or by culturing isolated SGN neurons and testing the effect of pericyte-derived exosomes.

      This is a great point. To confirm the effect of exosome VEGF-A on SGN neurite outgrowth, we treated isolated adult SGNs with exosomes. As shown in Figs.9C & E, we found much greater SGN dendrite and branch growth in the treated than in the untreated groups.

      • Pericyte ablation via DTA might result in the activation of the immune system, which could also influence vessel and neuronal survival. It should be checked whether there is immune activation upon pericyte ablation.

      Excellent point. We checked on macrophage activation at two weeks after pericyte depletion. We didn’t see any obvious signs of macrophage activation, but we did notice a decrease in macrophage number. We presume the reduction in macrophage number results from insufficiency blood flow and nutrient availability.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors examined the impact of pre-gravid obesity in human mothers on the monocytes of newborns by collecting umbilical cord blood. Additionally, the authors also used a non-human primate (NHP) model of diet-induced obesity to isolate fetal macrophage and assess the impact of maternal obesity on fetal macrophage function. The comprehensive analysis of the human umbilical cord blood monocytes by studying cytokine release, bulk RNA-seq and bulk ATAC-seq, single cell RNA-seq and single cell ATAC-seq, responses to pathogen stimulation as well as metabolic studies such as glucose uptake are major strength of the work. They present convincing evidence that the monocytes of offspring with obese mothers have epigenetic and transcriptomic profiles consistent with impaired immune responses, both during baseline conditions and upon stimulation.

      We thank the reviewer for these positive remarks

      However, it is not clear from the data how the epigenetic data and the transcriptomic data are related to each other. The implication that the epigenetic changes drive the downstream transcriptional differences is not clearly demonstrated. Furthermore, it is not clear which of the observed attenuations of monocyte transcriptional responses overlap with chromatin accessibility differences. Such an overlap would make a stronger case for the mechanistic link.

      We thank the reviewer for this suggestion. We have included an integration section - with overlap of baseline ATAC-Seq (data from this study) with gene expression responses (from a previous study; https://doi.org/10.4049/jimmunol.1700434) following LPS stimulation in lean and obese groups - Figure 4E. Additionally, we report overlap of LPS induced chromatin changes with gene expression changes following LPS, E.coli and RSV stimulation in Figure 5I. Collectively, these changes provide the reader with a better link between chromatin accessibility and gene expression differences and their discordance with maternal obesity.

      The increased phagocytosis of E.coli in umbilical cord monocytes of newborns with obese mothers appear counter-intuitive because it implies greater host defense capacity.

      E.coli uptake assay is a standard way of measuring cellular phagocytosis by flow cytometry. We would like to clarify that despite impaired ex vivo cytokine responses and poor migration, UCB monocytes demonstrate higher ability to phagocytize pathogens. This is counterintuitive but not surprising, given that enhanced phagocytosis is a hallmark of regulatory monocytes/macrophages.

      One of the most remarkable aspects of the manuscript is the analysis of the fetal macrophages in a non-human primate (NHP) model of diet induced obesity because of the challenge of studying fetal macrophages in humans. The cytokine assays nicely show that the fetal macrophages in the obesity model show impaired cytokine production, consistent with what was seen in the umbilical cord blood monocytes of human newborns. This is especially important because circulating monocytes or monocyte progenitors seed the fetal tissues and give rise to fetal macrophages, thus elegantly linking the human work on circulating umbilical cord blood monocytes to the tissue macrophages in the NHP model. However, the NHP studies do not show any additional macrophage characterization beyond the cytokine assays. Flow cytometry analysis of the macrophage phenotype and functional assays would strengthen the conclusions regarding macrophage dysregulation.

      We have now included phenotyping data for ileal and splenic macrophages in Figure 6C-6E, which were collected during cell sorting. We unfortunately are not able to carry out additional functional assays since we don’t have any additional cells from these animals.

      Reviewer #2 (Public Review):

      This paper will be of interest to scientists studying the molecular effects of maternal obesity on offspring health. The paper represents an extension to earlier findings that have linked epigenomic alterations of monocyte population to aberrant immune responses in offsprings of obese mothers. Bulk and single cell technologies have been implemented to characterize monocytic responses to bacterial and viral pathogens at the transcriptional and epigenetic level. A macaque model of western-style diet induced obesity is also described to provide in vivo evidence in support of monocyte/immune cell reprogramming by western diet/obesity. However, enthusiasm for the paper is significantly dampened by a lack of clarity in data presentation and robustness of the analysis

      We thank the reviewer for this comprehensive summary and thoughtful assessment

      Reviewer #3 (Public Review):

      The manuscript by Sureshchandra et al is a very extensive analysis of monocyte function and their molecular landscape in cord bloods from lean and obese mothers. They aimed to analyze the effects of pre-pregnancy BMI on the functioning of the innate immune system in newborns in a very extensive way. The combination of functional and molecular analyses strengthens their observations and shows many different sides of monocyte activation. I think this approach needs to be praised and should be an inspiration to many others who study monocyte function. This allows for a broad view on the matter and also shows where potential targeting will be necessary in the future. Overall, the manuscript and particularly the methods section is very well written and extensive, making it easy to study how robust the data are.

      We thank the reviewer for their comprehensive and positive assessment of our work

    1. Author Response

      Reviewer #2 (Public Review):

      This is an interesting study investigating the effects of sensory conflict on rhythmic behaviour and gene expression in the sea anemone Nematostella vectensis. Sensory conflict can arise when two environmental inputs (Zeitgeber) that usually act cooperatively to synchronize circadian clocks and behaviour, are presented out of phase. The clock system then needs to somehow cope with this challenge, for example by prioritising one cue and ignoring the other. While the daily light dark cycle is usually considered the more reliable and potent Zeitgeber, under some conditions, daily temperature cycles appear to be more prominent, and a certain offset between light and temperature cycles can even lead to a breakdown of the circadian clock and normal daily behavioural rhythms. Understanding the weighting and integration of different environmental cues is important for proper synchronization to daily environmental cycles, because organisms need to distinguish between 'environmental noise' (e.g., cloudy weather and/or sudden, within day/night temperature changes) and regular daily changes of light and temperature. In this study, a systematic analysis of different offsets between light and temperature cycles on behavioural activity was conducted. The results indicated that several degrees of chronic offset results in the disruption of rhythmic behaviour. In the 2nd part of the study the authors determine the effect of sensory conflict (12 hr offset that leads to robust disruption of rhythmic behaviour) on overall gene expression rhythms. They observe substantial differences between aligned and offset conditions and conclude a major role for temperature cycles in setting transcriptional phase. While the study is thoroughly conducted and represents and impressive amount of experimental and analytical work, there are several issues, which I think question the main conclusions. The main issue being that temperature cycles by themselves do not seem to fulfil the criteria for being considered a true Zeitgeber for the circadian clock of Nematostella.

      Major points:

      Line 53: 'However, many of these studies did not compare more than two possible phase relationships.....'. Harper et al. (2016) did perform a comprehensive comparison of different phase relationships between light and temperature Zeitgebers (1 hr steps between 2 and 10 hr offsets), similar to the one conducted here. I think this previous study is highly relevant for the current manuscript and -- although cited -- should be discussed in more detail. For example, Harper et al. show that during smaller offsets temperature is the dominant Zeitgeber, and during larger sensory conflict light becomes the dominant Zeitgeber for behavioural synchronization. Only during a small offset window (5-7 hr) behavioural synchronization becomes highly aberrant, presumably because of a near breakdown of the molecular clock, caused by sensory conflict. Do the authors see something similar in Nematostella? Figure 3 suggests otherwise, at least under entrainment conditions, where behaviour becomes desynchronized only at 10 and 12 hr offset conditions. But in free-run conditions behaviour appears largely AR already at 6 hr offset, but not so much at 4 and 8 hr offsets (Table 2). So there seems to be at least some similarity to the situation in Drosophila during sensory conflict, which I think is worth mentioning and discussing.

      We have added a more detailed discussion of our results in the context of Harper et al. 2016 (L468-476).

      Line 111: The authors state that 14-26C temperature cycle is 'well within the daily temperature range experienced by the source population'. Too me this is surprising, as I was not expecting that water temperature changes that much on a daily basis. Is this because Nematostella live near the water surface, and/or do they show vertical daily migration? Also, I do not understand what is meant by '...range of in situ diel variation (of temperature)'. I think a few explanatory words would be helpful here for the reader not familiar with this organism.

      In fact, one of our motivations for studying temperature is that Nematostella naturally experience extreme temperature variation. The data we cite (Tarrant et al. 2019) are from in-situ water measurements. Nematostella live in extremely shallow water (in salt marshes), and the local population in Massachusetts experience wide swings in temperature due to the temperate latitude.

      We have added this information to the Introduction (L88-90), and we also added a discussion of Nematostella’s ecology in the Discussion section (L591-654).

      Lines 114-117: I was surprised that clock genes can basically not be synchronized by temperature cycles alone. Only cry2 cycled during temperature cycles but not in free-run, so the cry2 cycling during temperature cycles could just be masking (response to temperature). Later the authors show robust molecular cycling during combined LD and temperature cycles (both aligned and out of phase), indicating that LD cycles are required to synchronize the molecular clock. Moreover, a previous study has demonstrated that LD cycles alone (i.e., at constant temperature) are able to induce rhythmic molecular clock gene expression (Oren et al. 2015). Similarly, the free running behaviour after temperature cycles does not look rhythmic to me. In Figure 2A, 14-26C there is at best one peak visible on the first day of DD, and even that shows a ~6 phase delay compared to the entrained condition. After the larger amplitude temperature cycle (8:32C) behaviour looks completely AR and peak activity phases in free-run appear desynchronized as well (Fig. 2B). Overall, I think the authors present data demonstrating that temperature cycles alone are not sufficient to synchronize the circadian clock of Nematostella. One way to proof if the clock can be entrained is to perform T-cycle experiments, so changing the thermoperiod away from 24 hr (e.g., 10 h warm : 10 h cold). If in a series of different T-cycles the peak activity always matches the transition from warm to cold (as in 12:12 T-cycles shown in Fig. 1A) this would speak against entrainment and vice versa.

      Thank you for these thoughtful comments and constructive suggestions. We have conducted an additional experiment, which provides further evidence that temperature cycles can, in fact, synchronize the circadian clock. To do this, we measured the behavior of animals entrained in cycles with a short (12h) period, half the length of a circadian period. This takes advantage of a phenomenon called “frequency demultiplication”, in which organisms in 12h environmental cycles display both 12h and 24h components--essentially, the clock perceives every other cycle as a “day” (Bruce, 1960; Merrow et al., 1999). The important thing is that the 24h behavioral component can only occur if the signal is entraining a circadian clock—otherwise, we would only observe a directly-driven 12h behavior pattern.

      We first show that this phenomenon occurs with 6:6 LD cycles—which we expected, because we know light is a zeitgeber. We then show that animals entrained to a temperature cycle with a 12h period also display 24h behavioral rhythms—and in fact the 24h component is stronger than the 12h component. We believe this is strong evidence that temperature is a bona fide zeitgeber in this system. This experiment is now explained in the Results (L127-154) and in Figure 2–Figure supplement 1.

      In terms of our original data, the reviewer is correct that the statistically-detectable free-running rhythms were weak and not visually obvious). Our confidence in thermal entrainment came from the fact that some individual animals had 24h rhythmicity in free-run, even if the signal was weak in the mean time series—this suggested that temperature must be at least capable of synchronizing internal clocks. It is also important to note that even light-entrained rhythms are “noisy” in cnidarians, which is why we were not surprised that the signal was weak. We have added a discussion of this observation in L601-612.

      Lines 210-226: As mentioned above, I think it is not clear that temperature alone can synchronize the Nematostella clock and it is therefore problematic to call it a Zeitgeber. Nevertheless, Figure 3A, B, D show that certain offsets of the temperature cycle relative to the LD cycle do influence rhythmicity and phase in constant conditions. This is most likely due to a direct effect of temperature cycles on the endogenous circadian clock, which only becomes visible (measureable) when the animals are also exposed to certain offset LD cycles. My interpretation of the combined results would be that temperature cycles play only are very minor role in synchronizing the Nematostella clock (after all, LD and temperature cycles are not offset in nature), perhaps mainly supporting entrainment by the prominent LD cycles.

      With our new data (see previous point), we believe we can safely say that temperature is a zeitgeber. We are not totally clear on what is meant by “a direct effect of temperature cycles on the endogenous circadian clock.” We argue that, because we see changes in free-running behavior during certain offsets, the timing of temperature cycles must affect the internal clock in a way that persists during constant conditions—it can’t just be a direct (clock-independent) effect of temperature.

      Gene expression part: The authors performed an extensive temporal transcriptomic analysis and comparison of gene expression between animals kept in aligned LD and temperature cycles and those maintained in a 12 hr offset. While this was a tremendous amount of experimental work that was followed by sophisticated mathematical analysis, I think that the conclusions that can be drawn from the data are rather limited. First of all, it is known from other organisms that temperature cycles alone have drastic effects on overall gene expression and importantly in a clock independent manner (e.g., Boothroyd et al. 2007). Temperature therefore seems to have a substantially larger effect on gene expression levels compared to light (Boothroyd et al. 2007). In the current study, except for a few clock gene candidates (Figure 2C), the effects of temperature cycles alone on overall gene expression have not been determined. Instead the authors analysed gene expression during aligned and 12 h offset conditions making it difficult to judge which of the observed differences are due to clock independent and clock dependent temperature effects on gene expression. This is further complicated by the lack of expression data in constant conditions. I think the authors need to address these limitations of their study and tone down their interpretations of 'temperature being the most important driver of rhythmic gene expression' (e.g., line 401). At least they need to acknowledge that they cannot distinguish between clock independent, driven gene expression and potential influences of temperature on clock-dependent gene expression rhythms. Moreover, in their comparison between their own data and LD data obtained at constant temperature (taken from Oren et al. 2015), they show that temperature has only a very limited effect (if any) on core clock gene expression, further questioning the role of temperature cycles in synchronising the Nematostella clock. Nevertheless, I noted in Table 3 that there is a 1.5 to 3 hr delay when comparing the phase of eight potential key clock genes between the current study (temperature and LD cycles aligned) and LD constant temperature (determined by Oren et al.). To me, this is the strongest argument that temperature cycles at least affect the phase of clock gene expression, but the authors do not comment on this phase difference.

      We agree with these points about the limitations of our study, and have revised the manuscript to phrase our conclusions more carefully. We still think it is reasonable to observe that temperature was a stronger drive of gene expression than light in our study, but this may not be true in other contexts.

      In terms of the comparison with Oren et al. 2015, we didn’t want to over-interpret these results because there are other differences between the studies (L1181-1185), including the use of a different source population. In addition, we would prefer denser sampling (2h time points rather than 4h) and larger sample sizes to make claims about phase differences.

      Network analysis: This last section of the results was very difficult to read and follow (at least for me). For example, do the colours in Figure 6A correspond to those in Figure 6B, C? A legend for each colour, i.e., which GO terms are included in each colour would perhaps be helpful. As mentioned above, I also do not think we can learn a lot from this analysis, since we do not know the effects of temperature cycles alone and we have no free-run data to judge potential influence on clock controlled gene expression. Under aligned conditions genes are expressed at a certain phase during the daily cycle (either morning to midday, or evening to midnight), which interestingly, is very similar to temperature cycle-only driven genes in Drosophila (Boothroyd et al. 2007). Inverting the temperature cycle has drastic effects on the peak phases of gene expression, but not so much on overall rhythmicity. But since no free-run data are available, we do not know to what extend these (expected) phase changes reflect temperature-driven responses, or are a result of alterations in the endogenous circadian clock.

      We have revised and streamlined this section and Fig. 6, including removing panel 6C. The colors do correspond across panels in the figure. For space, GO terms of select modules are included in Fig. 6, and GO results for all modules are included in the Supplemental Data and discussed in the Results.

      It is true that we can’t distinguish temperature-driven versus clock effects here, and it does seem like many modules simply follow the temperature cycle (which we say in this section). The most interesting finding from this section is probably that the co-expression structure (correlations between rhythmic genes) are substantially weakened during SC, and we do discuss certain modules of genes that lose or gain rhythmicity. We have revised this section to focus on the main points and have cut several of the less pertinent results.

      Reviewer #3 (Public Review):

      This article reflects a significant effort by the authors and the results are interesting.

      For the third set of experiments, are temperature and light really out of synch? While peak in temperature no longer occurs along with lights on, we do still have two 24 hour cycles where changes in the environmental cues still occur simultaneously (lights on with peak in temperature, lights off with min in temperature). I wonder what would happen if light remained at a 24 hour cycle and temperature became either sporadic (randomly changing cycles) or was placed on a longer cycle altogether (temperature taking 20 hours to increase from min to max, and then another 20 hours to go from max to min).

      Thank you for your interesting suggestions for future experiments. This point is addressed in our revisions responding to Reviewer #1, who requested a discussion of the phrase “sensory conflict.” We agree that the binary “in-sync vs. out-of-sync” may be too simplistic. Our original conception of sensory conflict was a situation in which light and temperature provide different phase information, as informed by experiments with only light (prior literature) or only temperature (this work).

      In our revised manuscript, we discuss the idea that “sensory conflict” is not always a useful framework because there are many possible relationships between light and temperature. Although our 12h offset is certainly less “natural” than our aligned time series, it may be useful to think of them simply as 2 different possible light and temperature regimes in which the two signals interact, rather than abstract ideals of “aligned” or “misaligned.”

      An area that could significantly benefit a broader readership would be to improve overall clarity of figures and rethink if all the results are necessary to convert the key findings of the paper. As written, the results sections is somewhat confusing.

      We have revised Figs. 1 and 6 for clarity, and we have also shortened the network analysis portion of the Results.

    1. Author Response

      Reviewer #1 (Public Review):

      Here the authors sought to understand how BPGM/2,3-BPG levels are involved in adaptive responses to hypoxia and whether they are involved in fetal growth restriction. In the current state, I find the data to be confusing and lacking in mechanistic data to justify that increased BPGM is an adaptive response to hypoxia. While the authors find increased staining for the enzyme BPGM in SpA-TGCs after hypoxia, they did not assess 2,3-BPG in cord blood. This would show that increased enzymatic levels have a downstream impact. MRI experiments assessing placental and fetal haemoglobin-oxygenation, showed no differences. Human FGR samples, however, showed reduced 2,3-BPG in cord blood. Further evidence is required to show hypoxia increases BPGM as a compensatory mechanism to permit adequate 2,3-BPG and placental-fetal oxygenation levels as the authors claim.

      Additional experiments that demonstrate that BPGM is advantageous in the context of hypoxia would strengthen the authors arguments, and would provide a novel mechanism for adaptive responses to hypoxia in the placenta which is highly interesting.

      Obtaining cord-blood from mouse embryos and analyzing its 2,3 BPG content is technically not feasible thus we concentrated on the human data only. However note that the dominant physiological effect would be on maternal blood in the placenta, where local elevation of 23BPG can aid in oxygen release.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript will be of interest for investigators in the field of development and the biology of pregnancy. The major strengths of the data are the detailed description of a hypoxia-induced mouse model of fetal growth restriction, where phenotypes, tissue histology, MRI images and metabolic analysis combine to characterize the experimental system. The data seem descriptive and preliminary, and the comparison to human pregnancy is neither supportive nor rigorous.

      Strengths

      • The mouse pregnancy has been used by the authors and by others as a model for placental insufficiency. The manuscript provides incremental data to characterize hypoxia- induced fetal growth restriction

      • The 15.2T MR imaging technology is high quality and informative, even if the results did not reveal marked changes.

      • The detailed characterization of BPGM expression in the apical mouse placental surfaces is valuable.

      • The provided model may be useful for future studies by the authors.

      Weaknesses

      • The metabolic analysis was restricted to one enzyme and metabolite. Placental analysis of 2,3-BPG and BPGM were already published (ref 29-30). At best, if the 2,3 BPG is related to the phenotype, it night be interpreted as a part of the injury in human cases, and adaptive response in the mouse models (as the authors suggested lines 286-288 and 332-336.). However, these assumptions are not tested.

      In the paper of Pritlove et al. (ref. 29) the authors demonstrated the expression of BPGM in normal human cohort. However, they did not test BPGM expression or 2,3 BPG levels in FGR placentae. In the paper of Gu et al. (ref. 30) the authors analyze murine placental BPGM expression secondary to igf2 deletion. Our study is the first to demonstrate the impact of maternal hypoxia on placental BPGM levels in murine gestational hypoxia models .

      • The human cases are not very informative. The causes of FGR were not known, but clearly (Table 1) not analogous to that of the mouse model. Systemic hypoxia in humans might have been more informative. In its absence, the value of cross-species comparison is low. -

      • While the provided experiments are of good quality, the approach is very descriptive and not advancing mechanistic understanding of FGR-related placental insufficiency.

      The human placenta were specifically selected to exclude known causes of FGR such as heavy smoking or iron deficiency. We will work to expand the diversity of cases to test the potential role of BPGM in those cases as well.

    1. Author Response

      Reviewer #1 (Public Review)

      This manuscript describes a new method to perform online movement correction and extraction of calcium signals from a miniscope. The efficiency of the algorithm is tested by quantifying the accuracy of animal location decoding from hippocampal place cells. The online decoding happens with virtually no delay which is promising for closed-loop methods. It seems to be superior to online decoding without motion correction, which was the state of the art.

      The strength of this technique is therefore that it achieves real-time processing.

      The weakness of the study is the lack of comparison of the decoding accuracy with what can be obtained with electrophysiological state of the art, which prevents really estimating how precise the technique is.

      In revision, we present data showing that when our system is used to decode contour-based calcium traces from N≈50 neurons, the decoder achieves a mean distance error of ~30 cm which is worse than the mean error of ~20 cm achieved using maximum likelihood decoding of single unit spike trains from electrophysiological recordings (Fig. 7E). However, when decoding of N=900 contour-free calcium traces from the same image frames in the same rats, the mean decoding error goes down to ~15 cm, which is better than the mean for electrophysiological recordings. From this we conclude that real-time decoding of position from calcium traces achieves accuracies similar to those achievable with electrophysiology.

      Although less critical, there is no demonstration of a closed-loop application.

      It is true that we have not yet demonstrated a real-time closed loop application, but by demonstrating short latency generation of TTL outputs triggered by the decoder, we demonstrate the capability for closed-loop applications.

      Real-time position decoding is technically nice, but the position can be obtained from tracking the animal so it is practically useless.

      We offer two points in reply to this comment. First, decoding position from neural activity could offer useful (though not yet demonstrated) capabilities that would not be achievable with simple position tracking; for example, the position decoder could be trained on CA1 signals obtained during waking and then used to read out position trajectories generating during REM sleep.

      Second, and more importantly, position decoding was selected as a benchmark for performance testing mainly because it allows highly precise comparisons between decoder predictions and ground truth, which is important for establishing that the fidelity of calcium signals imaged in real time is adequate for accurate decoding of behavior at short latencies.

      It is also clear that decoding position on a linear track is easier than on a 2D arena, therefore it is difficult to estimate how much the efficiency of the method can be challenged in harder settings.

      It is true that decoding in a 2D arena would be a greater challenge than a 1D linear track, but in pursuit of our goal to rapidly disseminate a system with capabilities for short latency decoding of behavior from calcium signals, optimizing system performance for one specific application (e.g,, position decoding) is not our main priority. A higher priority is to offer versatility for a wide range of experimental applications. To better demonstrate such versatility, the revised manuscript includes a new section in the Results that demonstrates categorical classification of behaviors during an instrumental touchscreen task.

      Reviewer #2 (Public Review):

      In this paper, the authors developed a new device for online decoding of position based on calcium imaging in freely moving rodents. This device could be used in the brain-computer interface to investigate neurofeedback-based therapies for neurological disorders. The technical part is properly done and gives convincing results that can be truly helpful for the scientific community using the miniscope. Nevertheless, as a methodological article, there should be more details regarding the accuracy of the decoding and of the different steps to follow if someone wants to use their methodology. Moreover, a true online real-time experiment should be performed to validate the device.

      Please find below my comments:

      • From what I read the authors did not perform a true real-time experiment. I think this step iscrucial to ensure the quality of their device.

      It is unclear from this comment where to draw the bar for a “true real-time experiment.” Some previous publications of real-time approaches (such as refs #6,#11,#26) have proposed causal algorithms without performance tests in hardware at all, whereas others (such as ref #14) have performance tested their system in hardware by carrying full experiments using closed-loop feedback (albeit with much smaller numbers of calcium trace predictors than we demonstrate here) without comparing different algorithmic approaches. Here we use an intermediate strategy of feeding raw offline video from a virtual sensor through the hardware processing pipeline (verifying that calcium trace outputs were identical for the real and virtual sensors). We adopted this intermediate approach to achieve the dual objectives of testing a true hardware implementation on real-time performance measures (e.g., microsecond processing latencies) while also benchmarking different algorithms (such as CB versus CF trace extraction as in Fig. 3, or raw calcium traces versus deconvolved spikes as in panel A of the Supplement to Fig. 3) against one another on the same datasets.

      • There should be a validation against a classical offline Bayesian decoding.

      We have presented an accuracy comparison for decoding linear track position from calcium traces with DeCalciOn versus decoding from single-unit spikes with electrophysiological recording data (Fig. 7E); decoding from single-unit spikes utilized a classical Bayesian maximum likelihood approach (see Methods), so Fig. 7E not only offers a comparison between calcium imaging versus electrophysiology, but between online linear classifier versus classical offline Bayesian approaches as well. In addition, we compared the performance of the linear classifier to a naïve Bayes decoder in panel B of the Supplement to Fig 3, showing that performance is better for the linear classifier than naïve Bayes.

      • "To mimic these steps using the virtual sensor in our performance tests, one session of imagedata was collected and stored from each of the 13 rats, yielding ~7 min (8K-9K frames) of sensor and position tracking data per rat. The linear classifier was then trained on data from the first half of each session and tested on data from the second half." This sentence is not clear enough. The authors should clearly describe the exact time needed for each experimental step. What is the time needed for instance for the experimental step 2, during which the linear classifier is trained to decode behavior from the initial dataset? This is crucial information if someone wants to use this device.

      In response to this comment, the Results section of the revised manuscript includes an extensive subsection (‘Steps of a real-time imaging session’) that describes each experimental step in detail (pages 4-6), including the time required for each step. In addition, this information is now more thoroughly summarized in the diagram of Fig. 1B.

      How the accuracy varies with the duration (or the quality) of the initial dataset? It is important that the authors provide an investigation of this to validate their device.

      This issue is now discussed in the Results near the bottom of page 5. In addition, Fig. 3G now plots how position decoding improves as a function of the size of the training dataset.

      • For instance, what is the decrease in decoding accuracy 1) with fewer place cells?

      The scatterplots in the right panels of Fig. 3D show that decoding accuracy improves as a function of the number of neurons imaged in given rat.

      What is the approximative number of place cells to obtain reliable decoding?

      This question is addressed by showing how decoding accuracy improves with the number of imaged neurons (Fig. 3D scatterplots). We also address this issue on our performance comparison of CB versus CF and CF+ traces since differing numbers of calcium trace predictors appear to be an important factor in accounting for the observed performance differences, as discussed in the main text (page 16, last paragraph).

      2) With the duration of the initial recording session. Here it seems to be of the order of 3-4 min.What if the recording session is shorter? Is there some constraint about this recording session (in terms of speed, stops, etc...) to obtain good decoding?

      The revised Fig. 3G plots how position decoding improves as a function of the size of the training dataset.

      3) Is there a link between the decoding accuracy and the number of place cells nearby?

      We did not select calcium traces that met a spatial criterion (i.e, “place cells”) to be include in the decoding analysis, Instead, all detected CA1 calcium traces provided input to the decoder, regardless of their spatial tuning properties (Fig. 3D and panels D,E of the Supplement to Fig. 3 show that many cells were indeed spatially tuned). Also note that when contour-free (CF) trace extraction methods were used, each calcium trace could detect fluorescence from multiple neurons. Under this methodology it is not straightforward to analyze how decoding accuracy at a given position varies with the “number of place cells nearby” and we are not convinced that presenting such an analysis would advance our main goal of demonstrating DeCalciOn’s capabilities to researchers.

      • The authors specified the time delay of 2.5ms for their device. Yet, it is pointless regarding thepurpose of the decoding. The important information is the precise position of the animal when the device is used to trigger a stimulation at a given location. Again, a true online experiment should be done to validate that a TTL can be triggered by the device at a precise location (with a quantification of the error made).

      We agree that this is an important issue, and it has been thoroughly addressed in the revised manuscript.

      • There is no information on the accuracy of the decoding with respect to the location in thelinear track. It is likely that the extremities of the linear track will be better identified. Figure 4C does not provide a clear description of the error made. The choice of D=2 (which seems to represent the spatial bin) is not justified. Two spatial bins seem to represent +/-40 cm which is quite large.

      Polar plots in Fig. 3F of the revised manuscript show mean accuracy in each position bin for decoders trained on offline, CB, CF,. and CB+ calcium traces.

      • The movement artefacts are not equally observed in the maze. The way they are correctedmight be captured by the linear decoder. These artefacts might have a strong influence on the decoding. Please provide a quantification of the correction made during steps 1 and 2 in relation to the position of the animal on the linear track. The authors should provide a correlation between the presence of these corrections with the decoding accuracy.

      Regardless of whether analysis is done offline or online, any calcium imaging and decoding experiment is vulnerable to two potential problems arising from motion artifact:

      PROBLEM #1. Image motion can generate noise in calcium signals that disrupts the accuracy of decoding.

      PROBLEM #2. Image motion that is correlated with behavior can convey uncontrolled information that allows the decoder to learn predictions from image motion rather than calcium signals. Very few published in-vivo calcium imaging experiments provide adequate controls for these two possible sources of artifact (again, such controls are just as necessary for offline as for online experiments). In response to the referee comments, we have provided controls for these confounds in our performance tests of DeCalciOn’s online decoding capabilities.

      Fig. 4B of the revised paper shows that without online motion correction, several rats in the linear track experiment show a significant correlation between position error and motion artifact (indicated by positive values on the y-axis); hence, motion artifact impairs decoding of position on the linear track in these rats (problem #1 above). This correlation between motion artifact and decoding error is reduced or eliminated by online motion correction (as indicated by values near zero on the x-axis), demonstrating that online motion correction helps to prevent motion artifact from impairing the accuracy of decoding.

      Fig. 6 of the revised paper shows that during an operant touchscreen experiment, motion artifact occurs preferentially during specific behaviors such as visiting the food magazine (reward retrieval, Fig. 6A) or touching the screen to make a response (correct choice, Fig. 6B). When motion correction is not used (top graphs in Figs. 6C-F), the average motion artifact is higher during frames when the decoder accurately predicts behavior than during frames when the decoder fails to predict behavior; hence, motion artifact appears to improve the accuracy of predicting these behaviors (problem #2 above). When motion correction is used, the average motion artifact no longer differs for correctly versus incorrectly decoded frames (except in one case, bottom right graph of Fig. 6E), indicating that motion correction helps to prevent the decoder from learning to predict behavior from motion artifact.

      • Besides the methodological part, I have some physiological questions. It is quite common inlinear tracks to have bi-directional and unidirectional place cells. Is it the case here? How many? It is difficult to see this in figure C. Is there an error due to the online decoding of the position in the two directions of the linear track?

      Again, since we did not select calcium traces that met a spatial criterion (i.e, “place cells”) to be include in the decoding analysis, and since CF traces could detect fluorescence from multiple neurons, we are not convinced that presenting a detailed analysis of this issue would advance our primary goal of demonstrating DeCalciOn’s capabilities to reseachers.

      Reviewer #3 (Public Review):

      DeCalciOn is an innovative contribution to the toolbox of real-time processing of calcium imaging data. It provides calcium traces from hippocampal CA1 neurons with a roughly two-millisecond latency and uses them to decode the position of rats running along a linear track - setting the stage for closed-loop experiments requiring fast interpretation of neural activity. The manuscript would be strengthened by a more systematic, empirical comparison to other, currently available alternative approaches. In addition, the decoding analysis does not fully account for the possibility of artifactual motion in the imaging video being informative of position.

      We suggest strengthening this manuscript by addressing the following four points:

      1) In the discussion of other platforms, the authors state that "Any system that lacks motionstabilization would also be vulnerable to artifactually decoding behavior from brain motion (which can be correlated with behavior) rather than neural activity." It follows that the same problem might also occur with incomplete motion correction. While the motion-corrected video shown in Supplementary Video 1 has reduced motion compared to the raw video, motion is still visible, including outside of the marked jitter. It remains possible that the linear decoders for the position in the linear track are utilizing brain motion-induced, as opposed to calcium fluorescence-induced, signal changes. A critical first step to assess this issue is to ask whether the motion in the video is related to the rat's behavior. One could test whether the 2D motion displacement traces can be used to predict rat position using linear classifiers.

      Briefly, we show that motion correction helps to prevent the decoder from learning to predict behavior from motion artifact.

      2) The manuscript would benefit from repeating the experiment in a more complex environment,such as a 2D arena. This would increase the generalizability of the findings. In addition, increasing the complexity of the environment would reduce the possibility that particular types of brain motion are closely linked with positions in the environment.

      We have diversified our performance testing by presenting results for decoding calcium activity from a different brain region (OFC rather than CA1) during a different kind of behavior (an instrumental touchscreen task rather than a linear track).

      3) The authors present an interesting comparison between "contour-free" and traditionalcontour-based source extraction. A more comprehensive discussion on the history or novelty of "contour-free" calcium imaging processing would contextualize this result.

      The revised Discussion section contains a new subsection titled “Source identification” to contextualize this issue.

      4) In the discussion, the authors compare DeCalciOn to two previous online calcium imagingalgorithms. The technical innovations of this work would be better highlighted by directly testing all three of these algorithms, ideally on similar datasets.

      Briefly, one of the two cited systems is designed for compatibility with benchtop 2P microscopes and does not interface with miniscopes; public resources are not available for the other cited online algorithm.

    1. Author Response

      Reviewer #3 (Public Review):

      This is an interesting study to examine how alveolar bone responds to oral infection using unbiased scRNA-seq. The manuscript is well-written and the results are convincing.

      1) The authors should revise the abstract. The study did nothing with the understanding of healing. The whole conditions were performed under infection and inflammation which actually induce bone loss, but not healing.

      Thank you for raising this point. We have revised the manuscript accordingly.

      2) Since periapical inflammation causes progressive bone loss, how MSC with increasing osteogenic potentials contributes to bone loss? The authors should discuss it.

      We would like to thank the reviewer for this important comment. Although AP is an inflammatory disease with periapical bone loss, the progression of AP is usually self-limiting in which a new equilibrium has been established between root canal pathogens and anti-infective defense mechanisms (Wang, Zhang, Xiong, & Peng, 2011). Animal experiments revealed that the bone lesion size reached to stable 21 days after establishing AP, which was resulted from a balance of bone remodeling (Márton & Kiss, 2014; Wang et al., 2011). Previous studies have shown that human apical granulation tissues contain osteogenic cells (Maeda, Wada, Nakamuta, & Akamine, 2004). A population of MSCs were isolated from human periapical cysts, which tended to be directed to differentiate toward the osteogenesis lineage (Marrelli, Paduano, & Tatullo, 2013, 2015; Tatullo et al., 2015). Activated by inflammatory bone destruction, these MSCs with increased osteogenic potentials may rescue the bone resorption process, which reach the equilibrium between bone formation and resorption then drive the progression of AP into stable states (Márton & Kiss, 2014). Since the pathologic stimuli exists constantly, the protective actions can alleviate the bone loss to some extent. In clinical practice, root canal therapy (RCT) aims to disinfect and remove the pathogenic factors, which makes the protective activities overweigh the destructive ones (L. M. Lin, Ricucci, Lin, & Rosenberg, 2009). The bone lesions of AP patients receiving RCT usually fully recovered with resolution of radiolucency after the inflammation is controlled in apical area (Soares, Santos, Silveira, & Nunes, 2006). The healing of AP lesion is highly correlated with the osteogenic potential of inflamed MSCs (L. M. Lin et al., 2009).

      We added the related contents in the discussion section.

      3) Did the authors detect osteoclasts by scRNA-seq? If not, are there any precursors of osteoclasts identified in inflammatory alveolar bones? 1) I suggest that the authors provide a more detailed analysis of inflammation since this is a unique model to study oral bone inflammation.

      Thank you for this valuable point. Bone destruction is a major pathological factor in chronic inflammatory diseases such as AP. Various cytokines including TNF-α, IL-1α, IL-6 were released by immunocytes to recruit the osteoclast precursors and induce the maturation of osteoclasts. We detected osteoclast markers including Ctsk, Acp5, Mmp9 and Nfatc1 by scRNA-seq. Moreover, Csfr1, Cx3cr1, Itgam, and Tnfrs11a were used to identify osteoclast precursors. The expression pattern of these osteoclast-related markers in all clusters were presented in Figure 3A. Markers of osteoclast and osteoclast precursors were highly expressed in the clusters of monocyte and macrophage. The expression levels of these markers were analyzed in all clusters (Figure 3B). The GO analysis showed that inflammation related immune reactions and bone resorption activity were significantly enriched in macrophage cluster (Figure 3C). Moreover, pseudotime analysis was performed for the clusters of macrophage and monocyte. Two independent branch points were determined and five monocyte/macrophage subclusters scattered at different branches in the developmental tree (Figure 3D, G). The results showed that the monocyte cluster differentiated into the macrophage cluster (Figure 3E). During this trajectory, the gene expression pattern across pseudotime showed that osteoclastic genes, such as Ctsk, Acp5, Mmp9, Atp6v0d2, and Dcstamp were progressively elevated (Figure 3F). Of note, we have observed a branch which was highly positive for Ctsk and Acp5 (Figure 3H), indicating the mature osteoclasts were differentiated from monocyte/macrophage lineage and contributed to inflammatory bone resorption during AP. We have also analyzed the expression of osteoclast related genes using the bulk RNA-seq library built on mandibular samples extracted from mice with AP. Markers of osteoclast and osteoclast precursors were significantly upregulated, confirming the osteoclasts activity in the inflammatory-related bone lesion (Figure 3I). Please see page 9 and figure 3.

      4) It is known that macrophages can be classified into M1 and M2. Based on scRNA-seq, did the authors observe these two types?

      We appreciate this point raised by the reviewer. We used CD86, CD80, IL1β, and TNF as markers of M1-like macrophages. CD163, CD206, MSR1 and IL-10 were used as markers to detect M2 subset in the macrophage cluster. The analysis of macrophage cluster showed the M1-like macrophage accounted for the vast majority in AP lesions. The expression pattern of M2 markers were also presented in macrophage cluster (Figure 3-figure supplement 1A, B).

    1. Author Response

      Reviewer #1 (Public Review):

      This study intended to identify the metabolic at-risk profile within PLWH on ART, by integrating and analyzing the multiomics data from multi-omics including untargeted plasma metabolomic, lipidomic, and fecal 16s microbiome. The overall strength of the study is the long-term treatment (~15 years) of the study subjects with well-recovered CD4 cell count and viral suppression. The integration and analysis of multi-omics data using similarity network fusion and factor analysis, etc. to group or differentiate HIV patients are informative and useful. The weakness of the study is the lack of presentation of comparability between patients and healthy controls and the use of multiple regression analysis for controlling potential confounders.

      We are thankful to the reviewer for the critical reading of our manuscript. The primary aim of our study was to identify the molecular data-driven phenotypic patient stratification in a cohort of PLWHART with prolonged suppressive therapy to identify the at-risk metabolic profile following long-term successful therapy. We and others have reported in several studies (e.g., Ref#9 and 10) that there were distinct systemic patterns in multi-omics data. However, as suggested, we have now provided Table 1-source data 1. We have kept HC in the analysis to define which group is presenting an HC-like profile among HIV, but we are not using them to perform statistics and draw conclusions.

      Reviewer #2 (Public Review):

      This study systematically integrates multi-omics (plasma lipidomic and metabolomic, and fecal 16s microbiome) data to identify the metabolic at-risk profiles within people living with HIV on antiretroviral therapy (PLWHART). As a result, three groups of PLWHART (SNF-1 to 3) were identified, which showed distinct phenotypes. Such insights cannot be obtained by a single type of omics data or clinical data, and have implications in personalized medicine and lifestyle intervention. Connecting the findings in this study with specific medical/clinical insights is the next challenge.

      We are thankful to the reviewer for the suggestion. System biology's application in identifying a disease state's biological mechanism in HIV-infected individuals is a relatively new field. We agree with the reviewer that connecting the findings in this study with specific medical/clinical insights is the next challenge. However, the first proof-of-concept study on 108 patients showed that multi-omics studies could generate a correlation network of communities of related analytes associated with physiology and disease. More importantly, the behavioral coaching informed by personal data helped participants to improve clinical biomarkers [PMID: 28714965]. The applications of multi-omics data are more and more valuable in non-communicable diseases [PMID: 35528975, PMID: 36503356 etc.]. As suggested by the reviewer, we have now elaborated on the medical/clinical value in identifying metabolic at-risk profiles, in particular the potential to improve individual risk stratification and to personalize lifestyle interventions. Still, as our study is an association study, data should be regarded as exploratory, and not sufficient to suggest any changes in clinical practice.

      We have concluded the manuscript as follows:

      “However, alterations in the metabolomics profile and higher CD4 T-cell count at the time of sample collection indicate a complex systemic interplay between host immunity and metabolic health. It can lead to an aggravated higher inflammation profile leading to a cardiometabolic risk profile among the MSM that might affect healthy aging in this population. Integrative analytical approaches that reflect the overall systemic health profile of PLWH may improve patient stratification and individual therapeutic and preventive strategies. Given the complex interplay between the clinical and molecular metabolic profile, the application of the multi-omics data for much larger cohorts of PLWH might facilitate a better identification of network perturbations and molecular network connections to detect early disease transition toward metabolic complications at an earlier stage. Developing a more personalized model or targeting the interaction networks rather than individual clinical or omics features may provide novel treatment strategies in countering dysregulated metabolic traits, aiming to achieve healthier aging.”

    1. Author Response

      Reviewer #2 (Public Review):

      This is a highly interesting paper that provides important insights into the understanding of how HC-derived osteoblasts contribute to trabecular bone formation. Using single-cell transcriptomics, the authors found that HC descendent cells activate MMP14 and the PTH pathway as they transition to osteoblasts in neonatal and adult mice. They further demonstrate that HC lineage-specific Mmp14 null mutants (Mmp14ΔHC) produce more bone. By performing a panel of elegant in vitro studies, the authors show that MMP14 cleaves the extracellular domain of PTH1R, dampening PTH signaling. The authors provide more in vivo evidence showing that HC-derived osteogenic cells respond to PTH which is enhanced in Mmp14ΔHC. Generally, this is a very well-performed study that may contribute important novel aspects to the field.

      I have the following issues for the authors to address:

      1) The novel mechanism identified in this study (i.e. MMP14-induced PTH1R cleavage) is intriguing. It is unclear how specific this pathway is in the transition of HCs to osteoblasts. Are other MMPs besides MMP14 involved in the PTH1R cleavage? Is PTH1R the only substrate of MMP14?

      Thank you for your interest in our findings. ADAMs are known to cleave various transmembrane proteins such as RANKL. As described in supplementary fFgure 4A we tested A Disintegrin And Metalloproteinase (ADAMs) for their potential ability to cleave PTH1R. We did not find that ADAM10, 15, 17 could cleave PTH1R. The lack of the cleaved PTH1R peptide in extracts isolated from osteoblasts isolated from MMP 14 null bones (New Fig. 3E) suggest that there is not another major MMP that cleaves PTH1R. In regard to other substrates that are cleaved by MMP14 – we do review these in the manuscript and the possibility that the phenotype is contributed by deficiency in other substrates.

      2) Would it be possible for the authors to detect the truncated PTH1R fragment(s) from the conditioned medium prepared from either 293T or osteoblast culture?

      We tried to detect whether there could be PTH1R cleaved fragment in cultured medium by western blot of PCA precipitates of cultured medium. We could not detect any free peptide using anti-Flag or anti-HA antibody. It has been reported the ligand binding domain are linked by disulphide bond in vivo, therefore cleavage of PTH1R at the unstructured loop domain does not necessarily imply a release of cleaved fragment.

      3) The finding that HC-descendants persist and contribute to the anabolic response to PTH in aged mice is interesting. Have the authors examined the changes in MMP14 expression in bone with age and in response to PTH treatment?

      Thank you for your question, we added additional data showing induction of MMP14 expression upon PTH treatment in Figure 7—figure supplement 1. It has also been published that PTH stimulation increased MMP14 expression in osteocytes (1).

    1. Author Response

      Reviewer #2 (Public Review):

      Susswein et al. analyze a fine-scale, novel data stream of human mobility, openly available from Safegraph, based on the usage of mobile apps with GPS and sampled from over 45 million smartphone devices. They define a metric $\sigma_{it}$, properly normalized, that quantifies the propensity for visits to indoor locations relative to outdoor locations in a given county $i$ at week $t$. For each pair of counties $i$ and $j$, they compute the Pearson correlation coefficient $\rho_{ij}$ between the corresponding $\sigma$ metrics. This generates a correlation matrix that can be interpreted as the adjacency matrix of a network. They then perform community detection on this network/matrix, effectively clustering together time series that are correlated. This identifies three main clusters of counties, characterized geographically as either in the north of the country, in the south of the country, and possibly in tourism active areas. They then show, via a simple model, how including over-simplified models of seasonality may affect infectious disease models.

      This work is very interesting for the infectious disease modeling community, as it addresses a complex problem introducing a new data stream.

      This work builds on several strengths, among which:

      It is the first analysis of the Safegraph dataset to capture seasonality in indoor behavior.

      It provides a simple metric to quantify indoor activity, that thanks to the dataset can be computed with a high level of spatial detail.

      It aims at characterizing clusters of counties with a similar pattern of indoor activity.

      It aims at quantifying the impact of neglecting finer-scale patterns of seasonality, for example considering seasonality to be homogeneous at the US level.

      We thank the reviewer for the positive review of our work.

      At the same time, it presents several weaknesses that should be addressed to improve the methodology, its results, and the implication:

      There is no quantitative comparison of the newly introduced metric for indoor activity with other proxies of seasonality (e.g. temperature or relative humidity). The (dis)similarity with other proxies may help in assessing the importance of this metric, showing why it can not be exchanged with other data sources (like temperature data) that are widely available and are not affected by sampling issues (more on that later).

      We have now added supplementary figures (Figure S3) to illustrate how indoor activity seasonality compares with temperature and humidity. We have also added text to the Results and the Discussion to discuss this point.

      A major flow of the analysis is to perform community detection on a network defined by the correlation between time series with an algorithm that is based on modularity optimization. As explained in Macmahon et al.[1], all modularity optimization methods rely on null assumptions that in the case of correlation between time series are violated. Therefore, there is a very strong potential bias in their results that is not accounted for. Possible solutions could be to proceed via the methodology presented in [1] or via a different type of algorithm (e.g. Infomap [2]). In both cases, as the network is thresholded (considering only a correlation larger than 0.9), a more quantitative assessment of the impact of the threshold value should be included.

      References

      [1] Mel MacMahon and Diego Garlaschelli Phys. Rev. X 5, 021006 (2015).

      [2] Martin Rosvall and Carl T. Bergstrom PNAS 105, 1118 (2008).

      We thank the reviewer for making this excellent point. We have now added Supplementary Figures S13 and S14. In Figure S13, we demonstrate the robustness of our clustering results with different correlation thresholds. (We have also corrected a typo in our original Methods section which mistakenly stated our correlation threshold as 0.9 rather than the 90th percentile which is what we used.) In Figure S14, we show the clustering results using a different clustering algorithm. In an effort to test a non-network-based clustering approach, we use a hierarchical clustering approach and find a consistent partition of the US to our main results.

      It is not clear what is the added value of the data on indoor activity, as no fitting to real data is performed. Although this may be considered beyond the scope of this paper, I think it would be crucial to quantify how much a data-informed model would better describe real epidemic data (for example in the case of COVID-19). For now, only the impact of neglecting heterogeneity in indoor activity is shown, comparing a model with region-average parameters vs a model with county-level average parameters. Given that the dataset comes with potential bias in sampling (more on this later) it would be good to assess its goodness in predicting real epidemic spread. When showing results from different models, no visible errors are shown on the plot. How have the errors been estimated?

      We appreciate this point by the reviewer, and agree that future work will have to consider how indoor activity seasonality affects our ability to capture observed transmission trends. However, such work would additionally need careful characterization of other seasonal factors hypothesized to drive transmission (including environmental and other behavioral factors), and is beyond the scope of our work. Instead, in Figure 4 we aim to (a) provide the infectious disease modeling community with empirically-inferred parameters for a simple sinusoidal model which is commonly used in infectious disease models to capture transmission seasonality; and (b) demonstrate the implications of ignoring geographic heterogeneity in transmission seasonality in theoretical models of disease dynamics, which are commonly used for scenario analysis and model-based intervention design. As we demonstrate, transmission seasonality described by such sinusoidal models, even when they are empirically characterized as in our case, can lead to meaningfully different epidemic dynamics when transmission seasonality varies from the assumptions.

      Additionally, there is no uncertainty included in Figure 4B because transmission seasonality is either based on empirical data point per time step, or on the fitted sinusoidal model (where the estimated parameters have negligible standard errors).

      The dataset is presented as representative of the US population. However, this has not been assessed over time. As adherence to social distancing is influenced by several socio-economic determinants the lack of representativity in certain strata of the population at a given time may introduce an important bias in the dataset. Although this is an inherent limitation of the dataset, it should be discussed in the paper more thoroughly.

      We agree with the reviewer that this is a limitation. However, we do not have any way of assessing demographic representation in the dataset over time. We have instead included an additional sentence into the Discussion section acknowledging this point.

      In conclusion, I think that the methodology should be revised to account for the fact that the analysis is performed on a correlation matrix. Capturing seasonal patterns of indoor activity can help in tackling the crucial problem of seasonality in human behavior. This could help in identifying effective strategies of disease containment able to curb disease spread at a lower societal cost than fully-fledged lockdowns.

      We thank the reviewer again for their helpful suggestions.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors characterized the expression of DDR2 in the developing craniofacial skeleton. The authors showed that Ddr2-deficient mice exhibited defects in craniofacial bones including impaired calvarial growth and frontal suture formation, cranial base hypoplasia due to aberrant chondrogenesis, and delayed ossification at growth plate synchondroses. The histological studies are well done. However, the studies as shown in this manuscript do not provide cellular and molecular mechanisms beyond what is already known, particularly beyond what the authors have already published in a similar study in Bone Research (Mohamed et al., 2022 Feb 9;10(1):11). With the same Cre lines and analytic approaches, the authors already showed in the Bone Research paper that Ddr2 in the Gli1+ cells is required for chondrocyte proliferation and polarity in growth plate development and osteoblast differentiation. Cartilage development and bone formation occur in both long bones and craniofacial skeleton, the authors showed similar functions of Ddr2 in similar skeletal tissues, although the location is different. One new point in this manuscript might be: the authors indicated that loss of Ddr2 led to ectopic chondrocyte hypertrophic (Fig. 7I). But what the data actually showed was delayed chondrocyte hypertrophy and abnormal location of the delayed hypertrophic chondrocytes, which could be well caused by abnormal chondrocyte polarity. This interesting defect was superficially described with no mechanistic investigation at cellular or molecular level.

      New data is now provided showing that Ddr2 deficiency is associated with abnormal collagen organization and orientation as measured by second harmonic generation (SHG) (Fig 3-figure supplement 1). Specifically, collagen orientation as reflected by SHG anisotropy measurements was disrupted in Ddr2-deficient synchondroses. This result complements data showing that the distribution of type II collagen as measured by immunofluorescence changes with Ddr2 deficiency such that no collagen is seen in the interterritorial matrix between chondrocyte bundles (Fig 3a). This loss of collagen organization provides a potential mechanism to explain the disruption of chondrocyte polarity and altered localization of hypertrophic cells in synchondroses. In further support of this concept, other recently published studies described in the Discussion have shown that Ddr2 deficiency is associated with disruption of collagen fibril orientation in other experimental systems such as in CAF cells surrounding breast tumors as well as at sites of heterotopic ossification and that these abnormalities are associated with defective integrin signaling. Additional studies beyond the scope of the present communication will be required to determine if these matrix changes can explain the observed phenotypes. However, we believe this proposed mechanism is the most likely explanation for DDR2 effects based on current data.

      Reviewer #2 (Public Review):

      DDR2 is a collagen-binding receptor that is required for proper skull development. Ddr2 loss-of-function in humans is associated with the developmental disease spondylo-meta-epiphyseal dysplasia (SMED). Here, the authors aim to elucidate the role of DDR2 in skull development. In this work, the role of DDR2 in skull and face development is studied in mice, which exhibit SMED-like symptoms in the absence of Ddr2. Histological studies showed that Ddr2 knockout disrupts organization and proper differentiation within progenitor-rich regions of the skull from which bone growth occurs. Histology and lineage tracing studies revealed that DDR-expressing cells in/around these zones 1) generally also express the proliferation regulator Gli1, and 2) eventually contribute to osteogenic and chondrogenic lineages. Cell-type specific knockout studies were used to show that DDR2 has a development-specific role: knockout of Ddr2 in Gli+ cells re-capitulated the developmental abnormalities observed in global Ddr2 knockout mice; knockout in chondrocytes partially recapitulated developmental abnormalities, and osteoblast-specific knockout mice were indistinguishable from their wild-type littermates. This work also catalogues the locations of Ddr2 positive cells and their lineages at various stages of development. Additionally, the anatomical effects of loss of DDR2 function on skull and face development are thoroughly described in global and cell-type specific knockouts.

      This work is a vital and stimulating contribution to the scientific literature. The authors' claims and conclusions are well supported by the evidence they present.

      The scientific approach is sound and the conclusions important. However, a limitation of the work's discussion is a lack of attention paid to the specific biophysical mechanism that DDR2 is playing during development. The discussion of the positioning of the golgi is nice, but a lack of golgi polarity is likely a downstream effect of processes occurring within the cell adhesion and mechanotransduction machinery. Perhaps, like integrins, DDR2 is a mechanosensor that the cell needs to properly sense local collagen orientation, polarize, and secrete properly-organized COL2. It would be beneficial to put up some guideposts that will facilitate engagement from the molecular biophysics/mechanobiology community.

      Thank you for this suggestion. In response, we added new studies showing that DDR2 is necessary for ECM organization (please see reviewer 1 comments and additions to the Discussion section). In addition, the Discussion has been revised to include speculation on the relationship between DDR2-dependent ECM organization, mechanical properties of the matrix and cell differentiation. Because very little is known about DDR2 from a mechanistic perspective, much of what we propose is currently conjecture, but hopefully can guide future study.

      Reviewer #3 (Public Review):

      From this work, the authors investigated a number of parameters in order to profoundly understand and demonstrate the vital role of ongoing interaction between components of extracellular matrix and particular stem cells to induce normal Craniofacial development. Thus, there was a focus on the genetic manipulation (knockout) impact of molecules behind the above-mentioned interaction, and on determining how such modification would be reflected on skull bone morphogenesis.

      Strengths and Weaknesses

      • Using different animals' backgrounds in the same experiment might impact work outcomes.

      • Better to have (ethical approval) at the beginning of the material and methods in separate paragraphs.

      • It is great that the authors precisely explain all the measurements.

      • Supplementary file to have details of used antibodies might be required.

      • All methods have been written in academic and clear ways.

      • It is nice that there is a conclusion sentence by end of the results paragraph, which made it easy for readers to fully remember and understand.

      • It is possible to see a reduction in proliferative chondrocyte, with no change in apoptosis rate?

      Reductions in proliferation are certainly seen in many systems. Proliferation and apoptosis are not necessarily coupled.

      • Results are supposed to be compatible.

      • Very nice and representative images from the immunofluorescence protocol.

      • Using different techniques to confirm observations is clearly manifested in methods and results.

      It is clear that the author has used different methods and techniques in order to meet his work's objectives. Importantly, there was more than one procedure to confirm observations that are related to one or more than one aim.

      Although determining to what extent the outcomes of this work could be applied to community need might require a subspecialist physician's opinion, it seems that observations of the present study are likely to require a series of further investigations in order to take it to the level of human users. Notably, identification of molecules and pathways behind skull development abnormalities would open a door to early diagnosis reasons for such deformities, thus mitigating future abnormalities either by developing new prevention methods or discovering unique medications.

      Thank you for these comments. Additional commentary has been added to the Discussion to provide a more mechanistic interpretation of our results, however speculative they may be at this time. Ln 555-605

    1. Author Response

      Reviewer #1 (Public Review):

      King et al. provide an interesting reanalysis of existing fMRI data with a novel functional connectivity modeling approach. Three connectivity models accounting for the relationship between cortical and cerebellar regions are compared, each representing a hypothesis. Evidence is presented that - contrary to a prominent theoretical account in the literature - cortical connectivity converges on cerebellar regions, such that the cerebellum likely integrates information from the cortex (rather than forming parallel loops with the cortex). If true, this would have large implications for understanding the likely computational role of the cerebellum in influencing cortical functions. Further, this paper provides a unique and potentially groundbreaking set of methods for testing alternate connectivity hypotheses in the human brain. However, it appears that insufficient details were provided to properly evaluate these methods and their implications, as described below.

      Strengths:

      • Use of a large task battery performed by every participant, increasing confidence in the generality ofthe results across a variety of cognitive functions.

      • Multiple regression was used to reduce the chance of confounding (false connections driven by a thirdregion) in the functional connectivity estimates.

      • A focus on the function and connectivity of the cerebellum is important, given that it is clearly essentialfor a wide variety of cognitive processes but is studied much less often than the cortex.

      • The focus on clear connectivity-based hypotheses and clear descriptions of what would be expectedin the results if different hypotheses were true.

      • Generalization of models to a completely held-out dataset further increases confidence in thegeneralizability of the models.

      Concerns:

      1) The main conclusion of the paper (including in the title) involves a directional inference, and yet it is notoriously difficult to make directional inferences with fMRI. The term "input" into the cerebellum is repeatedly used to describe the prediction of cerebellar activity based on cortical activity, and yet the cerebellum is known to form loops with the cortex. With the slow temporal resolution of fMRI it is typically unclear what is the "input" versus the "output" in the kinds of predictions used in the present study. Critically, this may mean that a cerebellar region could receive input from a single cortical region (i.e., the alternate hypothesis supposedly ruled out by the present study), then output to multiple cortical regions, likely resulting (using the fMRI-based approach used here) in a faulty inference that convergent signals from cortex drove the results. On pg. 4 it is stated: "We chose this direction of prediction, as the cerebellar BOLD signal overwhelmingly reflects mossy-fiber input, with minimal contribution from cerebellar output neurons, the Purkinje cells (Mathiesen et al., 2000; Thomsen et al., 2004)." First, it would be good to know how certain this is in 2022, given the older references and ongoing progress in understanding the relationship between neuronal activity and the BOLD signal (e.g., Drew 2019). Second, given that it's likely that activity in the mossy-fiber inputs has an impact on Purkinje cell outputs, and that some cortical activity supposedly reflects cerebellar output, it is possible that FC could also reflect the opposite direction (cerebellumcortex). It would seem important to consider these possibilities in the interpretation of the results.

      We agree that making directional inferences with fMRI BOLD signals is difficult. We also note that because of the low temporal resolution of fMRI BOLD signals, we have not tried to extract directional information based on temporal lags. Rather, we emphasize that the relationship between neural activity and BOLD differs between the neocortex and cerebellum. In the cerebellum, mossy fiber activity releases glutamate which activates granule cells and the release of Nitric oxide (NO). NO is mostly released by granule cells and stellate cells. The release of NO increases the diameter of capillaries which in turn causes changes in blood flow and blood volume, two major contributors to BOLD signal changes (Alahmadi et al. 2016; Alahmadi et al. 2015; Drew 2019; Mapelli et al. 2017; Gagliano et al. 2022). Importantly, there is a negligible contribution of NO from the Purkinje cells. Taken together, these data make a strong case that the BOLD signal in the cerebellar cortex reflects activity at the input stage. We acknowledge that the references cited in our initial submission were somewhat dated. We have now provided additional references (which are in agreement with the findings from the earlier papers).. Based on this evidence, we chose to predict cerebellar activity from cortical activity.

      References: Alahmadi, A. A., Samson, R. S., Gasston, D., Pardini, M., Friston, K. J., D’Angelo, E., ... & Wheeler-Kingshott, C. A. (2016). Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum. Brain Structure and Function, 221(5), 2443-2458.

      Alahmadi, A. A., Pardini, M., Samson, R. S., D'Angelo, E., Friston, K. J., Toosy, A. T., & Gandini Wheeler‐Kingshott, C. A. (2015). Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: an FMRI study. Human brain mapping, 36(12), 5079-5100.

      Mapelli, L., Gagliano, G., Soda, T., Laforenza, U., Moccia, F., & D'Angelo, E. U. (2017). Granular layer neurons control cerebellar neurovascular coupling through an NMDA receptor/NO-dependent system. Journal of Neuroscience, 37(5), 1340-1351.

      Gagliano, G., Monteverdi, A., Casali, S., Laforenza, U., Gandini Wheeler-Kingshott, C. A., D’Angelo, E., & Mapelli, L. (2022). Non-Linear Frequency Dependence of Neurovascular Coupling in the Cerebellar Cortex Implies Vasodilation–Vasoconstriction Competition. Cells, 11(6), 1047.

      Drew, P. J. (2019). Vascular and neural basis of the BOLD signal. Current Opinion in Neurobiology, 58, 61–69.

      2) It would be helpful to have more details included in the "Connectivity Models" sub-section of the Methods section. The GLM-based connectivity approach is highly non-standard, such that more details on the logic behind it and any validation of the approach would be helpful. More specifically, it would be helpful to have clarity on how this form of functional connectivity relates to more standard forms, such as Pearson correlation and perhaps less standard multiple regression (or partial correlation) approaches. If I understand this approach correctly, each cortical parcel's time series is modulated (up or down) using that parcel's task-evoked beta weights, then "normalized" by the standard deviation of that parcel's time series, with the resulting time series then used in a multiple regression model to explain variance in a given cerebellar voxel's time series. It would be helpful if each of these steps were better explained and justified. For example, it is unclear what modulation of the cortical parcel time series by task-related beta weights does to the functional connectivity estimates, and thus how they should be interpreted.

      All of the models are multiple regression models. The independent variables (X) are the fitted (task-evoked) time series of the cortical parcels and the dependent variables (Y) are the fitted time series of each cerebellar voxel. Coefficients from multiple regression are identical to partial correlation coefficients if the cortical and cerebellar time series are z-standardized (SD=1). Here we only standardized the cortical time series. This only retains the weighting of the different cerebellar voxels (a cerebellar voxel that has a strong task-related signal should contribute more to the overall evaluation than a voxel where the task-related signal is weak); beyond this, the conclusions will be the same as that obtained with a partial correlation analysis.

      Because the number of predictors (#cortical parcels) approaches or outstrips the number of available observations (#task-related regressors), the ordinary-least-squares (OLS) solution to the multiple regression problem is not unique. We thus compared 3 common ways of regularizing a multiple regression problem: a) Picking only the most important regressor (a form of feature selection or optimal subspace selection), Ridge regression (L2 regularization) or Lasso regression (L1 regularization). Each method biases the solution in a particular way: The winner-take-all solution is obviously very sparse, the Lasso solution somewhat less sparse, and the Ridge solution quite dispersed. Here we exploited these differences in inductive bias, reasoning that the method with the bias that best matches the structure of the data-generating process will lead to better prediction performance on independent data.

      The results clearly favored a distributed input to each cerebellar voxel from the cortical parcels. We have rewritten the method section on connectivity models to better communicate the main idea.

      3) It appears that task-related functional connectivity is used in the present study, and yet the potential for task-evoked activations to distort such connectivity estimates does not appear to be accounted for (Norman-Haignere et al. 2012; Cole et al. 2019). For example, voxel A may respond to just the left hemifield of visual space while voxel B may respond to just the right hemifield of visual space, yet their correlation will be inflated due to task-evoked activity for any centrally presented visual stimuli. There are multiple methods for accounting for the confounding effect of task-evoked activations, none of which appear to be applied here. For example, the following publications include some options for reducing this confounding bias: (Cole et al. 2019; Norman-Haignere et al. 2012; Ito et al. 2020; Rissman, Gazzaley, and D'Esposito 2004; Al-Aidroos, Said, and Turk-Browne 2012). If this concern does not apply in the current context it would be important to explain/show why.

      The papers cited by the reviewer focus on the problem of how to remove task-evoked activity to estimate the correlation of spontaneous (task-independent) fluctuations. Here we are doing the opposite. We removed almost all spontaneous fluctuations and noise by averaging across trials and runs in order to fit the task-evoked activity. Additionally, we used a crossed approach as a way to control for the influence of task-independent fluctuations on the regression models: Within each task set, cerebellar activity from one half of the runs was predicted from cortical activity from the other half of the runs. Returning to the papers cited by the reviewer, these are designed to look at connectivity not related to task-evoked activity. We briefly summarize each below:

      ● Cole et al. (2019): Demonstrates that the removal of mean task-evoked activations while preserving task-evoked response shape is an important preprocessing step for validating task-based FC.

      ● Ito et al. (2020): Addressed the issue of shared variability between brain regions during task-evoked activity by estimating time series variance. They removed task-evoked activity from the time series in order to get a direct measure of neural-to-neural correlations (e.g., “background connectivity”) rather than task-to-neural associations.

      ● Al-Aidroos et al. (2012): Confronted with a similar problem of interpreting intrinsic correlations related to a goal (e.g., attending to scenes) from correlations related to synchronized stimulus-evoked responses. To mitigate this confound, they removed stimulus-evoked responses from the data resulting in “background connectivity” which was then used to assess inter-region coupling.

      ● Rissman et al. (2004): Introduced a new approach to characterize inter-region correlations during event-related activity by allowing inter-regional interactions to be assessed independent of activity at individual stages of a task.

      ● Norman-Haignere et al. (2012): To assess inter-region interactions (between fusiform gyrus and parahippocampal cortex), the authors removed the mean stimulus-evoked response and examined the correlations that occurred in the background of stimulus-locked changes (e.g., background connectivity).

      4) It is stated (pg. 21): "To reduce the influence of these noise correlations, we used a "crossed" approach to train the models: The cerebellar time series for the first session was predicted by the cortical time series from the second session, and vice-versa (see Figure 1). This procedure effectively negates the influence of noise processes, given that noise processes are uncorrelated across sessions." However, this does not appear to be strictly true, given that the task design (parts of which repeat across sessions) could interact with sources of noise. For example, task instruction cues (regardless of the specific task) likely increase arousal, which likely increases breathing and heart rates known to impact global fMRI BOLD signals. The current approach likely reduces the impact of noise relative to other approaches, but such strong certainty that noise processes are uncorrelated across sessions appears to be unwarranted.

      We completely agree. What we meant to say is that the procedure “negates the influence of any noise process that is uncorrelated with the tasks.” If we can predict the cerebellar activity patterns in session 2 by the cortical activity patterns measured in session 1, we can conclude that this prediction must be based on task-related signal changes given that the sequence of tasks is randomized. However, we do not know whether these task-related signals are caused directly by neural processes or indirectly by physiological processes (for example increased heart-rate in some conditions). The procedure only removes the influence of noise processes that are unrelated to the tasks. In our experience, these noise correlations can be quite strong and methods to remove them can introduce biases. For task-related noise processes we relied on high-pass filtering, a standard approach in task-based GLM approaches (see Methods).

      5) It appears possible that the sparse cerebellar model does worse simply because there are fewer predictors than the alternate models. It would be helpful to verify that the methods used, such as cross-validation, rule out (or at least reduce the chance) that this result is a trivial consequence of just having a different number of predictors across the tested models. It appears that the "model recovery" simulations may rule this out, but it is unclear how these simulations were conducted. Additional details in the Methods section would be important for evaluating this portion of the study.

      Our methods ensure full correction for model complexity (see response to major comment #2). Note that the sparse methods select regressors from all available cortical parcels; as such, “model complexity” is not well summarized by the number of non-zero regressors. We have now clarified these issues in the Methods section and have also revised the paper to better describe our model recovery simulations designed to address the issue of possible biases caused by different degrees of collinearity between cortical regressors.

      Reviewer #2 (Public Review):

      The human cerebellum likely has a significant but understudied contribution to cognition and behavior beyond the motor domain. Clarifying its functional relationship with the cerebral cortex is a critical detail necessary for understanding cerebellar functions. This paper addresses this challenge by testing three simple but intuitive models: winner-take-all, one-to-one model versus two converging input models. Results showed that the convergence model outperformed the one-to-one mapping model, indicating that cerebellar regions received multiple converging inputs from the different cortical regions. Overall the paper is well-written, and the results are clean and interesting. The methodological rigor of using cross-validation and generalization is also a strength of this paper.

      1) The authors concluded that some cerebellar regions receive converging inputs from multiple cortical regions because the Ridge and Lasso models outperformed the WTA model. The WTA model has a fixed diagonal pattern, in contrast, Ridge/Lasso models included more weights in the connectivity matrix. Considering what's being estimated in this matrix, then perhaps the findings are not surprising because even after penalizing and regularization, the ridge regression models are still more complex than the WTA model (more elements are allowed to vary). In other words, Lasso/Ridge models allow more variables from the X side to explain variances in Y, similar to how throwing in more regressors can always improve the R square. I am unsure if cross-validation mitigates this issue. It would be more straightforward for the authors to compare model performance in a way that controls for the number of variables in the Ridge/Lasso models.

      We now recognize that we could have done a better job in explaining our approach on this issue in the original submission. The models (including connectivity weights and regularization parameter) are trained solely on data from Task set A. They are tested on 2 independent datasets: 1) Data from the same participants performing novel tasks; 2) Data from new participants performing novel tasks. This allows us to compare models of different structure and complexity.

      2) The authors did an excellent job reviewing the anatomical relationship between the cerebral cortex and the cerebellum. There are several issues that the authors should address in the introduction or discussion. First, if the anatomical relationship between the cerebellum and the cortex is closed-loop as suggested in the intro, then how convergence can arise from multiple cortical inputs given there is no physical cross-talk? Second, there are multiple synapses connecting a cerebellar region and the cortex, and therefore could integration occur at other sites but not the cerebellum? For example, the caudate, the thalamus, or even the cortex (integrating inputs before sending to the cerebellum)?

      We agree that the correlation structure of BOLD signals in the neocortex and cerebellum is shaped by the closed-loop (bi-directional) interactions between the two structures. As such, some of the observed convergence could be caused by divergence of cerebellar output. We have added a new section to the discussion on the directionality of the model (Page 18).

      That said, there are strong reasons to believe that our results are mainly determined by how the neocortex sends signals to the cerebellum, and not vice versa. An increasing body of physiological studies (and this includes newer papers, see response to reviewer #1, comment #1 for details) show that cerebellar blood flow is determined by signal transmission from mossy fibers to granule cells and parallel fibers, followed by Nitric oxide signaling from molecular layer interneurons. Importantly, it is clear that Purkinje cells, the only output cell of the cerebellar cortex, are not reflected in the BOLD signal from the cerebellar cortex. (We also note that increases in the firing rate of inhibitory Purkinje cells means less activation of the neocortex). Thus, while we acknowledge that cerebellar-cortical connectivity likely plays a role in the correlations we observed, we cannot use fMRI observations from the cerebellar cortex and neocortex to draw conclusions about cerebellar-cortical connectivity. To do so we would need to measure activity in the deep cerebellar nuclei (and likely thalamus).

      The situation is different when considering the other direction (cortico-cerebellar connections). Here we have the advantage that the cerebellar BOLD signal is mostly determined by the mossy fiber input which, at least for the human cerebellum, comes overwhelmingly from cortical sources. On the neocortical side, the story is admittedly less clear: The cortical BOLD signal is likely determined by a mixture of incoming signals from the thalamus (which mixes inputs from the basal ganglia and cerebellum), subcortex, other cortical areas, and local cortical inputs (e.g., across layers). While the cortical BOLD signal (in contrast to the cerebellum) also reflects the firing rate of output cells, not all output cells will send collaterals to the pontine nuclei. These caveats are now clearly expressed in the discussion section2.

      On balance, there is an asymmetry: Cerebellar BOLD signal is dominated by neocortical input without contribution from the output (Purkinje) cells. Neocortical BOLD signal reflects a mixture of many inputs (with the cerebellar input making a small contribution) and cortical output firing. This asymmetry means that the observed correlation structure between cortical and cerebellar BOLD activity (the determinant of the estimated connectivity weights) will be determined more directly by cortico-cerebellar connections than by cerebellar-cortical connections. Given this, we have left the title and abstract largely the same, but have tempered the strength of the claim by discussing the influence of connectivity in the opposite direction.

      3) The dispersion metric quantifying the spread level in cortical inputs is interesting. Could the authors expand this finding and show anatomically what the physical spread is like in cortical space? The metric is novel but hard to interpret. A figure demonstrating the physical spread in the cortex should help readers interpret this result.

      Figure 3 (previously Figure 4) was included to provide examples of differences in the spatial spread of cortical inputs. For example, regions 1 and 2 are explained by a more restricted and spatially contiguous set of cortical inputs (e.g., primary motor cortices) whereas regions 7 & 8 are explained by a set of spatially disparate regions (e.g., angular gyrus, superior and middle frontal cortices, and superior temporal gyrus). Prompted by this comment, we have opted to reverse the order of Figures 3 and 4 to give the reader a chance to visualize differences in physical spread of cortical regions before we walk through the quantitative analysis.

      4) At the end of the discussion section, the authors discussed how results are more likely driven by cortical inputs to the cerebellum but not the other way around. This interpretation is likely overstated given the hemodynamic blurring and low temporal resolution of BOLD. Without a faster imaging sequence and accurate models that account for differences in hemodynamic properties, the more parsimonious interpretation is results are driven by bidirectional cortico-cerebellar interactions. The results are still very interesting without this added nuisance.

      Our analyses do not rely on the exact time course or delays between neocortical and cerebellar activation, but only on the activity profiles across a wide range of tasks. In terms of bidirectionality, please see our response above. We have added a dedicated section in the revised Discussion on this issue.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors sought to define the molecular mechanism of activation of the thrombopoietin receptor (TpoR), a very important cytokine receptor that regulates megakaryocyte differentiation and platelet production. They conducted a thorough series of experiments combining mutagenesis experiments with sophistical biological assays and that also includes solid-state NMR structural measurements. This work builds on a body of previous studies of TpoR from this group and from others. They focused both on (1) the role and impact of W515 located in the juxtamembrane cytosolic domain and (2) the impact of introducing either Asn at sites in the transmembrane domain to induce various dimerization modes, or insertion of pairs of Ala residues to induce helical rotation to the TM domain. There is a lot of nice data in this paper, which is fairly intricate - a tough read, but that's because it's a complicated system. The writing is excellent.

      This paper presents a model for receptor activation in which the inactive receptor is the monomeric form of the receptor in which the juxtamembrane domain, including W515, maintains a helical structure. Activation of the receptor triggers dimerization of the transmembrane domain and loss of helicity of the juxtamembrane segment, which facilitates optimal interactions of the kinase domains with their JACK2 domain phosphorylation substrates.

      There is a lot to like in this careful work and the resulting manuscript. There is one major shortcoming in this manuscript, which concerns W515. It is known that mutation of W515 to any of 17 of the canonical amino acids, including Phe, is sufficient to trigger homodimerization and receptor activation. The authors present some evidence that the phenomenon behind this is that mutation of W515 to almost any other residues disrupts the helical secondary structure of the critical juxtamembrane segment, which promotes dimerization and receptor activation. What I find puzzling is why a Trp at site 515 promotes helix formation, but nearly all other amino acids at this site disrupt helix formation. This strongly suggests the side chain of W515 must be interacting with another domain of the protein in the inactive state, in a manner that is responsible for how Trp stabilizes the juxtamembrane helix, which is a central feature that helps define that state. I think that for this paper, this dangling missing piece of their mechanistic model should be resolved.

      We agree with the reviewers that the mechanism by which Trp515 stabilizes the TM helix is central to the mechanism of activation. More broadly, our studies over the past decade have sought to address the importance of the entire RWQFP insert in the TM domain. Our working model for this sequence has been that cation-π interactions are central to the role of the Trp and the accompanying amino acids.

      Arginine and tryptophan both are over-represented at the cytoplasmic TM-JM boundaries of membrane proteins. Arginine is positively charged and part of the “positive-inside” rule for membrane protein insertion. Arginine and lysine define the cytoplasmic ends of TM helices and prefer to be accessible to the water-exposed membrane surface. In contrast, tryptophan residues prefer hydrophobic head-group or membrane interior locations. A revealing aspect of the RWQFP motif is that the arginine and tryptophan are located at the membrane to cytosolic border. As a result, in order to accommodate arginine in a more water-inaccessible membrane environment, it interacts with the surface of the tryptophan indole ring. Partitioning of the RWQF sequence in a more water-inaccessible environment also drives the formation of helical secondary structure as an unpaired backbone C=O...NH in a hydrophobic environment is estimated to cost 3-6 kcal/mol of energy.

      We have taken two approaches in respond to this essential criticism of the reviewers: one structural and one computational. Additional NMR data (structural approach) has been included in the supporting information (see response to point 2 below). Computational approaches provide a second way to address whether a cation– interaction between Trp515 and the positively charged Arg514 is responsible for stabilizing the C-terminal TM helix. We have included a new supporting figure using Alpha-Fold 2.0 that probes the structural changes upon mutation of Trp515. In the wild-type receptor, Arg514 is predicted to form a cation– interaction with Trp515. In the W515K mutant, the helical secondary structure in the RKQFP sequence is disrupted and Arg514 forms a new cation– interaction with Trp529. Similar changes occur in other Trp515 mutants (e.g. W515A) highlighting the ability of Alpha-Fold to predict such interactions and the consequences of mutation. Overall, 15 out of 19 W515X mutants are predicted to be unfolded. Experimentally, 17 out of 19 mutations lead to activation. Importantly, W515C and W515P are the only two amino acid substitutions that do not cause constitutive activity experimentally (Defour, Chachoua, Pecquet, & Constantinescu, 2016). Computationally, these two sites do not predict helix unraveling. In short, the overall the predictions of Alpha-Fold agree with the unique nature of tryptophan at position 515.

      In addition, we have expanded the arguments supporting the potential role of cation–π interactions by adding a new section entitled “Unfolding of the RWQF -helical motif is a common mechanism of receptor activation”.

      These modifications are now in the revised manuscript starting with line 213:

      Our working model for the mechanism of activation in the wild-type or mutant receptors is that the RWQF motif is stabilized in the inactive state as an -helix as a result of a cation- interaction between R514 and W515. This interaction allows the RWQF sequence to partition into the more hydrophobic head-group region of the bilayer. Both Arg and Trp are over-represented at the cytoplasmic ends of TM helices (von Heijne, 1992), but whereas Arg prefers a water-accessible environment, Trp prefers to be buried in a more hydrophobic environment (Yau, Wimley, Gawrisch, & White, 1998). Since Arg and Trp are located at the border between membrane and cytosolic domains and Arg precedes Trp in the sequence, partitioning into the membrane head-group region results in a favorable interaction of the positive charge associated with the guanidinium group of the R514 side chain with the partial negative charge associated with the aromatic surface of the W515 side chain. Partitioning of the RWQF sequence into the more water-inaccessible environment drives the formation of helical secondary structure as an unpaired backbone C=O...NH in a hydrophobic environment is estimated to cost 6 kcal/mol of energy (Engelman, Steitz, & Goldman, 1986). In this model, activation of the receptor results in or is caused by disruption of the R514-W515 cation-π interaction. In the W515 mutants, R514 is no longer stabilized in a membrane environment and the helix containing the RWQFP sequence unravels to allow the positively charged side chain to reach outside of the membrane. In the case of the Asn mutants and in the wild-type receptor with bound Tpo, dimerization of hTpoR (or rotation of the TM helices in mTpoR dimer), places W515 in the center of the helix-helix interface. The data suggest that a steric clash of the W515 side chains results in unraveling of the cytoplasmic end of the TM helix.<br /> Computational and additional NMR data are provided in the supplementary figures to support the model of helix unraveling suggested by the solid-state NMR studies. Computationally, we used AlphaFold 2.0 (Jumper et al., 2021) calculations of hTpoR TM-JM peptides to predict the influence of all possible mutations at position 515 on the TM-JM helix structure. Remarkably, -helix unraveling was predicted for 15 out of 20 possible amino acids at 515 (supplement 2 to Figure 3). Importantly, two of the mutations that are not predicted to cause helix unraveling are W515C and W515P. Experimentally, these two amino acid substitutions are the only ones that do not induce constitutive activity among all possible amin oacid substitutions at W515 (Defour et al., 2016). Introducing a Trp at the preceding position 514 instead of R/K in W515K/R mutants reverses helix unfolding in AlphaFold simulations (supplement 3 to Figure 3). This result agrees with our previous data that the WRQFP mutant is inactive and is essentially monomeric (J. P. Defour et al., 2013). Structurally, we have undertaken solution-NMR studies of the wild-type hTpoR TM-JM peptide and its W515K mutant. Relaxation measurements of the backbone 15N resonances show that W515K mutation leads to association of the TM helices, and that it induces upfield chemical shift changes in the RWQF sequence consistent with helix unraveling (supplement 1 to Figure 3).

      Reviewer #2 (Public Review):

      The thrombopoietin receptor (TpoR) regulates stem cell proliferation, platelet production, and megakaryocyte differentiation. Past cell biology and biophysical studies have established that ligand-induced dimerization constitutes the mechanism of activation of TpoR. Specifically, ligands bind to the extracellular domain of TpoR and generate an allosteric response that is transmitted to the transmembrane domain, activating downstream signaling. However, up to now the molecular details of how the allosteric signals are transmitted to the intramembrane domains have been elusive. In this manuscript, Constantinescu and co-workers combined NMR, in vitro, and in vivo assays to investigate the activation and oncogenicity of TpoR. The authors concluded that the unwinding of the juxtamembrane domain is the main structural event that determines TpoR activation and regulates oncogenicity. The solid-state NMR studies were carried out in lipid membranes with polypeptides spanning the juxtamembrane and transmembrane residues. The authors show a series of spectra of 13CO resonances that encompass the juxtamembrane domain that is diagnostic of a structural transition from a helical conformation to a partially disordered state. The unwinding of the helical juxtamembrane domain was confirmed by site-specific mutations in this region. The chemical shift changes clearly indicate the transition from order to disorder (and vice versa) for selected sites. These conclusions are compounded by INEPT-type experiments that detect the most dynamic region of polypeptides. To rationalize the molecular mechanism for activation, the authors also used Ala-Ala insertions at strategic positions along the transmembrane domain. These experiments showed that the specific orientation of the transmembrane residues is central for TpoR activation, and a slight rotation of the helix is critical for activation of the receptor. Transcriptional activity assays confirm the importance of the proper orientation of the transmembrane domain for receptor activation.

      Overall, I believe the data are solid, and both biophysical and cell biology studies support the conclusions of the authors. These new findings represent a significant advancement in understanding cytokine receptor activation.

      We thank the reviewer for these comments.

      Reviewer #3 (Public Review):

      The authors sought to propose a mechanism by which cancer-causing mutations in the thrombopoietin receptor (TpoR) activate the receptor. To do so, they used a systematic approach of introducing non-native and naturally occurring mutations into the receptor and use a combination of in-vivo and cell-based assays and solid-state NMR spectroscopy. They propose that the proximity of the asparagine mutations to the cytosolic boundary influences the secondary structure of the receptor and suggests that this structural change induces receptor activation.

      The strengths of this work are the importance of the system being studied and tackling a problem that is not yet fully resolved. The authors acquired a large and convincing set of biological data, including in vivo experiments that support the gain-of-function/activating role of the mutations studied. The solid-state NMR data are of high quality as well. In particular, the INEPT data in figure 6a display very clear differences within one region of the wild-type compared to the mutants.

      One significant weakness is the validity of the conclusions given the limited atomistic measurements presented. Namely, the authors make rather specific conclusions about protein folding based on a single set of 13C alanine carbonyl chemical shifts in the wild-type and mutant TM peptides. Essentially, the authors observe chemical shift perturbations at this carbonyl carbon when mutations are introduced into a protein and use this information to make conclusions about secondary structure. I am not convinced that the authors have presented sufficient evidence to justify the conclusion that the helix unwinds and that this is responsible for the mechanism of activation. While the other cell-based experiments in mutations are interesting, deciphering such a specific folding mechanism with limited atomistic data is not justified.

      We added both computational data and solution NMR to support our conclusion.

    1. Author Response

      Reviewer #1 (Public Review):

      Proton pumps are necessary to set up gradients necessary for myriad biological processes. The malaria-causing parasite Plasmodium falciparum, uses two main pathways to achieve this, the vacuolar ATPase (V-type ATPase) and a more ancient vacuolar pyrophosphatase (PfPV1). The proton motive force set up across the parasite plasma membrane holds particular significance since it is necessary for transport of nutrients and waste products into and out of the cell. Motivated by the observation that the V-type ATPase is no expressed until several hours after the parasite has entered host cells, the present study examines the function of PfVP1. The authors demonstrate PfVP1 depletion blocks the early development of Plasmodium-specifically the transition from the ring to the trophozoite stage-and this is associated with changes to cellular pH and pyrophosphate levels, consistent with predicted functions. Complementation of the conditional knockdown suggests that pyrophosphatase activity alone is not sufficient to overcome the loss of PfVP1. Overall, data supporting a critical role for PfVP1 in parasite energetics is compelling. However, the lack of several key controls somewhat weakens the conclusions of the paper when it comes to complementation of the mutants and description of which activities are needed for parasite survival. Because the proximal activities of the enzyme ATP generation and the proton motive force are incompletely examined, some of the major conclusions from the study remain speculative.

      We thank the reviewer for these constructive comments. We are grateful to the reviewer for his/her recognition of the significance of our study. The major discovery of this manuscript is to uncover PfVP1’s essential role in the early-stage development of the 48h asexual lifecycle in P. falciparum. Our data suggest PPi is an energy source when ATP level is likely low in the ring stage malaria parasite and its transition to the trophozoite stage. We have performed additional experiments and tried the best to address each comment from the reviewer.

      Reviewer #2 (Public Review):

      In this work, the authors characterize a proton pump from the parasite Plasmodium falciparum that uses pyrophosphate as an energy source (PfVP1).

      They looked at the expression and localization of the pump in different stages of the parasite and determined that it localizes to the plasma membrane and it is highly expressed in the ring stage. They studied the biochemical function by expressing the gene in Saccharomyces followed by isolation of vesicles and measurements of proton transport and PPi hydrolysis. They also characterized the biological role of PfVP1 in the parasites by creating conditional mutants that express PfVP1 when cultured in the presence of anhydrotetracycline (ATC). Upon removal of ATC the expression of PfVP1 is downregulated, which impacted growth and transition to the trophozoite stage. Mutant parasites struggled to progress through the ring state and failed to become trophozoites in the second intraerythrocytic cycle. They complemented the mutants with the yeast inorganic pyrophosphatase gene and the Arabidopsis vacuolar pyrophosphatase.

      We thank the reviewer for positive and constructive comments. We have seriously worked on every comment raised by the reviewer. We have tried the best to perform additional experiments.

      Reviewer #3 (Public Review):

      Solebo and coworkers investigated the energy requirements of blood-stage malaria parasites (the stage of infection that causes symptoms). Traditionally, parasites were thought to be somewhat quiescent during the first half of their life cycle in red blood cells and become metabolically active as they prepare for replication. Consequently, antimalarial drugs are more active against parasites during the second half of their life cycle. In this report, the authors show that the metabolic by-product pyrophosphate is an essential energy source for the development of early-stage malaria parasites and that it is consumed by a vacuolar pyrophosphatase (PfVP1). Knock down studies showed that PfVP1 is required for the development of early-stage parasites and localization studies established that it is located in the parasite plasma membrane. Characterization of PfVP1 heterologously expressed in yeast confirmed that it is a pyrophosphate hydrolyzing proton pump. Consequently, loss of PfVP1 in early-stage parasites results in reduced pyrophosphate consumption and a reduction in pH (accumulation of protons). The authors further show that a similar vacuolar pyrophosphatase from Arabidopsis thaliana can complement the loss of the parasite ortholog, but a general pyrophosphatase enzyme cannot. Consistent with this result, mutations designed to inactivate either the pyrophosphatase activity or the proton-pumping activity demonstrated that both activities are essential for the development and survival of early-stage parasites.

      The conclusions of this paper are firmly supported by data, often from more than one type of experimental approach. The conclusions provide fundamental information about the stage of parasite development that has been hard to target with antimalarial drugs. The most energy-consuming process in a cell is the maintenance of membrane potential and in malaria parasites, it is known that proton pumps (rather than sodium pumps) are responsible for this process. Although PfVP1 was previously reported to be located internally in an organelle of the parasite, the data presented in this report clearly define its location on the plasma membrane and its essential role in maintaining the membrane potential. PfVP1 inhibitors could preferentially target early stage malaria parasites and the current results support efforts to find these inhibitors. Perhaps the most exciting aspect of this work is the potential to act synergistically and enhance the effect of current antimalarial drugs on early stage parasites. In this vein, the authors tested four antimalarial compounds in conjunction with knockdown of PfVP1 to determine whether there was enhanced activity. These experiments were not conducted in a systematic way and this is perhaps the only weakness of the paper.

      We thank the reviewer for positive, constructive, and encouraging comments. We really appreciate that. We are also very excited about our discovery that a non-ATP driven proton pump plays essential roles in the early-stage development of the asexual lifecycle. Our data suggest PPi is an energy source in the malaria parasite P. falciparum.

    1. Author Response

      Reviewer #1 (Public Review):

      Voltage-clamp fluorometry combines electrophysiology, reporting on channel opening, with a fluorescence signal reporting on local conformational changes. Classically, fluorescence changes are reported by an organic fluoropohore tethered to the receptor thanks to the cysteine chemistry. However, this classical approach does not allow fluorescent labeling of solvent-inaccessible regions or cytoplasmic regions. Incorporation of the fluorescent unnatural amino acid ANAP directly in the sequence of the protein allows counteracting these limitations. However, expression of ANAP-containing receptors is usually weak, leading to very small ANAP-related fluorescence changes (ΔFs).

      In this paper, the authors developed an improved method for expression of full-length, ANAP-mutated proteins in Xenopus oocytes. In particular, they managed to increase the ratio of full-length over truncated proteins for C-terminal ANAP incorporation sites. Since C-terminally truncated P2X receptors are usually functional, it is important to maximize the full-length over truncated protein ratio to have a good correspondence between the observed current and fluorescence. Using their improved strategy, they screened for ANAP incorporation sites and ATP-mediated ANAP ΔFs along the whole structure of the P2X7 receptor: extracellular ligand binding domain (head domain), M2 transmembrane segment (gate), as well as a large extracellular domain specific for the P2X7 subtype, the "ballast" domain. The functional role of this domain and its motions following ATP application are indeed unknown. Monitoring ANAP fluorescence changes in this region following ATP binding provides a unique way to study those questions. By analyzing ATP-induced ΔFs from different parts of the receptors, the authors conclude that the ATP-binding domain mainly follows gating, while intracellular "ballast" motions are largely decoupled from ATP-binding

      Strengths of the paper:

      This paper provides an improved method for efficient unnatural amino acid incorporation in Xenopus oocytes. Thanks to this technique, they managed to enhance membrane expression of ANAP-mutated P2X7 receptors and observed strong fluorescent changes upon ATP application. The paper furthermore describes an impressive screen of ANAP-incorporation sites along the whole protein sequence, which allows them to monitor conformational changes of solvent-inaccessible regions (transmembrane domains) and cytoplasmic regions that were not accessible to cysteine-reactive fluorophores. This screen was performed in a very thorough manner, each ANAP mutant being characterized biochemically for membrane expression, as well as in term of fluorescence changes. The limitations of the approach -small ΔF upon ATP application on wt receptors, problem of baseline fluorescence variations in presence of calcium- are well explained. Overall, this study should thus not only serve as a guide to anyone willing to perform VCF on P2X7 receptors but it should be useful to the whole community of researchers using unnatural amino acids. Thanks to orthogonal labeling with TMRM and ANAP, the authors managed to simultaneously monitor the motions of the extracellular and intracellular domains of P2X7. Finally, they propose methods to simultaneously monitor intracellular domain motion and downstream signaling.

      Weaknesses:

      Although the fluorescence screen is impressive and well conducted, the biological conclusions remain superficial at this stage. The paper furthermore lacks quantitative analysis. Finally, the title only reflects a minor part of the paper and is therefore not representative of the paper content.

      Quantitative analyses (DRCs and current rise times) were now added for the key mutations. In addition, we performed a variety of experiments to address the challenging question of mechanistic insight (mutants that track facilitation) and effects of intracellular factors (mutation of calmodulin binding site, FRET experiments with calmodulin). These data confirmed that deletion of a cysteine-rich intracellular region eliminates current facilitation (Roger et al., 2010) and that some of our mutants indeed track facilitation. However, mutation of the CaM binding site and FRET experiments did not support an effect of calmodulin or were inconclusive. As pointed out above, we think that VCF has limited capacity to identify novel biologically relevant consequences of receptor activation but is more suited to determine the sites and dynamics of already defined interactions.

      The title was changed to: "Improved ANAP incorporation and VCF analysis reveals details of P2X7 current facilitation and a limited conformational interplay between ATP binding and the intracellular ballast domain"

      Reviewer #2 (Public Review):

      The authors aimed to elucidate the structural rearrangements and activation mechanisms of P2X7 upon ATP application by voltage clamp fluorometry (VCF) using fluorescent unnatural amino acid (fUAA) and other fluorophores. They improved the fUAA methodology and detected ATP binding evoked changes in the ATP binding region and other regions. They also observed facilitation of fluorescence (F) changes by repeated application of ATP associated with gating. The F change in the cytoplasmic ballast region was minor, and with their experimental data, they discussed this region is involved in activation by other cytoplasmic factors, such as Ca2+.

      The strengths of the study are as follows.

      (1) fUAA methodology was improved to enable experiments by one time injection to oocytes (Figs. 1 and Suppl).

      (2) They performed intensive mutagenesis study of as many as 61 mutants (Figs. 3, 4, 5).

      (3) A careful evaluation of the successful Anap incorporation and formation of full length proteins was performed by western blot analysis (Fig. 2).

      (4) By three wave lengths F recording, they obtained better information, i.e. they classified the interpretation of F changes to, quenching, dequenching, increase in polarity and decrease in polarity (Fig. 3E).

      (5) They detected F changes upon ATP application in various regions of P2X7, but not many in the ballast region, showing that the ballast region is not well involved in the ATP evoked gating.

      (6) They analyzed the kinetics of F and current and their changes upon repeated ATP application to approach the known facilitation mechanisms. The data are very interesting. They concluded that it is intrinsic to the P2X7 molecule and that it is associated not with the ATP binding but with the gating process (Figs. 3F, 4D, 6A).

      (7) They performed interesting analysis to clarify the mechanisms of activation by cytoplasmic factors, especially Ca2+ entered via P2X7 (Fig. 6).

      The weaknesses of the study are as follows.

      (1) As both structures of P2X in the open and closed states are already solved, and the ATP binding evoked structural rearrangements from the ATP binding site to the gate are already known in detail. The structural rearrangements detected in the extracellular region (Fig. 3) and TM region (Fig. 4) upon ATP application are just as expected. The impact and scientific merits of this part are rather limited.

      We generally agree that the cryo-EM structures clarified basic principles of receptor function. However, considering the specific features of the P2X7 receptor and its likely regulation/modulation by membrane components and environment and the fact that the actual states of the receptor structures (e.g. facilitated or not?) is not known, we think that VCF analysis of its dynamics in a more native cellular environment is still required to confirm the predicted motions and also has the potential to identify details of "P2X7 fine tuning".

      (2) The facilitation mechanism is of high interest. The authors showed it is intrinsic to P2X2 and associated with the gating rather than ATP binding. However, this reviewer cannot have better understanding about the actual mechanism. (a) What is the mechanistic trigger of facilitation? Possibilities are discussed, but it appears there is no clear answer with experimental evidences yet. (b) How is the memory of the 1st ATP application stored in the molecule, i.e. how does the P2X7 structure just before the 1st application differ from that just before the 2nd application of ATP?

      These are indeed fundamental questions but based on the available information we do not see a rational approach to address this issue any further. Additional extensive "screening" for ideal fluorophore positions would probably be required and is beyond our possibilities in the present study.

      (3) The structural rearrangement of the CaM-M13 region (Fig. 6B, C) attached at the C-terminus by Ca2+ influx through P2X7 upon ATP application is natural due course and not very surprising. Also, it is not accepted as an evidence proving that Ca2+ is the mediator of facilitation.

      We apologize, this is a misunderstanding. We only provided protocols for parallel recordings of ANAP with other fluorophores for further analysis of downstream signaling pathways but we did not show or propose any functional consequences of the Ca2+ influx (see also point 7 above).

      (4) As to the ballast region, data showed its limited involvement in the ATP-induced structural rearrangements. The function of the ballast region is not clear yet. A possible involvement in GDP binding and/ or metabolism is discussed, but there is no clear experimental evidence.

      We are aware of these limitations. In the absence of a clear fluorescence change around the GTP/GDP-binding site or information about its role, it is difficult to investigate its molecular function by VCF. The fact, that (un-)binding of the guanosine nucleotide does not seem to be related to channel opening (McCarthy et al., 2019) further limits our options to study its function and currently it is not even known whether GDP/GTP has just a structural role. However, we identified A564* as a potential reporter for yet undefined processes that might affect GTP/GDP binding and/or metabolism.

      Reviewer #3 (Public Review):

      This research contributes to optimizing the amber stop-codon suppression protocol for voltage-clamp fluorometry (VCF) experiments using Xenopus oocyte heterologous expression system. By in vitro RNA synthesizing the tRNA and tRNA synthetases, combined with the dominant-negative release factor initially developed by Jason Chin's lab, L-Anap can be site-specifically labeled to proteins by a single microinjection of a mixture of molecular components into the cytoplasm of oocytes. Although it avoids nuclear microinjection to oocytes, it adds more RNA synthesis steps. This strategy of using eRF dominant negative variant (eRF1-E55D), was previously applied to the Anap incorporation system using mammalian cell lines and model proteins (Gordon et al, eLife, 2018). In this previous 2018 paper, with eRF1-E55D, the percentage of full-length protein expression increased substantially. Using oocytes in this paper, this percentage apparently did not increase significantly as shown in Fig. 1D, different from the previous paper. Nevertheless, the overall expression level increased successfully by this method, which could facilitate macroscopic fluorescence measurements, especially considering that L-Anap is relatively dim as a fluorophore.

      Anap fluorescence change was measured mostly using its environmental sensitivity, which has limited information in interpreting structural changes. The structural mechanisms proposed could be potentially strengthened and the conclusions could be further validated by combining FRET or other distance ruler experiments with the VCF method. The engineered CaM-M13 FRET experiments mostly report the calcium entry, not measuring the rearrangements of P2X7 directly.

      We tried FRET analyses with ANAP-labeled P2X7 and mNeonGreen-labeled CaM but unfortunately, results were inconclusive.

      In addition, results of ATP dose-response relationship for channel activation correlated with ATP dose-dependent Anap fluorescence change, especially for sites showing a large percentage of ATP-induced change in fluorescence, would provide more insights regarding the allosteric mechanism of the channel.

      We agree, but unfortunately, bleaching of ANAP and the variation of background fluorescence in individual oocytes prevented such analyses .

    1. Author Response

      Reviewer #1 (Public Review):

      This study provides evidence for previously unknown relationship between oncogenic protein kinase A (PKA) signaling and MYC family members. Specifically, the authors have employed a combination of systems biology and biochemical assays to capture mediators of oncogenic PKA signaling in a fibrolamellar carcinoma and melanoma cell line. This lead to identification of Aurora A and PIM kinases as potential effectors of constitutively active PKA. Aurora A and PIM kinases have been previously shown to stabilize MYC proteins. Accordingly, evidence is provided that the effects of PKA/Aurora A and PKA/PIM axis are mediated via MYC. Collectively, these findings suggest a model whereby the effects of aberrant PKA signaling are mediated via Aurora A and PIM kinases and related feedback mechanisms that ultimately result in stabilization of MYC proteins. Importantly, PKA-driven cancer cell lines exhibited high sensitivity to Aurora A kinase inhibitors in cell culture-based assays. These findings not only provide pioneering insights into oncogenic PKA signaling, but may also have implications for developing therapeutic approaches for neoplasia that harbor constitutively active PKA.

      Strengths:

      This study addresses the role of aberrant PKA signaling in cancer, which represents a major gap in knowledge in cancer biology. Systems biology approaches and dissection of signaling networks downstream of constitutively active PKA are found to be exciting in the context of this study and likely to provide a wealth of information for future studies. Results from samples obtained from fibrolamellar carcinoma patients partially confirmed correlations observed in cell lines, which was seen as an advantage. Notwithstanding that, it was thought that orthogonal genetic validation may in some cases be warranted, pharmacological approaches using e.g. Aurora A inhibitors hold a promise for accelerated translation of observed findings into the clinic.

      We appreciate this positive assessment of our work and are hopeful that we have solidified the significance and potential impact of our findings through additional analysis.

      Weaknesses:

      The major drawback of the study is the lack of in vivo models to validate observations garnered from the cell lines. This is particularly important considering that experiments carried out in samples from fibrolamellar carcinoma patients suggested additional Aurora A and PIM kinase-independent mechanisms of PKA-driven increase in MYC levels and likely in neoplastic growth may be implicated in vivo. In addition, it was thought that more mechanistic evidence is required for linking PKA to PIM kinase, especially because different PIM kinases were implicated in stabilization of MYC in fibrolamellar carcinoma vs. melanoma cell lines. Finally, although pharmacological approaches were appreciated, due to potential issues with the specificity of the inhibitors, it was thought that orthogonal genetic approaches are warranted to further corroborate the proposed model.

      We acknowledge the lack of in vivo treatment modeling in this manuscript. The work presented here provides motivation for these important experiments, but they remain outside the scope of this manuscript. The expansion of the manuscript in revision with new investigations into protein translation and several additional data sets creates a more complete systems biology analysis of PKA signaling and PKA-induced signaling dependencies. This expanded scope makes in vivo validation of specific treatments and treatment combinations an even larger undertaking. The text has been modified to emphasize this point. We further acknowledge the accuracy of the reviewer’s assessment of our findings on PIM2. The limited reagents to study PIM kinases made this relatively difficult to expand. We shifted the focus of the work to include assessment of PKA effects on mRNA translation as a mechanism of c-MYC regulation. We have strengthened our assessments with loss- and gain-of-function genetic and pharmacological models, which we believe will more completely answer the reviewer’s concerns.

      Reviewer #2 (Public Review):

      Protein kinase A (PKA) is often stimulated and contributes to cancer growth, yet the downstream kinase signaling cascades remain unclear. Here the authors use a global phosphoproteomics and kinome activity profile to show that not only is the RAS/MAPK pathway activated, as expected, but the authors also suggest Aurora kinase A (AURKA) and PIM kinases are activated to stabilize the expression of MYC expression; a potent oncoprotein associated with poor prognosis and aggressive disease. The authors use a number of different cell lines in this study, but focus on fibrolamellar carcinoma as PKA is known to contribute to this disease.

      Strengths: It has been notoriously difficult to map kinases and their substrates as these protein-protein interactions are not always amenable to traditional biochemical techniques due to their labile nature, and kinase substrate consensus sites are often overlapping and not highly specific. Thus, the authors' pipeline to delineate such kinase cascades is quite novel and useful. They apply it here to determine PKA signaling in cancer using sophisticated computational strategies and then validate with classic molecular techniques.

      We appreciate this positive assessment of our analytical tools and the importance of understanding oncogenic PKA signaling.

      Weaknesses: The lack of mechanistic evidence linking aberrant PKA activation with regulation of MYC family members was considered to be a major weakness of the study. As it stands, it is hard to delineate whether observed changes in the levels of MYC family members are indeed a consequence of aberrant PKA signaling. It also remains unclear which MYC phosphorylation sites are implicated in the context of neoplastic PKA function and whether MYC family members are regulated at the level of protein stability or mRNA translation. Moreover, some methodological issues (e.g. using single siRNAs) were also observed. Collectively it was thought that these weaknesses should be addressed to corroborate author's conclusions.

      We acknowledge these concerns about our initially submitted manuscript and present extensive data that advances the manuscript in answering the key questions posed by the reviewer. We note that with the development of data showing PKA-induced phosphorylation of translation initiation components and sensitivity of c-MYC levels to eIF4A inhibition, some detailed evaluations of c-MYC phosphorylation were not undertaken, although key c-MYC mutants were tested in the course of our study and are included for reviewer interest.

    1. Author Response

      Reviewer #1 (Public Review):

      In the current study, the authors reanalyze a prior dataset testing effects of D2 antagonism on choices in a delay discounting task. While the prior report using standard analysis, showed no effects, the current study used a DDM to examine more carefully possible effects on different subcomponents of the decision process. This approach revealed contrasting effects of D2 blockade on the effect of reward size differences and bias. Effects were uncorrelated, suggesting separate mechanisms perhaps. The authors speculate that these opposing effects explain the variability in effects across studies, since they mean that effects would depend on which of these factors is more important in a particular design. Overall the study is novel and well-executed, and the explanation offers interesting insight into neural processes.

      We thank the reviewer for judging our study as interesting and well-executed.

      Reviewer #2 (Public Review):

      The authors aim to test the hypothesis that dopamine mediates the evaluation of temporal costs in intertemporal choice in humans, with a specific goal of synthesizing the competing accounts and previous results regarding whether dopamine increases or decreases evaluation of delays in comparing differently delayed future rewards. To do this, they computationally dissect the impact of the drug amisulpride, a D2R antagonist, using a variant of a sequential sampling model, the drift-diffusion model (DDM), that is well established in decision-making literature as a cognitive process model of choice. This model allows the dissociation of starting bias from the rate at which decision evidence is integrated ('drift'), which the authors map to different accounts of the role of dopamine: the temporal proximity of an outcome is proposed to impact bias, while the cost of a delay to impact the drift rate of evidence evaluation/accumulation. Consistent with previous results, and perhaps integrating conflicting findings, the authors find that d2R blockade impacts both bias and drift rate in a cohort of 50 participants, demonstrating dopaminergic action at this receptor is implicated in dissociable components of intertemporal choice, with D2R block reducing the bias towards sooner, more temporally proximate rewards as well as enhancing the contrast between reward magnitudes irrespective of delay, effectively diminishing the effect of delay in the drug condition. These effects are consistent across a small subset of alternative models, confirming the multiple cognitive mechanisms through which D2R block impacts intertemporal choice is a robust feature of decisions on this task.

      Overall, this study is a detailed dissection of the specific effects of amisulpride on a type of future-oriented, hypothetical intertemporal choice, and provides consistent evidence integrating conflicting accounts that implicate dopaminergic signaling on evaluation of the cognitive costs, such as a delay, on choice. However the specificity of the empirical intervention and the task design limits the interpretation of the broader dopaminergic mechanisms at play in intertemporal choice, especially given the complexity of receptor specificity of this drug, dopamine precursor availability and individual differences and the specifics of the intertemporal choice in this task. As it stands, the results contribute an interesting, synthesized account of how D2R manipulation can impact evaluation of delays in multiple ways, that will likely be useful for motivating future studies and more detailed computational assessments of the cognitive process-level components of intertemporal choice more generally.

      We thank the reviewer for the positive overall evaluation of our study. We revised the manuscript according to the reviewer’s comments, addressing also the receptor specificity of amisulpride and the specifics of the administered intertemporal choice task, which further improved the quality of the manuscript.

      The focus of this study is important, and delineating the role of DA in intertemporal choice is of high relevance given DA disfunction is prevalent in many psychiatric disorders and a key target of pharmacological treatment. While the hypotheses of the current study are framed with respect to "costs", the task used by the authors reduces these to evaluation of a hypothetical delay, one which the participants do not necessarily experience in the context of the task. In some respects this is reasonable, given the prevalence of this task paradigm in testing temporal aspects of choice in humans in an economic sense. However, humans are also notoriously subject to framing effects and the impact of instructions in cognitive tasks like these, which can limit the generality of the conclusions, and in particular the specific ways in which a delay can be interpreted as costly (for eg cost as loss of potential earnings, cost as effortful waiting, cost as computational/simulation cost in future evaluation). Given the hypothesis recruits the idea of cost in assessing the role of dopamine, testing for generality in the effects of amisulpride in related but differently framed tasks seems critical for making this link in a general sense, and in connecting it to the previous studies in the literature the authors point to as demonstrating conflicting effects.

      We agree that it is important to discuss whether our findings for delay costs can be generalized to other costs types as well, such as risk, social costs, effort, or opportunity costs. Based on a recent literature review (Soutschek, Jetter, & Tobler, 2022), we speculate that dopamine may moderate proximity effects also for risk and social costs but not for effortful rewards, though we emphasize that these hypotheses still require more direct empirical evidence. We also discuss the issue that delays can be perceived as costly in different ways. While in some tasks participants actually experience the waiting time until reward delivery, such that delayed rewards are associated with opportunity costs, in our current task paradigm delayed rewards were virtually free of opportunity costs as participants could engage in other reward-related behaviors during the waiting time. Previous studies suggest that lower tonic dopamine levels reduce the sensitivity to opportunity costs (Niv et al., 2007), which seems in line with our finding that amisulpride decreases the influence of delays on the starting bias parameter. Nevertheless, we emphasize that further evidence is needed to decide whether dopamine shows similar effects for experienced and non-experienced waiting costs. In the revised manuscript, we discuss the cost specificity of our findings on p.22:

      “An important question refers to whether our findings for delay costs can be generalized to other types of costs as well, including risk, social costs (i.e., inequity), effort, and opportunity costs. In a recent review, we proposed that dopamine might also moderate proximity effects for reward options differing in risk and social costs, whereas the existing literature provides no evidence for a proximity advantage for effort-free over effortful rewards (Soutschek et al., 2022). However, these hypotheses need to be tested more explicitly by future investigations. Dopamine has also been ascribed a role for moderating opportunity costs, with lower tonic dopamine reducing the sensitivity to opportunity costs (Niv et al., 2007). While this appears consistent with our finding that amisulpride (under the assumption of postsynaptic effects) reduced the impact of delay on the starting bias, it is important to note that choosing delayed rewards did not involve any opportunity costs in our paradigm, given that participants could pursue other rewards during the waiting time. Thus, it needs to be clarified whether our findings for delayed rewards without experienced waiting time can be generalized to choice situations involving experienced opportunity costs.”

      Further, while the study aims to test the actions of dopamine broadly, the empirical manipulation is limited to the action of amisulpride, a D2R anatgonist. There is little to no discussion of, or control for, the relationship between dopaminergic action at D2 receptors (the site of amisulpride effects) and wider mechanisms of dopaminergic action at other sites eg D1-like receptors, and the interplay between activation at these two receptor types alongside baseline levels of dopamine concentration. This is necessary for a comprehensive account of dopamine effects on intertemporal choice as the authors aim to test, as opposed to a specific test of the role of the D2 receptor, which is what the study achieves. On a related note, in some preparations at least, amisulpride also acts at some of the 5-HT receptors, raising the possibility of a non-dopaminergic mechanism by which this drug might impact intertemporal decisions. This possibility, while it would not be expected to act without dopaminergic effects as well, is consistent with established effects of serotonin on waiting behaviors and patience. Granted, the limits of pharmacology in humans does not necessarily mean this can be controlled for, it should be kept in mind with a systemic manipulation such as this.

      We agree with the reviewer that it is important to distinguish between the contributions of D1 and D2 receptors to decision making, given that these receptor families are hypothesized to have dissociable functional roles. We therefore re-analyzed also data on the impact of a D1 agonist on intertemporal decision making (previous findings for this data set were published in Soutschek et al., 2020, Biological Psychiatry). This analysis provided no evidence for significant effects of D1R stimulation on parameters from a drift diffusion model. This suggests that D2R, rather than D1R, activation mediates the impact of proximity on intertemporal choices.

      In the revised manuscript, we report the findings for the D1 agonist study on p.16:

      “To assess the receptor specificity of our findings, we conducted the same analyses on the data from a study (published previously in Soutschek et al. (2020)) testing the impact of three doses of a D1 agonist (6 mg, 15 mg, 30 mg) relative to placebo on intertemporal choices (between-subject design). In the intertemporal choice task used in this experiment, the SS reward was always immediately available (delay = 0), contrary to the task in the D2 experiment where the delay of the SS reward varied from 0-30 days. Again, the data in the D1 experiment were best explained by DDM-1 (DICDDM-1 = 19,657) compared with all other DDMs (DICDDM-2 = 20,934; DICDDM-3 = 21,710; DICDDM-5 = 21,982; DICDDM-6 = 19,660; note that DDM-4 was identical with DDM-1 for the D1 agonist study because the delay of the SS reward was 0). Neither the best-fitting nor any other model yielded significant drug effects on any drift diffusion parameter (see Table 4 for the best-fitting model). Also model-free analyses conducted in the same way as for the D2 antagonist study revealed no significant drug effects (all HDI95% included zero). There was thus no evidence for any influence of D1R stimulation on intertemporal decisions.”

      We discuss the specificity of D2 receptors for moderating the proximity bias on p.17: “This finding represents first evidence for the hypothesis that tonic dopamine moderates the impact of proximity (e.g., more concrete versus more abstract rewards) on cost-benefit decision making (Soutschek et al., 2022; Westbrook & Frank, 2018). Pharmacological manipulation of D1R activation, in contrast, showed no significant effects on the decision process. This provides evidence for the receptor specificity of dopamine’s role in intertemporal decision making (though as caveat it is worth keeping the differences between the tasks administered in the D1 and the D2 studies in mind).”

      We also agree that amisulpride acts also on 5-HT7 receptors, such that it remains unclear whether also such effects contribute to the observed result pattern. We discuss this limitation in the revised manuscript on p.21:

      “Lastly, while the actions of amisulpride on D2/D3 receptors are relatively selective, it also affects serotonergic 5-HT7 receptors (Abbas et al., 2009). Because serotonin was related to impulsive behavior (Mori, Tsutsui-Kimura, Mimura, & Tanaka, 2018), it is worth keeping in mind that amisulpride effects on serotonergic, in addition to dopaminergic, activity might contribute to the observed result pattern.”

      Overall the modeling methods are robust and appropriate for the specific test of decision impacts of D2R blockade, and include several prima facie variable alternative models for comparison. Some caution is warranted, since there are not many trials per subject, and some trials are discarded as well as outliers, which raises the question of power. Given the models are fit hierarchically, which gives both group-level and individual-level parameter estimates, the elements are there to probe more deeply into individual differences, and to test how reliably this approach can dissociate the dual effects of bias and drift rate at the individual level, and perhaps correlate it with other informative subject measures of either dopamine activity/capacity or other dopamine-dependent behaviors. Alternative DDMs might also capture some of this individual variation, with meaningful differences potentially in model comparison at the individual level. It should be noted that the scope of these models do not exhaust the ways in which proximity (here, temporal) of rewards and contrast between choice options might be incorporated into a cognitive process model account of choice; all alternatives here rest on the same implicit 2-alternative forced choice assumption of the DDM, and the assumptions of this model are not here tested against other accounts of choice, for example the linear ballistic accumulator (LBA) and its derivatives. Further, the concept of proximity as a global feature of a trial (on average, how soon are these options overall?) is never tested on my read of the alternative models.

      We thank the reviewer for these interesting suggestions. First, to explore whether measures of dopaminerigc activity correlate with individual differences in drug effects on DDM parameters, we now report correlations between DDM parameters and performance in the digit span backward task as proxy for dopamine synthesis capacity (Cools et al., 2008). None of these correlation analyses showed significant results. In the revised manuscript, we report these analyses on p.13:

      “However, we observed no evidence that individual random coefficients for the drug effects on the drift rate or on the starting bias correlated with body weight, all r < 0.22, all p > 0.10. There were also no significant correlations between DDM parameters and performance in the digit span backward task as proxy for baseline dopamine synthesis capacity (Cools, Gibbs, Miyakawa, Jagust, & D'Esposito, 2008), all r < 0.17, all p > 0.22. There was thus no evidence that pharmacological effects on intertemporal choices depended on body weight as proxy of effective dose or working memory performance as proxy for baseline dopaminergic activity.”

      Regarding model comparisons on the individual level, we note that the hierarchical Bayesian modelling approach allows (to the best of our knowledge) computing indices of model fit like DIC only on the group, not the individual level (while accounting for individual differences). However, we agree with the reviewer that theoretically different models might work best in different individuals (depending, for example, on the individual sensitivity to proximity). While such fine-grained model comparisons on the individual level are beyond the scope of the current study (and might not yield robust results given the limited number of trials for each participant), we now discuss this limitation in the revised manuscript (p.17-18):

      “We note that the hierarchical modelling approach allowed us to compare models on the group level only, such that in some individuals behavior might better be explained by a different model than DDM-1. Such model comparisons on the individual level, however, were beyond the scope of the current study and might not yield robust results given the limited number of trials per individual.”

      Likewise, linear ballistic accumulator (LBA) models represent a further class of process models with different assumptions on the mechanisms underlying the choice process than DDMs. In LBAs, evidence is accumulated separately for each choice alternative, whereas DDMs assume only one accumulation process which integrates attributes from two choice options, limiting the use of DDMs to two-alternative forced-choice scenarios. Nevertheless, proximity effects might be incorporated also in LBA models via modulating the starting point of the option-specific accumulators as a function of proximity. To the best of our knowledge, there is no built-in function in JAGS that allows estimating LBA models in a hierarchical Bayesian fashion (in contrast to, e.g., STAN), such that in the context of the current study it is difficult to directly compare our DDM-based approach with LBA models. It is importance to emphasize, however, that similar to other studies we do not make any claims about whether the choice process per se is best explained by DDMs or LBA models; instead, we focus on how rewards and delay costs affect different components of the decision process within a class of decision models. Nevertheless, we discuss such alternative modelling approaches in the revised manuscript on p.18:

      “We also emphasize that alternative process models like the linear ballistic accumulator (LBA) model make different assumptions than DDMs, for example by positing the existence of separate option-specific accumulators rather than only one as assumed by DDMs. However, proximity effects as investigated in the current study might be incorporated in LBA models as well by varying the starting points of the accumulators as function of proximity.”

      Lastly, we thank the reviewer for the interesting suggestion to assess whether the starting bias parameter is affected by the overall proximity of offers (sum of delays) instead of by the difference in proximity between the options. We ran a further DDM to test this hypothesis, but this model explained the data worse (DIC = 9,492) than the original DDM (DIC = 9,478). Nevertheless, also the overall proximity DDM yielded a significant amisulpride effect on the impact of reward magnitude on the drift rate, HDImean = 0.83, HDI95% = [0.04; 1.75], underlining the robustness of this effect. In the revised manuscript, we report this analysis on p.12:

      “In a further model (DDM-4), we explored whether the starting bias is affected by the overall proximity of the options (sum of delays, Delaysum) rather than the difference in proximity (Delaydiff; see Table 3 for an overview over the parameters included in the various models). Importantly, our original DDM-1 (DIC = 9,478) explained the data better than DDM-2 (DIC = 9,481), DDM-3 (DIC = 10,224), or DDM-4 (DIC = 9,492). Nevertheless, amisulpride moderated the impact of Magnitudediff on the drift rate also in DDM-2, HDImean = 0.86, HDI95% = [0.18; 1.64], and DDM-4, HDImean = 0.83, HDI95% = [0.04; 1.75], and amisulpride also lowered the impact of Delaydiff on the starting bias in DDM-3, HDImean = -0.02, HDI95% = [-0.04; -0.001]. Thus, the dopaminergic effects on these subcomponents of the choice process are robust to the exact specification of the DDM.”

      Reviewer #3 (Public Review):

      Soutschek and Tobler provide an intriguing re-analysis of inter-temporal choice data on amisulpride versus placebo which provides evidence for an as-yet untested hypothesis that dopamine interacts with proximity to bias choices.

      The modeling methods are sound with a robust and reasonably exhaustive set of models for comparison, with good posterior predictive checks at the single subject level, and decent evidence of parameter recoverability. Importantly, they show that while there is no main effect of drug on the proportion of larger, later (LL) versus smaller, sooner (SS) choices, this obscures conflicting-directional effects on drift rate versus starting point bias which are under-the-hood, yet anticipated by the hypothesis of interest.

      We thank the reviewer for judging our findings as intriguing and the modelling approach as robust and convincing.

      While I have no major concerns about methodology, I think the Authors should consider an alternative interpretation - albeit an interpretation which would actually support the hypothesis in question more directly than their current interpretation. Namely, the Authors should re-consider the possibility that amisulpride's effects are mediated primarily by acting at pre-synaptic receptors. If the D2R antagonist were to act pre-synaptically, it would drive more versus less post-synaptic dopamine signaling.

      There are multiple reason for this inference. First, the Authors observe that the drug increases sensitivity to differences in the relative offer amounts (in terms of effects on the drift rate). With respect to the canonical model of dopamine signaling in the direct versus indirect pathway, greater post-synaptic signaling should amplify sensitivity to reward benefits - which is what the Authors observe.

      Second, the Authors also observe an effect on the starting bias which may also be consistent with an increase in post-synaptic dopamine signaling. Note that according to the Westbrook & Frank hypothesis, a proximity bias in delay discounting should favor the SS over the LL reward, yet the Authors primarily observe a starting bias in the direction of the LL reward. This contradiction can be resolved with the ancillary assumption that, independent of any choice attribute, participants are on average predisposed to select the LL option. Indeed, the Authors observe a reliable non-zero intercept in their logistic regression model indicating that participants selected the LL more often, on average. As such, the estimated starting point may reflect a combination of a heightened predisposition to select the LL option, opposed by a proximity bias towards the sooner option. Perhaps the estimated DDM starting point is positive because the predisposition to select the LL option has a larger effect on choices than the proximity bias towards sooner rewards does in this data set. To the extent that amisulpride increases post-synaptic dopamine signaling (by antagonizing pre-synaptic D2Rs) it should amplify the proximity bias arising from the differences in delay, shifting the starting bias towards the SS option. Indeed, this is also what the Authors observe.

      Note that it remains unclear why an increase in post-synaptic dopamine signaling would amplify one kind of proximity bias (towards sooner over later rewards) without amplifying the other (towards a predisposition to select the LL option). Perhaps the cognitive / psychological nature of the sooner bias is more amenable to interacting with dopamine signaling than the latter. Or maybe proximity bias effects are most sensitive to dopamine signaling when they are smaller, and the LL predisposition bias is already at ceiling in the context of this task. These assumptions would help explain why a potential increase in post-synaptic dopamine signaling both amplified the proximity effect of delay when it was smallest (when the differences in delay were smaller), and also failed to amplify the predisposition to select the LL option (which may already be maxed out). More importantly, the assumption that there are opposing proximity biases would also help explain why there is a negative effect of delay magnitude on the estimated starting point on placebo. Namely - as the delay gets larger, the psychological proximity of sooner over later rewards grows, counteracting the proximity bias arising from choice predisposition / repetition.

      We thank the reviewer for suggesting this alternative interpretation of our data. We agree that the administered dose of 400 mg amisulpride can show both postsynaptic (reducing D2R activation) and presynaptic effects (enhancing D2R activation), which in many studies makes it difficult to decide whether the observed behavioral effects are caused by presynaptic or postsynaptic mechanisms.

      The reviewer suggests that the observed stronger influence of reward magnitudes on drift rates under amisulpride compared with placebo speaks in favor of presynaptic effects, because according to theoretical accounts higher dopamine levels should increase reward seeking (e.g., Frank & O’Reilly, 2006). On the other hand, Figure 2C suggests that amisulpride (compared with placebo) increased the preference only for relatively high, above-average rewards. If the difference between reward magnitudes was below average, amisulpride reduced rather than increased the preference for the larger reward. In our view, this is consistent with the hypothesis that D2R activation implements a cost control, with higher D2R activation increasing the attractiveness of costly rewards and lower D2R activation reducing it. In other words, under low dopamine levels individuals should decide for the costlier reward only if the magnitude of the costlier reward is sufficiently large compared with the lower, less costly reward. In fact, this is exactly what we find in our data according to Figure 2C. In our view, the amisulpride effect on drift rates is thus compatible with both presynaptic and postsynaptic mechanisms of action, depending on the underlying conceptual account of dopamine, as we now discuss in the revised manuscript.

      According to the reviewer, also the observed influence of amisulpride on the starting bias speaks in favor of increased rather than reduced dopamine levels. We agree with the reviewer that the result pattern for the starting bias is somewhat complex and seems to combine the effects of two different biases: a general tendency to choose LL over SS rewards (intercept of starting bias where the difference in delays is close to zero), and a shift towards the SS option under placebo if one options has a strong (temporal) proximity advantage over the other. Amisulpride shows opposite effects on the two different biases, as it shifts the intercept of the starting bias further away from the LL option but also reduces the proximity advantage of the SS over the LL reward for larger differences in delay. The reviewer writes that “To the extent that amisulpride increases post-synaptic dopamine signaling (by antagonizing pre-synaptic D2Rs) it should amplify the proximity bias arising from the differences in delay, shifting the starting bias towards the SS option. Indeed, this is also what the Authors observe.” In contrast to that statement, in our study amisulpride reduced rather than increased the starting bias arising from delay (as in Figure 2K the regression line is flatter under amisulpride compared with placebo, despite the differences regarding the intercept). We believe that the amisulpride effects on both the intercept and the delay-dependent slope can be explained via postsynaptic effects: First, the shift of the intercept of the starting bias (small differences in proximity) from the LL towards the SS option under amisulpride is consistent with the assumption that lower dopamine reduces the preference for larger reward (e.g., Beeler & Mourra, 2018; Salamone & Correa, 2012). Second, the finding that amisulpride weakens the proximity advantage of SS over LL rewards (delay-dependent slope) is consistent with the proximity account by Westbrook & Frank (2018) according to which lower tonic dopamine should reduce proximity effects. Thus, if we assume that the result pattern for the starting bias parameter is driven by dopaminergic effects on two separate decision biases (as suggested by the reviewer), we believe that both effects can better be explained by pharmacologically reduced rather than increased dopamine levels.

      In the revised manuscript, we extensively discuss the question as to whether the observed drug effects are caused by postsynaptic versus presynaptic effects. We clarify that the amisulpride effect on drift rates seems consistent with both presynaptic and postsynaptic effects (depending on the underlying conceptual account). We moreover discuss that the starting bias effects may reflect the interaction between two different bias types, and the drug effects on both bias types can more easily be reconciled with postsynaptic than presynaptic effects. On balance, we believe that the observed effects are more likely to reflect lower as compared to higher dopamine levels, but the extended discussion of this issue gives all readers the opportunity to weigh the arguments for and against these alternatives. If the reviewer should not agree with some aspects of our argumentation as outlined above, we would of course be happy to modify the discussion according to the reviewer’s advice.

      In the revised manuscript, we modified the discussion of presynaptic versus postsynaptic effects as follows (p.20-21):

      “While higher doses of amisulpride (as administered in the current study) antagonize post-synaptic D2Rs, lower doses (50-300 mg) were found to primarily block pre-synaptic dopamine receptors (Schoemaker et al., 1997), which may result in amplified phasic dopamine release and thus increased sensitivity to benefits (Frank & O'Reilly, 2006). At first glance, the stronger influence of differences in reward magnitude on drift rates under amisulpride compared with placebo might therefore speak in favor of presynaptic (higher dopamine levels) rather than postsynaptic mechanisms of action in the current study. On the other hand, one could argue that amisulpride reduced the preference for the LL reward if the gain from the costlier LL option compared with the SS option was small (as suggested by Figure 2C), which is consistent with the cost control hypothesis of dopamine (Beeler & Mourra, 2018). The impact of amisulpride on the drift rate thus appears ambiguous regarding the question of pre- versus postsynaptic effects. The result pattern for the starting bias parameter, in turn, suggests the presence of two distinct response biases, reflected by the intercept and the delay-dependent slope of the bias parameter (see Figure 2K), which are both under dopaminergic control but in opposite directions. First, participants seem to have a general bias towards the LL option in the current task (intercept), which is reduced under amisulpride compared with placebo, consistent with the assumption that dopamine strengthens the preference for larger rewards (Beeler & Mourra, 2018; Salamone & Correa, 2012; Schultz, 2015). Second, amisulpride reduced the proximity advantage of SS over LL rewards with increasing differences in delay, as predicted by the proximity account of tonic dopamine (Westbrook & Frank, 2018). On balance, the current results thus appear more likely under the assumption of postsynaptic rather than presynaptic effects. Unfortunately, the lack of a significant amisulpride effect on decision times (which should be reduced or increased as consequence of presynaptic or postsynaptic effects, respectively) sheds no additional light on the issue.”

      Regardless of the final interpretation, showing that pharmacological intervention into striatal dopamine signaling can simultaneously modify a starting point bias and drift rate (in opposite directions - thus having systematic effects on choice biases without altering the average proportion of LL choices) provides crucial first evidence for the hypothesis that dopamine and proximity interact to influence decision-making. These results thereby enrich our understanding of the neuromodulatory mechanisms influencing inter-temporal choice, and take an important step towards resolving prior contradictions in this literature. They also have implications for how striatal dopamine might impact decision-making in diverse domains of impulsivity beyond inter-temporal choice, ranging from cognitive neuroscience (e.g. in numerous cognitive control tasks) to psychiatry (treating diverse disorders of impulse control).

      We thank the reviewer for highlighting the importance of the current findings for understanding dopamine’s role in decision making.

    1. Author Response

      Reviewer #1 (Public Review):

      Liau and colleagues have previously reported an approach that uses PAM-saturating CRISPR screens to identify mechanisms of resistance to active site enzyme inhibitors, allosteric inhibitors, and molecular glue degraders. Here, Ngan et al report a PAM-saturating CRISPR screen for resistance to the hypomethylating agent, decitabine, and focus on putatively allosteric regulatory sites. Integrating multiple computational approaches, they validate known - and discover new - mechanisms that increase DNMT1 activity. The work described is of the typical high quality expected from this outstanding group of scientists, but I find several claims to be slightly overreaching.

      Major points:

      The paper is presented as a new method - activity-based CRISPR scanning - to identify allosteric regulatory sites using DNMT1 as a proof-of-concept. Methodologically, the key differentiating feature from past work is that the inhibitor being used is an activity-based substrate analog inhibitor that forms a covalent adduct with the enzyme. I find the argument that this represents a new method for identifying allosteric sites to be relatively unconvincing and I would have preferred more follow-up of the compelling screening hits instead. The basic biology of DNMT1 and the translational relevance of decitabine resistance are undoubtedly of interest to researchers in diverse fields. In contrast, I am unconvinced that there is any qualitative or quantitative difference in the insights that can be derived from "activity-based CRISPR scanning" (using an activity-based inhibitor) compared to their standard "CRISPR suppressor scanning" (not using an activity-based inhibitor). Key to their argument, which is expanded upon at length in the manuscript, is that decitabine - being an activity-based inhibitor that only differs from the substrate by 2 atoms - will enrich for mutations in allosteric sites versus orthosteric sites because it will be more difficult to find mutations that selectively impact analog binding than it is for other active-site inhibitors. However, other work from this group clearly shows that non-activity-based allosteric and orthosteric inhibitors can just as easily identify resistance mutations in allosteric sites distal from the active site of an enzyme (https://www.biorxiv.org/content/10.1101/2022.04.04.486977v1). If the authors had compared their decitabine screen to a reversible DNMT1 inhibitor, such as GSK3685032, and found that decitabine was uniquely able to identify resistance mutations in allosteric sites, then I would be convinced. But with the data currently available, I see no reason to conclude that "activity-based CRISPR scanning" biases for different functional outcomes compared to the "CRISPR suppressor scanning" approach.

      We appreciate the reviewer’s comments and thank them for their constructive feedback. We agree with the reviewer that our claims regarding the utility of activity-based CRISPR scanning would be more strongly supported with a head-to-head comparison against a non-covalent, reversible inhibitor. To address this point, we conducted a CRISPR scanning experiment on DNMT1 and UHRF1 using GSK3484862 (GSKi), which is shown in Fig. 1e–h. We observed that the top enriched sgRNA under GSKi treatment targets H1507, which directly interacts with the drug and contributes to compound binding. (Fig. 1e,h, Supplementary Fig. 1e). Our results are consistent with previous structural and biochemical studies of these inhibitors (reported in Pappalardi, M.B. et al., Nat. Cancer 2021), in which they demonstrate that the H1507Y mutation reduces GSK3685032 (a derivative of GSK3484862) inhibition of DNMT1 by >350-fold compared to wild-type DNMT1. By contrast, the top enriched sgRNA under decitabine (DAC) treatment targets D702 in the autoinhibitory linker region (Fig. 1c). Furthermore, comparison of sgRNA resistance scores across DAC and GSKi treatment conditions reveals highly distinct sgRNA enrichment profiles (Fig. 1g). Taken together, our data suggest that these two mechanistic classes of inhibitors may exert differential selective pressures that lead to unique enrichment profiles.

      While we consider these data to strengthen our claim that activity-based CRISPR scanning can preferentially enrich for mutations in allosteric sites versus orthosteric sites, we also recognize that allosteric site mutations can be identified without the use of activity-based inhibitors, as the reviewer points out. To address this point, we have modified the text to suggest that the use of activity-based inhibitors may exert a greater bias for the enrichment of allosteric site mutations but clarifying that the enrichment of such mutations are not exclusive to the use of activity-based inhibitors.

      How can LOF mutations from cluster 2 be leading to drug resistance? It is speculated in the paper that a change in gene dosage decreases the DNA crosslinks that cause toxicity. However, the immediate question then would be why do the resistance mutations cluster around the catalytic site? If it's just gene dosage from LOF editing outcomes, would you not expect the effect to occur more or less equally across the entire CDS?

      This is an excellent point. As outlined previously above, we recognize that our gene dosage hypothesis regarding the mechanism of cluster 2 sgRNAs may lack sufficient explanation to convey our reasoning clearly, and we have added more text and data to clarify and support our claim.

      Mutations that are highly likely to lead to a nonfunctional protein product (i.e., frameshift, nonsense, splice site disrupting) are annotated as “loss-of-function” (LOF) in the text, with all other protein coding mutations designated as “in-frame.” The key insight underlying our gene dosage hypothesis is that sgRNAs targeting essential protein regions and functional domains generate greater proportions of null (i.e., knockout) mutations and undergo stronger negative selection compared to sgRNAs targeting non-essential protein regions (see Shi, J. et al., Nat. Biotechnol. 2015). This is because in-frame coding mutations in protein regions that are functionally important (e.g., DNMT1 catalytic domain) are more likely to disrupt protein function than those in non-essential protein regions. As a result, sgRNAs targeting functional protein regions are more likely to generate in-frame mutations resulting in a null allele and are thus “effectively LOF.” Importantly, the observation that sgRNAs targeting specific protein regions are more likely to lead to null mutations also implies that 1. not all CDS-targeting sgRNAs are equivalent at inducing LOF effects and 2. sgRNAs that are more effective at generating null mutations may exhibit preferential clustering within functionally important protein regions.

      In this context, we reasoned that cluster 2 sgRNAs, which target the essential catalytic domain, may be more effective at reducing DNMT1 gene dosage than other DNMT1-targeting sgRNAs because in-frame mutations generated by these sgRNAs are more likely to lead to nonfunctional DNMT1 protein. That is, cluster 2 sgRNAs may generate greater proportions of “effectively LOF” in-frame mutations that disrupt DNMT1’s essential function. Consequently, we posited that the observed clustering of these sgRNAs in the catalytic domain is likely a reflection of its functional importance. To test this idea, we transduced WT K562 cells with 6 individual sgRNAs targeting the N-terminus, RFTS domain, and catalytic domain of DNMT1, and performed genotyping on the cellular pools over 28 days (Fig. 4f). We observed that sgRNAs targeting outside of the catalytic domain exhibited increasing frequencies of in-frame mutations over time, consistent with the idea that these sgRNAs generate functional in-frame mutations that are not under strong negative selection. By contrast, catalytic-targeting sgRNAs exhibited significant depletion of inframe mutations over time, supporting the notion that in-frame mutations in essential regions are functional knockouts and thus negatively selected under normal growth conditions. Consequently, the ability of catalytic-targeting sgRNAs to generate greater proportions of null mutations would therefore make them more effective at conferring resistance through gene dosage reduction than other DNMT1-targeting sgRNAs.

      Our hypothesis implies that a large proportion of in-frame mutations generated by cluster 2 sgRNAs are functionally equivalent to LOF mutations (i.e., frameshift, nonsense, splice site disruption), and therefore neither in-frame or LOF mutations should be preferentially selected for under DAC treatment, in contrast to the positive selection of gain-of-function (GOF) in-frame mutations in cluster 1 sgRNAs. Consistent with this idea, our data indicate that the relative proportions of in-frame and LOF mutations in cluster 2 sgRNAs remain comparable across vehicle and DAC treatments (Fig. 4b). Furthermore, since the selective pressure on in-frame and LOF mutations should be similar if they are functionally equivalent, the relative proportions of in-frame versus LOF mutations in cluster 2 sgRNAs should be primarily dictated by their frequencies as editing outcomes. Consistent with this idea, the observed proportions of in-frame versus LOF mutations in cluster 2 sgRNAs under DAC treatment do not deviate significantly from their expected proportions as predicted by inDelphi (Supplementary Fig. 4c). Conversely, cluster 1 sgRNAs exhibit greater ratios of in-frame versus LOF mutations under DAC treatment than their predicted ratios from inDelphi (Supplementary Fig. 4c,d). Altogether, these data are consistent with the notion that cluster 2 sgRNAs may operate through a gene dosage reduction effect.

      In general, I found the screens, and integrative analyses, highly compelling. But the follow-up was rather narrow. For example, how much do these mutations shift the IC50 curves for DAC?

      To address this point, we derived two clonal cell lines from the screen harboring endogenous DNMT1 mutations in either the autoinhibitory linker or the RFTS domain (Supplementary Fig. 3g). We treated these cell lines, in addition to WT K562 cells, with varying concentrations of DAC and observed a partial growth rescue in the mutant cell lines relative to WT K562 cells (Fig. 3i). We also show that these mutant cell lines exhibit DAC-mediated degradation of DNMT1, consistent with our fluorescent reporter results (Supplementary Fig. 3h). To further validate whether these endogenous DNMT1 mutations confer partial resistance to DAC, we transduced WT K562 cells with vectors encoding an shRNA targeting the 3' UTR of the endogenous DNMT1 transcript and a DNMT1 overexpression vector encoding WT and mutant DNMT1 constructs (Supplementary Fig. 3i). Upon treating these knockdown and overexpression cells with varying concentrations of DAC, we again observed a partial growth rescue in the presence of mutant versus WT DNMT1 (Fig. 3j).

      What kinetic parameters have changed to increase catalytic activity?

      We performed enzyme activity assays at various temperatures with recombinant DNMT1 protein for WT and mutant DNMT1 constructs, observing that mutant DNMT1 constructs exhibit varying degrees of overactivity relative to WT DNMT1 at different temperatures (Fig. 3h, Supplementary Fig. 4f). Whereas the autoinhibitory linker mutations display consistently higher levels of activity relative to WT DNMT1 at all temperatures tested, we observed that RFTS and CXXC mutants exhibited decreasing levels of overactivity with increasing temperature (Fig. 3h). Previous studies (see Berkyurek, A.C. et al., J. Biol. Chem. 2014) have observed similar behavior with RFTS mutations, suggesting that these mutations may disrupt critical hydrogen bonds at the autoinhibitory interface that reduce the activation energy required to release DNMT1 from an autoinhibited to active conformation. Our RFTS and CXXC mutations exhibit behavior that are consistent with this hypothesis, which may explain the decreasing levels of overactivity with increasing temperature.

      Do the mutants with increased catalytic activity alter the abundance of methylated DNA (naively or in response to the drug)? It is speculated that several UHRF1 sgRNAs disrupt PPIs and not DNA binding, but this is never tested.

      While we derived clonal cell lines containing DNMT1 mutations, as noted above, it proved too difficult to compare these drug-resistant cells to naïve cells because they were cultured in the presence of DAC for 2 months, leading to large changes in DNA methylation that may confound any conclusions about the effects of the mutations alone. Additionally, the reviewer also brings up valid limitations regarding our studies on UHRF1, which also proved very difficult to biochemically purify and beyond our expertise. After some initial studies, we chose not to pursue these additional experiments further but instead prioritized the GSKi CRISPR-suppressor scan and cluster 2 studies, as suggested by the reviewers. We acknowledge these limitations in the text.

      Reviewer #2 (Public Review):

      In this manuscript, Ngan and coworkers described a CRISPER-based screening approach to identify potential variants of DNMT1 and UHRF1 that can suppress the anti-proliferation role of decitabine. In theory, such an effect can be achieved by at least two types of gain-of-activity DNMT1/UHRF1 mutants by directly boosting the enzymatic activity or by indirectly abolishing the intrinsic inhibitory activity of the DNMT1-UHRF1 axis. Through systematically targeting the DNMT1-UHRF1 reading frames with a rationally designed sgRNA library, the authors identified and characterized a few potential hotspots within multiple autoinhibitory motifs. While the approach has its merits in regard to the unbiased screening of the target proteins in living cells, there are the following serious concerns in terms of how the data were interpreted and the limitation of the approach itself as detailed below.

      (1) Although the authors identified multiple hotspots in the DNMT1-UHRF1 complex with their alterations associated with the resistance to decitabine, it is risky to argue these mutations increase DNMT1 activity simply because they are clustered within known auto-inhibitory regions. There are many alternative explanations for this observation. For instance, some mutants may allosterically alter how DNMT1 recognizes decitabine-containing vs native GpC motifs; others may recruit other proteins as modulators. The key gap here is to associate the decitabine-resistance phenotype to the loss of auto-inhibitory functions because multiple hotspots were in the auto-inhibitory regions.

      In our original manuscript, we supported our claim that gain-of-function DNMT1 mutations enhance DNMT1 activity with experimental data using purified DNMT1 protein constructs in enzyme activity assays (Fig. 3g, Fig. 4g), so our conclusion was not solely inferred from sgRNA clustering at the autoinhibitory interface, but also experimentally validated. In our revised manuscript, we provide additional experimental biochemical characterization to further support the claim that autoinhibition is weakened in the DNMT1 mutants we identified (Fig. 3h, Supplementary Fig. 4f). Moreover, we provide cellular data using clonal cell lines harboring endogenous DNMT1 mutations in addition to knockdown/overexpression experiments, demonstrating that RFTS and autoinhibitory linker mutations confer partial growth rescue to DAC treatment (Fig. 3i,j). We agree that we cannot rule out the possibility that these mutations may exert other effects that independently contribute to the observed resistance phenotype (e.g., altered CpG recognition), and we have added a statement acknowledging this limitation.

      (2) Lack of general biological relevance of the corresponding findings. Through this work, the author identified multiple DNMT1-UHRF1 variants that alter the anti-proliferation role of decitabine. However, the observation that the multiple mutants were clustered in a hotspot doesn't mean that these mutants have to act via the same mechanism. The authors seem to underestimate the complexity of how these mutants can render the same biological readouts and even haven't considered the possibility of transcriptional modulation of antagonists or agonists in the DNMT1-UHRF1. Therefore, the biological relevance of these findings remains unclear.

      We agree that although the cluster 1 mutations share a common property of increased DNMT1 activity, it does not preclude alternative mechanisms. Indeed, it is likely that these mutations have complex and nuanced mechanistic differences in the biochemical alterations underlying their observed increases in DNMT1 activity. Indeed, we have included enzyme activity data suggesting that autoinhibitory linker mutations may exhibit a different biochemical basis for increased DNMT1 activity than RFTS and CXXC mutations. That said, we did not intend to make broader claims regarding biological relevance and were instead focused on conveying that this activity-based methodology can identify gain-of-function mutations, which we directly support with experimental data. To clarify these points, we have adapted the text to more precisely convey our intended claims and have acknowledged that other complex mechanisms may also be involved.

      (3) Collectively for reasons (1) and (2), the mechanistic analysis seems only to associate the current findings with known regulatory pathways. Without detailed in vitro and in-cell characterization of the DNMT1-UHRF1 mutants, the novel regulatory mechanisms, which may exist, could be largely missed.

      We have added some additional characterization of these mutations in the revised manuscript, which have been detailed above, and we would like to note that we identified new sites in DNMT1 and UHRF1 that may be functional based off our allele analysis. However, since this manuscript is intended more as a methodology, we believe that extensively exploring novel regulatory mechanisms and their mechanism is beyond the scope of this report.

      (4) The current CRISPER-based screening approach has the technical limitation of mainly screen deletion with some exceptions for point mutations. As a result, the majority of loss/gain-of-function point mutations will be missed by the CRISPER-based screening method.

      We acknowledge that a technical limitation of this Cas nuclease-based mutational scan is that it is biased toward insertion/deletion mutations versus point mutations. However, we disagree with the reviewer’s claim that this means that the majority of the loss-/gain-of-function mutations will be missed, since insertion/deletions are often larger perturbations than point mutations and thus have stronger effect sizes in many cases. In principle, the selection modalities (e.g., activity-based inhibitors) used here — which are the primary focus of the study — can also be combined with alternative genomic editing approaches to assess distinct mutational perturbations, such as base editing for point mutations (see Lue, N.Z. et al., Nat. Chem. Biol. 2022). To acknowledge the reviewer’s concern, however, we have added additional text explicitly stating that the screen is biased against point mutations and that future integration with base editing and other mutational modalities may be useful to complement our nuclease-based approach.

      (5) The current CRISPER-based screening approach can work only in the context of living cells. As a result, robust cellular readouts are needed. The DNMT1-UHRF1 in combination with decitabine is among few suitable targets for such application.

      While running CRISPR-based screens requires robust cellular assays, the main advantage of CRISPRbased mutational scanning is the ability to mutagenize the endogenous protein target in situ and assess the effect of the perturbation in the native cellular and genomic context. Resistance to activity-based probes — and small molecules more broadly — provides a robust phenotypic readout that has been extensively used by our group and many others. Alternatively, other types of phenotypic readouts that do not rely on cell viability can also be employed with these screens, including those used to assess DNA methylation (see Lue, N.Z. et al., Nat. Chem. Biol. 2022). Given the increasingly large body of literature applying CRISPR-based screens towards a multitude of biological pathways and diverse targets, we disagree with the reviewer’s claim that only a few targets can be evaluated in such a manner.

      (6) Although the authors claim that their mutants are "gain-of-function" for DNMT1/UHRF1, they were indeed due to the loss of inhibitory regulation. It is a little disappointing because the screening outcomes still fall into the conventional expectation of the loss-of-function variants.

      We agree that the mutations are not truly neomorphic, but instead likely hypermorphic due to loss of an autoinhibitory mechanism, resulting in gain-of-function increase in catalytic activity. While discovering neomorphic mutations would be extraordinary, we do not believe that our results are disappointing since the identification of autoinhibitory mechanisms is nevertheless impactful.

      Collectively, the current status of the manuscript is short of merits in terms of the impacts of technology and biological findings.

      We respectfully disagree with the reviewer’s comment as we believe that the experimental and computational methodology may be broadly useful for the field. Indeed, we have already implemented many of the tools developed here in our current ongoing work.

    1. Author Response

      Reviewer #2 (Public Review):

      This manuscript presents a rather technical modelling analysis of the impact of local lockdowns on Covid-19 hospitalisations in the Netherlands. The major strength of the study is that the authors attempt to calibrate their model to a novel data source, a commercial database of mobility patterns between municipalities. The major weakness is that the model seems overly complicated, many parameters seem to have been 'guessed' without a formal uncertainty analysis, e.g. within a Bayesian framework, so that it is impossible to judge how robust the results and therefore the conclusions are.

      Major points:

      1) In some aspects the structure of the model presented seems overly complicated: It is not clear why the authors chose the 1:100 population scale and why they didn't go directly for modelling the full population. Artificially reducing the population size has important stochastic effects at the early phase of the epidemic. Also it is not clear what it means when 1:100 of one municipality mixes with 1:100 of another municipality? The authors should at least attempt to see what impact this has on output, i.e. conduct a sensitivity analysis.

      The reason for choosing a 1:100 population scale instead of the full population is computational speed. Indeed, this (and its consequences) is not mentioned explicitly and will be added. Moreover, to identify the sensitivity of the results to population scale, we add runs on different population scales.

      • Added reasoning and consequences associated with the 1:100 population scale in SI C.1.

      • The sensitivity of the results to population scale is now discussed in SI C.1 using runs with other population resolutions.

      2) On the other hand the model goes into (too) much detail regarding mixing behaviour and attempts to model processes during each hour of the day. This does not seem to be informed by actual data, but the data seems to be made up e.g. as in A.6. As an ex-student and a father of a teenager I can tell you that the susceptibility profile guessed in Table 3 does not seem to be very realistic. As it is stated in the appendix, the Mezuro data set only provides daily averages of travelling between communitities, so it is not clear why the hourly resolution is actually needed in the model.

      Indeed, several aspects in the model are informed by “secondary statistics” which unfortunately add uncertainty. An example would be the normalization of the mobility matrices by means of data on how people spend their time (see SI A.3). Note that the example of the susceptibility profile that the reviewer mentions, however, does not involve such secondary statistics and happens to be exactly reported by the Dutch health agency (cited in SI A.5).

      We agree that the model includes much detail, which potentially has weaknesses as the reviewer rightfully mentions. However, one of the main points of this paper is that in order to address the questions of local interventions, geographical spread and associated hospital admissions, we simply need this level of detail, or even higher. In other words, assessments of such mechanics would be even more uncertain if this level of detail is not included.

      We agree that the motivation for hourly resolution is not well described in the manuscript – this will be added. The reasoning is that mixing of the population is highly heterogeneous throughout the day: clearly, seen in Fig. S5 (SI A.7), mixing at work is fully different from mixing at school or at home.

      Moreover, people meet at work in different municipalities and then return to home to potentially spread the disease further. It is exactly such mechanics that we are after in our analysis.

      • Added a more in-depth discussion of the mobility data in SI C.2.

      • Added the motivation for hourly resolution in SI A.1-A.3.

      3) It is not clear why the authors rely on only one short period of the Mezuro data set in March 2019 and not investigate the same data source during the actual lockdown in 2020, or even for the full year, as travelling is likely to be very season dependent. This would provide much better estimates of the effects of lockdown on travel patterns. The analysis presented and categorisation into frequent, regular and incidental also need further explanation. It is not clear how international travel is accounted for in the mobility data.

      The reviewer is correct that using a longer mobility dataset or one that is exactly addressing the period of the actual lockdown would be beneficial. The reason we are not doing so is simply that this data is not available.

      The model accounts for international travel by means of its initialization, but not further. In practise, international travel got severely reduced throughout this period. Hence, we deem the uncertainties associated with not accounting for international travel limited.

      • Added a discussion on the effect of using this mobility dataset in SI C.2. • Added a further explanation of categorizing the movements (in SI C .2).

      • Added a discussion on international travel in SI C.2.

      4) Beyond the technical points on the modelling, the main hypothesis of whether local lockdowns may work has also not been sufficiently discussed outside of the Dutch context. The authors fail to mention that this was the approach chosen in Northern Italy at the start of the epidemic (https://en.wikipedia.org/wiki/COVID-19_lockdowns_in_Italy) where it didn't work, as we all know. On the other hand, more recent local lockdowns in China appeared to be successful, albeit at a great societal cost in terms of restrictions to freedom (https://en.wikipedia.org/wiki/COVID19_lockdown_in_China).

      The reviewer is correct that we only show this in the Dutch context. We can reason about other situations, but clearly these situations differ vastly from country to country.

      Reviewer #3 (Public Review):

      This work uses an agent-based model of SARS-CoV-2 transmission (calibrated to the first wave in the Netherlands) to examine how the societal impact of interventions could have been reduced - while maintaining epidemiological impact - if they were implemented at a subnational (eg, municipality) rather than a national level. After more than two years of lockdowns and mobility restrictions, the societal cost of such measures is becoming better understood, and it is important to evaluate the effectiveness of such measures and reflect upon how they can be deployed in a minimally disruptive fashion. Mathematical and computational models are a natural choice for such investigations as they enable researchers to explore counter-factual scenarios ("what might have happened had we acted differently?")

      The authors conclude that subnational interventions, triggered via prevalence in a particular municipality, could have controlled the first wave of SARS-CoV-2 in the Netherlands with minimal health cost but less societal disruption than national interventions. This claim is supported by reference to Figure 4 showing the impact on (a) hospital admissions and (b) municipalities without interventions through different phases of the outbreak. For more remote/rural municipalities, the use of interventions is delayed by ~1 week, although some (6%) of municipalities avoid interventions altogether.

      Strengths:

      As noted above, the general objective of this study is important and of potentially broad interest. The agent-based model is complex, but not unreasonably so, and makes good use of rich demographic, mobility, epidemiological/clinical, etc. data for calibration. The simulations conducted using the model support the specific conclusions of the manuscript.

      Weaknesses:

      While the motivation and approach are strong points of this work, the analysis and interpretation would benefit from further development. The robustness of model behaviour to the threshold used to trigger subnational interventions is explored; however, there are other aspects of the model that are not subjected to sensitivity analysis, including:

      1) The impact of imperfect surveillance (eg, due to asymptomatic transmission, reporting delays, etc);

      2) The impact of non-compliance, which could potentially differ for subnational versus national interventions;

      3) The impact of pathogens/variants with transmission/severity characteristics different from the original SARS-CoV-2 strain.

      In the absence of such analyses, it is difficult to generalise the findings beyond "this is how subnational interventions could have been used to control the first wave of SARS-CoV-2 in the Netherlands" to "this is how subnational interventions could be used effectively in the event of future outbreaks" (of a SARS-CoV-2 variant or other pathogen).

      The discussion focuses on limitations associated with the model but does not consider other potential implications of subnational interventions. For example:

      1) Subnational interventions may produce unintended consequences if populations respond by relocating from regions with interventions (high prevalence) to regions without interventions (low prevalence).

      2) Subnational interventions would require extremely effective public health messaging to avoid confusing populations. Particularly in densely populated regions where municipalities may be small and tightly connected, the feasibility of communicating (and enforcing compliance with) interventions may be challenging.

      3) A proposal to implement subnational interventions - following the results of this work - may raise ethical questions about cost-benefit trade-offs (eg, whether 355 additional hospital admissions is an acceptable price to pay for 36 million person-days without interventions; ie, two days per citizen, on average). The fact that such decisions would (in the even of a future outbreak) need to be made rapidly, in the face of potential uncertainty about pathogen characteristics, heightens the need for clear understanding of how situational factors may affect the likely effectiveness of interventions (at any scale).

      Impact and broader utility:

      As noted, the question addressed - how we can reduce the disruption caused by interventions for transmission control - is important. Thus, the work presented in this manuscript has the potential for broad utility. Currently, this is limited by the focus on specific outbreak instance.

      In general terms, we agree with the reviewer. That said, the “possibility space” of policymaking is infinite dimensional, in the sense that the intervention measures can take an infinitely many forms, starting times and durations. The framework that we have built upon combining data sources such as demography, mobility, interactions and disease parameters now makes it possible to explore these possibilities. These will be explored in future work.

    1. Author Response

      Reviewer #1 (Public Review):

      The data that is presented is quite clear, and expected given the prior in vitro work, as well as prior work in vivo with helminth infection and BCG vaccination. Overall, it is important to demonstrate that observations from in vitro experiments are relevant in vivo, however, there are concerns with the design of this study which limits its impact. In addition, the study confirms what is expected from prior work, but falls short of adding any new mechanistic insight.

      We thank the Reviewer for evaluation of the manuscript and for the comments. Indeed, published studies have shown that helminth infection can impair the response to the BCG vaccine. However, this manuscript shows for the first time that IL-4 and helminth infection impair MINCLE expression in vivo. In addition, it is the first report demonstrating a negative effect of helminth infections on the antigen-specific Th1/Th17 response after vaccination with a MINCLE-dependent adjuvant.

      Regarding mechanistic insight, we have employed mice deficient in IL-4/IL-13 to determine whether the thwarted Th1/Th17 response is caused by these Th2 cytokines in helminth-infected mice. New Figure 6 in the revised manuscript indeed demonstrates recovery of antigen-specific IFN and IL-17 production in the absence of IL-4/IL-13.

      In terms of the in vivo experimental design, it is unclear why the authors chose to administer BCG IP, when the vaccine is given SC (and then based on more recent data, IV could be arguably interesting and relevant). The focus on the peritoneum limits the potential application of these findings to address the important question of the effects of helminth infection on BCG vaccine responses. The ultimate in vivo experiment to be able to demonstrate a physiological relevance of the mechanisms explored here would be to see what the effect was on Mtb infection in the lung.

      BCG was injected i.p. to induce upregulation of MINCLE on peritoneal cells and to be able to ask whether IL-4 and/or helminth infection will lead to a down-regulation of MINCLE expression on myeloid cells in vivo. Thus, we were not interested in this context in the adaptive immune response to BCG. Instead, the peritoneal BCG injection provided access to myeloid cells exposed to Th2 immune condition in vivo for analysis of MINCLE protein levels on the surface. As stated in the Discussion section (lines 400-405 in the revised manuscript), detection of MINCLE by flow cytometry from tissue cells is complicated by the loss of cell surface protein during enzymatic organ digestion.

      We agree that it would be interesting to study the impact of helminth infection on BCG-induced protection to Mtb challenge infection in the lung. As we have described here the impairment of Th1/Th17 immune responses after immunization with H1/CAF01 that induces protection (Werninghaus et al. 2009 J Exp Med), it would make most sense to perform such challenge infections first in this setting. However, Mtb infection requires a dedicated BSL3 animal facility, we therefore consider such challenge experiments beyond the scope of this manuscript

      The authors do report different responses in the spleen and lymphnode, which is interesting, but lines 336-337 accurately point out that compartmentalized overexpression of IL-10 in the spleens but not the lymph nodes has been described in mice with chronic schistosomiasis. Mechanistic insight into this phenomenon was lacking, and the relevance to Mtb infection is still unknown.

      We agree that the mechanism for the compartmentalized regulation of adaptive immune differentiation in helminth-infected mice is not clear.

      Reviewer #2 (Public Review):

      The manuscript entitled "IL-4 and helminth infection downregulate Mincle-dependent macrophage response to mycobacteria and Th17 adjuvanticity" by Schick et al. demonstrate the inhibitory activity of IL-4 and helminth infection on mycobacteria-mediated Th17 immunity. Overall, the authors reported interesting findings with solid data that advance our understanding of CLR function in fungal-bacterial co-infection.

      We thank the Reviewer for the appreciation of our study.

      Reviewer #3 (Public Review):

      The authors first demonstrated in bone marrow-derived macrophages (BMMs) that IL-4 treatment of BMMs led to a significant reduction of BCG- and TDB-induced MINCLE expression (Fig. 1). While IL-4 treatment did not impact BCG phagocytosis by BMMs, it led to a reduced production of the cytokines G-CSF and TNF by BMMs (Fig. 2). In an elegant model using hydrodynamic injection of mini-circle DNA encoding IL-4, the authors show that IL-4 overexpression abrogated the increased MINCLE expression in monocytes upon BCG infection in vivo. Similar findings were observed in a co-infection model with the hookworm Nippostrongylus brasiliensis, where MINCLE expression on inflammatory monocytes from BCG-infected mice was reduced compared to control mice infected only with BCG (Fig. 3). The key findings of the manuscript include the two murine helminth infection models, S. mansoni as a chronic infection, and N. brasiliensis as a transient infection, in both of which the authors showed an organ-specific inhibition of the Th17 response in a vaccination setting with a MINCLE-dependent adjuvant (Fig. 4 and 5).

      Data shown in the manuscript represents a major advance over previous studies because for the first time a relation between IL-4 and MINCLE expression and function is demonstrated in vivo in relevant co-infection models. All experiments have been done with care. Appropriate controls have been included and conclusions are largely supported by the data. Future studies in human patients will be needed to determine the clinical relevance of the findings observed in the murine helminth infection models.

      We thank the Reviewer for the positive comments and agree that it will be interesting to study the impact of helminth infection on CLR expression and function in human infection and vaccination settings.

    1. Author Response

      Reviewer #1 (Public Review):

      COVID-19 severity has been previously linked to a genetic region on chromosome 3 introgressed from Neandertals. The authors use several computational methods to, within this region, identify specific regions that putatively regulate gene expression, and to identify genes within these regions associated with COVID-19 severity. The use of several complementary computational approaches is a major strength of the paper as it bolsters confidence in the findings and narrows the search for significant genomic regions down to most likely candidates. They find 14 genes that exhibit expression regulated by the identified introgressed genomic regions. Among these are several chemokine receptors including two - CCR1 and CCR5 - whose upregulation is associated with severe COVID-19. The authors then use functional genomics to determine whether the identified regions do regulate gene expression.

      We thank this Reviewer for highlighting these strengths.

      In contrast to the robustness of the computational findings, the authors' MPRA results are less robust with respect to the significance of the paper to clinical severity of COVID-19. The MPRA shows that the computational methods were reasonably effective at identifying regulatory elements within the introgressed region (53%). The authors then focus on emVars where the H.n. allele differentially regulates expression and identify 4 putative emVars that may regulate expression of CCR1 and CCR5. However, the authors found in their MPRA that these emVars downregulate reporter gene expression, whereas the genes of interest CCR1 and CCR5 are upregulated during severe COVID.

      This result highlights the principal weakness of using the MPRA in this context, as it assumes that reporter gene expression using a minimal promoter has identical regulatory determinants as expression of the gene of interest. Its strength is the high-throughput nature of the assay, but its weakness is the lack of specificity with respect to the question at hand. This lack of specificity mitigates the impact of the functional aspect of the work. The authors' computational findings certainly bolster previous work that H.n. introgressed alleles are associated with COVID-19 severity and that this association may be at least partly dependent on gene expression differences between the archaic and modern alleles. However, the specific question at hand, whether chemokine receptor expression is linked to the clinical phenotype, remains unaddressed.

      Ultimately the authors results support the conclusions that the 4 emVars identified do regulate gene expression. However, the hypothesis that these specific regions are linked to COVID-19 severity is not supported. The authors' speculation as to why their results may differ from the observed upregulation during disease is intriguing, but lacks support.

      We thank the Reviewer for providing these important points and we hope through our new experimental approach we helped to strengthen our findings. However, we also have modified the manuscript to also be more critical of our findings in the context of the issues Reviewer has brought up. This is shown in our updated Discussion, whose parts are provided above in the section addressed to the Editor, as well as in the newly revised manuscript.

      Reviewer #2 (Public Review):

      Previous research using GWAS and population genetics approach identified a genetic haplotype on chromosome 3 derived from Neanderthals as the major risk factor for severe COVID-19. However, the specific variants that are causative of the severe COVID-19 phenotype remain unknown. Here, Jagoda et al. aim to identify the causative variants for the severe COVID-19 by leveraging eQTL analysis followed by Massively parallel reporter assays (MPRA). Their datasets and results are unique and novel. Their research is well designed, and will serve as a model strategy for future studies of functional annotation of disease-associated variants.

      We thanks Reviewer #2 for these compliments.

      However, there are following critical weaknesses in this manuscript that reduce the impact of this work; (1) The quantitativity of the MPRA output is questionable because of their incomplete definition of MPRA activity, which is based on absolute barcode counts without comparing negative controls. (2) Molecular mechanisms (binding transcription factors, etc.) of causative variants that underlie the regulation of CCR1/5 expression and COVID19 severity are not analyzed and validated.

      We hope that below we have addressed these comments through our analyses and new experiments.

      Reviewer #3 (Public Review):

      This manuscript by Jagoda et al. addresses the genetic mechanism of the haplotype at chromosome 3 where introgressed from Neanderthals shows the strong association with COVID-19 severity in Europeans. They re-evaluate the adoptively introgressed segment using Sprime and U and Q95 methods and analyze cis- and trans- eQTLs based on the whole blood dataset. All the 361 Sprime-identified introgressed variants act as eQTLs in the whole blood and alter the expression of 14 genes including seven chemokine receptor genes. Then they tested the 613 variants using a Massively Parallel Reporter Assay (MPRA) in K562 cells and narrow downed the 20 emVars. In the end, they selected the four variants based on four criteria regarding the association of COVID-19 severity, eQTL data, chromosomal interaction, and epigenetic marks in immune cells. They highlighted variant rs35454877 (CCR5 regulation), rs71327024, rs71327057, and rs34041956 (CCR1 regulation).

      Narrowing down the four critical variants from the around 800 kb introgressed region is impressive work. However, MPRA and eQTL data are not consistent, and these data don't support clinical gene expression data (increased expression of CCR1 in severe COVID-19 patients).

      We thank this Reviewer for noting our impressive work, we have now addressed these concerns.

    1. Author Response

      Reviewer #1 (Public Review):

      This is an interesting and timely paper investigating the impact on participation in cancer screening programs across Italy during the COVID-19 pandemic where there was massive disruptions to health services. What is of particular interest in this analysis was the investigation of social, educational and cultural factors that might have impacted access and participation to screening.

      • In the present study, the authors analyzed data collected by PASSI between 2017 and 2021, from interviews of more than 106,000 people, a representative sample of the Italian population aged 25-69 was selected but its not clear what was the representativeness by region, gender and age educational attainment? Also what is the total population (so I don't have to look it up). I am wondering if participation differed by characteristics and what approach to achieving the representative sample was made (e.g. replacement of individuals or oversampling certain strata where participation was lower).

      PASSI is one of the two routinely collected Italian National Health Interviews. It has been described in several papers and there is a website reporting in detail methods, percentage of refusals, and numbers of interviews. Nevertheless, we agree with the reviewer that a brief summary of the methods is needed, and we added some details on data collection. Furthermore, details on the number of interviews according to the selected period, age, and sex strata cannot be found in the general description of the survey. Therefore, we gave more details also on the sample used for this study in supplementary table 1.

      • For figures 5-8 what is the N for the different groups not just the %?

      We agree with the reviewer that giving the actual numbers on which the percentages are computed is necessary. Nevertheless, as with any stratified sample, estimates from PASSI are computed using weights, therefore percentages cannot be computed directly from the observed numbers. We decided to add supplementary table 1, which reports the number of valid interviews on which percentages are estimated.

      • Table 2 to me is a key piece of information and very interesting can the authors formally test if there are significant differences between the time periods?

      Thank the reviewer for this suggestion. Firstly, we added a table in which we analyzed all the data together and we included the calendar period, categorized as before and after the pandemic, among covariates. Secondly, we checked if any of the differences between the prevalence ratios observed in the two periods were significantly different at a 0.05 alpha error threshold and we added a comment in the text: “Nevertheless, the differences could be due to random fluctuations”. We did not add p-values for the interaction of all the variables in each cancer screening because the table is already very complex, and three more columns would make it difficult to read.

      Reviewer #3 (Public Review):

      This study is primarily a descriptive analysis that provides a clear and accessible account of how screening activity varied across Italy and between groups. While primarily a simple descriptive account such work is important to document what were the impacts of the pandemic on preventative health services and to understand how they differed across groups. The combination of survey responses from regional screening programmes and individuals is a useful use of two data sources. The study is very clearly written and does not over-interpret the presented data.

      The methods description states that the analysis presents the "standard months" required for the programmes to recover from the service delays. The subsequent reporting of these delays in the results section did not use the same terminology and I see scope for clarification by using common language regarding this assessment throughout the paper. I see scope for further disaggregation of the regional results within the study but equally I understand why the authors might not wish to report outcomes for specific regions. I see scope for improvement in the figures within the manuscript but this is a relatively presentational matter. I would like to see some further description of the Poisson regression analysis as what is included within the manuscript appears rather brief. There is also one section of the methods that seems as if it would better belong in the introduction, but overall the manuscript was very clearly structured.

      We thank the reviewer for his encouraging comments. We checked all the manuscript and we tried to use always the same name for each concept.<br /> We expanded the method section giving more details on models and statistical analysis. We decided not to report data at the regional level but the variability within macro areas.

      The analysis presented achieves the authors' stated aims in my view. I see a useful contribution in documenting the impact of the COVID-19 pandemic on screening in Italy. This may inform further work on assessing the eventual health impact of delays as well as work considering how best to make screening programmes more resilient to such shocks. Ultimately it will take time to observe just how significant the impacts of service interruptions were on cancer prevention. Readers should remember that many screening services may still provide good protection against cancer as long as the interruptions are limited to simply to delays in coverage rather than the longer-term loss of participation, especially for those with incomplete screening histories or of otherwise elevated risk of disease.

      Further work may wish to consider how programmes prioritised capacity or what efforts have been made to restart screening. Similarly, there is scope for more detailed disaggregation assessment of who received screening as programs restarted. Both these issues are beyond the scope of the present study however. The present submission provides a good basis for any further such exploration.

      We thank the reviewer for these comments. We tried to capture some of the concepts in our discussion.

    1. Author Response

      eLife assessment

      The purpose of this study was to determine whether heme oxygenase -2 deficiency translates to deficiencies in motor neuron function. This paper plays a plausible mechanism by which heme oxygenase-2 deficiency can lead to obstructive apneas. Indeed, this is among the first papers to comprehensively describe a signaling pathway in motor neurons and the consequences of its deficiency. Furthermore, the work completed here may be relevant to other diseases in which motor neuron signal transmission is a key contributor.

      We thank for their assessment and constructive comments. Based on their input below we performed additional analyses focused on the impact of HO-2 dysregulation on the rhythmogenesis from the preBötC.

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript discussed the combination use of pyrotinib, tamoxifen, and dalpiciclib against HER2+/HR+ breast cancer cells. Through a series of in vitro drug sensitivity studies and in vivo drug susceptibility studies, the authors revealed that pyrotinib combined with dalpiciclib exhibits better therapeutic efficacy than the combination use of pyrotinib with tamoxifen. Moreover, the authors found that CALML5 may serve as a biomarker in the treatment of HER2+/HR+ breast cancer.

      The authors provide solid evidence for the following:

      1) The combination use of pyrotinib with dalpiciclib exhibits better therapeutic efficacy than the combination use of pyrotinib with tamoxifen.

      2) Nuclear ER distribution is increased upon anti-HER2 therapy and could be partially abrogated by the treatment of dalpiciclib.

      3) CALML5 may serve as a putative risk biomarker in the treatment of HER2+/HR+ breast cancer.

      The manuscript has significant strengths and several weaknesses. The strengths include the identification of the novel role of dalpiciclib in the treatment of HER2+/HR+ breast cancer. Moreover, the authors provide solid evidence that the combined use of dalpiciclib with pyrotinib significantly decreased the total and nuclear expression of ER. The main weakness of the manuscript is that the manuscript is difficult to read due to language inconsistency. In addition, some figure captions and figure legends should be carefully amended.

      Thanks for your comments on our manuscript. We feel sincerely sorry for the inconsistency of the manuscript due to poor language. We have improved our manuscript as well as the figures according to your valuable suggestions.

      Reviewer #2 (Public Review):

      The authors performed preclinical studies to investigate the underlying mechanism of how the combination of pyrotinib, letrozole and dalpiciclib achieved satisfactory clinical outcomes in the MUKDEN 01 clinical trial (NCT04486911). Mechanistically, using anti-HER2 drugs such as pyrotinib and trastuzumab could degrade HER2 and facilitate the nuclear transportation of ER in HER2+HR+ breast cancer, which enhanced the function of ER signaling pathway. The introduction of dalpiciclib partially abrogated the nuclear transportation of ER and exerted its canonical function as cell cycle blockers, which led to the optimal cytotoxicity effect in treating HER2+HR+ breast cancer. Furthermore, using mRNA-seq analysis and in vivo drug susceptibility test, the authors succeeded in identifying CALML5 as a novel risk factor in the treatment of HER2+HR+ breast cancer.

      Thanks for your comments and valuable suggestions, we’ve improved our manuscript according to your suggestions.

      Reviewer #3 (Public Review):

      In this research, the authors explore a novel mechanism of CDK4/6 inhibitor dalpiciclib in HER2+HR+ breast cancers, in which dalpiciclib could reverse the process of ER intra-nuclear transportation upon HER2 degradation. The conclusions are significant to gain insight into the biological behavior of TPBC and provided a conceptual basis for the ideal efficacy in the published clinical trial. The findings are supported by supplemented in vivo assay and transcriptomic analysis.

      Thanks for your comments and valuable suggestions to us so that we could improve this manuscript.

  3. Dec 2022
    1. Author Response

      Reviewer #2 (Public Review):

      The majority of genetic effects discovered in genome-wide association studies (GWAS) of common human diseases point to non-coding variants with putative gene regulatory effects. In principle, studying genetic effects on gene expression phenotypes, as mediators between genotype and disease, can help understand the underlying function of GWAS variants.

      Lafferty et al., set to study the regulation of microRNA (miRNA) levels in mid-gestation human neocortical tissues as a potential contributor to brain-related phenotypes. To this end they performed miRNA expression profiling via small-RNA sequencing, followed by assaying expression quantitative trait loci (eQTLs) that locally regulate miRNA genes.

      In addition to reporting some properties of miRNA-eQTLs, e.g., their tissue-specificity, the authors searched for potential overlap or "colocalization" between these eQTL loci and GWAS loci for several putatively brain-related phenotypes. They reported colocalization at the locus containing the SNP rs4981455 which is an eQTL for miR-4707-3p and is also associated with global cortical surface area (GSA) and educational attainment phenotypes in GWAS. They further showed that exogenously increased expression of miR-4707-3p in primary human neural progenitor cells (as a model to study neurogenesis) derives an increased rate of proliferation.

      The reported results are interesting and important, particularly for the understanding of miRNA biology. That said, as I detail below, the claim that miR-4707-3p expression modulates brain size and thus cognitive ability, although potentially consistent with the data, is not unequivocally supported by the analyses. As such, considering the potential social impact of the misinterpretations of these results, I believe the authors should explicitly discuss caveats, alternative explanations consistent with the data, and broader implications:

      We thank the reviewer for their positive evaluation of our work and detailed comments. We agree that misinterpretation of our results could have negative social impacts, and now have added caveats and alternative explanations to our discussion section.

      1) The colocalization analysis used effectively tests whether miRNA-eQTL and GWAS variants are in linkage disequilibrium (LD), and does not formally test whether the miRNA-eQTL and GWAS signals are explained by the same genetic variant which is necessary for establishing causality. In this study, a formal test of colocalization is challenging given that the LD patterns in the eQTL data (from mixed ancestries) are dissimilar to the GWAS data (from European-descent samples). Furthermore, even if GWAS and miRNA-eQTL signals are explained by the same variant, this could be due to confounding (a confounder affecting both), or pleiotropy (genotype independently affecting both), and not necessarily that the miRNA-eQTL signal mediates the GWAS signal. These are also true for colocalization analyses of miRNA-eQTLs with mRNA-eQTLs or splicing-QTLs. One practical suggestion is whether authors can perform the colocalization analysis better, e.g., with methods such as SMR (https://yanglab.westlake.edu.cn/software/smr/#Overview).

      As the reviewer mentioned, testing colocalized genetic signals using the eQTL dataset presented in this study remains challenging given the mixed-ancestry of the samples. We believe our primary test for colocalization, conditioning the miRNA-eQTL association using a secondary signal index variant, is sufficient evidence for a shared genetic signal (Nica et al., 2010). This is particularly true when looking for colocalizations between the miRNA-eQTLs and mRNA-e/sQTLs because both datasets used largely the same samples for expression quantification. However, the colocalization between the miRNA-eQTL for miR-4707-3p expression and the GWAS signal for educational attainment warrants greater scrutiny because the GWAS signal was discovered in European-descent samples.

      To address this concern, we have conducted an additional colocalization test using the SMR and HEIDI methods as suggested by the reviewer (Zhu et al., 2016). We have updated the results section, “Colocalization of miR-4707-3p miRNA-eQTL with brain size and cognitive ability GWAS”:

      "In addition to the HAUS4 mRNA-eQTL colocalization, the miRNA-eQTL for miR-4707-3p expression is also co-localized with a locus associated with educational attainment (Figure 5A)(2). Conditioning the miR-4707-3p associations with the educational attainment index SNP at this locus (rs1043209) shows a decrease in association significance, which is a hallmark of colocalized genetic signals (Figure 5-figure supplement 2A)(58,59). Additionally, the significance of the variants at this locus associated with miR-4707-3p expression are correlated to the significance for their association with educational attainment (Pearson correlation=0.898, p=5.1x10-7, Figure 5-figure supplement 2B). To further test this colocalization, we ran Summary-data-based Mendelian Randomization (SMR) at this locus which found a single causal variant to be associated with both miR-4707-3p expression and educational attainment (p=7.26x10-7)(60). Finally, the heterogeneity in dependent instruments test (HEIDI), as implemented in the SMR package to test for two causal variants linked by LD, failed to reject the null hypothesis that there is a single causal variant affecting both gene expression and educational attainment when using the mixed-ancestry samples in this study as the reference population (p=0.159). The HEIDI test yielded similar results when estimating LD with 1000 Genomes European samples (p=0.120). All this evidence points to a robust colocalization between variants associated with both miR-4707-3p expression and educational attainment despite the different populations from which each study discovered the genetic associations."

      To strengthen the argument for colocalization, we added Figure 5-figure supplement 2.

      Given the unique problem of colocalizing genetic signals from datasets with different LD patterns, we also attempted to colocalize the miRNA-eQTL for miR-4707-3p and educational attainment GWAS using eCAVIAR and coloc (Hormozdiari et al., 2016; Wang et al., 2020). Neither of these methods produced a significant colocalization between these two genetic signals at this locus. However, neither of these methods were designed or tested using mix-ancestry reference populations, and therefore we are still confident in declaring a shared genetic signal at this locus.

      2) Although possible, there is no direct evidence that the GWAS signals at rs4981455 for educational attainment and GSA are driven by variation in miRNA levels in the studied tissue. As the authors noted, rs4981455 is also an eQTL for the gene HAUS4. Furthermore, rs4981455 is a significant e/sQTL across almost all adult tissues in GTEx, and so likely has regulatory activity across wide ranges of cell or tissue types. Therefore, pinpointing the causal contexts mediating the effect in GWAS is impossible with the current data.

      We agree that fully understanding the causal relationship, or mechanism, between rs4981455 and educational attainment is impossible with the current data. However, we believe the miRNA-eQTL at rs4981455, discovered in developing brain tissue, provides clues as to the causal context of this locus on educational attainment. We have updated the language throughout the manuscript to temper the notion that expression differences in miR-4707-3p is causal for changes in educational attainment (discussed below), yet we maintain that the evidence provided is consistent with miR-4707-3p playing a role in brain development ultimately leading to changes in adult educational attainment. The updated hypothesized causal relationship is shown in Figure 6H and expanded discussion on the caveats of this study, addressed in the next section, also serve to mitigate this concern.

      3) Orthogonal to the issues above, the genotype-to-phenotype pathway as hypothesized, i.e., genotype → miRNA levels → brain structure → educational attainment, is oversimplistic and rests on an implicit prior belief that genetic associations with educational attainment can be trivially mapped to fundamental brain features that determine cognitive ability. To illustrate the problem with this prior I refer to an old example by Christopher Jencks: in a society that prevents red-hair kids to go to school, genetic effects on hair color would be associated with educational attainment, despite having no intrinsic biological relationship with cognition. I give two scenarios consistent with the specific case of rs4981455 that are fundamentally different from what is implied in the paper: (i) The case of indirect genetic effects (see Kong et al., Science 2018). In this case, rs4981455 affects the nurturing behavior of an individual's parents, which in turn influences the individual's educational achievements and consequently brain structure features. (ii) The case of confounding. In this case, the genetic effects on brain structure are shared with another feature, such as facial shape (see Naqvi et al., Nature Genetics 2021). Variation in facial shape in a discriminatory educational environment can covary with educational attainment.

      The causal pathway presented in the original version of this manuscript was indeed too simplistic and inferred a causal pathway between rs4981455 and educational attainment that was not fully backed by our data nor could be fully proved experimentally. The point we had hoped to make, and which is better represented by the updated version of Figure 6H, is that if there is a causal relationship between rs4981455 and educational attainment mediated by miR-4707-3p expression, we may be able to detect the influence of miR-4707-3p on a cellular phenotype that would explain the association of rs4981455 with cortical surface area, intracranial volume, and head size.

      An updated discussion summarizes how we were not able to find evidence for a molecular mechanism consistent with the radial unit hypothesis, but that a biological link between the miRNA-eQTL and GWAS phenotypes may yet be uncovered:

      "We did find one colocalization between a miRNA-eQTL for miR-4707-3p expression and GWAS signals for brain size phenotypes and educational attainment. This revealed a possible molecular mechanism by which genetic variation causing expression differences in this miRNA during fetal cortical development may influence adult brain size and cognition (Figure 6H). Experimental overexpression of miR-4707-3p in proliferating phNPCs showed an increase in both proliferative and neurogenic gene markers with an overall increase in proliferation rate. At two weeks in differentiating phNPCs, we observed an overall increase in the number of cells upon miR-4707-3p overexpression, but we did not detect a difference in the number of neurons at this time point. Based on the radial unit hypothesis (26,73), we expected to find an overall decrease in proliferation or increase in neurogenesis upon miR-4707-3p overexpression which would explain decreased cortical surface area. However, our in vitro observations with phNPCs do not point to a mechanism consistent with the radial unit hypothesis by which increased miR-4707-3p expression during cortical development leads to decreased brain size. This has also been seen in similar studies using stem cells to model brain size differences linked with genetic variation (74). Nevertheless, the transcriptomic differences associated with overexpression of miR-4707-3p in differentiating phNPCs suggest this miRNA may influence synaptogenesis or neuronal maturation, but these phenotypes may be better interrogated at later differentiation time points, by jointly expressing HAUS4 and mir-4707, or with assays to directly measure neuronal migration, maturation, or synaptic activity."

      We believe the two cases addressed by the reviewer of indirect genetic effects and confounding which may actually explain the association between rs4981455 and educational attainment are less likely to be influencing the miRNA expression of miR-4707-3p measured in developing cortical tissue. This is combined with a discussion on the caveats of our findings and is addressed in the next section.

      4) The paper lacks a discussion on caveats to protect against potential misinterpretation of findings, especially considering the troubled history of linking facial shape and head morphology to human behavior and intelligence. I refer to the last paragraph of Naqvi et al., Nature Genetics 2021, as an example of such discussion. This is particularly crucial given that the frequency of rs4981455 varies across human populations. For example, it is important to state that the GSA and education attainment GWAS findings are in individuals of European descent, and may not necessarily point to an effect in other ancestries or even in European-descent individuals that differ from the GWAS samples in various ways, e.g., socioeconomic status (see Mostafavi et al., eLife 2020). In other words, these findings pertain to variation within the studied samples. On this note, it is important to state the amount of variation in multiple phenotypes explained by rs4981455 (which is likely tiny), and that it by no means determines the phenotype.

      We have added a paragraph to the discussion highlighting the caveats of our analysis and protecting from overinterpretation of our findings:

      "Here we have proposed a biological mechanism linking genetic variation to inter-individual differences in educational attainment. Given the important societal implications education plays on health, mortality, and social stratification, a proposed causal mechanism between genes and education warrants greater scrutiny (75,76). Any given locus associated with educational attainment may be driven by a direct effect on brain development, structure, and function, an indirect genetic effect such as parental nurturing behavior, or confounding caused by discriminatory practices or societal biases (77,78). Given that expression was measured in prenatal cortical tissue, where confounding societal biases are less likely to drive genetic associations and that experimental overexpression of miR-4707 affected molecular and cellular processes in human neural progenitors, the evidence at this locus is consistent with a direct effect of genetic variation on brain development, structure, and function rather than being driven by confounding or indirect effects. However, there are some important caveats to this statement. First, our study only provides evidence for the direct effect on the brain at this one educational attainment locus. Our study does not provide evidence for the direct brain effects of any other locus identified in the educational attainment GWAS. Second, common variation at this locus explains a mere 0.00802% of the variation in educational attainment in a population, so this locus is clearly not predictive or the sole determinant of this phenotype. Third, the GWAS for educational attainment and brain structure were conducted in populations of European ancestry, and allele frequency differences at these loci cannot be used to predict differences in educational attainment or brain size across populations. Finally, though both experimental and association evidence suggests a causal link between this locus and educational attainment mediated through brain development, we are unable to directly test the influence of miR-4707-3p expression during fetal cortical development on adult brain structure and function phenotypes. Therefore, we cannot rule out the possibility that the causal mechanism between rs4981455 and adult cognition may be a result of genetic pleiotropy rather than mediation at this locus. Despite these caveats, identifying the mechanisms leading from genetic variation to inter-individual differences in educational attainment will likely be useful for understanding the basis of psychiatric disorders because educational attainment is genetically correlated with many psychiatric disorders and brain-related traits (2,79)."

      We hope that this paragraph contextualizes our results sufficiently to emphasize the high bar that must be surpassed to propose a biological link between a miRNA-eQTL and a risk loci for brain related traits while maintaining that we can not completely rule out the possibility of genetic pleiotropy.

      5) The main colocalization signal is tentatively shown for GSA. However, the authors casually refer to links with "brain size" or "head size" throughout the paper.

      In addition to the locus showing a sub-genome wide significant association to global cortical surface area (GSA) presented in Figure 5, a GWAS for head size (Knol et al., 2020) and a GWAS for intracranial volume (Nawaz et al., 2022) (recently published since submitting the original manuscript) both show genomic associations at this locus for miR-4707-3p expression. The index variants for both traits colocalize with the miRNA-eQTL for miR-4707-3p and their effect directions match: alleles increasing expression of miR-4707-3p show association to decreased head size and decreased intracranial volume. For both of these studies, the summary data is not yet publicly available, preventing us from constructing plots at this locus (similar to those shown in Figure 5) or conducting additional colocalization analyses. To be more consistent throughout the paper, we have replaced many “head size” references with “brain size” when talking about this locus.

    1. Author Response

      Reviewer #2 (Public Review):

      Weaknesses

      The author's approach, as with traditional approaches to molecular identification of vector species, relies on expert entomologists capable of identifying mosquitoes in the field which is rare in most places. The authors do not provide citations for the taxonomic keys used for morphological identification, which in many places are outdated or unavailable for specific locations.

      We have added references for taxonomic identification keys in lines 677–679.

      The authors give no explanation as to why they chose rRNA-seq as their method of next-generation sequencing, which is most commonly used for transcriptomics, instead of traditional DNA-based metagenomics which is more commonly used to define community relationships as would be more appropriate for this study.

      We have added a sentence in the Introduction (lines 65–66) to explain why RNA-seq is a frequent choice for surveillance and virus discovery in mosquitoes.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper shows that nuclear pore complex components are required for Kras/p53 driven liver tumors in zebrafish. The authors previously found that nonsense mutation in ahctf1 disrupted nuclear pore formation and caused cell death in highly proliferative cells in vivo. In the absence of this gene, there are multiple mitotic functions involving the nuclear pore that are defective, leading to p53 dependent cell death. Heterozygous fish are viable but have reduced kras/p53 liver tumor growth, and this is associated with multiple nuclear and mitotic defects that lead to cancer cell death/lack of growth. This therapeutic window suggests targetability of this pathway in cancer. I think the data are robust, rigorous, and clearly presented. I believe this in vivo work will encourage therapeutic targeting of NPCs in cancer.

      We are pleased that this reviewer believes that our data are robust, rigorous, and clearly presented and that our in vivo work will encourage therapeutic targeting of NPCs in cancer.

      Reviewer #2 (Public Review):

      Overall this is a very interesting and important paper that demonstrates a novel synthetic interaction between nucleoporin inhibition and oncogene-driven hyperproliferation. This work is especially significant because of the paucity of effective treatments for hepatocellular carcinoma (HCC). The authors' demonstration that the Nup inhibitor Selinexor decreases larval liver size in KRAS-overexpressing zebrafish but does not cause toxicity in wild-type animals lays the groundwork for exploiting this class of drugs in HCC treatment. This paper represents an elegant demonstration of the utility of zebrafish models in cancer studies. The relevance of this work to human cancer is supported by the authors' studies using TCGA data, wherein they demonstrate that decreased NUP expression is associated with increased survival in HCC.

      Other major strengths of the paper include beautiful pictures demonstrating that ahctf1+/- decreases the density and volume of nuclear pores in TO(kras) larvae and increases the rate of multipolar spindle formation, misaligned chromosomes, and anaphase bridges. The experiments are very well-controlled, including detailed analysis of the effects of ahctf1 heterozygosity and Selinexor on wild-type animals. The inclusion of distinct methods for disruption nucleoporins (ranbp2 heterozygosity and drug treatment) bolsters the authors' conclusion that this represents a viable drug target in HCC.

      My major concerns are as follows:

      1) The authors state that "the beneficial effect of ahctf1 heterozygosity to reduce tumour burden persists in the absence of functional Tp53, due to compensatory increases in the levels of tp63 and tp73". However, tp63 and tp73 appear similarly upregulated in ahctf1 heterozygotes regardless of tp53 status. The authors do not provide enough evidence that tp63 and tp73 are compensating for tp53 loss. An alternative possibility based on the data presented is that the effects of ahctf1+/- are independent of tp53 family members, and the effects on apoptosis go through a different pathway.

      We agree with this reviewer that we did not provide enough evidence that tp63 and tp73 are compensating for tp53 loss. Accordingly, we have addressed this issue comprehensively.

      2) The authors state in multiple locations that nucleoporin inhibition decreases tumor burden. In my opinion, this is not strictly correct. The TO(kras) model clearly results in HCC in adults, but it's a little unclear whether the larval liver overgrowth is truly HCC or not based on the original paper by Nguyen et al. (2012 Dis Model Mech).

      We agree with these comments and accordingly, we performed several new experiments in adult fish.

      Reviewer #3 (Public Review):

      The nuclear transport machinery is aberrantly regulated in many cancers in a context-dependent fashion, and mounting evidence with cultured cell and animal models indicates that reducing the activity or expression of certain nuclear transport proteins can selectively kill cancer cells while sparing nontransformed cells. Here the authors further explore this concept using a zebrafish model for hepatocellular carcinoma (HCC) induced by liver-specific transgenic expression of oncogenic krasG12V. The transgene causes greatly increased liver size by day 7 in larvae, associated with a gene expression profile that resembles early-stage human HCC. This study focuses on Ahctf1, a nuclear pore complex (NPC) protein known to be essential for postmitotic NPC assembly. Using the krasG12V background, the authors analyze animals that are heterozygous for a recessive mutation in the ahctf1 gene that leads to ~50% reduction in ahctf1 mRNA (and likely the encoded protein). The authors show that the ~4-fold increase in liver volume of krasG12V animals is reduced by ~1/3 in the ahctf1 heterozygous mutants. This is associated with increased apoptosis, decreased DNA replication, up-regulation of pro-apoptotic and cdk-inhibitor genes, and down-regulation of anti-apoptotic gene. These effects found to be substantially Tp53-dependent. Consistent with previous Ahctf1 depletion studies, hepatocytes of ahctf1 heterozygotes show decreased NPC density at the nuclear surface, elevated levels of aberrant mitoses and increased DNA damage/double stranded breaks. Finally, the authors show that combining the achtf1 heterozygous mutant with a heterozygous mutation in another NPC protein- RanBP2- or treating animals with a chemical inhibitor of exportin-1 (Selinexor) can further reduce liver volume. Overall they suggest that combinatorial targeting of the nuclear transport machinery can provide a therapeutic approach for targeting HCC.

      This is an interesting study that bolsters the notion that reduction in the levels of discrete nucleoporins (and/or inhibiting specific nuclear transport pathways) can result in cancer cell-selective killing. Moreover, the work extends previous studies involving cultured cell and mouse xenografts to a new cancer model (HCC) and nucleoporin (Ahctf1). Whereas the authors describe multiple aberrant cellular phenotypes associated with the dosage reduction in ahctf1, the exact causes for reduction in liver size in the krasG12V model remain unclear. Although it would be desirable to parse effects of Ahctf1 related to NPC number, aberrant mitoses, licensing of DNA replication and chromatin regulation, this is a tall order at present, given the limited understanding of Ahctf1. However, useful insight on these and related questions could be gained with further analysis of the system as outlined below.

      We are pleased this reviewer thinks this is an interesting study that bolsters the notion that reduction in the levels of discrete nucleoporins (and/or inhibiting specific nuclear transport pathways) can result in cancer cell-selective killing. This reviewer also suggests that useful insight on these and related questions could be gained with further analysis of the system as outlined below:

      1) In the krasG12V model, it would be helpful to distinguish the contribution of increased cell death vs decreased cell proliferation to the change in liver size seen with heterozygous ahctf1. Is this predominantly due to decreased proliferation?

      We think this question is difficult to address, because the relative contributions of the two processes may vary with time. Our data show definitively that by 7 dpf, the impact of ahctf1 heterozygous mutation has disrupted multiple cellular processes, leading to a 40% increase in the number of hepatocytes expressing Annexin 5 (dying cells), and a 40% decrease in the number of hepatocytes incorporating EdU over a 2 h incubation (fewer cells in S-phase). Both responses are likely to contribute to the reduction in liver volume observed in response to ahctf1 heterozygosity. It is worth stating that in our experiments, we captured snapshots of apoptosis and DNA replication in the livers of larvae at 7 days post-fertilisation after 5d of dox treatment/KrasG12V expression. To answer the Reviewer’s question properly, we would need to monitor the behaviour of individual cells over time. If such experiments were technically possible, we think that some cells that undergo growth arrest in response to dox treatment might ultimately succumb to apoptosis (unless dox treatment is withdrawn) while other cells might enter into a state of prolonged senescence. However, given the technical challenges, we did not attempt to test this in the current manuscript.

      2) It would be good to know whether the heterozygous ahctf1 state blunts the overall level of Ras activity in krasG12V animals.

      We have addressed this interesting question thoroughly in new Fig. 1g, h. To do this, we used a commercial RAS-RBD pulldown kit followed by western blot analysis to determine the levels of activated GTP-bound Kras protein. Our results demonstrate that the levels of GTP-bound Kras protein, expressed as a proportion of total Kras protein, do not change in response to ahctf1 heterozygosity. We conclude from these data that the potentially therapeutic value of reduced ahctf1 expression in a cancer setting is not caused by inhibiting Kras activity.

      3) Notwithstanding the analysis of Tp53 target genes presented in this study, it would be helpful to see detailed transcriptional profiling of hepatocytes in the krasG12V model with the heterozygous ahctf1 mutation, and to assess the effects of Selinexor. GSEA type analysis offers a way to start untangling the effects of these pathways. Moreover this analysis could provide insight on the relevance of this model to human HCC.

      We used RNAseq to address the relevance of our larval model to human HCC. Specifically, we performed differential gene expression analysis to identify up- and downregulated genes in cohorts of ahctf1+/+ (WT) larvae versus dox-treated ahctf1+/+(WT);krasG12V larvae. We used gene set enrichment analysis to compare these differentially regulated transcripts with the gene expression signature of 369 patient samples in the Liver hepatocellular carcinoma (LIHC) dataset versus healthy liver samples in the TCGA. These analyses revealed a significant association between the patterns of gene expression in our larval model of zebrafish HCC and those of human HCC (Fig. 1-figure supplement 1c, d).

      The genetic experiments we report in Figures 4, 5, 6 show that WT Tp53 is required for the reductions in liver enlargement (Fig. 4), apoptosis (Fig. 5) and DNA replication (Fig. 6) that occurs in response to ahctf1 heterozygosity in dox-treated krasG12V larvae. We also used RT-qPCR to show that a Tp53-mediated transcriptional program was activated in these ahctf1 heterozygous livers (Fig. 5). Similarly, in adult livers, ahctf1 heterozygosity triggered the upregulation of Tp53 target genes, including pro-apoptotic genes (pmaip1, bbc3, bim and bax) and cell cycle arrest genes (cdkn1a and ccng1) (new Fig. 6-figure supplement 1). These results show that to obtain the full potential of ahctf1 heterozygosity in reducing growth and survival of KrasG12V-expressing hyperplastic hepatocytes requires activation of WT Tp53. This is an important conclusion from our paper that is likely to be relevant in a clinical setting, for instance in patient selection, if ELYS inhibitors are developed for the treatment of HCC in which the KRAS/MAPK pathway is activated.

      Also, one reviewer mentions performing genome-wide transcriptional profiling of hepatocytes in the krasG12V model in response to ahctf1 heterozygosity and the presence and absence of Selinexor treatment. While these are potentially interesting experiments, they are substantial in nature and not crucial for the main messages of our paper. Therefore, we respectively contend that they are beyond the scope of the current manuscript.

      4) Functions of Achtf1 in regard to chromatin regulation could be compromised in this model. Scholz et al (Nat Gen 2019) report that Ahctf1 is involved in increasing Myc expression via gene gating mechanism. It would be good to know what the effects are in this system.

      The Scholz, 2019 and Gondor, 2022 papers from the same group, are very interesting in that they demonstrate a novel role for the ELYS protein in addition to the ones we pursued in our paper. The authors showed that in HCT116 cells, a human colorectal cancer cell line in which proliferation is driven by aberrant WNT/CTNNB1 signalling, the longevity of nascent MYC mRNA was increased by accelerating its movement from the nucleus to the cytoplasm, thereby preventing its degradation by nuclear surveillance mechanisms. The authors showed that siRNA knockdown of AHCTF1 in HCT-116 cells reduced the rate of nuclear export of MYC transcripts without changing the transcriptional rate of the MYC gene. They proposed a mechanism that depended on the formation of a complex chromatin architecture comprising transcriptionally active MYC and CCAT1 alleles plus proteins including β-Catenin, CTCF and ELYS. Together these interacting components guided nascent MYC mRNA molecules to nuclear pores, enhanced their export to the cytoplasm to be translated, resulting in activation of a MYC transcriptional program that induced expression of pro-proliferation genes.

      In theory, this role of ELYS in protecting MYC from nuclear degradation might extrapolate to other cancer settings where MYC expression is elevated. While interplay between MYC and mutant KRAS to enhance cancer growth has been previously reported, to date, most emphasis on this interaction has focused on the role of mutant KRAS in increasing the stability of the MYC protein, for example via RAS effector protein kinases (ERK1/2 and ERK5) that stabilise MYC by phosphorylation at S62 (Farrell and Sears, 2014: https://doi.org/10.1101/cshperspect.a014365) (Vaseva and Blake 2018: DOI:https://doi.org/10.1016/j.ccell.2018.10.001). While we appreciate the novelty of the recent papers, the current findings are limited to -Catenin activated HCT-116 cells and may not be relevant to our zebrafish model of mutant Kras-driven HCC. Accordingly, we have not allocated a high priority to following this up in our current manuscript.

      6) The synthetic lethality argument pressed in this manuscript seems exaggerated. Standard anti-cancer treatments typically target several cellular pathways, and nucleoporins directly affect a multiplicity of pathways besides nuclear transport.

      While we do not disagree that standard anti-cancer treatments may target several cellular pathways, we believe our data are consistent with the accepted definition of a synthetic lethal interaction whereby single mutations in two separate genes (kras and ahctf1) cooperate to cause cell death, whereas cells harbouring just one of these mutations are spared.

    1. Author Response

      Reviewer #1 (Public Review):

      1) Context and definitions for stochasticity and heritability: The authors provide well-referenced introductions and explanations throughout the manuscript. However, key understanding of concepts for their central hypothesis on transient heritability are not shared until well into the results sections (Lines 215-227), leaving the introduction somewhat unclear on the authors thinking and motivation. The manuscript would benefit by including clear definitions of "stochastic", "transiently heritable", and "heritable" and their relationships to "intrinsic" and "deterministic" in the introduction.

      Regarding the first point, we agree it is important to include clear definitions timely. Therefore, we added much more detail to the introduction (see tracked changes), and added the following definitions and additional explanations:

      Multilayered stochasticity: “stochasticity originating from different levels over the course of an infection.“

      “Importantly, although the terms stochasticity and determinism seem highly dichotomous, deterministic features (e.g., epigenetic regulation) are often, if not always, stochastically regulated (Zernicka-Goetz and Huang, 2010). However, in cellular decision-making, the major difference between a stochastic process and a deterministic process boils down to the effects of (varying) inputs on dictating (varying) outputs. In fact, a stochastic process in characterized by the exact same stimulus leading to varying response outcomes, often as a result of varying host-intrinsic factors (Symmons and Raj, 2016). In contrast, a deterministic process is characterized by an outcome (e.g., IFN-I production) that is fixed, or at least to a large degree, while the input can be variable. How cells are epigenetically predispositioned, in turn, can again be a stochastic process, similar to the fundamentals of developmental biology in which cells are randomly pushed towards deterministic outcomes (Zernicka-Goetz and Huang, 2010).”

      “Transient heritability refers to heritable epigenetic profiles [e.g., profiles encoding cellular fates for the production IFN-Is] that only transfer over a couple of generations, as observed across cell types and systems including cancer drug resistance (Shaffer et al., 2020), cancer fitness (Fennell et al., 2022; Oren et al., 2021), NK cell memory (Rückert et al., 2022), HIV reactivation in T cells (Lu et al., 2021), epithelial immunity (Clark et al., 2021), and trained immunity (Katzmarski et al., 2021).”

      “Besides a growing body of evidence on the role of transient heritable fates dictating cellular behaviors, the effects of population density, often referred to as quorum sensing, are getting more established for immune (signaling) systems (Antonioli et al., 2019; Polonsky et al., 2018; Van Eyndhoven and Tel, 2022). On top of the intrinsic features characterized by stochasticity and determinism, individual immune cells can communicate in various ways to elicit appropriate systemic immune responses. Typically, cytokine-mediated communication is categorized into two types: autocrine and paracrine signaling. Autocrine signaling is defined by cells secreting signaling molecules while simultaneously expressing the cognate receptor. Paracrine signaling is defined by cells either secreting signaling molecules without expressing the cognate receptor, or cells expressing the receptor without secreting the molecule. In essence, quorum sensing can be considered a phenomenon in which autocrine cells determine their population density based on cells engaging in neighbor communication, but without self-communication (Doğaner et al., 2016; Van Eyndhoven and Tel, 2022). Especially in the presence of other competitive decision makers [i.e., cytokine consumers and producers], it is critical for individual cells to assess cellular density, and act accordingly (Oyler-Yaniv et al., 2017).”

      2) Generalizability of findings to other cell types, systems, and triggers: The cell line and Poly(I:C) delivery method used by the authors lacks sufficient characterization to extend the conclusions derived from its use. Notably, the NIH3T3-IRF7-CFP cell line expresses IRF7 constitutively and thus may only be a good model for cells with similar expression levels; many primary cells only express IRF7 at low levels or not at all until stimulated (PMID: 2140621). The conclusions would be greatly strengthened by demonstrating similar first responder dynamics/heritability in other cell types. The experiments measuring the efficiency of Poly(I:C) delivery by transfection lack sufficient resolution to determine if the Poly(I:C) is intracellular or membrane bound. IFN-I response kinetics, and potentially quality, would likely be distinct between cytosolic and endosomal sensing and may impact the likelihood of becoming a first responder.

      Regarding the generalizability of findings to other cell types, systems, and triggers, we thank reviewer 1 for binging up this crucial point. About the IRF7 expression, IRF7 is expressed at a low amount in most cells and is strongly induced by type I IFN-mediated signaling (Marie et al., 1998; Sato et al., 1998b; Honda et al., 2006). How we used the word “constitutively” refers to the IRF7 molecules always being fluorescent, not that IRF7 is always highly expressed in these cells. Therefore, NIH3T3 is similar to all other cells, except for plasmacytoid dendritic cells, which are known for their high background levels of IRF7. We changed the revised manuscript accordingly:

      “Accordingly, we used a NIH3T3:IRF7-CFP reporter cell line, expressing low, physiological background levels of IRF7-CFP fusion proteins, to monitor signaling dynamics during early phase IFN-I response dynamics (Figure 1b).”

      Regarding the comparison with other cell types, we emphasized the similar responders numbers observed in plasmacytoid dendritic cells (an argument that the intrinsic factor of IRF7 background differences is not determining responders). We changed the revised manuscript accordingly:

      “In short, IFN-I responses are elicited by fractions of so-called first responding cells, also referred to as ‘precocious cells’ or ‘early responding cells’, which start the initial IFN-I production upon viral detection, both validated in vitro, in vivo, and across cell types (Bauer et al., 2016; Hjorton et al., 2020; Patil et al., 2015; Shalek et al., 2014; Van Eyndhoven et al., 2021a; Wimmers et al., 2018).”

      “This percentage is in line with what has been found across literature, species [i.e., human and mice] and cell types [i.e., fibroblasts, monocyte derived dendritic cells, plasmacytoid dendritic cells], which ranges from 0.8 to 10% of early responders, emphasizing the elegant yet robust feature of only a fraction of first responding cells driving the population-wide IFN-I system (Bauer et al., 2016; Drayman et al., 2019; Patil et al., 2015; Shalek et al., 2014; Van Eyndhoven et al., 2021a; Wimmers et al., 2018).”

      Regarding the hypothesis brought up by the reviewer on the role of cytosolic versus endosomal sensing impacting IFN-I response kinetics, and potentially quality, we hypothesize otherwise. Shalek and colleagues tested LPS (TLR4 ligand), PIC (TLR3 ligand, endosomal), and PAM (TLR2 ligand), all eliciting similar early responding cells, which they called precocious cells. This argues that the phenomenon of first responders is independent of the type of stimulation. Besides, for plasmacytoid dendritic cells, both R848 (TLR7/8 ligand), and CpG-C (TLR9 ligand) elicit very similar early IFN-I responses. In contrast, R848 and CpG-C elicit very different late IFN-I response dynamics, reflected by the fraction and activation dynamic of second responders (yet unpublished). We clarified accordingly:

      “Moreover, various stimuli (live and synthetic) targeted membrane, cytosolic, and endosomal receptors, arguing that the mode of activation is not driving the discrepancies in responder fates.”

      3) Epigenetic regulation of transient heritability: To test the contribution of epigenetic regulation on first responder fate, the authors treat their cells with DNMTi. While treatment with this drug does increase the proportion of first responder cells, the authors don't provide evidence that the mechanism of action is mediated by inhibiting DNA methylation. This is further confounded by the reduced responder frequencies in DNMTi treated cells transduced with Poly(I:C) (Fig 4g). The authors offer an explanation for this observation, but their reported data (Fig 4h) doesn't measure whether DNMTi, leads to latent retrovirus activation, broader demethylation, or a combination of the two.

      We are well aware that the hypothesis on retrovirus activation are inconclusive. Unfortunately, we currently do not have the ability to utilize the tools to properly assess this hypothesis. Instead, we can only speculate. However, we were able to assess the effects of a different epigenetic drug [i.e., HDACi], as suggested later by the reviewer. Therefore, to strengthen our data interpretation, we added the following additional information and experimental data to the revised manuscript:

      “Also the treatment with varying dosages and durations of Trichostatin A, an histone deacetylase inhibitor (HDACi), increased the number of responding cells (Supplementary Figure 5).”

      “The rather long timescales of switching from responders to non-responders, and the other way around, imply epigenetic mechanisms at play, and indeed, prior work has indicated an important role for epigenetics dictating IFN-I response dynamics (reviewed in (Barrat et al., 2019)).”

      “Both methylation and histone acetylation have been suggested in dictating transient heritable cellular fates (Clark et al., 2021; Lu et al., 2021; Shaffer et al., 2020).”

      4) Temporal experimental data to validate and extend transient heritability and quorum sensing: Developing a model for cellular-decision making during early IFN-I responses, the authors formalize and test the hypothesis of transient heritability. While the data largely fit the model proposed (Fig 6D-F), the reported data points lack sufficient temporal resolution to validate the model during the earlier and more variable generations. Given that by generation 9 variability in first responder frequency has almost stabilized, there is only one data point (generation 6) to evaluate the fit of the ODE described. More densely sampled data points below generation 10 are necessary to validate the model. Moreover, a discussion of Kon calculation/observation, meaning, and validation is missing. To partially test their claim that Kon is a function of density (i.e., quorum sensing), the authors plate cells at different densities and measure the responder frequency at generation 6. This analysis lacks contextualization of other autocrine and paracrine signals potentially impacting IFN-I response. Moreover, these signals will be diverse in different cell types and could impact Kon and/or the overall model.

      We agree that our first model validation was suboptimal, indeed because of lacking sufficient temporal resolution. Therefore, we performed additional experiments on clones of generation 1, 2, 3, 4, 5, of which the results turned out to be remarkably robust. We changed the revised manuscript accordingly:

      “Surprisingly, the data obtained from clones of generation one through nine resulted in a mean higher than 2.134% (Figure 6d; Supplementary Figure 9), and a fluctuating CV (Figure 6e). From generation 13 onwards, both the mean and the CV start to meet the data obtained from the regular cultures again, which are similar to the theoretical outcomes of a stochastic process. Accordingly, we modeled first responders as a binary switch, where individual cells are either responding (ON) or nonresponding (OFF), similar to the transient heritable fates characterized and modeled before (Shaffer et al., 2020). Details on the ODE model are provided in the Materials and Methods section. We could fit the transient heritability model to the data when starting from 100% responders at generation zero [i.e., a single cell isolated from the regular culture]. Cells switch OFF after 5 generation on average, with a constant kon rate throughout. Interestingly, in generation zero we observed (nearly) only IFN-I responders, which we believe might be caused by single cells being deprived from any paracrine cues, which could include inhibitory factors that normally limited responsiveness. However, single IFN-I-producing cells [i.e., plasmacytoid dendritic cells and monocyte derived dendritic cells] encapsulated in picoliter droplets or captured in small microfluidic chambers did not display this behavior (Shalek et al., 2014; Wimmers et al., 2018). Instead, one could argue that single cells establish a different microenvironment, compared to a situation in which cells are close to neighboring cells, which elicits behavioral changes accordingly. The dimensions of microfluidic droplets and chambers are in the same range of cell-to-cell contacts in vitro, while single cells seeded for cloning are surrounded by rather massive areas and volumes without other cells present. Therefore, we hypothesize that these single cells lack biochemical, and perhaps biomechanical cues provided by dense cell populations, which result in behavioral changes in these cells, in our case, making them more responsive. Similarly, in quorum sensing, cells secrete soluble signaling molecules (called autoinducers), which enables cells to get a sense of their cell density (Postat and Bousso, 2019; Waters and Bassler, 2005). Without signaling of these molecules, cells perceive being isolated from the rest. In microfluidic droplets and chambers, these molecules accumulate, given the relatively small volumes.”

      Regarding the contextualization of autocrine and paracrine signaling impacting IFN-I response dynamics in these studies, we added the following additional information:

      “On top of the intrinsic features characterized by stochasticity and determinism, individual immune cells can communicate in various ways to elicit appropriate systemic immune responses. Typically, cytokine-mediated communication is categorized into two types: autocrine and paracrine signaling. Autocrine signaling is defined by cells secreting signaling molecules while simultaneously expressing the cognate receptor. Paracrine signaling is defined by cells either secreting signaling molecules without expressing the cognate receptor, or cells expressing the receptor without secreting the molecule. In essence, quorum sensing can be considered a phenomenon in which autocrine cells determine their population density based on cells engaging in neighbor communication, but without self-communication (Doğaner et al., 2016; Van Eyndhoven and Tel, 2022).”

      Regarding the point that signals will be diverse in different cell types and could impact Kon and/or the overall model, yes, but we expect this to be only minor. Besides, the model can be easily adjusted to the different parameters per cell type (see Saint-Antoine et al., 2022).

      Reviewer #3 (Public Review):

      1) For the small fraction of cells that respond in the absence of Poly(I:C), are these cells just showing IRF7 translocation or are they fully responding with IFNB production? Has this been observed in other experimental systems or contexts? Do you also observe secondary responders in the unstimulated samples (as shown in the stimulated in Fig. 2G-I)?

      Regarding the first point on the unstimulated translocated cells, excellent point. Although we have not experimentally validated it, we hypothesize that cells are able to produce constitutive levels of IFN-Is, as thoroughly described in literature, so we assume that these translocated cells produce IFN-Is. We provided additional speculation in the revised manuscript:

      “Besides, the background numbers of translocated cells possibly reflect the intrinsic feature of the IFN-I system to ensure basal IFN-I expression and IFNAR signaling to equip immune cells to rapidly mobilize effective antiviral immune responses, and homeostatic balance through tonic signaling (Gough et al., 2012; Ivashkiv and Donlin, 2014).”

      2) Do the second responders only arise through direct IFN-I production by first responders? Is it possible that this response has any relationship with the initial transfection with Poly(I:C)?

      From the droplet-based experiments with plasmacytoid dendritic cells performed before (Wimmers et al., 2018; Van Eyndhoven et al., 2021), we could conclude that the second responders indeed required the activation and subsequent early IFN-I production of first responders. Whereas droplet-based microfluidics is a very stable, and controlled method, producing thousands of homogeneous droplets, we concluded that the difference between first and second responders is not elicited upon variations in activation (e.g., transfection discrepancies).

    1. Author Response

      Reviewer #1 (Public Review):

      The authors use their expertise in live-cell imaging and mathematical modeling to further explore the relationship between chromatin structure, gene positioning and transcriptional coregulation. One of the strengths of the manuscript arises from the authors analysis of two publicly available datasets encompassing chromatin tracing and transcriptional activity. Using spatial analysis and modeling, the authors have impressively extended the findings of Su et. al, Cell 2020, who generated the analyzed dataset. A number of important concepts were explored including 1.) do genes re-position upon activation and 2.) can spatial proximity be correlated with transcriptional co-regulation. In general the authors conclusions are supported by their findings and should provide a blueprint for analysis of additional related big imaging datasets in the future.

      However there are a number of weaknesses including lack of statistical analysis or incomplete description (e.g. bootstrapping parameters, statistical methods, number of genes/cells/measurements, etc.) on some figures that make it difficult to interpret the significance of the trends. In addition, the modeling using live-cell studies is generalized based on a behavior (e.g. diffusion) of a single gene. The manuscript is densely written in a way that may be inaccessible for non-specialists. A final schematic model that summarizes biological findings would help alleviate this weakness.

      We are glad that the reviewer considers the observed phenomenon important and that our overall findings are consistent with our results. We implemented changes in response to each of the above requests:

      1) we added additional explanation of test statistics;

      2) we analyzed diffusion of additional genes;

      3) we tried to simplify the text;

      4) we added a final schematic.

      Reviewer #2 (Public Review):

      In their manuscript, Bohrer and Larson reanalyse previously published imaging datasets in order to tackle a long-standing question in modern genome biology: does the physical proximity of transcribed genes correlate with their co-expression?

      The authors start off by reanalysing fixed-cell data, in which they find that active genes (i.e., any gene with RNA FISH signal) often repositions towards the centroid of the imaged chromatin environment one transcriptionally active. The analysis is straightforward, but the notion of "closer to the centroid" remains a bit vague to me, and is not well defined as regards its functional significance. There is no doubt of the clear trend in the analysed data -- but the interpretation could be strengthened.

      We tried to clarify this part of the text and also added a schematic illustration to the discussion to help clarify this important point (Fig. 5).

      Then, using the same dataset, the question on physical gene proximity is addressed. This is not only an important and timely question, but also one which the authors address very nicely. They deduce that when a pair of loci are brought within sufficiently low physical 3D proximity (unrelated to their genomic distance) they are more likely than expected to be co-expressed. In cis, this distance can be defined to approx. <2.5 Mb of genomic separation. They also looked in trans, via a complex transfer of knowledge from live-cell imaging to the fixed-cell dataset, to show that genes brought within approx. 400 nm from one another display quite a high coexpression correlation. Despite the parsimonious nature of the model and assumptions that the authors use for this (testing more complex parameters might prove beneficial here), their postulations can quite adequately explain observations published by others that were previously left largely without interpretation.

      In my opinion, the main strength of this manuscript lies with the initial analysis of the fixed-cell data and the clear trends therein. The latter part, which nicely identifies caveats in available data and analyses and which makes a solid effort to combine live-cell with fixed-cell data, leaves more scenarios to be tested. Nevertheless, based on the outcome of this analysis (mostly found in Fig. 4), the value of ~400 nm as a physical proximity cutoff for co-expression is reasonable (based on previous knowledge) and does provide a solid first step in the direction of deciphering the rules that allow coordinated gene expression in mammalian cells.

      We agree that the modelling section is more of a first step and that future work will need to be done to investigate further. In the revision, we make this point explicit within the main text (See below).

      Overall, this is a conceptual advance of merit that can re-shape ways of approaching the stillopen issue of gene co-bursting in light of novel (mostly imaging) technologies.

      We appreciate the comment.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors set out to develop an in vitro model of multiple species representing diversity in the CF airway as a platform for a range of studies on why polymicrobial communities resist therapy. The rationale for their design is sound and the methods appear justifiable and reproducible. The major strength of this work is in producing a method for a range of future work, ideally for multiple groups in the field. The primary findings are interesting but not groundbreaking. One weakness in the method of reporting interspecies interactions and another in evaluating alternative causes of lasR advantages present opportunities for a stronger research contribution beyond this terrific method.

      We thank the reviewer for this accurate summary of the data presented in our manuscript. We have addressed the raised concerned in the revised document. The modifications and comments can be seen in the “Essential Revisions” section above.

      Reviewer #2 (Public Review):

      Differences between the infection environment and in vitro model systems likely contribute to disconnects between the antimicrobial susceptibility profile of bacterial isolates and the clinical response of patients. The authors of this paper focus on a specific aspect of the infection environment, the polymicrobial nature of some chronic infections like those in people with Cystic Fibrosis (CF), as a factor that could impact antibiotic tolerance. They first use published genomic datasets and computational techniques to identify a clinically relevant, four-member polymicrobial community composed of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus spp., and Prevotella spp. They then develop a high throughput methodology in which this community grows and persists in a CF-like environment and in which antibiotic susceptibility can be tested. The authors determine that living as a member of this community decreases the antibiotic tolerance of some strains of biofilm-associated P. aeruginosa and increases the tolerance of most strains of planktonic and biofilm-associated S. aureus and planktonic and biofilm-associated Streptococcus. They focus on the decreased tolerance of P. aeruginosa and determine that a ΔlasR mutant of P. aeruginosa does not display increased tobramycin susceptibility in the mixed community. One of the phenotypes associated with a ΔlasR mutant is an overproduction of phenazines. The authors find that by deleting the phenazine biosynthesis genes from ΔlasR, they can restore community-acquired susceptibility. They further investigate this phenomenon by showing that a specific type of phenazine, PCA, is significantly increased in mixed communities with the ΔlasR mutant compared to WT. Finally, they demonstrate that adding a specific phenazine, pyocyanin, to mixed communities can restore the tolerance of WT P. aeruginosa.

      Strengths:

      With this study the authors address a very important problem in infectious disease microbiology - our in vitro drug susceptibility assays do a poor job of mimicking the infection environment and therefore do a poor job of predicting how effective particular drugs will be for a particular patient. By demonstrating how an infection-relevant community modifies tolerance to a clinically relevant drug, tobramycin, the authors identify specific interactions that could be targeted with therapeutics to improve our ability to treat the chronic infections associated with CF. In addition, this study provides a framework for how to effectively model polymicrobial infections in vitro.

      The experiments in the paper are very rigorous and well-controlled. Statistical analysis is appropriate. The paper is very well-written and clear.

      The authors do an admirable job of using in silico analysis to inform their in vitro studies. Specifically, they provide a comprehensive rationale for why they chose and studied the specific community they did.

      The authors provide a very robust dataset which includes determining how strain differences of each of their four community members affect community dynamics and antibiotic tolerance. These types of analyses are laborious but very important for understanding how broadly applicable any given result is.

      We appreciate the reviewer’s thorough summary of our work and their positive comments.

      Weaknesses:

      The authors very clearly and convincingly demonstrate that WT P. aeruginosa becomes more susceptible to tobramycin in their mixed community. Our ability to turn these types of observations into therapeutic development depends on mechanistic insight. That said, it is unclear if the authors can make any solid conclusions about what specific aspects of the polymicrobial environment cause WT P. aeruginosa to become more susceptible. The authors make a compelling case that increased phenazine production by the ΔlasR mutant restores tolerance in the mixed community and that exogenous phenazine addition increases the survival of WT P. aeruginosa in the mixed community. However, it remains a plausible explanation that the effects of phenazines on tobramycin susceptibility are independent of the initial observation that WT. P. aeruginosa becomes susceptible to tobramycin in the mixed community.

      We agree with the reviewer’s comment here as it pertains to the initial observation of P. aeruginosa becoming more susceptible to tobramycin in the mixed community. However, as mentioned by the reviewer, we provide several lines of evidence that phenazines play a key role in the tolerance of the lasR mutant tobramycin, including genetic studies and feeding studies wherein exogenous addition of this molecule to WT P. aeruginosa phenocopies the lasR mutant exposed to tobramycin. Why the community impacts phenazine production of the WT strain is an open question, and the subject of future work. We have modified the abstract of the manuscript as follows at Lines 41–43:

      “Our data suggest that the molecular basis of this community-specific recalcitrance to tobramycin for the P. aeruginosa LasR mutant is increased production of phenazines.”

      Some aspects of the methodology are unclear. Specifically, the authors note that they use a specific sealed container system to grow their strains in anoxic conditions, which mimic portions of CF sputum. However, it is unclear how the authors change medium over the course of their experiments, or how they test susceptibility to tobramycin, without exposing the cells to oxygen. It is well understood that oxygen exposure impacts the susceptibility of P. aeruginosa to tobramycin, so it is very important that the methodology involving oxygen deprivation and exposure is described in detail.

      We have made the necessary modifications to the manuscript as indicated in the “Essential Revisions” section to address these concerns (see Comment #3). Furthermore, new validation experiments were performed in a controlled anoxic environmental chamber that yielded observations similar to the data presented in the original manuscript, thereby confirming that we were using anoxic conditions with the GasPak anaerobic jar system (see Figure 1 - figure supplement 2 and Figure 2 - figure supplement 7).

      Lines 198–204: “The impact of residual oxygen negatively influencing the growth of P. melaninogenica in monoculture was ruled out by performing these experiments using an anoxic environmental chamber (Figure 1 – figure supplement 2). That is, we did not detect CFU counts for either planktonic or biofilm populations of P. melaninogenica when grown in ASM in the anaerobic chamber, but as a positive control, significant growth was detected when using a medium shown previously to support growth of this microbe (10) (Prevotella Growth Medium, or PGM) (Figure 1 – figure supplement 2).”

      Lines 406–414: “Also, we ruled out the possibility of remaining oxygen in ASM negatively impacting the viability of P. melaninogenica by reproducing our results using an anoxic chamber (Figure 1 – figure supplement 2). That is, we observed that P. melaninogenica can robustly grow as a planktonic or biofilm monospecies community in a medium capable of sustaining its growth (PGM) while this microbe fails to grow in ASM (Figure 1 – figure supplement 2). Thus, we argue that the mixed-community-specific growth of Prevotella spp. we observed across several conditions (Figure 1C, Figure 1 – figure supplement 5, Figure 2 – figure supplement 6) is not due to residual oxygen.”

      Lines 290–293: “Growing and replenishing the preformed biofilm communities with fresh ASM supplemented or not with tobramycin using an anoxic environmental chamber resulted in similar phenotypes for all tested microorganisms (Figure 2 – figure supplement 7), indicating that the use of the GasPak system provides a robust anoxic environment.”

      Lines 533–540: “Plates were incubated using an AnaeroPak-Anaerobic container with a GasPak sachet (ThermoFisher) at 37 °C for 24 hours. Then, unattached cells were aspirated with a multichannel pipette and the pre-formed biofilms replenished with 100 µl of fresh ASM on the bench and incubated for an additional 24 hours at 37 °C using an AnaeroPak-Anaerobic container with a GasPak sachet (ThermoFisher). Similar experiments were performed using an anoxic environmental chamber (Whitley A55 - Don Whitley Scientific, Victoria Works, UK) with 10% CO2, 10% H2, 80% N2 mixed gas at 37 °C, yielding results identical to those observed for the GasPak system.”

      Reviewer #3 (Public Review) :

      This manuscript by Jean-Pierre et al. describes the creation and experimentation with a model CF lung community in an artificial sputum medium. The group uses data from 16S rRNA sequencing studies to select organisms for creating the model and then performs experiments to determine outcomes of growth competition and antibiotic tolerance in a community context. The main finding of the manuscript is that P. aeruginosa, notorious for its antimicrobial resistance phenotypes, is more susceptible to tobramycin in the community context than when grown alone. The manuscript is well prepared and follow-up experiments with mutant strains and phenazines greatly strengthen the project overall. The initial results paragraph where the authors go through the rationale for selecting the different organisms is perhaps a bit overkill, the organisms selected make sense based on their prevalence in CF airways, which in and of itself is a strong enough rationale. This aspect of the manuscript could be minimized to focus more on the exciting culture experiments in the latter parts of the results. Overall, this is a strong and well-crafted manuscript that will have a broad interest in the CF and microbial ecology fields.

      We thank the reviewer for this thoughtful review of our manuscript. We have not minimized the “front-end” of the paper because we believe the rationale for selecting the community and its members, and the validation of the model system are key for placing the resulting observations in a robust context, and for providing the underlying rationale to support the relevance of the findings.

      Major Critiques. I have two major critiques of this study.

      (1) Prevotella growth in monoculture. After reading the methods section it appears that the cultures were extensively washed and prepped prior to the inoculation into ASM. Prevotella did not grow alone, is this due to oxygen penetration of the cells during preparation? Perhaps oxygen is present in ASM prior to placement in an anaerobic bag? It is interesting, and perhaps worth exploring, whether the mixed community draws down oxygen from the media explaining the ability of Prevotella to grow. I suspect this is the case, but more detail is needed in the methods and this experiment would help us understand this interesting result.

      As presented in the “Essential Revisions” section (Comment #3), we have repeated the experiment using fully anoxic conditions (i.e., using an anoxic environmental chamber where the cultures were grown, washed and mixed before incubation) and still observed absence of growth of Prevotella cultivated in ASM in both biofilm and planktonic populations. Moreover, including a positive control, Prevotella Growth Medium, resulted in robust growth of this microbe. Taken together, our data suggest that residual oxygen in ASM is not the driver of the community-specific growth of P. melaninogenica.

      (2) Dilution of the community reproducing toby tolerance of P. aeruginosa. In supplemental figures, the replication of the 1:1000 dilution of the mixed community with P. aeruginosa shows poor replication and very large error bars. This experiment should be repeated to ensure it is reproducible.

      The diluted mixed community experiment was repeated a fourth time, yielding the same statistical conclusions. An updated “Figure 2 – figure supplement 1” was added to the paper. The highest (1:1000) dilution still yielded high variation which could perhaps be explained by low (i.e., ~103 CFU/mL) inoculum for S. aureus, S. sanguinis and P. melaninogenica used in these experiments; see updated “Microbial assays” paragraph of the “Materials and Methods” section). Thus, the variation at low inoculum is robust and reproducible. The Materials and Methods section was also updated to clarify the CFU counts used for those experiments. We have added modifications to the text as follows to address this critique:

      Lines 526–532: “The optical density (OD600) was then measured for each bacterial suspension and diluted to an OD600 of 0.2 in ASM. Monocultures and co-culture conditions were prepared from the OD600 = 0.2 suspension and diluted to a final OD600 of 0.01 for each microbial species in ASM corresponding to final bacterial concentrations of 1x107 CFU/mL, 3.5x106 CFU/mL, 1.2x106 CFU/mL and 4.6x106 CFU/mL of P. aeruginosa, S. aureus, Streptococcus spp. and Prevotella spp. respectively. A volume of 100 µl of bacterial suspension all at a final OD600 of 0.01 each in the mix was added to three wells.”

      Lines 558–570: “For experiments with varying concentrations of S. aureus, S. sanguinis and P. melaninogenica in monocultures and co-cultures, the organisms were grown from bacterial suspensions adjusted to an OD600 = 0.8 in ASM. Suspensions were further diluted in ASM to an OD600 of either 0.1, 0.001, 0.0001 or 0.00001 while maintaining P. aeruginosa at OD600 = 0.01 (approximating 1x107 CFU/mL) in all conditions. The OD600 = 0.1 dilution factor resulted in CFU/mL count average of 3.8x108 CFU/mL for S. aureus, 1.6x108 CFU/mL for S. sanguinis and 1.0x108 CFU/mL for P. melaninogenica. The OD600 = 0.001 dilution factor resulted in a CFU/mL count average of 6.7x105 CFU/mL for S. aureus, 1.1x105 CFU/mL for S. sanguinis and 1.4x105 CFU/mL for P. melaninogenica. The OD600 = 0.0001 dilution factor resulted in a CFU/mL count average of 4.2x104 CFU/mL for S. aureus, 3.3x104 CFU/mL for S. sanguinis and 4.6x104 CFU/mL for P. melaninogenica. The OD600 = 0.00001 dilution factor resulted in a CFU/mL count average of 5.6x103 CFU/mL for S. aureus, 4.4x103 CFU/mL for S. sanguinis and 6.2x103 CFU/mL for P. melaninogenica.”

    1. Author Response

      Reviewer #4 (Public Review):

      The study employs a number of methods, including TEM morphometric analysis, immunochemistry, western blotting, genomics, genetically modified models, whole heart measurements.

      However, the manuscript seems to be a collection of two unfinished works: one on the transition p20-p60 in post-natal development of the heart, second about the role of ephrinB1 in the maturation of the crests of the sarcolemma. Otherwise, it is not clear why in the first figure there is no staining for ephB1, and why there is staining for claudin 5 instead.

      The reason is clearly explained in the text on page 6. The first figure explores the postnatal maturation of the CM crests and their molecular determinants and our previous paper described Claudin-5 as the first molecular determinant of the crests (Guilbeau-Frugier et al, Cardiovasc Research 2019). Based on our previous demonstration of ephrin-B1 as a direct claudin-5 partner and regulator (Genet et al, Circulation Research 2012), we thus intuitively proposed ephrin-B1 as another potential molecular determinant of the crests that we explored for the first time in our current paper in revision. Moreover, ephrin-B1 is part of a large family of direct physical cell-cell communication proteins (Eph-Ephrin system), its role in the lateral crest-crest interaction was also obvious.

      This is why at the beginning of the paper we explored claudin-5 and thereafter ephrin-B1 to explore more the functional role of the crests using Efnb1 KO mouse model we had already established in the lab.

      The authors are trying to defend the idea that development of the heart in rats doesn't finish on postnatal day 20 and goes on for up to day 60. However, it is not convincing.

      It is no surprise transcription profile is different between day 20 and day 60, I am sure as life goes on development continues into aging and any comparison of samples collected with sufficient time lapse will give transcriptional differences. Whether these differences represent a truly separate development stage is not a clear-cut story.

      Most of the argument is based on morphometric study of TEM images.

      But also on confocal microscopy studies and more importantly on transcriptomic data.

      Whether it was evident that transcription profile is different between day 20 and day 60, then most of the studies in this postnatal field would have extended their study window over P20 which is not the case. As we mentioned it in the manuscript, most people in the field were assuming terminal maturity of the CM based essentially on its typical rod-shape which is already acquired at P20. Then growth of the heart between P20 and P60 was assumed to rely only on an increase in tissue quantitative content and not on transcriptomic changes, i.e. in qualitative content.

      However, the method is not described at all. There is reference to another paper by the authors, but this paper doesn't provide a concise description of the morphometry either. It is unclear how randomisation of images and fields of view has been achieved and what statistical methods has been implemented. In TEM it is often possible to find all sorts of oddities depending on how you choose the images.

      We agree with the author that TEM is often associated with “all sorts of oddities” and that‘s the reason our recent paper (Guilbeau-Frugier et al, Cardiovasc Research 2019) was dedicated to the analysis of technical pitfalls and analysis. All this paper relies on that: How to proceed the cardiac tissue to avoid artifacts on the crests/SSM visualization and how to quantify them?.

      Now, instead of only citing our previous paper, we have implemented the “Material and methods” / “Transmission electron microscopy (TEM) and quantitative analysis” section (Main manuscript, page 20-21) by highly detailing all the TEM observation/quantification.

      The question of randomization of images of the number fields of view is a general question in all imaging techniques and not specific at all with our TEM study. In imaging, there is no randomization.

      All statistical analysis of TEM data quantifications are accurately described in all figure legends. For instance, in the figure 1: (B) Quantification of crest heights / sarcomere length (left panel), SSM number / crest (middle panel) and SSM area (right panel) from TEM micrographs obtained from P20- or P60 rat hearts (P20 n=6, P60 n=6; 4 to 8 CMs/rat, ~ 70 crests/rat). However, to better clarify the “P20 n=6, P60 n=6”, we have now specified “P20 or P60 n=6 rats”. This have been now specified in the figure legends for all statistical analysis (highlighted in yellow in the revised manuscript).

      Why didn't the authors use microscopy of live isolated cells, which may be more relevant to study crest height?

      We clearly explained it at the very beginning of the results section of our paper (first paragraph, second sentence (i, ii). The use of living CMs is a non-sense based on our two previous papers on this topic (Dague et al JMCC 2014 and Guilbeau-Frugier et al, Cardiovasc Research 2019). Our first paper was essentially based on AFM studies using isolated CMs and we found that rapidly after isolation, CM surface crests/SSM have a high tendency to shrink and disappear in control mice. This is why the second paper was based on an extensive characterization of the crests within the tissue using TEM experiments and the comparison of CM crests between tissue and living cells is also highlighted in this paper. More importantly, in this recent paper, we have described for the first time using high resolution imaging techniques (TEM and STEAD), the existence of intermittent physical interactions between neighboring CMs on their lateral side through crest-crest interaction via the extracellular domain of claudin-5. This crest-crest physical interaction can only be observed within the tissue since isolated adult CMs remain isolated and do not reproduce CM-CM physical interactions (through lateral or physical interactions at the longitudinal level, i.e. the intercalated disk level).

      Both claudin5 and EphrinB1 seem to be expressed highly after p5, which doesn't correlate with the proposed maturation of crests at days 20 to 60.

      Many processes do not rely only on gene/protein expression but on post-translational processes and localization/trafficking of proteins within the cell. This is exactly what we show with ephrin-B1 and claudin-5 proteins that traffic from the cytoplasm to the lateral membrane at the surface of the CMs between P20 and P60, as shown by our confocal images of the cardiac tissue while the global expression level of these two proteins doesn’t change (western blot results).

      There is no causative relationship between the lack of ephrinb1 and crest maturing, at least to my mind.

      Comparing the cardiac tissue between P20 an P60 and showing both ephrin-B1 trafficking at the CM lateral surface and crest maturation is obviously not a criterion of any relationship between these two events. However, when you delete a specific protein, i.e ephrin-B1, from a specific cell, i.e. the CM, and the phenotype of the KO mice is again a lack of crest maturation, you can at least deduce that ephrin-B1 is involved, directly or indirectly we don’t know, in the maturation process of the crests in the CM.

      Now, because of the constitutive deletion of Efnb1, we couldn’t completely exclude that the phenotype of the constitutive Efnb1 CM-KO mice we described at the adult stage was directly related to specific alteration of CM surface crest/diastolic function at the adult stage or more likely related to other earlier developmental defects (secondary mechanisms). Also, to discriminate between these two possibilities, we have now used in the revision process a tamoxifen-inducible conditional-knockout (Mer-Cre-Mer) of Efnb1 in the CM (MHC promotor). This mouse model has never been reported before but its characterization (new Supplementary Figure 16) indicated that tamoxifen injection can lead to up to 50 % of Efnb1 deletion in CMs. In these conditions, deletion of Efnb1 (tamoxifen injection) was initiated at the young adult stage (2-month old) and the systolic and diastolic function (echo Doppler and LV-catheterism) but also CM crest phenotype (TEM) were examined one month later. As shown in the new Figure 7, deletion of efnb1 at the adult stage led to partial loss of CM surface crests (New Fig 7B), agreeing with the partial deletion of Efnb1, associated with a significant increase in the IVRT (echo-doppler), LVEDP (LV catheterism) with no modification of the ejection fraction (echo) compared to the control mouse littermates (tamoxifen injected) (New Fig. 7C, D). Thus, these data clearly demonstrate that ephrin-B1 is a specific determinant of the crest architecture at the CM surface and of the diastolic function at the adult stage.

    1. Author Response

      Reviewer #3 (Public Review):

      The manuscript by Le T.D.V. et al used in vitro cell culture and inhibitors for cellular signaling molecules and found that GLP-1 receptor activation stimulated the phosphorylation of Raptor, which was PKA-mediated and Akt-independent. The authors reported the physiological function of this GLP-1R-PKA-Raptor in liraglutide stimulated weight loss. This timely study has high significance in the field of metabolic research for the following reasons.

      (1) The authors' findings are significant in the field of obesity research. GLP-1 receptor (GLP-1R) is a successful target for diabetes (and weight loss) therapeutics. However, the mechanisms of action for the weight-loss effect of GLP-1 agonists are not fully understood. Therefore, mechanistic studies to elucidate the signaling pathways of GLP-1 receptors pertaining to weight loss at the cellular level are timely.

      (2) G protein-coupled receptors (GPCRs) induces various signaling activities, which could be cellular and tissue specific. As these are an important protein family for drug targeting, understanding the basic biology of these receptors is of interest to a broad readership.

      (3) The authors have made important discoveries that Exendin-4 stimulated mTORC1 signaling was essential for the anorectic effect induced by Exendin-4. The study reported in this current manuscript provides more details of brain GLP-1R signaling pathways and is innovative.

      Overall, the authors have presented sufficient background in a clear and logically organized structure, clearly stated the key question to be addressed, used the appropriate methodology, produced significant and innovative main findings, took potential caveats into consideration, and made a justified conclusion.

      Recommendations for the authors:

      The manuscript can be further strengthened with more clarification on the following points.

      1) In Figure 1 panels B and C, please provide the quantification for pCREB/CREB. In Figure 1 panel D, please provide the quantification for pAkt/Akt.

      We thank the Reviewer for this suggestion. We now provide quantification of pCREB and pAkt expression in Supp. Fig. 1.

      2) The western blots to assess the signaling activities revealed the phosphorylation status of the key signaling molecules at a single time point. Whether the overall signaling dynamics have been affected is unclear.

      We agree with the reviewer on this point. We conducted initial time course experiments to identify a suitable time point for the subsequent experiments conducted in the present studies. The 1h time point presented in our results was chosen because it was the earliest time point at which both liraglutide stimulated mTORC1 signaling and this effect was inhibited by the various pharmacological inhibitors. We agree with the reviewer that at this point it is not clear whether the various inhibitors or the Ser791Ala mutation in Raptor modifies the dynamics of mTORC1 signaling. Although we have preliminary data in CHO-K1 cells suggesting that the temporal dynamics of these signaling events are not affected, this does not necessarily translate to the in vivo setting. Once we identify the key target tissue/cell type(s) mediating the weight loss effect of liraglutide via the PKA-Raptor interaction and generate the necessary mutant mice, we will test whether this affects signaling dynamics in vivo.

      3) Figure 3 panels A and B demonstrated the remarkable importance of the Ser791 Raptor. However, this PKA-resistant mutant did not completely abolish the weight loss effect of liraglutide. The authors pointed out the importance of AMPK in mTORC1 signaling. Other pathways that may complement GLP-1R-PKA-Raptor signaling can be further discussed.

      We agree with the reviewer that other signaling pathways are likely involved that contribute to the remaining weight-lowering effect of liraglutide. Besides AMPK, we have also included a discussion of Akt being a potential molecule that interacts with these pathways in vivo (lines 218-225). The word limitations of a Short Communication prevent us from further expanding on these possible mechanisms.

      4) Food intake was decreased on day 2 in Figure 3D but became comparable between WT and S791A Raptor groups on the following days. Could this be due to some compensatory mechanisms?

      This pattern of food intake response to GLP-1R agonists has been previously reported by our group and others (please see Brown JD et al. Am J Physiolo Regul Integr Comp Physiol 2018 and Adams JM et al. Diabetes 2018). The reason for this is unclear at this moment, but we can speculate that the rebound in food intake is a compensatory mechanism to prevent the organism from continuously losing weight. We now also present also showing an initial drop in energy expenditure with liraglutide treatment that progressively increases to pre-treatment levels.

    1. Author Response

      Reviewer #3 (Public Review):

      The size of the excitation region and the size of the aster are linearly correlated but are drastically different in size. This provokes several questions.

      • Why does only one aster form if the region of excitation is over 10x the size? Why are there not multiple asters formed within this activation region?

      • A much larger excitation diameter than the size of the resultant structure suggests the amount of dimeric motor is not limiting. Why then does the size of the aster increase with excitation diameter?

      • A linear relationship between excitation region and aster size may suggest a constant density of material within the aster. While the intensity profile of a single aster is given in Fig 1C, the magnitude of intensity versus the estimated size of the aster would determine whether the system is reduceable purely to changes in size/radial distribution.

      We thank the reviewer for the careful consideration of our work. In the experiments performed for this study, we were careful to be in a regime in which a single aster formed within the excitation region. However, by varying the concentration of components in the system, it is possible for multiple asters to form. See Figure R2 for example images of cases in which multiple asters formed.

      The increase in aster size with excitation region was also described previously in Ross, et al. 2019. In this, we found that the aster size scales with the volume of the excitation region, suggesting that the number of microtubules is limiting to aster size. This supports the hypothesis that there may be a density limit to the microtubules, likely due to steric interactions between the microtubules. We clarified this and added reference to the Ross, et al. findings in lines 115-118, as follows:

      “In Ross, et al., it was determined that the aster size roughly scaled with the volume of the excitation area, suggesting that the number of microtubules limits the size of the aster. This hints that there may be a density limit to the microtubules in an aster.”

      Is dimerization reversible after activation? If the motors cannot unbind from each other, and act as crosslinkers (for as long as they remain bound) are they likely to accumulate within the aster over time? This may challenge the steady state assumption.

      We thank the reviewer for the thoughtful analysis. Dimerization is reversible after activation - the lifetime of the optogenetic bond is about 20 seconds (Guntas et al., 2015). In order to form an aster, we repeatedly activate the sample at 20 second intervals, so there is a balance between motors unbinding from each other and ones becoming dimerized. This balance can create a non-equilibrium steady state. We have clarified this in lines 78-80, as follows:

      “The optogenetic bond lasts for about 20 seconds before reverting to the undimerized state, thus in our experiments, we repeatedly illuminate the sample every 20 seconds (Guntas, et al. 2015).”

    1. Author Response

      Reviewer #3 (Public Review):

      Gomolka et al. are trying to establish how aquaporin-4 (AQP4) water channels, a key component of the glymphatic system, facilitate brain-wide movement of interstitial fluid (ISF) into and through the interstitial space of the brain parenchyma. Authors employ a number of advanced non-invasive techniques (diffusion-weighted MRI and high-resolution 3D non-contrast cisternography), invasive dynamic-contrast enhanced (DCE-) MRI along with ex-vivo histology to build a robust picture of the effects of the removal of AQP4 on the structure and the fluid dynamics in the mouse brain. This work is a further step for the implementation of non-invasive tools for studying the glymphatic system.

      The main strengths of the manuscript are in the extensive brain-wide and regional analysis, interrogating potential changes in the structural composition, tissue architecture, and interstitial fluid dynamics due to the removal of AQP4. The authors demonstrate an increase in the interstitial fluid volume space, an increase in total brain volume, and a higher brain water content in AQP4 knockout mice. Importantly, an increase in apparent diffusion coefficient (ADC) was reported in most brain regions in the AQP4-KO animals which would suggest an increase in the movement of the fluid, which is supported by an increase in interstitial fluid space measures by real-time iontophoresis with tetramethylammonium (TMA). There is a reduction in the ventricular CSF space compartment while the perivascular space remains consistent. A reduction in gadolinium-based MRI tracer influx into many regions of the AQP4 KO mouse brain parenchyma is found, which supports conclusions of slowing down of fluid transfer while noting that the tracer dynamics in the main CSF compartments show no significant differences.

      The interpretation of non-invasive measures of the interstitial fluid dynamics in relationship to regional AQP4 expression is less well supported. The regional AQP4 channel expression in WT mice positively correlates with the ADC and extravascular diffusivity (D) measures. However, their finding that regional ADC also increases when AQP4 is removed weakens the conclusion that the removal of AQP4 leads to interstitial fluid stagnation.

      We are thankful to the reviewer for the positive feedback. Indeed, we aimed to provide the scientific field with the most detailed and objective assessment on effect of congenital loss of AQP4 channel on the brain water homeostasis and glymphatic transport. Therefore, we predominantly employed MRI techniques enabling non-invasive assessment, while superimposing obtained findings to standard DCE-MRI and physiological evaluation in-vivo and ex-vivo.

      In response to the remark, it is indeed difficult to discuss this phenomena other than relating the regional AQP4 expression to a specific metabolic or morphological structure in WT mice brain, thus associating AQP4 channel expression with regional water distribution. This would have a background not only in to date report highlighting upregulation of AQP4 in response to fluid stagnation, but also in possibility of rapid AQP4 relocalization after acute water intoxication (as comprehensively reviewed by Salman et al. 2022). This would also not reject the possibility that AQP4 is by default expressed more in the regions of functionally higher water content, reflected by higher ADC measures.

      In KO mice, we found deletion of AQP4 channel affecting mainly the brain water homeostasis (Figure 1), and thus increased slow MR diffusion metrics would be related to increased brain swelling and increased ISF space compared to WT littermates (Figure 2). However, it is not excluded that this might be rather a superposition of two opposing effects: decrease in measured ADC due to decrease water exchange, and even larger increase in ADC as a manifestation of increased ISF space volume resulting from prior phenomenon. Such explanation was previously presented based on estimation using Latour’s model of long-time diffusion behavior (Pavlin et al. 2017, https://pubmed.ncbi.nlm.nih.gov/28039592/) and connected to rather to enlarged interstitial space Urushihata et al. 2021, https://pubmed.ncbi.nlm.nih.gov/34617156/) that are not paralleled by changes in blood perfusion between genotypes (Zhang et al. 2019, https://pubmed.ncbi.nlm.nih.gov/31220136/).

    1. Author Response

      Reviewer #1 (Public Review):

      Understanding the evolution of broadly neutralizing influenza antibodies is key to developing a more universal vaccine. In this study, Phillips et al. performed a comprehensive analysis of the evolutionary pathway of CH65, which is an H1-specific broadly neutralizing antibody. The authors generated a combinatorial mutant library with 2^16 members that contained all possible evolutionary intermediates between the unmutated common ancestor (UCA) and CH65, less two mutations that did not affect binding. The binding affinity of each member in the library was measured against HAs from MA90 and SI06, which were isolated 16 years apart, as well as MA90 with a UCA escape mutation G189E. The binding affinity was measured using a high-throughput approach that combined yeast display and Tite-Seq, with careful experimental validation. The results showed that epistasis between mutations within the heavy chain and also across heavy and light chains plays an important role in CH65 to evolve breadth. Although this study highly resembles a previous study by the authors that focused on another broadly neutralizing influenza antibody called CR9114 (Phillips et al., eLife 2021), there are several key differences. Firstly, CR9114 is a HA stem-directed antibody, whereas CH65 binds to the receptor-binding site of HA. Secondly, their previous study only studied the mutations in the heavy chain, whereas the present study looked at mutations in both heavy and light chains. Lastly, the present study provided a structural mechanism of epistasis by solving crystal structures. Such investigation of structural mechanisms was absent in their previous study. Overall, the data quality in this study is very high. In addition, the results have important implications for vaccine development.

      We thank Reviewer #1 for their review of our work and have implemented each of their suggestions to improve the clarity of our manuscript.

      Reviewer #2 (Public Review):

      Although many broadly-neutralizing antibodies were discovered against virus accumulating mutations such as HIV, Influenza, and Sars-CoV-2, the methodology to induce such antibodies or design to generate them is highly demanded. The authors take the broadly-neutralizing antibody, CH65 as a model antibody and try to recapitulate the generation of the broadly-neutralizing antibody from an unmutated common ancestor over time. By performing Tite-Seq assays, Epistasis analysis, Pathway analysis, and Affinity measurement, and structural study, the authors proposed a scenario of the evolution of CH65.

      Strengths

      Combining the models and affinity/structure data, the authors enable us to show the possible track of gaining the breadth of the CH65 antibody from the unmutated repertoire. Using the Tite-Seq assay, the authors took a forward genetics approach which is high-throughput and non-bias and mimics the situation of the evolution of a B cell repertoire in an individual over time. The data is robust, and its outcome will provide an opportunity to build a prediction model to design the antibody in silico. Especially their identification of amino acid positions important for epistasis mode in antibody evolution is valuable. Antigen selection scenarios are decisive in this study.

      Weakness

      The proposed scenarios cannot be tested using human CH65. The readers would have great interest in how these hypothetical scenarios are fitting to the evolution occurring in vivo situation, especially in a quantitative way. The broadly neutralizing antibodies often react with self-antigens as the authors cite previous work(ref 19). How do these environmental factors affect the evolution of the antibody? These already-known facts could be mentioned and discussed in detail.

      We thank Reviewer #2 for these comments and agree that applying these insights to understand in vivo antibody affinity maturation would be fascinating. As the Reviewer points out, our study is limited to examining antigen affinity and neglects other properties that are known to impact antibody affinity maturation (e.g., autoreactivity). As we mention in the Discussion, our work shows how the acquisition of breadth is shaped by mutations that interact epistatically to determine binding affinity, and future work is required to understand how these mutations and interactions may also impact the myriad other properties relevant to antibody maturation.

    1. Author Response

      Reviewer #2 (Public Review):

      The paper has two key messages: the discovery and the function of LncSox17. Claims of gene discovery are today untrivial, given the large number of genome-wide datasets. Of course, I understand the authors cannot check everything but I feel some more clear and deep analysis of current databases is lacking.

      The reviewer is right when stating that there is an extremely high number of publicly available datasets and resources. In the current manuscript, we used Ensembl genes, Genecode V36 and Genecode V36 lncRNAs (commonly used datasets for gene and transcript annotation) and could not find reports of long non-coding RNAs with similar location, length and strand of T-REX17 (see Fig. 1). To further ensure that we did not overlook it, during the revision we inspected these datasets again, coming to the same conclusion that T-REX17 has not been previously reported at this locus.

      As we show, T-REX17 is only very transiently expressed in definitive endoderm and given that there are few available RNA-seq datasets covering this developmental transition from hiPSCs it is not entirely surprising that it has been missed in the past.

      Also, the exact coordinates of the lncRNA are not easy to find in the manuscript.

      This is certainly an important annotation we missed in the manuscript. We now updated the legend of Figure 1A to include the exact genomic location of T-REX17.

      Many statistical analyses are rather lacking. In particular I did not find details of how the DEGs were identified during differentiation (FDR? How many replicates?).

      We thank the reviewer for pointing this out. We now specify in the Methods section (page 42, lines 1037-1039) and in the figure legends (page 54, lines 1269-1271) how the DEGs have been identified, which thresholds have been used, and number of replicates performed.

      The results of the smFISH are surprising, since the level of expression seems rather low in comparison to the qPCR (only 4 times less expressed than Sox17) or the RNA-seq.

      Direct quantitative comparisons between smFISH and qPCR (or RNA-seq) assays are in general quite hard since the two technologies rely on different biochemical principles. qPCR and RNA-seq include an amplification step, and therefore their interpretation should be considered as relative rather than absolute. On the other hand, smFISH offers a more absolute quantitative information and provides clues about the subcellular localization of the investigated target. At the same time, in smFISH experiments, individual foci could represent the accumulation of more than one molecule, making it hard to accurately infer gene expression levels from images. Throughout the manuscript we combine the two assays in an attempt to provide more robust information about T-REX17 expression dynamics.

      We would also like to note the high specificity of our smFISH signal, given that we do not observe any detectable foci for T-REX17 in undifferentiated cells (Fig. 2C) or T-REX17 depleted endoderm cells (Fig. 3C).

    1. Author Response

      1) Response to the Editor

      We thank the Editor and the Reviewers for the kind words, the helpful suggestions, and the points of critique, which have all helped us substantially strengthen the manuscript in this revised version. Regarding the 3 general critiques highlighted by the Editor:

      Essential Revisions:

      1) Some hypothesis, and in particular the one that all individuals have the same inter-burst interval distribution should be tested/justified/discussed.

      (a) We have generalized the theory to directly address this point by relaxing the assumption of an identical inter-burst interval for all individuals. In short: the main insights continue to hold and we discuss the nuances in the text.

      (b) Experimentally, the hypothesis that all single fireflies isolated from the group exhibit the same interburst interval (IBI) distribution could not be rigorously tested. The main reason is practical: in order to compare IBI distributions across individuals, we would need to collect a large number of fireflies and track them for long durations, which was not realistic given our experimental setup and the short window of firefly emergence. In addition, external environmental factors might slightly alter behaviors as well, making comparisons even more complex. Thus, due to paucity of field data, we eventually use the assumption that all individual fireflies follow the same IBI distribution.

      2) Comparison between the models and the data must be improved, in particular through a quantification of the differences between distributions and sensitivity analysis of the numerical results.

      (a) Regarding the comparison of the agent-based simulations with experimental data, in Fig. 7, we compare the underlying distributions using the two-sided Kolgomorov-Smirnov statistical test for goodness-of-fit. These appear to us the most straightforward and informative approaches, without over-fitting.

      (b) Regarding sensitivity analysis for the agent-based simulations, for each β value from 0 to 1 we statistically compared simulations to the experimental distributions to find the most well-fitted β.

      (c) Finally, owing to experimental constraints leading to sparsity of available data in characterizing the interburst distribution, we strive to strike a delicate balance between sophisticated statistical tools to compare theoretical and simulation distributions (with unrestricted access to large sample sizes) to the finite samples in the empirical distributions. As such, we think it is the apposite to use the first two moments of respective distributions In Fig. 3 to show the striking similarity of trends.

      3) More discussion of the modeling in connection to past theoretical results and existing literature is necessary to better contextualize the present work and assess its originality.

      We have done this closely following the specific suggestions from reviewers.

      2) Revised terminology: removing usage of “model”

      Since unintended ambiguity may be caused by use of the word “model”, which could refer to either (1) the theoretical framework, principle of emergent periodicity, and attendant analytic calculation , or (2) the agent-based simulation in the computational realization, we have removed all instances of the word “model” from the results presented in the paper, and replaced by the specific meaning (theory or simulation) in each context.

      Similarly, in responding to Reviewers’ comments, we clarify what we understand by their use of the word “model” in each case.

      3) Addressing an error in the agent-based simulation code

      We (OM and OP) have now addressed an inadvertent unit typo in the agent-based simulation code. The discharging time (Td) before the typo was fixed was set to 10000ms. After the fix, the Td value was correctly set to 100ms. This caused very slow discharges, keeping the voltage high until any beta addition was received, resulting in more frequent bursts than we’d actually expect from the model dynamics. This has been fixed, and in our responses to the reviewers, we address the results of this fix by referring to the “unit typo”. We corrected the panels corresponding to agent-based simulation in Figs. 3 and 5 to reflect the new numerical simulation results, as well as the corresponding sections in the text of the paper.

      4) Addressing changes to experimental dataset

      We increased the size of our N=1 dataset (N is number of fireflies) to correctly match what was reported in the original text of 10 samples. Additionally, we have added characterization of the size of the datasets for N=5, 10, 15, and 20 fireflies.

      5) Response to Reviewer 1

      We thank the Reviewer for kind remarks, and the highlights of the strengths of the paper.

      Regarding concerns raised, point by point:

      Reviewer #1 (Public Review):

      Weaknesses:

      The work presented here is an excellent start at understanding the collective behavior of this particular species of firefly. However, the model does not apply to other species in which individual males are intrinsically rhythmic. So the model is less general than it may appear at first.

      We take the Reviewer’s point well. We have added text to the paper to clearly highlight this point.

      The modeling framework is also developed under the very stylized conditions of experiments conducted in a small tent. While that is a natural place to begin, future work should consider the conditions that fireflies encounter in the wild. Swarms that are spread out in space would require a model with a more complicated structure, perhaps with network connectivity and coupling strengths that both change in time as fireflies move around. This is not so much a weakness of the present work as a call to arms for future research.

      We agree with the Reviewer that this is an exciting call to arms for future research!

      Other comments:

      This assumption that all individuals have the same IBI distribution could be directly tested. Has this been done? If not, why not? e.g. Are there difficulties with letting one firefly flash long enough to collect sufficient data to fill out the distribution?

      1. We have generalized the theory to directly address this point by relaxing the assumption that all individuals exhibit the same inter-burst interval distribution. In short: the main insights continue to hold and we discuss the nuances in the text.

      2. Experimentally, hypothesis that all single fireflies isolated from the group exhibit the same interburst interval (IBI) distribution could not be rigorously tested. The main reason is practical: in order to compare IBI distributions across individuals, we would need to collect a large number of fireflies and track them for long durations, which was not realistic given our experimental setup and the short window of firefly emergence. In addition, external environmental factors might slightly alter behaviors as well, making comparisons even more complex. Thus, due to paucity of field data, we eventually use the assumption that all individual fireflies follow the same IBI distribution.

      The derivation given in 6.2.1 is clearer than the approach taken here, which unnecessarily introduces Q, q, and c and then never uses them again.

      We agree with the Reviewer and have accordingly revised the manuscript.

      We have also implemented the suggested edits in the marked up manuscript. We are grateful for the detailed feedback, which helped us substantially extend results, and improve presentation and clarity.

      6) Response to Reviewer 2

      We thank the Reviewer for their thorough feedback. We provide point by point responses below.

      Reviewer #2 (Public Review):

      1) The biological relevance of certain hypotheses is insufficiently discussed. This is important because if the observed behaviour is a universal one, alternative models may explain it as well.

      We thank the reviewer for raising this point. The main hypotheses underlying our models are: 1) individual fireflies in isolation flash at random intervals; 2) these random intervals are drawn from the empirical distribution reported (implicitly: all fireflies follow the same distribution); 3) once a firefly flashes, it triggers all others. Hypothesis 1) is directly supported by the data presented. Hypothesis 2) is comprehensively addressed in the revised manuscript, as discussed previously. Hypothesis 3) is central to the proposed principle, and enables intrinsically non-oscillating individuals to oscillate periodically when in a group. The resulting phenomenon has been compared to experimental data and extensively discussed in the manuscript. Further, we have also simulated the effect of changing the strength of coupling between fireflies based on this hypothesis in the revised section on agent-based simulation.

      2) Comparison between the models and the data could be improved, in particular through quantification of the differences between distributions and sensitivity analysis of the numerical results.

      1. Regarding the comparison of the agent-based simulations with experimental data, in Fig. 7, we compare the underlying distributions using the two-sided Kolgomorov-Smirnov statistical test for goodness-of fit. These appear to us the most straightforward and informative approaches, without over-fitting.

      2. Regarding sensitivity analysis for the agent-based simulations, for each β value from 0 to 1 we statistically compared simulations to the experimental distributions to find the most well-fitted β.

      3. Finally, owing to experimental constraints leading to sparsity of available data in characterizing the interburst distribution, we strive to strike a delicate balance between sophisticated statistical tools to compare theoretical and simulation distributions (with unrestricted access to large sample sizes) to the finite samples in the empirical distributions. As such, we think it is the apposite to use the first two moments of respective distributions In Fig. 3 to show the striking similarity of trends.

      Reviewer #2 (Recommendations for the authors):

      A. The assumption that single-firefly spikes obey the same distribution (there is no individual variation in the frequency, or even of the composing number of bursts, of the flash) does not seem to have been verified on the data, that are instead pulled together in one single distribution (Fig. 1D). Moreover, the main feature of such distribution is that it has a minimum at 12 secs (discarding the faster bursts that are not considered in the model) and that it is sufficiently skewed so that it takes a minimal coupling for collective synchrony to emerge. I think that the agreement between the distributions for different N would be more meaningfully discussed having previous work as a reference, whereas now this is relegated to the discussion, so that it is unclear how much of the theoretical results are novel and/or unexpected. Quantification of the distance between distributions would also be interesting: it looks like the two models (analytical and simulations) disagree more among themselves than with the data.

      Regarding the hypothesis that all individual fireflies exhibit the same interflash interval, please see our response to Main Point 1. Regarding comparing the analytical theory and numerical simulation analysis, Figs. 3 and 5 have been revised after a unit typo was found in the code (see Section 2). Following the update, the analytical and numerical models agree in (1) the location of the peak in Fig. 3 for all N values, and (2) the peak approaches the minimum of the input distribution as N increases.

      B. If I understand correctly, simulations are introduced as a way to get a dependence on the intensity of the coupling (\beta). There are several issues here. First, I do not see how the coupling constant could change in the present experimental setup, where all fireflies presumably see each other (different from when there is vegetation). Second, looking at Fig. 3, the critical coupling strength appears to depend very weakly from N, and it is not clear how the 'detailed comparison' that leads to the fit is realized (in fact, the fitted \betas look larger that those at which the transition occurs in Fig. 3A). I think a sensitivity analysis is needed in order to understand how do results change when \beta is changed, and also what is the effect of the natural Tb distribution (Fig. 2 F). Results of the simulations might be clearer if instead of using the envelope of the experimental results, the authors tried to fit it to a standard distribution (ex. Poisson) so that it can be regularized. This should allow to trace with higher resolution the boundary between asynchronous and synchronous firing.

      We have included agent-based numerical simulations as a way to provide a concrete instantiation of the theory principle and analytical results in the preceding section. While the analytic theory results are fitting parameters free, in the agent-based simulations, we introduce an additional fitting parameter, to see what happens when we relax one hypothesis of the analytical theory: the instantaneous triggering of all fireflies upon an initial flasher. Additionally, the agent-based simulations pave the way for future work, allowing for convenient exploration of the connectivity between individuals and analysis of the behavior of individual fireflies. in this context, please note that Fig. 5 has been corrected (see above), leading to a stronger co-dependence of β and N. In addition to the envelopes, we also report the trends in the first empirical moments (mean and STD) for comparison and tracking of the transition to synchrony.

      C. More care should be put in explaining what are the initial conditions hypothesized for the different models. For instance, the results of paragraph 3 are understandable if all fireflies are initialized just after firing, something that is only learnt at the end of the paragraph. I also wonder whether initial conditions may be involved with T_bs in the low-coupling region of Fig. 3A not being uniformly distributed, as I would have expected for a desynchronized population.

      We have clarified that, indeed, all fireflies are re-initialized after firing. The initial conditions then become a new random vector of interflash intervals. Importantly, we found after receiving the reviews that, due to inconsistent units in our numerical simulation code, Fig. 5 was incorrect. With proper units, the new results show a much more widespread distribution at low coupling, as expected by the Reviewer.

      D. I found that equations were hard to understand either because one of the variables was not precisely (or at all) defined, or because some information was missing: Eq. 1: q is not defined Eq. 2: explain what it means: the prob. that others have not flashed times that that one flashes. Also, say explicitly what is the 'corresponding PDF. Eq. 3: the equation for \epsilon(t) to which this is coupled is missing Why introduce \beta_{i,j} and T_bi if they are then taken independent of the indexes? Definitions of collective and group burst interval should be provided. It would be clearer if t_b0 was defined in the first paragraph of the results, so as to clarify as well its relation with T_b. Define T^i_b in the caption of Fig. 3 (they are defined later than the figure is first discussed). The definition of 'the vertical axis label' (maybe find a word for that...) is pretty cumbersome. I could imagine that other definitions would allow the lines in Fig. 3 E to converge to the same line for large betas, which would make more sense, considering that in the strong coupling limit I see no reason why the collective spiking should not be the same for different N (the analytical model could help here).

      Thank you for these comments; we have incorporated these and related changes.

      E. I think that the author's reading of the two 'dynamical quorum sensing' papers they cite is incorrect: De Monte et al. was not about the Kuramoto model, but the same limit cycle oscillators as in Strogatz; Taylor et al. considers excitable systems, potentially closer to noisy integrate-and-fire, at least in that they do not have self-sustained oscillations. Both papers show that oscillations appear above a certain density threshold, and that the frequency of oscillations increases with density, as found in this work. A more accurate link to previous publications in the field of synchronization theory, including the models by Kurths and colleagues for fireflies, would be useful both in the introduction and in the discussion, and would help the reader to position this work and appreciate its original contributions.

      1. Thank you for pointing out an inaccuracy in our literature citations regarding synchronization. We have now made corrections to address this point.

      2. While we take the Reviewer’s points well, our theory framework (“model”), building off of the principle of emergent periodicity we propose here, is fundamentally different in the nature of individuals from extant “models”. The reference in question has individuals as oscillators, and the fastest frequency is the frequency of the fastest individual oscillator. In contrast, in our work there is no fastest individual oscillator and the “fastest frequency” has a completely different meaning, since individuals do not have a particular frequency associated with them. In this sense, our work is not inspired by theirs. That said, we have included citations as suggested by the Reviewer.

      F. The authors say that part of the data is unpublished. I guess they mean that the whole data set will be published with this manuscript. I think the formulation is ambiguous.

      Thank you for this comment. We have now clarified that the data will indeed be published with the manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper tests whether people vary their reliance on episodic memory vs. incremental learning as a function of the uncertainty of the environment. The authors posit that higher uncertainty environments should lead to more reliance on episodic memory, and they find evidence for this effect across several kinds of analyses and across two independent samples.

      The paper is beautifully written and motivated, and the results and figures are clear and compelling. The replication in an independent sample is especially useful. I think this will be an important paper of interest to a broad group of learning, memory, and decisionmaking researchers. I have only two points of concern about the interpretation of the results:

      1) My main concern regards the indirect indicator of participants' use of episodic memory on a given trial. The authors assume that episodic memory is used if the value of the chosen object (as determined by its value the last time it was presented) does not match the current value of the deck it is presented in. They find that these mismatch choices happen more often in the high-volatility environment. But if participants simply choose in a more noisy/exploratory way in the high volatility environment, I believe that would also result in more mismatched judgments. What proportion of the trials labeled as episodic should we expect to be a result of noise or exploration? It seems conceivable that a judgment to explore could take longer, and result in the observed RT effects. Perhaps it could be useful to match up putative episodic trials with later recognition memory for those particular items. The across-subjects correlations are an indirect version of this, but could potentially be subject to a related concern if participants who explore more (and are then judged as more episodic) also simply have a better memory.

      Thank you for this important suggestion. We agree that noisy/exploratory choices could potentially masquerade as episodic on the episodic-based choice index used as one of our behavioral measures. As pointed out, this is because participants may be more likely to make noisier incremental value-based decisions in the high volatility compared to the low volatility environment. In our revision, we provided a new analysis that shows that, as the reviewer predicted, choices are indeed more noisy in the high volatility environment. We answer this concern in two ways. First, we took this noise into account in our analysis of the episodic/incremental tradeoff and show that it does not account for the main findings. And second, we provided a new analysis of subsequent memory that shows that choices that are defined as episodic during the decision-task are also associated with better recognition memory later on. These new analyses are described below as well.

      We used a mixed-effects logistic regression model to test for an interaction effect of environment and model-estimated deck value on whether the orange deck was chosen. We fit this model only to trials without the presence of a previously seen object in order to achieve a more accurate measure of noise specific to incremental learning. In both the main and replication samples, participants did indeed make noisier incremental decisions in the high compared to the low volatility environment (Main: 𝛽 = −1.589, 95% 𝐶𝐼 = [−2.091, −1.096], Replication: 𝛽 = −1.255, 95% 𝐶𝐼 = [−1.824, −0.675]). To account for the possibility that the measured difference between environments in our episodic-based choice index may be related to this difference in incremental noise between the environments, we included each participant’s random effect of the environment by deck value interaction from this model as a covariate in our analysis of the effect of environment on the episodic-based choice index. While each participants’ propensity to choose with greater noise in the high volatility environment did have an effect on the episodic-based choice index (Main: 𝛽 = 0.042, 95% 𝐶𝐼 = [0.012, 0.072], Replication: 𝛽 = 0.055, 95% 𝐶𝐼 = [0.027, 0.082]), the effect of environment was similar to that originally reported in the manuscript for both samples following this adjustment. The reported effects (lines 178 and Appendix 1) and methods (lines 643-655) have been updated to reflect these changes.

      We applied a similar logic to the reaction time analysis, to address the possibility that decisions based on exploration may take longer compared to decisions based on exploitation of learned deck value. We included a covariate in the analysis of the effect of episodic-based choices on reaction time that captured possible slowing due to switching from choosing one deck to the other (lines 656-662) and found that the slower reaction times on episodic choices are not fully explained by exploration. Because in this task a decision to explore is captured by switching from one deck to another, the effect of episodic-based choices on reaction time reported in the manuscript should account for this behavior. We have clarified this reasoning in the methods (lines 661-662).

      Finally, thank you for the idea to sort objects in the recognition memory test by whether they were from episodic- or incremental-based choice trials to provide a further test of whether our approach for sorting episodic decisions withstands an independent test. We performed this analysis and found that, in both samples, participants had better memory for objects from episodic-based choice trials. This result provides further support for the putative episodic nature of these trials and is now reported in the Results (lines 300-304 and Appendix 1), Methods (lines 737-742) and appears as a new panel in Figure 5 (Figure 5A).

      2) The paper is framed as tapping into a trade-off between the use of episodic memory vs. incremental learning, but it is not clear why participants would not use episodic memory in this particular task setup whenever it is available to them. The authors mention that there is "computational expense" to episodic memory, but retrieval of an already-established strong episodic memory could be quite effortless and even automatic. Why not always use it, since it is guaranteed in this task to be a better source of information for the decision? If it is true that RT is higher when using episodic memory, that is helpful toward establishing the trade-off, so this links to the concern above about how confident we can be about the use of episodic memory in particular trials.

      Thank you for raising this important point and for giving us the opportunity to clarify. We now address this point in two ways: first, we provide a new analysis of episodic memory and choice behavior and we address this point explicitly in the discussion.

      As now emphasized in the paper (lines 118-122 and lines 384-388), in this task, it is true that an observer with perfect episodic memory should always make use of it whenever available (i.e. on trials featuring previously seen objects). However, human memory is fallible and resourcelimited, and we find that participants with less reliable episodic memory overall actually relied less on this strategy and more on incremental learning throughout the task (Figure 5C and 5D). In other words, there is noise and uncertainty also in the episodic memory trace. While it is not the main focus of our study, the noise in episodic memory is indeed another reason why trading off between episodic memory and incremental learning is advantageous for behavior. We further agree that while the RT effects show that, relative to using incremental value, episodic memory retrieval takes longer, we cannot make strong statements about effort or “computational expense” per se from our data. Accordingly, we have removed the “computational expense” phrase (line 491), as well as our suggestion that episodic retrieval is “perhaps more effortful overall” (line 181), from the paper.

      Reviewer #2 (Public Review):

      This manuscript addresses the broad question of when humans use different learning and memory systems in the service of decision-making. Previous studies have shown that, even in tasks that can be performed well using incremental trial-and-error learning, choices can sometimes be based on memories of individual past episodes. This manuscript asks what determines the balance between incremental learning and episodic memory, and specifically tests the idea that the uncertainty associated with each alters the balance between them in a rational way. Using a task that can separate the influence of incremental learning and episodic memory on choice in two large online samples, several lines of evidence supporting this hypothesis are reported. People are more likely to rely on episodic memory in more volatile environments when incremental learning is more uncertain and during periods of increased uncertainty within a given environment. Individuals with more accurate episodic memories are also more likely to rely on episodic memory and less likely to rely on incremental learning. These data are compelling, even more so because all of the main findings are directly replicated in a second sample. These data extend the notion of uncertainty-based arbitration between different forms of learning/memory, which has been proposed and evaluated in other contexts, to the case of episodic memory versus incremental learning.

      The weaknesses in the paper are mostly minor. One potential weakness is the nature of the online sample. Many participants apparently did not respond to the volatility manipulation, making it impossible to test whether this altered their choices. It is unclear whether this is a feature of online samples (where people can be distracted, unmotivated, etc.) or of human performance more generally.

      Thank you for your comments. Indeed, we also found it interesting that many participants were insensitive to the manipulation of volatility in our study, as assessed and filtered based on the initial deck learning task. As you note, our study is not positioned to determine the cause and whether this is due to the online population or human performance more generally, and we added a discussion of this point to the paper (lines 477-485). Also, fractions exceeding 1/3 apparently inattentive participants are very much the norm in our experience with other online studies across many tasks. While there is much to say about the implications of this (see e.g. Zorowitz, Niv & Bennett PsyArXiv 2021), our basic philosophy (which we follow here) is that it is best practice, and conservative, to exclude aggressively so as to focus analyses on those participants for whom the experimental questions can meaningfully be asked.

      Reviewer #3 (Public Review):

      The purpose of this work is to test the hypothesis that uncertainty modulates the relative contributions of episodic and incremental learning to decisions. The authors test this using a "deck learning and card memory task" featuring a 2-alternative forced choice between two cards, each showing a color and an object. The cards are drawn from different colored decks with different average values that stochastically reverse with fixed volatility, and also feature objects that can be unfamiliar or familiar. Objects are not shown more than twice, and familiar objects have the same value as they did when shown previously. This allows the authors to construct an index of episodic contributions to decision-making: in cases where the previous value of the object is incongruous with the incrementally observed value, the subject's choice reveals which strategy they are relying on.

      The key manipulation is to introduce high- and low- volatility conditions, as high volatility has been shown to induce uncertainty in incremental learning by causing subjects to adopt an optimal low learning rate. The authors find that the subjects show a higher episodic choice index in the high-volatility condition, and in particular immediately after reversals when the model predicts uncertainty is at a maximum. The authors also construct a trial-wise index of uncertainty and show that episodic index correlates with this measure. The authors also find that at the subject level, the overall episodic choice index correlates with the ability to accurately identify familiar objects, and the reason that this indicates higher certainty in episodic memory is predicting the usage of episodic strategies. The authors replicate all of their findings in a second subject population.

      This is a very interesting study with compelling results on an important topic. The task design was a clever way to disentangle and measure different learning strategies, which could be adopted by others seeking to further understand the contributions of different strategies to decision-making and its neural underpinnings. The article is also very clearly written and the results clearly communicated.

      A number of questions remain regarding the interpretation of the results that I think would be addressed with further analysis and modeling.

      At a conceptual level, I was unsure about the equivalence drawn between volatility and uncertainty: the main experiments and analyses all regard reversals and comparisons of volatility conditions, but the conclusions are more broadly about uncertainty. Volatility, as the authors note, is only one way to induce uncertainty. It also doesn't seem like the most obvious way to intervene on uncertainty (eg manipulated trial-wise variance seems more obvious). The trial-wise relative uncertainty measurements in Fig 4 speak a bit more to the question of uncertainty more generally, but these were not the main focus and also do not disambiguate between trial-wise uncertainty derived from reversals versus within block variation.

      Thank you for your comments. We agree that this distinction was unclear and appreciate the opportunity to clarify. We hope the manuscript is now clear about the conceptual distinction between uncertainty as the construct of theoretical interest vs. volatility as the operational manipulation being used to access it. We have adjusted the presentation and added discussion to clarify this, and also enhanced the trial-wise analyses to strengthen the interpretation of results in terms of uncertainty more generally. Regarding obviousness, we think perhaps there is a difference between areas of study on this point. While trial-wise outcome variance (which we call stochasticity) has been widely used to manipulate uncertainty in perceptual and sensorimotor studies, it has been more rarely manipulated in reward learning studies, where instead the volatility manipulation we use has predominated. We have a recent paper reviewing examples of both and arguing that the field has underemphasized the importance of stochasticity, so we are sympathetic here (Piray and Daw, Nature Communications 2021).

      In any case, to address these points on revision, we have reframed the first section of the results, where we look at effects of environment on episodic-based choice, to focus primarily on volatility. Specifically, we have expanded on our explanation of how volatility induces uncertainty, changed the subtitle of the section from ‘uncertainty’ to ‘volatility’, and have specified that the prediction in this section is primarily about volatility (lines 97 and 116-123). We also reframed the second section of the results to be primarily about the uncertainty induced by volatility: while differences between the environments capture coarse effects of volatility, trialwise uncertainty should be present following reversals across both environments. We have now focused our explanation in this section on trial-wise uncertainty within the environments rather than volatility between the environments (lines 184-192). Further, we agree that there are other sources of uncertainty besides volatility that we did not manipulate in the paper, and that it remains for future work whether their manipulation would produce similar results. To amend this, we have added a new paragraph to the discussion covering these alternative sources and further qualifying the scope of our conclusions (lines 434-446).

      We also agree that our analyses in Figure 4 did not yet speak to differences in episodic-based choice that may arise due to blockwise volatility (as captured by the categorical effect of environment) vs. trial-to-trial fluctuations in uncertainty (as captured by relative uncertainty, over and above the blockwise effect). We have addressed this by adding an additional, separate effect of the interaction between environment and episodic value to our combined choice models which is explained in more detail in the recommendations for the authors portion of our response. These changes and results are described in the Methods (lines 686-694) and Results (lines 276-277; Figure 4C).

      Another key question I had about design choice was the decision to use binary rather than drifting values. Because of this, the subjects could be inferring context rather than continuously incrementing value estimates (eg Gershman et al 2012, Akam et al 2015): the subjects could be inferring which context they are in rather than tracking the instantaneous value + uncertainty. I am not sure this would qualitatively affect the results, as volatility would also affect context confidence, but it is a rather different interpretation and could invoke different quantitative predictions. And it might also have some qualitative bearing on results: the subjects have expectations about how long they will stay in a particular environment, and they might start anticipating a context change after a certain amount of time which would lead to an increase in uncertainty not just immediately after switches, but also after having stayed in the environment for a long period of time. Moreover, depending on the variance within context, there may be little uncertainty following context shifts.

      Thank you for raising this important point. To address the possibility that the task structure could have encouraged participants to infer context rather than engage in incremental learning, we added an alternative contextual inference (CI) model, based on a hidden Markov model with two hidden states (e.g. that either the red deck is lucky and the blue deck unlucky or vice versa). This model is now described in the Results of the main text (lines 226-228), listed in the Methods (line 674), and explained in detail in Appendix 3 alongside the computational models of incremental learning. Following model comparison, we found that this model provided a worse fit than the incremental learning models we previously presented in both samples, suggesting that incremental learning is a better descriptor of participants’ choices in this task than contextual inference. The results of this comparison are reflected in an updated Figure 3A.

    1. Author Response

      Reviewer #1 (Public Review):

      This manuscript clearly demonstrates that murine malaria infection with Plasmodium chabaudi impairs B cells' interaction with T cells, rather than DCs interaction with T cells. The authors elegantly showed that DCs were activated, capable of acquiring antigens and priming T cells during P. chabaudi infection. B cells are the main APC to capture particulate antigens such as infected RBC (iRBC), while DCs preferentially take up soluble antigens. This study is important to understand how ongoing infections such as malaria may negatively affect heterologous immunizations.

      Overall, the experimental designs are straightforward, and the manuscript is well-written. However, there were several limitations in this study.

      Specific comments:

      1) The mechanism of how the prior capture of iRBC by B cells lead to the impairment of B-T interaction was not understood. It is unclear whether the impairment of B-T cell interaction is due to direct BCR interaction with iRBC, or an indirect response to extrinsic factors induced by malaria infection.

      We believe we have carefully demonstrated that impairment of B-T interactions does not require specific BCR-antigen interactions between B cells and iRBCs (for a complete explanation of this point, please see the response to the next comment). However, the question remains whether direct, antigen-nonspecific iRBC-B cell interactions (i.e., not mediated by the BCR) or additional extrinsic factors, or a combination, are responsible for the observed defects in Tfh and GC B cell populations.

      Existing studies from other infection models are informative in answering this question. Daugan et al (Front Immunol 2016; PMID 27994594) previously published experiments similar to ours, but used LCMV instead of Plasmodium. That is, they immunized uninfected or LCMV-infected mice with the well-studied immunogen NPP-CGG and measured NP-specific antibody production and other parameters. They found that LCMV infection concurrent with immunization (or 4-8 days before) significantly decreased the numbers of NP-specific splenic antibody-secreting cells and IgG1 titers, and caused major disruptions to splenic architecture. These defects were shown to require type I interferon (T1IFN) signaling in B cells. However, T1IFN is unlikely to be solely responsible for the observed phenotypes, because simultaneous infection with VSV, another virus that also induces T1IFN, did not cause any defects in NP-specific antibody production. Contrasting with the work of Daugan et al, Banga et al (PloS One 2015; PMID 25919588) found that infecting with LCMV (or with Listeria monocytogenes) two days after heterologous immunization did not disrupt immunogen-specific responses, whereas P. yoelii did. Examining both these studies, we hypothesize that both LCMV and Plasmodium infections can disrupt humoral responses, but that LCMV does so within a narrower time frame, thereby yielding different results depending on whether infection comes a few days before or a few days after immunization.

      Complementing these studies of heterologous immunization, additional publications have reported that cytokines induced by several different pathogenic infections drive disruption of germinal centers and decreases in antibody titers specific for the pathogen itself, often correlated with disordered splenic architecture. Glatman Zaretsky et al. (Infect Immun 2012; PMID 22851754) showed that Toxoplasma gondii infection causes transient disruption of splenic architecture and loss of defined GCs by microscopy. These defects were partially due to decreased lymphotoxin expression by B cells, and were rescued by a lymphotoxin receptor agonist. Similarly, we previously reported that blood-stage Plasmodium infection disrupted germinal center responses to a Plasmodium liver-stage antigen (Keitany et al. Cell Rep 2016; PMID 28009289). In this context, however, the same lymphotoxin receptor agonist had no effect on GCs; instead, blockade of the pro-inflammatory cytokine interferon gamma partially restored antibody responses to the liver-stage antigen. Overall, we favor the hypothesis that several different pathogens can disrupt GCs and antibody responses indirectly by inducing inflammation and a disordered splenic environment; however, the precise mechanisms of disruption likely differ from infection to infection, with different cytokines or other effectors playing key roles in some but not other settings. Importantly, not all pathogens disrupt antibody production, since again, infection with VSV or L. monocytogenes did not affect immunogen-specific titers in immunized mice (Daugan Front Immunol 2016; Banga et al. 2015). We have now addressed this topic at length in the Discussion (lines 399-418).

      The existence of indirect, inflammation- or cytokine-related mechanisms that may interfere with germinal center formation and antibody production does not preclude additional direct interactions between B cells and iRBCs that might also affect B cell function. We address this possibility more fully in the response to the next comment.

      2) Would malaria infection in MD4 mouse that carries transgenic BCR that does not recognize malaria parasite impair subsequent B cell response to HEL immunization? This may clarify whether the impairment of subsequent B cell response is BCR-specific. If malaria impairs subsequent B cell response to HEL in MD4 mouse, it might suggest that other cell types and B cell-extrinsic factors might be involved in causing the impaired B cell responses, instead of malaria affecting B cells directly.

      The question of whether the impairments we observe require BCR-specific interactions with iRBCs is an important one. However, we believe that the experiment the reviewer proposes to address this question has technical limitations; further, we assert that we have already provided data to address a requirement for BCR specificity.

      With regard to the proposed experiment of immunizing MD4 mice with HEL in the presence or absence of malaria infection: MD4 mice, in which B cells express a transgenic receptor specific for HEL, can be expected to mount a massive, monoclonal response to direct immunization with HEL that would be very different from the physiological context of a polyclonal B cell population. We are doubtful that this experimental setup would be informative for the question at hand, especially because we are studying the effects of B-Tfh interactions, which are already limiting in the physiological setting of a polyclonal B cell response, but would be massively unbalanced in an MD4 mouse where all B cells express the receptor for HEL.

      Usually, investigators studying MD4 B cell responses generate a more physiological setting by adoptively transferring a small but detectable number of MD4 transgenic B cells into a mouse with a normal polyclonal B cell population, and immunizing that mouse. We maintain that this approach is essentially what we have done in our study, except that instead of using transferred. transgenic cells to identify a B cell population of known specificity, we have used tetramers to detect a specific population of endogenous B cells in a polyclonal setting. By examining GP-specific B cells in our immunization experiments, we restricted our analysis to B cells that could not have had any BCR-mediated, antigen-specific interactions with iRBCs (because the GP antigen is not present in the iRBCs; it is delivered as a soluble protein antigen, 5 days after initiation of infection). Because we see dysfunction in the GP-specific T and B cell populations despite the absence of this antigen within iRBCs, we can conclude that the disruptions to these populations are not due to antigen-specific iRBC-BCR interactions.

      We do also show (using MD4 B cells in Fig. S1B) that selective interactions between iRBCs and B cells do not require an antigen-specific BCR. Thus, it is still possible that direct interactions between iRBCs and B cells (that are independent of antigen binding to the BCR) are responsible for disrupting subsequent adaptive responses, perhaps in addition to the more indirect factors that we discuss in the response to Comment #1 above. We are very interested in this possibility, which is discussed in lines 428-436 of the manuscript. But the use of MD4 B cells would not address this specific question. Instead, we would need to identify an alternative pathway or receptor that mediates the iRBC-B cell interaction, and study the effects of blocking that pathway on downstream adaptive responses. We have spent considerable time and energy on this question, but have not yet been able to identify such a pathway; this remains a matter for further study.

      3) MD4 mice were mentioned in the Methods in vitro RBC binding, although none of the figures described the usage of MD4 mice. This experiment data might be important to show whether RBC binding to B cells is mediated through BCR.

      Cells from MD4 mice were used in Figure S1B to show that in vitro binding of iRBCs to B cells did not require interaction with an antigen-specific BCR. We agree that this is an important point and have revised the text (lines 152-156) to outline it more clearly.

      4) Does P. chabaudi infection have any effects on B cell uptake of subsequent antigens, such as soluble antigen PE or particulate antigen CFSE-labeled P. yoelii iRBC?

      We examined uptake of PE by B cells in P. chabaudi-infected mice (5 days post-infection) compared to naïve mice. There was a trend towards increased uptake in the infected mice, but this difference was not significant. These data are taken from the same samples that did reveal a significant increase in PE uptake by DCs in infected mice (Fig. 3C). We have now included the B cell data in the paper as Figure 3D, and discussed them in lines 231-232.

      5) Is this phenomenon specific to malaria infection? Does malaria-irrelevant particulate immunization affect T-B interaction of subsequent heterologous immunization?

      We do not believe this phenomenon is specific to malaria infection; please see the extensive discussion of this point in the response to Comment #1 above. We would hypothesize that malaria-irrelevant particle immunization (as with nanoparticles) would not affect T-B interactions for subsequent heterologous immunizations, however, since the disruption seems to be associated with the massive inflammation and splenic disorganization that occurs following certain infections.

      6) Despite the impaired Tfh and GC 8 days after immunization following malaria infection, Fig. 5F showed GP-specific IgG eventually increased to the same level as the uninfected immunized mice on day 23. Did the authors check whether these mice had a delayed Tfh and GC response that eventually increase on day 23? Are these antibody responses derived from GC, or GC-independent response?

      We have now examined GP-specific T cell numbers and polarization between days 23 and 35 post-immunization. We found that although a defect persists in the percentage of GP66-specific T cells that exhibit a GC Tfh phenotype at later timepoints, the absolute number of GC Tfh cells is not significantly defective in infected mice at these times. Concurrently there is a slight (though nonsignificant) increase in the total numbers of GP66+ T cells in the infected mice; we believe that this modest overall expansion permits recovery of the GC Tfh population numbers despite the continued defect in their frequency. These findings are consistent with our observation that antibody levels recover in infected mice by 3 weeks post-infection. We have added these data to Figure 4 (E-G) and discuss them in lines 283-293.

      7) Does recovery from malaria infection by antimalarial treatment rescue the B cell response to subsequent heterologous immunization?

      We have shown previously that drug-mediated clearance of blood-stage Plasmodium infection restores GC and antibody responses to a liver-stage-specific antigen, which normally are disrupted by emergence of the blood-stage (Keitany et al. Cell Rep 2016). We have also shown that antimalarial drug treatment restores GC responses in mice lacking the innate immune sensor CGAS, which have higher parasitemia, exacerbated splenic disruption, and diminished GC responses following P. yoelii infection (Hahn et al., JCI Insight 2018). Based on these results we hypothesize that drug-mediated clearance of blood-stage infection would also rescue B cell responses to heterologous immunization.

      8) Fig. 1C shows more nRBC was taken up than iRBC in B cells, but Line 142 states that "B cells bound significantly more iRBC than nRBC. Is there a mistake in the figure arrangement? Why do B cells take up for naïve RBC than iRBC?

      The symbols in the figure legend were switched in error; the filled circles are actually iRBC+ and the outlined circles are nRBC+. We regret the error and appreciate the reviewer bringing it to our attention. We have corrected the figure.

      9) Fig. S1 C and D are confusing. CD45.1+ CD45.2+ mouse did not receive labeled iRBC, but why iRBC was detected as much as 40% in the spleen of this naïve mouse?

      The experiment depicted in Figs. S1 C and D was designed to test whether B cells actually bound injected iRBCs in vivo, or whether the binding occurred during processing of the tissue. With this experimental setup (injecting labeled iRBCs into CD45.2+ mice, then excising and disrupting the spleen together with an untreated CD45.1+ CD45.2+ spleen), iRBC signal from in vivo uptake should be observed only in CD45.2+ splenocytes, whereas iRBC binding that occurs during tissue processing will be distributed between the two genotypes. Thus, the ~40% of iRBC signal observed in CD45.1+ CD45.2+ B cells leads us to conclude that much of the observed B cell binding from our in vivo experiments occurs during processing, as we state in the text (lines 151-152). Even so, in vitro experiments clearly show that B cells selectively bind iRBCs over naïve RBCs in a setting where processing is not a confounder (Fig. S1B). To clear up any confusion, we have expanded the description of the experiment and its interpretation in the Supplemental Figure Legend.

      Reviewer #2 (Public Review):

      The data presented support the conclusions of the paper, and my concerns are largely conceptual in how we understand this data in the context of malaria infection in vaccination in endemic areas

      1) The data is presented based on the idea that antigen uptake and presentation differ between particle and soluble antigens, and that during malaria infection particle uptake is more important due to circulating iRBCs. However, during parasite invasion of RBCs, the parasite sheds large amounts of antigen into the circulation, at least some of which would then be found in a soluble form in the circulation. Can the authors comment on this aspect of infection and if/how this may impact the interpretation of results? Do authors assume that any soluble antigen taken up and presented (via DCs?) during infection would be impacted as for GP66 soluble antigen? Or could an interaction on immune responses where the antigen is presented via both particle and soluble pathways?

      This is an important point and we have now discussed it further in the text (lines 111-115, 204-210, and 356-357). In our previously published study, where we extensively characterized CD4 T cell responses to the GP66 epitope expressed by P. yoelii, the epitope was fused to a parasite protein (Hep17) that localizes to the parasitophorous vacuole membrane, and so we do assume that the majority of this antigen is encountered by APCs in the context of an iRBC, rather than shed in soluble form. In contrast, some merozoite surface antigens such as cleaved MSP1 are shed copiously from the parasite coat upon RBC invasion, and therefore would be expected to exist in soluble as well as parasite-associated form.

      Unfortunately, our laboratory does not currently have tetramer reagents or access to transgenic mice that would allow us to assess T cell responses specific for shed or soluble parasite antigens. But a previous study from Stephens et al. (Blood 2005; PMID 15890689) reported that T cells with a transgenic TCR specific for an epitope in the shed portion of MSP1 could boost antibody production when transferred into T cell-deficient mice infected with P. chabaudi, suggesting that at least some fraction of the MSP1-specific T cells differentiate into T helper cells capable of supporting B cell activity. However, antibody production was significantly delayed in this setting compared to its usual kinetics in wild-type mice. Further side-by-side characterization would be needed to assess differentiation of these MSP1-specific transgenic T cells during infection, and determine whether they are primed from B cells or from DCs (or a combination).

      We will note that we have extensively characterized B cell responses to MSP1 during both infection and immunization. While robust and T-dependent, MSP1-specific B cell responses in infected mice are delayed relative to their kinetics in mice immunized with recombinant MSP1 or other protein antigens. This may indicate that MSP1-specific T cell activation or cognate B-T interactions are defective in infected mice relative to immunized mice, despite the presumed presence of soluble (shed) MSP1 during infection. If this is the case, it suggests that the defects we describe in the current manuscript exist for both particle-associated and soluble parasite antigens. However, as we mentioned above, a careful characterization of MSP-1-specific T cell differentiation is needed to really understand this, and that requires additional tools that we can’t easily access at this time.

      2) Impact of particle antigen opsonisation on antigen uptake and presentation. The authors use parasites isolated from mice who have been infected for 6-7 days to investigate the ability of different subsets to update particle antigens. At this time point, have mice developed antibody responses that opsonise these parasites, or are antibody levels low and parasites opsonised? Would opsonised parasites, such as those coated with sera from children in a setting of chronic infection, have a different pattern/ability to be opsonised by different immune cell subsets? And/or would opsonisation change how the DC and other cell types are processing/presenting antigens? While these issues could be addressed experimentally either now or in the future, the manuscript should at least consider this issue because, during a human infection in areas of high exposure, individuals are likely to have reasonable levels of antibodies with opsonised parasites circulating.

      We ourselves have been very interested in the question of whether host antibodies (or other host factors such as complement) might affect uptake of iRBCs. As the reviewer notes, the iRBCs we use in our experiments are taken from mice 6-7 days post-infection, at which time some amount of anti-parasite antibody has developed. We spent a considerable amount of time trying to measure effects of opsonizing antibody, or even deposited complement, on uptake of iRBCs. However, we did not see any change in B cell binding of iRBCs in vitro when we blocked complement receptor with anti-CD21; blocked antibody receptors (Fc receptors) with anti-CD16/CD32 or excess normal mouse serum; or used iRBCs taken from complement-depleted mice (treated with cobra venom factor) or from uMT mice (which entirely lack B cells and antibody). Thus, we have not been able to find any role for opsonizing antibody (or complement) in iRBC uptake. We have not included these experiments in the manuscript because they yielded only negative data, and we were not able to design positive controls robust enough to give us confidence that the experiments were technically sound (and therefore that the negative results were due to the underlying biology and not to experiment failure). We have added a discussion point about this issue (lines 438-442).

      3) While authors show that malaria infection disrupts the response to soluble antigens, the relevance directly to vaccination should be considered carefully, specifically because vaccines of soluble antigens are largely given alongside adjuvants which also will modulate DC function. Again, this could be addressed experimentally now or in the future, but definitely should be mentioned and considered when interpreting the results.

      Whenever we performed soluble protein immunizations to examine adaptive immune responses in this study, the immunogen was delivered in adjuvant, specifically Sigma Adjuvant System (SAS), as described in the Methods. This adjuvant contains the Monophosphoryl Lipid A component from Salmonella in an oil-water emulsion, and as such, its formulation is at least roughly similar to the AS01 adjuvant used in Mosquirix (RTS,S), the only licensed anti-malaria vaccine, as well as other vaccines currently used in humans. SAS has been shown to elicit very high titers of neutralizing antibodies in mice (Sastry et al., PloS One 2017, PMID 29073183). Therefore our results should have relevance for vaccination in humans. We have modified the manuscript text (lines 454-455 to highlight that in this study, protein immunogens were administered with adjuvant.

    1. Author Response

      Reviewer #1 (Public Review):

      The study by Xie et al., investigates whether the entorhinal-DG/CA3 pathway is involved in working memory maintenance. The main findings include a correlation between stimulus and neural similarities that was specific for cued stimulus and entorhinal-DG/CA3 locations. The authors observed similar results (cuing and region specificity) using inverted encoding modeling approach. Finally, they also showed that trials in which participants made a smaller error showed a better reconstruction fidelity on the cued side (compared to un-cued). This effect was absent for larger-error trials.

      The study challenges a widely held traditional view that working memory and episodic memory have largely independent neural implementations with the MTL being critical for episodic memory but not for working memory. The study adds to a large body of evidence showing involvement of the hippocampus across a range of different working memory tasks and stimuli. Nevertheless, it still remains unclear what functions may hippocampus play in working memory.

      We thank the reviewer’s positive appraisal of the current research, which adds to the growing research interest in the MTL’s contribution to WM.

      Reviewer #2 (Public Review):

      Xie et al. investigated the medial temporal lobe (MTL) circuitry contributions to pattern separation, a neurocomputational operation to distinguish neutral representations of similar information. This presumably engages both long-term memory (LTM) and working memory (WM), bridging the gap between the working memory (WM) and long-term memory (LTM) distinction. Specifically, the authors combined an established retro-cue orientation WM task with high-resolution fMRI to test the hypothesis that the entorhinal-DG/CA3 pathway retains visual WM for a simple surface feature. They found that the anterior-lateral entorhinal cortex (aLEC) and the hippocampal DG/CA3 subfield both retained item-specific WM information that is associated with fidelity of subsequent recall. These findings highlight the contribution of MTL circuitry to item-specific WM representation, against the classic memory models.

      I am a long-term memory researcher with expertise in representational similarity analysis, but not in inverted encoding modeling (IEM). Therefore, I cannot verify the correctness of these models and I will leave it to the other reviewers and editors. However, after an in-depth reading of the manuscript, I could evaluate the significance of the present findings and the strength of evidence supporting these findings. The conclusions of this paper are mostly well supported by data, but some aspects of image acquisition and data analysis need to be clarified.

      We thank the reviewer for positive appraisal of the current study.

      I would like to list several strengths and weaknesses of this manuscript:

      Strengths:

      • Methodologically, the authors addressed uncertainty in previous research resulting from several challenges. Namely, they used a high-resolution fMRI protocol to infer signals from the MTL substructures and an established retro-cue orientation WM task to minimize the task load.

      • The authors selected a control ROI - amygdala - irrelevant for the experimental task, and at the same time adjacent to the other MTL ROIs, thus possibly having a similar signal-to-noise ratio. The reported effects were observed in the aLEC and DG/CA3, but not in the amygdala.

      • Memory performance, quantified as recall errors, was at ceiling - an average recall error of 12 degrees was only marginally away from the correct grating towards the closest incorrect grating (predefined with min. 20 degrees increments). However, the authors controlled for the effects of recall fidelity on MTL representations by comparing the IEM reconstructions between precise recall trials and imprecise recall trails (resampled to an equal number of trials). The authors found that precise recall trails have yielded better IEM reconstruction quality.

      • The author performed a control analysis of time-varying IEM to exclude a possibility that the mid-delay period activity in the aLEC-DG/CA3 contains item-specific information that could be attributed to perceptual processing. This analysis showed that the earlier TR in the delay period contains information for both cued and uncued items, whereas the mid-delay period activity contains the most information related to the cued, compared to uncued, item.

      We thank the reviewer for highlighting the multiple strengths of the current study.

      Weaknesses:

      • The authors formulate their main hypothesis building on an assumption related to the experimental task. This task requires correctly selecting the cued grating orientation while resisting the interference from internal representations of the other orientation gratings. The authors hypothesize that if this post-encoding information selection function is supported by the MTL-s entorhinal-DG/CA3 pathway, the recorded delay-period activity should contain more information about the cued item that the uncued item (even if both are similarly remembered). Thus, the assumption here is that resolving the interference would be reflected by a more distinct representation in MTL for the cued item. Could it be the opposite, namely the MTL could better represent the unresolved interference, for example by the mechanism of hippocampal repulsion (Chanales et al., 2017). It could strengthen the findings if the authors comment on the contrary hypothesis as well.

      We thank the reviewer for pointing out this interesting alternative hypothesis. Because of the different task design (e.g., over the course of learning vs. WM) and stimuli (e.g., spatial memory vs. orientation grating), it is hard to directly compare Chanales et al.’s findings with the current results. That said, we think the idea that the representation of similar information would lead to greater task demand on the MTL is consistent with our intuition regarding the role of the MTL in supporting the qualitative aspect of WM representation. We have now further discussed this issue in our revised manuscript to invite further consideration of the suggested alternative hypothesis,

      “Our data suggest that this process would result in more similar and stable representations for the same remembered item across trials, as detected by multivariate correlational and decoding analyses in the current study. However, under certain task conditions (e.g., learning spatial routes in a naturalistic task over many repetitions), the MTL may maximally orthogonalize overlapping information to opposite representational patterns (hence “repulsion”) to minimize mnemonic interference (Chanales et al., 2017). It remains to be determined how these learning-related mechanisms in a more complex setting are related to MTL’s contributions to WM of simple stimulus features.”

      • It is not clear for me why the authors chose the inverted encoding modelling approach and what is its advantage over the others multivoxel pattern analysis approaches, for example representational similarity analysis also used in this study. How are these two complementary? Since the IEM is still a relatively new approach, maybe a little comment in the manuscript could help emphasizing the strength of the paper? Especially that this paper is of interest to researchers in the fields of both working memory and long-term memory, the latter being possibly not familiar with the IEM.

      We thank the reviewer for this suggestion. In principle, the IEM is a multivariate pattern classification analysis based on an encoding model. There is no fundamental difference between this approach and other machine-learning or classification approaches, except that the IEM is a more model-based approach and therefore can be more computationally efficient (see Xie et al., 2023 for a conceptual overview for multivariate analysis of high-dimensional neural data). The relationship between IEM and representational similarity is grounded in item-specific information that could lead to shared neural variance. How these two analyses are complimented each other is well characterized by a recent theoretical review (Kriegeskorte & Wei, 2021). The rationale is that trial-wise RSA reveals shared neural variance between items, implying the presence of item-specific information in the recorded neural data. And the IEM approach or other classification algorithms can more directly test this item-specific information under a prediction-based framework (e.g., train the data and test on a hold-out set). As a result, the findings of these two methods are correlated at the subject-level (Figure S4), which is important to note for the purpose of analytical reliability. Furthermore, using the IEM also allows us to compare our current findings with that from the previous research (Figure S3), addressing some replicability questions in the field (e.g., Ester et al., 2015).

      We have clarified more on this issue in the paragraph when we first introduce IEM,

      “To directly reveal the item-specific WM content, we next modeled the multivoxel patterns in subject-specific ROIs using an established inverted encoding modeling (IEM) method (Ester et al., 2015). This method assumes that the multivoxel pattern in each ROI can be considered as a weighted summation of a set of orientation information channels (Figure 3A). By using partial data to train the weights of the orientation information channels and applying these weights to an independent hold-out test set, we reconstruct the assumed orientation information channels to infer item-specific information for the remembered item – operationalized the resultant vector length of the reconstructed orientation information channel normalized at 0° reconstruction error (Figure S2). As this approach verifies the assumed information content based on observed neural data, its results can be efficiently computed and interpreted within the assumed model even when the underlying neuronal tuning properties are unknown (Ester et al., 2015; Sprague et al., 2018). This approach, therefore, complements the model-free similarity-based analysis by linking representational geometry embedded in the neural data with item-specific information under a prediction-based framework (Kriegeskorte and Wei, 2021; Xie et al., 2023). Based on this method, previous research has revealed item-specific WM information in distributed neocortical areas, including the parietal, frontal, and occipital-temporal areas (Bettencourt and Xu, 2015; Ester et al., 2015; Rademaker et al., 2019; Sprague et al., 2016), which are similar to those revealed by other multivariate classification methods (e.g., support vector machine, SVM, Ester et al., 2015). We have also replicated these IEM effects in the current dataset (Figure S3).”

      Overall, this work can have a substantial impact of the field due to its theoretical and conceptual novelty. Namely, the authors leveraged an established retro-cue task to demonstrate that a neurocomputational operation of pattern separation engages both working-memory and long-term memory, both mediated by the MTL circuitry, beyond the distinction in classic memory models. Moreover, on the methodological side, using the multivariate pattern analyses (especially the IEM) to study neural computations engaged in WM and LTM seems to be a novel and promising direction for the field.

      Thanks for the reviewer for this positive appraisal of the current study.

      Reviewer #3 (Public Review):

      This work addresses a long-standing gap in the literature, showing that the medial temporal lobe (MTL) is involved in representing simple feature information during a low-load working memory (WM) delay period. Previously, this area was suggested to be relevant for episodic long-term memory, and only implicated in working memory under conditions of high memory load or conjunction features. Using well-rounded analyses of task-dependent fMRI data in connection with a straightforward behavioural experiment, this paper suggests a more general role of the medial temporal lobe in working memory delay activity. It also provides a replication of previous findings on item-specific information during working memory delay in neocortical areas.

      We thank the reviewer for highlighting the contribution of the current study to fill a gap in the literature.

      Strengths:

      The study has strengths in its methods and analyses. Firstly, choosing a well-established cueing paradigm allows for straightforward comparison with past and future studies using similar paradigms. The authors themselves show this by replicating previous findings on delay-period activity in parietal, frontal, and occipito-temporal areas, strengthening their own and previous findings. Secondly, they use a template with relatively fine-grained MTL-subregions and choose the amygdala as a control area within the MTL. This increases confidence in the finding that the hippocampus in particular is involved in WM delay-period activity. Thirdly, their combined use stimulus-based representational similarity analysis as well as Inverted Encoding Modeling and the convergence on the same result is encouraging. Finally, despite focusing on the delay period in their main findings, extensive supplementary materials give insight into the time-course of processing (encoding) which will be helpful for future studies.

      We thank the reviewer for highlighting multiple strengths of this current study.

      Weaknesses:

      While the evidence generally supports the conclusions, there are some weaknesses in behavioural data analysis. The authors demonstrated fine stimulus discrimination in the neural data using Inverted Encoding Modeling (IEM), however the same standard is not applied in the behavioural data analysis. In this analysis, trials below 20 degrees and trials above 20 degrees of memory error are collapsed to compare IEM decoding error between them. As a result, the "small recall error" group encompasses a total range of 40 degrees and includes neighbouring stimuli. While this is enough to demonstrate that there was information about the remembered stimulus, it does not clarify whether aLEC/CA3 activity is associated with target selection only or also with reproduction fidelity. It leaves open whether fine-grained neural information in MTL is related to memory fidelity.

      We thank the reviewer for this cautious note. As the current task is optimized to reveal the neural representation during visual WM and as our participants are cognitively normal college students, participants’ behavioral performance in the current experiment tends to be very good (Figure 1). This leaves us relatively small variation to further probe the behavioral outcomes of the task. We have recently generalized our findings using intracranial EEG and confirmed that trial-by-trial mnemonic discrimination during a short delay is indeed associated with the fidelity of item-specific WM representation (Xie, Chapeton, et al., in press).

      We have further discussed this issue in the revised Discussion,

      “… These two approaches are therefore complementary to each other. Nevertheless, these analyses are correlational in nature. Hence, although fine-grained neural representations revealed by these analyses are associated with participants’ behavioral outcomes (Figure 4), it remains to be determined whether the entorhinal-DG/CA3 pathway contributes to the fidelity of the selected WM representation or also to the selection of task-relevant information. Strategies for resolving this issue can involve generalizing the current findings to other WM tasks without an explicit requirement of information selection (e.g., intracranial stimulation of the MTL in a regular WM task without a retro-cue manipulation, Xie et al., in press) and/or further exploring how the frontal-parietal mechanisms related to visual selection and attention interact with the MTL system (Panichello and Buschman, 2021).”

      Moreover, the authors could be more precise about the limitations of the study and their conclusions. In particular, the paper at times suggests that the results contribute to elucidating common roles of the MTL in long-term memory and WM, potentially implementing a process called pattern separation. However, while the paper convincingly shows MTL-involvement in WM, there is no comparison to an episodic memory condition. It therefore remains an open question whether it fulfils the same role in both scenarios. Moreover, the paradigm might not place adequate pattern separation demands on the system since information about the un-cued item may be discarded after the cue.

      We thank the reviewer for this cautious note. We have now included a more detailed discussion on this issue.

      In the Discussion,

      “To more precisely reveal the MTL mechanisms that are shared across WM and long-term memory, future research should examine the extent to which MTL voxels evoked by a long-term memory task (e.g., mnemonic similarity task, Bakker et al., 2008) can be directly used to directly decode mnemonic content in visual WM tasks using different simple stimulus features.”

    1. Author Response

      Reviewer #2 (Public Review):

      In regions that implement an elimination strategy prolonged periods of no local transmission mean that there is no data available to estimate Reff using the currently available methods. Transmission rates from travellers to community members, and between community members, are different when border restrictions occur, as is frequently the case when implementing an elimination strategy. When cases are low and importation risk is high, a reasonable estimation method must acknowledge this transmission heterogeneity, for example, as shown in equations 5-8 and 10-11 of this paper.

      The calculation of transmission potential adds significant data requirements (summarized in Figure 1), such that some regions where the methodology would be valuable may lack the data to estimate the macro- and micro-distancing parameters. In the paper, such parameters are estimated from weekly surveys performed by market research groups and the University of Melbourne. In contrast, using existing methods in regions where local spread does occur, Reff can be calculated and generate reasonable insight with relatively little data. Due to the additional data requirements, the calculation of transmission potential is less accessible than some current approaches to calculate Reff in regions with local spread.

      We agree with these comments about the need for behavioural data. We believe this point is made clearly in our existing discussion text, copied below:

      Despite its demonstrated impact, there are limitations to our approach. Firstly, it relies on data from frequent, population-wide surveys. In Australia, these data are collected for government and made available to our analysis team by a market research company which has access to an established “panel” of individuals who have agreed to take part in surveys of public opinion. Researchers and governments in many other countries have used such companies for rapid data collection to support pandemic response [23, 25]. However, these survey platforms are not readily available in all settings.

      We also believe it is clear throughout the manuscript that transmission potential provides complementary information to Reff, and unlike Reff can be calculated in the absence of transmission.

      The authors describe "macro-distancing": the rate of non-household contacts; and "micro-distancing": the transmission probability per non-household contact. This terminology "micro-distancing" gives the false impression that transmission probability depends solely on distance. In the paper, transmission probability is estimated from survey responses to the question 'are you staying 1.5m away from people who are not members of your household?'. This data is limited to estimate the transmission probability and overlooks the impact of mask use, improved ventilation, and meeting outdoors (all non-distance-based approaches). The paper mentions that self-reported hand hygiene could be used to estimate micro-distancing. COVID-19 spreads through airborne transmission, but the paper gives no mention of ventilation or mask-wearing.

      We agree with these important points and have adjusted the terminology for micro-distancing behaviour to improve clarity. We now refer to it as “precautionary micro-behaviour” since adherence to the 1.5 metre rule is used as a proxy/indicator for change over time in all behaviours that influence transmission (other than those reducing the number of contacts). This includes behaviours such as mask-wearing, preference for outdoor gatherings, hand hygiene etc .

      In addition to changing the terminology for this metric throughout the manuscript, we have added the following explanation to the “Model” section of the manuscript (lines 100-105):

      The modelling framework uses adherence to the 1.5 metre rule as a proxy for all behaviours (other than those reducing the number of contacts) that may influence transmission, and so is intended to capture the use of masks, preference for outdoor gatherings, and hand hygiene, among other factors. The 1.5 metre rule was a suitable proxy because it was consistent public health advice throughout the analysis period and time-series data were available to track adherence to this metric over time.

      Some of the writing lacks precision around the descriptions of Reff. Notably, Reff is not a rate because it does not have units 'per time'. There is a lack of clarity that Reff is infections generated over an individual's entire infectious period. Other metrics of outbreak growth are rates, for example, an exponential growth rate parameter. This lack of clarity in the writing does not impact the methodology.

      Thank you for pointing out this lack of clarity, we have removed references to Reff as a ‘rate’ throughout. We have added to our initial definition of Reff (lines 29-32) that the infections cover the entire infectious period:

      A key element of epidemic response is the close monitoring of the speed of disease spread, via estimation of the effective reproduction number (Reff) — the average number of new infections caused by an infected individual over their entire infectious period, in the presence of public health interventions and where no assumption of 100% susceptibility is made.

      In the paper, model parameters are estimated from multiple independent data sources using carefully derived inference models that include complex considerations such as right-censoring of reported cases. While data availability may be a limitation to calculating the transmission potential, the modelling and statistics in the paper are rigorous, and calculation of the transmission potential fills a gap by allowing regions that implement elimination strategies to estimate a quantity similar to Reff.

      We thank the reviewer for their positive feedback.

    1. Author Response

      Reviewer #2 (Public Review):

      In the current manuscript, Feng et al. investigate the mechanisms used by acute leukemia to get an advantage for the access to the hematopoietic niches at the expense of normal hematopoietic cells. They propose that B-ALLs hijack the niche by inducing the downmodulation of IL7 and CXCL12 by stimulating LepR+ MSCs through LTab/LTbR signaling. In order to prove the importance of LTab expression in B-ALL growth, they block LTab/LTbR signaling either through ligand/receptor inactivation or by using a LTbR-Ig decoy. They also show that CXCL12 and the DNA damage response induce LTab expression by B-ALL. They finally propose that similar mechanisms also favor the growth of acute myeloid leukemia.

      Although the proposed mechanism is of particular interest, further experiments and controls are needed to strongly support the conclusions.

      1/ Globally, statistics have to be revised. The authors have to include a "statistical analysis" section in the Material and Methods to explain how they proceeded and specify for each panel in the figure legend which tests they used according to the general rules of statistics.

      We apologize for the lack of details. This has been corrected in the revised manuscript.

      2/ The setup of each experiment is confusing and needs to be detailed. Cell numbers are not coherent from one experiment to the other. As an example, there are discrepancies between Fig1 and Fig2. Based on the setup of the experiment in Fig.2 (Injection of B-ALL to mice followed by 2 injections of treatment every 5 days), mice have probably been sacrificed 12-14 days post leukemic cell injection. However, according to Fig.1, B cells and erythroid cells at this time point should be decreased >10 times while they are only decreased 2-4 times in Fig.2. This is also the case in Fig.4B-J or Fig.5D with even a lower decrease in B cells and erythroid cells despite a high number of leukemic cells. Please explain and give the end point for each experiment in each figure (main and supplemental).

      We understand the reviewer concern but we’d like point out the following: kinetic experiments such as these were reproduced multiple times in the laboratory. However, when comparing side-by-side experiments performed over the course of several months discrepancies in the exact days when leukemia shuts-down hematopoiesis are bound to happen. This is because there are numerous variables at play that we can minimize to the extent possible, but we cannot completely eliminate. For example, we took all possible steps to work with stable batches of preB-ALL cells. However, it is impossible to be absolutely certain that the batch in one experiment is identical to another experiment. Cells have to be expanded for adoptive transfer, which inevitably carries some variability (all biological systems undergo random mutations, including purchased C57Bl6/J from reputable vendors); slight differences in ALL engraftment (i.e. injection variability) can occur such that kinetics may change by a couple of days, etc. The findings we reported here are highly reproducible: ALL shuts down lymphopoiesis and erythropoiesis acutely, less so myelopoiesis; that LTbR signaling is the major mechanism shutting down lymphopoiesis but not erythropoiesis; that ALLs up-regulate LTbR ligands when compared to non-leukemic cells of the same lineage and at a similar developmental stage; that CXCR4 and DSB pathways both promote lymphotoxin a1b2 expression. The exact kinetics of these experiments will vary, or at least carry a margin of error that is to the best of our capability impossible to eliminate.

      3/ To formally prove that the observed effect is really due to LTab/LTbR signaling, the authors must perform further control experiments. LTbR signaling is better known for its positive role on lymphocyte migration. They cannot rule out by blocking LTbR signaling, that they inhibit homing of leukemic cells into the bone marrow through a systemic/peripheral effect, more than through an impaired crosstalk with BM LepR+ cells. They must confirm for inhibited/deficient LTbR signaling conditions, as compared to control, that similar B-ALL numbers home to the BM parenchyma at an early time point after injection. Furthermore, they cannot exclude that the effect on the expression of IL7 (and other genes), and consequently the effect on B cell numbers, is not simply due to the tumor burden. Indeed, B-ALL numbers/frequencies are different between control and inhibited/deficient signaling conditions at the time of analysis. The analyses should thus be performed at similar low and high tumor burden in the BM for both control and inhibited/deficient LTbR signaling conditions.

      We performed ALL homing experiments into control and LTbR∆ and found no significant differences in ALL frequency or number in BM 24h after transplantation. These data have been included in Figure 4A.

      We also performed experiments to control for the number of ALL cells in the bone marrow. Briefly, we compared the impact of 3 million WT ALLs with that of 3 and 9 million Ltb-deficient ALLs on Il7-GFP expression in BM MSCs. The number of Ltb-deficient ALLs in the BM of mice recipient of 9 million ALLs was equivalent to that of mice that received 3 million WT ALLs 7 days after transplantation. Importantly, Il7 was only downregulated in mice transplanted with WT ALLs. These data have been included in Figure 4R and 4S.

      4/ LT/LTbR signaling is particularly known for its capacity to stimulate Cxcl12 expression. How do the authors explain that they see the opposite?

      The reviewer is alluding to a well-known role of LTbR signaling as an organizer of immune cells in secondary lymphoid organs such as spleen and lymph nodes, and particularly its role in promoting CXCL13, CCL19, CCL21 production by fibroblastic reticular cells of these organs. Both the B cell follicle and the T-zone do not express CXCL12 abundantly. Furthermore, in the B cell follicle niche, LTbR signaling is critical for the maturation of Follicular Dendritic Cells, yet FDCs hardly produce CXCL12 as well. So, while LTbR is a well-known regulator of cell organization through the production of homeostatic chemokines and lipid chemoattractants, CXCL12 itself is not one of the major chemokines controlled by this pathway. In summary, we do not think our data is in any way incompatible with prior studies on the LTbR pathway, and even if it was, to our knowledge this is the first study on cell-intrinsic effects of LTbR signaling in BM MSCs.

      5/ The authors show that CXCL12 stimulates LTa expression in their cell line. They then propose that CXCR4 signaling in leukemic cells potentiates ALL lethality by showing that a CXCR4 antagonist reverses the decrease in IL7 and improves survival of the mice. This experiment is difficult to interpret. CXCL12 has been shown to be important for migration/retention of B-ALL in the BM and the decreased tumor burden is probably linked to a decreased migration more than an impaired crosstalk with LepR+ cells (see also point 3). If CXCL12 increases LTab expression, CXCR4 blockade should do the opposite. This result should be presented. The contradiction is that if B-ALLs induce a decrease in CXCL12 in the BM (in addition to IL7) and that CXCL12 regulates LTab levels, leukemic cells should be exhausted. Similarly, IL7 has been previously shown to stimulate LTab expression and B-ALL cells express the IL7R. Again, a decrease in IL7 should be unfavorable to B-ALL. How do they explain these discrepancies?

      We thank the reviewer suggestion of testing the impact of CXCR4 blocking in vivo on LTa1b2 expression. We performed these experiments which have now been included in the revised manuscript (Fig. 5C and 5D). In summary, we observed reduced LTa1b2 on ALLs transplanted into mice treated with AMD3100, a well-known CXCR4 antagonist. These data also show that CXCR4 signaling is not the only mechanism driving LTa1b2. These results further strengthen the main conclusions of the manuscript. Finally, to our knowledge no study has reported Lymphotoxin a1b2 upregulation in B-ALLs by IL-7.

      6/ In Supp 4A, RAG-/- mice are blocked at the pro-B cell stage and do not have pre-B cells. Please compare LTa and LTb expression by Artemis deficient pre-B cell to wt pre-B cells. In this experiment, the authors show that similarly to B-ALL artemis-/- pre-leukemic pre-B cells express high levels of LTab and induce IL7 downmodulation. Using mice deficient for LTbR in LepR+ cells, they show that IL7 expression is increased. However, in opposition to leukemic cells (see Figure 4F), pre-leukemic cells are increased in absence of LTab/LTbR signaling. Please explain this discrepancy. The authors use only one B-ALL model cell line for their demonstration (BCR-ABL expressing B-ALL). Another model should be used to confirm whether LTab/LTbR signaling does favor leukemic/pre-leukemic B cell growth.

      We apologize for the confusion. The mice that were used in this study were initially described by Barry Sleckman and colleagues (Bredemeyer et al. Nature 2008). Briefly, they crossed Artemis-deficient mice with VH147 IgH transgenic and EμBcl-2 transgenic mice to generate mice in which B cell development is arrested at the preB cell stage. The Vh147 heavy chain allows their development to the pre-BCR+ preB cell stage but Artemis deficiency prevents Rag protein re-expression and hence B cell can’t recombine light chain genes. The EμBcl-2 transgene allows preB cells to survive despite carrying unrepaired double-strand DNA breaks (DSB).

      Regarding the discrepancy noted by the reviewer we argue that this is not a discrepancy. While ALLs can grow in vitro and in vivo in the absence of IL7, non-leukemic developing B cells are strictly IL7 dependent. PreB cells carrying unrepaired DSBs still express IL7 receptor and although no data is currently available on whether these cells are also IL7-dependent, we speculate that they are. Because up-regulation of Lymphotoxin a1b2 in preB cells carrying unrepaired DSBs promotes IL7 downregulation we speculate that this mechanism may contribute to the efficient elimination of pre-leukemic preB cells in vivo. We revised the manuscript to include this explanation of the mouse model and discussion on how we think the LTbR pathway may play a role in pre-leukemic states.

      Finally, the data presented in this study includes two distinct leukemia mouse models. It also includes data from human B-ALL and AML samples that is in agreement with the mouse data presented here. We respectfully disagree with the reviewer that a third model is needed to confirm a role for the LTa1b2/LTbR pathway in leukemia.

      7/ Pre-B cells are composed of large pre-B cells (pre-BCR+) and small pre-B cells (pre-BCR-). BCR-ABL B-ALL cells express the pre-BCR. What is the level of expression of LTa and LTb by each of these 2 subsets as compared to BCR-ABL B-ALL?

      This is a misconception. The difference between large and small preB cells is simply that large preB cells are in S/G2 phase of the cell cycle. Their increased size is a mere consequence of doubling DNA, protein, membrane content, etc.

    1. Author Response

      Reviewer #1 (Public Review):

      In this study, they demonstrate that neonatal mice produce more CD43- B cellderived IL-10 following anti-BCR stimulation than adult mice. This is due to autocrine mechanisms whereby anti-BCR stimulation leads to pSTAT5 upregulation and production of IL-6 which then enhances IL-10 production via pSTAT3. These are interesting results for the regulatory B cell field, demonstrating that signaling is different in adult vs neonatal B cells and in particular for researchers studying the mechanisms underpinning the enhanced susceptibility to infection. The authors in the main achieved their aim and the results support their conclusions. However, considering that other studies have previously addressed the mechanisms contributing to enhanced IL-10 production in neonates, in the manuscript, there are some experimental decisions and data presentation decisions that at times need more explanation. An important additional comment is that the introduction/discussion is at times insufficiently referenced to put the data in context for non-experts in this field and that numbers in general are low for an in vitro study.

      We have now updated the introduction and discussion to provide more insight into our study. We hope that our study is now more understandable for non-experts.

      Reviewer #2 (Public Review):

      This paper reports that neonatal CD43- B cells produce IL-10 upon BCR stimulation, which inhibits TNF-alpha secretion from the peritoneal macrophage. In the neonatal CD43- B cells, the BCR-mediated signal transmitted Stat5 activation and induced IL-6 production, and subsequently, the secreted IL-6 activated Stat3 finally leading to IL-10 production. The authors identified a unique signaling pathway leading to IL-10 production and revealed the different responses between CD43+ and CD43- B cells against BCR crosslinking. A weakness of this study is that the neonatal CD43- B cell subset secreting IL-10 has not been characterized and discussed as well. BCR expression levels between adult CD43- B cells and neonatal CD43- B cells have been overlooked to explain the different reactivity. Clarity on these points would substantially enhance the impact of the manuscript.

      We thank the reviewer for the suggestion to measure BCR levels. We now measured the IgM and IgD levels on neonatal and adult B cell C43+ and CD43- subsets (Figure 1figure supplement 5).

    1. Author Response

      Reviewer #1 (Public Review):

      This is an exciting paper describing the development of a robust differentiation of the common marmoset induced pluripotent stem cells (iPSCs) into primordial germ cell-like cells and subsequently into spermatogonia-like cells when combined with testis somatic cells. The work is of high quality, but some experimental details and protocols are missing which are necessary for a new protocol development - for example, reconstitution methods and protocols are missing completely in the manuscript and additional details in various aspects of the differentiation and cell maintenance are missing. Despite this, the work is valuable and would be of interest to the germ cell and in vitro gametogenesis communities. The data suggest that marmosets are very similar to humans and macaques, and indeed previously established protocols for PGCLC induction and likely previously published testis reconstitution methods/differentiation were employed here to generate the spermatogonia-like cells.

      We greatly appreciate the positive comments of the reviewer on our manuscript. We have added experimental details of our germ cell differentiation schemes in Materials and Methods.

      Reviewer #2 (Public Review):

      This paper identifies the need for improved pre-clinical models for the study of human primordial germ cells (PGCs) and suggests the common marmoset (Callithrix jacchus) as a suitable primate model. In vitro gametogenesis offers an alternative method to generate germ cells from pluripotent stem cells for study and potential pre-clinical applications. Therefore, the authors aimed to take the first steps toward developing this technology for the marmoset. Here, iPSCs have been derived from the marmoset and differentiated to PGC like-cells (PGCLCs) in vitro that have similarities in gene expression with PGCs identified from single-cell studies of marmoset embryos, as demonstrated through immunofluorescence and RT-qPCR approaches, as well as RNA-sequencing.

      The authors have successfully developed a protocol that produces PGCLCs from marmoset iPSCs. These are shown to express key germline gene markers and are further shown to correlate in gene expression with PGCs from the marmoset. This study uses a 2D culture system for further expansion of the PGCLCs. When cultured with mouse testicular cells in a xenogeneic reconstituted testis culture, evidence is provided that cjPGCLCs have the capacity to develop further, expressing marker genes for later germline differentiation. However, the efficiency of generating these prospermatogonia-like cells in culture is unclear. Nonetheless, with the importance of developing protocols across species for in vitro gametogenesis, this paper takes a key step towards generating a robust preclinical system for the study of germ cells in the marmoset.

      We thank the reviewer for the encouraging comment. By IF analyses, we identified 0.89 and 3.3% of DAZL or DDX4 positive cells, respectively (DDX4+TFAP2C+ cells [4/123, 3.3% among all TFAP2C+ cells] and DAZL+TFAP2C+ cells [2/232, 0.86% among all TFAP2C+ cells]). Overall scarcity of cells and lack of fluorescence reporters (DAZL and DDX4 are cytoplasmic proteins necessitating technically challenging intracellular staining procedure to be assessed by flow cytometry), we were not able to provide the flow cytometric plots in this study. This has been described in the revised manuscript (page 11, Results, “Maturation of cjPGCLCs into early prospermatogonia-like state”).

      The claims of the authors are generally justified by the data provided; however, some conclusions should be clarified. In particular, the authors have failed to show convincingly that cjPGCLCs are a distinct cell type to the iPSCs that generated them. cjiPSCs cultured in feeder conditions (OF) with IWR1 are reported to cluster closely with the derived cjPGCLCs using principal component analysis of RNA-Seq data. This contrasts with the cjiPSCs cultured in feeder-free (FF) conditions which maintain a more undifferentiated/less primed state, and are not capable of differentiating to the germline lineage. Therefore, the OF/IWR1 cjiPSCs could rather be an intermediate cell-state between iPSCs and cjPGCLCs.

      Although OF/IWR1 cjiPSCs are closer to cjPGCLCs than cjiPSCs cultured in other conditions, they are pluripotent (as evidenced by trilineage differentiation assay, morphological assessment, and expression of pluripotency markers, Figure 3–figure supplement 2) and do not express most of key germ cell markers (Figure 6–figure supplement 1C). Our newly added scRNA-seq analyses also highlighted the differences between OF/IWR1 and cjPGCLCs and the molecular dynamics associated with the transition.

      The reasons behind improved germline competence of iPSCs in the different media conditions are unclear. The authors reject the idea that this is due to the presence of IWR1, since this condition has not affected FF iPSCs. However, the efficiency of differentiation was greatly increased in OF conditions when IWR1 was used, indicating inhibition of WNT does indeed have a positive effect on induction to the germline lineage. This area requires further clarification.

      As the reviewer pointed out, inclusion of IWR1 in cultures of OF cjiPSCs upregulates some pluripotency markers (SSEA3, SSEA4) and reduces meso/endodermal differentiation. Thus, the undifferentiated/less primed state under the Wnt inhibition might positively affect germ cell differentiation of OF cjiPSCs. However, FF cjiPSCs are pluripotent and are not germline competent, even in the presence of IWR1, suggesting that there are factors in FF culture conditions that make them incompetent for germline differentiation. Because FF cultures utilize PluriStem™ medium, a proprietary product of MilliporeSigma, we were unable to define the factor that confers such germline incompetence.

      Another area requiring clarification is the reporting of RNA sequencing data as representative of a developmental trajectory, without defining which cell lines produced clusters, or defining the stages of this trajectory. The authors refer to the identification of four clusters representative of a developmental trajectory, however, they provide unclear information as to what this refers to. Importantly, detailed transcriptomic comparisons between in vivo-derived PGCs and in vitro PGCLCs are not provided.

      Our original analysis revealed which cell lines produced clusters (Figure 6A) and defined the stages of the trajectory (iPSCs feeder free, iPSCs on feeder, PGCLCs, expansion, Figure 6C). The four clusters to which the reviewer refers are gene clusters that are defined by unsupervised clustering analysis of variably expressed genes across the samples (Figure 6D). As it is defined computationally, it is not possible to unequivocally define gene clusters by particular cell types. However, we found that these gene clusters revealed insightful patterns (1, genes higher in cjiPSCs; 2, genes higher in cjPGCLCs; 3, genes higher in expansion culture cjPGCLCs; 4, genes higher in d2 cjPGCLCs). We have added sample information to the Figure 6D to further clarify the meaning of the data and a brief explanation of gene clusters in the figure legend. To define the trajectory in a more unbiased manner, we performed scRNA-seq and have added additional trajectory analyses (Figure 7A-K in the revised manuscript). Moreover, we also added the transcriptomic comparison as the reviewer suggested (Figure 7L, M in the revised manuscript).

      Functional validation of iPSC lines generated in the study is not provided besides confirming that the cells express pluripotency markers OCT3/4, SOX2, and NANOG. It is important to confirm tri-lineage differentiation of iPSCs, e.g., through an embryoid body assay. Since FF cjiPSCs were unable to differentiate into cgPGCLCs, it is even more important to confirm cells are genuine iPSCs.

      We performed a trilineage differentiation assay and confirmed that they can generate three germ layers.

      In summary, although there are issues surrounding clarity, this paper is generally justified in its conclusions. The authors present an optimised protocol for the derivation of PGCLCs from marmoset iPSC-like cells, with defined expansion conditions and evidence of further differentiation to prospermatogonia-like cells.

      We thank the reviewer for the encouraging comment.

    1. Author Response

      Reviewer #1 (Public Review):

      Sayin et al. sought to determine if bacterial drug resistance has impact on drug efficacy. They focused on gemcitabine, a drug used for pancreatic cancer that is metabolized by E. coli. Using an innovative combination of genetic screens, experimental evolution, and cancer cell co-cultures to reveal that E. coli can evolve resistance to gemcitabine through loss-of-function mutations in nupC, with potential downstream consequences for drug efficacy.

      Major strengths include:

      • Paired use of genetic screens and experimental evolution

      • The spheroid model is a creative approach to modeling the tumor microbiome that I hadn't seen before

      • Rigorous microbiology, including accounting for mutation rate in both selective and non-selective conditions

      • Timely research question

      Major weaknesses of the methods and results include the following:

      1) Limited scope of the current work. Just a single drug-bacterial pair is evaluated and there are no experiments with microbial communities, animal models, or attempts to test the translational relevance of these findings using human microbiome datasets.

      We agree with the reviewer that uncovering evidence from human microbiome datasets will be very exciting and complementary to our study. However, since gemcitabine is administered intravenously it’s unclear whether it will impose a considerable selective pressure on the gut microbiome. Therefore, it also remains unclear if adaptive mutations, as those we identified, are expected to be found in datasets for the gut microbiome. While metagenomics datasets that are bacterial-centric of infected pancreatic tumors will be ideal for addressing the reviewer’s suggestion, they do not exist to the best of our knowledge. It should be noted however, that our work generated hypotheses that can be tested in pancreatic tumor tissues infected with gammaproteobacteria and can be tested in the future by targeted sequencing for the specific genes of interest (e.g, nupC and cytR).

      2) No direct validation of the primary genetic screen. The authors use a very strict cutoff (16-fold-change) without any rationale for why this was necessary. More importantly, a secondary screen is necessary to evaluate the reproducibility of the results, either by testing each KO in isolation or by testing a subset of the library again.

      We used a strict cutoff to allow the reader to focus on a manageable list of gene names in the main figure (2E). To partly address this limitation in scope, we also included results from pathway enrichment analysis in the same figure (2F). This analysis utilizes all enrichment values and is therefore independent from any choice of cutoff value. We also now refer the reader to explore more of the hit genes in the supplementary information (line 152).

      As the reviewer suggested we evaluated the reproducibility of the results by performing two validation screens. The first validation screen was performed as a biological replicate of the original screen and relied on the original collection of knockouts strains. The second validation screen was performed with a knockout strain collection that was cloned independently from the strains used in our original screen. The results from these two completely independent biological replicates are presented on supp. figure 1D. The results (resistance/sensitivity) from the two screens are highly correlated. We refer to this comparison in the main text (lines 142-147).

      3) Some methodological concerns about the spheroid system. As I understood it, these cells are growing aerobically, which may not be the best model for the microbiome. Furthermore, bacterial auxotrophs are used and only added for 4 hours, which will really limit their impact. It also was unclear if the spheroids are truly sterile. Finally, the data lacks statistical analysis, making it unclear which KOs are meaningful. Delta-cdd looks clearly distinct by eye, but the other two genes are more subtle.

      The 4 hour time interval chosen to address two opposing requirements of the co-culture system – mitigate overgrowth of the bacterial cultures (which hinders spheroid growth irrespective of the drug) while still allowing enough incubation time to allow for drug degradation. As the reviewer notes, removal after 4 hours may limit the bacteria impact. However, such a limitation will only result in underestimation the bacterial impact (but will have no impact on how we evaluate how strains compare to one-another). We now comment on this in the methods section (lines 699-705).

      We do not expect the spheroid to remain infected after bacterial removal since we treat spheroids with antibiotics. We didn’t not detect any bacterial growth in the 7 days post infection in the microscope and we did not observe influence on spheroid growth when compared to spheroid that were not infected. Growth of spheroid before infection was performed w/o antibiotics and we did not detect any evidence of bacterial growth prior to introducing the bacteria intentionally (the cell-line itself was also tested for animal pathogens and bacterial contamination prior to the experiments).

      We repeated the spheroid experiments and observed similar shifts in the EC50 fronts. We now include these replicates as supplementary figure 7. We comment on these replicates in the main text (lines 273-274).

    1. Author Response

      Reviewer #1 (Public Review):

      This is an elegant and fascinating paper on individuality of structural covariance networks in the mouse. The core precepts are based on a series of landmark papers by the same authors that have found that individuality exists in inbred mice, and becomes entrenched when richer environments are available. Here they used structural MRI to provide whole brain analyses of differences in brain structure. They first replicated brain (mostly hippocampal) effects of enrichment. Next, they used their roaming entropy measurements to show that, after dividing their mice into two groups based on their roaming entropy, that there were no differences in brain structure between the two groups yet significant differences in brain networks as measured by structural covariance. Overall I enjoyed this paper, though am confused (and possibly concerned) about how they arrived at their two groups and have some less important methods questions.

      The division of mice into two groups (down and flat) is confusing. The methods appear to suggest that k-means clustering combined with the silhouette method was used (line 380). The actual analyses used involves 2 groups of 15 mice each. The body of the manuscript suggests that 10 intermediate mice were excluded (line 100), but the methods (line 390) suggest that 8 mice were excluded, 2 for having intermediate results and 6 for having high RE slope values.

      This leads to a series of questions:

      • How many mice were excluded and for what reasons, given the discrepancy between body and methods?

      The discrepancy was an oversight that has been corrected. The statement with the exclusion of six upward sloping and two intermediates is correct. For the rationale see above and the inserted text in the discussion.

      • Was the k-means clustering actually used? It appears that the main division of mice was based on visual assessments.

      The superfluous paragraph in the method section was removed.

      • If the clustering was used, did it result in 2 or 3 groups?

      Slope distribution did not reveal clear groups, so it did not offer an advantage over the arbitrary decision based on slope values and described above. We have now added a graphic depiction of the slope values next to the ‘flat’ or ‘down’ matrices for greater clarity (Fig. 3B).

      • The intermediate group bothers me (if it was indeed 10 intermediate mice as indicated by the body rather than 2 as indicated in the methods): if these are indeed intermediate shouldn't they be analyzed and shown to be intermediate on the graph or other measures?

      These were only 2 mice, for which the matrix cannot be calculated.

      • Please explain the reasoning for excluding mice for having too high of a slope (if there were indeed mice excluded for having too high of a slope).

      We went to long discussions among the authors and finally decided in favor of two equally-sized groups with homogenous patterns. The effect that we observed is so large and obvious that it survives all sorts of regrouping. We have also followed the suggestion to present the continuous correlation across the whole range of animals (Fig. 2)

      I'd also appreciate more discussion about the structural covariance differences between flat and down mice. It is not clear what the direction of effects are - it appears that flats show mostly increases in covariance?

      Yes, covariance is greater in the top (flat) than bottom (down) group.

      The structural covariance matrix for those mice with a ‘flat’ RE suggests a much higher degree of inter-regional correlation in comparison to ‘down’ or STD mice, findings confirmed and extended by the NBS analysis.

      Reviewer #2 (Public Review):

      Lopes et al. use genetically identical mice to address a topic of broad interest: how does variation in roaming behaviour across individuals (here, quantified via the roaming entropy) arise over time when exposed to an enriched environment, and how does this variation in behaviour relate to brain structure and networks. Specifically, by examining the roaming entropy of mice and the sizes of brain structures, the authors convincingly show 1) an increase in variability in roaming behaviour over a period of 12 weeks, 2) that mice that roam more contain an increased number of doublecortin positive cells in the dentate gyrus (indicating higher levels of neurogenesis), and 3) that roaming is associated with widespread differences in neuroanatomy. The authors additionally partition mice into two groups characterized by roaming trajectories (continuous "flat" roamers and habituating "down" roamers), construct structural covariance networks for these groups, and show that the structural covariance network for "down" roamers is similar to mice housed in standard conditions and contrasts that of "flat" roamers.

      A major strength of this study is the wealth of roaming data generated by the RFID setup; the high temporal resolution, fair spatial resolution, and long period of observation (3 months) allow for measures such as roaming entropy to be precisely quantified and tracked over time. Coupled with high-resolution whole brain structural MRI and histological measurements of neurogenesis in the dentate gyrus, the dataset generated is an incredibly valuable one to probe brain-behaviour relationships. Importantly, this study showcases the power of animal studies--because the subject mice are inbred, they are virtually identical in their genetics, and therefore any variation in the data collected should arise from the non-shared environment.

      An area of improvement for this study follows from its strength: the dataset collected here contains far more information on mouse behaviours than is analyzed. For instance, the sizes of a broad set of regions were found to be statistically associated with roaming behaviour, but determining how much of this anatomical variation is specifically related to differential exploration of the static environment as opposed to social contact with other animals (which could presumably be determined from the RFID data) would make this study much more impactful and interesting to the community.

      An important limitation in the network analyses performed is the small number of mice. Due to sampling variation, a large number of individuals are required to estimate correlation coefficients with reasonable precision. While large-scale similarities and differences between the structural covariance (correlation) matrices are visually apparent and quite striking, confidence in these results would be increased with the inclusion of more subjects, and/or a replication cohort.

      We fully agree to this judgement. It is not straightforward, however, to further increase N in these studies, both for cost and logistic reasons. Rather than investing into further improving this current study, we decided to learn from our findings and design follow-up studies that take the next steps.

      Finally, while both roaming behaviour and brain structure are assessed, relationships between these measures are associative. Since brain structure was only examined at one timepoint (post-enrichment), the direction of causation cannot be assessed. It remains to be seen if behavioural variation drives anatomical variation through plasticity, or whether anatomical variation present before enrichment is predictive of future behaviours. To their credit, the authors are careful not to make causal inferences. In the context of this brain-behaviour studies, this is an important limitation to recognize, but this does not detract from the important relationships between roaming behaviour and brain structure found by the authors in this study.

      In summary, while there is much more to do in studying relationships between the environment, brain structure, and behaviour, Lopes et al. take an important step ahead in describing relationships between individual roaming behavioural trajectories, brain structure, and structural covariance networks.

    1. Author Response

      Reviewer #1 (Public Review):

      This study elucidates a role of EHD2 as a tumor/metastasis promoting protein. Prior work has found varying results indicating that high expression of EHD2 is either associated with good or poor outcomes. In this work the authors find that EHD2 is expressed in both the nucleus and cytoplasm, and that high cytoplasmic to nuclear expression is associated with a poor prognosis. Using WT and either shRNA knockdown or CRISPR KO cells, they show that EHD2 promotes 3D growth, migration and invasion in vitro, and tumor growth and metastasis in vivo. Importantly, re-expression of EHD2 in KO cells rescues the loss of function phenotype. Mechanistically, the investigators show that the loss of EHD2 decreases the calveoli and that this decreases the Orai1/Stim induced calcium influx. Finally, they show that inhibitors of store operated calcium entry (SOCE) phenocopies the loss of EHD2. Together the data support a protumorigenic role for EHD2 via store-operated calcium entry and reinforce the utility of targeting calveoli and SOCE in tumors with high cytosolic EHD2. This study provides a rationale for using SOCE inhibitors in a subset of breast cancers, and a potential predictive biomarker for using SOCE inhibitors based on high expression of EHD2.

      We are grateful for the positive comments. Since this paragraph is to be published in the event of our manuscript being accepted, we request the correction of one typo in the paragraph: “calveoli” should be “caveolae”.

      Reviewer #2 (Public Review):

      The manuscript by Luan et. al. describes the role of EHD2 in promoting breast tumor growth. They showed that EHD2 cytoplasmic staining predicts poor patient outcome. Both EHD2 KO or knockdown cells showed decreased cell migration/invasion abilities and significant reduction of tumor growth and metastasis in mice. The authors further showed that the levels of EHD2 and Cav1/2 correlate with each other. EHD2 KO cells showed defects on Ca2+ trafficking. Overexpressing the SOCE factor STIM1 partially rescued SOCE defects in EHD2 KO cells. Treatment of the SOCE inhibitor SKF96365 inhibited tumor cell migration in vitro and tumor growth in vivo.

      Major strengths: The authors showed that EHD2 cytoplasmic levels predict patient survival and provided strong evidence that EHD2 knockout or knockdown inhibits tumor cell migration in vitro and tumor growth in vivo. The authors also showed that SKF96365, which inhibits SOCE, suppresses tumor growth in vivo.

      Major weaknesses: The connection between EHD2 and SOCE is weak.

      We are thankful to the reviewer for her/his assessment of the strengths in our manuscript and appreciate her/his pointing to its weaknesses. We agree that more studies will be needed to fully establish the connection of EHD2 to SOCE and have appropriately moderated our statements in the results and discussion sections of the manuscript. We have also added statements about the need for such future studies.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript by Ramaprasad et al., the authors report on the functional characterization of the P. falciparum glycerophosphodiesterase to assess its role in phospholipid biosynthesis and development of asexual stages of the parasite. The authors utilized loxP strategy to conditionally knock-out the target gene, they also carried out complementation assays to show recovery of the knock-out parasites. They further show that Choline supplementation is also able to rescue the knock-out phenotype. Quantitative lipidomic analyses show effect on majority of membrane phospholipids. In vitro activity assays and metabolic labelling assays shows role of GDPD in metabolism of exogenous lysoPC for PC synthesis. The manuscript deciphers the functional role of an important component of lipid metabolism and phospholipid synthesis in the parasite, which are crucial metabolic pathways required for replication of the parasite in the host cell.

      We thank the Reviewer for assessing our work and for the following helpful suggestions.

      Reviewer #2 (Public Review):

      The authors use a conditional Lox/Cre knock-out system to test and confirm the essentiality of glycerophosphodiester phosphodiesterase (GDPD) for blood-stage parasites and a key role in mobilizing choline from precursor lysophosphocholine (LPC) for parasite phospholipid synthesis. Prior works had identified serum LPC as the key choline source for parasites, localized this enzyme in parasites, and suggested an essential function in releasing choline, but this key function had remained untested in parasites. This manuscript critically advances mechanistic understanding of parasite phospholipid metabolism and its essentiality for blood-stage Plasmodium and identifies a potential new drug target.

      Overall, this study is well constructed and rigorously performed, and the data provide strong support for the central conclusions about GDPD essentiality and functional contribution to parasite phosphocholine metabolism. The observation that exogenous choline largely rescues parasites from lethal deletion of GDPD is especially compelling evidence for a critical and dominant role in choline mobilization. A few aspects of the paper, however, are not fully supported by the current data and/or need clarification.

      We thank the reviewer for this very positive assessment and the helpful suggestions below.

      1) GDPD localization

      a) The authors conclude that GDPD is localized to the parasitophorous vacuole (PV) and parasite cytoplasm (lines 114-115), which is consistent with the prior 2012 Klemba paper. However, the data in the present paper (Figures 2A and 2E) only seem to support cytoplasmic localization but don’t obviously suggest a population in the PV, in part because no co-staining with a PV marker is shown. The legend for Fig. 2E indicates staining with the PV marker, SERA5, but such co-stain is not shown in the figures or figure supplements. This data should ideally be included and described.

      We apologise for this error and omission in our original submission. In response to this suggestion, we have now generated new data that demonstrate co-localisation of the PV marker SP-mScarlet (Mesen-Ramirez et al., 2019) with GDPD in our GDPD-GFP line. In the revised manuscript we now include those new data in Fig 2A and we have also corrected the legend of the revised Fig 2E to reflect what is being shown.

      b) How do the authors explain cytoplasmic localization for GDPD? This protein contains an N-terminal signal peptide, which can account for secretion to the PV but would contradict a cytoplasmic population. The 2012 Klemba paper suggested that internal Met19 might provide an alternate site for translation initiation without a signal peptide and thus result in cytoplasmic localization. Some discussion of this ambiguity, its relation to understanding GDPD function, and a possible path to resolve experimentally seem necessary, especially as the authors suggest from data in Fig. 7 that this enzyme may have functions beyond choline mobilization, which may relate to distinct forms in different sub-cellular compartments.

      The Reviewer raises an excellent point here. We agree that the apparent dual localization of GDPD and the question of its potential function in both compartments is intriguing. Since lysoPC is efficiently internalised into the parasite, one simple possible explanation (which we failed to state earlier) is that GDPD performs a similar enzymatic function in both compartments. Given the importance of choline for parasite membrane biogenesis, it would not be surprising for GDPD activity to be required at high abundance in order to maintain sufficient choline levels in the parasite. We have now modified lines 403 onwards in the revised Discussion to provide more perspective on this point, as follows: “Based on protein localisation, ligand docking and sequence homology analyses, we can further speculate regarding aspects of PfGDPD function not explored in this study. It has been previously suggested that the gene could use alternative start codons via ribosomal skipping to produce distinct PV-located and cytosolic variants of the protein (Denloye et al., 2012). PfGDPD could potentially perform similar functions in both compartments by facilitating the breakdown of exogenous lysoPC both within the PV and within the parasite cytosol (Brancucci et al., 2017). This scale of enzyme activity may be essential for the parasite to meet its choline needs, given the high levels of PC synthesis during parasite development and its crucial importance for intraerythrocytic membrane biogenesis. PfGDPD may also have other roles during asexual stages such as temporal and localised recycling of intracellular PC or GPC by the PfGDPD fraction expressed in the cytosol. Finally, our ligand docking simulations also do not rule out catalytic activity towards additional glycerophosphodiester substrates such as glycerophosphoethanolamine and glycerophosphoserine (Figure 6-figure supplement 1A and B). Further investigation that involves variant-specific conditional knockout of the gdpd gene could help us further dissect the role of PfGDPD in the parasite.”

      2) The phenotypes depicted by representative microscopy images in panel 4E (especially for choline rescue) should be supported by population-level analysis by flow cytometry or microscopy of many parasites to establish generality.

      We agree that this would be informative, and in the revised manuscript we have now added a representative microscopy image as source data (Figure 4E_G1+Cho48h-sourcedata.png). It is also worth pointing out that G1 is a clonal line generated from the RAP+ Choline+ parasite population. Both population-level analysis by flow cytometry (Fig 4A) and microscopic images (Fig 4D) are therefore also applicable to the G1 line.

      3) The analysis in the last results section (starting on line 296) seems preliminary.

      a) For panel 7B, a population analysis of many parasites, with appropriate statistics, is important to establish a generalizable defect beyond the single image currently provided.

      b) The data here would seem to be equally explained by an alternative model that GDPD∆ parasites are competent to form gametocytes but their developmental stall (due to choline deficiency) prevents progression to gametocytogenesis. The authors speculate that GDPD may play other roles in phospholipid metabolism beyond choline mobilization that are essential for gametocytogenesis. Their model, if correct, predicts that a GDPD deletion clone from +RAP treatment that is rescued by exogenous choline should not form gametocytes. Testing this prediction would be important to strongly support the conclusion of broader roles for GDPD in sexual development beyond choline mobilization.

      We interpreted our results precisely as the reviewer suggests here – that the developmental stall during trophozoite stages is severe enough to prevent sexual differentiation. A priori, we have no reason to suspect that GDPD plays other roles that are selectively essential for gametocyte development. We speculated that GDPD might have other roles in asexual stages but not necessarily based on this experiment. In the revised manuscript we have modified line 313 accordingly to remove ambiguity: “This result implies that the loss of PfGDPD causes a severe block in PC synthesis resulting in the death of asexual parasites before they get to form gametocytes.”

      We have also altered line 411 in the Discussion to: “PfGDPD may also have other roles during asexual stages such as temporal and localised recycling of intracellular PC or GPC by the PfGDPD fraction expressed in the cytosol.”

      We agree with the reviewer that the analysis is preliminary. Since we lose RAP-treated GDPD:HA:loxPintNF54 populations after cycle 1, we were unable to do more detailed analysis with the line. We also wished to carry out the experiment that the reviewer suggests here to analyze choline-rescued mutants. However, we would be unable to test for this as choline supply alone would suppress sexual differentiation in these parasites (as shown in Brancucci et al., 2017).

      Reviewer #3 (Public Review):

      In this work, Ramaprasad et al. aimed to investigate the roles of a glycerophosphodiesterase (PfGDPD) in blood stage malaria parasites. to determine its role, they generated a conditional disruption parasites line of PfGDPD using the DiCre system. RAP-induced DiCre-mediated excision results in removal of the catalytic domain of this protein. Loss of this domain leads to a significant reduction of parasite survival, specifically affecting trophozoite stages. They suggest that there is an invasion defect when this protein domain is deleted. They additionally show the introduction of an episomal expression of PfGDPD can rescue the activity of the protein and restore parasite development. Interestingly, exogenous choline can rescue the effects of the loss of PfGDPD. Lipidomic analyses with labelled LPC show that choline release from LPC is severely reduced upon protein ablation and in turn prevents de novo PC synthesis. These experiments also show increase in DAG levels suggesting a defect in the Kennedy pathway. The authors purified PfGDPD and enzymatically show that this protein facilitates the release of choline from GPC. Additionally, the paper also briefly looks at the effects of the protein during sexual blood stages and show this is unlikely to be involved in sexual differentiation.

      This paper is of interest to the community since the breakthrough paper of Brancucci et al. (2017), which showed us that decreased LPC levels induce sexual differentiation. This work brings novel insight into a GDPD responsible for the release of choline from GPC which actual seems more relevant to asexual stages and not sexual stage parasites. The authors have been extremely thorough in their experimentations on parasite viability and the exact role of this protein.

      We thank the reviewer for this positive assessment and the helpful comments.

    1. Author Response

      Reviewer #1 (Public Review):

      It is a strength of the current manuscript that it provides a near-complete picture of how the metamorphosis of a higher brain centre comes about at the cellular level. The visualization of the data and analyses is a weakness.

      I do not see any point where the conclusions of the authors need to be doubted, in particular as speculations are expressly defined as such whenever they are presented.

      The fact that molecular or genetic analyses of how the described metamorphic processes are organized are not presented should, I think, not compromise enthusiasm about what is provided at the cellular level.

      We appreciate the comments and guidance that Reviewer #1 has given us on data presentation. We have tried to simplify figures and make the images larger. For the developmental figures, a couple of illustrative examples are provided in the main figure with the remainder given in “figure supplements”

      Reviewer #2 (Public Review):

      This very nice piece of work describes and discusses the developmental progression of larval neurons of the mushroom body into those in the adult Drosophila brain. There are many surprising findings that reveal a number of strategies for how brain development has evolved to serve both the early functions specific to the larval brain and then their eventual roles in the adult brain. I think it is fascinating biology and I was educated while reviewing the paper.

      Line 115-116. 'Output from PPL1 compartments direct avoidance behavior, while that from PAM compartments results in attraction'. This is not correct and is actually reversed. The learning rule is depression so that aversive learning reduces the drive to approach pathways whereas appetitive learning reduces the drive to avoidance pathways. This should be corrected and reference made to studies demonstrating learning-directed depression.

      Line 222. It provides feed-forward inhibition from y4>2>1. I could be wrong but I'm not aware that there is functional evidence for this glutamatergic neuron being inhibitory. It's currently speculation.

      We have noted that this function was proposed by Aso et al.

      Line 242. I think it would be nice if the authors focused on extreme changes and showed larger and nicer images. The rest can be summarized but why not pick a few of the best examples to illustrate the strategies they consider in the discussion?

      We have reduced the number of neurons shown in the new Figs 5 and 6. Hopefully, the images are now large enough to appreciate. Data for the remaining neurons are now in Figure Supplements for Figs 5 and 6.

      Line 249 'became sexually dimorphic'. I may have missed it somewhere but this immediately made me think about the sex of all the images that are shown. Is this explicitly stated somewhere? Was it tracked in all larvae, pupae, and adults?

      We now begin the Methods addressing this point. We did an initial screen and found sex-specific differences only in MBIN-b1 and -b2. After this time, we kept no records as to the sex of the fly that was used except for the latter cells.

      Reviewer #3 (Public Review):

      Truman et al. investigated the contribution and remodeling of individual larval neurons that provide input and output to the Drosophila mushroom body through metamorphosis. Hereto, they used a collection of split-GAL4 lines targeting specific larval mushroom body input and output neurons, in combination with a conditional flip-switch and imaging, to follow the fates of these cells.

      Interestingly, most of these larval neurons survive metamorphosis and persist in the adult brain and only a small percentage of neurons die. The authors also elegantly show that a substantial number of neurons actually trans-differentiate and exert a different role in the larval brain, compared to their final adult functionality (similar to their role in hemimetabolous insects). This process is relatively understudied in neuroscience and of great interest.

      Using the ventral nerve cord as a proxy, the authors claim that the larval state of the neuron would be their derived state, while their adult identity is ancestral. While the authors did not show this directly for the mushroom body neurons under study, it is a very compelling hypothesis. However, writing the manuscript from this perspective and not from the perspective of the neuron (which first goes through a larval state, metamorphosis, and finally adult state), results in confusing language and I would suggest the authors adjust the manuscript to the 'lifeline' of the neuron.

      We have tried to be more “linear” in our presentation. This should make the text less confusing.

      In general, this manuscript does not explain how the larval brain has evolved as the title suggests but instead describes how the larval brain is remodeled during metamorphosis. It thus generates perspectives on the evolution of metamorphosis, rather than the larval state. Additionally, this manuscript would benefit from major rearrangements in both text and figures for the story to be better comprehended.

      We think that the end of the Discussion does relate to how a larval brain evolves. The evolution of the larval brain is faced with constraints related to the shortened period of embryonic development and the highly conserved temporal and spatial mechanisms that insects use to generate their neuronal phenotypes. These constraints result in a potential mismatch between the neurons that are needed and those that are actually made (revealed by the adult phenotypes of these neurons). The larva then turns to trans-differentiation to temporarily transform unneeded (or dead) neurons into the missing cell types to build its larval circuits.

      We think that these ideas provide some new insights into how a larval brain may have evolved and that our title is appropriate.

      The introduction is very focused on the temporal patterning of the insect nervous system, while none of the data collected incorporate this temporal code. Temporal patterning comes back in the discussion but is purely speculative.

      The Speculation about the importance of temporal patterning is now brought in late in the Discussion in reference to Figure 12

      Furthermore, the second part of the introduction describes one strategy for remodeling and why that strategy is not likely but does not present an alternative hypothesis. The first section of the results might serve as a better introduction to the paper instead, as it places the results of the paper better and concludes with the main findings. The accompanying Figure 1 would also benefit from a schematic overview of the larval and adult mushroom bodies as presented in Fig. 2A (left).

      This has been revised in the spirit of these comments

      In the second results section, the authors show the post-metamorphic fates of mushroom body input and output neurons and introduce the concept of trans-differentiation. Readers might benefit from a short explanation of this process. I also encourage the authors to revisit this part of the text since it gives the impression that the neurons themselves undergo active migration (instead of axon remodeling).

      We have tried to make it clear that there is no cell migration. Rather there is retraction/fragmentation of larval arbors followed by outgrowth to new, adult targets

      The discussion starts with a very comprehensive overview of the different strategies that neurons could use during metamorphosis (here too, re-writing the text from the neurons' perspective would increase the reflection of what actually happens to them).

      The Discussion now begins by dealing with gross changes in the MB, with reference to the compartments and eventually moves to changes in individual cells. We have reduced our discussion of the metamorphic strategies of cells and no longer have Fig 8A

      The discussion covers multiple topics concerning trans-differentiation, metamorphosis, memory, and evolution and is often disconnected from the results. It could be significantly shortened to discuss the results of the paper and place them in current literature. Generally, the figures supporting the discussion are hard to comprehend and often do not reflect what the text is saying they are showing.

      The Discussion is still long, but, hopefully, our organization now makes it much easier to read and comprehend.

    1. Author Response:

      Reviewer #1 (Public Review):

      Monfared et al. construct a three-dimensional phase-field model of cell layers and use it to examine cellular extrusion by independently tuning cell-substrate and cell-cell adhesion. In line with earlier studies (in some of which some of the authors were involved), they find that extrusion is linked to topological defects in cellular arrangement and relieving stress.<br /> The authors claim that their development of the three-dimensional phase field model is crucial for understanding cell extrusion (which I agree with the authors is inherently three-dimensional). However, I don't think the data they currently present clearly demonstrate that the three-dimensional model adds significantly more to our understanding of extrusion events than earlier two-dimensional models.

      In the end, I think that the more important achievement of this work -- and one that is likely to be more influential -- is developing a three-dimensional phase field model for cell monolayers rather than any specific result regarding extrusion.

      We sincerely thank the reviewer for their time examining our manuscript and providing critical feedback. We are confident that our detailed response provided below and additional analyses have further highlighted the importance of three-dimensional stresses.

      Reviewer #2 (Public Review):

      The paper provides a natural extension of 2D multiphase field models for cell monolayers to 3D, addressing cell deformations, cell-cell interaction, cell-substrate interactions and active components for the cells. As known from 2D, the cell arrangement leads to positional (hexatic) defects and if the elongation of the cells is coarse-grained to define a global nematic order also to orientational (nematic) defects. These defects are characterized, see Figure 2. However, this is done in 2D and it remains unclear if the projected basal or apical side is considered in this figure and the following statistics. The authors identify correlations between orientational defects and extrusion events. In terms of positional defects such statistics seem not to be considered and the relation between positional defects and cell extrusion events remains vague. Also in-plane and out-of-plane stresses are computed. These results confirm a mechanical origin for cell extrusions. However, these are the only 3D information provided. The final claim that the results clearly demonstrate the existence of a mechanical route related with hexatic and nematic disclinations is not clear to me. 3D vertex models for such systems e.g. showed the importance of different mechanical behavior of the apical and basal side and identified scutoids as an essential geometric 3D feature in cell monolayers. These results are not discussed at all. A comparison of the 3D multiphase field model with such results would have been nice.

      We thank the reviewer for bringing to our attention the work on scutoids, which we now discuss in the manuscript as an important geometric feature of 3D layers on curved surfaces. We shall, however, emphasize that scutoids are specific to monolayers on curved surfaces, while we focus on a cell monolayer on flat substrates here. Moreover, we shall argue that the difference between apical and basal sides is just one element of the 3D complexity of cell layers. Here, we focus on another aspect of 3D complexity that is not accessible in 2D: the development of 3D mechanical stress and its role in an inherently 3D problem of cell extrusion. Nevertheless, as discussed in detail responses below we have now added additional analyses varying the monolayer interaction with the substrate on the basal side.

      Reviewer #3 (Public Review):

      In this paper, the authors studied the influence of topological defects on extrusion events using 3D multi-phase field simulations. By varying cell-cell and cell-substrate parameters, this study helps to better understand the influence of mechanical and geometrical parameters on cell extrusion and their linkage to topological defects.

      First the authors show that extrusion events and topological defects of nematic and hexatic order are typically found in their system, and then that extrusions occur, on average, at a distance of a few cell sizes from a + and - 1/2 defects. Next, the author analyse at extrusion events the temporal evolution of the local isotropic stress and the local out-of-plane shear stress, showing that near the instant of extrusion, the isotropic stresses relax and the shear stresses fluctuate around a vanishing value. Finally, the authors analyse both the distribution of isotropic stress and the average isotropic stress pattern near +1/2 defects.

      We are grateful to the reviewer for their time examining our manuscript and providing critical feedback that has certainly improved our manuscript. In what follows, we provide detailed responses to each comment, including additional statistics that we have computed and now include in the manuscript for completion.

    1. Author Response

      Reviewer #1 (Public Review):

      Junctophilin is mostly known as a structural anchor to keep excitation-contraction (E-C) proteins in place for healthy contractile function of skeletal muscle. Here the authors provide a new interesting role in skeletal muscle for Junctophilin (44 kD segment, JPh44), where it translocates to the nuclei and influences gene transcription. Also, the authors have shown that Calpain 1 can digest junctophilin to generate the 44 kDa segment. The field of skeletal muscle generally knows little about how E-C coupling proteins have dual role and influence gene regulation that subsequently may alter the muscle function and metabolism. This part of the manuscript is solid, informative, and novel. The authors use advanced imaging and genetic manipulations of junctophilin etc to support their hypothesis. The authors then also aim to link this mechanism to hyperglycemia in individuals susceptible for malignant hyperthermia as they have elevated levels of the 44kDa segment. However, the power of the analyses are low and the included data comparisons complicates the possibility to interpret the results and its relevance. Nevertheless, the data supporting the novel dual role of junctophilin would likely be appreciated and gain attention to the muscle field.

      Thanks for your constructive reading. We agreed (in our answer to Item 1) to your concern regarding power of the tests. To improve it we would need many more individual patients (which, after the pandemic peaks, are starting to be recruited again, although at a pace of no more than 2 per month). We are committed to updating the present report as soon as we obtain, say, 20 more MHS and MHN patients –a minimum to impact power of the tests. In any case, we claim that power is not an acute concern, as this communication deals mainly with positive results, where significance is of the essence.

      We have established significance in most of the observations communicated here; in the few cases where p is marginal, significance is inferred by correlations.

      Reviewer #2 (Public Review):

      Skeletal muscle is the main regulator of glycemia in mammals and a major puzzle in the field of diabetes is the mechanism by which skeletal muscle (as well as other tissues) become insensitive to insulin or decrease glucose intake. the authors had proposed in a previous publication that high intracellular calcium, by means of calpain activation, could cleave and decrease the availability of GLUT4 glucose transporters. In this manuscript, the authors identify two additional targets of calpain activation. One of them is GSK3β, a specialized kinase that when cleaved, inhibits glycogen synthase and impairs glucose utilization. The second target is junctophilin 1, a protein involved in the structure of the complex responsible for E-C coupling in skeletal muscle. The authors succeeded in showing that a fragment of junctophilin1 (JPh44) moves from the triad to other cytosolic regions including the nuclei and they show changes in gene expression under these conditions, some of them linked to glucose metabolism.

      Overall, the manuscript shows a novel and audacious approach with a careful treatment of the data (that was not always easy nor obvious) that allow sensible conclusions and definitively constitutes a step forward in this field.

      Thanks for the generous report.

      Reviewer #3 (Public Review):

      First, we express utmost gratitude for your critical work on our manuscript. Your concerns made us perform additional experiments and validations, eventually forcing us to abandon a couple of erroneous notions and therefore improving our understanding and interpretations. Because your concerns were already in the “Essentials” list assembled by the Editor, our responses here will mostly refer to our earlier answers to the items in that list.

      1) Figure 1 A and B show a western blot of proteins isolated from muscles of MHN and MHS individuals decorated with two different antibodies directed against JPH1. According to the manufacturer, antibody A is directed against the JPH1 protein sequence encompassing amino acids 387 to 512 while antibody B is directed against a no better specified C-terminal region of JPH1. Surprisingly, antibody B appears not to detect the full-length protein in lysates from human muscles, but recognizes only the 44 kDa fragment of JPH1. However, to the best of the reviewer's knowledge, antibody B has been reported by other laboratories to recognize the full-length JPH1 protein.

      The reason for the failure of ab B to recognize the full human protein may be that it was raised against a murine immunogen (this interpretation was communicated to us by G.D. Lamb, who co-authored the 2013 paper by Murphy et al. where the failure was noted). It recognizes both JPh1 and JPh44 of murine muscle in our hands.

      Thus, is not obvious why here this antibody should recognize only the shorter fragment.

      We agree entirely. In spite of the difficulties in interpretation, the recognition of human JPh44 by the ab is, however, a fact, repeatedly demonstrated in the present study, which can be used to advantage.

      In addition, in MHS individuals there is no direct correlation between reduction in the content of the full-length JPH1 protein and appearance of the 44 kDa JPH1fragment, since, as also reported by the authors, no significant difference between MHN and MHS can be observed concerning the amount of the 44 kDa JPH1.

      Tentative interpretations of the lack of correlation have been presented in the response to Item 14, above.

      Based on the data presented, it is very difficult to accept that antibody A and B have specific selectivity for JPH1 and the 44 kDa fragment of JPH1.

      Indeed, we now acknowledge that Ab A reacts equally with JPh1 and the 44 kDa fragment (and provide quantitative evidence for it in Supplement 1 to Fig. 8). We also provide conclusive evidence of the specificity of ab B (e.g., Supplement 2 to Fig. 1).

      2) In Figure 2B staining of a nucleus is shown only with antibody B against the 44 kDa JPH1 fragment, while no nucleus stained with antibody A is shown in Fig 2A. Images should all be at the same level of magnification and nuclear staining of nuclei with antibody A should be reported. In Figure 2Db labeling of JPH1 covers both the nucleus and the cytoplasm, does it mean that JPH1 also goes to the nucleus? One would rather think that background immunofluorescence may provide a confounding staining and authors should be more cautious in interpreting these data.

      These items are fully covered in our response to Item 16.

      Images in 2D and 2E refer to primary myotubes derived from patients. The authors show that RyR1 signals co-localizes with full-length JPH1, but not with the 44 kDa fragment, recognized by antibody B. How do the authors establish myotube differentiation?

      Myotubes are studied 5-10 days after switching cells to differentiation medium, which is DMEM-F12 supplemented with 2.5% horse serum, as explained in Figueroa et al 2019. Cells with more than 3 nuclei were considered myotubes. Myotubes with similar degree of maturation (number of nuclei) were selected for experimental comparisons.

      3) Figure 3 A-C. The authors show images of a full-length JPH1 tagged with GFP at the N-terminus and FLAG at the C- terminus. In Figure 3Ad and Cd the Flag signal is all over the cytoplasm and the nuclei: since these are normal mouse cells and fibers, it is surprising that the FLAG signal is in the nuclei with an intensity of signal higher than in patient's muscle.

      Can the authors supply images of entire myotubes, possibly captured in different Z planes? How can they distinguish between the cleaved and uncleaved JPH1 signals, especially in mouse myofibers, where calpain is supposed not to be so active as in MHS muscle fibers?

      Answer fully provided to Items 16b and 17 in Essentials list.

      4) If the 44 kDa JPH1 fragment contains a transmembrane domain, it is difficult to understand the dual sarcoplasmic reticulum and nuclear localization. To justify this the authors, in the Discussion session, mention a hypothetical vesicular transport of the 44 kDa JPH1 fragment by vesicles. Traffic of proteins to the nucleus usually occurs through the nuclear pores and does not require vesicles. Even if diffusion from the SR membrane to the nuclear envelope occurs, the protein should remain in the compartment of the membrane envelope. There is no established evidence to support such an unusual movement inside the cells.

      In agreement with the criticism, we have removed the speculation from the Discussion.

      5) In Figure 5, the authors show the effect of Calpain1 on the full-length and 44 kDa JPH1 fragment in muscles from MHS patients. Can the authors repeat the same analysis on recombinant JPH1 tagged with GFP and FLAG?

      We agree that confirmatory evidence of the calpain effect on dual-tagged recombinant JPh1 would be desirable. However, we think an in-depth study is required to follow up on the number of JPh1 fragments generated by calpain (or by different calpain isoforms) and their positions, similar to the detailed study of JPh2 fragmentation Wang et al. in 2021 (5).

      Can the authors provide images from MHN muscle fibers stained with JPH1 and Calpain1.

      We complied with the request.

      6) In Figure 6, the authors show images of MHS derived myotubes transfected with FLAG Calpain1 and compare the distribution of endogenous JPH1 and RYR1 in two cells, one expressing FLAG Calpain1 (cell1) and one not expressing the recombinant protein. They state that cell1 shows a strong signal of JPH1 in the nucleus, while this is not observed in cell2. Nevertheless, it is not clear where the nucleus is located within cell2 since the distribution of JPH1 is homogeneous across the cell. Can the authors show a different cell?

      In agreement, we now show a comparison between cultures with and without transfection in Supplement 1 to Fig. 6.

      7) In Figure 7, panels Bb and Db: nuclei appear to stain positive for JPH1. It is not clear why in panels Ac, Bc they show a RYR1 staining while in panels Cc and Dc they show N-myc staining. The differential localization to nuclei appears rather poor also in these panels.

      We have entirely removed from the manuscript the description of experiments of exposure to extracellular calpain, including Fig. 7 and three associated tables.

      8) The strong nuclear staining in Figure 8, panels C and D is very different from the staining observed in Fig. 2 and Fig. 3. Transfection should not change the ratio between nuclear and cytoplasmic distribution.

      Transfection is an intrusive procedure, which requires production and trafficking of an exogenous protein. This protein, furthermore, is an artificial construct (in this case, a “stand-in”, which adds to the native protein and therefore is akin to overexpression). For the above reasons, we believe that differences in intensity of nuclear staining may obey to multiple causes and should not be especially concerning.

    1. Author Response

      Reviewer #1 (Public Review):

      1) This study performs an interesting analysis of evolutionary variation and integration in forelimb/hand bone shapes in relation to functional and developmental variation along the proximo-distal axis. They found expected patterns of evolutionary shape variation along the proximo-distal axis but less expected patterns of shape integration. This study provides a strong follow-up to previous studies on mammal forelimb variation, adding and testing interesting hypotheses with an impressive dataset. However, this study could better highlight the relevance of this work beyond mammalian forelimbs. The study primarily cites and discusses mammalian limb studies, despite the relevance of the suggested findings beyond mammals and forelimbs. Furthermore, relevant work exists in other tetrapod clades and structures related to later-developing traits and proximo-distal variation. Finally, variations in bone size and shape along the proximo-distal axis could be affecting evolutionary patterns found here and it would be great to make sure they are not influencing the analysis/results.

      We appreciate the reviewer’s comments, and we acknowledge the importance of including examples of non-mammalian lineages in our study. We attended to the recommendation and included more examples of other tetrapod taxa in our text and in our references, providing a more inclusive discussion of limb bone diversity beyond mammals. We also explain below why the results obtained are not inflated by variation of bigger versus smaller sizes of bones.

      Reviewer #2 (Public Review):

      10) Congratulations on producing a very nice study. Your study aims to examine the morphological diversity of different mammalian limb elements, with the ultimate goal seemingly to test expectations based on the different timing of development of the limb bones. There's a lot to like: the sample size is impressive, the methods seem appropriate and sound, the results are interesting, the figures are clear, and the paper is very well written. You find greater diversity and integration in distal limb segments compared to proximal elements, and this may be due to the developmental timing and/or functional specialization of the limb segments. These are interesting results and conclusions that will be of interest to a broad readership. And the large dataset will likely be valuable to future researchers who are interested in mammalian limb morphology and evolution. I have one major concern with how you frame your discussion and conclusions, which I explain below. But I think you can address this issue with some text edits.

      We sincerely thank the reviewer for his constructive recommendations and for his appreciation of our work. We addressed the issue raised as detailed below.

      11) Major concern - is developmental timing the best hypothesis?

      You discuss two potential drivers for the relatively greater diversity in distal elements: 1) later development and 2) greater functional specialization. Your data doesn't allow you to fully test these two hypotheses (e.g. you don't have detailed evo-devo data to infer developmental constraints), and I think you realize this - you use phrases like "consistent with the hypothesis that ...". You seem to compromise and conclude that both factors (development + function) are likely driving greater autopod diversity (e.g. Lines 302-306). Being unable to fully test these hypotheses weakens the impact of your conclusions, making them a bit more speculative, but otherwise, it isn't a critical issue.

      But my concern is that you seem to favor developmental factors over functional factors as the primary drivers of your results, and that seems backwards to me. For instance, early in the Abstract (Line 32) and early in the Discussion (Line 201) you mention that your results are consistent with the developmental timing hypothesis, but it's not until later in the Abstract or Discussion that you mention the role of functional diversity/specialization/selection. The problem with favoring the development hypothesis is that your integration results seem to contradict that hypothesis, at least based on your prediction in the Introduction (Line 126; although you spend some of the Discussion trying to make them compatible). Later in the paper, you acknowledge that functional specialization (rather than developmental factors) might be a better explanation for the integration results (Lines 282-284, 345-347), but, again, this is only after discussions about developmental factors.

      When you first start discussing functional diversity, you say, "high integration in the phalanx and metacarpus, possibly favoured the evolution of functionally specialized autopod structures, contributing to the high variation observed in mammalian hand bones." (Line 282). This implies that integration led to functional diversity in the autopod. But I'd flip that: I think the functional specialization of the hand led to greater integration. Integration does not result solely from genetic/developmental factors. It can also result from traits evolving together because they are linked to the same function. From Zelditch & Goswami (2021, Evol. & Dev.): "Within individuals, integration is customarily ascribed to developmental and/or functional interdependencies among traits (Bissell & Diggle, 2010; Cheverud, 1982; Wagner, 1996) and modularity is thus due to their developmental and/or functional independence."

      In sum, I think your results capture evidence of greater functional specialization in hands relative to other segments. You're seeing greater 1) disparity and 2) integration in hands, and both of those are expected outcomes of greater functional specialization. In contrast, I think it's harder to fit your results to the developmental timing hypothesis. Thus, I recommend that throughout the paper (Abstract, Intro, Discussion) you flip your discussion of the two hypotheses and start with a discussion on how functional specialization is likely driving your results, and then you can also note that some results are consistent with the development hypothesis. You could maintain most of your current text, but I'd simply rearrange it, and maybe add more discussion on functional diversity to the Intro.

      Or, if you disagree and think that there's more support for the development hypothesis, then you need to make a better case for it in the paper. Right now, it feels like you're trying to force a conclusion about development without much evidence to back it up.

      We thank the reviewer for his thoughtful and thorough comment. We agree that the results provided, particularly those of integration, support the hypothesis that functional specialization contributes to the uneven diversity of limb bones. We addressed the concerns by substantially changing our discussion, particularly moderating (and removing) sections on the developmental constraints and adding new arguments for other possible drivers for the diversity of limb bones, such as function. However, the goal of the paper was to test whether the data corroborate - or not - the predictions derived from the developmental hypothesis, and they largely do. Therefore, we decided to keep the developmental hypothesis presented first in the introduction and in the discussion section, as we believe this sequence provides more coherence considering the hypothesis tested (we believe that detailing the role of functional specialization particularly in the introduction would mislead the reader to think that we directly tested for these parameters). Following the discussion of the integration results, we then go on to discuss the possible role of functional specialization on the results obtained (lines 262-285, see also lines 216-234). Yet, these are not tested in this paper and remain to be tested in a future analysis focusing specifically on the role of ecology and function in driving variation in the mammalian limb.

      12) Limitations of the dataset

      Using linear measurements is fine, but they mainly just capture simple aspects of the elements (lengths and widths). You should acknowledge in your paper the limitations of that type of data. For example, the deltoid tuberosity of the humerus can vary considerably in size and shape among mammals, but you don’t measure that structure. The autopod elements don’t have a comparable process, meaning that if you were to measure the deltoid tuberosity then you’d likely see a relative increase in humerus disparity (although my guess is that it’d still be well below that of the autopod). And you omit the ulna from your study, and its olecranon process varies considerably among taxa and its length is a very strong correlate of locomotor mode. In other words, your finding of the greatest disparity in the hand might be due in part to your choice of measurements and the omission of measurements of specific processes/elements. I recommend that you add to your paper a brief discussion of the limitations of using linear measurements and how you might expect the results to change if you were to include more detailed measurements and/or more elements.

      We followed the recommendation and included a discussion about the dataset limitations, acknowledging for the possible impact of the measurements and the bones chosen in the results obtained (Lines 235-260).

      Reviewer #3 (Public Review):

      32) This paper uses a large (638 species representing 598 genera in 138 families) extant sample of osteologically adult mammals to address the question of proximodistal patterns of cross-taxonomic diversity in forelimb bony elements. The paper concludes, based on a solid phylogenetically controlled multivariate analysis of liner measurements, that proximal forelimb elements are less morphologically diverse and evolutionarily flexible than distal forelimb elements, which the paper concludes is consistent with a developmental constraint axis tied to limb bud growth and development. This paper is of interest to researchers working on macroevolutionary patterns and sources of morphological diversity.

      Methodological review Strengths:

      The taxonomic dataset is very comprehensive for this sort of study and the authors have given consideration to how to identify bony elements present in all mammalian taxa (no small task with this level of taxonomic breadth). Multivariate approaches as used in this study are the gold standard for addressing questions of morphological variations.

      The authors give consideration to two significant confounders of analyses operating at this scale: phylogeny and body size. The methods they use to address these are appropriate, although as I note below body size itself may merit more consideration.

      We sincerely thank the reviewer for his appreciation of our study. We addressed the main concerns pointed out below.

      Weaknesses:

      33) The authors assume a lot of knowledge on the part of the reader regarding their methods. Given that one of their key metrics (stationary variance) is largely a property as I understand it of OU models, more explanation on the authors' biological interpretation of stationary variance would help assess the strength of their conclusions, especially as OU models are not as straightforward as they first appear in their biological interpretation (Cooper et al., 2016).

      We acknowledge that this may not be straightforward and now include a more extensive explanation of the approach and the metrics used. We detailed the explanation about the stationary variances in the methods, contextualizing the biological meaning (lines 456-469).

      34) It is unclear what the authors mean when they say they "simulated the trait evolution under OU processes on 100 datasets". Are the 100 datasets 100 different tree topologies (as seems to be the case later "we replicated the body mass linear regressions with 100 trees from Upham et al (2019)." If that is so, what is the rationale for choosing 100 topologies and what criteria were used to select the 100 topologies?

      We understand the explanation may have been confusing. Globally, we used a parametric bootstrap approach to assess the uncertainty around point estimates for morphological diversity and integration. That is, we first simulated 100 datasets on the maximum clade credibility tree (MCC tree, that summarizes 10,000 trees from Upham et al. 2019) – using the best fit model on our original data (i.e., an OU process) with parameters estimates from this model fit. The model (an OU process) was then fit to these 100 simulated traits, and the distribution of parameters estimates obtained was used to assess the variability around the point estimate (for the determinant, the trace, and the measure of integration) obtained on empirical data. We did not used the simulated dataset to estimate the significance of the stationary variances. We fitted the empirical datasets with 100 trees randomly sampled from the credible set of 10,00 trees of Upham et al (2019) – instead of using the MCC – to further assess the variability due to the tree topology and branching times uncertainties. We included this expanded explanation in the methods in lines 421-428 and 471.

      35) The way the authors approach body mass and allometry, while mathematically correct, ignores the potential contribution of body mass to the questions the authors are interested in. Jenkins (1974) for example argued that small mammals would converge on similar body posture and functional morphology because, at small sizes, all mammals are scansorial if they are not volant. Similarly, Biewener (1989) argued that many traits we view as cursorial adaptations are actually necessary for stability at large body sizes. Thus size may actually be important in determining patterns of variation in limb bone morphology.

      We agree with the observation. We believe that categorizing the groups according to size would provide a meaningful overview on the effect of size on the diversity and evolution of limb bones. Although insightful and worthy of investigation, we were particularly interested in understanding whether developmental timing corresponds to bone diversification more broadly across Mammalia and thus considered only the size residual values. This issue will be addressed in our future works. We discussed in the lines 329-341 the potential contribution of body size to limb segment diversification and the importance of considering this aspect in future studies.

      36) Review of interpretation.

      The authors conclude that their result, in showing a proximo-distal gradient of increasing disparity and stationary variance in forelimb bone morphology, supports the idea that proximo-distal patterning of limb bone development constrains the range of morphological diversity of the proximal limb elements. However, this correlation ignores two important considerations. The first is that the stylopod connects to the pectoral girdle and the axial skeleton, and so is feasibly more constrained functionally, not developmentally in its morphological evolution. The second, related, issue arises from the authors' study itself, which shows that the lowest morphological integration is found in the stylopod and zeugopod, whereas the autopod elements are highly integrated. This suggests a greater tendency towards modularity in the stylopod and zeugopod, which is itself a measure of evolutionary lability (Klingenberg, 2008). And indeed the mammalian stylopod is developmentally comprised of multiple elements (the epiphyses and diaphysis) that are responding to very different developmental and biomechanical signals. Thus, for example, the functional signal in stylopod (Gould, 2016) and zeugopod (MacLeod and Rose, 1993) articular surface specifically is very high. What is missing to fully resolve the question posed by the authors is developmental data indicating whether or not the degree of morphological disparity in the hard tissues of the forelimb change over the course of ontogeny throughout the mammalian tree, and whether changing functional constraints over ontogeny (as is the case in marsupials) affect these patterns.

      We thank the reviewer for sharing such an interesting reinterpretation of the results. Combined to the recommendations from the other two reviewers, we substantially changed our discussion, specially modifying the interpretation of results concerning trait integration. We discussed the possible role of the functional variation at the articulations on element integration in lines 263-285.

    1. Author Response

      Reviewer #2 (Public Review):

      This paper investigates the maintenance and function of memory follicular helper T (Tfh) cell subsets using in vitro approaches, murine immunization models and vaccine-challenged humans. Murine Tfh cell subsets (Tfh1, Tfh2, Tfh17) were generated using in vitro polarization (iTfh1, iTfh2, iTfh17), and then tested for support of humoral response following adoptive transfer or adoptive transfer with resting in vivo for 35 days. iTfh17 cells were statistically better than iTfh1 and iTfh2 cells in promoting GC B cell and plasma cell maturation after resting in vivo, although all 3 populations were capable of B cell help. Tfh17 cells were comparatively enriched among blood borne Tfh central memory cells in humans, and were enriched at the memory phase of vaccination with hepatitis B and influenza vaccines, compared to effector phase, suggesting the possibility they are comparatively superior in Tfh cell memory formation, with greater persistence in aged individuals.

      Significance

      The enrichment of Tfh17 cells in Tfh cell central memory compartment and the dominance of Tfh17 cell population and the Tfh17 transcriptional signature in circulating Tfh cells at the memory phase are nicely demonstrated, and may well be helpful for understanding the heterogeneity of memory Tfh cells and potentially providing clues for vaccine design. The in vitro differentiation system for mouse Tfh cells also provides a strategy for others to build upon in dissection of Tfh cell development and function.

      Points to consider

      1) Even though Tfh17 cells are more likely to persist at memory timepoints in mice and in humans, or produce more GC B cells or plasma cells following transfer, all subsets can do this. Is GC output otherwise distinguishable following transfer of the individual subsets, or is their effect (cytokine related perhaps) pre-GC with differential CSR? It is also not clear if the individual subsets populate the GC and assuming they do so, if their respective phenotypes persist when they become GC Tfh cells.

      We have conducted new experiments and showed that iTfh17 preferentially generate more GC-Tfh cells in the delay immunization (after 35 day’s resting in vivo). Furthermore, different iTfh subsets maintained polarized cytokine profiles after antigen re-exposure and prompt specific CSR as their Th1 or Th2 counterparts. Please refer to the response (2) to Essential Revisions for details.

      2) iTfh17 cells induce more GC B cells and antibodies after resting and antigen challenge (Figures 1, 2). However, it's not clear whether this effect is a consequence of comparatively enhanced iTfh17 survival during resting (as suggested by latter figures), or better expansion or differential skewing to Tfh differentiation during challenge (as suggested by Figure 1 J,K). The total number of remaining adoptively-transferred cells right before challenge and 7 days post challenge will be helpful to understand that.

      We have conducted new experiments and our results suggested that the superior immunological memory maintenance of iTfh17 cells was attributed to their better survival capacity and better maintenance of the potential to differentiate into GC-Tfh cells. Please refer to the response (2) to Essential Revisions for details.

      3) The authors tried to address whether Tfh17 cells have better ability to survive till memory phase or Tfh17 cells with memory potential are generated at higher frequency at the effector phase of vaccination (Figure 5); however, the experiment is not conclusive. The cTfh population 7 days post vaccination is a mixed population with effector Tph cells and Tfh memory precursors. The increased frequency of Th17 cells at day 28 compared to day 7 could be a consequence of superior survival ability, or Tfh memory precursors with Tfh17 signature are better generated.

      As indicated in our gating strategy and the widely accepted definition of cTfh cells - CD4+ CD45RA- CXCR5+ (line 69), we respectively disagree with the reviewer’s comment ‘The cTfh population 7 days post vaccination is a mixed population with effector Tph cells and Tfh memory precursors’. The effector Tph population is defined as PD-1hiCXCR5-CD4+ T cells (Rao DA et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis, Nature 2017)

      4) Experiments to confirm expansion ability of the human subsets or their B cell helper ability were not performed.

      In our new experiments, we demonstrated that iTfh1/2/17 cells showed comparable expansion ability.

      Human cTfh1/2/17 cells’ expansion ability and B helper ability were reported previously by Morita et al. (Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion, Immunity 2011, Figure 4C-D). Human cTfh1/2/17 cells showed comparable expansion ability when co-culturing with SEB-pulsed naive B cells, and cTfh17 cells had superior B cell helper function over cTfh1 but not cTfh2 cells in promoting the B cell expansion and plasma cell formation.

    1. Author Response

      Reviewer #1 (Public Review):

      This is timely and foundational work that links cellular neurophysiology with extracellular single-unit recordings used to study LC function during behavior.

      The strengths of this paper include:

      1. Providing an updated assessment of LC cell morphology and cell types since much of the prior work was completed in the late 1970s and early to mid-1980s.

      2. Connecting LC cell morphology with membrane properties and action potential shape.

      3. Showing that neurons of the same type have electrical coupling

      Collectively, these findings help to link LC neuron morphology and firing properties with recent work using extracellular recordings that identify different types of LC single units by waveform shape.

      Another strength of this work is that it addresses recent findings suggesting the LC neurons may release glutamate by showing that, at least within the LC, there is no local glutamatergic excitatory transmission.

      Weaknesses:

      The authors also propose to test the role of single LC neuron activity in evoking lateral inhibition, as well as proposing that electrical coupling between LC cell pairs is organized into a train pattern. The former point is based on a weak premise and the latter point has weak support in their data given the analyses performed.

      Point 1: lateral inhibition in the LC

      The authors write in the abstract that "chemical transmission among LC noradrenergic neurons was not detected" and this was a surprising claim given the wealth of prior evidence supporting this in vitro and in vivo (Ennis & Aston-Jones 1986. Brain Res 374, 299-305; Aghajanian, Cedarbaum & Wang 1977. Brain Res 136, 570-577; Cedarbaum & Aghajanian. 1978 Life Sci 23, 1383-1392).

      Huang et al. 2007 (Huang et al. 2007. Proc National Acad Sci 104, 1401-1406) showed that local inhibition in the LC is highly dependent on the frequency of action potentials, such that local release requires multiple APs in short succession and then requires some time for the hyperpolarization to appear (even over 1 sec). This work suggests that it is not a "concentration issue" per se, rather it is just that a single AP will not cause local NE release in the LC. Although the authors did try 5APs at 50Hz this may not be enough to generate local NE release according to this prior work. A longer duration may be needed. Additionally, although the authors incubated the slices with a NET inhibitor, that will not increase volume transmission unless there is actually NE release, which may have not happened under the conditions tested. In sum, there is no reason to expect that a single AP from one neuron would cause an immediate (within the 100 msec shown in Fig 3B) hyperpolarization of a nearby neuron. Therefore, the premise of the experiment that driving one neuron to fire one AP (or even 5AP's at 50Hz in some) is not an actual test of lateral inhibition mediated by NE volume neurotransmission in the LC. Strong claims that "chemical transmission...was not detected" require substantial support and testing of a range of AP frequencies and durations. Given the wealth of evidence supporting lateral inhibition of the LC, this claim seems unwarranted.

      We thank the reviewers for their constructive comments and interpretations of the data regarding lateral inhibition. In fact, we were fully aware of the prior wealth of data supporting the existence of lateral inhibition and have discussed possible reasons for the absence of lateral inhibition in our dataset. Now both reviewers provided additional potential explanations for this absence. The most plausible explanation appears to be that α2AR-mediated lateral inhibition is a population phenomenon, which would not be readily detected at the single-cell level in in vitro conditions. As reviewers suggested, we may need to vary spike frequency and timing to identify optimal spiking parameters (or stimulating multiple LC neurons at one time) to detect this phenomenon in slices. Alternatively, we could employ other approaches (optogenetic or chemogenetic approach) to activate a group of neurons at one time to evoke this phenomenon, as a recent preprint paper demonstrated (Line 528-535). All these are excellent suggestions, but it may take more than six months to complete these experiments since we need to train another person from scratch for LC recordings (the first author graduated from the program and has left the lab). We thus chose to remove most of the data (about α2AR-mediated lateral inhibition) from the paper in the revision, as the reviewers suggested. We do plan to further explore this interesting topic in our next study.

      Point 2: Train-like connection pattern

      Demonstrating that connected cell pairs often share a common member is an important demonstration of a connection motif in the LC. However, a "train" connection implies that you can pass from A to B to C to D (and in reverse). However, the authors do not do an analysis to test whether this occurs. Therefore, "train" is not an appropriate term to describe the interesting connection motif that they observed.

      In fact, writing A↔B↔C in the paper implies a train without direct support for that form of electrical transmission. For example, in Fig. 6C, it is clear that cell 6 is coupled to cell 1 and that cell 6 is also coupled to cell 8. In both cases, the connection is bilateral. Using the author's formatting of A↔B↔C , would correspond with Cell 6 being B and cells 1 and 8 being A and C (or vice versa). However, writing A↔B↔C implies a train, whereas one can instead draw this connection pattern where B is a common source:

      A C

      . .

      . .

      B

      An analysis showing that spikes in A can pass through B and later appear in C is necessary to support the use of "train". The example in Fig. 6C argues against train at least for this one example.

      Although the analysis is possible to do with the authors' substantial and unique data set, it should be also noted that prior work on putative electrical coupling in extracellular recordings from rat LC showed that trains among 3 single units occurred at an almost negligible rate because out of 12 rats "Only 1 triplet out of 22,100 possible triplet patterns (0.005%) was found in one rat and 4 triplets out of 1,330 possible triplet patterns (0.301%) were found in the other rat." and moreover patterns beyond 3 units were never observed (Totah et al 2018. Neuron 99, 1055-1068.e6). We thank the reviewer for this astute argument and agree that the word “train-like connection” assumes a physiological, functional relationship A→B→C which the data do not show. Therefore, we now term these connections as “chain-like” to indicate the structural nature of the connection, which we believe leaves no room for the interpretation that there is a functional, physiological connection among the three neurons. In fact, we have discussed this issue as a first-order vs second-order coupling issue in our original manuscript (Line 632-639), and concluded that electrical signals hardly pass through the second-order gap junctions in LC, that is, in those two connections sharing the same partner like A↔B↔C (here A and C are not directly connected, but coupled in the second-order), spikes in A hardly pass-through B and later appear in C (Line 632-639).

      Reviewer #2 (Public Review):

      McKinney et al set out to better understand local circuit organization within the mouse locus coeruleus (LC). To do so, the authors achieved the technical feat of performing multiple, simultaneous whole-cell recordings (up to 8 LC neurons at once). This approach gives the authors a powerful and relatively high throughput means of assessing LC neuronal activity and potentially its rate of interconnectedness. In addition to recording from these cells, many were also filled with biocytin to recover their morphology. Using traditional reconstruction approaches the authors identified two morphological classes of LC neurons, fusiform(FF) and multipolar (MP). Although the selection of these classes was biased from previous literature, the authors used machine classification to rigorously demonstrate that these classes indeed exist. From there, the electrical properties of these distinct LC neurons were compared and a number of distinct action potential properties were identified between the two groups. Although firing in response to injected current showed that the FF class could maintain a higher firing rate, basal firing was not explicitly compared as the cells were prevented from firing upon entering whole-cell. The authors next explored the extent to which local chemical transmission occurs within the LC. Although there is evidence of glutamatergic transmission from LC neurons, the authors did not directly observe any evidence of local glutamate release from these neurons. This effect might be expected given the severing of axons in the slice preparation. Somewhat less expected is the author's claim that they could not find evidence of local NE release via alpha2 adrenergic receptor activation. This lack of evidence might well arise because this phenomenon does not occur, but it also remains possible that we do not have sufficient understanding of volume transmission to properly detect a change, particularly in whole-cell current clamp. The evidence that alpha2-mediated hyperpolarization is intact is somewhat adjacent to the concept as the concentrations of NE and clonidine used to show this robust suppression of firing is well above what is likely physiologically released by these neurons. One thing the authors do not consider is that the slice orientation (horizontal vs. coronal) greatly alters local glutamatergic input to the point that glutamate-mediated phasic bursts often do not occur in horizontal slices.

      A major strength of the multi-patch approach used here is the ability to identify electrical connections between LC neurons. While gap junction-coupling has long been established in these neurons, multiple reports suggest that this coupling is decreased as the animal matures into adulthood. Here the authors provide clear evidence for a stable rate of electrical coupling well into adulthood. This approach also gives the authors the relatively unique ability to look for second-order connections between LC neurons and the amount of coupling was elegantly used to model how the LC might wire together more broadly. Although this approach is very powerful and likely at the edge of what is physically possible for whole-cell recordings in this brain structure it still likely undersamples LC local circuitry and biases investigations to be relatively close to one another spatially. While the authors rightfully consider the intersoma distance (ISD), the longest the gets in these studies is still smaller than most anatomical axes of the LC. This is an important limitation because the electrical coupling between FF-FF and FF-MP both appear to increase as ISD increases, suggesting more coupling could be occurring in distal dendrites. Furthermore, if coupling is occurring in distal dendrites it may be harder to detect as shunting in these distal dendrites could prevent signal detection.

      This work is timely and important to the LC field which is on the precipice of having a greater understanding of heterogeneity based on a number of different principles, and this work adds local circuit dynamics as one of these principles. It will be important for the field to see how different efferent anatomical modules align with the cell types and circuit properties identified here.

      We appreciate the reviewer’s constructive comments and suggestions.

    1. Author Response:

      Reviewer #2 (Public Review):

      This study addresses the ways in which bacteriophages antagonize or coopt the DNA restriction or recombination functions of the bacterial RecBCD helicase-nuclease.

      The strength of the paper lies in the marriage of biochemistry and structural biology.

      A cryo-EM structure of the RecBCD•gp5.9 complex establishes that gp5.9 is a DNA-mimetic dimer composed of an acidic parallel coiled coil that occupies the dsDNA binding site on the RecB and RecC subunits. The structure of gp5.9 is different from that of the RecBCD-inhibiting DNA mimetic protein phage λ Gam.

      Cryo-EM structures of Abc2 are solved in complex with RecBCD bound to a forked DNA duplex, revealing that Abc2 interacts with the RecC subunit. A companion structure is solved containing PPI that copurifies with RecBCD•Abc2.

      Whereas the gp5.9 structure fully rationalizes the effect of gp5.9 on RecBCD activity, the Abc2 structure - while illuminating the docking site on RecBCD, a clear advance - does not clarify how Abc2 impacts RecBCD function.

      The authors speculate that Abc2 binding prevents RecA loading on the unwound DNA 3' strand while favoring the loading of the phage recombinase Erf.

      Does the structure provide impetus and clues for further experiments to elaborate on that question and, if so, how?

      Regarding the first point (Murphy’s results). We have now included more detail about Murphy’s results and a brief comparative discussion of our own (page 13). An important caveat in interpreting small (<5-fold) effects on RecBCD activity is that the complex is known to possess different levels of specific activity between preparations (from 20% to 100% active based on titration of DNA ends). This is especially problematic when assessing the effect of Abc2 on RecBCD because (unlike gp5.9 for instance) the protein cannot be purified in isolation and titrated into free RecBCD to monitor how activity changes. Instead, one is comparing activity between different preparations either including Abc2 or not. Regarding the second point (how much does the structure tells us about the mechanism of Abc2?). We agree with the general sentiment here: the mechanism of RecBCD hijacking by Abc2 is still a “work in progress”. Nevertheless, the structure is suggestive of effects on Chi recognition and/or RecA loading which is both consistent with biochemical results and suggests new avenues for further investigation.

      While the RecBCD-gp5.9 structure “nails” the inhibition mechanism as steric exclusion of substrate, the RecBCD-Abc2 structure is less informative. Previously published biochemical and in vivo analyses of Abc2 show that it modulates rather than completely inhibits the enzyme. The hypothesis is that Abc2 modifies the process of Chi recognition and/or RecA loading (which are themselves coupled processes) in order to facilitate loading of the phage recombinase Erf. Given current structural models for the mechanism of RecBCD, it is not entirely obvious from the structure of RecBCD-Abc2 what exactly this small phage protein is doing, because (a) there is no significant change to the structure of RecBCD induced by Abc2 interaction and (b) no known protein interaction site (eg with RecA) is blocked. Indeed, our original manuscript ended with an acknowledgement that understanding how P22 controls recombination in E. coli was ongoing work. As we see it, in addition to simply revealing the binding site of Abc2, our structure has two significant impacts. Firstly, it is consistent with and extends the existing hypothesis. For example, (a) the interaction of Abc2 with RecC is precisely with the domains of the protein that are responsible for Chi recognition and close to a putative site of RecA loading; (b) the recognition that a conserved proline in Abc2 interacts with the active site of PPI implies that Abc2 function is dependent on proline isomerisation; (c) the possible bridging of RecB and RecC by the C-and N-terminal regions of the protein suggest that Abc2 might hinder intersubunit conformational changes. Secondly, the structure facilitates the testing of this hypothesis. For example, (a) does RecA and/or Erf loading depend on interactions with the surfaces destroyed or created by Abc2 at the interface with RecC (b) does P68A mutation inactivate Abc2?; (c) does failure to recognise and respond to Chi require bridging of RecB and RecC that limits conformational transitions? Crucially, as we explain in the discussion, the future study of the P22 recombination system will require the purification and characterisation of additional factors (Abc2, Arf and Erf) beyond just Abc2. This is something we are working on currently in the lab and consider to be beyond the scope of this work.

    1. Author Response

      We thank the reviewers for their comments and helpful suggestions. We are currently preparing a revised version of this manuscript. Notable changes we are making include:

      • adding a diagram to the introduction to show the overall workflow of the study,
      • quantitatively analyzing the fraction of OCT4+ and DDX4+ cells in our immunofluorescence images over time,
      • collecting and analyzing additional bulk RNA-seq data on KGN cells and adult human ovarian tissue,
      • performing estradiol assays on additional lines of hiPSC-derived granulosa-like cells,
      • presenting images from day 70 ovaroids which clearly show follicle formation,
      • changing the colors in the figures to be more accessible to colorblind readers,
      • clarifying which TFs are present in which of our clonal lines.

      These changes will address the weaknesses identified by the reviewers. Along with our revised manuscript, we will also prepare a more comprehensive author response for these reviewer comments.

    1. Author Response:

      Reviewer #1 (Public Review):

      This paper reports an analysis of the inhibition of the serotonin transporter, SERT, by a novel compound, ECSI#6. The authors perform a comprehensive analysis of SERT transport inhibition for the new agent and compare its properties to those of other well-characterized agents: cocaine and noribogaine, with the data pointing to an unusual noncompetitive mechanism of inhibition, a model also supported by electrophysiological recordings of transport currents. Based on the results of these experiments the authors conclude that ESCI#6 binds essentially exclusively to the inward-facing state of the transporter. The authors further present experiments suggesting that ESCI#6 can stabilize the folded form of an ER-arrested SERT mutant and recover its trafficking to the plasma membrane, with some in-vivo drosophila experiments perhaps also supporting this conclusion. Finally, kinetic simulations using a transport model with rate constants from previous experiments support the basic conclusions of the first sections of the paper.

      Strengths:<br /> The transport experiments and simulations here are thorough, carefully performed, and reasonably interpreted. The authors' arguments for noncompetitive inhibition seem well-thought-out and reasonable, as is the conclusion that ESCI#6 binds to the inward-facing state of the transporter. The simulations are also thorough and support the conclusions. In the discussion, the comparison of enzyme noncompetitive inhibition to the process studied here was thoughtful and interesting. Also, the care and analysis of the uptake data are a strength of the paper, with well-presented evidence of reproducibility and statistics. The electrophysiology data is more limited but does communicate the essential conclusion.

      Weaknesses:<br /> The most important concern about the work is the interpretation of the in-vivo drosophila data. Though the SERT fluorescence with WT protein is strong, I cannot see any fluorescence in either drug-treated image from the PG mutant. In this context, shouldn't there be additional intracellular staining for ER-resident SERT? If the cell bodies of these cells are elsewhere this should be clearly pointed out.

      We have modified Fig. 6 to include, in all instances, images of the posterior brain, where the neurons (FB6K) reside, from which the serotonergic projections originate. These images visualize expression of membrane-anchored GFP (mCD8GFP; in panel B), immunoreactivity of serotonin (panel B’), wild type SERT (panels C’,D’,E’) and mutant SERT-PG601,602AA (panels F’,G’,H’) in the soma. The description of these panels has been added to the pertinent sentences starting on p. 20, line 6 from bottom to the end of end of the first paragraph p. 21, which read:

      “These projections (Fig. 6A-A’’) and the FB6K-type neurons, from which they originate in the posterior brain (Fig. 6B-B’’) can be visualized by expressing membrane-anchored GFP (i.e. GFP fused to the C-terminus of murine CD8; [36]) under the control of TRH-T2A-Gal4. Similarly, when placed under the control of TRH-T2A-Gal4, YFP-tagged wild-type human SERT was expressed in the FB6K-type neurons (Fig. 6C’) and delivered to the fan-shaped body (Fig. 6C). In contrast, in flies harboring human SERT-PG601,602AA, the transporter was visualized in the soma of FB6K-type neurons (Fig. 6F’), but the fan-shaped body was devoid of any specific fluorescence (Fig. 6F). However, if three-day old male flies expressing human SERT- PG601,602AA were fed with food pellets containing 100 μM ECSI#6 or 100 μM noribogaine for 48 h, fluorescence accumulated to a level, which allowed for delineating the fan-shaped body (Fig. 6G and H, respectively). This show that ECSI#6 and noribogaine exerted a pharmacochaperoning action in vivo, which partially restored the delivery of the mutant transporter to the presynaptic territory. As expected, in flies harboring wild-type human SERT, feeding of ECSI#6 and noribogaine did not have any appreciable effect on the level of fluorescence in the fan-shaped body (Fig. 6D and E, respectively). “

      Similarly, the single Western blot demonstrating enhanced glycosylation in the presence of Noribogaine or ECSI#6 could be strengthened. I can see the increased band at a high molecular weight that the authors attribute to the fully glycosylated form, but this smear, and the band below, look quite different from those in the blot shown in the El-Kasaby et al reference, raising concerns that the band could be aggregated or dimerized protein rather than a glycosylated form. This concern could easily be addressed by control experiments with appropriate glycosidases, as shown in the reference.

      We understand that the appearance of the mature glycosylated species is being criticized, at least in part, because it differs from sharper bands, which can be found in our previously published papers. We stress that the resolution very much depends on the electrophoretic conditions. We addressed the reviewers’ criticism by carrying out the recommended deglycosylation experiments: a representative experiment is shown in (the new) panel F of Fig. 5, with lysates prepared from HEK293 cells expressing wild type SERT, from untransfected HEK293 cells and from HEK293 cells, which had been preincubated with 30 μM cocaine, 100 μM ECSI#6 and 30 μM noribogaine. The experiment confirms the band assignment with the upper band(s) M representing the mature glycostylated species (which are resistant to deglycosylation by endoglycosidase H) and the lower band C corresponding to the core- gylcoylated species (which are susceptible to cleavage that (as expected) the mature band show a representative degylcosylation by endoglycosidase H). We also think that the immunoblot in panel F ought to satisfy the aesthetic criticism: the bands are sharper/less smeared.

      The description of panel F can be found on p. 18, starting in line 7 from bottom to end of page, and reads: “We confirmed the band assignment by enzymatic deglycosylation (Fig. 5F): the upper bands (labeled M), which appeared in cells incubated in the presence of ECSI#6 and of norbogaine, were resistant to deglycosylation by endoglycosidase H (which cannot cleave mature glycans). In contrast, the core-glycosylated species (labeled C), was susceptible to cleavage by endoglycosidase H resulting in the appearance of the deglycosylated band D.”

      The overall interest in the work is reduced given the quite low affinity of ECSI#6 for the transporter.

      We agree that it would be preferable to have a compound, which works in the submicromolar/nanomolar range. However, it is worth pointing out that the EC50 is low enough for allowing in vivo rescue of the folding-deficient SERT-PG: feeding flies restores its trafficking to the cell surface and to the presynaptic specialization. Obviously, there is room for improvement, but ECSI#6 provides a starting point.

      Reviewer #3 (Public Review):

      This is interesting research that uncovers a novel inhibition mechanism for serotonin (SERT) transporters, which is akin to traditional un-competitive inhibitors in enzyme kinetics. These inhibitors are known to preferentially bind to the enzyme-substrate complex, thus stabilizing it, resulting in a decrease of the IC50 with increasing substrate concentrations. In contrast to this classic enzyme inhibition mechanism, the authors show for SERT, through detailed kinetic analysis as well as kinetic modeling, that the inhibitor, ECSI#6, binds preferentially to the inward-facing state of the transporter, which is stabilized by K+. Therefore, inhibition becomes "use-dependent", i.e. increasing substrate concentrations push the transporter to the inward-facing configuration, which then leads to the increased apparent affinity of ECSI#6 binding. Interestingly, this mechanism of action predicts that the inhibitor should be able to rescue SERT misfolding variants. The authors tested this possibility and found that surface expression and function of a misfolding mutant SERT is increased, an important experimental finding. Another strength of the manuscript is the quantitative analysis of the kinetic data, including kinetic modeling, the results of which can reconcile the experimental data very well. Overall, this is important and, in my view, novel work, which may lead to new future approaches in SERT pharmacology.

      With that said, some weaknesses of the manuscript should be mentioned. 1) The authors suggest that serotonin and ECSI#6 cannot bind simultaneously to the transporter, however, no direct evidence for this conclusion is provided.

      We assessed this point by plotting the data in Fig. 2A,B,C as Dixon plots in (the new) panels D,E,F of Fig. 2. We refer the reader to Segel’s textbook on enzyme kinetics (new ref. 18) on using Dixon plots in the presence of two inhibitors. The pertinent description is on p. 9, lines 12-22 and reads as follows: “We transformed the data summarized in Figs. 2A-C by plotting the reciprocal of bound radioligand as a function of inhibitor concentration to yield Dixon plots (Fig. 2D-F): the x-intercept corresponds to -IC50 of the inhibitor [18]. Thus, Dixon plots allow for differentiating mutually exclusive from mutually non-exclusive binding, if one inhibitor (i.e., cocaine, noribogaine or ECSI#6) is examined at a fixed concentration of the second inhibitor (i.e., serotonin) [18]: if binding of the two inhibitors is mutually non-exclusive, a family of lines of progressively increasing slope, which intersect at -IC50, is to be seen. In contrast, if the two inhibitors bind to the same site, the slope of the inhibition curves is not affected and the x- intercept (i.e, -IC50 of the variable inhibitor) is shifted to more negative values. It is evident from Fig. 2D-E that the presence of 1 and 10 μM serotonin progressively shifted the (expected) x-intercept for cocaine (Fig. 2D), noribogaine (Fig. 2E) and ECSI#6 (Fig. 2D). Thus, binding to SERT of serotonin and of these three ligands was mutually exclusive.” Based on the Dixon plots, we feel that our conclusion is justified, i.e., binding of serotonin and ECSI#6 (and of the other ligands) is mutually exclusive.

      2) How does ECSI#6 access the inward-facing binding site? Does it permeate the membrane and bind from the inward-facing conformation, or is it just a very slowly transported low-affinity substrate that stabilizes the inward-facing state with much higher affinity? Including ECSI#6 in the recording electrode may provide further information on this point.

      We did the suggested experiments: the data are summarized in panel I of Fig. 4 and described in the first paragraph on p. 15, which also explains why this experiments is possibly inconclusive due to the high diffusivity of ECSI#6:

      “Fig. 4I shows representative traces of 5-HT induced currents recorded from SERT expressing cells in the absence (in blue) and presence of 100 μM ECSI#6 (in red) in the electrode solution: when thus applied from the intracellular side, ECSI#6 did not cause an appreciable current block. The right-hand panel summarizes the current amplitude obtained from cells measured in the absence (blue open circles) and presence of intracellular ECSI#6 (open circles in red). These data seem to indicate that ECSI#6 binds to SERT from the extracellular side. Yet this conclusion can be challenged based on the following consideration: in earlier experiments, ibogaine, the parent compound of noribogaine, was found to block HERG channels when applied from the bath solution but failed to do so when added to the electrode solution [27]. However, at a lower intracellular pH (i.e., pH 5.5), ibogaine gained the ability to inhibit HERG from the intracellular side (i.e., via application through the electrode). Conversely, ibogaine was less effective when applied to an acidified bath solution. These observations led to the conclusion that ibogaine blocked HERG from the cytosolic side: because the molecule in its neutral form was so diffusive, a low intracellular pH was required to force its protonation and thus preclude diffusion from the interior of the cell. ECSI#6 is presumed to also be very diffusible given its estimated logP value and polar surface area of 2.48 and 66 Å2, respectively. However, ECSI#6 harbors an amide nitrogen (see Fig. 1A) and thus remains neutral in the experimentally accessible pH range. Hence, it is not possible to verify to which side of SERT it binds.”

      Additionally, it is not clear why displacement experiments were not carried out with cocaine. Since cocaine is a competitive inhibitor but does not induce transport (i.e. doesn't induce the formation of the inward-facing conformation), it should act in a competitive mechanism with ECSI#6.

      We did not quite understand this comment, because displacement experiments were done with cocaine (Fig. 2A, new Fig 2G/previous Fig. 2D). However, if the reviewer questions why we do not use cocaine rather than 5-HT, in the three-way competition experiment, it is precisely, because we wanted to compare the action/binding mode of ECSI#6 to that of cocaine.

      3) Why are dose-response relationships not shown for electrophysiological experiments? These would be a good double-check for the radiotracer flux data.

      These experiments were done and are shown in (the new) panels G and H of Fig. 4; the pertinent description is in the second paragraph of p. 14 and reads:

      “The protocol depicted in Fig. 4B can also be used to gauge the apparent affinity of ECSI#6 for SERT in the presence of 5-HT. Plotted in Fig. 4G is the block of the serotonin-induced current as a function of the co-applied ECSI#6 concentration. The current was evoked by a saturating concentration of 5-HT (30μM) and inhibited by 3, 10, 30 and 100 μM co-applied ECSI#6, respectively (the inset in Fig. 4G shows representative current traces). A fit of an inhibition curve to the data points yielded an IC50 value of approx. 5 μM. This value was lower but still in reasonable agreement, with the IC50 obtained in the radioligand uptake assay for the condition where the 5-HT concentration had been saturating (cf. dashed line in Fig.1C; 10 μM 5-HT). In the uptake assay the IC50 value of ECSI#6 dropped to about 0.5 mM, in the presence of a low 5-HT concentration (i.e., 0.1 μM). In contrast to uptake experiments, electrophysiological recordings also allow for assessing the apparent affinity of ECSI#6 for SERT in the absence of the substrate. This can be achieved by employing the protocol depicted in Fig. 4H (see representative current traces on the left-hand side): we first applied 30 μM 5- HT to a cell expressing SERT for 0.5 s to elicit a peak current (i.e., a control pulse). We then reapplied 30 μM 5-HT after a superfusing the cell with 100 μM ECSI#6 for 1 s (second upper trace in panel H). We chose this time period because it had been sufficient to allow for full current block in the other protocol (see Fig. 4G): the amplitude of the peak current following pre-application of 100 μM ECSI#6 was essentially identical to the prior control pulse. When we pre-applied 100 μM ECSI#6 for a longer period (i.e., 3 s) the amplitude of the two peak currents also remained the same (cf. lower traces in panel H). The right-hand panel shows the summary of several experiments. Plotted in the graph is the ratio of the second and first pulse, which was always close to one. We previously used this protocol to assess the binding kinetics of cocaine, methylphenidate and desipramine on SERT and DAT. Pre-application of these inhibitors consistently led to a concentration dependent reduction in the peak current amplitude of the second pulse in comparison to the first [23]. The lack of inhibition, thus, indicates that the affinity of ECSI#6 in the absence of 5-HT is low. To obtain estimates for the affinity of ECSI# for SERT in the absence of 5-HT we would need to apply this compound at much higher concentrations. This, however, is not possible, because ECSI#6 is poorly soluble in aqueous solutions (i.e., max. 0.03 mg/ml).”

    1. Author Response

      Reviewer #1 (Public Review):

      The authors succeeded in fitting their Jansen-Rit model parameters to accurately reproduce individual TEPs. This is a major success already and the first study of this kind to the best of my knowledge. Then the authors make use of this fitted model to introduce virtual lesions in specific time windows after stimulation to analyze which of the response waveforms are local and which come from recurrent circles inside the network. The methodological steps are nicely explained. The authors use a novel parameter fitting method that proves very successful. They use completely openly available data sets and publish their code in a manner that makes reproduction easy. I really enjoyed reading this paper and suspect its methodology to set a new landmark in the field of brain stimulation simulation. The conclusions of the authors are well supported by their results, however, some analysis steps should be clarified, which are specified in the essential revisions.

      We are delighted and flattered by the Reviewer’s positive evaluation of our work, and appreciation of our efforts to maximize its reproducibility. We wish also to thank the Reviewer for their compelling and interesting points, which we have addressed in full, and we believe further enhance the quality of the paper. Thanks again!

      Reviewer #2 (Public Review):

      Here the authors tackle the problem of identifying which parts of a TMS-evoked response are local to the stimulation site versus driven by reverberant activity from other regions. To do this they use a dataset of EEG recorded simultaneously with TMS pulses, and examine virtual lesions of a network of neural masses fitted to the data. The fitting uses a very recent model inversion method developed by the authors, able to fit time series directly rather than just summary statistics thereof. And it apparently works rather well indeed, at least after the first ~50 ms post-stimulus. I expect many readers will be keen to try this fitting method in their own work.

      We are delighted by the Reviewer’s appreciation and consideration of our paper. We have addressed the comments and revisions requested following the flow suggested by the Reviewer’s comments. We would take this opportunity to kindly thank the Reviewer for his/her contribution and for helping us to improve the manuscript.

      Reviewer #3 (Public Review):

      The manuscript is very well written and the graphics are quite iconic. Moreover, the hypothesis is clear and the rationale is very convincing. Overall, the paper has the potential of being of paramount importance for the TMS-EEG community because it provides a valuable tool for a proper interpretation of several previously published TMS-EEG results.

      Unfortunately, in my opinion, the dataset used to train and validate the method does not support the implication and interpretation of the results. Indeed, as clearly visible from most of the figures and mentioned by the authors of the database, the data contains residual sensory artifacts (auditory or somatosensory) that can completely bias the authors' interpretation of the re-entrant activity.

      We are most grateful to the Reviewer for their positive evaluation of our manuscript. We also sincerely appreciate all the comments and suggestions raised, and for contributing their evident expertise with TMS-EEG data towards the constructive improvement of this research. We hope the Reviewer will appreciate our efforts made to address their excellent points, and are pleased with the resultant strengthening of the paper.

    1. Author Response

      Reviewer #2 (Public Review):

      Wen et al. developed a useful tool for causal network inference based on scRNA-seq data. The authors comprehensively benchmarked 9 feature selection and 9 causal discovery algorithms using both synthetic data and real scRNA-seq data. Their conclusions regarding the performance of these algorithms on synthetic data are solid and valuable. I believe this tool or platform has the potential to help biologists discover novel cell type-specific signaling pathways or gene regulatory events since there is no prior knowledge (such as known pathway annotations) as inputs. However, several major concerns below need to be addressed to improve the paper.

      1) Current validation of the inferred causal networks using real scRNA-seq datasets seems quite simple and is not sufficient to support the accuracy and reliability of results. Annotations from the STRING database do not contain directions of edges among genes or proteins. However, the edge direction in the inferred network is a crucial aspect to explain the causal relationships. Besides using "spike-in" data, a systematic validation of the inferred network, especially the edge directions, should be provided.

      We have used the data of the five lung cancer cell lines and alveolar cells and the genes in several pathways (in which causal interactions are better annotated) in the KEGG and WikiPathway databases to validate network inference systematically. Please see the responses to the Essential Revisions (for the authors).

      2) In order to illustrate the novel discovery, CausalCell should be further compared to existing gene network construction methods based on scRNA-seq data such as SCENIC (Aibar et al. Nature Methods, 2017).

      (a) We have added a "TF=No/Yes" option to feature selection. If this option is ignored, feature selection is as before. If "TF=Yes" is selected, all feature genes are TFs. If "TF=NO" is selected, all feature genes are non-TFs. With this option, normally, two rounds of feature selection are performed. The first round ("TF=Yes" is selected) selects TFs as feature genes of a response variable (RV), and the second round ("TF=No/Yes" is ignored) selects feature genes as before (feature genes contain both TFs and non-TFs). The user selects genes from the results of two rounds to build input to causal discovery.

      (b) The networks inferred by SCENIC are TF-centered: each TF and its potential target genes form a regulon, it searches for genes co-expressed with a TF (through GENIE3/GRNBoost), and the union of all or some of the regulons forms a network. Thus, SCENIC helps uncover the "one TF->all targets" relationships. Different from SCENIC, this "TF=No/Yes" option provides a target-centered transcription regulation analysis and helps uncover the "all TF->one target" relationships (the target is the response variable). Thus, the two approaches are complementary. Feature selection based on the "TF=No/Yes" option also differs from SCENIC in that no predefined regulons (defined upon "cisTarget" databases) are needed.

      (c) We used SCENIC in our initial analysis of the young and old mouse CD4 T cells (see Figure 5 in Elyahu et al. 2019). In the re-analysis of tumor-infiltrating exhausted CD8 T cells, we find that the "TF=No/Yes" option helps uncover transcription regulation. For example, the transcription factor TOX is reported to regulate PDCD1 critically in mice. When we perform feature selection to identify feature genes of PDCD1, TOX is in the top 50 feature genes in the colorectal cancer dataset but not in the lung and liver cancer datasets (Supplementary file1:Table 1). To re-examine whether TOX critically regulates PDCD1 in the two latter datasets, we perform feature selection with "TF=Yes", and the results are that TOX is a top TF of PDCD1.

      3) The authors should also claim what type of the inferred causal network represent from the biological perspective (e.g. signaling networks or gene regulatory networks?).

      (a) Although methods have been developed specifically for inferring signaling and regulatory networks, whether a network is a signaling network or a gene regulatory network depends on the input data. Also, many proteins and noncoding RNAs function as complexes instead of individually in both kinds of networks, and RNA-seq and scRNA-seq data contain only transcripts. Thus, researchers must infer signaling and gene regulation in cells upon inferred networks.

      (b) The input to causal discovery can be (a) a target gene and its potential TFs, (b) a TF and its potential targets, (c) genes encoding both TFs and non-TFs. Thus, whether an inferred network is signaling or gene regulatory network depends on the input. We have made this clear in the Discussion.

      4) Besides edge direction, an important feature of CausalCell is the determination of edge sign (i.e. activation or inhibition). The authors should describe its related procedures.

      In the revised section "2.5 Causal discovery", we wrote, ""In all inferred causal networks, edges have a sign that indicates activation or repression and have a thickness that indicates CI test's statistical significance. The sign of the edge from A to B is determined by computing a Pearson correlation coefficient between A and B, which is ‘repression’ if the coefficient is negative or ‘activation’ if the coefficient is positive. In most cases, ‘A activating B’ and ‘A repressing B’ correspond to up-regulated A in the case dataset compared with down-regulated B in the control dataset."

      5) The authors did not provide an example of constructing a causal network between cells or cell types, although they mentioned its importance in the Abstract. Such intercellular network examples can distinguish the utility of CausalCell in single-cell data analysis from bulk data analysis.

      Constructing causal networks between cells is a quite different work. We delete this sentence in the manuscript because we are still working on it.

      6) If the control dataset is available, it is currently not clear whether batch effects of the query and control datasets will be removed in the data preprocessing step. Differentially expressed genes cannot be selected correctly if batch effects exist.

      Please see our responses to the second point of Essential Revisions.

    1. Author Response:

      Reviewer #1 (Public Review):

      This paper investigates waves in embryonic mouse retinas. These stage 1 waves have been studied less than the post-natal (stage 2) waves. The paper uses calcium imaging in whole retinas to determine the properties of the waves and their dependence on cholinergic and electrical synapses. A strength of the work is the ability to monitor waves over the entire retina at high resolution and weaknesses include reliance on pharmacology and some missing details in analysis.

      Reliance on pharmacology

      The results in the paper depend largely on pharmacological manipulations. Not enough consideration is given to the possible unintended effects of those manipulations. This is particularly true for the gap junction inhibitors. The Discussion brings up the possibility of such effects, but they need to come up much earlier. Is there anything else that can be done to mitigate concerns about the drugs - e.g. does MFA affect waves in Cx36 KO mice?

      We have added additional experiments based on whole cells recordings to address some off target effects of MFA but we do make note of the limitations of these new controls since we observed significant variability of voltage-gated conductances across RGCs at this age as well as the limited ability to maintain stable recordings for the requisite time to have within cell controls for MFA. (see Figure 2 Supplemental Figure 1).

      Over the years we have done several experiments assessing different Cx knockouts and retinal waves (e.g. F. Caval-Holme, et al, “The Retinal Basis of Light Avoidance in Neonatal Mice”, Journal of Neuroscience 42:2022; Blankenship A.G., et al “The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina, Journal of Neuroscience, 3, 2011). It appears that there are multiple connexins in RGCs and which regulate stage 1 retina waves beyond Cx 36 and Cx45 and therefore it is difficult to use these mice as controls for general gap junction antagonists.

      In the revision, we are more explicit about the caveats of using MFA both in the results (page 5) and discussion (page 10). Notably, we draw attention to past studies where we have done several controls regarding MFA and RGC activity in older retinas in addition to our more limited controls we were able to carry out in E16-E18 retina.

      Comparison of ACh receptor block and knockout mice

      The ACh receptor knockout mouse provides a useful alternative to the pharmacological block of ACh receptors. But different features are described in Figures 2 and 3, preventing direct comparison of the two.

      Our intention was not to use the knockout mice as an alternative to the pharmacological block since we knew that there are compensatory wave mechanisms in the knockout. Rather we are using the β2-nAChR-KO to establish the effectiveness of this KO as a means of testing the role of Stage 1 waves in developmental processes. We do hope the revised manuscript explains this motivation more clearly.

      A related point is the apparent increased role of gap junctions in mediating waves in the absence of ACh receptors. On this point, the description of the effect of MFA (page 8, second paragraph, 3rd sentence) was confusing. It looks to me like MFA almost completely eliminates waves in both WT and KO - so the connection to an altered role of gap junctions was not clear.

      We clarified our description of the MFA result (page 5):

      Application of the gap junction blocker meclofenamic acid (MFA, 50μM) nearly abolished Stage 1 waves, causing a significant reduction in frequency of waves and cell participation during waves (Fig 2A & 2F).

      ipRGC densities

      The goal of the measurements of ipRGC densities was not entirely clear. Why are ipRGCs a reasonable way to determine the importance of waves for development? For example, the introduction raises the issue that changes in RGC proliferation depend on RGC type. Is there reason to think ipRGCs are "special" or, alternatively, that they are following the same developmental trajectory as other RGCs? Is it possible to track another RGC type (e.g. using SMI32 staining)? Related to this general point, page 9 (top) sets up the need to identify the mechanism of RGC cell death but then jumps to waves without a clear connection between the two. It would also be good to mention early that the measurements include multiple ipRGC types, so that issue does not come up only as an explanation for why the ipRGCs are not organized spatially (page 10 top).

      We have revised text extensively to better motivate our selection of ipRGCs (page 6). Our goal was to use an identified differentiated RGC subtype for which we had genetic access to assess the impact of reduced retinal waves on cell number. We settled on ipRGCs because: 1) ipRGCs undergo a significant amount of cell death during the same period there are retinal waves (Chen et al, Elife 2013) and 2) we show ipRGCs participate in retinal waves.

      Analysis

      Quantitative analysis of the calcium measurements relies on the discretization of the signals measured in small ROIs. It was not clear how closely the discretized signals represented the original recordings. The traces illustrated in Figures 1 and 2, for example, appear to be measured in larger ROIs. Two things would be helpful here: (1) an illustration of several original recorded traces in the small ROIs plotted with the discretized versions of those traces; (2) a determination of how sensitive the results are to specifics of the discretization process.

      We have modified Figure 1 to include example traces of the fractional change in fluorescence computed across the small ROIs used for the analysis of waves on the macroscope. They are at the top of Figure 1B. As can be seen by these traces, the signal-to-noise is fantastic.

      Reviewer #2 (Public Review):

      The overall goal of this study is to determine the mechanism of early retinal wave initiation and propagation. Despite a number of earlier studies, the precise mechanism of Stage1 waves and how they differ from Stage 2 waves remained controversial. To address this, the authors describe the timing and character of Stage 1 retinal waves using a custom build imaging system allowing for wide-field monitoring of neuronal activity while preserving high spatial resolution. In a set of elegantly designed experiments, they reveal that the initiation and propagation of Stage 1 waves are driven by distinct mechanisms involving complex circuitry of nAChRs and gap junctions. Interestingly, the data also demonstrate that Stage 1 and Stage 2 waves rely on different subtypes of AChRs. The signaling via beta2AChRs appears to be the driver of Stage 2 waves. However, the precise identity of nAChRs and GJs contributing to Stage 1 waves remains a mystery. Next, to determine the impact of early retinal waves on retinal circuit formation, the authors evaluate their impact on the survival of ipRGC. They show that ipRGC cell survival and their distribution mosaics are not influenced by spontaneous activity. While the observation of ipRGC data and their mosaic are interesting, the rationale for these experiments in the context of this study is not well presented.

      We thank the reviewer for positive comments. We do hope the revised rationale for ipRGC measurements addresses these comments. It is included here for convenience (page 7)

      RGCs undergo a period of dramatic cell death during the first two postnatal weeks of development, the majority occurring during the first postnatal week (Abed et al., 2022; Braunger et al., 2014). Whether this cell death process is regulated by retinal waves is unknown. We looked specifically at intrinsically photosensitive ganglion cells (ipRGCs) for several reasons. First, ipRGCs have completed proliferation (Lucas and Schmidt, 2019; McNeill et al., 2011) and appear to be fully differentiated by E16 (Shekhar et al., 2022; Whitney et al., 2022), the onset of Stage 1 waves. ipRGCs undergo a period of dramatic cell death during the first two postnatal weeks of development, the majority occurring during the first postnatal week, prevention of which profoundly disrupts several important developmental processes in the retina – including spacing of ipRGC somas as well as rod and cone mediated circadian entrainment through the activation of ipRGCs (Chen et al., 2013). However, the exact mechanism regulating ipRGC cell death is unknown. Here we assessed the impact of disrupting Stage 1 and Stage 2 waves on the number and distribution of ipRGCs.

      Reviewer #3 (Public Review):

      The manuscript by Voufo et al. aims to advance our understanding of the mechanisms responsible for the earliest pattern of spontaneous activity in the mouse retina, stage I retinal waves. These waves occur during embryonic development (E16-18) and are the least known form of activity in the immature retina.

      The authors show that stage I waves have broad spatiotemporal features and are mediated by circuitry involving subtypes of nicotinic acetylcholine receptors (nAChRs) and gap junctions. The authors also found that the developmental decrease of intrinsic photoreceptor retinal ganglion cells (ipRGCs) density is preserved between control and ß2-nAChR-KO mice, indicating that processes regulating ipRGC distribution are not influenced by early spontaneous activity.

      The quality of the data is excellent, and the conclusions of this paper are mostly well supported by data, but the presentation of the data and the analysis need to be clarified and extended.

      Strengths:

      The earliest patterns of spontaneous activity are crucial for the correct development of sensory circuits. In the visual system, most studies focus on postnatal activity (stage 2 and 3 retinal waves) overlooking embryonic stages, likely due to challenges related to methods and animal handling. Therefore, in this manuscript, the authors from a laboratory pioneer in studying retinal waves in the mouse, tackle a very relevant subject that has not been explored in detail. The bibliography that encompasses most of the current knowledge about stage 1 retinal waves in mammals is compressed into three fairly dated publications: Galli and Maffei 1988, Bansal et al 2000, and Syed et al 2004. These publications were pioneering attempts to describe early spontaneous activity; however, much work remained to be done regarding the molecular and cellular mechanisms involved. Here, Voufo and colleagues provide additional fundamental details about the properties and components of stage 1 waves. The dataset has excellent quality and plenty of information could be extracted from it. The authors used a macroscope that allows the acquisition of images from the entire retina while preserving a good spatial resolution.

      Weakness:

      The authors distinguish different subtypes of activity during embryonic stages in the retina of mice. However, they do not provide a detailed characterization that allows a clear definition of these subtypes (and specifically stage 1 waves). Moreover, throughout the manuscript, there are many technical details of the analysis that are missing and preclude a complete understanding of the robustness of the data. The authors have an excellent dataset that needs more analysis and an improvement in the presentation of the results.

      We do hope the extensive revisions satisfy reviewer.

    1. Author Response

      Reviewer #1 (Public Review):

      Ciliary length control is a basic question in cell biology and is fascinating. Regulation of IFT via calcium is a simple model that can explain length control. In this model, ciliary elongation associates with an increase in intraciliary calcium level that leads to calcium increase at the ciliary base. Calcium increase acts to reduce IFT injection and thus ciliary assembly rate. The longer the cilia, the more increase of calcium level and the more reduction of IFT injection and thus the ciliary assembly rate. When the cilia approach the genetic defined length, the gradual reducing assembly rate eventually balances the constitutive disassembly activity. Cilia then stop elongation and a final length is achieved. This work tested this model by manipulating the calcium level in cilia by using an ion channel mutant and treatment of the cells with EGTA. In addition, IFT injection was measured before and after calcium ciliary influx. Based on the outcome of these and other experiments, it was concluded that there is no correlation between changes in calcium level and IFT injection, thus challenging the previous model. This work is well written and the experiments appear to be properly executed. It nicely showed an increase of intraciliary calcium during cilia elongation, and beautifully showed that ciliary calcium influx depends on extracellular calcium. However, I felt the current data are inadequate to support the author's conclusion.

      We thank the reviewer for the positive assessment of the interest in our work, and we have performed additional experiments to address the reviewers concerns as discussed below.

      The authors showed that ciliary calcium increases along with ciliary elongation, which correlates with reduction of IFT injection. Thus, this result would support that calcium increase reduces IFT injection. To test whether reducing calcium influx would alter the IFT injection, the authors used an ion channel mutant cav2. Indeed, ciliary calcium level in the mutant cilia appears to be lower compared to the control in average. After measuring ciliary calcium level and IFT injection during ciliary elongation with mathematical analysis, it was concluded that reducing ciliary calcium level did not lead to increased IFT injection, which is distinct from the control cells. Thus, the authors concluded that calcium does not act as a negative regulator of IFT injection. However, if one examines the calcium flux in Figure 3B and IFT injection in Figure 4B of cilia less than 6 micron, one may draw a different conclusion. For the mutant cilia, the calcium influx is higher than that in control cilia and IFT injection is reduced compared to the control. Thus, this analysis is the opposite of the authors' conclusion, and is supporting the previous model. There is a rapid change in ciliary assembly rate at the early stages of ciliary assembly (see Figure 1C), thus, the changes in calcium influx and IFT injection in the earlier assembly stage would be more appropriate to assess the relationship between intraciliary calcium level and IFT injection.

      We thank the reviewer for raising this issue, which led us to examine the data more carefully. In looking at the numbers of cells with flagella in each length range, we became concerned that the apparently low calcium influx in shorter flagella in control cells compared to ppr2 or EGTA treatment might actually due to bias from technical issues: it is relatively difficult to image shorter flagella in our TIRF imaging setup, because shorter flagella have less flagellar surface area to attach the coverslip. The more motile the flagella are, the more likely are the cells to detach when their flagella are short, because the bending force of the flagella is strong enough to pull them away from their small area of adhesion. This effect is much stronger in control cells than in either the ppr2 mutants or EGTA treated cells, whose flagella are less motile. This led to a reduced number of cells examined with flagella shorter than 6 um (17 versus 34 for control and ppr2 cells, respectively). To overcome the difficulties and biased result, we observed more flagella in control cells. The new data has now been integrated with our previous data and shown in Figure 3. The new result shows that calcium influx in control cells is in fact higher than in the ppr2 mutant cells. So, our result is remains consistent with our conclusion, and we believe that it is not useful to analyze the shorter flagella separately.

      The authors used EGTA treatment to support their conclusion. However, EGTA treatment may induce a global calcium change of the cell, the outcome may not reflect actual regulation of IFT injection by ciliary calcium influx. For example, as reported elsewhere, the change of cAMP level in the cell body and cilia has a different impact on ciliary length and hedgehog regulation. The slower assembly of cilia in EGTA treated cells may be caused by many other factors instead of sole regulation by IFT.

      It is certainly possible that EGTA is affecting some process inside the cell that then indirectly affects IFT. Our experiments cannot rule this out. The fact that similar effects are seen with the ppr2 mutant argues against this idea, but again cannot rule it out. We have added the following caveat to the discussion:

      "Other calcium dependent processes in the cytoplasm might also potentially address IFT, and our results cannot rule out this possibility. However, we note that the ppr2 mutant also fails to show the effect on IFT or regeneration predicted by the ion current model."

      The authors only examined the impact of reducing ciliary calcium influx. To further support the authors' conclusion, it is recommended that the authors should examine IFT injection in a condition where ciliary calcium level is increased. Using calcium ionophore may not be a good choice as it may change the global calcium level. One approach to consider is using mutants of a calcium pump present in cilia.

      We thank the reviewers for this suggestion. The calcium current model would predict that if a calcium pump mutant failed to export calcium, the increased calcium building up inside the flagellum should lead to decreased IFT entry and a shorter flagellar length. We found at least two calcium pumps in the published Chlamydomonas flagella proteome (Pazour et al., 2005) and ordered several mutant strains from Chlamydomonas Library Project (CLiP) which are annotated as affecting these pumps. We measured the flagellar length of these potential calcium pump mutant strains, but none showed a statistically significant difference in length relative to control cells. We have now included this data as Figure S4. Because no length change was observed, we did not perform the extremely time consuming process of constructing strains that contain these mutations along with DRC4-GCaMP and KAP-GFP.

      As an alternative strategy to get at this reviewer's suggestion, we measured DRC4-GCaMP and KAP-GFP intensity in 1 mM CaCl2 treated flagella and found that CaCl2 treatment increases both the flagellar calcium level (Figure 3, see below) and IFT injection (Figure 4). This increase in IFT injection is the opposite of what the calcium current model predicts.

      Based on these results, we think the calcium pump experiment is not necessary because of the following reasons. 1. These calcium pump mutants might not increase the flagellar calcium level. 2. Even if the flagellar calcium was increased in these mutants, it does not affect the flagellar length and thus our conclusions would still hold. 3. These mutant strains might still have functional calcium pumps since the existing data on calcium pumps in flagella is likely to be incomplete. 4. The CaCl2 experiment clearly increased the flagellar calcium level inside flagella, directly addressing the point that the reviewer is getting at.

      The conclusion on line 272-273 may need more evidence. The authors showed that addition of 1 mM CaCl2 does not change ciliary assembly, and used this as one of the evidences to argue against the ion-current model. The addition of calcium extracellularly may not alter intracellular/intraciliary calcium level given that cells have robust systems to control calcium homeostasis. To support the authors' conclusion, one should measure the changes of calcium level in the cell/cilia or revise their conclusion.

      We have now performed these measurements and have included the data in Figure 3D.

      The authors showed nicely the changes in IFT properties before, during and after ciliary calcium influx and found that the intensity and frequency of IFT do not have a correlation with calcium influx though calcium influx restarts paused IFT trains for retrograde transport as previously reported (Collingride 2013). The authors again concluded that this is supporting their conclusions in that there is no correlation between IFT injection and calcium influx. However, I am not sure whether the short pulses of calcium influx at one time point would change the calcium level in the whole cilia in a significant way that would alter IFT injection at the ciliary base.

      We agree that individual pulses might not have an effect on the average level of IFT injection. We were specifically trying to see if, having previously ruled out the predicted correlation at the level of average rates, there might still be a trace of the correlation for individual events.

      Reviewer #2 (Public Review):

      The authors use a genetically encoded calcium indicator to measure Ca in flagella to establish that Ca influx correlates with flagellar length. (Despite this correlation, there is so much noise that it is dubious that Ca level can regulate the flagella's length.) Then, they show that reduced Ca decreases the rate of IFT trains entering flagella, which ruins the ion-current model of regulating flagella's length. (Ca can still be one of the factors that sets the target length.) Ca does not seem to change the disassembly rate either. There are also no correlations between Ca influx spikes and IFT injection events. Curiously, these spikes broke pauses of retrograde IFT trains, but that still did not affect IFTs entering dynamics.

      Some other possibilities like Ca regulating unloading rates are discussed and convincingly rejected.

      The study ends with an interesting Discussion, which talks about other possible models, and concludes that the only model not easily rejected so far is the mechanism relying on diffusion time for kinesins from flagella to the cell body being greater in longer flagella.

      The paper is well written, very thorough, contains significant results.

      We thank the reviewer for this strong positive assessment.

      Reviewer #3 (Public Review):

      This work by Ishikawa et. al is focused on testing the hypothesis first proposed by Rosenbaum that Ca2+ levels in the primary cilia act as an internal regulator of cilia length by negatively regulating intraflagellar transport (IFT) injection and/or microtubule assembly. The authors first built a mathematical model for Ca2+ based regulation of cilia length through the activity of a Ca2+ dependent kinase. They then tested this model in the growing cilia of Chlamydomonas cells expressing an axonemal localized GCaMP. Ca2+ levels were manipulated genetically with a calcium channel deficient mutant line and with the addition of EGTA. While increases in Ca2+ levels do correlate with cilia length as expected by the model they found that IFT injection was positively correlated with IFT injection and increased axonemal stability which contradicts its potential as a mechanism for the cell to internally regulate cilia length.

      Overall the conclusions of the paper are supported by their data. They greatly benefit from first establishing their model in a clear form and then experimentally interrogating the model from multiple angles in order to test its viability. The importance of cilia length to our understanding of human health has only become greater in recent history and the authors are making a significant contribution to our understanding of ciliary length regulation.

      We thank the reviewer for this positive assessment, including of the relevance of the model. We have attempted to address all suggestions.

    1. Author Response

      Evaluation summary

      This important study advances our understanding of respiratory complex I. The authors present convincing structural data for the enzyme from Drosophila melanogaster although the interpretation of conformational states is still not conclusively settled. This work will be of interest to researchers studying respiratory enzymes, the evolution of respiration, and mitochondrial diseases.

      Thank you for this positive evaluation of our work. Although we have presented a robust and coherent interpretation of the conformational states we observe, we accept that different opinions on this topic still exist in the field.

      Reviewer #1 (Public Review):

      Agip et al. have resolved the first cryoEM structure of the mitochondrial Complex I from Drosophila melanogaster, an important model organism in biology. The structure revealed a 43-subunit enzyme complex that closely resembles the mammalian Complex I. The authors resolved Complex I in three different conformational states at 3.3-4.0 Å global resolution, with an overall resemblance to the active form of the mammalian Complex I, but also with some characteristic conformational changes near the quinone substrate pocket and surrounding subunits that resemble, at least in part, the deactive form of the mammalian enzyme. The third resolved class was considered 'damaged/broken', and a possible artifact arising from the sample preparation. Biochemical assays showed that the Drosophila Complex I does not undergo an active/deactive transition (as characterized by the N-ethylmaleimide sensitivity), although the structures revealed an exposed ND3 loop that has been linked to transition. The authors could also show that conformational change between an alpha and pi form of transmembrane helix (TM3-ND6) is likely to be involved in catalysis, and distinct from the deactivation mechanism of the mammalian isoform. Due to the 3.3 Å global resolution, water molecules could not be experimentally resolved, and how the observed conformational changes link to the proton pumping activity therefore remains an open question and basis for future studies. Overall I find that this work provides an important basis for understanding mechanistic principles of the mitochondrial Complex I and more specifically a starting point for detailed genetic studies on the fruit fly Complex I.

      We thank the reviewer for their positive evaluation of our manuscript.

      We would like to note that in all three conformational states of Drosophila complex I observed in our study, we do not observe an exposed ND3 loop (Cys39 in particular), as outlined in Figures 3 & 6 and Figure 6 – Figure Supplement 1 (as well as in Figures 5 and 7). This observation is fully consistent with the lack of N-ethylmaleimide (NEM) sensitivity observed in our Drosophila preparation.

      We discuss the relevance of the π-bulge/α-helical nature of ND6-TMH3 to catalysis in the Discussion section in the context of an intercalated phospholipid molecule in the Dm1 structure: “Indeed, if ND6-TMH3 converts between its -bulge and -helical structures during catalysis (Agip et al., 2018; Kampjut and Sazanov, 2020; Kravchuk et al., 2022; Parey et al., 2021; Röpke et al., 2021), then the intercalating phospholipid is very unlikely to be present in the -helical state, moving repeatedly in and out.” While our structures are consistent with this helical change being involved in catalysis, they are resting-state structures and therefore do not provide further evidence in this regard.

      Finally, the reviewer is correct in that the resolutions of the structures resolved here are insufficient to model water molecules, and that how the conformational changes observed here contribute to our currently limited knowledge of the coupling mechanism remains to be answered.

      Reviewer #2 (Public Review):

      • Aim of the study:

      Agip et al. studied the structure of respiratory complex I from Drosophila melanogaster, an important model organism with well-developed genetic toolkit and sufficiently close phylogenetic relationship to mammals. They isolated the complex and analyzed its structure by single-particle electron cryo-microscopy (cryo-EM). They also used mass spectrometry to characterize new subunits. So far, the structures of complex I have been reported for several organisms, including mammals, plants, ciliates, fungi and bacteria, but ones from insects have been missing. This study aims to fill this gap and shed light on some of the key questions pertaining complex I biology, such as 1) the conservacy of supernumerary subunits, 2) the mechanisms and physiological relevance of active/deactive transition and 3) the correspondence between the structurally defined closed/open conformations and the biochemically defined active/deactive states.

      We thank the reviewer for clearly summarising the key aims of the study relative to the current status of the complex I field.

      • Strengths:

      The study provides the first structure of complex I from insects, the organisms at an important phylogenetic branch that has diverged from mammals more recently than other eukaryotic species such as plants and fungi. Using purification methods they developed for mammalian enzymes previously, the authors successfully purified the insect enzyme with high quality - a monodisperse peak in gel filtration, the NADH oxidation activity comparable to mammalian enzymes, and the homogenous subunit composition as confirmed by single-particle analyses. It is noteworthy that the authors used state-of-the art tools in model building and validation, such as ISOLDE and MapQ, which makes this model of high standard. In my opinion such careful validation is particularly important for modelling such a gigantic complex, since without cares one can easily misinterpret the density and draw wrong conclusions.

      The resolution is 3.3 Angstrom for the best class (Dm1), which allowed modelling side chains and comparing between the observed 3D classes and to the known structures. The model confirms the presence of 43 subunits, akin to mammalinan enzymes, composed of 14 conserved core subunits, 28 supernumerary subunits that have close homologs in mammals, and one supernumerary subunit CG9034 that has not been predicted. They are also structurally similar to mammalian enzymes except for minor local differences. The two supernumerary subunits (NDUFC1 and NDUFA2) that are present in mammals are missing. The authors discuss evidence that NDUFC1 is absent from the Drosophila genome and NDUFA2 is genomically present but its expression is restricted to the male germline. Together, the overall similarity to the mammalian enzyme underlines the use of Drosophila complex I as a model system.

      One of the remarkable findings is that common biochemical treatments that are used to deactivate mammalian complex I - heat treatment or NEM treatment - did not reveal deactive state of Drosophila complex I. This is in agreement with their observation that most structural elements are in the active state. The major Dm1 conformation shows all structural features in the active conformation, whereas Dm2 state shows two features in the deactive conformations. Here the author raises an interesting point that the structural elements formerly believed to behave in a consorted manner are actually not coupled, providing new perspective in interpreting complex I structures presented so far and in future. Notably, the authors adopted the same purification procedure for bovine and murine samples. This is a particular strength that they applied a similar procedure for but still observed different behaviors for Drosophila (the absence of the deactive state).

      We thank the reviewer for their positive evaluation of the strengths of the paper.

      • Weaknesses:

      As the authors point out in Discussion, the biochemical statuses of the two described conformations, Dm1 and Dm2, are uncertain. If we assume that Dm1 is a ready-to-go active state, Dm2 could represent several of the possible states; a partially broken state due to delipidation by detergent, a meta-stable state during enzyme turnover, an intermediate towards "full deactiving" structural transition (which the authors argue is unlikely to occur), or a fully reversible state that is in equilibrium to Dm1. Despite these uncertainties, the structure will serve as an excellent starting point to address many open questions in the complex I field in future.

      We agree that the biochemical status of Dm2 is uncertain and as the reviewer notes, we made an attempt to address this question in the Discussion section.

      In the final 3D classification the number of classes was set to 3 (K = 3). This is an arbitrary human decision and implicitly forces particles to separate into 3 descrete classes. It would have been great to mention if the authors had tried different classification parameters and, if so, whether that had led to similar classification results. There are different methods available to dissect conformational heterogeneity other than simple 3D classification. For example, focused classification can differentiate local structural features. MultiBody refinement and 3D variabitlity can analyze continuous conformational changes. The simple 3D classification with local angular sampling employed here may lead to over-simplification of the more complex structural heterogeneity.

      First, the number of classes was set to 5 (K = 5) as written in the Materials and methods section (page 20), which is greater than the number of complex I conformations observed in this study. We apologise if this was not clear and we have amended Figure 1 – Figure Supplement 2 to clarify it.

      Second, as the reviewer correctly points out, there are many different methods to dissect conformational heterogeneity, and for this reason we purposefully performed several classification strategies before validating that the Global 3D classification approach used here (with local angular search extending to 0.2º sampling) yielded comparable (or even better) results. These additional classification strategies include:

      (i) Focus-revert-classify (a strategy often used for complex I (Kampjut and Sazanov, 2020; Klusch et al., 2021; Kravchuk et al., 2022; Letts et al., 2019)) in RELION, where the membrane arm of complex I is first subtracted to focus-refine on the hydrophilic arm, the subtraction reverted, and then focus-classification performed without alignment on the membrane arm. Here, we used a regularisation parameter, t = 8, and K = 5, and the process yielded three complex I classes matching Dm1, Dm2, and Dm3 with comparable population distribution to the aforementioned Global 3D classification method, plus two junk classes.

      (ii) A 3D classification without alignment approach (a strategy also used for complex I (Gu et al., 2022)) in RELION. We used t = 20 and up to K = 12 classes, which resulted in two < 4 Å resolution complex I classes, with the major class matching Dm1 and the minor class a likely mixture of Dm2 and Dm3.

      Based on these three classification strategies, we chose to work with the Global 3D classification approach that has previously proven robust for separating complex I heterogeneity in our hands (Agip, 2018; Chung et al., 2022b; Zhu et al., 2016). However, we agree with the reviewer that it would be valuable to provide this extra information. Therefore, we have amended the Materials and methods section on page 20: “The ‘Focus-Revert-Classify’ classification strategy (Letts et al., 2019), applied using the regularisation parameter t = 8 and K = 5, yielded comparable population distributions (three complex I classes matching Dm1, Dm2, and Dm3, plus two junk classes) whilst 3D classification without alignment using t = 20 and K ≤ 12 yielded two < 4 Å complex I classes, with the major class matching Dm1 and the minor class an apparent mixture of Dm2 and Dm3. The 3D classification approach with local angular sampling was therefore employed to give the final set of Dm1, Dm2 and Dm3 particles as described above.” Furthermore, clear cryo-EM densities for Dm2-specific local features, including the ‘flipped’ ND1-TMH4-Tyr149 and the ND6-TMH3 π-bulge, revealed no evidence for Dm1 contamination in the Dm2 population. This is also now noted on page 20.

      Although 37 degrees heat treatment and NEM treatment did not reveal any sign of deactivation in Drosophila complex I, it does not rule out the possibility that insect complex I has different ways to deactivate the enzyme, to prevent ROS production. It is probably the limitation of applying existing assays that are originally for mammalian and fungal enzymes to the study of insect enzymes.

      The reviewer is correct that Drosophila complex I may have a different way to ‘deactivate’ that does not involve an exposure of ND3-Cys39, and it is also possible that the conditions used for deactivation of mammalian mitochondrial membranes (i.e. 37 ºC heat treatment for 30 min) may not be sufficient to deactivate the Drosophila enzyme. Our approach here was to evaluate if Drosophila complex I undergoes the same active/deactive transition as the mammalian enzyme both structurally and biochemically (and our results suggest that it doesn’t). Moving forward, deactivation mechanisms in different phylogenetic lineages will be an important question to address in the complex I field. We have addressed this question in the first paragraph of the Discussion.

      • Whether they achieved the aims and whether the conclusions are supported by the results:

      Overall, they successfully isolated the active enzyme and determined its structure at 3.3 A resolution, which meets the current state-of-the-art for single-particle cryo-EM and provided an atomic picture of the enzyme composition. The study confirms that the Drosophila complex I is structurally similar to mammalian complex I, but biochemically different in that it does not show the deactive state. It still does not exclude the possibility that Drosophila complex I can transition into a currently unknown state that prevents reverse electron transfer. This question however can be tackled in future by mutagenesis analyses as Drosophila is a genetically tractable organism.

      We agree with the reviewer on his evaluation of the study, and the genetic tractability of the Drosophila enzyme will serve as a crucial tool for future studies.

      • Impact to the field and utility of the data to the community:

      Complex I is important not only for human health but also for understanding universal principles of biological respiration, because of its universal presence in most organisms on Earth. This study provides a basis for relating mammalian complex I with those from other branches of organisms. The current structures will allow Drosophila researchers to interpret and design any mutations that affect complex I functions, and relate them to behavioral, developmental and metabolical changes at tissues, organs and individuals levels.

      We agree with the reviewer on his evaluation of the impact of the study, and thank the reviewer for their comments on the manuscript.

      Reviewer #3 (Public Review):

      The mitochondrial NADH dehydrogenase complex (complex I) is of prime importance for cellular respiration. It has been biochemically and structurally characterized for several groups of organisms, including mammals, fungi, algae, seed plants and protozoa. Furthermore, different complex I conformation have been reported, which are considered to possibly represent distinct physiological states of the enzyme complex. E.g. in mammalian mitochondria, two resting states can be distinguished, designated 'ready-to-go' resting state, and 'deactive' resting state. To better understand the physiological relevance of these states, complex I is here investigated from the fruit fly Drosophila melanogaster, which represents a model for insects but beyond for metazoan in general and which can be easily genetically modified.

      Complex I from Drosophila is presented at up to 3.3 Angstrom resolution. It includes 43 of the 45 complex I subunits defined for mammalian complex I. Subunit NDUFA3 has been found in Drosophila complex I for the first time. Overall, Drosophila complex I is remarkably similar in its composition and structure to the mammalian enzyme. Only minor topological differences were found in some subunits. Furthermore, three different complex I states are described, termed Dm1, Dm2 and Dm3. The three states are extensively discussed and compared to the states found in mammalian complex I. Dm1, which is the dominating class, likely represents the active resting state. In Dm2, the two complex I arms are slightly twisted with respect to Dm1. In Dm3, the membrane arm appears to be 'cracked' at the interface between ND2 and ND4. It possibly represents an artefact resulting from detergent-induced loss of stability in the distal membrane domain of the Dm2 state. Both, Dm2 and Dm3 most closely correspond to the mammalian active state. A state resembling the mammalian deactive state could not be found. This result is further supported by biochemical experiments. It is concluded that Drosophila complex I, despite its remarkable similarity to the mammalian enzyme, does not undergo the mammalian-type active/deactive transition.

      In conclusion, complex I structure from Drosophila is of limited value for the better understanding of the states of mammalian complex I (which could be stated more clearly). However, insights into complex I structure and function of an insect is highly interesting. The conclusions are justified by the presented data. The manuscript is well written and the figures are thoroughly prepared. The discussion very much focusses on the interpretation of the three complex I states. The deactivate state, which is interpreted to protect mammalian mitochondria from ROS production during reverse electron transfer, might be dispensable in species characterized by a comparatively short life cycle like Drosophila, which is in the range of weeks.

      We thank the reviewer for clearly summarising the key findings of the study. We agree that Drosophila complex I may have limitations for studying the full active/deactive transition so far observed exclusively in mammalian enzymes, but we argue that the lack of a fully deactivated state also provides a good system to study which local elements in complex I may offer protection against RET. Despite these limitations, Drosophila remains a powerful model system to study complex I mechanism, assembly, and regulation in physiological contexts.

    1. Author Response

      Reviewer #1 (Public Review):

      Neuronal tissues are very complex and are composed of a large number of neuronal types. With the advent of single-cell sequencing, many researchers have used this technology to generate atlases of neuronal structures that would describe in detail the transcriptome profiles of the different cell types. Along these lines, in this manuscript, the authors present single-cell transcriptomic data of the fruitless-expressing neurons in the Drosophila male and female central nervous systems. The authors initially compare cell cluster composition between male and female flies. They then use the expression of known markers (such as Hox genes and KC neuronal markers) to annotate several of their clusters. Then, they look in detail at the expression of different terminal neuronal genes in their transcriptomic data: first, they look into neurotransmitter-related genes and how they are expressed in the fruitless-expressing neurons; they describe in detail these populations that they then verify the expression patterns by looking into genetic intersections of Fru with different neurotransmitter-related genes. Then, they look at Fru-neurons that express circadian clock genes, different neuropeptides and neuropeptide receptors, and different subunits of acetylcholine receptors. Finally, they look into genes that are differentially expressed between male and female neurons that belong to the same clusters. They find a large number of genes; through GO term enrichment analysis, they conclude that many IgSF proteins are differentially expressed, so they look into their expression in Fru-neurons in more detail. Finally, they compare transcription factor expression between male and female neurons of the same cluster and they identify 69 TFs with cluster-specific sex-differential expression.

      In general, the authors achieved their goal of generating and presenting a large and very useful dataset that will definitely open a large number of research avenues and has already raised a number of interesting hypotheses. The data seem to be of good quality and the authors present a different aspect of their atlas.

      The main drawback is that many of the analyses are very superficial, resulting in the manuscript being handwavy and unsupported. The manuscript would benefit by reducing the number of "analyses" to the ones that are also in vivo validated and by discussing some of the drawbacks that are inherent to their experimental procedure.

      scRNA-seq studies generate atlases that are descriptive, by their nature. Therefore, we decided to keep interesting gene-expression analyses in the paper that are based on the scRNA-seq results, especially for the discoveries that point to exciting avenues for future pursuit. We reduced the text as suggested.

      1) The authors treat their male, female, and full datasets as three different samples. At the end of the day, these are, for the most part, equivalent neuronal types. The authors should decide to a) either only use the full dataset and present all analyses in this, or b) give a clear correspondence of male and female clusters onto the full ones.

      In this paper, all the analyses presented are on the full data set, with some links to the male or female data sets included. We now make clear that the full data set is the focus of the paper (lines 137-141). We provide the male and female data sets for our reader, with the individual Seurat objects uploaded to GEO, to make it easy for the reader to do follow-up analyses using the same criteria we used. We think this is helpful for our research community. We also compare the male and female clusters to the full data set using ClustifyR and report which clusters in the male or female data set analyses correspond to those in the full data set (Source data 2), as suggested by the reviewer, though ClustifyR has some limitations based on our evaluation of this tool for other annotations (see below).

      2) Most of their sections are heavily reliant on marker genes. In fact, in almost every section they mention how many of their genes of interest are marker genes. This depends heavily on specific cutoffs, making the conclusions fragile. Similarly, GO terms are used selectively and are, in many cases, vague (such as “signaling”, “neurogenesis”, “translation”).

      We evaluated marker genes, as those provide molecular identities to the clusters, given by definition they are significantly more highly expressed in a specific cluster, compared to all clusters. We used a Wilcox rank sum test with the following parameters in Seurat: (min.pct=0.25, logfc.threshold=0.25), which resulted in all called marker genes having p values < 0.05. We did not use a more stringent criteria given that most of the marker gene analyses are descriptive, and it is important to capture a broad range of genes. Our criteria are similar to Ma et al. 2021 (PMID: 33438579) and Corrales at al. 2022 (PMID: 36289550). In the text, we refer to the top 5 marker genes in several analyses, though these marker genes have a much more significant enrichment. We agree with the reviewers’ criticisms regarding the cluster-specific GO-term analyses in the text and those have been removed from the manuscript.

      3) A few of the results are not confirmed in vivo. The authors should add a Discussion section where they discuss the inherent issues of their analyses. Are there clusters of low quality? Are there many doublets?

      We have added discussion around these topics to the conclusions section of the manuscript and the results, when appropriate.

      On the same note, their clusters are obviously non-homogeneous (i.e. they house more than one cell types. This could obviously affect the authors' cluster-specific sex-differential expression, as differences could also be attributed to the differential composition of the male and female subclusters.

      We discuss this potential limitation in the discussion of sex differences in gene expression (Lines 959-961).

      4) Immunostainings are often unannotated and, in some cases especially in the Supplement, they are blurry. The authors should annotate their images and provide better images whenever possible.

      We appreciate this being pointed out and have provided higher resolution figures. The issue was we exceeded the manuscript submission file size on initial submission.

      5) I believe that the manuscript would benefit significantly by being heavily reduced in size and being focused on in vivo rigorously confirmed observations.

      We have addressed this comment by removing some of the analyses.

      Reviewer #3 (Public Review):

      This paper uses single-cell transcriptome sequencing to identify and characterize some of the neuronal populations responsible for sex-specific behaviour and physiology. This question is of interest to many biologists, and the approach taken by the authors is productive and will lead to new insights into the molecular programs that underpin sexually dimorphic development in the CNS. The dataset produced by the authors is of high quality, the analyses are detailed and well described, and the authors have made substantial progress toward the identification and characterization of some of the neuron populations. At the same time, many other cell types whose existence is suggested by this dataset remain to be identified and matched to specific neuron populations or circuits. We expect the value of this dataset to increase as other groups begin to follow up on the data and analyses reported in this paper. In general, the value of this paper to the field of Drosophila neurobiology will be high even if it is published in close to its present form. On the other hand, the current manuscript does not succeed in presenting the key take-home messages to a broader audience. A modest effort in this direction, especially re-writing the Conclusions section, will greatly enhance the accessibility and broader impact of this paper.

      While the biological conclusions reached by the authors are generally robust and of high interest, we believe that some conclusions are not sufficiently supported by the analyses that have been performed so far and need to be reexamined and confirmed. A major question concerns the authors' ability to distinguish a shared cell type with sex-biased gene expression from a pair of closely related, sex-limited cell types. There appear to be many cases that fall into this grey area, and the current analysis does not provide an objective criterion for distinguishing between sex-specific and sexually dimorphic clusters. Below we suggest some technical approaches that could be used to examine this issue. A second problem, which we do not believe to be fatal but that needs to be discussed, concerns potential differences in developmental timing and cell cycle phase between males and females, and how these differences might impact the inferences of sexual dimorphism in cell numbers and gene expression. Finally, we identify several areas, including the expression of transcription factors in different neuronal populations, that we believe could be described in more biologically insightful ways.

      For our review, we focus on three levels of evaluation:

      1). Is the dataset of high quality, useful to a large number of people, well annotated, and clearly described?

      The data appear to be high quality. The authors use reasonable neuronal markers to infer that 99% of their cells are neuronal in origin, suggesting extremely low levels of contamination from non-neuronal cells. Moreover, the gene/UMIs detected per cell are high relative to what has been reported in previous Drosophila scRNA-seq neuron papers (e.g. Allen et al., 2020). The cluster annotations are incomplete - which is not surprising, given the complexity of the cell population the authors are working with. 46 of the 113 clusters in the full dataset are named based on published expression data, gene ontology enrichments of cluster marker genes, and overlap with other CNS single cell datasets. This leaves rather a lot outstanding. It is probably unrealistic to aim for a 100% complete annotation of this dataset. But if we're thinking about how this dataset might be used by other researchers, in most cases the validation that a given cluster corresponds to a real, distinct neuron subpopulation will be left to the user.

      A major comment we have about the quality of the dataset relates to how doublets are identified and dealt with. The presence of doublets, an unavoidable byproduct of droplet-based scRNAseq protocols (like the 10x protocol used by the authors), could affect the clustering or at least bias the detection of marker genes. In large clusters, one might expect the influence of doublets on marker gene detection to be diluted, but in smaller clusters it could cause more significant problems. In extreme cases, a high proportion of doublets can produce artifactual clusters. The potential for problems is particularly high in cases where the authors identify cells with hybrid properties, such as clusters 86 and 92, which the authors describe as being serotonergic, glutamatergic, and peptidergic. Currently, the authors filter out cells with high UMI/gene counts, but it's unclear how many are removed based on these criteria, and cells can naturally vary in these values so it is not clear to us whether this approach will reliably remove doublets. That said, we acknowledge that by limiting their 'FindMarkers' analysis to genes detected in >25% of cells in a cluster the authors are likely excluding genes derived from doublets that contaminate clusters in low (but not high) numbers. We think it would be useful for the authors to report the number of cells that are filtered out because they met their doublet criteria and compare this value to the number of expected doublets for the number of cells they recovered (10x provides these figures). We would also recommend that the authors trial a doublet detection algorithm (e.g. DoubletFinder) on the unfiltered datasets (that is, unfiltered at the top end of the UMI/gene distribution). Does this identify the same cells as doublets as those the authors were filtering out?

      We appreciate this suggestion and have now added results from the doublet detection algorithm, DoubletFinder to our manuscript. Please see above response in editorial comments. We provide a table in Figure 1 – supplement 1 that indicates the number of cells removed by our filtering criteria: We acknowledge that there may be additional doublets in our data set that were not removed in our filtering criteria in the discussion (Lines 1098-1102) and have also provided a new table in Source data 2 indicating the number of potential doublets identified by DoubletFinder that are present in each cluster.

      2). What is the value of this study to its immediate field, Drosophila neurobiology? Are the annotation and analysis of specific cell clusters as precise and insightful as they could be? Has all the most important and novel information been extracted from this dataset?

      This is the part that we are least qualified to assess, since we, unlike the authors, are not neurobiologists. We hope some of the other referees will have sufficient expertise to evaluate the paper at this level.

      One thing we noticed (more on that in Part 3) is that the authors rely on JackStraw plots and clustree plots to identify the optimal combination of PCs and resolution to guide their clustering. This represents a relatively objective way of settling on clustering parameters. However, in a number of the UMAPs it looks like there are sub clusters that go undiscussed. E.g. in Fig. 2E clusters 1 and 3 are associated with smaller, distinct clusters and the same is true of clusters 2 and 6 in Fig 4b. Given that the authors are attempting to assemble a comprehensive atlas of fru+ neurons, it seems important for them to assess (at least transcriptomically) whether these are likely to represent distinct subpopulations.

      We appreciate these comments and address this above in the editorial comments section.

      3). How interesting, and how accessible is this paper to people outside of the authors' immediate field? What does it contribute to the "big picture" science?

      Here, we think the authors missed an important opportunity by under-utilizing the Conclusions section. The manuscript has a combined "Results and Discussion" section, where the authors talk about their identification and analysis of specific cell clusters / cell types. Frankly, to a non-specialist this often reads like a laundry list, and the key conclusions are swamped by a flood of details. This is not to criticize that section - given the complexity and potential value of this dataset, we think it is entirely appropriate to describe all these details in the Results and Discussion. However, the Conclusions section does not, in its present form, pull it all back together. We recommend using that section to summarize the 5-8 most important high-level conclusions that the authors see emerging from their work. What are the most important take-home messages they want to convey to a developmental biologist who does not work on brains, or to a neurobiologist who does not work on Drosophila? The authors can enhance the value of this paper by making it more interesting and more accessible to a broader audience.

      We appreciate this suggestion and made changes to the conclusions section to address this comment.

    1. Author Response

      eLife assessment

      The author customises an alpha-fold multimer neural network to predict TCR-pMHC and applies this to the problem of identifying peptides from a limited library, that might engage TCR with a known sequence from a limited list of potential peptides. This is an important structural problem and a useful step that can be further improved through better metrics, comparison to existing approaches, and consideration of the sensitivity of the recognition processes to small changes in structure.

      I appreciate the time taken by the editor and reviewers to assess this manuscript. In response to their comments, I've made significant changes and additions to the manuscript, most importantly adding (1) comparisons to TCRpMHCmodels and sequence-similarity based template selection, (2) analysis of peptide modeling accuracy in structure prediction and epitope prediction, (3) analysis and discussion of bias in the ternary structure database, (4) identification of key factors driving structure prediction accuracy, (5) binding predictions for three experimental systems with altered peptide ligand data, and (6) additional discussion of the generalizability of the epitope specificity prediction results to systems without structural characterization.

      One minor correction to the wording of the above assessment: the alphafold network used as the basis of our protocol is the original "monomer" network, not the multimer network. We chose to start from the monomer network because it was not trained on complexes, allowing for a more accurate assessment of the expected performance when modeling unseen TCR:pMHC complexes. On the other hand, performance comparisons such as in Fig. 2 are made to the AlphaFold multimer pipeline, since that pipeline can directly build models of complexes.

      Reviewer #1 (Public Review):

      The author has generated a specific version of alpha-fold deep neural network-based protein folding prediction programme for TCR-pMHC docking. The alpha-fold multimer programme doesn't perform well for TCR-pMHC docking as the TCR uses random amino acids in the CDRs and the docking geometry is flexible. A version of the alpha-fold was developed that provides templates for TCR alpha-beta pairing and docking with class I pMHC. This enables structural predictions that can be used to rank TCR for docking with a set of peptides to identify the best peptide based on the quality of the structural prediction - with the best binders having the smallest residuals. This approach provides a step toward more general prediction and may immediately solve a class of practical problems in which one wants to determine what pMHC a given TCR recognizes from a limited set of possible peptides.

      Very minor point: the structure prediction pipeline (Fig. 2) handles both MHC class I and class II complexes. For epitope binding specificity prediction (Figs. 3-6), I only tested MHC class I targets due to limitations in data availability (very few class II epitopes have had their TCR repertoires mapped and also ternary complexes solved).

      Reviewer #2 (Public Review):

      The application of AlphaFold to the prediction of the peptide TCR recognition process is not without challenge; at heart, this is a multi-protein recognition event. While Alphafold does very well at modelling single protein chains its handling of multi-chain interactions such as those of antibody-antigens pairs have performed substantially lower than for other targets (Ghani et al. 2021). This has led to the development of specialised pipelines that tweak the prediction process to improve the prediction of such key biological interactions. Prediction of individual TCR:pMHC complexes shares many of the challenges apparent within antibody-antigen prediction but also has its own unique possibilities for error.

      One of the current limitations of AlphaFold Multimer is that it doesn't support multi-chain templating. As with antibodies, this is a major issue for the prediction of TCR:pMHC complexes as the nearest model for a given pMHC, TRAV, or TRBV sequence may be in entirely different files. Bradley's pipeline creates a diverse set of 12-hybrid AlphaFold templates to circumvent this limitation, this approach constrains inter-chain docking and therefore speeds predictions by removing the time-consuming MSA step of the AlphaFold pipeline. This adapted pipeline produces higher-quality models when benchmarked on 20 targets without a close homolog within the training data.

      The challenge to the work is of course not generating predictions but establishing a functional scoring system for the docked poses of the pMHC:TCR and most importantly clearly understanding/communicating when modelling has failed. Thus, importantly Bradley's pipeline shows a strong correlation between its predicted and observed model accuracy. To this end, Bradley uses a receiver operating characteristic curve to discriminate between a TCR's actual antigen and 9 test decoys. This is an interesting testing regime, which appears to function well for the 8 case studies reported. It certainly leaves me wanting to better understand the failure mode for the two outliers - have these correctly modelled the pMHC but failed to dock the TCRs for example or visa versa?

      From the analysis in Figure 5 and Figure 5, supplement 2, it looks to me like the pMHC is pretty well modeled in all cases, and the main difference between the working and non-working targets is in the docking of TCR to pMHC. But as the reviewer rightly points out below, binding specificity is likely sensitive to small details of the structure that may not be well captured by these RMSD metrics. With an N of 8, it's hard to make definitive conclusions. As additional systems with ternary structures and TCR repertoires become available, we should be able to provide better answers.

      The real test of the current work, or its future iteration, will be the ability to make predictions from large tetramer-sorted datasets which then couple with experimental testing. The pipeline's current iteration may have some utility here but future improvements will make for exciting changes to current experimental methods. Overall the work is a step towards applying structural understanding to the vast amount of next-generation TCR sequence data currently being produced and improves upon current AlphaFold capability.

      I completely agree. I am also excited about using this pipeline for design of TCR sequences with altered specificity and/or enhanced affinity. Even an imperfect in silico specificity prediction method can be a useful filter for designed TCRs (in other words, we want TCR designs that are predicted to have specificity for their intended targets). This has been amply demonstrated for protein fold design, where re-prediction of the structure from the designed sequence provides one of the most powerful quality metrics.

      Reviewer #3 (Public Review):

      This manuscript is well organized, and the author has generally shown good rigor in generating and presenting results. For instance, the author utilized TCRdist and structure-based metrics to remove redundancies and cluster complex structures. Additionally, the consideration of only recent structures (Fig. 2B) and structures that do not overlap with the finetuning dataset (Fig. 2D) is highly warranted.

      In some cases, it seems possible that there may be train/test overlap, including the binding specificity prediction section and results, where native complexes being studied in that section may be closely related to or matching with structures that were previously used by the author to fine-tune the AlphaFold model. This could possibly bias the structure prediction accuracy and should be addressed by the author.

      Other areas of the results and methods require some clarification, including the generation and composition of the hybrid templates, and the benchmark sets shown in some panels of Figure 2. Overall this is a very good manuscript with interesting results, and the author is encouraged to address the specific comments below related to the above concerns.

      1) In the Results section, the statement "visual inspection revealed that many of the predicted models had displaced peptides and/or TCR:pMHC docking modes that were outside the range observed in native proteins" only references Fig. S1. However, with the UMAP representation in that figure, it is difficult for readers to readily see the displaced peptides noted by the author; only two example models are shown in that figure, and neither seems to have displaced peptides. The author should provide more details to support this statement, specifically structures of example models/complexes where the peptide was displaced, and/or summary statistics noting (out of the 130 tested) how many exhibited displaced peptides and aberrant TCR binding modes.

      This is a good point, especially since what constitutes a "displaced peptide" is open to interpretation. I've added an analysis of peptide backbone RMSD (Fig. 2, supplement 2) that should make it possible for readers to assess this more quantitatively using an RMSD threshold (e.g. 10 Å) that makes sense to them.

      2) The template selection protocol described in Figure 1 and in the Results and Methods should be clarified further. It seems that the use of 12 docking geometries in addition to four individual templates for each TCR alpha, TCR beta, and peptide-MHC would lead to a large combinatorial amount of hybrid templates, yet only 12 hybrid templates are described in the text and depicted in Figure 1. It's not clear whether the individual chain templates are randomly assigned within the 12 docking geometries, as an exhaustive combination of individual chains and docking geometries does not seem possible within the 12 hybrid models.

      This was poorly explained; I hope I've clarified it now in the methods. The same four templates for each of the individual chains are used in each of the three AlphaFold runs, only the docking geometries vary between the runs. In other words, not all combinations of chain template and docking geometry are provided to AlphaFold.

      3) Neither the docking RMSD nor the CDR RMSD metrics used in Figure 2 will show whether the peptide is modeled in the MHC groove and in the correct register. This would be an important element to gauge whether the TCR-pMHC interface is correctly modeled, particularly in light of the author's note regarding peptide displacement out of the groove with AlphaFold-Multimer. The author should provide an assessment of the models for peptide RMSD (after MHC superposition), possibly as a scatterplot along with docking RMSD or CDR RMSD to view both the TCR and peptide modeling fidelity of individual models. Otherwise, or in addition, another metric of interface quality that would account for the peptide, such as interface RMSD or CAPRI docking accuracy, could be included.

      This is an excellent suggestion. The new Figure 2, supplement 2, addresses this.

      4) It is not clear what benchmark set is being considered in Fig. 2E and 2F; that should be noted in the figure legend and the Results text. If needed, the author should discuss possible overlap in training and test sets for those results, particularly if the analysis in Fig. 2E and 2F includes the fine-tuned model noted in Fig. 2D and the test set in Fig. 2E and 2F is not the set of murine TCR-pMHC complexes shown in Fig. 2D. Likewise, the set being considered in Fig. 2C (which may possibly be the same set as Fig. 2E and 2F) is not clear based on the figure legend and text.

      This has been fixed. More details below.

      5) The docking accuracy results reported in Fig. 2 do not seem to have a comparison with an existing TCR-pMHC modeling method, even though several of them are currently available. At least for the set of new cases shown in Fig. 2B, it would be helpful for readers to see RMSD results with an existing template-based method as a baseline, for instance, either ImmuneScape (https://sysimm.org/immune-scape/) or TCRpMHCmodels (https://services.healthtech.dtu.dk/service.php?TCRpMHCmodels-1.0; this only appears to model Class I complexes, so Class I-only cases could be considered here).

      This is a great suggestion. We've now added a comparison to TCRpMHCmodels (Fig. 2, supplement 3), which shows that the AlphaFold-based TCR pipeline significantly improves over that baseline method on MHC Class I complexes. Unfortunately, ImmuneScape is not available as a stand-alone software package, and the web interface doesn't allow customization of the template selection process to exclude closely-related templates, which is necessary for benchmarking. Given that ImmuneScape selects a single docking template based on sequence similarity, I compared the AF_TCR dock RMSDs to the dock RMSDs of the closest sequence template (excluding related complexes). This analysis (Fig. 2, supplement 3) shows that AlphaFold modeling produces significantly better docking geometries than simply taking the closest template by sequence similarity.

      6) As noted in the text, the epitopes noted in Table 1 for the specificity prediction are present in existing structures, and most of those are human epitopes that may have been represented in the AF_TCR finetuning dataset. Were there any controls put in place to prevent the finetuning set from including complexes that are redundant with the TCRs and epitopes being used in the docking-based and specificity predictions if the AF_TCR finetuned model was used in those predictions? For instance, the GILGFVFTL epitope has many known TCR-pMHC structures and the TCRs and TCR-pMHC interfaces are known to have common structural and sequence motifs in those structures. Is it possible that the finetuning dataset included such a complex in its training, which could have influenced the success in Figure 3? The docking RMSD accuracy results in Fig. 5A, where certain epitopes seem to have very accuracy docking RMSDs and may have representative complex structures in the AF_TCR finetuning set, may be impacted by this train/test overlap. If so, the author should consider using an altered finetuned model with no train/test overlap for the binding specificity prediction section and results, or else remove the epitopes and TCRs that would be redundant with the complex structures present in the finetuning set.

      This is an excellent point. It wasn't at all clear in the original submission, but the AlphaFold model that was fine-tuned on TCR complexes was only used for the mouse comparison in Fig. 2D (now Fig. 2F), and for exactly the reasons you mention. There is too much overlap between the epitopes with well-characterized repertoires and the epitopes with solved structures. This is also the reason we used the original AlphaFold monomer network, which was only trained on individual protein chains, rather than the AlphaFold multimer network, as the basis of the AF_TCR pipeline. As noted in the discussion, there is still the possibility that individual TCR chain structures in the benchmark or specificity prediction sets were part of the AlphaFold monomer training set, which could make the docking and specificity prediction results look better than they should (though not in Fig. 2B).

      7) The alanine scanning results (Figure 6) do not seem to be validated against any experimental data, so it's not possible to gauge their accuracy. For peptide-MHC targets where there is a clear signal of disruption, it seems to correspond to prominently exposed side chains on the peptide which could likely be detected by a more simplistic structural analysis of the peptide-MHC itself. Thus the utility of the described approach in real-world scenarios (e.g. to detect viral escape mutants) is not clear. It would be helpful if the author can show results for a viral epitope variant (e.g. from one of the influenza epitopes, or the HCV epitope, in Table 1) that is known to disrupt binding for single or multiple TCRs, if such an example is available from the literature.

      This is another great point. For me, the main motivation for the alanine scanning results was to further "stress test" the pipeline to see if it produced plausible results. A particular worry was that the use of pMHC:TCR confidence scores might allow the results to be skewed by peptide-MHC binding strength, rather than the intended TCR - pMHC interaction strength. We've seen in other work that the AlphaFold confidence scores for the peptide are correlated with peptide-MHC affinity. In the AF_TCR specificity predictions, we use the mean binding scores for the "irrelevant" background TCRs to subtract out peptide-intrinsic effects. The fact that we don't see strong signal in Figure 6 at the peptide anchor positions suggests that this is working, at least to some extent. It is also encouraging that the native peptide-MHC has stronger predicted binding than the majority of the alanine variants (excepting the two epitopes with poor performance).

      I agree that comparing the repertoire-level mutation sensitivity predictions to real-world experimental data is challenging, given uncertainty about which TCR clones drive selection for escape, and other viral fitness pressures that influence the escape process. The fact that some of the positions predicted to be most sensitive are also the sites of escape mutations (examples now given in the text) is encouraging. But the new peptide-variant results (Fig. 6, supplement 1) highlight the challenges that remain in discriminating between very similar peptides (especially in the single-TCR setting).

    1. Author Response

      Reviewer #1 (Public Review):

      In this study, Menjivar et al. examine the specific role of the enzyme arginase 1 (Arg1), which is expressed in immunosuppressive macrophages and catabolizes arginine to ornithine, in pancreatic cancer. They use an elegant genetic approach that leverages a dual recombinase-based genetically engineered mouse model of pancreatic cancer, which efficiently deletes Arg1 and recovers extracellular arginine in cultured macrophages. Within the pancreas, macrophage Arg1 deletion increased T cell infiltration and fewer mice developed invasive pancreatic cancer. Interestingly, when tumors did develop, the authors observed that compensatory mechanisms of arginine depletion were induced, including Arg1 overexpression in epithelial cells identified as tuft cells or Arg2 overexpression in macrophages. To overcome these compensatory mechanisms, pharmacological targeting of arginase was tested and found to increase T cell infiltration and sensitize to immune checkpoint blockade, suggesting this is a promising approach for pancreatic cancer.

      Strengths:

      This is a very rigorous, well-designed study and the findings are broadly interesting for the metabolism, immunometabolism, and pancreatic cancer communities. The methods are comprehensive and the experimental details in the legends are complete.

      Weaknesses:

      The claim that Arg1 deletion in macrophages delayed the formation of invasive disease is not completely justified by the data presented. Only a small number of mice are analyzed, and no statistics are included.

      While in the original submission this claim was based on a relatively small number of animals, we have now increased each cohort. The new graph is included in Figure 2E (Response Figure 1); statistical analysis is also included and show the differences to be significant.

      Moreover, the abstract does not comprehensively summarize the findings. Many findings, including compensatory upregulation of ARG1 in tuft cells and ARG2 in myeloid cells, are not mentioned, nor was the rationale for the pharmacological approach. Finally, the claim that their data demonstrate that Arg1 is more than simply a marker of macrophage function. While this is the first time this has been examined in pancreatic cancer, a general role for Arg1 and arginine metabolism by myeloid cells in immunosuppression has already been established by multiple studies, including those cited by the authors, in multiple tumor types. This is an overstatement of the findings.

      We apologize for the lack of clarity, in the attempt to meet the word limit for the abstract. We have now amended the abstract to better reflect the total of our findings and the context of our work.

    1. Author Response

      Reviewer #3 (Public Review):

      Yamada et al utilizes the full strength of Drosophila neural circuit approaches to investigate second-order conditioning. The new insights into the mechanisms of how a learned cue can act as reinforcement are relevant beyond the fly field and have the potential to spark broad interest. The main conclusions of the authors are justified and the experiments, to my understanding, are well done.

      Some minor aspects must be addressed. To avoid misunderstandings a clear distinction should be made between those experiments using real world sugar and those using artificial activation of dopamine neurons as reward. For example, the proposed teacher - student model is mostly based on the work established with artificial activation.

      We split Figure 1 and made two separate figures. The new Figure 1 displays experiments with only real sugar or optogenetic activation of sugar receptor neurons (new data), whereas the new Figure 2 shows mostly experiments with direct DAN activations. This new figure arrangement makes a clear distinction between experiments with sugar and DAN activation, and allows readers to compare them more easily. We also modified the second paragraph of the discussion to clarify this point.

      To emphasize the generality of the model, it might help to provide some further evidence using real world sugar approaches, especially since the only known sugar-reward driven plasticity is reported in the student (g5b`2a) but not the teacher compartments. In this line, it would be useful to extend the functional interference used during the sugar experiments beyond the a1 compartment.

      In response to the reviewer’s comment, we added new data in Figure 2D to show that blocking PAM-DANs in γ4, γ5 and β′2a compartments impairs second-order conditioning following odor-sugar first-order conditioning. In contrast to blocking α1 DANs, blocking those non-α1 PAM-DANs did not impair one-day first-order memory (Figure 2D), which further strengthens our model of differential requirement of compartments for first-order and second-order memory formation.

      We think transient blocks of individual DAN cell types during second-order conditioning after odor-sugar conditioning will be informative to map second-order memories to specific compartments in naturalistic settings. For the reasons detailed above, however, we will need to develop a new way of transient purturbation for that.

      We would also point out that, to our knowledge, sugar-reward-driven plasticity has not been fully demonstrated in MBON-γ5β′2a. Owald et al., 2015 Neuron (10.1016/j.neuron.2015.03.025) showed a reduced CS+ odor response after odor-sugar conditioning in MBON-b′2mp (their Fig 3). However, they could not investigate the plasticity of MBON-γ5β′2a because the magnitude of odor response was too low (their Figure S3).

      Further, general statements about the compartments, for example for g5 and a1, might need adjustment since the tools used, the respective driver lines, often don't label all dopamine neurons in one specific compartment. In fact, functional heterogeneity among dopamine neurons innervating the g5 compartment have been recently established (sugar-reward, extinction) and might apply here.

      To clarify the point that we are manipulating a subset of DANs in each compartment, we added “cell count” information in Figure 2A. Also, we made Figure 4-figure supplement 2 to show which subtypes of DANs are connected with SMP108.

      Lastly, I would like to recommend that the authors discuss alternative feedback pathways that might serve similar or parallel functions.

      Despite these minor points, the study is impressive.

      Figure 4C shows several candidate interneurons that may have similar functions as SMP108. For instance, CRE011 may acquire enhanced response to reward-predicting odor as an outcome of reduced inhibition from MBON-γ5β′2a, and send excitatory inputs to DANs.

      In Figure 4-figure supplement 3, we made additional scatter plots to visualize other outlier cell types in terms of their connectivity with MBONs and DANs.

    1. Author Response:

      We thank the three reviewers for their thoughtful comments and constructive critique.

      Reviewer #1 (Public Review):

      Hu et al. present findings that extend the understanding of the cellular and synaptic basis of fast network oscillations in the sensory cortex. They developed the ex vivo model system to study synaptic mechanisms of ultrafast (>400Hz) network oscillation ("ripplets") elicited in layer 4 (L4) of the barrel cortex in the mouse brain slice by optogenetically activating thalamocortical axon terminals at L4, which mimic the thalamic transmission of somatosensory information to the cortex. This model allowed them to reproduce extracellular ripplet oscillations in the slice preparation and investigate the temporal relationship of cellular and synaptic response in fast-spiking (FS) inhibitory interneurons and regular spiking (RS) with extracellular ripplet oscillations to common excitatory inputs at these cells. FS cells show precisely timed firing of spike bursts at ripplet frequency, and these spikes are highly synchronized with neighboring FS cells. Moreover, the phase-locked temporal relationship between the ripplets and responses of FS and RS cells, although different phases, to thalamocortical activation are found to closely coincide with EPSCs in RS cells, which suggests that common excitatory inputs to FS and RS cells and their synaptic connectivity are essential to generate reverberating network activity as ripplet oscillations. Additionally, they show that spikes of FS cells in layer 5 (L5) reduced in the slice with a cut between L4 and L5, proposing that recurrent excitation from L4 excitatory cells induced by thalamocortical optogenetic stimulation is necessary to drive FS spike bursts in layer 5 (L5).

      Overall, this study helps extend our knowledge of the synaptic mechanisms of ultrafast oscillations in the sensory cortex. However, it would have been nice if the authors had utilized various methodologies and systems.

      Although the overall findings are interesting, the conclusion of the study could have been strengthened according to the following points:

      1. The authors investigate the temporal relationship between ripplets and FS and RS cells' response elicited by optogenetic activation of TC axon terminals, which is mainly supported by phase-locked responses of FS and RS cells with local ripplets oscillations to optogenetic activation. They also show highly synchronized FS-FS firing by eliminating electrical gap-junction and inhibitory synaptic connections to this synchrony. Based on these findings, the authors suggest that common excitatory inputs to FS and RS cells in L4 would be essential to generate these local ripplets. However, it interferes with the ability to follow the logical flow for biding other findings of phase-locking responses of FS and RS cells in ripplet oscillations in L4.

      We understand the reviewer’s issue with the logical flow of our argument. We will address this concern by textual changes and/or by rearranging the order of the presentation and figures.

      2. The authors suggest that the optogenetic activation of TC axon terminal elicits local ripplet oscillations via synchronized spike burst of FS inhibitory interneurons and alternating EPSC-IPSC of RS cells in phase-locked with ripplets in L4 barrel cortex, which would be generated by following common excitatory inputs from the local circuits to these cells at the ripple frequency. Thus they intend to investigate the source of these excitatory inputs at this local network of L4 by suppressing the firing of L4 RS cells. However, they show FS spike bursts in L5B, instead of L4, due to the technical limitations of their experimental setup, as described in the manuscript. Although L5 FS spike bursts decrease after cutting the L4/L5 boundary, supposedly inhibiting excitatory input from L4 as depicted in Fig 6D in the author's manuscript, the interpretation of data seems overly extended because it does not necessarily represent cellular and synaptic activities which are phase-locked with the ripplets observed in L4.

      We have not studied network oscillation in layer 5 at the same level of detail we have studied layer 4; however the oscillations in both layers are phase locked. We will show this as supplemental data in the revised manuscript.

      3. Authors suggested a circuit model. It would be recommended that the authors try to perform in silico analysis using the suggested model to explore the function of thalamocortical axons on the fast-spiking and regular-spiking neurons to support their circuit model.

      We agree that a computational model of the layer 4 network, demonstrating ripplets in silico, would enhance our understanding of this re-discovered ultrafast oscillation. Moreover, such a model would also help constrain the allowable parameter space of other, existing models of layer 4 or of the complete cortical column, as the ability of these existing models to recreate ripplets in response to strong, synchronous thalamocortical activation could now be used as a stringent test of the assumptions underlying these models. We hope to reproduce ripplets in silico, within an experimentally constrained parameter space, in a near future study.

      Reviewer #2 (Public Review):

      This manuscript studied potential cellular mechanisms that generate ultrafast oscillations (250-600Hz) in the cortex. These oscillations correlate with sensory stimulation and might be relevant for the perception of relevant sensory inputs. The authors combined ex-vivo whole-cell patch-clamp recordings, local field potential (LFP) recordings, and optogenetic stimulation of thalamocortical afferents. In a technical tour de force, they recorded pairs of fast-spiking (FS)-FS and FS-regular-spiking (RS) neurons in the cortex and correlated their activity with the LFP signal.

      Optogenetic activation of thalamic afferents generated ripple-like extracellular waveforms in the cortex, which the authors referred to as ripplets. The timing of the peaks and troughs within these ripplets was consistent across slices and animals. Activation of thalamic inputs induced precisely timed FS spike bursts and RS spikes, which were phase-locked to the ripplet oscillation. The authors described the sequences of RS and FS neuron discharge and how they phase-locked to the ripplet, providing a model for the cellular mechanism generating the ripplet.

      The manuscript is well-written and guides the reader step by step into the detailed analysis of the timing of ripplets and cellular discharges. The authors appropriately cite the known literature about ultrafast oscillations and carefully compare the novel ripplets to the well-known hippocampal ripples. The methods used (ex-vivo patch-clamp and LFP) were appropriate to study the cellular mechanisms underlying the ripplets.

      Overall, this manuscript develops means for studying the role of cortical ultrafast oscillations and proposes a coherent model for the cellular mechanism underlying these cortical ultrafast oscillations.

      We thank the reviewer for his supportive comments.

      Reviewer #3 (Public Review):

      In this study, Hu et al. aimed to identify the neuronal basis of ultrafast network oscillations in S1 layer 4 and 5 evoked by the optogenetic activation of thalamocortical afferents in vitro. Although earlier in vivo demonstration of this short-lived (~25 ms) oscillation is sparse and its significance in detecting salient stimuli is not known the available publications clearly show that the phenomenon is consistently present in the sensory systems of several species including humans.

      In this study using optogenetic activation of thalamocortical (TC) fibers as a proxy for a strong sensory stimulus the in vitro model accurately captures the in vivo phenomenon. The authors measure the features of oscillatory LFP signals together with the intracellular activity of fast-spiking (FS) interneurons in layer 4 and 5 as well as in layer 4 regular spiking (RS) cells. They accurately measure the coherence of intra- and extracellular activity and convincingly demonstrate the synchronous firing of FS cells and antiphase firing of RS and FS cells relative to the field oscillation.

      Major points:

      1) The authors conclude the FS cell network has a primary role in setting the frequency of the oscillation. While these data are highly plausible and entirely consistent with the literature only correlational not causal results are shown thus direct demonstration of the critical role of GABAergic mechanisms is missing.

      We find that blocking fast inhibition (by puffing a gabazine solution locally) converts ripplets into long-duration paroxysmal events with high-frequency firing of both RS and FS cells. While we do not think that this experiment is diagnostic in distinguishing between competing models (in all models fast inhibition is a necessary component), we will add these experiments as supplemental material.

      2) The authors put a strong emphasis on the role of RS-RS interactions in maintaining the oscillation once it was launched by a TC activity. Its direct demonstration, however, is not presented. The alternative scenario is that TC excitation provides a tonic excitatory background drive (or envelope) for interacting FS cells which then impose ultrafast, synchronized IPSPs on RS cells. Similar to the RS-RS drive in this scenario RS cells can also only fire in the "windows of opportunity" which explains their antiphase activity relative to FS cells, but RS cells themselves do not participate in the maintenance of oscillation. Distinguishing between these two scenarios is critical to assess the potential impact of ultrafast oscillation in sensory transmission. If TC inputs are critical the magnitude of thalamic activity will set the threshold for the oscillation if RS-RS interactions are important intracortical operation will build up the activity in a graded manner.

      Earlier theoretical studies (e.g Brunel and Wang, 2003; Geisler et al., 2005) strongly suggested that even in the case of the much slower hippocampal ripples (below 200 Hz) phasic activation of local excitatory cells cannot operate at these frequencies. Indeed, rise time, propagation, and integration of EPSPs can likely not take place in the millisecond (or submillisecond) range required for efficient RS-RS interactions. The alternative scenario (tonic excitatory background coupled with FS-FS interactions) on the other hand has been clearly demonstrated in the case of the CA3 ripples in the hippocampus (Schlingloff et al., 2014. J.Nsci).

      The Schlingloff et al. study is important, and we actually think that their results, and many of their conclusions, are consistent with our own. We agree with these authors that “…PV cells are essential for the initiation and maintenance of sharp waves and the generation of ripple oscillations”, that “…perisomatic inhibition enforces ripple synchrony by phase-locking firing during SWRs”, and also that “…neuronal coupling via gap junctions is not essential in ripple synchronization”. We also agree that “The tonic excitatory ‘envelope’ arising from the buildup of activity of PCs drives the firing of PV cells”, as far as initiation of ripples in CA3 is concerned. In our model system, thalamocortical excitation serves the same role, of initiating the oscillation. However I do not see how the data of Schlingloff et al. support the conclusion that (in the legend to their Fig. 11) “…there is no cycle-by-cycle reciprocal interaction between the PCs and the PV [interneurons]”, or the implication that FS cells function as independent pacemakers “…because of their reciprocal inhibition”, as their FINO model suggests. The Schlingloff et al. data clearly show cycle-by-cycle alternations of EPSCs and IPSCs (their Fig. 1C, D, as well as their Fig. 7B), as we show in our Fig. 5A. These phasic EPSCs, occurring at ripple frequency, by necessity originate from pyramidal cells synchronized (as a population) to the ripple oscillation, as indeed shown in their multi-unit recordings. This precise, phasic (and clearly not “tonic”) excitatory drive cannot be uncoupled from the ripple (or ripplet) oscillation, and therefore cannot be dismissed as a factor driving the oscillation.

      The strongest evidence the Schlingloff et al. study provides that FS cells synchronize independently of excitatory cells – and then impose this oscillation on the excitatory cells - is in their demonstration of ripples generated by prolonged direct optogenetic stimulation of PV cells, in the presence of glutamatergic blockers (their Fig. 6). However this manipulation worked only in some of their slices, and the oscillations only lasted as long as the light stimulus and therefore were exogenously driven rather than network driven. They do not show intracellular responses from either inhibitory or excitatory cells, nor multi-unit activity, during this manipulation, so it is difficult to know if excitatory cells were indeed entrained to the same frequency, as the FINO model posits. Nevertheless this is a very interesting experiment which we plan to attempt in our own model system in a future study.

      When the properties of the ultrafast oscillation were tested as various stimulation strengths (Figure 2) weaker stimulation resulted in less precise timing. If TC input is indeed required only to launch the oscillation not to maintain it, this is not expected since once a critical number of RS cells were involved to start the activity their rhythmicity should no longer depend on the magnitude of the initial input. On the other hand, if the entire transient oscillation depends on TC excitation weaker input would result in less precise firing.

      Our interpretation for the lesser spike precision with a weaker optogenetic stimulation is that fewer FS cells fired upon the initial thalamocortical volley, and therefore a weaker IPSP wavefront was propagated to RS cells allowing for a wider “window of opportunity” for RS firing,  and this loss of synchrony then propagated from cycle to cycle. This interpretation will be added in the revised manuscript.

      3) The experiments indicating the spread of phasic activity from L4 RS to L5 FS cells can not be accepted as fully conclusive. The horizontal cut not only severed the L4 RS to L5 FS connections but also many TC inputs to the L5 FS apical dendrites as well as the axons of L4 FS cells to L5 FS cells both of which can be pivotal in the translaminar spread.

      FS cells do not have apical dendrites so we assume the reviewer meant to say “L5 RS apical dendrites”; however if the cut reduced the excitability of L5 RS cells, that only strengthens our conclusion that RS firing is required for maintaining the oscillation. While the cut could have also disrupted L4 FS to L5 FS connections, we are not aware of any evidence that such inter-laminar connections exist. On the other hand, the Pluta et al. 2015 study shows very robust excitatory connections between L4 RS and L5 FS cells.  

      Having said that, we agree with the reviewer (indeed, with all three reviewers) that the L4/L5 cut experiments are not conclusive, and we will make this clear in our discussion in the revised manuscript. We plan to do a more conclusive test of our model by using a transgenic line to express inhibitory opsins specifically in L4. This will require expressing ChR2 in the thalamus by virus injection and a careful comparison of ripplets between the two models; we therefore reserve these experiments to a future study.

    1. Author Response

      Public Review:

      In this article, the authors have taken up the substantial task of combing through thousands of published meta-analyses and systematic reviews, with the goal of identifying the subset that specifically seeks to measure the association between elapsed time ("lag-time") in various milestones of cancer diagnosis or treatment (e.g. time elapse from symptom onset to first seen by primary care physician) and cancer outcomes. Within this subset, they have identified and summarized the findings on how these lag times are related to certain cancer outcomes. For example, how much does a delay in the start of adjuvant chemotherapy after surgery for breast cancer increase the mortality rate for these patients? The overarching goal of this work is to characterize the pre-Covid-19 landscape of these relationships and thereby provide a basis for studying what impact the pandemic had on worsened outcomes for cancer patients due to treatment delays. The authors have done an excellent job in their review of systematic reviews and meta-analyses, both describing their methodology well and interpreting their findings. The immediate connection to the Covid-19 pandemic is somewhat tenuous and primarily left to the reader to determine.

      We thank Dr. Boonstra for this positive feedback regarding our detail-oriented systematic search and review process. The main concern of Dr. Boonstra was the need to elaborate on the translation component of our results onto the pandemic. We clarify the utility of contextualizing our findings with the pandemic and corresponding revisions to our manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      It appears in the text that "there are key differences between the model and actual bacteria-phage systems, and the model should not be interpreted as one that will directly map onto a biological scenario". I agree with this statement. However, by distancing the model from biological scenarios it makes its predictions hard to validate in a real system, leaving us with no obvious way to infer how to apply its conclusions. Indeed, both explicit examples given in lines 125-130: phase-bacteria and T-cell-antigen are not quite captured by modeling choices. I would have much preferred a specific biological system fixed in mind, then minimally modeled in a way that there is hope to directly link the modeling results to experiments. Especially since there is a wealth of available microbial population data, as well as much being generated.

      I do believe that the model can be related to or at least adapted to experimental comparison, specifically once there are sufficiently many datasets measuring binding affinities between proteins that govern the types of interactions described herein. This is starting to happen for TCR-antigen pairs (eg VDJdb), but this database is still far from a large enough to be able to fit a reasonable model, or perform a controlled experiment. I am not sure of an equivalent database for phage binding proteins and their relevant binding rates. As the reviewer notes, the model will need to be tailored to certain particularities of the T cell-pathogen, T cell-tumor, or phage-bacteria dynamics, but these are achievable, and should not impact the qualitative results too much. The current model is instead a minimal model that captures essential aspects of these systems, which have both been modeled as predator-prey populations in the literature.

      As stated, "the population fitness distribution is never able to 'settle'..." is indicative of the driven nature (driven by strong noise) of the quasi steady state as opposed to a stability that arises from the system dynamics.

      I agree with this. The steady state is a sort of “statistical” one rather than an “explicit” one. I think I have made this fairly clear in the text, but please let me know if there are any specific suggestions wrt clarifying this point.

      Reviewer #2 (Public Review):

      This work by Martis illustrates, in a predator-prey or parasite-host eco-evolutionary context, the classical idea of bet hedging or biological insurance: where a single population would fluctuate and perhaps risk extinction, summing over multiple sub-populations with asynchronous dynamics (some going up while others go down) allows a stabler total abundance.

      Here the sub-populations are various genotypes of one predator and one prey species, fluctuations are due to their ecological interactions, their dynamics are more asynchronous when predation is more specialized (i.e. the various predator genotypes differ more in which prey types they can eat), and mutations allow the regeneration of genotypes that have gone extinct, thus ensuring that the diversity of subpopulations is not lost (corresponding to a "clonal interference" regime with multiple coexisting genotypes).

      While the general idea of bet hedging has been explored in many settings, the devil is usually in the details: for instance, sub-populations should be connected enough to allow the rescue of those going extinct, but a too strong connection would simply synchronize their temporal dynamics and lose the benefit of bet hedging. In some cases, connections between sub-populations could even be destabilizing (e.g. Turing instabilities in space).

      In a recent surge of physics-inspired many-species theories, where fluctuations arise from ecological dynamics, these details are notably starting to be understood in the case of spatial bet hedging, i.e. genetically identical subpopulations in multiple patches connected by migration (see e.g. Roy et al PLoS Comp Bio 2020 or Pierce et al PNAS 2020).

      These spatial models certainly served as inspiration and have been cited. However, there is a key difference in that the spatial models rely on something akin to the “storage effect,” where (loosely speaking) strains persist by transiently living on islands with a somewhat favorable ecological context. In my model there is no such storage effect and the persistence of the whole population relies on the generation of strains that are favorable in the current context by chance mutations. There is an analogy to be made with antigen escape, or more generally “Kill-The-Winner” type dynamics. However, the dynamics in my model are more complex than this – specifically, the dynamics are “high-dimensional” and there can be several prey “Winners” with multiple predators in pursuit. However, I clarify the differences between my model and spatial models in Appendix 6.

      In the non-spatial eco-evolutionary setting considered here, the connecting flux is one of mutations rather than migrations, and a predator genotype can in principle interact with all prey genotypes (whereas in usual spatialized models, interactions cannot occur between different patches). Another possibly important detail here is that similar genotypes do not have similar interaction phenotypes, meaning there is no risk of evolution being confined in a neighborhood of similar phenotypes. According to the author and my own cursory exploration of the relevant eco-evo literature (with which I am less familiar than pure ecology), this setting has yet to see many developments in the spirit of the many-species theories mentioned above.

      These differences make this new inquiry worthwhile and I applaud the author for undertaking it. From a theoretical perspective, three results emerging from the simulations stand out in this article as potentially very interesting:

      • rather sharp transitions in extinction probability and strain diversity as mutation flux and predator specialization increase.

      • how mutation rate and interaction strength combine, notably in power-law expressions for total population abundance

      • the discussion of susceptibilities, i.e. how predator and prey populations respond to perturbations, as a key ingredient in understanding the previous results, in particular with counter-intuitive negative susceptibilities indicating positive feedback loops.

      It is a bit unfortunate that these more novel points are only briefly explored in the main text: while they are more developed in appendices, these arguments are not always as complete, polished and distilled as they might have been in a main text, so an article focusing entirely on explaining them deeply and intuitively would have been far more exciting to me.

      Thank you for expressing such interest in the work. And I understand the point about the structure of the manuscript. This was a compromise on my part to make the text readable for a more diverse audience. There are “intuitive” descriptions in the main text, and more extensive intuitive descriptions in the supplement. The technical details are also primarily in the supplement. I have tried my best to make the supplement as readable as possible and cross-reference it with the relevant sections in the main text, but I understand that it is nonetheless particularly long and dense. I certainly understand the difficulty in reading and internalizing it all on a constrained timeframe.

      Finally, I will note that I am not convinced by the framing of the current manuscript as a counterpoint to Robert May's idea of destabilizing diversity - in many ways I think this is a less relevant context than that of bet hedging, and it does a worse job at showcasing what is genuinely interesting and original here; I would thus encourage readers to read this paper in the framing I propose above.

      As mentioned above, I reduced the emphasis on the May result and have explicitly mentioned the analogy to bet-hedging in the main text. I’ve also made a direct comparison to spatial models with a mainland in the supplement.

    1. Author Response

      Reviewer #2 (Public Review):

      The authors performed a series of impressive experiments to systematically establish each part of their CRISPRi method. They provided one of the most compact design of CRISPRi dual-guideRNA library, with a genome-wide coverage; they confirmed prior finding on the optimal repressor domain to generate a set of useful vectors for expressing the repressor; they showcased the usage of the system in multiple common cancer cell lines. The authors also took an important step towards providing a detailed and well-annotated protocol (in the supplementary materials) to help users of their methods. The items listed below would be helpful to further improve this work:

      First, while the dual guideRNA design is a useful development, the author also noted the significant rate (~30%) recombination between the two sgRNAs. This should be further discussed and evaluated in the manuscript to help readers understand the implication of this high recombination rate. For example, across replicate experiments or across cell types tested, would the recombination be stochastic, or there may be some bias of which guide would be recombined? Are there any cell-type dependencies here in terms of the recombination rate? This would also help future users to decide if they would need to check for this effect during functional screening.

      We agree that recombination is an important limitation of dual-sgRNA screens. We included additional analyses and data in the revised manuscript to help readers understand the implications of the observed recombination.

      First, we performed growth screens using dual-sgRNA libraries in two additional cell lines (RPE1 and Jurkat) to address the potential cell type specificity of lentiviral recombination. We cloned a dual-sgRNA library targeting DepMap Common Essential genes (n=2291 dual-sgRNA elements). We transduced cells with this library, harvested cells at day 7 post-transduction, amplified sgRNA cassettes from extracted genomic DNA, and sequenced to quantify sgRNA recombination rates. We found similar recombination rates of dual-sgRNA constructs isolated from these three cell types (observed K562 recombination rate 29%; observed RPE1 recombination rate 26%; observed Jurkat recombination rate 24%).

      Next, we compared the recombination rates of each dual-sgRNA element. Our expectation was that lentiviral recombination would be largely stochastic per element based on the known mechanism of lentiviral recombination previously discussed in Adamson et al. 2018 (https://www.biorxiv.org/content/10.1101/298349v1.full) given that the constant region between sgRNAs (400bp) far exceeds the length of sgRNA targeting regions (20bp). However, we would also expect apparent recombination rates to be artificially inflated for dual-sgRNAs with strong growth phenotypes, as the stronger growth phenotypes of unrecombined dual-sgRNAs compared to recombined dual-sgRNAs will lead to dropout of unrecombined dual-sgRNAs. To account for this bias, we began by comparing the recombination rate for non-targeting control dual-sgRNAs excluding those with growth phenotypes across replicates of our K562 screens. There was only a weak correlation between the recombination rate for non-targeting control dual-sgRNAs (r = 0.30; Figure 1 – Figure Supplement 1E). We next compared the recombination rates of all dual-sgRNA elements (both targeting and non-targeting) across replicates of our K562 screens. As expected, we observed that the recombination rate of elements was correlated across replicates (r = 0.77; Figure 1 – Figure Supplement 1F), and the recombination rate was strongly anticorrelated with the growth phenotype of dual-sgRNAs in K562 cells (r = -0.84; Figure 1 – Figure Supplement 1G). We have integrated these data into the manuscript.

      Second, on the repressor development and evaluation. As the author mentioned in the text, the expression level of the repressor can confound their conclusion on fitness/efficiency comparisons of CRISPR repressor. Thus, it would be helpful to perform protein level validation using the cell lines they generated, such as a WesternBlot comparison to rule out this potential issue.

      We agree that differences in expression levels of the effectors can confound comparisons and that Western Blotting for such differences would be valuable. That said, any such analyses would not substantively alter the main claim of our paper, which is that Zim3-dCas9 provides excellent on-target knockdown in the absence of non-specific effects on cell growth or gene expression. This finding is of immediate practical use to the community. By no means are we claiming that we eliminated all possible confounding factors nor do we think that it is possible to do so. To avoid overstating our findings, we had acknowledged in the discussion that expression levels may indeed be a confounding factor, we had noted in the methods section that the dCas9-MeCP2 effector uses a different coding sequence for dCas9, which may contribute to differences in expression, and we had noted that other effectors may prove useful in some settings. We have further emphasized that differences in expression levels may contribute to our results in the revised manuscript.

      This work would also benefit from including cell proliferation/viability measurement using the selected Zim3-dCas9 repressor in multiple cell lines, as it seems this was only done initially in K562 cells. As authors noted, the fitness effects of the CRISPR repressor would be a major concern when performing functional genomics screening, so such validation of fitness-neutrality of the repressor can be very helpful for potential users of their method and approach.

      To address this point, we assessed the proliferation of HepG2, HuTu-80, and HT29 cells expressing Zim3-dCas9. Expression of Zim3-dCas9 did not have a negative impact on proliferation in any of these cell types, providing further evidence that the Zim3-dCas9 will be broadly useful. We included these data in Figure 4 – Figure Supplement 2 in the revised manuscript. That said, we cannot rule out that expression of Zim3-dCas9 may be detrimental in other cell types. Indeed, we want to emphasize that users should evaluate both on-target knockdown and lack of non-specific effects of effectors in new cell models before proceeding to large-scale experiments. The assays and protocols we describe are ideally suited for this purpose. We have further emphasized this point in the discussion section to guide users.

      Third, a major resource from this work, as the authors noted, is a suite of useful Zim3-dCas9 cell lines. The authors have performed a set of experiments to demonstrate the knockdown efficiency with dozens of guideRNAs. While this is a good initial validation, to really ensure the cell lines are performing as expected, a small scale screening in pooled fashion will be more convincing. This would be a setting more relevant for potential readers, given that pooled screening would likely be the most powerful application of these cell lines.

      While conducting the work described in this manuscript, we had used the Zim3-dCas9 RPE1 cell line for a large-scale pooled screen with single-cell RNA-seq readout (Perturb-seq, Replogle et al. 2022). Across greater than 2000 target genes, the median knockdown was 91.6%, which provides strong validation that Zim3-dCas9 performs as expected in this cell line. We had noted this point in the discussion section of our manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      Oxidation of some KCNQ7 channels enhances channel activity. The manuscript by Nuñez and coauthors concluded that oxidation in the S2S3 linker of these channels disrupted the interaction between S2S3 and CaM EF-hand 3 (EF3). This mechanism is Ca2+-dependent. The apo EF3 no longer interacted with S2S3, and H2O2 no longer activated the channel. Electrophysiological recordings and fluorescence and NMR measurements of CaM with isolated helices A and B (CRD) and S2S3 of the channel were performed. While the results were in general clear with good quality, how the results support the conclusion was not clearly described. The approach using isolated molecular components in the study needs further validation since some of the results seem to show major conflicts with the results and mechanisms proposed in previous studies.

      1) Previous studies showed differential responses of Kv7 channels to oxidation; Kv7.2, 4, and 5 are sensitive to oxidation regulation but Kv7.1 and 3 do not change upon H2O2 treatment. These differences were attributed at least partially to the sequence differences in S2S3 among Kv7 channels (ref 10 of this manuscript). The results in this manuscript show some major differences from the previous study. First, in all experiments, no difference was observed among Kv7 channels. Second, in Fig 3-6, S2S3 from KCNQ1 was used. The rationale for using KCNQ1 S2S3 and the interpretation of results is not justified considering that KCNQ1 S2S3 has fewer Cys residues and was least affected by oxidation in the previous study.

      We addressed the issue of differential sensitivity of Kv7 channels to H2O2 in the section 3.2 above (and in the discussion, lines 364-380). In brief, Kv7.3 is likely to display diminished redox-sensitivity due to its high tonic Po (as discussed in ref 10). Kv7.1 does have reduced number of Cys residues in the S2S3 linker and is also insensitive to H2O2 but introducing additional cysteine residues into Kv7.1 S2S3 confers only a fairly weak redox sensitivity. Hence, we think that on the structural level, all Kv7 channels have a redoxresponsive element (S2S3 linker) but Kv7.1 and Kv7.3 have other constrains that prevent their activity to be modulated by their redox-responsive domains.

      We have performed new experiments with Kv7.2 and Kv7.4 peptides (3 cysteine residues). These new data confirm our conclusions, and are now included in Figure 6.

      2) In Fig 6, oxidation of S2S3 leads to a reduction of S2S3-CaM interaction, which leads to an increase of currents (Fig 1C). In Fig 4, Ca2+ loading leads to a reduced S2S3-CaM (EF3) interaction, which should also lead to an increase of currents based on Fig 6 conclusions. However, it is the EF3 mutation (destroying Ca2+ binding) that leads to the current increase (Fig 1B), contradictory to what Fig 6 data suggested.

      Figure 6 and supplemental Figure 12 suggest that the effect of the peptides on the CRD is lost or reduced after oxidation. These data suggest that the oxidized S2S3 can no longer affect the CRD-CaM interaction. We propose that when EF3 is able to bind Ca2+ there is a tonic inhibition, and that oxidation relieves this inhibition leading to current increase.

      As we explain above (see response 2.1), the effect is complicated due to CaMdependent promotion of surface expression.

    1. Author Response

      Reviewer #1 (Public Review):

      Major

      The observations on the hook lipids are critical and should be documented better. Based on previous work, it had been proposed that the hook lipids are associated with the inner leaflet and that they leave upon (partial) channel opening. In contrast, the present MD simulations indicate these lipids are associated with the outer leaflet and that their association to the channel persists on opening. These critical observations need to be documented better.

      i) Do the authors observe hook lipids in the cryoEM structure of the open channel? If yes, data should be shown. If no, then the discrepancy between MD and EM should be explicitly addressed.

      The resolution of the original cryo-EM density map of MscS in PC14 nanodiscs was not sufficient to reveal clear densities for the “hook” lipids. However, through further analysis we have now obtained an improved map to 3.1-Å resolution that offers new insights into this question – see Figure 2 – Figure Supplement 1. The new map confirms all the characteristics previously determined for the open conformation: same helical movements resulting in a similar opening of the pore, and the absence of lipids blocking it, all indicating a conducting conformation. In addition, the new map reveals a series of densities consistent with the dimensions of a phospholipid headgroup near the C-terminus of TM2 (facing the outside), filling a small cavity in-between adjacent TM1 helices. This position is precisely that occupied by the hook lipids in the close MscS structure obtained in PC18 nanodiscs. A headgroup residing in this density would also be well positioned to interact directly with Arg88, a key element in the hook-lipid interaction site, whose mutation leads to a strong loss-of-function phenotype (Reddy et al, 2019). These consistencies notwithstanding, we want to be cautious in this interpretation; these densities are of the same intensity as and blend with that of the nanodisc lipid, and so it is not possible to discern the acyl chains, which were more clearly resolved in the closed state. Therefore, while the new densities are consistent with a model in which the hook lipids are a structural feature of both closed and open states, as indicated by the simulation data, additional experimental data (or further improvements in the map) will be needed for an unequivocal assignment.

      ii) Please show the comparison of the position and coordination of the hook lipids in MD simulations and in the closed (and/or open) structures.

      See new Figure 2 – Figure Supplement 1 in comparison with Figure 5 and new Figure 4 – Figure Supplement 1.

      iii) The authors acknowledge that the volume of the cavity where the hook lipids are located decreases on channel opening. How does this not affect the association of the hook lipids with the protein?

      There appears to be a misunderstanding. The hydrophobic cavities that explain the membrane protrusions discussed in the manuscript are not where the “hook” lipids are observed – we hope to have fully clarified this in the new Figure 4 – Figure Supplement 1. These hydrophobic cavities are underneath each of the TM1-TM2 hairpins, on the cytoplasmic side of the transmembrane domain of the channel; accordingly the protrusions are formed in and exchange lipids with the inner leaflet of the bilayer. Upon reorientation of the TM1-TM2 hairpin, i.e. in the open state, these cavities indeed become smaller but more importantly, they become embedded in the membrane – and hence the protrusions are largely eliminated – see Figure 8 – Figure Supplement 1. The sites where the “hook” lipids observed are elsewhere in the structure, towards the outer entrance of the pore; these lipids originate in the outer leaflet. As discussed in the manuscript, the geometry of these sites in the experimentally determined structures of closed and open states is largely invariant; consistent with that observation, the occupancy of the “hook” lipid sites is also similar when simulations of closed and open states are compared. At this point, therefore, it is unclear whether the “hook” lipids are involved in tension sensing; it is plausible that their primary role is structural (for both open and closed states).

      iv) Past work revealed several lipids in MscS structures near these cavities besides the hook lipids, and their ordered dissociation from the channel was proposed to be important for gating. Do the simulations show lipids in these cavities?

      Yes. Previous structural studies identified individual lipid densities under the TM2-TM3 hairpins. Our data show these lipids are not isolated sites but integrated into a larger morphological feature.

      v) Does the occupancy of the hook lipids in MD simulations change between the open and closed conformations? This should be analyzed.

      Please see our answer to point (iii).

      vi) Is the occupancy of other lipids in the nearby cavity altered upon channel opening?

      Please see our answer to point (iii).

      vii) Is the exchange of lipids near Ile150 affected by the conformational change?

      Please see our answer to point (iii).

      I am a bit confused by the claim that "The comparison clearly highlights the reduction in the width of the transmembrane span of the channel upon opening, and how this changed is well matched by the thickness of the corresponding lipid nanodiscs (approximately from 38 to 23 Å)."

      This statement has been clarified. Our intention was to state is that in the open conformation stabilized by PC14, the increased tilt of the TM1-TM2 hairpins towards the midplane of the bilayer leads to a reduction in the hydrophobic width of the protein parallel to the membrane normal. (This reduction is clearly illustrated by our simulation data – see Figure 8 – Figure Supplement 1.) This change correlates with the reduction in thickness from the PC18 to the PC14 nanodiscs, explaining why the latter stabilizes the open state while the former stabilizes the closed state.

      i. How was the nanodisc membrane thickness determined? This should be described.

      ii. I do not see a ~15A change in the vertical length of the channel protein or of the nanodisc. While the panels in Fig.2 clearly show a vertical compression of the membrane, it appears that the ~15 A claim might be overstated. Adding a panel with measurements would be helpful to quantify this claim. If this is difficult on the membrane, maybe measurements could be performed on the protein.

      The reviewer is correct. The original estimate, based on a cursory measurement of distances between two sets of protein atoms seemingly aligned with the water-lipid interface, turned out to be less accurate than expected. A better and more reproducible estimate has now been derived from the OPM database (https://opm.phar.umich.edu/). Using V3 of the database the closed-state is 32.6 Å and the open is 25.8 Å. The change is 6.8 Å. This is the value we now report.

      iii. What happens to the N-terminal cap structure in the open state? What are the rearrangements that allow the extracellular ends of the TM1 to disassemble the cap.

      In the open conformation part of the N-terminal cap appears to re-folds into TM1 extending its length as this helix tilts to embed itself at the membrane/water interface. The detailed side-chain structure of this domain is not clearly resolved but the C trace can be approximately inferred.

      The data shown in Fig. 6 is cryptic and should be explained better in the main text. As it stands there is a cursory mention in pg. 12 and not much else.

      i. It would be helpful if the authors showed the position of Ile150 in the structure.

      Please see the revised version of Figure 6 and the corresponding caption.

      ii. Does the total number of lipids in proximity of Ile150 change over time? Or the fold change represents ~1:1 exchange of lipids in the pocket?

      Please see the revised version of Figure 6. The total number of lipids in proximity of Ile150 in closed MscS, i.e. the number of lipids filling the cavities under the TM1-TM2 hairpins, is approximately constant at any given timepoint; in both the CG and AA representations, we find about 4 lipids for each of the 7 subunits. However, these are not always same lipid molecules. For example, in a period of 20 s of CG simulation, 40 different lipid molecules were observed to transiently reside in each of protrusions. We trust that this new format of the figure will be more intuitive than the original version.

      iii. I am confused by the difference in the maximum possible fold-change in unique lipids, does this reflect the difference in total number of lipids in each leaflet in each system? If so, I am a bit confused as to why there is a ~30% difference in the AA simulations whereas the values are nearly identical for the CG one.

      Please see the revised version of Figure 6. For clarity we have eliminated the concept of fold-change (and maximum fold-change, relative to the total number of lipids in each leaflet), and now simply quantify the number of lipids in proximity to each site.

      iv. Is it possible to quantify the residence time of the lipids in the pocket of each subunit?

      Please see the revised version of Figure 6. From the data presented in panels C and D, it can be deduced that a full turnover takes 2-4 microseconds in the CG representation of the system; in the AA representation, we observe a turnover of about 75% in 10 microseconds, on average over all subunits.

      The authors state on Pg. 21 "Nevertheless, we question the prevailing view that density signals of this kind are evidence of regulatory lipid binding sites; that is, we do not concur with the assumption that lipids regulate the gating equilibrium of MscS just like an agonist or antagonist would for a ligand-gated receptor-channel." I am a bit confused by this statement. In principle, binding and unbinding of modulatory ligands can happen on relatively fast time scales, so the observation that in MD simulations lipids exchange on a faster time scale than that of channel gating is not sufficient to make this inference. Indeed, there is ample evidence from other channels (i.e. Trp channels, HCN channels etc) where visualization of similar signals led to the identification of modulatory lipid binding sites. Thus, while I do not necessarily disagree with the authors, I would encourage them to tone down the general portion of the statement.

      The statement has been rephrased as “Nevertheless, our data puts into question the prevailing view that density signals of this kind necessarily reflect long-lasting lipid immobilization, as one might expect for an agonist or antagonist of a ligand-gated receptor-channel.”

      Reviewer #2 (Public Review):

      1) Are the structures stable in the membrane also without the weak restraints on the dihedral angles? Continuing at least one of the atomistic simulations without restraints for about 1 microsecond in a tension-free membrane would address a possible concern that the severe membrane distortion could go away by a more extensive relaxation of the channel structure.

      Please see our responses to the Editor.

      2) Does the observed effect occur also in membranes with physiologically relevant PE lipids? Performing a simulation with a lipid mix closer to that in E. coli (and thus high in PE) would address a possible concern that the observed effect is not physiologically relevant.

      Please see our responses to the Editor.

      3) Please include a figure showing that the lipid positions in the MD simulations match the lipid densities in the cryo-EM maps.

      Rather than re-rendering images already published, or generating new images that might not adequately represent the authors’ interpretation of their own data, we have to opted to specify the specific figures in previous studies where lipid densities under the TM1-TM2 hairpin have been clearly highlighted, for both MscS and MSL1. Specifically, for MscS, see Figure 4 in Zhang et al. [Ref. 16] and Figures 3-5 and Supplementary Figure 11 in Flegler et al [Ref. 15]; for MSL1, see Supplementary Figure 8 in Deng et al [Ref. 18].

      4) Is the reported mobility of helices TM2-TM3 of MSL1, as deduced from a comparison of different cryo-EM structures (ref 18), sufficient to impact the lipid organisation?

      In the naming convention used in Ref. 18, TM3 in MSL1 corresponds to TM1 in MscS. Different channels in this family feature different N-terminal domains preceding TM1. MscS features a short helix that has been referred as the N-cap, which lies on the membrane surface. MSL1 from Arabidopsis however features two additional TM helices – which confusingly Ref. 18 refers to as TM1 and TM2, while the key hairpin adjacent to the pore domain is referred to as TM3-TM4. Neither TM1 or TM2 in MSL1 are clearly resolved, presumably because they are indeed mobile, but they are in any case peripheral and therefore not likely to be critically influential for the morphological changes in the membrane that we discuss in the manuscript. Indeed, our simulations of MSL1 do not, by design, include those two N-terminal helices – in part because, as mentioned, they are poorly resolved, but also so that the results can be directly contrasted with MscS. Nevertheless, both channels show very similar deformations in the membrane for the closed state, and an elimination of these deformations in the open state.

      5) Did the initial lipid configuration in atomistic MD simulations already contain the deformations of the inner leaflet, or did these form spontaneously both in coarse-grained and atomistic simulations?

      Please see our responses to the Editor.

      6) Did the earlier MD simulations of the closed-state structure 6PWN of MscL give any indications on the membrane deformation?

      The simulation reported in Reddy et al alongside the structure of closed MscS in PC18 [Ref. 17] did not reveal the kind of deformations observed in this study, most probably due to insufficient equilibration time. However, that simulation did reveal a translational displacement of the channel relative to what had been previously assumed to be the transmembrane span. In retrospect, it seems clear that the observed translation was driven by the strong hydrophobic mismatch between the protein surface and the flat lipid bilayer; the membrane deformations we now observe represent the adaptation that ultimately minimizes that mismatch.

      7) Are there distinct interactions between the headgroups of distorted inner-leaflet lipids with charged amino acids? If so, are these amino acids conserved?

      Please see the new Figure 4 – Figure Supplement 1. As discussed in the manuscript, the interior of the cavities formed under the TM1-TM2 hairpins, and flanked by TM3a and TM3b, are lined almost entirely by hydrophobic residues. Charged and polar amino-acids are only observed on the outer face of the TM1-TM2 hairpin and are primarily in contact water.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors focused on linking physiological data on theta phase precession and spike-timing-dependent plasticity to the more abstract successor representation used in reinforcement learning models of spatial behavior. The model is presented clearly and effectively shows biological mechanisms for learning the successor representation. Thus, it provides an important step toward developing mathematical models that can be used to understand the function of neural circuits for guiding spatial memory behavior.

      However, as often happens in the Reinforcement Learning (RL) literature, there is a lack of attention to non-RL models, even though these might be more effective at modeling both hippocampal physiology and its role in behavior. There should be some discussion of the relationship to these other models, without assuming that the successor representation is the only way to model the role of the hippocampus in guiding spatial memory function.

      We thank the reviewer for the positive comments about the work, and for the detailed and constructive feedback. We agree with the reviewer that the manuscript will benefit from significantly more discussion of non-RL models, and we’ve detailed below a number of modifications to the manuscript to better incorporate prior work from the hippocampal literature, including the citations the reviewer has listed. Since our goal with this paper is to contextualise hippocampal phenomena in the context of an RL learning rule, this is really important and we appreciate the reviewers recommendations. We have added text (outlined in the point-by-point responses below) to the introduction and to the discussion that we hope better demonstrates the connections between the SR and existing computational models of hippocampus, and communicates clearly that the SR is not unique in capturing phenomena such as factorization of space and reward or capturing sequence statistics, but is rather a model that captures these phenomena while also connecting with downstream RL computations. Existing RL accounts of hippocampal representation often do not connect with known properties of hippocampus (as illustrated by the fact that TD learning was proposed in prior work to be the learning mechanism for SRs, even though this doesn’t have an obvious mechanism in HPC), so the purpose of this work is to explore the extent to which TD learning effectively overlaps with the well-studied properties of STDP and theta oscillations. In that sense, this paper is an effort to connect RL models of hippocampus to more physiologically plausible mechanisms rather than an attempt to model phenomena that the existing computational hippocampus literature could not capture.

      1) Page 1- "coincides with the time window of STDP" - This model shows effectively how theta phase precession allows spikes to fall within the window of spike-timing-dependent synaptic plasticity to form successor representations. However, this combination of precession and STDP has been used in many previous models to allow the storage of sequences useful for guiding behavior (e.g. Jensen and Lisman, Learning and Memory, 1996; Koene, Gorchetchnikov, Cannon, Hasselmo, Neural Networks, 2003). These previous models should be cited here as earlier models using STDP and phase precession to store sequences. They should discuss in terms of what is the advantage of an RL successor representation versus the types of associative sequence coding in these previous models.

      We agree that the idea of using theta precession to compress sequences onto the timescale of synaptic learning is a long-standing concept in sequence learning, and that we need to be careful to communicate what the advantages are of considering this in the RL context. We have added these citations to the introduction:

      “One of the consequences of phase precession is that correlates of behaviour, such as position in space, are compressed onto the timescale of a single theta cycle and thus coincide with the time-window of STDP O(20 − 50 ms) [8, 18, 20, 21]. This combination of theta sweeps and STDP has been applied to model a wide range of sequence learning tasks [22, 23, 24], and as such, potentially provides an efficient mechanism to learn from an animal’s experience – forming associations between cells which are separated by behavioural timescales much larger than that of STDP.” and added a paragraph to the discussion as well that makes this clear:

      “That the predictive skew of place fields can be accomplished with a STDP-type learning rule is a long-standing hypothesis; in fact, the authors that originally reported this effect also proposed a STDP-type mechanism for learning these fields [18, 20]. Similarly, the possible accelerating effect of theta phase precession on sequence learning has also been described in a number of previous works [22, 55, 23, 24]. Until recently [40, 41], SR models have largely not connected with this literature: they either remain agnostic to the learning rule or assume temporal difference learning (which has been well-mapped onto striatal mechanisms [37, 56], but it is unclear how this is implemented in hippocampus) [54, 31, 36, 57, 58]. Thus, one contribution of this paper is to quantitatively and qualitatively compare theta-augmented STDP to temporal difference learning, and demonstrate where these functionally overlap. This explicit link permits some insights about the physiology, such as the observation that the biologically observed parameters for phase precession and STDP resemble those that are optimal for learning the SR (Fig 3), and that the topographic organisation of place cell sizes is useful for learning representations over multiple discount timescales (Fig 4). It also permits some insights for RL, such as that the approximate SR learned with theta-augmented STDP, while provably theoretically different from TD (Section 5.8), is sufficient to capture key qualitative phenomena.”

      2) On this same point, in the introduction, the successor representation is presented as a model that forms representations of space independent of reward. However, this independence of spatial associations and reward has been a feature of most hippocampal models, that then guide behavior based on interactions between a reward representation and the spatial representation (e.g. Redish and Touretzky, Neural Comp. 1998; Burgess, Donnett, Jeffery, O'Keefe, Phil Trans, 1997; Koene et al. Neural Networks 2003; Hasselmo and Eichenbaum, Neural Networks 2005; Erdem and Hasselmo, Eur. J. Neurosci. 2012). The successor representation should not be presented as if it is the only model that ever separated spatial representations and reward. There should be some discussion of what (if any) advantages the successor representation has over these other modeling frameworks (other than connecting to a large body of RL researchers who never read about non-RL hippocampal models). To my knowledge, the successor representation has not been explicitly tested on all the behaviors addressed in these earlier models.

      We agree – a long-standing property of computational models in the hippocampal literature is a factorization of spatial and reward representations, and we have edited the text of the paper to make it clear that this is not a unique contribution of the SR. We have modified our description of the SR to better place it in the context of existing theories about hippocampal contributions to the factorised representations of space and goals, and included all citations mentioned here by adding the following text.

      We have added a sentence to the introduction:

      “However, the computation of expected reward can be decomposed into two components – the successor representation, a predictive map capturing the expected location of the agent discounted into the future, and the expected reward associated with each state [26]. Such segregation yields several advantages since information about available transitions can be learnt independently of rewards and thus changes in the locations of rewards do not require the value of all states to be re-learnt. This recapitulates a number of long-standing theories of hippocampus which state that hippocampus provides spatial representations that are independent of the animal’s particular goal and support goal-directed spatial navigation[27, 28, 23, 29, 30]”

      We have also added a paragraph to the discussion:

      “The SR model has a number of connections to other models from the computational hippocampus literature that bear on the interpretation of these results. A long-standing property of computational models in the hippocampal literature is a factorisation of spatial and reward representations [27, 28, 23, 29, 30], which permits spatial navigation to rapidly adapt to changing goal locations. Even in RL, the SR is also not unique in factorising spatial and reward representations, as purely model-based approaches do this too [26, 25, 67]. The SR occupies a much more narrow niche, which is factorising reward from spatial representations while caching long-term occupancy predictions [26, 68]. Thus, it may be possible to retain some of the flexibility of model-based approaches while retaining the rapid computation of model-free learning.”

      3) Related to this, successes of the successor representation are presented as showing thebackward expansion of place cells. But this was modeled at the start by Mehta and colleagues using STDP-type mechanisms during sequence encoding, so why was the successor representation necessary for that? I don't want to turn this into a review paper comparing hippocampal models, but the body of previous models of the role of the hippocampus in behavior warrants at least a paragraph in each of the introduction and discussion sections. In particular, it should not be somehow assumed that the successor representation is the best model, but instead, there should be some comparison with other models and discussion about whether the successor representation resembles or differs from those earlier models.

      We agree this was not clear. This is a nuanced point that warrants substantial discussion, and we have added a paragraph to the discussion (see the paragraph in the response to point 1 that begins “That the predictive skew of place fields can be accomplished…”).

      4) The text seems to interchangeably use the term "successor representation" and "TD trained network" but I think it would be more accurate to contrast the new STDP trained network with a network trained by Temporal Difference learning because one could argue that both of them are creating a successor representation.

      We now refer to these as “STDP successor features” and “TD successor features”. We have also replaced all references of “true successor representation/features” to “TD successor representation/feature” and have edited the text at the beginning of the results section to reflect this:

      “The STDP synaptic weight matrix Wij (Fig. 1d) can then be directly compared to the temporal difference (TD) successor matrix Mij (Fig. 1e), learnt via TD learning on the CA3 basis features (the full learning rule is derived in Methods and shown in Eqn. 27). Further, the TD successor matrix Mij can also be used to generate the ‘TD successor features’...”

      Reviewer #2 (Public Review):

      The authors present a set of simulations that show how hippocampal theta sequences may be combined with spike time-dependent plasticity to learn a predictive map - the successor representation - in a biologically plausible manner. This study addresses an important question in the field: how might hippocampal theta sequences be combined with STDP to learn predictive maps? The conclusions are interesting and thought-provoking. However, there were a number of issues that made it hard to judge whether the conclusions of the study are justified. These concerns mainly surround the biological plausibility of the model and parameter settings, the lack of any mathematical analysis of the model, and the lack of direct quantitative comparison of the findings to experimental data.

      While the model uses broadly realistic biological elements to learn the successor representation, there remain a number of important concerns with regard to the biological plausibility of the model. For example, the model assumes that each CA3 cell connects to exactly 1 CA1 cell throughout the whole learning process so that each CA1 cell simply inherits the activity of a single CA3 cell. Moreover, neurons in the model interact directly via their firing rate, yet produce spikes that are used only for the weight updates. Certain model parameters also appeared to be unrealistic, for example, the model combined very wide place fields with slow running speeds. This leaves open the question as to whether the proposed learning mechanism would function correctly in more realistic parameter settings. Simulations were performed for a fixed running speed, thereby omitting various potentially important effects of running speed on the phase precession and firing rate of place cells. Indeed, the phase precession of CA1 place cells was not shown or discussed, so it is unclear as to whether CA1 cells produce realistic patterns of phase precession in the model.

      The fact that a successor-like representation emerges in the model is an interesting result and is likely to be of substantial interest to those working at the intersection between neuroscience and artificial intelligence. However, because no theoretical analysis of the model was performed, it remains unclear why this interesting correspondence emerges. Was it a coincidence? When will it generalise? These questions are best answered by mathematical analysis of the model (or a reduced form of it).

      Several aspects of the model are qualitatively consistent with experimental data. For example, CA1 place fields clustered around doorways and were elongated along walls. While these findings are important and provide some support for the model, considerable work is required to draw a firm correspondence between the model and experimental data. Thus, without a quantitative comparison of the place field maps in experimental data and the model, it is hard to draw strong conclusions from these findings.

      Overall, this study promises to make an important contribution to the field, and will likely be read with interest by those working in the fields of both neuroscience and artificial intelligence. However, given the above caveats, further work is required to establish the biological plausibility of the model, develop a theoretical understanding of the proposed learning process, and establish a quantitative comparison of the findings to experimental data.

      Thank you for the positive comments about the work, and for the detailed and constructive review. We appreciate the time spent evaluating the model and understanding its features at a deep level. Your comments and suggestions have led to exciting new simulation results and a theoretical analysis which shed light on the connections between TD learning, STDP and phase precession.

      We have incorporated a number of new simulations to tackle what we believe are your most pressing concerns surrounding the model’s biological plausibility. As such, we have extended the hyperparameter sweep (Supp. Fig 3) to include the phase precession parameters you recommended, as well as three new multipanel supplementary figures satisfying your recommendations (Supp. Figs. 1, 2 & 4). Collectively, these figures show that the specifics of our results, which as you pointed out might have been produced with biologically implausible values (place cell size, movement speed/statistics, weight initialisation, weight updating schedule and phase precession parameters), do not fundamentally depend on the specific values of these parameters: the mechanism still learns predictive maps close in form to the TD successor features. In the hyperparameter sweep, we do find that results are sensitive to specific parameter values (Supp. Fig 3), but that interestingly, the optimal values of these parameters are remarkably close to those observed experimentally. We have also written an extensive new theory section analysing why theta sequences plus STDP approximates TD learning. In addition the methods section has been added to and reordered to make some of the subtler aspects of our model (i.e. the mapping of rates-to-rates and weight fixing during learning) more clear.

      At a high level, regarding our claim of biological plausibility, we like to clarify our intended contribution and give context to some responses below. We have added the following paragraph to the discussion in order to accurately represent the scope of our work:

      “While our model is biologically plausible in several respects, there remain a number of aspects of the biology that we do not interface with, such as different cell types, interneurons and membrane dynamics. Further, we do not consider anything beyond the most simple model of phase precession, which directly results in theta sweeps in lieu of them developing and synchronising across place cells over time [60]. Rather, our philosophy is to reconsider the most pressing issues with the standard model of predictive map learning in the context of hippocampus (e.g., the absence of dopaminergic error signals in CA1 and the inadequacy of synaptic plasticity timescales). We believe this minimalism is helpful, both for interpreting the results presented here and providing a foundation for further work to examine these biological intricacies, such as the possible effect of phase offsets in CA3, CA1 [61] and across the dorsoventral axis [62, 63], as well as whether the model’s theta sweeps can alternately represent future routes [64] e.g. by the inclusion of attractor dynamics [65].”

    1. Author Response:

      eLife assessment

      This paper reports a useful set of results that uses a reduced network model based on a previously published large-scale network model to explain the generation of theta-gamma rhythms in the hippocampus. Combining the detailed and reduced models and comparing their results is a powerful approach. However, the evidence for the main claim that CCK+ basket cells play a key role in theta-gamma coupling in the hippocampus is currently incomplete.

      We thank the reviewers for their thorough and thoughtful notes, and we are pleased that there is acknowledgement of the combination of models as a powerful approach.  We agree with many of the comments made and we intend to address them in subsequent revisions. 

      In particular, we think that our ‘narrative’ as presented was perhaps not as clear as it could have been, based on the somewhat different comments from the reviewers (R#1 and #3).  That is, we created a reduced population rate model based on the theta/gamma generation hypotheses from the detailed model and then explored the PRM in more detail to predict cellular contributions.  The goal was not to validate the original detailed model per se (R#1) nor to do a fitting of parameters in the PRM directly from the detailed model (R#3).  Rather, it was to obtain a set of parameter values in PRM that would be in accordance with the hypotheses of the detailed model that could be fully explored to derive cellular-based predictions that could help design experiments to understand theta/gamma rhythms.

      Responses specific to the Reviewers are given below.

      Reviewer #1 (Public Review):

      This paper investigates potential mechanisms underlying the generation of hippocampal theta and gamma rhythms using a combination of several modeling approaches. The authors perform new simulation experiments on the existing large-scale biophysical network model previously published by Bezaire et al. Guided by their analysis of this detailed model, they also develop a strongly reduced, rate-based network model, which allows them to run a much larger number of simulations and systematically explore the effects of varying several key parameters. The combined results from these two in silico approaches allow them to predict which cell types and connections in the hippocampus might be involved in the generation and coupling of theta and gamma oscillations.

      In my view, several aspects of the general methodology are exemplary. In the current work as well as several earlier papers, the authors are re-using a large-scale network model that was originally developed in a different laboratory (Bezaire et al., 2016) and that still represents the state-of-the-art in detailed hippocampal modeling. Such model reuse is quite rare in computational neuroscience, which is rather unfortunate given the amount of time and effort required to build and share such a complex model. Very often, and also, in this case, the original publication that describes a detailed model provides only limited validation and analysis of model behavior, and the re-use of the same model in later studies represents a great opportunity to further examine and validate the model.

      Combining detailed and simplified models can also be a powerful approach, especially when the correspondence between the two is carefully established. Matching results from the two models, in this case, allow strong arguments about key mechanisms of biological phenomena, where the simplified model allows the identification and characterization of necessary and sufficient components, while the detailed model can firmly anchor the models and their predictions to experimental data.

      On the other hand, I have several major concerns about the implementation of these approaches and the interpretation of the results in the current study. First of all, the detailed model of Bezaire et al. is considered strictly equivalent, in all of its relevant details, to biological reality, and no attempt is made to verify or even discuss the validity of this assumption, even when particular details of the model are apparently critical for the results presented. I see this as a fundamental limitation of the current work - the fact that the Bezaire et al. model is the best one we have at the moment does not automatically make it correct in all its details, and features of the model that are essential for the new results certainly deserve careful scrutiny (preferably via detailed comparison with experimental data).

      An important case in point is the strength of the interactions between specific neuronal populations. This is represented by different quantities in the detailed and simplified model, but the starting point is always the synaptic weight (conductance) values given by Bezaire et al. (2016), also listed in Tables 2 and 3 of the current manuscript. Looking at these parameters, one can identify a handful of connections whose conductance values are much higher than those of the other connections, and also more than an order of magnitude higher (50-100 nS) than commonly estimated values for cortical synapses (normally less than about 5 nS, except for a few very special types of synapse such as the hippocampal mossy fibers). Not surprisingly, several of these connections (such as the pyramidal cell to pyramidal cell connections, and the CCK+BC to PV+BC connections) were found to be critical for the generation and control of theta and gamma oscillations in the model. Given their importance for the conclusions of the paper, it would be essential to double-check the validity of these parameter values. In this context, it is worth noting that, unlike the anatomical parameters (cell numbers and connectivity) that had been carefully calculated and discussed in Bezaire and Soltesz (2013), biophysical parameters (the densities of neuronal membrane conductances and synaptic conductances) in Bezaire et al. (2016) were obtained by relatively simple (partly manual) fitting procedures whose reliability and robustness are mostly unknown. Specifically for synaptic parameters in CA1, a more systematic review and calculation were recently carried out by Ecker et al. (2020); their estimates for the synaptic conductances in question are typically much lower than those of Bezaire et al. (2016) and appear to be more in line with widely accepted values for cortical (hippocampal) synapses.

      Furthermore, some key details concerning the construction of the simplified rate model are unclear in the current manuscript. The process of selecting cell types and connections for inclusion in the rate model is described, and the criteria are mostly clear, although the results are likely to be heavily affected by the problems discussed above, and I do not understand why the strength of external input was included among the selection criteria for cell types (especially if the model is meant to capture the internal dynamics of the isolated CA1 region). However, the main issue is that it remains unclear how the parameters of the rate model (the 24 parameters in Table 4) were obtained. The authors simply state that they "found a set of parameters that give rise to theta-gamma rhythms," and no further explanation is provided. Ideally, the parameters of the rate model should be derived systematically from the detailed biophysical model so that the two models are linked as strongly as possible; but even if this was not the case, the methods used to set these parameters should be described in detail.

      An important inaccuracy in the presentation of the results concerns the suggested coupling of theta and gamma oscillations in the models. Although the authors show that theta and gamma oscillations can be simultaneously present in the network under certain conditions, actual coupling of the two rhythms (e.g., in the form of phase-amplitude coupling) is not systematically characterized, and it is therefore not clear under what conditions real coupling is present in the two models (although a probable example can be seen in Figure 1C(ii)).

      The Discussion of the paper states that gamma oscillations in the model(s) are generated via a pure interneuronal (ING) mechanism. This is an interesting claim; however, I could not find any findings in the Results section that directly support this conclusion.

      Finally, although the authors write that they can "envisage designing experiments to directly test predictions" from their modeling work, no such experimental predictions are explicitly identified in the current manuscript.

      As noted above, our goal was not to validate the original detailed model but to carry out further analysis of the Bezaire model in its re-use, since as noted by this Reviewer, the original publication was limited in validation and analysis.  Further validation/extensions of Bezaire et al can be carried out given their acknowledged limitations (some as mentioned by the Reviewer).  However, as noted, more detailed models of CA1 microcircuitry now exist (Ecker et al 2020), and it would be interesting to examine whether and how these more detailed models might express theta/gamma rhythms.  In essence, we completely agree that all the details of the Bezaire et al model are not automatically correct.  We were using it as a biological proxy, albeit imperfect.  However, it is able to produce theta/gamma rhythms using parameter values that are experimentally derived in many ways (Bezaire & Soltesz 2013), and with minimal tuning, and thus our assumption is that it captures a potential ‘biological balance’ to generate these rhythms.  Hence, we carried out additional simulations and explorations to derive generation hypotheses that are “applied” in the development of the reduced population rate model (PRM).  The “ING” aspect is due to CCK+BCs and PV+BCs firing coherent gamma rhythms that are imposed onto the PYR cell population as mentioned in the Results.  Without PYR input, they still fire coherent gamma rhythms.  Experiments in which theta/gamma rhythms are characterized (CFC, frequencies)  with and without the presence of CCK+BCs would allow the main prediction of the modeling work to be explored – i.e., whether CCK+BCs are essential for the existence of these coupled rhythms.  We know from Dudok et al that there are alternating sources of perisomatic inhibition, but how they might control theta/gamma rhythms has not been explored to the best of our knowledge.

      We will more fully describe our process for PRM parameters in subsequent revisions as well as formally apply CFC metrics.

      Reviewer #2 (Public Review):

      The goal of this study is to find a minimal model that produces both theta and gamma rhythms in the hippocampus CA1, based on the full-scale model (FSM) of Bezaire et al, 2016. The FSM here is treated as equivalent to biological data. This seems to be a second part of a study that the same authors published in 2021, and is extensively cited here. The study reduces the FSM to a neural rate model with 4 neurons, which is capable of producing both rhythms. This model is then simulated and its parameter dependencies are explored.

      The authors succeed in producing a rate model, based on 4 neuron types, that captures the essence of the two rhythms. This model is then analyzed at a descriptive level to claim that the synapse from one interneuron type (CCK) to another (PV+) is more effective than its reciprocal counterpart (PV+ to CCK synapse) to control theta rhythm frequency.

      The results fall short on several fronts:<br /> The conclusions rely exclusively on the assumption that the FSM is in fact able to faithfully reflect the biological circuits involved, not just in its output, but in response to a variety of perturbations. Although the authors mention and discuss this assumption, in the end, the reader is left with a (reduced) model of a (complex) model, but no real analysis based on this reduction. In fact, the reduced model is treated in a manner that could have been done with the full one. Thus the significance of the work is greatly reduced not by what the authors do, but by what they fail to do, which is to properly analyze their own reduced model. Consequently, the impact of this study on the field is minimal.<br /> Related to the first point, throughout the manuscript, multiple descriptive findings, based on the authors' observations of the model output, are presented as causal relationships. Even the main finding of the study (that one synapse has a larger effect on theta than another) is not quantified, but just simply left as a judgment call by the authors and reader of comparing slopes on graphs.

      We agree with this Reviewer that analysis of the PRM is needed and is currently underway.  It will hopefully help us understand what ‘balances’ are essential for theta/gamma rhythm expression.  However, the overall goal of this work was not to “find” a minimal model per se, but rather to determine how theta/gamma rhythms in the hippocampus are generated (hence building on previous works).  However, it was important to use the detailed model (biological proxy – albeit imperfect – see response to Reviewer#1) to obtain hypotheses on which the PRM is based.  We do not envisage the minimal model as a `replacement’ for the detailed model in general, but rather, to show that using a combination approach (detailed and/or experimental observations with ‘derived’ reduced models) allows us to gain insight into cellular contributions to rhythm generation. Quantification of observations will be applied in subsequent revisions.

      Reviewer #3 (Public Review):

      While full-scale and minimal models are available for CA1 hippocampus and both exhibiting theta and gamma rhythms, it is not fully clear how inhibitory cells contribute to rhythm generation in the hippocampus. This paper aims to address this question by proposing a middle ground - a reduced model of the full-scale model. The reduced model is derived by selecting neural types for which ablations show that these are essential for theta and gamma rhythms. A study of the reduced model proposes particular inhibitory cell types (CCK+BC cells) that play a key role in inhibitory control mechanisms of theta rhythms and theta-gamma coupling rhythms.

      Strengths:<br /> The paper identifies neural types contributing to theta-gamma rhythms, models them, and provides analysis that derives control diagrams and identifies CCK+BC cells as key inhibitory cells in rhythm generation. The paper is clearly written and approaches are well described. Simulation data is well depicted to support the methodology.

      Weaknesses:<br /> The derivation methodology of the reduced model is hypotheses based, i.e. it is based on the selection of cell types and showing that these need to be included by ablation simulations. Then the reduced model is fitted. While this approach has merit, it could "miss" cell types or not capture the particular balance between all types. In particular, it is not known what is the "error" by considering the reduced model. As a result, the control plots (Fig. 5 and 6) might be deformed or very different. An additional weakness is that while the study predicts control diagrams and identifies CCK+BC cell types as key controllers, experimental data to validate these predictions is not provided. This weakness is admissible, in my opinion, since these recordings are not easy to obtain and the paper focuses on computational investigation rather than computationally guided experiments.

      This Reviewer has provided a succinct description of our work which we will leverage in subsequent revisions as we more fully describe our process – thank you.  We agree with the Reviewer that we could ‘miss’ cell types and not capture particular balances etc., as we based our PRM on hypotheses from the detailed model.  Our PRM and its reference parameter values are ‘designed’ based on hypotheses from our set of explorations of the detailed model, and we were able to determine particular predictions that can be experimentally explored.  Subsequent theoretical analyses will help us understand the required ‘balances’ but as noted above (see response to Reviewer#2), we are not aiming for a minimal model (in general), but rather to use such a combined approach (detailed model and/or experimental observations with ‘derived’ reduced models) to come up with (cellular-based) predictions underlying theta/gamma generation.  As noted by this Reviewer, specific inhibitory cell recordings are not easy to obtain and we hope our work would help with computationally guided experiments – i.e, even though the reduced model may ‘miss’ other aspects, it would hopefully capture some aspects that are biologically salient for consideration in experimental design and future detailed model explorations.

    1. Author Response

      Public Evaluation Summary:

      Powers and colleagues reveal that commonly used "genetic markers" (selectable cassettes that allow for genome modification) may lead to unintended consequences and unanticipated phenotypes. These consequences arise from cryptic expression directed from within the cassettes into adjacent genomic regions. In this work, they identify a particularly strong example of marker interference with a neighboring gene's expression and develop and test next-generation tools that circumvent the problem. The work will be primarily of interest to yeast biologists using these types of tools and interpreting these types of data.

      Thank you for your time and thoughtfulness in assessing our manuscript. We agree the immediate and most direct importance of our findings is to those using cassette-based genome editing in yeast or interpreting data that comes from these experiments. However, the relevance of our findings is not limited to yeast researchers, as yeast deletion phenotypes and synthetic phenotypes are often used to guide studies in other organisms. For example, just one popular synthetic genetic interaction study from yeast (Costanzo et al, Science 2010) has been cited over 1100 times since 2010, and a large subset of these citations are not from studies focused on budding yeast.

      The central finding of our work (which we regret was not sufficiently highlighted in the original manuscript), is important to an even broader scientific community: because eukaryotic promoters are inherently bidirectional, divergent promoter activity from genome-inserted expression cassettes can drive off-target gene neighboring gene repression.

      Although instances of cassette induced off-target effects have been described previously, the mechanism behind these effects was previously unknown. Our study leveraged a strong case of selection cassette-driven off-target effects to identify the mechanism by which these confounding phenotypes occur. Our finding that cassettes of disparate sequence composition and expression level are competent to drive disruption of neighboring gene expression helped us determine that bidirectional promoter activity, inherent to most eukaryotic promoters, drives this effect. Thus, our data suggests a much wider pool of overlooked mutants are potentially affected by effects like the “neighboring gene effect” (NGE, Ben-shtrit et al. Nature Methods 2012) than previously considered. We find that bidirectional promoter activity from expression cassettes occurs at all cassette-inserted loci analyzed, but the resultant divergent transcripts are often terminated before disrupting neighboring genes, apparently through the mechanisms terminating most endogenous divergent transcripts (eg. CUTs; Xu et al. Nature 2009; Schultz et al. Cell 2013). These data help explain why some loci are sensitive to disruption of neighboring gene expression while others are immune. Based on identification of this mechanism of action, we find that a simply “insulating” the promoter internal to the inserted cassette with transcription termination sequences prevents this type of off-target effect. We share these updated editing tools with the community to decrease confounding off-target effects in future studies.

      Because the mechanisms driving these off-target effects are fundamental, they are likely occurring in other eukaryotes. Considering the specific cassette induced LUTI-based mis-regulation reported here, this off-target mis-regulation could be seen, regardless of organism, if the following conditions are met:

      1) Insertion of a cassette housing a bidirectional promoter

      • Most, if not all, promoters have bidirectional activity (Teodorovic, Walls, and Elmendorf, NAR 2007; Xu et al., Nature 2009, Neil et al, Nature 2009, Trinklein et al. Genome Research 2004, Seila et al., Science 2008, Core and Lis Science 2008; Preker et al Science 2008), including commonly used mammalian promoters (CMV and EF1alpha; Curtin et al. Gene Therapy 2008; SV40: Gidoni et al. Science 1985). Insulator use is rare in construct design and has been primarily used in cases in which the concern is protecting expression of the expression cassette from the local chromatin environment. Although not the dominant mode of gene deletion in mammalian cells, expression cassettes are commonly inserted for knock-in experiments, for example, in the form of antibiotic resistance genes or fluorescent protein-encoding genes.

      • It is interesting that in their native context in both yeast and mammals, most promoters do not produce a stable divergent transcript. In yeast, this results from mechanisms including the NNS termination pathway coupled to Rrp6/exosome-mediated RNA degradation (Schultz et al. Cell 2013). The TEF1 promoter is a prime example, with evidence for a divergent transcript that is visible only when RRP6 is deleted (Xu et al., Nature 2009) or when nascent transcripts are analyzed (Churchman and Weissman, Nature 2011). In mammals, the NNS pathway does not serve this role, but rather the production of stable divergent transcripts is limited by early polyA signals that prevent transcriptional interference from naturally occurring more pervasively and the instability of the resultant short transcripts (Ntini et al, NSMB 2013; Almada et al, Nature 2013). Note that persistence of a stable (detectable) transcript is not needed for neighboring gene disruption to occur, but the production of a transcript that extends into the regulatory sequences for a neighboring gene’s transcript is.

      2) A neighboring gene within a distance that allows transcription interference without intervening transcription termination

      • This is hard to assess systematically, but natural transcription interference and LUTI occur in both human and yeast cells (Chen et al., eLife 2017; Chia et al. eLife 2017; Hollerer et al., G3 2019; Otto and Cheng et al., Cell 2018; Van Dalfsen et al. Dev Cell 2018). Data from our lab suggests this regulation can even be effective up to spans of ~2KB (Vander Wende et al, bioRxiv is an interesting example), so it seems that the artificial regulation described here could have similar range.

      • Although yeast genes are more closely spaced than those in human or mice, there are many gene dense regions in these organisms cases and it has been shown that roughly ¼ of head-to-head oriented genes are within 2KB in human (Gherman, Wang, and Avramopolous, Human Genomics, 2009)

      3) A neighboring gene in the divergent orientation to the cassette (ie. Head-to-head orientation; should be present in half of cassette insertions)

      4) Competitive uORF sequences in the extended 5’ transcript region

      • This is, again, hard to systematically assess, but our studies indicate that approximately half of AUG uORFs are effective at competing with main ORF translation. Because almost every intergenic region houses at least one AUG this may not be a major limiting factor. As in yeast, AUG uORF translation has been seen to be pervasive in naturally 5’ extended human transcripts (Floor and Doudna, eLife, 2016 as just one example).

      While these conditions must be met to match the exact LUTI-based repression that we report at the DBP1/MRP51 locus, even situations in which only conditions 1 and 2 are met could drive potent transcriptional interference impacting neighboring gene expression.

      Our findings offer a new perspective important for designing or interpreting genome engineering experiments in any organism, and identification of a mechanism for neighboring gene effects of expression cassette insertion allow it to be prevented in future studies.

      We regret the narrow framing of our study in the initial manuscript, but hope that our revised manuscript better demonstrates how our findings fit into existing literature regarding neighboring gene effects from cassette insertion, and that their broad relevance is now clear.

      Reviewer #1 (Public Review):

      This manuscript presents information that will be of great interest to yeast geneticists - standard gene deletions can lead to misleading phenotypes due to effects on adjacent genes. The experiments carefully document this in one case, for the DBP1 gene, and present additional evidence that it can occur at additional genes. An improved version of the standard gene replacement cassette is described, with evidence that it functions in an improved fashion, insulated from affecting adjacent genes.

      We appreciate the reviewer’s enthusiasm for the data in our study, and their perspective that this will be of great interest to the yeast community. We hope that we have improved the writing in the revised manuscript to emphasize our finding that a conserved feature of eukaryotic gene regulation drives this effect suggests it likely to be occurring in other organisms.

      Reviewer #2 (Public Review):

      The impact of the work will be for yeast researchers in the clear and careful presentation of a case study wherein phenotypes might be ascribed to the knockout of a particular gene but instead derive from effects on a neighboring gene. In this case, a transcript expressed from within or adjacent to a knockout of DBP1 by a selectable marker towards the adjacent gene MRP51 interferes with the adjacent gene's normal transcription start sites. Furthermore, although neighboring MRP51 ORF is present on the longer mRNA isoform that is generated, it is not efficiently translated. The authors expand on this phenotypic observation to demonstrate that a substantial fraction of selectable marker insertions can generate transcription adjacent to or within and going away from, selectable markers.

      The strengths of the work are that the derivation of the observed phenotypes for the dpb1∆ alleles is clearly and carefully elucidated and the creation of new selectable marker cassettes that overcome the potential for cryptic transcript emanation from or near to the selectable markers. This is valuable for the community as a clear demonstration of how only the exact right experiments might detect underlying mechanisms for potentially misattributed phenotypes and that many times these experiments may not be performed.

      Thanks very much to the reviewer for their thoughtful assessment of our manuscript. We are thrilled that they find the work to be valuable for yeast researchers, and more broadly, to those interested in avoiding misinterpretations of mutant phenotypes. We propose this to be a mechanism that is likely to be important beyond yeast studies and hope that we have made this clearer in the revised manuscript.

      While understandable in terms of how the experiments likely played out, the manuscript seems in between biology and tool development, as the biology in question was related to a gene that is not the focus of this lab. The tool development is likely to be useful but potentially non-optimal.

      We agree with the reviewer’s point that this is a good opportunity to improve the standard yeast cassettes further and have now done so. We now include a further improved pair of cassettes that minimize shared sequences (Figure 3H). These and the previously described constructs (Figure 3F) will all be deposited at Addgene and we hope that they will be of value to the yeast community.

      The reviewer’s comment also made us realize that our previous presentation of the work was not ideal. We have adjusted the order of data in the revised manuscript, including swapping the data in Figures 3 and 4 and adding a Figure 5 to further emphasize the mechanism that we identify to drive this off-target effect, rooted in bidirectional promoter activity. While we hope the new cassettes are useful to others, they also serve a specific biological role in this manuscript, which is to show that bidirectional transcription driven from existing cassettes is the cause of the off-target effect that we report.

      The mechanism for interference identified in this example case (via a long undecoded transcript isoform (LUTI) has already been described for other loci and in a number of species, including in work from the Brar lab. The concept of marker interference with neighboring genes has also been increasingly appreciated by a number of other studies.

      Indeed, because of our recent research interests, we were aware that natural LUTI-based regulation was widespread prior to this study, but even we were surprised to see it occurring in this artificial context. The idea that constitutive LUTI-based repression can be easily driven at loci that are not otherwise LUTI-regulated is an interesting point to consider in designing gene editing approaches. We agree with the reviewer that a greater discussion of previously published work regarding marker interference is necessary to understand the novelty of our findings, including the discussion of some work that should have been cited and discussed in the original manuscript (Ben-Shitrit et al. Nature Methods 2012 and Egorov et al. NAR 2021, in particular). In the reframing of our revised manuscript, we aimed to emphasize the novel aspects of our work, and how they relate to previous reports of the “neighboring gene effect” (NGE). Although the phenomenon of the NGE had been reported, it was not previously clear what caused it to occur, which made it impossible to prevent in planning new approaches or to diagnose in existing data. In revealing this unexpected mechanism driven by bidirectional promoter activity that is general to expression cassette-based editing, rather than resulting from any particular cassette sequence, we were able to design constructs to prevent this from occurring in future studies. Moreover, because bidirectional promoter activity is a highly conserved feature of eukaryotic gene expression, this finding suggests that the type of off-target effect that we describe here is likely to occur with expression cassette insertion in more complex eukaryotes, as well. To our knowledge, this has not been widely considered as a possibility.

    1. Author Response

      Reviewer #1 (Public Review):

      This study analyzes the detailed chemical mechanics of the formation of a physiologically important protein multimer. The primary strengths of the study are careful analyses of two distinct methods, CG-MALS a direct measure of multimerization, and environment-sensitive tryptophan fluorescence, that each indicates that Ca2+ activation of the C-lobe alone can change the physical interaction with an SK2 C-terminal peptide. An intriguing finding is that while either the N- or C-lobes alone can interact with the C-terminal peptide, only with full-length CaM can the SK C-terminal peptide be bound by two CaM molecules simultaneously. This study also clearly demonstrates that Ca2+ activation of the N-lobe triggers binding to the SK2 Cterminal peptide. Methods descriptions are thorough and excellent. Discussion of relevance to structures and function are nuanced and free of presumptions. The weaknesses of this manuscript are that the physiological implications of these findings are not clear: CaM interacts with regions of SK channels besides the C-terminal peptide studied here, and no evidence is provided here that C-lobe calcium binding alters channel opening. Overall, the evidence for conformational changes of the complex due to Ca2+ binding to the C-lobe alone is very strong, and physiological importance seems likely. The interpretation of data in this manuscript is mostly cautious and logically crystalline, with alternative interpretations discussed at many junctures.

      We thank Reviewer #1 for very helpful and thoughtful considerations and catching some oversights in our work. Our work was improved by addressing their comments.

      Reviewer #2 (Public Review):

      Activation of SK channels by calcium through calmodulin (CaM) is physiologically important in tuning membrane excitability. Understanding the molecular mechanism of SK activation has therefore been a high priority in ion channel biophysics and calcium signaling. The prevailing view is that the C-terminal lobe of CaM serves as an immobile Ca2+-independent tether while the N-lobe acts as a sensor whose binding activates the channel. In the present study, the authors undertake extensive biophysical/biochemical analysis of CaM interaction with SK channel peptide and rigorous electrophysiological experiments to show that Ca2+ does bind to the C-lobe of CaM and this potentially evokes conformational changes that may be relevant for channel gating. Beyond SK channels, the approach and findings here may bear important implications for an expanding number of ion channels and membrane proteins that are regulated by CaM.

      A strength of the study is that the electrophysiological recordings are innovative and of high quality. Given that CaM is ubiquitous in nearly all eukaryotes, dissecting the effects of mutants particularly on individual lobes is technically challenging, as endogenous CaM can overwhelm low-affinity mutants. The excised patch approach developed here provides a powerful methodology to dissect fundamental mechanisms underlying CaM action. I imagine this could be adaptable for studying other ion channels. Armed with this strategy authors show that both N- and C-lobe of CaM are essential for maximal activation of SK channels. This revises the current model and may have physiological importance.

      The major weakness is that nearly all biochemical inferences are made from analysis of isolated peptides that do not necessarily recapitulate their arrangement in an intact channel. While the use of MALS provides new evidence of the potentially complex conformational arrangement of CaM on the C-terminal SK peptide (SKp), it is not fully clear that these complexes correspond to functionally relevant states. Lastly, perhaps as a consequence of these ambiguities, the overarching model or mechanism is not fully clear.

      We thank Reviewer #2 for their helpful review and requesting context to alleviate some the ambiguities in channel mechanism arising from our data. Although the ultimate goal of our field is to understand gating mechanism, there are too many parameters to solve with a single study. First off, we agree that there is not a clear model out there and we have only continued to assemble building blocks to make one.

      Our report is centered on calmodulin more than it is SK, which is why we studied more CaM mutants and no channel mutants. There are simply too many unanswered questions regarding stoichiometry and state dependencies to make even a basic working model. We invite the greater ion channel field to scrutinize these questions and delve deeper into approaches across disciplines.

      We strived to put our work in context with the decades of research on CaM and SK. Our work focuses on the C-terminus of SK and whether the C-lobe of CaM anchored independent of Ca2+. An anchored C-lobe would be fundamental to building any gating model with the proper energetics. Although we used only a piece of the full-length channel, a peptide that we call SKp has Ca2+-dependent associations with a full-length protein, WT-CaM. We do not have nearly enough data to solve the gating mechanism, nor do we make a claim to have solved the mechanism for SK gating, but if a piece of the channel has Ca2+-dependent interactions with another full-length protein, calmodulin, it is highly unlikely that the full-length SK channel is going to inhibit that interaction in all its closed and open states. Structures do not show inhibitory actions related to conformational Ca2+-sensitivity. The C-lobe is simply captured in most populated binding state, not necessarily its functional state. Indeed, we need a lot more data to get a clearer understanding. It was helpful to discuss this and we added more context to our work.

      Reviewer #3 (Public Review):

      Halling et. al. probe the mechanism whereby calmodulin (CaM) mediates SK channel activity in response to calcium. CaM regulation of SK channels is a critical modulator of membrane excitability yet despite numerous structural and functional studies significant gaps in our understanding of how each lobe participates in this regulation remain. In particular, while Ca2+ binding to the N-lobe of CaM has a clear functional effect on the channel, the C-lobe of CaM does not appear to participate beyond a tethering role, and structural studies have indicated that the C-lobe of CaM may not bind Ca2+ in the context of the SK channel. This study pairs functional and protein binding data to bridge this gap in mechanistic understanding, demonstrating that both lobes of CaM are likely Ca2+ sensitive in the context of SK channels and that both lobes of CaM are required for channel activation by Ca2+.

      Strengths:

      The molecular underpinnings of CaM-SK regulation are of significant interest and the paper addresses a major gap in knowledge. The pairing of functional data with protein binding provides a platform to bridge the static structural results with channel function. The data is robust, and the experiments are carefully done and appear to be of high quality. The use of multiple mutant CaMs and electrophysiological studies using a rescue effect in pulled patches to enable a more quantified evaluation of the functional impact of each lobe of CaM provides a compelling assessment of the contribution of each lobe of CaM to channel activation. The calibration of the patch data by application of WT CaM is innovative and provides precise internal control, making the conclusions drawn from these experiments clear. This data fully supports the conclusion that both lobes of CaM are required for channel activation.

      Weaknesses:

      The paper focuses heavily on the results of multi-angle light scattering experiments, which demonstrate that a peptide derived from the C-terminus of the SK channel can bind to CaM in multiple stochiometric configurations. However, it is not clear if these complexes are functionally relevant in the full channel, making interpretation challenging.

      We thank Reviewer #3 for their helpful review and for providing their concerns with our interpretation of the MALS experiments. From our previous work (Li et al. 2009 and Halling et al. 2014), we have had suggestions that stoichiometry at different functional states is complicated. Our new data presented here adds to the complexity. We do not claim to have solved whether Ca2+-dependent stoichiometry is important for channel function. That requires further research.

      As we stated with reviewer #2, we emphasize our findings convey how CaM interacts with one site on SK. CaM is the Ca2+ sensor, and Ca2+ alters how CaM binds. The channel will have more determinants for interacting with CaM, but just by studying one domain we see extraordinary complexity. We have firm results from our MALS and fluorescent binding assays that challenge the models on the full-channel even with the simplest interpretations, i.e., CaM is not a simple switch. We have shown fundamentally that CaM binding is Ca2+-dependent with a single SK binding site.

      There are several major studies that still need to be done to relate binding data to channel function: 1) Calmodulin binding studies to other calmodulin domains need to be completed 2) The dependence of Ca2+ concentration on calmodulin binding need to be determined and 3) Ca2+-dependent Calmodulin binding studies on full-length SK channels need to be completed. We invite more discussion from the ion channel field on developing models that are consistent with all data.

    1. Author Response

      Reviewer 1 (Public Review):

      Weaknesses: The main conclusion that ablation of the cadherin code decreases synaptic connectivity between the rVRG and phrenic motor neurons is never directly shown. This can only be inferred by the data.

      1) Conclusion that the connectivity between rVRG premotor and phrenic nerve motor neurons is "weaker". This conclusion is inferred from several experiments but is never directly demonstrated. Alternative interpretations of the decreased amplitude of the in vitro phrenic nerve burst is that the rootlet contains fewer axons (as predicted by the fewer motor neurons in S3 and innervation of the diaphragm S2). Additionally, the intrinsic electrophysiological properties of the motor neurons might be different. To show this decisively, the authors could use electrophysiological recordings of phrenic motor neurons to directly measure a change in synaptic input (for example, mEPSPs or EPSPs after optogenetic stimulation of rVRG axon terminals). Without a direct measurement, the synaptic connectivity can only be inferred.

      We agree with the reviewer that without anatomical evidence, we can only infer the loss of synaptic connectivity. However, we believe that this is the most likely interpretation of our data (see response to the editor summary). Unfortunately, the experiment suggested (optogenetic stimulation of rVRG terminals) is not feasible at the moment, as a) a molecular tool to specifically express channelrhodopsin in rVRG does not currently exist; even if it did, it would require crossing two more alleles in our current mouse model, which contains 5 alleles, making the genetics/breeding cumbersome and b) viral-mediated channelrhodopsin expression in the rVRG is not feasible since the mice die at birth. We will continue to explore alternative approaches to directly demonstrate the loss of rVRG-PMC connectivity in the future.

      2) Conclusion that the small phenic nerve burst size in Dbx1 deleted cadherin signaling is due to less synaptic input to the motor neurons. Dbx1 is expressed in multiple compartments of the medullary breathing control circuit, like the breathing rhythm generator (preBötC). The smaller burst size could be due to altered activity between preBötC neurons to create a full burst, the transmission of this burst from the preBötC to the rVRG, etc.

      We agree with the reviewer about the alternative interpretations of the data, which we mention in the discussion. At this point, we can only conclude that cadherin signaling is required in Dbx1derived respiratory populations for proper phrenic respiratory output. We are currently developing the tools in our lab to further dissect the exact contributions of cadherins to rVRG development, connectivity, and function. As this will require significant time and effort, we believe it is outside the scope of the current work.

      3) In vitro burst size. The authors use 4 bursts from each animal to calculate the average burst size. How were the bursts chosen? Why did the authors use so few bursts? What is the variability of burst size within each animal? What parameters are used to define a burst? This analysis and the level of detail in the figure legend/methods section is inadequate to rigorously establish the conclusion that burst size is altered in the various genotypes.

      To address the reviewer’s concern, we have updated the data by analyzing 7 bursts per animal. Some control mice have burst frequencies as low as 0.2 bursts per minute (see fig. 4b), and thus acquiring 7 bursts requires 35 minutes of recording time, a substantial amount when an entire litter is being recorded in a day. All data is from 7 bursts per animal except for 4 out of 11 NMNΔ6910-/- mice, which only had 1-3 bursts total. To analyze the data, either every single burst was analyzed, or for those traces of higher frequency, bursts were selected randomly, spaced throughout the trace. Bursts were defined as activity above baseline that persists for at least 50ms. Some bursts contain pauses in activity in the middle; activity that was spaced less than 1 second apart was defined as a single burst.

      Updating the data for more bursts slightly changed some of our findings. We now find that 6910/- mice no longer exhibit significantly increased burst duration and burst activity. This was barely significant in our previous analysis, and is now just barely non-significant (p=0.065 for burst duration, p=0.059 for burst activity).

      We have included this more detailed description in the methods section. We have also included an excel sheet as source data for fig. 4 to indicate the variability of burst size within each animal and across animals.

      4) The authors state that the in vitro frequency in figure 4 is inaccurate, but then the in vitro frequency is used to claim the preBötC is not impacted in Dbx1 mutants (conclusion section "respiratory motor circuit anatomy and assembly"). To directly assess this conclusion, the bursting frequency of the in vitro preBötC rhythm should be measured.

      We have now included the quantitation of respiratory frequency data for control and βγ-catDbx1∆ mice, showing that there are no significant changes in burst frequency in βγ-catDbx1∆ mice. However, we do agree with the reviewer that the loss of excitatory drive could be due to changes either in the rVRG or the preBötC and we have toned down our conclusions to indicate that the preBötC could be impacted in βγ-catDbx1∆ mice.

      5) The burst size in picrotoxin/strychnine is used to conclude that the motor neurons intrinsic physiology is not impacted. The bursts are described, and examples are shown, but this is never quantified across many bursts within in a single recording nor in multiple animals of each genotype.

      We have now included quantification of this data, using 6-11 bursts/mouse from 3 control and 3 NMNΔ6910-/- mice. We find that both the spinal burst total duration (shown as % of recording time) and the normalized integrated spinal activity over time are not significantly different between control and NMNΔ6910-/- mice.

      Reviewer 3 (Public Review):

      Major points

      1) Page 8: 'In addition, NMNΔ and NMNΔ6910-/- mice showed a similar decrease in phrenic MN numbers, likely from the loss of trophic support due to the decrease in diaphragm innervation (Figure S3c).' This statement should be corrected: phrenic MN number in NMNΔ mice does not differ from controls, in contrast to NMNΔ6910-/- mice (Fig. S3). Similarly, diaphragm innervation is not significantly different from controls in NMNΔ (Fig. S2). Alternatively, these observations could be strengthened by increasing the number of mice analyzed to determine whether there is a significant reduction in PMN number and diaphragm innervation in NMNΔ mice.

      Following the reviewer’s suggestion, we increased the number of control mice analyzed for diaphragm innervation (n=7) and MN numbers (n=6). We now find that there is a significant reduction in both parameters in NMNΔ mice. We have modified the results section accordingly.

      2) A similar comment relates to the interpretation of the dendritic phenotype in NMNΔ and NMNΔ6910-/- mice (Fig. 3m): the authors conclude 'When directly comparing NMNΔ and NMNΔ6910-/- mice, NMNΔ6910-/- mice had a more severe loss of dorsolateral dendrites and a more significant increase in ventral dendrites (Figure 3l-m).' (page 9). The loss of dorsolateral dendrites in NMNΔ6910-/- mice indeed differs significantly from control mice, and is more severe than in NMNΔ mice, which do not differ significantly from controls. For ventral dendrites however, the increase compared to controls is significant for both NMNΔ and NMNΔ6910-/- mice, and the two genotypes do not appear to differ from each other. This suggests cooperative action of N-cadherin and cadherin 6,9,10 for dorsolateral dendrites, but suggests that N-cad is more important for ventral dendrites. This should be phrased more clearly.

      We agree with the reviewer and apologize for the lack of clarity. We have modified our description to highlight the contribution of N-cadherin to dendritic development.

      3) Related comment, page 10: 'Furthermore, the fact that phrenic MNs maintain their normal activity pattern in NMNΔ mice suggests that neither cell body position nor phrenic MN numbers significantly contribute to phrenic MN output.' This should be rephrased, phrenic MN number does not differ from control in NMNΔ mice (Fig. S2c).

      After analyzing additional control mice, we find that phrenic MN numbers are significantly reduced in NMNΔ mice.

      4) The authors conclude that spinal network activity in control and NMNΔ6910-/- mice does not differ (page 10, Fig. 4f). It is difficult to judge this from the example trace in 4f. How is this concluded from the figure and can this be quantified?

      We have now included quantification of this data, using 6-11 bursts/mouse from 3 control and 3 NMNΔ6910-/- mice. We find that both the spinal burst total duration (shown as % of recording time) and the normalized integrated spinal activity over time are not significantly different between control and NMNΔ6910-/- mice.

      5) RphiGT mice: please explain the genetic strategy better in Results section or Methods, do these mice also express the TVA receptor in a Cre-dependent manner? Crossing with the Cdh9:iCre line will then result in expression of TVA and G protein in phrenic motor neurons and presynaptic rVRG neurons in the brainstem, as well as additional Cdh9-expressing neuronal populations. How can the authors be sure that they are looking at monosynaptically connected neurons?

      We have added additional information in the methods to describe the rabies virus genetic strategy. Although the mice do express the TVA receptor, we did not include this in the description as it is not relevant to our strategy. We are using a Rabies∆G virus that is not pseudotyped with EnvA so it does not require TVA to infect cells. The specificity of primary cell (phrenic MN) infection rather comes from diaphragm injections. We only analyze mice in which we can confirm the injection was specific to the diaphragm muscle and did not leak to body wall or hypaxial muscles (about 50% of injections). We have tested different infection times to determine when monosynaptically connected neurons are labeled. We do not see any labeling at the brainstem 5 days post injection and we start to see additional labeling (possible 2nd order neurons) 10 days post injection. Thus we are confident that our analysis at 7 days post injection captures monosynaptically-connected neurons. We have also performed rabies virus tracing in ChAT::Cre mice, where the expression of G-protein is restricted to motor neurons, and we observe a similar distribution of pre-motor neurons in the brainstem, as with Cdh9::iCre, indicating that we are reproducibly labeling 1st order neurons with both genetic strategies.

      6) The authors use a Dbx1-cre strategy to inactivate cadherin signaling in multiple brainstem neuronal populations and perform analysis of burst activity in phrenic nerves. Based on the similarity in phenotype with NMNΔ6910-/- mice it is concluded that cadherin function is required in both phrenic MNs and Dbx1-derived interneurons. However, this manipulation can affect many populations including the preBötC, and the impact of this manipulation on rVRG and phrenic motor neurons (neuron number, cell body position, dendrite orientation, diaphragm innervation etc) is not described, although a model is presented in Fig. 7. These parameters should be analyzed to interpret the functional phenotype.

      We agree with the reviewer that the Dbx1-Cre mediated manipulation can affect multiple respiratory populations (see response to reviewer 1). However, Dbx1-mediated recombination does not target phrenic MNs. We have now added a figure (Figure 6-figure supplement 1), demonstrating this. Thus, we think that it is unlikely to cause any cell-autonomous changes in MN number, diaphragm innervation etc. It is plausible that there might be secondary changes in phrenic MNs as a result of changes in rVRG properties (for example, the dendritic orientation of phrenic MNs could be altered if rVRG synapses are lost), but the primary impact of this manipulation will be on Dbx1-derived neurons.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper describes the results of a MEG study where participants listened to classical MIDI music. The authors then use lagged linear regression (with 5-fold cross-validation) to predict the response of the MEG signal using (1) note onsets (2) several additional acoustic features (3) a measure of note surprise computed from one of several models. The authors find that the surprise regressors predict additional variance above and beyond that already predicted by the other note onset and acoustic features (the "baseline" model), which serves as a replication of a recent study by Di Liberto.

      They compute note surprisal using four models (1) a hand-crafted Bayesian model designed to reflect some of the dominant statistical properties of Western music (Temperley) (2) an ngram model trained on one musical piece (IDyOM stm) (3) an n-gram model trained on a much larger corpus (IDyOM ltm) (4) a transformer DNN trained on a mix of polyphonic and monophonic music (MT). For each model, they train the model using varying amounts of context.

      They find that the transformer model (MT) and long-term n-gram model (IDyOM stm) give the best neural prediction accuracy, both of which give ~3% improvement in predicted correlation values relative to their baseline model. In addition, they find that for all models, the prediction scores are maximal for contexts of ~2-7 notes. These neural results do not appear to reflect the overall accuracy of the models tested since the short-term n-gram model outperforms the long-term n-gram model and the music transformer's accuracy improves substantially with additional context beyond 7 notes. The authors replicate all these findings in a separate EEG experiment from the Di Liberto paper.

      Overall, this is a clean, nicely-conducted study. However, the conclusions do not follow from the results for two main reasons:

      1) Different features of natural stimuli are almost always correlated with each other to some extent, and as a consequence, a feature (e.g., surprise) can predict the neural response even if it doesn't drive that response. The standard approach to dealing with this problem, taken here, is to test if a feature improves the prediction accuracy of a model above and beyond that of a baseline model (using cross-validation to avoid over-fitting). If the feature improves prediction accuracy, then one can conclude that the feature contributes additional, unique variance. However, there are two key problems: (1) the space of possible features to control for is vast, and there will almost always be uncontrolled-for features (2) the relationship between the relevant control features and the neural response could be nonlinear. As a consequence, if some new feature (here surprise) contributes a little bit of additional variance, this could easily reflect additional un-controlled features or some nonlinear relationship that was not captured by the linear model. This problem becomes more acute the smaller the effect size since even a small inaccuracy in the control model could explain the resulting finding. This problem is not specific to this study but is a problem nonetheless.

      We understand the reviewer’s point and agree that it indeed applies not exclusively to the present study, but likely to many studies in this field and beyond. We disagree, however, that it constitutes a problem per se. We maintain that the approach of adding a feature, observing that it increases crossvalidated prediction performance, and concluding that therefore the feature is relevant, is a valid one. Indeed, it is possible and even likely that not all relevant features (or non-linear transformations thereof) will be present in the control/baseline model. If a to-be-tested feature increases predictive performance and therefore explains relevant variance, then that means that part of what drives the neural response is non-trivially related to the to-be-tested feature. The true underlying relationship may not be linear, and later work may uncover more complex relationships that subsume the earlier discovery, but the original conclusion remains justified.

      Importantly, we wish to emphasize that the key conclusions of our study primarily rest upon comparisons between regression models that are by design equally complex, such as surpriseaccording-to-MT versus surprise-according-to-IDyOM and comparisons across different context lengths. We maintain that the comparison with the Baseline model is also important, but even taking the reviewer’s worry here into account, the comparison between different equally-complex regression models should not suffer from it to the same extent as a model-versus-baseline comparison.

      2) The authors make a distinction between "Gestalt-like principles" and "statistical learning" but they never define was is meant by this distinction. The Temperley model encodes a variety of important statistics of Western music, including statistics such as keys that are unlikely to reflect generic Gestalt principles. The Temperley model builds in some additional structure such as the notion of a key, which the n-gram and transformer models must learn from scratch. In general, the models being compared differ in so many ways that it is hard to conclude much about what is driving the observed differences in prediction accuracy, particularly given the small effect sizes. The context manipulation is more controlled, and the fact that neural prediction accuracy dissociates from the model performance is potentially interesting. However, I am not confident that the authors have a good neural index of surprise for the reasons described above, and this limits the conclusions that can be drawn from this manipulation.

      First of all, we would like to apologize for any unclarity regarding the distinction between Gestalt-like and statistical models. We take Gestalt-like models to be those that explain music perception as following a restricted set of rules, such as that adjacent notes tend to be close in pitch. In contrast, as the reviewer correctly points out, statistical learning models have no such a priori principles and must learn similar or other principles from scratch. Importantly, the distinction between these two classes of models is not one we make for the first time in the context of music perception. Gestalt-like models have a long tradition in musicology and the study of music cognition dating back to (Meyer, 1957). The Implication-Realization model developed by Eugene Narmour (Narmour, 1990, 1992; Schellenberg, 1997) is another example for a rule-based theory of music listening, which has influenced the model by David Temperley, which we applied as the most recently influential Gestalt-model of melodic expectations in the present study. Concurrently to the development of Gestalt-like models, a second strand of research framed music listening in light of information theory and statistical learning (Bharucha, 1987; Cohen, 1962; Conklin & Witten, 1995; Pearce & Wiggins, 2012). Previous work has made the same distinction and compared models of music along the same axis (Krumhansl, 2015; Morgan et al., 2019a; Temperley, 2014). We have updated the manuscript to elaborate on this distinction and highlight that it is not uncommon.

      Second, we emphasize that we compare the models directly in terms of their predictive performance both of upcoming musical notes and of neural responses. This predictive performance is not dependent on the internal details of any particular model; e.g. in principle it would be possible to include a “human expert” model where we ask professional composers to predict upcoming notes given a previous context. Because of this independence of the relevant comparison metric on model details, we believe comparing the models is justified. Again, this is in line with previously published work in music (Morgan et al., 2019a), language, (Heilbron et al., 2022; Schmitt et al., 2021; Wilcox et al., 2020), and other domains (Planton et al., 2021). Such work compares different models in how well they align with human statistical expectations by assessing how well different models explain predictability/surprise effects in behavioral and/or brain responses.

      Third, regarding the doubts on the neural index of surprise used: we respond to this concern below, after reviewer 1’s first point to which the present comment refers (the referred-to comment was not included in the “essential revisions” here).

      Reviewer #2 (Public Review):

      This manuscript focuses on the basis of musical expectations/predictions, both in terms of the basis of the rules by which these are generated, and the neural signatures of surprise elicited by violation of these predictions.

      Expectation generation models directly compared were gestalt-like, n-gram, and a recentlydeveloped Music Transformer model. Both shorter and longer temporal windows of sampling were also compared, with striking differences in performance between models.

      Surprise (defined as per convention as negative log prior probability of the current note) responses were assessed in the form of evoked response time series, recorded separately with both MEG and EEG (the latter in a previously recorded freely available dataset). M/EEG data correlated best with surprise derived from musical models that emphasised long-term learned experiences over short-term statistical regularities for rule learning. Conversely, the best performance was obtained when models were applied to only the most recent few notes, rather than longer stimulus histories.

      Uncertainty was also computed as an independent variable, defined as entropy, and equivalent to the expected surprise of the upcoming note (sum of the probability of each value times surprise associated with that note value). Uncertainty did not improve predictive performance on M/EEG data, so was judged not to have distinct neural correlates in this study.

      The paradigm used was listening to naturalistic musical melodies.

      A time-resolved multiple regression analysis was used, incorporating a number of binary and continuous variables to capture note onsets, contextual factors, and outlier events, in addition to the statistical regressors of interest derived from the compared models.

      Regression data were subjected to non-parametric spatiotemporal cluster analysis, with weights from significant clusters projected into scalp space as planar gradiometers and into source space as two equivalent current dipoles per cluster

      General comments:

      The research questions are sound, with a clear precedent of similar positive findings, but numerous unanswered questions and unexplored avenues

      I think there are at least two good reasons to study this kind of statistical response with music: firstly that it is relevant to the music itself; secondly, because the statistical rules of music are at least partially separable from lower-level processes such as neural adaptation.

      Whilst some of the underlying theory and implementation of the musical theory are beyond my expertise, the choice, implementation, fitting, and comparison of statistical models of music seem robust and meticulous.

      The MEG and EEG data processing is also in line with accepted best practice and meticulously performed.

      The manuscript is very well-written and free from grammatical or other minor errors.

      The discussion strikes a brilliant balance of clearly laying out the interim conclusions and advances, whilst being open about caveats and limitations.

      Overall, the manuscript presents a range of highly interesting findings which will appeal to a broad audience, based on rigorous experimental work, meticulous analysis, and fair and clear reporting.

      We thank the reviewer for their detailed and positive evaluation of our manuscript.

      Reviewer #3 (Public Review):

      The authors compare the ability of several models of musical predictions in their accuracy and in their ability to explain neural data from MEG and EEG experiments. The results allow both methodological advancements by introducing models that represent advancements over the current state of the art and theoretical advancements to infer the effects of long and shortterm exposure on prediction. The results are clear and the interpretation is for the most part well reasoned.

      At the same time, there are important aspects to consider. First, the authors may overstate the advancement of the Music Transformer with the present stimuli, as its increase in performance requires a considerably longer context than the other models. Secondly, the Baseline model, to which the other models are compared, does not contain any pitch information on which these models operate. As such, it's unclear if the advancements of these models come from being based on new information or the operations it performs on this information as claimed. Lastly, the source analysis yields some surprising results that don't fit with previous literature. For example, the authors show that onsets to notes are encoded in Broca's area, whereas it should be expected more likely in the primary auditory cortex. While this issue is not discussed by the authors, it may put the rest of the source analysis into question.

      While these issues are serious ones, the work still makes important advancements for the field and I commend the authors on a remarkably clear and straightforward text advancing the modeling of predictions in continuous sequences.

      We thank the reviewer for their compliments.

    1. Author Response

      Public Evaluation Summary:

      This work would be of interest to global health scientists, particularly in low- and middleincome countries where childhood stunting is an ongoing challenge, and to statisticians interested in building clinical prediction rules. The authors leveraged large, rich datasets from multi-center studies to build and validate predictive models. But by using change in growth, rather than absolute growth, as the only outcome, it may be missing children of concern who are already experiencing growth failure and require intervention but have reached a growth faltering floor.

      Thank you for this suggestion. We have added additional models for the following predictions: a) growth faltering in those NOT stunted (HAZ≥-2) at presentation, b) any stunting (HAZ<-2) at follow-up, and c) any stunting at follow-up in those not stunted at presentation. While we agree the addition of these models improves the manuscript, we also want to highlight that these models have distinct outcomes and therefore have separate clinical uses. Our original goal was to identify children whose growth was likely to slow down after diarrhea. As we show, top predictors and predictive performance is similar for growth faltering across baseline stunting status. We present any stunting at follow-up as a comparison, but argue that this is a different clinical outcome that may warrant different intervention. We have edited the manuscript for clarity as follows.

      P.22 L339-343: . In sensitivity analyses, we demonstrated our ability to predict any stunting at follow-up with high accuracy (Table 1, Table S5). However, this represents a related but distinct outcome from our original aim, namely a slowing down of growth as opposed to stunting, and may warrant different clinical intervention.

      P.23 L.353-357: Current malnutrition recommendations are based on patient presentation – whether a child is underweight when they present to the clinic. Our CPR could be used to identify children not currently stunted and therefore not currently recommended for nutritional interventions, but who are likely to slow down in growth and therefore at higher risk of incident stunting.

      P.23 L352-361: Our CPR provides a tool for identifying patients likely to experience additional growth faltering after acute diarrhea. Current malnutrition recommendations are based on patient presentation – is a child underweight when they come to the clinic. Our CPR could be used to identify children not currently stunted and therefore not currently recommended for nutritional interventions, but who are likely to slow down in growth and therefore at higher risk of incident stunting. Identifying these children would allow clinicians to connect patients with community-based nutrition interventions (e.g. maternal support for safe introduction of weening foods, small quantity lipid nutrient supplements (SQ-LNS), etc.(45-48)) to prevent additional effects of chronic malnutrition, namely irreversible stunting.

      P.25 L.390-393: Our findings indicate that use of prediction rules, potentially applied as clinical decision support tools, could help to identify additional children at risk of poor outcomes after an episode of diarrheal illness, i.e. not currently stunted but likely to decelerate growth.

      Reviewer #1 (Public Review):

      In this manuscript, the authors built logistic regression prediction models for linear growth faltering using demographic, socioeconomic, and clinical variables, with the objective of developing a clinical prediction rule that could be applied by healthcare workers to identify and treat high-risk children. A model with 2 variables selected by random forest variable importance performed similarly to a model with 10 variables. Age and HAZ at baseline were selected for the 2-variable model, consistent with existing literature. The authors externally validated the 2variable model and found similar discriminative ability. Based on typical rule-of-thumb cutoffs, model performance was moderate (AUCs of ~0.65-0.75, depending on model specification); models may still be useful in practice, but this should be further discussed by the authors.

      We agree that our overall ability to predict growth faltering was moderate. As we present in-depth below, we do not intend for our clinical prediction rule (CPR) to replace existing guidelines. Therefore, we are not proposing that our CPR be used to withhold nutritional treatment. Rather, we intend for our CPR to be used in conjunction with existing clinical practices to identify additional children who may or may not be currently stunted, but at are increased risk of decelerated growth and therefore would also benefit from nutritional interventions.

      Strengths:

      Linear growth faltering is a pressing issue with broad, negative impacts on the health, development, and well-being of children worldwide. In this work, the authors applied clearly explained, thoughtful approaches to variable selection, model specification, and model validation, with large, multi-country cohorts used for training and external validation. Appropriate datasets for external validation can be challenging to find, but the MAL-ED data used here is well-suited to the task, with similar predictor and outcome measurements to the GEMS training data. The well-characterized studies allowed the authors to explore a wide range of potential predictors for stunting, including socioeconomic factors, antibiotic use, and diarrheal etiology.

      Weaknesses:

      This work would benefit from additional discussion around the clinical relevance of the results. For example, what is the current standard of care for prevention of stunting, and how much would this model improve the status quo? Is specificity of 0.47 in the context of sensitivity of 0.80 an acceptable tradeoff with regards to the interventions that would be used? More discussion around these points is necessary to support the authors' conclusions that these models could potentially be used to support clinical decisions and target resources.

      Current practice focuses on the identification and treatment of malnutrition, with malnutrition classified based on mid-upper arm circumference (MUAC), weight for length or height z-score, or bipedal oedema. None of these measurements compare child size to their age. At the International Centre for Diarrhoeal Research, Bangladesh (ICDDRB), children are only evaluated for stunting if their weight for age z-score is too low. While stunting can be the result of chronic malnutrition, it can also be a contributing factor to future health problems (see first paragraph of Introduction). Therefore, while related to malnutrition, stunting is a distinct health outcome that would benefit from explicit identification strategies. Furthermore, current practice only identifies children who are already stunted when they present to care. A CPR to identify children whose growth is likely to slow down and therefore who are at risk of new or additional stunting could help prevent additional stunting and its downstream health outcome. The Discussion now includes the following:

      P.23 L.353-361: Current malnutrition recommendations are based on patient presentation – whether a child is underweight when they present to the clinic. Our CPR could be used to identify children not currently stunted and therefore not currently recommended for nutritional interventions, but who are likely to slow down in growth and therefore at higher risk of incident stunting. Identifying these children would allow clinicians to connect patients with communitybased nutrition interventions (e.g. maternal support for safe introduction of weening foods, small quantity lipid nutrient supplements (SQ-LNS), etc.(46-49)) to prevent additional effects of chronic malnutrition, namely irreversible stunting.

      In addition to the external validation, further investigation of model performance in key subpopulations would strengthen the importance and applicability of the work. For example, performance of prediction models may vary widely by setting; it would be valuable to show that the model has similar performance in each country. Another key sensitivity analysis would be to show consistent model performance by HAZ at baseline. The authors note that stunting may be challenging to reverse (p.20), and many of the children are already below the typical cutoff of HAZ<-2 at baseline; it would be valuable to show model performance among the subgroup of children for whom treatment would be most beneficial.

      We appreciate this suggestion. We have added additional analysis regarding stunting at baseline as described above. We have added country-specific CPRs in the Supplement. We have also added a sensitivity analysis whereby we fit models to all data from one continent in GEMS, and then validated that model on the other continent in GEMS data. As you can see from Supplementary Table S5, top predictors and discriminative performance were similar across countries and continents

      P.10 L.171-173: Finally, we conducted a quasi-external validation within the GEMS data by fitting a model to one continent and validating it on the other.

      P.24 L.380-383: The quasi-external validation between continents within GEMS data, as well as the country-specific models within GEMS, all had similar top predictors and discriminative performance, further supporting the overall validity of our CPR. Finally, we explored a range of AFe cutoffs for etiology, with consistent results.

      Reviewer #2 (Public Review):

      The manuscript documents a thorough and well-validated clinical prediction model for risk of severe child linear growth faltering after diarrheal disease episodes, using data from multiple studies and countries. They identified a parsimonious model of child age and current size with relatively good predictive accuracy. However, I don't believe the prediction rule should be used in it's current form due to the outcome used the danger of missing treating children who require nutritional supplementation.

      As described in-depth above, we do not intend for this CPR to replace existing guidelines, but rather to function as a complementary tool to identify additional children not currently stunted but who are at risk of their growth slowing down.

      The outcome used for prediction in a binary indicatory for a decrease in height-for-age Z-score >= 0.5. A child who fails to gain height by future measurements is of concern, but this outcome also misses children who are already experiencing growth failure, and is vulnerable to regression to the mean effect. The two most important predictors were age and current size, with current size having a positive association with risk of growth faltering. As mentioned in the discussion, there is "the possibility that children need to have high enough HAZ in order to have the potential to falter." Additionally, there may be children with erroneously high height measurements at the first measurement, so that the HAZ change >= 0.5 associated with high baseline HAZ is from measurement-error regression to the mean. I recommend also predicting absolute HAZ (or stunting status) as a secondary outcome and comparing if the important predictors change.

      See above.

      In its current form, the results and conclusions from the results have problematic implications for the treatment of child malnutrition. The conclusion states: "In settings with high mortality and morbidity in early childhood, such tools could represent a cost-effective way to target resources towards those who need it most." If the current CPR was used in a resourceconstrained setting, it would recommend that larger children should be prioritized for nutritional supplementation over already stunted children who may have reached their growth faltering floor. In addition, with a sensitivity of 80%, the tool would miss treating a large number of children who would experience growth faltering. The results of the clinical prediction tool need to be presented with care in how it could be used to prioritize treatment without missing treating children who would benefit from nutritional supplementation. Including absolute HAZ as an outcome will help, along with additional discussion of how the CPR fits alongside current treatment recommendations. For example, does this rule indicate treating children who aren't currently treated, or are there children who don't need treatment given current guidelines and the created CPR.

      We thank the Reviewers for pointing out this oversight. We have edited the Discussion for clarity as follows.

      P.23 L.352-361: Our CPR provides a tool for identifying patients likely to experience additional growth faltering after acute diarrhea. Current malnutrition recommendations are based on patient presentation – is a child underweight when they come to the clinic. Our CPR could be used to identify children not currently stunted and therefore not currently recommended for nutritional interventions, but who are likely to slow down in growth and therefore at higher risk of incident stunting. Identifying these children would allow clinicians to connect patients with community-based nutrition interventions (e.g. maternal support for safe introduction of weening foods, small quantity lipid nutrient supplements (SQ-LNS), etc.(45-48)) to prevent additional effects of chronic malnutrition, namely irreversible stunting.

      P.25 L.390-393: Our findings indicate that use of prediction rules, potentially applied as clinical decision support tools, could help to identify additional children at risk of poor outcomes after an episode of diarrheal illness, i.e. not currently stunted but likely to decelerate growth.

      In sum, this is a thorough, well done, clearly explained exercise in creating a clinical prediction tool for predicting child risk of future growth faltering. The writing and motivation is clear, and the methods have applicability far beyond the specific use-case.

    1. Author Response

      Public Review:

      1) Despite I do not find negative arguments for any special section of the study, I have a question regarding Triprismatoolithu stephensis:

      As mentioned in the text, Triprismatoolithus is analysed by the authors, and several pictures are provided in Fig.S12 alongside a brief description in de Supplementary Text 4. But it seems that it is not included in any of the phylogenetic analyses or figures. Why?

      If the specimen has no implication for any of the main analyses, there is no need to be considered as "studied material".

      We added more explanation for the purpose of Triprismatoolithus (Lines 803–806). We presented Triprismatoolithus to show the prismatic shell units of maniraptoran eggshell other than a famous case of Prismatoolithus levis. Thus, Triprismatoolithus was also presented in the Figure S1C along with other eggshells with prismatic shell unit microstructure. Without this ootaxon, there are just three comparative pieces of material in Figure S1, and so we prefer maintaining this ootaxon. Admittedly, this eggshell was not used in our analysis in Figures 13–16 because the specific egg-laying taxon is unknown so its taxon-ootaxon relationship is not as solid as the cases of Elongatoolithus, Macroelongatoolithus, and Prismatoolithus levis. But please note that the role of this ootaxon in Figure S1 is not trivial because it supports the view that even prismatic shell units have rugged grain boundaries in the squamatic zone.

    1. Author Response

      Reviewer #1 (Public Review)

      Overall the claims in the manuscript are clearly communicated and justified by the data. However, one of the features on NeuronBridge that was mentioned in the manuscript did not work intuitively and could use more description in the manuscript. This was the feature to upload a confocal stack to search for other Gal4 lines or the appropriate neurons in the EM hemibrain. When a known Gal4 was in the database, it was easy and intuitive to go from a driver line to an EM neuron or, alternatively if an EM neuron was known it was easy to go from that neuron to find a driver line. It was, however, difficult to upload a stack and find the neuron names or a driver line. The example on Neuronbridge was somewhat helpful but an accompanying brief 'How-to' for this process in the manuscript would be very welcome. If it's a possibility, I recommend adding this in as a 'box' or Figure in the revised paper. Further, the authors may want to provide a troubleshooting guide on the website for uploading a confocal stack onto Neuronbridge.

      We are revising the text on the website for clarity and adding additional troubleshooting information. This, along with other updates to the website, will be available in the next release of NeuronBridge towards the end of 2022.

      Reviewer #2 (Public Review):

      1) Figure 4 and its two supplements show the distribution of correct hits in the top 100 for a forward search, as well as illustrating the complementary nature of the 2 methods, with some correct hits found by one of the methods but not the other. Figure 5 shows the results for a reverse search. It seems that this does not correlate to neuron morphology. The manuscript does not mention however if any attempts were made to improve the scoring so that correct hits would be more highly ranked. It would be helpful to clarify this.

      Development of CDM and PPPM search algorithms and associated pre- and post-processing optimizations has proceeded in parallel with the MCFO data release and NeuronBridge application described in the paper. Mais et al., 2021 describes in detail their work to optimize PPPM. CDM improvements since Otsuna et al., 2018 will be described in Otsuna et al., 2023, which isn't ready yet. While we view the search approach evaluations as showing that neuron matches can be found with CDM and PPPM, the evaluation can't be comprehensive across all neurons, datasets, and algorithm variations.

      2) Related to the point above, the examples used for the forward search are all visual projection neurons. In order to illustrate the usefulness and comprehensiveness of the searches, it would be helpful if some examples of central brain neurons, not truncated in Hemibrain, were also used.

      We acknowledge the limited set of neurons examined in the evaluation of CDM and PPPM search, and tried to weight the claims accordingly in lines 305 and 309 of the submission. We agree more examples would be useful, but providing them hasn't proven feasible during the revision period. While the example neurons are truncated, it does not appear likely that searches with completely reconstructed neurons would generally produce worse results.

    1. Author Response

      Reviewer #1 (Public Review):

      The current study uses microbiology, biochemistry, microscopy, and viral vectors to establish a role for prefrontal cortex expression of the immediate early gene NPAS4 in sucrose preference and dendritic spine morphology in the mouse social defeat stress model. The experimental designs are appropriate and the hypotheses addressed are interesting. The paper is generally very well-written and the figures are clear. Most of the statistical analyses are appropriate, and they are reported in clear and useful tables. Thus, the general potential for the studies is quite high. The authors conclusively show that NPAS4 is induced in mPFC in response to social defeat stress and that NPAS4 is important for stress-induced changes in mPFC dendritic spine number. However, some of the key data regarding reward motivation are difficult to properly interpret and do not convincingly demonstrate a behavioral result of NPAS4 knockdown in mPFC. Moreover, the spine morphology and sequencing analyses lack depth. Most importantly, although the authors explore the effects of reducing NPAS4 expression in mPFC, they do not explore the effects of increasing NPAS4 expression or function, and thus the studies seem incomplete and cannot be fully interpreted.

      We appreciate the reviewer's overall positive feedback on our study and the constructive comments to improve the manuscript. In the revised document, we have addressed the key concerns about NPAS4’s function on motivated behavior by providing the new data by which NPAS4 limits natural reward motivation in the CSDS-susceptible group (Figure 3C-D). We encountered the major challenge that animals that sustained injuries during CSDS had to be removed from the study resulting in relatively few susceptible mice. Other factors likely contributed to the low proportion of susceptible mice, including the biological sex of the investigator (Georgiou et al., Nature Neuroscience, 2022). For the gene expression analysis, we provided comparative analysis of our RNA-seq data with published NPAS4 ChIP-seq data to demonstrate genome-wide NPAS4 association, suggesting potential direct NPAS4 target genes. Furthermore, to extend the structural synapse data, we now provide new electrophysiology data (Figure 4C-H). These new data demonstrate that NPAS4 is required for the CSDS-induced reduction of mEPSC frequency. Using new single-nuclei RNA-seq data from adult mPFC tissues, we observe that NPAS4 is expressed predominantly (~93%) in excitatory neuron clusters, but is also expressed in multiple interneuron populations (~7%). Since our NPAS4 knockdown strategy is not cell type-specific, we have revised the discussion to reflect the possibility that some of the NPAS4-dependent CSDS effects on structural and functional glutamatergic synapses and anhedonia-like behaviors could be due, at least in part, to NPAS4 function in one or more classes of GABAergic interneurons. We have discussed these limitations of interpretation, and the need for future cell type-specific approaches, in the revised manuscript.

      Reviewer #2 (Public Review):

      The authors investigate whether neuronal activity-regulated transcription factor 4 (NPAS4) in the medial prefrontal cortex (mPFC) is involved in stress-induced effects on neuronal spine synapse density (as a proxy for synaptic activity) and reward behaviors. A major strength of the manuscript is that NPAS4 is shown to be necessary for stress-induced reward deficits and pyramidal neuron spine density. In addition, whole transcriptome analysis of NPAS4 target genes identify a number of genes previously found to be regulated in the postmortem brain of humans with MDD, providing translational relevance to these studies. A weakness is that studies were only performed in male mice so its unclear how generalizable these effects are to females. Despite this, the work will likely impact the field of neuropsychiatry by providing novel information about the molecular and cellular mechanisms in mPFC responsible for stressinduced effects on spines synapses and reward behaviors.

      We would like to thank the reviewer for the positive comments, including comparison of our NPAS4-dependent PFC genes with published data from postmortem brains of human’s diagnosed with MDD. We agree with the reviewer that assessing the role of NPAS4 in CSDS or similar chronic stress paradigm in females will be an important future direction for our work, and we acknowledge this limitation of our study in the revised manuscript.

      Reviewer #3 (Public Review):

      Hughes et al. report a role for the transcription factor NPAS4 in mediating chronic stressinduced reward-related behavioral changes, but not other depression-like behaviors. The authors find that NPAS4 is transiently upregulated in Camk2a+ PFC neurons following a single bout or repeated social defeat stress, and that knocking down PFC Npas4 prevents anhedonia. Presentation of linked individual data for social interaction/avoidance measures with/without interaction partners (Fig2C, E) is commended - all CSDS papers should show data this way. Npas4 also appears to mediate the known effect of stress on spines in PFC, providing novel mechanistic insight into this phenomenon. Npas4 knockdown altered baseline transcription in PFC, which overlapped with other stress and MDD-associated transcriptional changes and modules. However, stress-induced changes in transcription with knockdown remain unknown. A major drawback is that only male mice were used, although this is discussed to some extent. Results are presented with appropriate context and references to the literature. Conclusions are appropriate.

      Additional context: Given NPAS4's role as an immediate early gene, it will be important for future work to elucidate whether IEG knockdown generally dampens transcriptional response to stress/other salient experiences. Nevertheless, the authors do show several pieces of evidence that Npas4 knockdown does not simply make mice less sensitive to stress and/or produce deficits in threat/fear-related learning and memory which is an important piece of this puzzle.

      We appreciate the thoughtful and generous comments from the reviewer regarding our display method for social interaction/avoidance data. We agree that a major limitation of our study is the lack of females. Unfortunately, we’ve had limited success with reported adaptations for the use of females in CSDS, and follow-up studies will be critical to assess NPAS4’s mPFC role in chronic stress-induced anhedonia-like behavior. We address this limitation of our current study in the discussion section.

      We agree that IEG manipulation might produce profound changes in the stress-dependent transcriptome of the mPFC. Toward this goal, we investigated the gene expression of several candidate NPAS4 target genes at 1-hour after acute social defeat stress, a timepoint of nearpeak protein expression of NPAS4 (Supplemental Figure 4). Although we observed a main effect of Npas4 knockdown, we did not observe an impact of NPAS4 on stress-induced gene expression (Supplemental Figure 4). NPAS4 is a very rapidly and transiently expressed by stress and neural activity, so to determine the impacts of NPAS4 on stress-induced changes in transcription, multiple time points of research will need to be examined. Future studies performing single-cell transcriptomics at various time points following acute or chronic social defeat stress, sucrose SA, and social interaction will be important to address these questions.

    1. Author Response

      eLife Assessment:

      This manuscript follows the still unanswered concept of 'original antigenic sin' and shows the existence of a 24-year periodicity of the immune response against influenza H3N2. The valuable work suggests a long-term periodicity of individual antibody response to influenza A (H3N2) within a city. But, to substantiate their argument, the authors would need to provide additional supporting data.

      Thank you for your comments. We have performed additional analyses and included those results in the revision to support our findings.

      Specifically, we included a sensitivity analyses that predicting phases by fitting models with 35- and 6-years periodicity, which were found to provide poorer predictions than the 24-year periodicity used in our main results (Figure 4 – figure supplementary 1).

      We also generated a antigenic map with the locations of our tested strains shown in the map. We also compared the paired antigenic distance of A(H3N2) strains (including our tested strains). These results (Figure 1 – figure supplementary 3) suggested that the tested strains that we used spanned the circulation of A(H3N2) since its emergence and well covered the antigenic space of the virus.

      Reviewer #1 (Public Review):

      The authors suggest that there is a long-term periodicity of individual antibody response to influenza A (H3N2). The interesting periodicity may be surely appeared. Though the authors assume that the periodicity is driven by pre-existing antibody responses, the authors could provide more supportive data and discuss some possibilities.

      Thank you for your comments and please find our point-to-point responses below.

      1) The authors can investigate whether the periodicity reflects an epidemic/invasion record of A(H2N3) within Guangzhou or the surrounding city, e.g., the numbers of flu-infected people yearly can be referred to.

      Thank you for your comments. We aimed to investigate the periodicity in individual level antibody responses, so we made several efforts to minimize the impacts of population level A(H3N2) activity in our analyses. In particular, we have removed the average activity at population level (i.e., strain-specific intercepts), to minimize the impact of higher circulation of a certain stain on the periodicity.

      In our simulations, we tested models that only incorporated population level activity but not including cross-reactions (Figure 3B, I), which did not recover the observed periodicity. In the models that including both population level activity and cross-reactions, we found that less predictable population level activities (i.e., less regular annual epidemics) would increase the variations in individual-level long-term periodicity (Figure 3G-H). We also found that measured periodicities did not vary substantially when comparing those measured at baseline compared to those measured at follow up (~3-4 years later). These results suggested that the local epidemics may only have limited impacts on the observed periodicity in individual’s antibody responses, while the cross-reactions between previous exposed and currently circulating strains may be the main drivers.

      To address this comment, we added a paragraph in discussion (lines 336-342):

      “In this study, we did not explore the interactions between individual level antibody responses with population level A(H3N2) activity (e.g., epidemic sizes). We minimized the impacts from population level by performing the Fourier analysis with individual departures from population average and validating the results with data from the Vietnam cohort. Simulation results further suggested that the population level virus activity alone was not able to recover the observed periodicity, though epidemics with less regularity seemed to increase the variability in individual-level periodicity in the presence of broad cross-reactions (Figure 3G-H).”

      2) The authors can consider whether the participants are recently/previously vaccinated and/or infected with flu. The remaining antibodies may reflect a long memory but may show a recent activation.

      Thank you for your comments. We agree with the reviewer that the observed seroconversion of the circulating strains may reflect responses recent re-exposures. Given the low influenza vaccine coverage in our cohort (1.3%, 10 out of 777) and in China in general (<5% [3, 4]), we believe that our observed periodicity and seroconversion patterns were unlikely to be caused by to recent influenza vaccinations.

      We think that the pervasive exposure to A(H3N2) could be a driver to the observed seroconversions to circulating strains between our baseline and follow-up were likely due to the pervasive exposures (or reinfections for those who developed into infections). Using the same data set, we previously reported 98% and 74% of participants experienced 2- and 4-fold rise to any of the 21 tested A(H3N2) strains [5].

      As the reviewer and previous studies suggested, the antibody responses could reflect long term memories that were activated after recent exposures [1, 6]. We generated our hypothesis based on this features, and to characterize the periodicity that may arose from the interactions between long term memories and newly generated antibodies.

      We incorporate the re-infection mechanism in our simulations, with and without subsequent cross-reactions with previously exposed distant strains (Figure 3I). Results indicate that reinfection alone cannot recover the observed long-term periodicity (Figure 3A), while reinfection plus the resulting cross-reactions can recover such long-term periodicity (Figure 3D). Therefore, we believe that the repeated exposures or re-infections would not affect our reported periodicity, while they may be drivers of continuous formulation of the life-course antibody profiles and the observed periodicity. Of particular note is the consistency of measured periodic behaviour at baseline and follow up (~3-4 years later).

      To address this comment, we reported the vaccination status of our participants when introducing the data (lines 127-129) and in the discussions (lines 280-282 and 313-315):

      “Only 0.6% (n = 5) of participants self-reported influenza vaccinations between the two visits, therefore, the observed changes in HI titers between the two visits were likely due to natural exposures.”

      “Due to the low influenza coverage in our participants and in China in general, the observed seroconversions likely reflected antibody responses after natural exposures during the study period.”

      “Particularly, our simulation results suggested that model including repeated exposures or population level A(H3N2) activity alone did not recover the long-term periodicity (Figure 3).”

      3) The strains inducing high HI titers may have similar mutations and may be reactive to the same antibodies. What are the mutation frequencies among 21 A(H3N2) strains?

      Thank you for your comments. We selected the 21 tested strains to cover the span of the circulation of A(H3N2) strains since 1968 and antigenic diversity. We prioritized with the strains that were included in the vaccine formulation and tested to create the antigenic map by Fonville et al. [1].

      We reproduced the antigenic map (up to strains isolated in 2010) by Fonville et al. [1] and compared the antigenic locations of our tested A(H3N2) strains (Figure 1—figure supplement 3). The 21 strains (or their belonging antigenic clusters if the strains were not used for the map) largely tracked the antigenic evolution of A(H3N2) since its emergence in 1968, with a reportedly mutation rate of 0.778-unit changes in antigenic space per year [1, 2].

      We further calculated the paired antigenic distance of strains tested in the antigenic map, which was highly correlated with the time intervals between the isolation of the two strains. The figure also suggested our tested strains cover the time spans and antigenic distances that were shown in the original antigenic map. In addition, our observed periodicity was identified in individual time series of residuals, which has removed the shared virus responses or assay measurements (Figure 1). Therefore, we believe that the impact of specific mutations may have limited impacts on our findings.

      To address this comment, we included the reproduced antigenic map showing the locations of the tested strains and their pair-wise antigenic distance in Figure 1—figure supplement 3 and referenced in the main text (line 127).

      Reviewer #2 (Public Review):

      This is a well-thought-out, clearly exposed article. It builds upon the platform of 'original antigenic sin' (OAS), a notion first developed from studying individuals infected with influenza. According to OAS, the initial infection will set the dominant immune response targets (antigens) that immune cells will recognize, such that infection with a related strain will cause a strong response focused mainly against the initially infecting strain, that then goes on to protect against the new-infecting strain. This study builds off this idea, showing that as strains become increasingly antigenically distant as inferred by the time between strain appearance, the cross-protection can drop to a point where it needs to be invigorated with a potentially new response. The potential biological mechanisms behind this aren't discussed, but a model is built that conveys the potential for 'relative risk' of an individual over the course of the life, based essentially on when one was born.

      Thank you for your comments. We expanded our introduction hoping to include more biological mechanisms, especially those related with original antigenic sin.

      “Antibodies mounted against a specific influenza virus decay (in either absolute magnitude or antigenic relevance) after exposure until re-exposure or infection to an antigenically similar virus occurs, whereupon back-boosting of antibodies acquired from previous infections (e.g., activation of memory B cells) can occur, as well as updating antigen specific antibodies to the newly encountered infection (e.g., activation of naïve B cells.” (lines 80-84)

      “Original antigenic sin (OAS) is a widely accepted concept describing the hierarchical and persistent memory of antibodies from the primary exposure to a pathogen in childhood. Recent studies suggested that non-neutralizing antibodies acquired from previous exposures can be boosted and may blunt the immune responses to new influenza infections.” (lines 92-97)

      The basic premise was to measure from serum influenza haemagglutinin-inhibition (HI) titers of 21 strains of influenza A (H3N2) - related strains causing disease at various times over a period of some 40 years- from a diverse set of ≈800 participants of various ages, at two time points, spaced 2 yr apart. The authors then calculated the HI titer for the 21 strains for each individual. From this, each participant's age, their age at the time of a strain's development, and when a strain emerged were used to assess whether there was periodicity to immune responses by performing a splined Fourier transform for each individual and then examining the composite pattern across time for HI titers. The authors propose that on average there is a 24-year periodicity to immune responses to influenza strains, such that after the initial infection, cross-reactivity reduces to the point where it may be less meaningful for protection over around 24-year, and suggests activation of a 'new' immune response might be required to control the more distant strain involved in the response at that time. The periodicity was longer than would be predicted if age were not a factor involved in the HI titer patterns across time. Further, variability in the periodicity was shown to involve broad cross-reactivity between strains and narrow cross-reactivity in more highly-related (closer in time) strains, individual HI titer, and periodic population fluctuations. In the literature, viral strains are estimated to mutate to the point of losing 50% cross-reactivity with a T1/2 of approximately 2.5 yr, which would make the inferred lifespan plausible but perhaps surprisingly long, implying there are immune feedback parameters that influence periodicity. The authors also use an independent cohort of approximately 150 individuals from a separate, published, study to validate some findings revealed in the primary data set.

      Thank you for your comments and sorry for the confusion. We agree with the reviewer that the onward protection from the cross-protection should be shorter than 24-year periodicity that was identified in the retrospective antibody responses. We hope to clarify that we identified long-term periodicity by retrospectively investigating the individual antibody profiles, which were results of multiple previous exposures and immunity and cross-reactions that arose from these previous exposures. Therefore, the long-term periodicity is a retrospective characterization, and should not be directly interpretated as the duration of onward protection.

      As shown in Figure 4A, the 24-year periodicity consists of phases when individuals’ titers are higher (phase I & II) and lower (phase III & IV) than the population average. As such, the duration of onward protection may be shorter than the entire periodicity. Assuming the protection decreasing with lower titer levels, the onward protection is expected to decrease in phase II and take 1-6 years to drop from the furthest to population average. This is consistent with findings that homotypic cross-protection against PCR-confirmed infections up to about five seasons (lines 291-293), but whether such protection is driven by the declining of cross-reactions still need further investigations.

      To address this comment, we rephrased our discussion and make the interpretation less confusing. (lines 285-287):

      “Of note, the long-term periodicity is a retrospective characterization of individual antibody profiles that arose from multiple exposures and cross-protection, which should not be directly interpreted as the duration of onward protection conferred by the existing antibodies.”

      Strengths: Overall, the study is well executed and the patterns that are visually apparent in Figure 1A (the 'raw' data) are built on to inform a model of the potential breadth of cross-reactivity in a given individual at any given time after birth, integrated with the influenza strains to which they are most likely to have been first exposed. It is a complex thing to make sense of data involving many individuals who could be infected or vaccinated at any and variable points in time over the course of their life, but the authors derive a model that probabilistically accounts for possible infection events, so controls for this nicely, or at least to a degree that is practicable.

      Thank you for your supportive comments. We hope to clarify that we identified the long-term periodicity using the residuals of individual HI titers after extracting the population activity that is visually noticeable in Figure 1A. By doing this, we hope to minimize the impacts of population level A(H3N2) activity and laboratory measurements on individual antibody responses (Figure 1C; detailed methods in lines 396-412).

      Questions related to the main limitation: The level of math in this paper makes it hard for a basic biologist to critique the approach, but the argued points are intriguing. Foremost, in the final part of the paper the authors move from building a model to testing its potential to predict HI titers in the final quarter strains of the study period, placing individuals into one of four phases: I) early increasing to high titer response, II) waning response phase where they are returning back to the average population-level response against a strain, III) sub-par response against a strain and then reinitiation of HI titers in phase IV. Pleasingly this shows a good correlation between individuals' ages and their predicted phase. However, while the fit predicts phase well in Fig 4C and 4D, it looks to perform less adequately in Fig 4B.

      1) Why is this?

      Thank you for your comments and sorry for the confusion. In Figure 4B, we aimed to characterize and predict the position instead of the amplitude in the individual time series of residuals. Therefore, we fitted the model using only harmonic terms (i.e., sine and cosine functions; Equation 12 on page 26) [7], while we believe there may be other factors that could affect the observations but were not included in the model. The perditions from the model inform the position and velocity of harmonic oscillators rather than the amplitude or extent of the wave, therefore, the predictions did not exactly fit the observations.

      To address this comment, we expand the corresponding methods hoping to make it clear (lines 661-663):

      “Of note, we fitted the model aiming to estimate the position of the harmonic oscillators and did not consider for other non- harmonic factors, therefore the model may not fully capture the variations of the data.”

      2) Another point for consideration is that the time between samplings (2010-2012) is comparatively short, given a 24-yr predicted periodicity. What would happen to the predictions if the periodicity were 35-yr or 6-yr? Would the model fail to call individuals accurately in these cases?

      Thank you for your comments. We repeated our predictions in Figure 4F-G by assuming a 35-year and 6-year periodicity respectively as suggested. Results suggested that model predictions with either 35-year or 6-year did not outcompete the model predictions assuming a 24 years old (Figure 4—figure supplement 1). For instance, the observed proportion of seroconversion to circulating strains in each cohort have correlation coefficients of 0.49 (p-value = 0.05), 0.63 (p-value = 0.02) and -0.12 (p-value = 0.69) with the predicted proportion of phase IV when assuming a 35-, 24- and 6-year periodicity, respectively.

      We also hope to clarify that we investigated the prediction potentials of long-term periodicity from two perspectives. Except for using the periodicity to predict the seroconversions between baseline and follow-up, we also predict the phase of each individual in the year of 2012 only using HI titers against strains that were isolated before 2002. Our results suggested our 10-years ahead predictions well correlated with observations (Figure 4C).

      To address this comment, we also included the results of analyses using alternative 35- and 6-year periodicity as Figure 4—figure supplement 1, and reported in the main text (lines 262-264).

      3) Similarly, if the samples were taken further apart, would the model still be effective at predicting phase?

      Thank you for your comments. We hope to clarify that we collected two cross-sectional serum samples, while we identified the long-term periodicity and predicted phase with serums collected from each visit, separately. For instance, in our sensitivity analysis that using serum collected in follow-up (Figure 1—figure supplement 1), we revealed similar long-term periodicity (baseline in Figure 1) with that identified using the baseline serums, despite pervasive exposures during this time period (time separating samples varied from 3-4 years). In addition, the Vietnam data collected sera from six consecutive years. These data showed a similar long-term periodicity (Figure 2—figure supplement 5).

      For the phase prediction, we used residuals of HI titers against 14 historical strains that were isolated between 1968 and 2002, and predicted the phase of strain that was isolated in the year 2012. This prediction was derived purely by depending on the periodic pattern of the time series and without information for strains isolated 10 years prior to 2012. Therefore, the prediction was 10 years ahead and was well correlated with observations from the complete time series, further supporting that there may be an intrinsic cycling in individual antibody responses and that this cycle is fairly stationary and predictable.

    1. Author Response

      Reviewer #1 (Public Review):

      While the circuits underlying the computation of directional motion information in the fly brain are very well described, much less is known about the neurons serving the detection of objects. In a previous publication from the same lab, it has been shown that flies perform body saccades to track a moving object during flight. In the current paper, Frighetto and Frye provide evidence that T3 cells, a population of neurons within the optic lobes, are involved in this task. First, they performed 2-photon Calcium imaging from T3 cells to show that these cells respond to moving bars, which they later use in behavioural experiments. They then silenced T3 cells using genetic tools and tested the behavior of these flies in response to a rotating bar using two different setups. In one, the flies are fixed and bilateral changes in wing stroke amplitude are used as a measure for turning, in the other, flies are magnetically tethered such that they can rotate around the vertical body axis. Silencing T3 cells leads to the abolishment of the steering response induced by object position using a bar that is defined by its motion relative to the surround, but leaves the response to object motion intact. In the magnetically tethered flies, it reduces the number of saccades and thus leads to an impairment of bar-tracking behavior. In another set of experiments they optogenetically activated the whole population of T3 neurons (which supposedly impairs their normal function), which leads to an increase in the number of saccades after the activation (when the light stimulus used to activate the cells is turned off). Silencing the neurons necessary for detection of local motion, T4 and T5 cells, in contrast reduces responses elicited by object motion rather than position, but also has an impact on object tracking saccades. The authors provide a simple model, where speed-dependent signals from multiple T3 cells are integrated and trigger a saccade, when a threshold is reached.

      The data generally support the conclusion that T3 cells play a role in detecting bar position and in controlling saccades in response to rotating bars. However, there are some inconsistencies in the data that are not sufficiently explored and discussed.

      1) In a previous paper from the lab (Keleş et al., 2020), it was shown that T3 cells respond preferentially to small objects, whereas here they robustly respond to elongated bars and even large-field gratings. This discrepancy is not discussed.

      The most likely explanation is that Keleş et al. (2020) work used stimuli of half-contrast (or lower) to probe contrast polarity effects, whereas our stimuli here match the behavior experiments using maximum contrast broadband stimuli. Keleş et al. (2020) work also provided visual stimuli over the full display, >200-degrees in azimuth, whereas here we only provide stimuli unilaterally over <100 degrees; perhaps there was some effect of contralateral stimulation. Finally, different Gal4 drivers; here we use a split-Gal4 that is highly specific for T3. Keleş et al. (2020) work used a normal Gal4 driver less clean than the split. We shall discuss these discrepancies in revision.

      2) In a previous paper, the authors showed that integrated positional error rather than bar position is used to elicit bar-tracking saccades and that saccade amplitude is relatively stereotyped. However, here they show, that T3 cells respond much more strongly to a slowly moving stimulus (18{degree sign}/s) rather than to the fast moving stimuli used for the behavioral experiments (> 90{degree sign}/s). This response property plays an important role for the model they propose. My general concern here is that the findings might not be generalizable to slower moving bars, where more precise, position-dependent responses could play a larger role, and that these fast moving bar stimuli represent an extreme situation, where the flies cannot accurately track bar position any more.

      We agree that flies will not accurately track purely positional cues at higher bar speeds, since responses to positional signals are inherently sluggish. In free-flight, files execute orientation saccades when a stationary post subtends ~30 degrees (bar width used here), at which point the leading edge of the post is moving ~250°/s (van Breugel and Dickinson 2012). Thus, higher bar speeds are the norm for flies, and our behavioral stimuli (90°/s) was chosen to robustly trigger tracking saccades and to compare with previously published behavioral data sets. Bar velocity of 18°/s is far below the range that robustly triggers orientation saccades. We image at 90°/s and 180°/s to show that T3 responses to behaviorally relevant bar speeds could reasonably act as inputs to an integrate-and-fire behavioral controller. These points shall be clarified in revision.

      3) The claim that T3 cells are tuned to stimulus velocity is not supported by the data in my view. For the bar stimuli, the authors only tested speeds of 18{degree sign}/s and above 90{degree sign}/s, but nothing in between. For the grating motion there seems to be an influence of temporal frequency for the same stimulus velocity (see e.g. Fig.1_1), but this is not quantified.

      We shall add a full spatiotemporal response profile in revision. One note: we presented T3 responses to different grating speeds in Supplemental material because our goal was merely to indicate speed sensitivity by T3, rather than to present a comprehensive speed tuning curve. T3 is distinct from T4 and T5 in that it is not directionally selective, is full-wave rectified for contrast, and shows similar responses to bars of differing temporal frequencies moving at the same speed. These properties are also likely accompanied by a broad spatial frequency sensitivity (which would bestow speed tuning), but in revision shall either demonstrate this or remove claim to it.

      4) The results from the optogenetic activation experiments are hard to interpret, as it is unclear how a prolonged activation of all T3 cells would affect the downstream circuitry. It is not clear that this experiment is equivalent to a "loss-of-function perturbation" of T3 cells as the authors claim in the text.

      We are making an assumption, which we shall clarify in revision, that downstream circuitry requires a spatiotemporal progression of columnar activity, as would be generated by the projection of a discrete bar-type-object moving across the eye, and that activation of all columnar inputs together, as would occur with CsChrimson stimulation, would disrupt this discrimination. Although it is a supposition, we feel that it is parsimonious. We compared the effect of CsChrimson stimulation under two different LED intensities but found no effect on bar tracking behavior.

      Reviewer #2 (Public Review):

      In their manuscript titled "Feature detecting columnar neurons mediate object tracking saccades in Drosophila", Frighetto & Frye study the effect manipulating T3 neurons has on tethered flight saccades. The authors first characterize the responses of T3 neurons to simple visual stimuli, and then manipulate T3 cells (with both Kir2.1 and CsCrimson) and study the effects on the fly's tethered flight behavior, focusing on different types of sharp turns (saccades). Finally, the authors suggest an integrate and fire model to explain how an array of T3-like neurons can produce some of the recorded behavior.

      The authors study the elementary, yet challenging, computation of object discrimination. They hone in on a cell type that most likely plays an important role in the circuit. However, the authors do not sufficiently clarify the framework in which they conceptualize T3's role in object discrimination, neither when discussing it in the introduction/discussion nor when explaining experimental results. The authors present the work in comparison to T4/T5 cells. However, T4/T5 cells have been shown to be both local motion detectors and the main cell types to compute motion in the fly's eye. Downstream neurons integrate over these local units to detect different patterns of global and local motion (Authors should cite Krapp 1996 Nature). Are the authors suggesting that T3 neurons perform a similar function only as local object detectors? That is a bold claim that will need to be supported with more experimental results and reconciled with previous results. We already know of other Lobula Columnar neurons (LCs) that respond to different sizes, some even smaller than the optimal T3 stimulus (e.g. Klapoetke 2022 Neuron) and we know of LCs that respond to small objects that do not receive major inputs from T3 cells (e.g. Hindmarsh 2021 Nature).

      We are attempting to posit a simple and parsimonious framework for T3 action. Are T3 neurons “local object detectors”? T3 is clearly not “selective” for local objects, since we show that they respond to elongated bars and wide-field gratings (at least when projected over the ipsilateral visual hemisphere). T3 is, however, “sensitive” to objects: vertical bars yielded a mean response peak ~1 ΔF/F whereas a small square object elicited a peak of ~4 ΔF/F (Keleş et al., 2020). This amplitude differential likely indicates surround inhibition, but does not preclude a downstream integrating neuron from pooling columnar inputs to assemble a spatial receptive field for either an elongated bar or a small object. Individual T4/T5 neurons show roughly double the response amplitude to a small object than a long vertical bar (Keleş et al., 2020), which is consistent with other reports, but one would not classify T4/T5 as “small object detectors” as they play a fundamental role in detecting wide-field motion stimuli. We intend to posit that (i) columnar T3 neurons are small-field (local) detectors of the features contained within stimuli that flies readily track, (ii) that the integration of these local signals could support the integrated error computations that flies make to track bars, which (iii) explains why T3 blockade compromises bar tracking saccades. We do not mean to claim that T3 are the first, last, or only inputs to object detection circuitry in deeper neuropiles. We shall endeavor to clarify these issues in revision.

      These differences between T4/T5 cells and T3s also make interpreting the experimental manipulations more challenging. When hyperpolarizing T4/T5 or 'blinding' them with CsCrimson activation, the visual motion circuit is severely disrupted. However, the same cannot be said about inactivating/blinding T3 neurons and the object detection circuit (if it is indeed a single circuit). The authors are justified in deducing a connection between blocking T3 neurons and a reduction in bar tracking, but generalizing the results to object detection requires more experiments and clarifications.

      We consider “bar tracking” to be one form of object detection, but not the only form. A bar is an “object” (albeit a tall object) in the sense that it is optically disparate from the visual surround. Thus, inactivating/blinding T3 indeed severely disrupts the detection of bar-type-objects. We shall clarify the language to remove any confusion between “object” and “bar”. We do not mean to generalize T3 function to all object vision in the same way that T4/T5 function is generalized to all motion vision, and this shall be clarified in revision.

      When framing the manuscript in the object detection framework, previous results regarding the definition of an object should also be addressed. Maimon Curr. Biol. 2008 and work from their own lab (Mongeau, 2019) have already shown that tethered flies respond differently to bars and small objects (fixating on the former while anti-fixating on the latter). Previous work has also shown that T3 neurons respond strongly to small objects and suppress responses to long bars (Tanaka Curr. Biol. 2020). Since all the behavioral experiments in the current manuscript and all the visual stimuli are full arena-length bars, it is impossible to tell whether the T3 results generalize to small objects and even how to reconcile the stronger response to small objects with the role ascribed to T3 cells in generating behavioral responses to long bars.

      This amplitude differential between small object and elongated bar responses by T3 likely indicates surround inhibition, but does not preclude a downstream integrating neuron from pooling columnar inputs to assemble a spatial receptive field for either an elongated bar or a small object. Consider that T4/T5 neurons show roughly double the response amplitude to a small object than a long vertical bar (Keleş et al., 2020 and consistent with other reports), but one would not classify T4/T5 as “object detectors” as their small-field columnar signals are integrated by downstream wide-field neurons that assemble spatial filters for specific patterns of optic flow that are generated during flight maneuvers (Krapp et al., 1996 Nature). One downstream integrator of T3 inputs, LC11, is more selective for small objects than T3. We shall clarify these points in revision.

      Finally, the authors propose a model for a hypothetical neuron downstream of T3 that would integrate over several T3s and generate saccades. However, given the current knowledge level in the fly vision field, the model should either be grounded more in actual circuit connectivity or produce testable predictions that would guide further research.

      We are currently working on the putative downstream partners of T3, and testing for the integration of T3 signals. Preliminary data show that silencing a specific LC class postsynaptic to T3 recapitulates the effects of silencing T3 on saccadic bar pursuit. In the revised version of the manuscript we will provide additional discussion.

      The authors should decide whether they would like to address these concerns with more specific experiments that would shed light on the role T3 has to play under different conditions and different definitions of a visual object, or whether they would prefer to limit the scope of their claims.

      We shall endeavor to do both!

      Reviewer #3 (Public Review):

      In free flight, flies largely change their course direction through rapid body turns termed saccades. Given how important these turns are in determining their overall behavior and navigation, it is important to understand the neural circuits that drive the timing of triggering these saccades, as well as their amplitude. In this paper the authors leverage the powerful genetic tools available in the fruit fly, Drosophila, to address this question by performing physiology experiments as well as behavioral experiments with inactivation and activation perturbations.

      The authors make three primary conclusions based on their experiments: (1) the feature detecting visual pathway (T3) is responsible for triggering saccades in response to moving objects, but not widefield motion, (2) the pathway primarily responsible for wide field motion encoding (T4/T5) is responsible for triggering saccades in response to widefield motion, and (3) the T4/T5 pathways is responsible for controlling the amplitude of both object and widefield motion triggered saccades.

      The authors go on to show that using calcium imaging data of T3 activity it is possible to predict under what conditions flies will initiate a saccade when presented with objects moving at different speeds, resulting in a parsimonious model for how saccades are triggered.

      Together, the imaging, behavior, and modeling provide compelling evidence for claims 1 and 2, however, the evidence and modeling for point 3 - the amplitude of the saccades - is lacking. The statistical analysis does not go into sufficient detail in comparing across different cases, and in particular, there is little mention of the effect sizes, which appear to be quite small (this is primarily in reference to 3F and 4E). The data suggest that both the T3 and T4/T5 pathways contribute to saccade amplitude, instead of T4/T5 being the only or primary drivers.

      We agree that the evidence suggests that both T3 and T4/T5 pathways contribute to saccade amplitude for bar tracking behavior, and shall clarify this conclusion in revision. However, we also note that the effect of silencing T4/T5 is more prominent (e.g., peak angular velocity) and more consistent across visual conditions. We will dig deeper into the data to substantiate this point. The effect sizes might be small because the silencing approach (i.e., inward rectifying Kir2.1 channels) maintains a hyperpolarized state but does not completely block neuron function; consider that the wide-field optomotor responses of T4/T5>Kir2.1 flies is reduced but not eradicated (Fig. 3A_1).

    1. Author Response

      Reviewer #1 (Public Review):

      Li et al. have designed a study that examines specific mechanisms for how different DNA sequence variants in the common cancer gene p53 (also known as TP53) influence the sensitivity of tumors to a variety of common cancer treatments. Specifically, they examine a handful of p53 variants with respect to glioblastoma and its response to platinum-based chemotherapy and to radiation therapy. The authors begin by mentioning that looking at DNA variants in cancer is useful but also incomplete: methylation, PTMs, and non-DNA sequence variants can also be critical. They then mention that they have created a model showing that nearly all cancers with p53 mutations have loss-of-function variants and that many cancers with "normal" wildtype p53 in fact have variants causing LOF. These p53 LOF tumors lead to worse patient outcomes, but the authors here show that these tumors appear to be more susceptible to radiation and platinum-based chemotherapy, which they say they have validated in glioblastoma xenografts. This potentially opens up a new avenue for precision medicine for many different sources of cancer that share common p53 LOF variants. The authors have taken a modern approach towards cancer diagnosis and shown how this can improve targeted treatments across a large array of cancer types. They have provided a reasonably convincing proof of concept of this approach for n = 35 PDXs in one cancer type. By and large, the approach and results are reasonable, although many of the exact results concerning the genes and pathways identified that covary with the various treatments and p53 variants are unclear. For instance, the feature selection seems to be somewhat ad hoc, e.g. the method used to determine p53 LOF from p53 WT in the TCGA data was not the same method used for determining p53 LOF from p53 WT in the PDX data.

      Thanks for the positive comments. In our study, we used the same method for feature selection (i.e., p53 targets identification), and for calculating CES in different cancer types. This is described in Materials and Methods. However, the methods used to identify the LOF of WT TP53 in TCGA and PDX data are different. For TCGA LUNG, BRCA, COAD, ESCA cohorts, we used the SVM models built from the same cancer type to predict TP53 status. For PDX samples derived from the glioblastoma patients, we used the unsupervised clustering approach. This is because:

      1) To train an SVM model, we need a large number of “normal” samples (to represent p53 normal status) and “tumor samples with TP53 truncating mutation” (to present p53 LOF status). In this PDX cohort (n = 35), we have no “normal” samples and only one p53-truncating mutation (Fig. 4f, Table S6). Technically, it is impossible to build an SVM model from this PDX cohort.

      2) The TCGA GBM cohort also has very limited “normal” samples (n = 5) which prevents us from training an SVM model for glioblastoma prediction.

      3) The TCGA pan-cancer SVM model is not a good choice since GBM was not included into the pan-cancer cohort due to its limited training sample size. Although the pan-cancer model achieved a high AUROC, its performances varied significantly across cancer types. This is most likely due to the imbalanced sample size, since the pan-cancer model is biased by cancer types (e.g., lung and breast) with the larger sample sizes.

      4) Even we were able to build a new SVM model from the TCGA pan-cancer with GBM samples included, applying this SVM model to predict non-TCGA samples is still very challenging because of batch effects.

      Therefore, we first used the unsupervised clustering as an alternative to the SVM model to classify samples, and then we manually annotate the PDX clusters into “p53-pN” and “p53-pLOF” according to the composite expression score.

      We agree with the reviewer that the underlying pathways/mechanisms that can potentially explain the different treatment effects and p53 non-mutational LoF are still unclear and warrant further investigation.

      The TCGA AUROCs were incredibly good - over 99% - versus more like 75% for the actual proof of concept. While any significant p-value is fine for basic research, it would be nice to know how this could be improved and bring the results in Figure 4 from ~75% to the >99% that would be necessary for use as a medical diagnostic or for treatment selection for precision medicine.

      Thanks for your suggestion. Precision cancer medicines that target TP53 mutations are currently being evaluated in clinical trials. Developing a robust model to predict p53 functional status for medical diagnosis or treatment selection is the primary goal of our study. However, there is still a long way to go to bring the model trained from external data into medical practice. To minimize the biological, clinical and technological heterogeneities and bias, the best approach is to train an SVM model from the same cancer type in the same institute; this requires:

      1) The sample sizes of both normal and tumors harboring TP53 truncating mutation should be sufficient to train the SVM model. Take the TCGA lung cancer dataset (n_tumor = 1003) as an example, we built an excellent SVM model from 108 normal samples and 254 tumor samples with TP53 truncating mutations. A much larger sample size is needed if the TP53 truncating mutation frequency is low.

      2) Matched data including whole-exome or whole-genome sequencing (to determine TP53 mutation status), RNA-seq (for gene expression), and treatment response.

      If one plans to use public data such as TCGA to train the model, the major challenge is integrating data from different sources (i.e., remove batch effects arising from different patients’ cohorts, tumor samples storage and processing, library preparation, sequencing, and bioinformatics analyses).

      However, there are significant questions regarding the specific findings uncovered: do the gene pathways identified through bioinformatic analysis fit in with the many highly-studied mechanistic roles of p53? Do the cohort selections - which vary by an order of magnitude in sample size, and come from different locations and different tissues - make statistical sense for cross-validation?

      According to our analysis, p53 targets shared by four selected cancer types are significantly enriched in “cell cycle control” and “DNA damage response” pathways, which are the canonical functions of p53 (PMID: 9039259, PMID: 36183376).

      For the four TCGA cancer cohorts selected in our study, cross-validations were independently performed for each cancer type. For the pan-cancer cohort, we agree with the reviewer that the samples come from different locations and different tissues, and the pan-cancer SVM model could be potentially biased by a few cancer types with larger number of samples. Building a pan-caner SMV model is a compromised strategy when each cancer type alone does not have sufficient samples to train its own SVM model, and more rigorous evaluations (by independent datasets) are needed. This is why we put the pan-cancer results into the supplementary materials. We have revised the manuscript to make this point clear (Page 9).

    1. Author Response

      Reviewer #1 (Public Review):

      1) In family 2, the variant was detected by routine trio-based WES diagnostics. Sanger confirmation was not performed. IGV images can be added as supplementary material. Furthermore, median coverage was 75× which might not be sufficient for the identification of all heterozygous variants.

      We thank reviewer for pointing it out for clarification. Obviously, at the time (2016) of the reporting of this variant this was our laboratory’s thoroughly validated protocol, which shows that median (!) coverage of 75x with the technology at the time is more than sufficient for robust variant calling. This particular variant was actually below 75X in coverage (at 65x), but Sanger confirmation was not necessary (based on thorough validation of the robustness of calling and GATK scores and other quality parameters for de novo calling). In addition, when coverage goes below 30-35X Sanger confirmation is warranted.

      2) Proband 2 (P2) was born as the second child of non-consanguineous parents of Caucasian descent after an uneventful pregnancy and delivery. The boy was macrosomic at birth. Since there was macrosomia, how would the pregnancy be uneventful? At the last assessment at 10 years of age, obesity associated with hyperphagia was of concern; the weight of the patient should be clarified. P2 was diagnosed with autism spectrum disorder but a normal cognitive profile. The identified NM_001014809.2(CRMP1_v001):c.1280C>T variant is very rare and reported in GnomAD exomes with allele frequency 0.0000041.

      Routine echographia during pregnancy did not result in any concerns. The pregnancy was indeed uneventful. BMI at last evaluation was 26.1. We included the details in the revised manuscript.

      3) Proband 3 (P3) is the first of three children of a non-consanguineous family of European descent. There is a familial history of obesity on both parental sides, and the father is macrocephalic (head circumference: 60.5 cm). Macrocephaly can be isolated and benign, such as in benign familial macrocephaly. However, P3 presented with moderate intellectual disability and an autism spectrum disorder. Since P3 has a macrocephaly also, the PTEN gene should be further interrogated by detailed WGS data analysis as well as an additional orthogonal method(s) since it has pseudogenes.

      We have not noted any pathogenic variant of the PTEN gene in the genetic analysis.

      Reviewer #2 (Public Review):

      Weaknesses of the article include:

      1) Spelling errors and difficult-to-understand language. The use of "variant" is now preferred over mutation. According to current nomenclature, predicted but not experimentally confirmed protein alterations should be written as p.(Phe351Ser) rather than p.Phe351Ser.

      We apologise for the spelling errors and the difficult-to-understand language in the manuscript. We considered the reviewers comments seriously and corrected the errors and rephrased the sentences wherever necessary.

      2) Inconsistent use of in silico pathogenicity predictors and conservation metrics. These should be standardized for each case and should include at least phylop, CADD, and REVEL.

      We have applied consistency in the description of in silico pathogenicity predictors and conservation metrics for each patient.

      3) CRMP1 is under significant constraint against loss-of-function variation in gnomAD - pLI = 0.99, LOEUF 0.28. Genes in the top decile are highly enriched for haploinsufficiency as a disease mechanism. This should be considered in the interpretation of this data and incorporated into the manuscript.

      We thank the reviewer for the comment. As per reviewer’s suggestion, we have included a statement in the revised manuscript under ‘Subjects and Methods’ section.

      4) I am not convinced the data supports a dominant-negative interpretation. The variants do not oligomerize as well as wild-type CRMP1, and when co-expressed with wild-type CRMP1 there is an increase in monomeric wild-type CRMP1. While this could support a dominant-negative interpretation, an alternative explanation is these are loss-of-function alleles that cannot oligomerize, and at the stoichiometry of this artificial overexpression system, this leads to increased monomeric wild-type CRMP1. The axonal outgrowth studies are more compelling, but without a loss-of-function control allele, it is difficult to interpret.

      The experiments in Figure 2 should be replicated, quantitated, and their statistical significance confirmed.

      We thank reviewer for raising concern about the experiment and interpretation of the data. We performed size exclusion chromatography experiments and included the data in the revised Figure 2. Unfortunately, we could not reproduce the experiments for Figure 2B. From our current experimental results, we prove that the CRMP1 variants affect the homo-oligomerization process.

      Reviewer #3 (Public Review):

      1) The major weakness is Figure 2, as it is not performed up to high standards like the rest of the paper. Panel A does not show any loading control and does not confirm. Panel B at 720 kDa band is not convincing. Results should be repeated with size exclusion chromatography and/or another method to determine molecular weight and should be quantified from triplicate experiments. Panel C is also not convincing and should be repeated to more carefully show results, and quantified.

      We thank reviewer for this important concern raised on our Figure 2 experimental data. We addressed the comments in the revised manuscript. We performed size exclusion chromatography and presented the results in the revised manuscript and discussed accordingly in page 23-24.

      Fig. 2A: This panel shows the recombinant CRMP1 wildtype and the variants from E-coli expressing system. We repeated the expression several times and obtained similar partially cleaved proteins. Fig. 2A is Coomassie Brilliant Blue staining. Protein size marker and loading control (BSA) were applied on the same gel as shown in Fig.2A original.

      Fig.2B: Due to limited protein expression of T313M and P475L mutants, we could not repeat the gel-filtration experiments.

      Fig. 2C, 2D: It is difficult to adjust the expression level of each construct (CRMP1 wildtype, T313M, or P475L) in HEK293T cells (input). Therefore, we measured the signal intensity of myc-IP band and input ratio of V5 blot in each condition. Fig. 2D shows the ratio from four independent experiments.

    1. Author Response

      Reviewer #1 (Public Review):

      In this paper, Quiniou and colleagues show via orthogonal methods that human thymopoiesis releases a large population of CD8+ T cells harboring a/b paired TCRs that (i) have high generation probabilities, (ii) have a preferential usage of some V and J genes, (iii) are shared between individuals and (iv) can each recognize and be activated by multiple unrelated viral peptides, notably from EBV, CMV and influenza.

      Major strengths of the paper

      Quiniou et al. generated single-cell sequencing datasets of the earliest stages of TCR beta chain gene recombination. And then showed that a subset of them is highly clustered also having high generation probability.

      They show that these T cells can bind multiple antigens, both via the use of public antigen-specific datasets as well as corroborating experimental TCR expression and binding essays.

      Minor weaknesses

      To what extent is TCR clustering and high Pgen and cross-individual sharing correlated? What is the Pgen of the sequences clustered with the high Pgen cells? Can you comment on the correlation between these three phenomena?

      Indeed, there is a significant positive correlation between the Pgen and the number of connections among the clustered TCRs, as was reported in Fig.1F of the original manuscript. Furthermore, this correlation is true for both private and public TCRs, as was reported in figure 2B of the original manuscript.

      To show the link between the three phenomena, we now have added two supplementary figures showing a high positive correlation between Pgen and the number of connections, and between cross-individual sharing and the number of connections, and to a lesser extent between Pgen and cross-individual sharing (Figure 2-figure supplement 4C and D in the manuscript supplementary information).

      However, we would like to emphasize that the difference in the mean Pgen of the clustered and dispersed TCRs is of about 20-fold. This is a high difference for a biological process (and highly statistically significant), but a small one compared to the 10-log10 span of the Pgens of the two populations. Factually, what we observed is not that clustered sequences have a high Pgen, but that they have a higher Pgen than the non-clustered sequences. Yet, many CDR3s with high Pgen do not cluster, and vice versa, indicating that a high Pgen is not the only (nor most important) driver of clustering. We have now added these as Figure 1-figure supplement 3E-F of our revised manuscript.

      In other words, to what extent is this surprising to see that highly clustered TCRs have higher Pgen and are more shared?

      That for a given CDR3 there is a correlation between having a high Pgen and being public is not surprising as both suggest a positive selection during evolution. What is more surprising is that there are CDR3s forming large clusters that occupy over 20% of the repertoire and that co-cluster between individuals with different HLA, “indicating a convergence of specificities between individuals’ clustered repertoires”. This suggests a surprising selection process that could depend less on HLA than the “classical” selection.

      These points are now better emphasized in the revised manuscript.

      Potential Impact of the paper

      This work highlights an intrinsic property of the adaptive immune response: to generate TCRs with high generation probability that can efficiently bind multiple antigens. This finding has, therefore important impact on drug discovery and vaccine design.

      We thank the reviewer for his appreciation.

      Reviewer #2 (Public Review):

      This study analyses the T cell receptor (TCR) repertoire of double positive human thymocytes, and compares this to mature single positive CD8 cells. The first major finding is that the repertoire post-selection is enriched for groups of TCRs with high generation probabilitites, similar sequences, and for TCRs previously annotated for viral specificity. This data is clearly presented and convincing. The extent of analysis of the human thymocyte repertoire is still very limited, and the paper adds significantly to this important question.

      We thank the reviewer for his appreciation.

      The second major finding is much more controversial. The authors first investigate the publicly available databases and show that there is a substantial proportion of TCRs which have been annotated to multiple viral specificities, a fact which is well-known to the specialists in the field, but not previously addressed.

      Indeed, we are not aware of reports disclosing “a substantial proportion of TCRs which have been annotated to multiple viral specificities”. Actually, one could wonder why “a fact which is well-known to the specialists in the field” is not mentioned and discussed in published articles? To us, it reveals that this point has been overlooked by immunologists as recently in Zhang et al, 2021 where authors aiming at identifying highly specific T cell clones with a new modelling approach, excluded all clones binding more than 1 peptide. Thus, it makes it important to report it, as we do. Furthermore, we would also like to emphasize that we do more than just reporting that some TCR have “been annotated to multiple viral specificities”. We show from a manual curation of public databases that (i) some TCR have been reported to bind to tetramers presenting peptides from unrelated viruses; (ii) that such TCRs co-cluster using Levenshtein distance or GLIPH2 based clustering method; and (iii) that some of these TCRs indeed recognize different, unrelated peptides without significant sequence homology upon re-expression in carrier T cells.

      The authors acknowledge that this in silico analysis is mostly based on unpaired alpha/beta sequence data, and that the chain pairing may influence specificity. They, therefore, perform a number of functional assays, demonstrating examples of T cells which respond by interferon gamma production to more than one peptide.

      We thank the reviewer for pointing to the fact that, beyond tetramer binding, we performed cumbersome functional studies to document polyreactivity.

      The paper is mostly very clearly written and presented and provides some fascinating novel perspectives on T cell cross-reactivity.

      We thank the reviewer for his appreciation

      The findings will surely be of interest to a broad readership - indeed anyone interested in how adaptive immunity works.

      The link between the different sections of the paper is the weakest aspect. The relationship between thymic selection and polyspecificity, and also the real relationship between in silico "cross-reactivity" as evidenced by multiple annotations and the functional polyspecific T cells remains unclear.

      Our flow of reasoning/analyzing was as follow. As we were studying the thymic selection of TCR repertoires, (1) we discovered a massive clustering within these repertoires. As for thymocytes this cannot be accounted for by a history of immune responses, this triggered our attention and led us to analyze the properties of these TCRs. This led us (2) to discover in these thymic repertoires “TCRs which have been annotated to multiple viral specificities”, that we were not aware of. We were so much intrigued by these observations that we wanted to substantiate them using datasets of paired  TCRs. As (3) we could confirm these observations in such datasets, this led us (4) to investigate these TCRs in functional studies. This is the link for the 1-to-4 sections.

      To make this link clearer, we have reworked the titles of the different Results’ sections such as to emphasize the switch from thymocyte bulk sequencing studies to that of single peripheral cell sequencing studies.

      The mechanistic molecular details underlying polyspecificity also remain unclear.

      Indeed, we believe that solving the structure of polyreactive TCRs interacting with different peptides will be needed for a molecular understanding of polyreactivity, but that it falls beyond the present work.

      But overall, lots of interesting new data, and some very intriguing hypotheses for the community to follow up on.

      We thank the reviewer for his overall comment

      Reviewer #3 (Public Review):

      In this manuscript, the authors propose that there is a special, previously unrecognized, high-frequency population of a/b TCRs that are shared between people, have high generation probabilities, and react to many unrelated viral epitopes. Here is the main flow of the results, with comments on the strengths of the conclusions:

      "Thymopoiesis selects a large and diverse set of clustered CDR3s with high generation probabilities" -- this seems correct and has been noted in earlier work by Mora and Walczak and others.

      So far, Mora and Walczak selection models in humans are based on studying PBMCs (our ref n° 27 in the revised version), not thymic DP and SP sorted cells, even in the mouse derived models for which they used the total thymic cells (our ref n° 27).

      Selection leads to a focusing of the CDR3 length which likely increases the degree of clustering and increases Pgen.

      To address this question, we compared the CDR3 length distribution between DP CD3+ cells and CD8 SP cells from our thymic dataset. We did not observe major changes. The distribution and the mean of CDR3 length for the two cell populations remained identical. We only observed a small shifting in the CDR3 length distribution towards shorter sequences post-selection. This is now reported in the new Figure 1-figure supplement 3C in the revised manuscript.

      "Clustered CDR3s are enriched for publicness " This also seems correct and again it makes sense: publicness is equivalent to having been independently rearranged (and sequenced) in another individual, which is determined by Pgen, and clustering is also determined to a large extent by Pgen (the factors that contribute to Pgen, shorter CDR3s for example, are largely shared between neighbor TCRs).

      We agree that theory could have indeed predicted that. In any case, to our knowledge, this is the first report of large clusters of just selected thymocytes’ CDR3s that moreover co-cluster between individuals with different HLA.

      "Clustered public CDR3s are enriched in viral specificities" -- This claim is not justified by the data, which comes from sequence matching against literature-derived databases. Rather, what is true is that "Clustered public CDR3s are enriched in public viral specificities".

      We changed “CDR3s are enriched in viral specificities” for “clustered public CDR3s are enriched in public viral specificities".

      But this might be a simple consequence of the previous observation, that "clustered CDR3s are enriched for publicness". One would need experimental specificity data on the very same datasets to make a conclusion about viral specificities in general.

      We based our interpretation on experimental data.

      Indeed, we manually curated databases to identify CDR3s that bind specific tetramers/dextramers. This type of “experimental specificity data” is for immunologists a paradigmatic and yet unchallenged mean to define specificity.

      We make the observation that there are more CDR3s from a TCR that does bind tetramers/dextramers presenting viral peptides in clustered than in dispersed CDR3s. This is a highly statistically significant fact, that we now report as a fact that we leave open to discussion/challenge by our community.

      "Identification of polyspecific TCRs" -- In this section, the authors report that some of the CDR3 clusters contain CDR3 sequences from literature-derived TCRs with multiple specificities. They conclude that these must represent polyspecific TCRs. The problem with this conclusion is that even having the same CDR3beta, let alone similar CDR3beta sequences, does not imply the same specificity. One can see the problem if one imagines a very deeply sequenced dataset, and focuses on a short CDR3 length with high frequency. With sufficient sampling, one will be able to navigate from nearly any single CDR3beta to any other CDR3beta of the same or similar length by jumping between single-mismatch variants. But this doesn't imply that all the TCRs from which these CDR3s were sampled, which likely have many different Vbeta genes and completely different TCRalpha sequences, must all bind the same thing.

      We will first point to the fact that we did not analyze “a very deeply sequenced dataset”, but only the 18 000 most abundant sequences per sample. Singletons were excluded. In addition, we did not mean to say that all the connected TCRs have the same specificities, regardless of their position in the cluster. Clustering algorithms, whether LV distance of GLIPH2 for example, are now commonly used to infer specificity of clusters and it is admitted that the closer the TCR sequences are, the more they share their specificities.

      That said, it is precisely because we acknowledge the limitation of bulk sequencing for inferring specificities that we turned to also analyze single-cell datasets.

      We made this more apparent by the new sections of the results that more clearly indicate the shift from unpaired bulk thymocyte sequencing and paired single peripheral cell sequencing.

      "Binding properties of polyspecific TCRs" -- Here the authors look to validate these results with paired TCR sequences. They analyze a public dataset made available by 10X genomics, featuring single-cell gene expression, TCR sequencing, and dextramer UMI counts for ~150,000 T cells. This is an amazing dataset with lots of interesting features, but, like any large high-throughput dataset, it needs to be analyzed with care.

      We can assure the reviewer that we were always very careful. Actually, we even started by carefully reviewing the 10X proposed methodology, in which we identified major biases. This led us to explore this dataset cautiously and without preconceived ideas.

      The authors claim to see evidence for large-scale cross-reactivity. This comes mainly from a set of dextramers for A03 and A11-restricted peptides. But these dextramers appear to be binding in a uniquely non-specific manner (by comparison with the other dextramers) and non-TCR-dependent manner in this experiment. One can see this, for example, by comparing the consistency of binding within expanded clonotypes: for a specific dextramer like A*02-GIL(Flu), positive binding for one cell in a clonotype greatly increases the likelihood of binding for other cells in the clonotype, suggesting that the binding is mediated by the TCR.

      This is not true for the A03 and A11 dextramers (except for a few expanded clonotypes in an A*11 donor). TCR sequence doesn't appear to be the determining factor for binding to these dextramers; rather it may be expression of KIR genes or other surface proteins that can interact with MHC.

      These are indeed striking binding patterns that are remarkably similar for a single CDR3 beta associated with more than 40 different CDR3s alpha (and moreover from two donors). The first attitude of immunologists would indeed be of discarding this observation for non-fitting the paradigms. We would like to rather propose an agnostic view at these results.

      These results show that a series of five A03 and A11 dextramers loaded with various peptides bind to cells that express a given CDR3 beta associated with a multitude of CDR3alpha. If it would be an MHC to KIR binding, then such dextramers should bind to most cells, independently of their TCRs. We have added two supplementary figures (Figure 4-figure supplement 8B-C) to show that this is not the case, and that further show very different binding patterns.

      If it would be a binding to “other surface proteins”, it would likely be the same.

      We identified a CDR3 from donor 3 which binds preferentially to A03 and A11 dextramers. However, it binds to only 4 out of 5 of these. If the binding is non-specific and non-TCR-dependent, a binding for the A0301 RIAAWMATY BCL2L1 dextramer should also have been observed. Moreover, we identified this same CDR3beta in two other cells from donor 1 and 4, and that were associated with a different CDR3alpha. Except for only one binding, these TCRs didn’t show binding to the A03 and A11 dextramers.

      Moreover, we identify another CDR3 from donor 1 that is associated with a strong binding to one A1101 dextramer presenting an EBV peptide when associated to many different CDR3alpha. The binding to the other A03 and A011 dextramer is weaker and seem to depend more on the CD3alpha.

      If the binding of A03 and A011 dextramers is non-specific and non-TCR-dependent, why is there such a difference between the binding of A1101 IVTDFSVIK and A1101 AVFDRSDAK dextramers?

      "Polyspecific T cells are activated in vitro by multiple viral peptides" Here the authors explore polyspecificity experimentally. First they report that polyclonal populations of T cells, sorted for binding to one dextramer, can also produce IFN gamma upon stimulation with a distinct peptide, albeit more weakly than for the cognate peptide.

      This is indeed true for CMV+ sorted cells that respond better to CMV peptides than to EBV ones, but not true for EBV+ sorted cells that also respond better to CMV peptides than to EBV ones.

      But it's not clear that the concentrations of the peptides are appropriate for stringently detecting cross-reactivity.

      We wonder what does mean “stringently”? It is possible that stringently mainly means defining the conditions that eliminates what does not fit the current paradigm?

      More factually, the peptide concentration used for these experiments, presented in Fig. 5A-B, was 1 µg/mL, i.e. ~1 µM for a 9-10 aa-long peptide. This is clearly a physiological concentration for viral peptides, routinely used in in-vitro recall assays. We can thus rule out that the observed cross-reactivity is simply due to an excess peptide stimulation.

      Then the authors actually synthesize and characterize individual TCRs. Here what is seen is consistent with expectation and does not seem to support the idea of substantial fuzzy cross-reactivity: binding to the cognate peptide is 3-4 orders of magnitude stronger than to the alternative peptides.

      We respectfully disagree. First, as shown in Fig. 5C TCR#35-13 (cognate peptide HLA-A2-restricted Flu MP 58-66) indeed recognizes the alternative HLA-A2-restricted CMV IE1 184-192 peptide with a 3-4 higher log EC50; yet, the EC50 of this TCR is approx. 10e-6 M, i.e. 1 µM, which remains a physiological concentration. Second, this is not the case for TCR#36-150 (same cognate peptide HLA-A2-restricted Flu MP 58-66), which actually recognizes the alternative HLA-A2-restricted EBV BMLF1 280-288 peptide with a 4-fold lower EC50.

      The only exception is the GAD 114-122 TCR, where the different peptides appear to be closer in binding strength. But in this case, the authors state that they "analyzed their response to a set of peptides comprising their cognate peptide and peptides with no significant structural commonalities, selected by testing combinatorial peptide libraries". If the competitor peptides came from peptide library screening then the observation of strong binding to alternative peptides does not seem as surprising as a TCR that binds well to a Flu peptide, say, and also a CMV peptide, selected from a smallish set of possibilities.

      As explained above, this TCR does not stand as an exception compared to Flu-reactive TCRs. Moreover, it should be noted that this GAD 114-122 TCR recognizes its cognate peptide in a similar or even lower concentration range compared to the Flu-reactive TCR #36-150. It should also be pointed out that, contrary to the Flu-reactive TCRs, here we did not have any reference dextramer binding data to guide our peptide selection, which is why we resorted to combinatorial peptide libraries. Thus, although different strategies were used, peptide selection was “guided” in both instances.

      It is pretty well established that TCRs are cross-reactive, both for nearby peptides and also for sequence-dissimilar peptides.

      We agree and had notably quoted the landmark paper by Don Mason estimating that each TCR may respond to over 106 different peptides from an estimated repertoire of > 1010 peptides. Based on the Don Mason estimate of cross reactivity, the chance to find a cross reactive peptide at random would be around 10-4.

      Here, we just tested a few peptides from different viruses. If Don Mason’s estimates are correct, for a given TCR, the chance to find even just 1 cross-reactive peptide among these few peptides would be at most of 10-3, the chance to find 2 cross reactive peptides would be of 10-6 and that to find 3 or more cross reactive peptides would have be infinitesimal.

      Thus, if the polyreactivity that we described is part of this general cross reactivity, our results are at least highlight a major previously unreported bias in the selection of these cells.

      The question is whether widespread, functionally relevant (not just dextramer binding at some concentration) poly-reactivity to diverse viral peptides is a defining feature of a large fraction of the TCR repertoire. The paper does not appear to present sufficiently strong evidence to support this claim.

      We agree with the reviewer that more work is needed to “fully” appreciate the role of polyreactive cells!

    1. Author Response

      Reviewer #2 (Public Review):

      This paper reports a novel measure of biological age derived from machine-learning analysis of retinal imaging data with chronological age as the criterion measure. The resulting algorithm is impressive. Not only can the retinal image data accurately predict chronological age in the training data and record changes over short time intervals, but it also proves accurate in independent test data and appears to contain information related to mortality risk. In addition, the authors report a GWAS of the new measure.

      I would like to see a bit more validation data in the UKB - how does EyeAge relate to (a) tests of visual acuity - e.g. does it explain aging-related differences?

      We have extended the supplemental tables and figures (Supplementary table 5 and Figure 3- figure supplement 2) to show additional adjustments to the hazard ratios using visual acuity.

      (b) measures of morbidity and disability - e.g. how is EyeAge Accel associated with at least some of the counts of chronic diseases, self-reported physical limitations, tests of physical performance, measures of fluid intelligence?

      We felt that all-cause mortality is the most clear outcome to test against, as other outcomes were not available for all participants or would require domain-specific knowledge to properly incorporate which we felt was out of scope. Given this, we have added this limitation to the discussion:

      “This study has several limitations. First, further work will be needed to assess whether eyeAgeAccel is correlated with other important health outcomes and measures.“

      But overall, this is a very strong report of an exciting new biomarker of aging. It was unclear to me whether the algorithm to compute the measure would be publicly available. The authors should clarify.

      Code for both training and evaluation of eyeAge from fundus images is available by minimally modifying open-source software we previously released under the permissive BSD 3-clause license. We have added the following “Code availability” section to the paper:

      “To develop the eyeAge model we used the TensorFlow deep learning framework, available at https://www.tensorflow.org. Code for both training and evaluation of chronological age from fundus images is open-source and freely available as a minor modification (https://gist.github.com/cmclean/a7e01b916f07955b2693112dcd3edb60) of our previously published repository for fundus model training57.”

    1. Author Response

      Reviewer #1 (Public Review):

      This is a very interesting paper trying to quantify excess deaths due to the COVID-19 pandemic in the USA. The paper is roughly divided into two main sections. In the first section, the authors estimate age and cause-specific excess mortality. In the second section, using their excess mortality estimates, the authors attempt to disentangle the impact of SARS-CoV-2 infection (direct impact) vs. the impact of NPIs on this excess mortality (indirect impact). I have some concerns, particularly with respect to the second section.

      The model used to estimate excess mortality is quite clear. The authors adjust the baseline model to account for low influenza circulation (and deaths) during the COVID-19 pandemic, to avoid underestimating the number of deaths caused by COVID-19. While this makes sense if the authors are trying to estimate the total number of deaths caused by COVID-19, I'm not sure it needs to be accounted for if the authors want to estimate excess/added deaths. A counterfactual scenario would've included influenza. It also raises the question of whether (conceptually) they should be adjusting for other causes of deaths that may have also decreased during the pandemic. The authors briefly acknowledge this in the discussion ("we can't account for changes in baseline respiratory mortality due to depressed circulation of endemic pathogens other than influenza") but my comment goes beyond respiratory diseases. Analyses of excess mortality from other settings have suggested, for example, decreased deaths due to fewer traffic accidents (not in the US) or due to decreased air pollution, and not accounting for these would also lead to an underestimate of the total deaths caused by COVID-19. I understand that it is not feasible to account for all potential factors, so I wonder if they should focus on reporting excess deaths as compared to a counterfactual with influenza.

      Thanks. We think it is helpful to “single out” influenza as it causes major fluctuations in mortality from multiple causes in regular years and is a useful reference to contrast the pandemic impact. But the reviewer’s point is well taken. We have clarified our assumptions about the meaning of the baseline in this analysis (methods p 5), discussed the depressed circulation of other pathogens in depth, and mentioned air pollution (p 12-13). We have also slightly reworked our comparison between COVID19 and influenza so that excess mortality estimates are comparable and now cover periods of the same duration (Nov 2017-Mar 2018 for flu and Nov 2020-Mar 2021 for COVID19, see Figure S11).

      The second section, trying to estimate direct vs. indirect effects is also very interesting. However, more details are required about the regression model used and, importantly, what the assumptions and limitations of the approach are. Specifically:

      • Please provide a bit more information on the regression used for direct vs. indirect effects. I'd like to see explicit discussion of the assumptions and limitations of the approach but also of the stringency index used. Does this model include an intercept? Was the association between stringency index and excess deaths assumed to be linear? Or were different functional forms considered? It is also not clear how well the model fits the data.

      Thanks for these comments which helped us improve this section. We have provided more details about the stringency index in methods (it captures the “sum” of interventions), described the model in methods and supplement, and discussed limitations in caveats section, especially regarding effectiveness of these interventions (p13). We had tried different linear models with and without intercepts but elected to use models with intercepts so as not to overly constrain the relationship between interventions, COVID19 activity and excess mortality. These models also incorporate lags in the predictors that are determined by cross-correlation analysis (as detailed in supplement). In the revised version, we now use gam models, where the relationships between excess mortality and predictors do not have to be linear. We can do so since we were able to add several weeks of data (the regression is now based on 96 pandemic weeks from March 1, 2020 to January 1, 2022). The models are described in detail in supplement p 4-5, and we now specify that they have intercepts. We have also provided additional plots of model fits in main text and supplement (Figures 4 and S16-19).

      • Related to the above, please provide more details on how the results of the regressions were translated into the results presented. The main text reports percentages, but the methods only briefly explain how numbers of direct deaths were calculated, and the supplementary tables report coefficients. It is not clear if these estimates of direct and indirect deaths were somehow constrained to add up to the total number of excess deaths, but it doesn't seem like it since point estimates cross 100% in some cases.

      As discussed in response to one of the editor’s questions, estimates are not constrained to 100%. We have provided more details in the supplement on how we estimate the direct impact of the pandemic. Briefly, we calculate expected deaths in the gam model with all predictors set to their observed values and again with the COVID19 predictor to zero. The direct impact is the difference between the two predictions, divided by the predictions of the full model.

      We note that while some of the estimates derived from gam model exceed 100% (and are similar to the linear model estimates presented in the initial analysis, before revision), these estimates echo the findings from a more empirical analysis, in which we compare all-cause excess deaths with official COVID19 deaths tallies. There, in the two oldest age groups, we find more official COVID19 deaths than estimated by the excess mortality models. Hence both analyses point to an underestimation of the direct burden of COVID19 by the excess mortality approach, specific to the oldest age groups. We return to this point in depth in the discussion (p 12-13) and consider the possible effects of harvesting, depressed circulation of non-SARS pathogens, and inaccurate coding of official statistics (as pointed by reviewer #3).

      • Please discuss the potential limitations of using the stringency index to quantify NPIs.

      Several limitations have been added to caveats (p 13); major issues include aggregation of multiple interventions into a single index, which does not consider the actual implementation nor the effect of interventions. The index is solely based on mandates in place in different locations and time periods. We also assume that the effectiveness of these interventions, for a given level of stringency, does not change over time.

      • When estimating direct and indirect effects, the paper assumes that the estimated parameter is time-invariant? Indirect effects might have changed over the course of the epidemic by factors not necessarily captured by the stringency index used, particularly since the index doesn't take into account the implementation of the measures. Have the authors tested this assumption?

      This is an interesting point, which we have explored further. The non-linear relationships we find between NPIs and chronic condition excess mortality may suggest that the reviewer is right. We discuss the role of NPIs in the results section much more deeply than we were previously (bottom of p8).

      “At lower levels of interventions (Oxford index between 0 and 50), representing the early stages of the lockdown in March 2020, excess mortality rose with interventions. Later in the pandemic, increased interventions were estimated to have a beneficial effect on excess mortality, driven by comparison between the period when interventions were strengthened in response to increasing COVID19 activity in late 2020 (Oxford index above 60) to the period when interventions were relaxed in 2021 (Oxford index between 50 and 60).”

      We cannot run an analysis over different time windows because NPI and time are highly conflated (for instance NPI rise from 0-50% in the very early part of the lockdown period, and then stays above 50% for the rest of the study, so we cannot compare the effect of a 25% level in 2020 and 2021). We have added this limitation in the caveat section p.13.

      • The authors state "In contrast, the indirect impact of the pandemic measured by the intervention term was highest in youngest age groups, decreased with age, and lost significance in individuals above 65 years" - I'm not entirely sure of where this statement comes from? For example Table S3 suggests that the indirect effect (multivariate or univariate) is higher in 25-64 yo than in <25s? The same table also suggests negative impacts (protective effects?) in >75s in the multivariate model. Please clarify.

      There are fewer deaths in the under 25 yo so this is why the coefficients were lower overall in table S3. Yet we find that the proportion of variance explained by interventions is higher in the under 25 yrs than in 25-44 yrs.

      We have now changed our modeling strategy to use gam so Table S3 is no longer relevant but the main conclusion that interventions explain a larger relative portion of excess mortality in the under 25 yrs than in the other age groups, and than other covariates, remains valid. The NPI term is now significant is in all groups (although the relative contribution of NPI still declines with age, as in the prior analysis), so we have rephrased this sentence: “In contrast, the relative contribution of indirect effects, via the intervention variable, was highest in youngest age groups and decreased with age”.

      • How do the authors interpret "Percents of excess deaths" over 100%? Similarly, I don't fully understand how to interpret "The upper bound of the 95% confidence interval for heart diseases was above 100% (158%), suggesting that for every excess death from heart disease estimated by our model, up to 1.58 death from heart disease could be directly linked to SARS-CoV-2 infection.

      We have rephrased this section although the overall conclusions remain unchanged. GAM estimates of the direct COVID 19 impact is statistically significantly above 100% in the 85 yo and over, suggesting that our excess mortality approach is too conservative and does not estimate enough COVID19 excess deaths in this age group. We draw a similar conclusion from a more empirical analysis, in which we compare all-cause excess death estimates with official COVID19 deaths tallies. In this analysis, we find more official COVID19 deaths than estimated by the excess mortality models in the two oldest age groups (point estimates above 100% in the 75-84 and 85+ yrs). Hence both analyses point to an underestimation of the direct burden of COVID19 in the oldest age groups by excess mortality approaches.

      Rephrased results section bottom of p.9: “We estimate that the direct contribution of COVID-19 to excess mortality increases with age, from negative and non-statistically significant in individuals under 25 yrs to over 100% in those over 85 years, echoing the gradient seen in official statistics (Table 4). It is also worth noting that our excess mortality estimates may be too conservative (too high) as we did not account for missed circulation of endemic pathogens. This could explain why our estimates of direct COVID-19 contribution exceed 100% in the oldest age group.“

      We return to this point in depth in the discussion and consider the possible effects of harvesting and depressed circulation of non SARS pathogens (p 12-13).

      • Table 3: The signs of the point estimate vs CI for vehicle accidents are inconsistent.

      Thanks, this was a typo. It should have been 4300 (-700, 9300) excess deaths from accidents. This has been updated with more recent data.

      Reviewer #3 (Public Review):

      Authors examine mortality data in the US and use time-series approaches to estimate excess mortality during the COVID-19 pandemic.

      Major comments:

      I would encourage authors to discuss the two different concepts of excess mortality:

      (#1) what deaths were caused, directly or indirectly, by the pandemic. This is what the authors have aimed to assess, and I have no major concerns with the methodology

      (#2) how many additional deaths occurred during the pandemic, compared to what would have been expected in the absence of a pandemic. For such an analysis I think expected annual influenza deaths should be added back to the baseline (or subtracted from the excess)? Some of the discussion seems to relate more to an impression of #2 rather than #1 but I would be interested in the authors' thoughts.

      We have added more details about the approach, in particular why we think that #1 is the proper analysis here (see methods p 5). Given the sheer magnitude of COVID19 excess deaths (over 1 million excess deaths at the end of our study), adding back influenza deaths (up to 52,000 deaths in a recent severe season with a mismatched vaccine, as in 2017-18) would not make a large difference. We have also provided a more direct comparison of the impact of influenza and COVID19.

      1. Authors estimate fewer excess COVID deaths in the elderly than there were confirmed deaths (Table 3). Could this be an indication of some confirmed deaths being "deaths with COVID" rather than "deaths from COVID"? I'm not sure how to interpret the %s in the final column when they exceed 100%. The authors suggested a harvesting effect but I would suggest "deaths with COVID" might be a more likely explanation? This issue can be a limitation of confirmed-death data.

      This is a good point. We have added a comment along these lines in discussion in the middle of p 12. Still, we think harvesting and/or the depressed circulation of endemic pathogens, which would have inflated our baseline, are more likely explanations for these findings. This is because we find similar estimates (exceeding 100%) in gam models that ignore official statistics and rely on COVID19 case data, or COVID19 hospital occupancy data, and this suggests that other mechanisms, beyond coding of official mortality statistics, are at play.

      Yet, as more detailed official statistics become available, a tabulation of confirmed deaths by presence of a primary vs secondary COVID (U07) code may be revealing and get more directly at the reviewer’s question.

    1. Author Response*

      Reviewer #1 (Public Review):

      ARL3 is a small GTPase that localizes to the primary cilium and plays a role in regulating the localization of some specific ciliary membrane proteins, including PDEδ and NPHP3. Mutations in this gene cause Joubert syndrome, a type of ciliopathy characterized by cerebellar malformation, and retinal degeneration. While the majority of the diseases occur in an autosomal recessive manner, two mutations in ARL3 (D67V and Y90C) have been reported to cause autosomal dominant retinal diseases. In the current paper, Travis et al. sought to understand the pathogenesis of the diseases caused by the two autosomal dominant mutations. They found that D67V acts as a constitutive active mutation, whereas Y90C is a fast-cycling mutant, which can be activated in a guanine nucleotide exchange factor (GEF) independent manner. Since the fast-cycle mutant did not bind to the effector proteins in vitro (likely because the guanine nucleotide falls off from the mutant ARL3, which has a lower affinity to GDP/GTP), they developed a method to snapshot the interaction between ARL3 and its effector. Using this method, they showed that the Y90C mutant indeed has increased interaction with the effectors, suggesting that Y90C is an overactive form of ARL3. They then addressed how photoreceptor cells are affected by these two mutations using a mouse model and found that the mutations disrupt the proper migration of the photoreceptor cells.

      Strengths:

      • The paper is well written, and it was easy to understand what the authors did from the figure legends and the methods section.

      • It was easy to find out what is known or unknown, as the paper has accurate references.

      • The authors developed a method to analyze a snapshot of the interaction between ARL3 and its interactors.

      • The paper has an in vivo model and connects the biochemical characteristics of ARL3 to in vivo cellular phenotypes.

      Weaknesses:

      (1) I understand that authors focused on nuclear migration defect as the phenotype was first described in ARL3-Q71L transgenic mice. The similar phenotype observed in RP2 knockout mice further supports the idea that the defect is caused by the hyperactivation of ARL3. Indeed, the defect is not reported in the ARL3 knockout mice, however, I feel that it does not necessarily mean that the defect is not caused by loss of function. Although it has not been assessed, ARL3 knockout mice might have the same defect. Therefore, I think analyzing both the migration defect and trafficking defect would be more informative, rather than focusing on the migration defect. The fact that the relationship between nuclear migration defect and the retinal degeneration phenotype is not entirely clear further enhances the importance of analyzing the trafficking defect.

      Does the expression of ARL3-Y90C also cause the trafficking defect? If it is the case, you can separate the nuclear migration phenotype from the one caused by the trafficking defect. Would the expression of lipidated cargo(s) rescue the trafficking defect as well?

      I think many questions can be addressed by analyzing the localization of the lipidated cargos, such as PDEδ and GRK1.

      The effect of Arl3-Y90C expression on trafficking of lipidated cargos is an interesting question. Previous papers showed mislocalization of lipidated outer segment proteins in Arl3-KO rods and down-regulation or subtle mislocalization in Arl3-Q71L overexpressing rods. So, this was one of the first things we investigated; however, we never observed mislocalization of ciliary or outer segment lipidated cargos (i.e. GRK1, transducin, Rab28, and PDE) in wild type mature rods that were overexpressing Arl3 mutants, and many were tested. It was through these experiments that we first identified the pronounced nuclear migration defect. Rod photoreceptor nuclear migration is a developmental process that is completed by P10, so Arl3-Y90C overexpression is causing a developmental defect. When rods are positioning their nuclei in the ONL, they are still “immature” as their primary cilium has not begun to elaborate disc membranes for light capture. All our analysis was performed in mature rods, so it is not surprising that we did not observe any lipidated trafficking defects at this timepoint. Since the developmental timing of the nuclear migration defect is important for our manuscript, we have added this to our introduction. Additionally, we use “immature” photoreceptors for the cartoon diagrams showing how Arl3 activity is altered by different mutation and rescue experiments, since formation of the mature outer segment occurs post-migration.

      (2) I am not quite sure if the nuclear migration was assessed properly. Based on the pictures in Fig.1, some of the FLAG-negative cells also seem to be migrating to INL (please see Fig.1C and Fig.1D). Is this biologically normal during development? Could this analysis be affected by the thickness of OPL, the layer between ONL and INL? Also, the picture is cut out in the middle of INL. Could authors include more layers, such as IPL, of the retina in the picture, so that we can evaluate INL and OPL better? Taking this into account, I think it is worth measuring the nuclear position of FLAG-negative cells as a negative control in all the experiments.

      Our electroporation technique results in a small population of rods that express our constructs of interest (~5-15% with a patch). All the experiments were performed in wild type retina which develop normal retinal layers, so analysis of the nuclear position of FLAG-positive cells with the retina is cell autonomous. Migration defects are assessed by differences in the skew of FLAG-labeled rods relative to the boundaries of the wild type ONL, which is marked by Hoechst nuclear stain (also a measure of the FLAG-negative rods). Wild type photoreceptors nuclei are not found within the INL, the nuclei in that layer belong to either horizontal cells or bipolar cells both of which are not targeted by our electroporation approach. As a control, we show that when wild type Arl3-FLAG was expressed FLAG-labeled rods were never observed within the INL. We have now included the % of displaced nuclei in Table 1.

      (3) The way that the authors showed the Y90C mutant of ARL3 is a fast-cycling mutant is not very compelling. In Figure 2C, the authors showed that ARL3 Y90C can bind to PDEδ, its effector, once it is pre-loaded with GTP. The authors also showed that the mutant can bind to its effector even without EDTA as long as an excess amount of GTP is added. The authors used endogenous ARL3 as a control to compare the effects between wild-type and mutants. I see that this experiment has multiple pitfalls. First, ideally, this type of experiment needs to be done with a purified protein using fluorescent guanine nucleotide/radioactive guanine nucleotide (e.g. nucleotide loading assay or nucleotide exchange assay) to directly access the kinetics of nucleotide exchange. However, I do understand that this is out of the authors' expertise. In the authors' experimental setting, I am not sure loading the protein with GTP in the presence of the EDTA means anything more than confirming that the protein is intact. Theoretically, wild-type and a fast-cycling mutant can load GTP with similar efficiency in the presence of EDTA. Then during immuno-precipitation, GTP falls off from the Y90C mutant faster than wild-type (because a fast-cycling mutant theoretically has a lower affinity to guanine nucleotides), assuming that GTP was not added during immuno-precipitation (GTP addition was not mentioned in the method, but could authors confirm this?). But in this case, the kinetic of GTP dissociation can be affected by many factors, including the presence of GAP in the reaction, the dissociation constant of Y90C, the volume of the buffer used, and the number of washing steps. Thus, it is not very easy to estimate the difference between wild-type and Y90C. Besides, using endogenous ARL3 rather than ARL3-wild type FLAG as a control can be dangerous. I have experienced that a tagged protein is cleaved to a protein that has a similar size to endogenous protein. (I expressed GFP-protein X in knockout cells lacking protein X, and saw the band at the position where the endogenous protein is observed in wild-type cells). So, the endogenous band that the authors showed could come from the cleaved FLAG-Arl3. (Authors can easily confirm this by having wild-type not expressing FLAG-tagged ARL3, though).

      An alternative experiment that I would suggest is doing immuno-precipitation in the buffer containing: 1) no guanine nucleotide, 2) 10mM GDP, or 3) 10mM GTP in the cells expressing the following protein: 1) ARL3 wild-type FLAG, 2) ARL3 Y90C FLAG, or 3) ARL3 D129N FLAG. 10mM guanine nucleotide should be added throughout the process including washing. This experiment might also be affected by many factors, but variability should be lower than the experiment presented in Fig 2C. ARL3-wild type FLAG is also a better control here than endogenous protein.

      Variability due to the factors you mention is a concern, but we were able to repeatedly obtain the same results using our method—admittedly our method is testing whether the mutated Arl3 can exchange under a certain condition more than exactly how. We know that we are not providing precise kinetics or elucidating the underlying mechanism for how these mutations lead to what we are calling fast cycling. While that information is important, it is outside the scope of this paper.

      As you mention, an important conclusion from the PDEδ binding experiments is that we confirm the Arl3-Y90C protein is intact by showing it can indeed bind nucleotide as long as there is an excess of GTP (Fig 2B. The interesting finding from these experiments is that Arl3-Y90C binds GTP even in the presence of magnesium, a behavior not observed for wild type Arl3. We feel that showing that endogenous Arl3 is not activated in the presence magnesium in each of our preparations is a lovely internal control. However, we agree that showing wild type Arl3-FLAG in these assays is an important negative control and have now included this blot as Fig 2-Sup Fig 1.

      (4) In Fig.3, the authors attempted to take a snapshot of the interaction between ARL3 and multiple effector proteins. The three bands that were enriched in the Q71L cells were found as RP2, UNC119, and BART by mass spec (Fig.3B). These bands were used as a readout for the subsequent experiments. I am not quite sure why the authors used this approach rather than using the cell line that expresses both FLAG-ARL3 and GFP tagged protein of interest, just like what the authors did in Fig3G. The reasons why I prefer the latter approach are the following: FLAG bands that correspond to the three proteins (RP2, UNC119, and BART) in wild-type cells are very close to the detection limit, 2) authors failed to confirm that the lowest band actually comes from BART, 3) authors cannot access some important effector proteins, such as PDEδ because 293 cells might not express them. All of the problems can be solved by using the approach that was taken in Figur 3G.

      If the authors chose the former approach because of some specific reason, I would appreciate it if the authors could explain that in the main text of the paper.

      In vitro crosslinking experiments were performed to test whether overexpression of Arl3 mutants resulted in an active cellular Arl3 without artificially changing any components of the GTPase cycle. We feel these experiments are highly elegant as they allow us to take a snapshot of native Arl3 activities without compromising the analysis by artificially altering GAP/GEF/effector interactions through overexpression or during lysis (as we show that the concentration of GTP/Mg could alter interactions in Fig 2). While AD293T cells are not rod photoreceptors, we are able to use this system to better understand how the Arl3 mutants alter the level of activity within the cell. Yes, this experimental assay is novel, but we confirmed the identity of the effectors by Western and mass spec, used positive and negative controls in each experiment, and show that the method is highly reproducible. We agree with Reviewers 2 and 3 that using this method to study the cellular activity of fast cycling Arl3 mutants is a strength of our paper.

      (5) ALR3 Y90C causes nuclear migration defect. Given that Y90C is a fast-cycling mutant (hyperactive) and has a high affinity to ARL13B, the nuclear migration defect might come from either the increased activity of ARL3 or sequestration of ARL13B, which can act as a GEF for ARL3 but potentially have other functions. If my understanding is correct, the authors concluded that the defect caused by ARL3-Y90C is likely due to hyper-activation of the protein, as Y90C/T31N mutant, which cannot bind to effectors but still retains the ability to capture ARL13B, did not cause migration defect. But I am a little confused by the fact that Y90C/R149H, which is unable to bind to ARL13B (Fig.2C) but still retains the ability to interact with the effectors (Fig.3F), did not have migration defect (Fig.7B). Wouldn't this mean that the sequestration of ARL13B could contribute to the phenotype?

      If my understanding is correct, the authors are trying to say that both hyper-activation of cytosolic ARL3 and the defect in endogenous ARL3 activation in cilium is necessary to cause migration defect. I am not very convinced by this hypothesis, and still think that the defect could be caused by sequestration of ARL13B to the cytoplasm.

      Then why Y90C/T31N did not cause the defect even though they can sequester ARL13B? This might be explained by the localization of the ARL13B mutants. If Y90C can localize to the cilium while the double mutant, Y90C/T31N, does not, then only Y90C might be able to inhibit the ARL13B function in the cilium. This could explain the lack of the defect in the cells expressing Y90C/T31N.

      It would be helpful to understand how exactly the fast-cycling mutant causes the defect if the authors can provide more information, including localization of ARL3 (wild-type and mutants) as well as key proteins, such as ARL13B and the effector proteins. Assessing ARL13B defect seems to be particularly important to me because ARL13B deficiency has been connected to neuronal migration defect (Higginbotham et al., 2012)

      What I am trying to say here is that how the defect is caused is likely very complex. So, providing more information without sticking to one specific hypothesis might be important for readers/authors to accurately interpret the data.

      Our data shows that for the fast cycling Arl3-Y90C mutation both features: blocking endogenous Arl3 activation in the cilium (through Arl13B binding) and increasing activity of Arl3-Y90C in the cell body are required to produce a nuclear migration defect. We find that we can rescue migration defects by either restoring activation in the cilium or reducing GTP activity outside the cilium. As long as there is more Arl3-GTP activity in the cilium, then the rod can handle aberrant Arl3-GTP activity in the cell body. The Y90C/R149H was a critical result that led to our hypothesis that there is a gradient between the two compartments that is used for proper migration. One interesting point is that absence of any activity does not produce the migration phenotype, further suggesting that an imbalance in the gradient is important.

      We performed new experiments to investigate whether Arl3-Y90C is sequestering Arl13B away from the cilium but found that localization of Arl13B (both endogenous and overexpressed) is not altered by expression of Arl3-Y90C – see Fig 3-SupFig 1-2.

      It is an interesting question as to how different Arl3-FLAG constructs are localized within the photoreceptor. Sadly, we did not analyze the data in a way that would allow us to draw any conclusion about the localization of different Arl3-FLAG constructs. In general, we observed FLAG localization throughout the photoreceptor cell and focused our imaging on the FLAG staining around the nucleus so we could further analyze ONL position. Looking back through our images, some of mutants might have a more prominent localization within a specific subcellular compartment (e.g. Arl3-D67V is more prominent in the inner segment than outer segment and Arl3-Y90C appears to have dominant outer segment localization). Likely, these differences represent each mutant binding a particular effector: D67V to RP2 and Y90C to Arl13B, which we show biochemically. Ideally, Arl3 mutant localization would be analyzed during development to provide a more direct link to the nuclear migration defect, a future direction for our lab. We have updated our manuscript to be more transparent about the potential differences in rod localization of Arl3 mutants.

      (6) The rescue experiments that the authors presented in Fig.5-6 are striking and would build a base for future therapy of the diseases caused by ARL3 defects. However, I believe more examinations are needed to accurately interpret the data. The authors did this rescue experiment by co-injecting ARL3-FLAG and chaperons/cargos if I understand the method section correctly. But I feel we can interpret this data correctly only when ARL3-FLAG and chaperons/cargos are co-expressed in the same cells. I think a better way to analyze the data might be by comparing the nuclear migration phenotype between ARL3-FLAG only and ARL3-FLAG;chaperons/cargos double-positive cells.

      Our lab has found that the initial estimates by the Cepko Lab that co-injection of two plasmids results in above 90% of rods expressing both proteins is accurate (see reference Matsuda and Cepko PNAS 2004). Since we only assess nuclear position of FLAG-labeled rods, it is true that a small percentage of cells in this analysis express the Arl3-FLAG mutant and not the chaperone/cargo; however, inclusion of these cells really only bolsters our findings as complete rescue would likely be even more robust than measured.

      Reviewer #2 (Public Review):

      The small GTPase Arl3 (Arf-like 3) is a well-characterized component of primary cilia, including the outer segment of photoreceptors, which contain specialized cilia. Arl3 is critical for the import of multiple lipid-modified proteins into cilia that are vital to ciliary function. Human mutations in Arl3 are reported to cause both autosomal recessive and dominant inherited retinal dystrophies, but the mechanisms through which these mutations disrupt photoreceptor development are not known. Here the authors show that two dominant Arl3 mutants, Arl3-D67V and Arl3-Y90C exhibit increased activity, but for different reasons. Arl3-D67V is constitutively active (unable to hydrolyze GTP), whereas Arl3-Y90C is a classic rapid-cycling mutant, able to bind GTP spontaneously (independent of its guanine nucleotide exchange factor Arl13) but still able to complete the GTPase cycle by hydrolyzing GTP. Expression of either mutant in developing murine retinas results in a nuclear migration defect, specifically aberrant localization of rod nuclei to the inner rather than outer nuclear layer. In this sense, they phenocopy another well-characterized constitutively active mutant, Arl3-Q71L. Normal nuclear distribution could be restored by overexpression of Arl3 effectors, suggesting that the active mutants disrupt nuclear migration, at least in part, by sequestering Arl3 effectors.

      While the data are reasonably clear and convincing, there are several instances where the conclusions drawn are either confusing or problematic. Specifically:

      1) Although retinal rod cells are ciliated in their outer segment, the authors never actually examine ciliation here. Their only morphological readout is nuclear migration. How does nuclear migration failure impact ciliogenesis in the outer segment?

      Imaging was performed in mature retinas at P21 after outer segment formation is completed. Electroporation only targets a small population of cells for which we observed normal outer segments structures in all conditions tested — therefore we conclude that ciliogenesis is unaffected. Previous literature has also showed that defects in rod nuclear migration do not affect ciliation of the outer segment.

      2) The Arl3-Y90C mutant seems to act physiologically more like a dominant-negative than an activated mutant. A second mutation in Y90C (R149H) that blocks binding to the GEF Arl13 abrogates the nuclear migration defect, suggesting that Y90C is preventing activation of endogenous Arl3 by sequestering the GEF. Yet overexpression of effectors or cargos still rescues nuclear migration in the presence of Y90C, suggesting that it also sequesters effectors. How do the authors explain this?

      We agree with this interpretation. We have now included language about Arl3-Y90C’s role as a dominant negative in that it blocks Arl13B activity. The interesting caveat to this black and white usage is that blocking Arl13B would suggest a reduction in endogenous Arl3 activity in rods (which we find to be true, see Fig 5A). However, the migration defect phenotype mimics overly active Arl3 (Arl3-Q71L) and not a loss of function in Arl3 (Arl3-T31N). Using in vivo crosslinking experiments, we show that the fast cycling nature of Arl3-Y90C also causes GEF-independent activation of Arl3 (Fig 4D-E) that leads to the migration defect. Our rescue data shows that only the combination of both effects – reduced Arl3 activity in the cilium and GEF-independent Arl3 activation outside the cilium - is enough to disrupt the ciliary gradient and produce the migration defect.

      3) Fig. 1 suggests that an Arl3-T31N mutant has no phenotype. This is a canonical mutation in small GTPases that typically renders them dominant negative. The lack of phenotype is surprising since most dominant-negative mutants act by sequestering their GEFs, thereby preventing activation of the endogenous GTPase. Fig. 2C suggests that this may not be the case for Arl3-T31N, which binds Arl13 only weakly. Some of this confusion may arise from the fact that Arl13 is not a typical GEF. It is very unusual for one GTPase to directly promote nucleotide exchange on another. Does Arl3-T31N affect ciliation in the rod outer segment, or in other ciliated cells? Some discussion of this point is warranted here.

      Our paper finds that Arl3 mutants must produce an aberrant activity outside the cilium, whether through constitutive activity (seen for D67V and Q71L) or fast cycling (seen for Y90C and D129N) to cause the migration defect. Since T31N does not cause excess Arl3 activity in cells (see Fig 4) even if it does have some dominant negative activity toward Arl13B, then it is still not enough to cause the migration phenotype. This was directly tested in Fig 5, where we increase T31N binding to Arl13B by introducing Y90C/T31N and still do not see migration defect. Our results are also in line with a previous study showing that despite rapid photoreceptor degeneration in a retina-specific conditional Arl3 knockout mouse the outer segments were initially formed, in contrast the retina-specific conditional Arl13B knockout mouse did disrupt photoreceptor ciliogenesis leading to a more rapid degeneration (Hanke-Gogokhia, JBC 2017). Since complete loss of Arl3 activity did not disrupt ciliogenesis, it is unlikely that expression of Arl3-T31N in wild type retinas would alter outer segment formation, and we observed that outer segments formed in all Arl3 mutants.

      4) Oddly, Arl3-Y90C does robustly bind Arl13 (Fig. 2C), while at the same time binding to effectors (Fig. 3D/E), although less strongly than the canonical Q71L constitutively active mutant (Fig. 2A). As noted in point #2, the Y90C/R149H double mutant, which fails to bind Arl13, abrogates the nuclear migration defect observed with Y90C alone. Although the authors refer to Y90C as "rapid cycling" its phenotype is more similar to a dominant-negative than an activated mutant.

      We agree with this interpretation. We have now included language about Arl3-Y90C’s role as a dominant negative in that it blocks Arl13B activity. However, the rapid cycling behavior is important to cause the phenotype.

      5) The authors also mention that loss of Arl3 has no phenotype in their assay, however, Arl3 knockout mice exhibit severe retinal degeneration. How do they explain this?

      Our study finds that not all human Arl3 mutations will target the same cellular process even though they all result in degeneration. Arl3 knockout mice show drastic alterations in lipidated protein trafficking to the rod outer segment in mature retinas, a phenotype that we did not observe by expressing the dominant Arl3 mutants in wild type rods. Since our tools are not designed to study degeneration of rods, the precise mechanisms of degeneration caused by loss of function or dominant mutations remains to be determined. We outline some ideas in the discussion, but more work needs to be done before making any big statements regarding this. We hope that our manuscript will inspire clinicians to take a closer look at human patients to determine if there are subtle differences between disease presentation for dominant and recessive forms Arl3 inherited mutations. This is beyond the scope of our expertise.

      Reviewer #3 (Public Review):

      This work provides mechanistic insights into two recently described dominant variants of Arl3, a small GTPase, namely mutations D67V and Y90C. The authors identified a phenotype of these dominant variants during the development of rod photoreceptors by in vivo experiments in mice. They specifically observed a defect in rod nuclear migration to their final outer nuclear layer. This phenotype has been previously observed in another constitutively active variant of Arl3, Q71L. The authors performed a series of extensive and thorough biochemical assays to clarify the mode of action of these variants, mostly the Y90C variant, comparing the behavior of these variants to previously described mutants and combining multiple variants by mutagenesis. They also developed a new in vivo crosslinking strategy to be able to identify transient states of protein-protein interactions. They finally performed phenotypic rescue experiments by co-expression of various relevant proteins interacting/involved with Arl3. They finally propose a model based on differential subcellular compartmentalization of Arl3 activation which when disrupted leads to rod nuclei misplacement. These data add to the current understanding of contribution of different Arl3 variants causing human retinal degeneration, which has strong potential translational implications.

      Strengths:

      Relevance of Arl3 dominant variants to human retinal degeneration. Identification of Y90C variant as a "fast cycling" GTPase, and not as a predicted destabilizer of the protein structure.

      New method of crosslinking to enable snapshots of endogenous protein-protein interactions.

      Weaknesses:

      • The relevance of this study is justified by the fact that newly identified dominant variants of Arl3 have been associated to retinal degeneration. However, the authors never assess a degeneration phenotype.

      Electroporation technique allows for rapid expression of constructs, but the sparse expression makes it a poor means to study retinal degeneration. This is important to examine in the future using robust genetic mouse models.

      • The authors show new dominant variants of Arl3, namely Y90C and D67V, cause rod nuclear mislocalization. This phenotype is interesting but this was previously observed with other constitutively active mutation of Arl3, Q71L, and therefore is not novel.

      Yes, the Q71L paper is well cited in our manuscript and set the basis for many of our experiments.

      • The main claim of this paper is that subcellular compartmentalization of Alr3 activation to the cilium (the so called gradient by the authors) is required for proper rod nuclear migration to their final outer nuclear layer destination. The authors provide multiple experiments to support this model, but this is never directly demonstrated.

      We are not aware of any methods that could be done to directly show the subcellular localization of active Arl3-GTP within rod photoreceptors. We agree that we have provided many experiments that support our hypothesis that altering the Arl3-GTP gradient between cilium and cell body produces a nuclear migration defect. Some of our favorites include Fig 6, where we find that the migration phenotype is only rescued with expression of ciliary cargos and not rescued by non-ciliary cargos. Also, the new data requested by reviewers showing Arl13B expression in the cilium can restore the Y90C defect further supports that the Arl3 ciliary gradient is necessary for proper nuclear migration.

    1. Author Response

      Reviewer #1 (Public Review):

      Pan et al. examined the role of oligodendroglial exocytosis, and specifically the role of L-type prostaglandin D synthase (LPGDS), in modulating oligodendrocyte differentiation and myelination. The topic of autocrine and paracrine signaling within the oligodendrocyte lineage is under-studied and the authors use a novel approach for oligodendrocyte precursor-specific inhibition of VAMP-mediated exocytosis using inducible expression of botulinum toxin with the PDGRFa-CreER transgenic mouse line (PD:ibot). Using a combination of in vitro culture systems and immunohistological analysis in vivo, the authors find ibot expression in OPCs leads to reduced oligodendrogenesis and myelination, leading to a behavioral deficit in rotarod performance. Additional transcriptomic analysis in PD:ibot mice revealed Ptgds, the gene encoding LPGDS, was significantly overexpressed in both mature oligodendrocytes and OPCs. Further pharmacological experiments with cultured OPCs showed direct LPGDS inhibition led to a similar inhibition of oligodendrogenesis as PD:ibot mice. Together, this study reveals VAMP-mediated exocytosis in OPCs is required for normal oligodendrogenesis and identifies LPGDS as a new chemical regulator of oligodendrocyte myelination. These findings are strengthened by careful characterization of the PD:ibot mouse line and effective use of culture systems and pharmacology to uncover a cellular mechanism. Quantification is performed at several levels of resolution using immunohistochemistry, electron micrography, and protein/transcriptomic analyses and control experiments were largely carefully considered.

      We thank the reviewer for recognizing the strength of our study.

      Despite these strengths, there are some points that need to be further addressed. The interpretation of autocrine/paracrine signaling relies on a critical culture experiment in which PD:ibot OPCs were cultured in the presence of PD:ibot or control OPC well inserts. However, these results had a marginal effect size, raising questions as to the extent to which VAMP inhibition specifically had effects through the blockade of exocytosis (resulting in an autocrine/paracrine signaling deficit) or inhibited oligodendrogenesis in a cell-intrinsic mechanism (e.g. VAMP-dependent trafficking of critical myelination components, such as PLP (Feldmann et al., 2011)).

      We agree with the reviewer that both cell autonomous and cell non-autonomous effects may contribute to the defect associated with VAMP inhibition. We performed additional experiments to investigate the contribution of cell non-autonomous mechanisms. We took advantage of the fact that all OPCs purified from PD:ibot mice were not botulinum-GFP-expressing (efficiency ~65% Figure 6B, page 24). The GFP- cells in PD:ibot OPC cultures did not express botulinum toxin and were competent in exocytosis. We compared the development of GFP- control cells in cultures generated from PD:ibot mice vs. control cells in cultures generated from control mice. Interestingly, we found that the percentages and sizes of lamellar cells in control cells in PD:ibot cultures were smaller than in control cells in control cultures (Figure 6C, D text page 25). Although both groups of cells were competent in exocytosis, they were surrounded by exocytosis-deficient vs. exocytosis-competent neighbor cells. The differences in the growth capacity of control cells in the presence of different neighbor cells reveal cell non-autonomous contributions of botulinum-expressing cells in oligodendrocyte development.

      As described above under Essential Revisions 4), we performed additional experiments on the role of the secreted protein L-PGDS in oligodendrocyte development. We found that adding a protein that inactivates PGD2, HPGD extracellularly to oligodendrocyte cultures inhibited their development (Figure 7F, G, page 33). Adding L-PGDS protein extracellularly to PD:ibot oligodendrocyte cultures rescued their development defect (Figure 9A, B, page 33). Moreover, overexpressing Ptgds in PD:ibot mice partially rescued the myelination defect (Figure 9E-H, page 36). These observations further strengthened our conclusion that cell non-autonomous mechanisms contribute to the effect of botulinum toxin on oligodendrocyte and myelin development.

      Nevertheless, these results do not rule out the cell autonomous effect of botulinum on oligodendrocyte development and, therefore, we included the potential contribution of both cell autonomous and cell non-autonomous mechanisms in the text.

      Additionally, the authors claim the reduced number of oligodendrocytes in PD:ibot mice in vivo is not due to oligodendrocyte apoptosis and provide evidence by cleaved caspase-3 immunostaining of the cerebral cortex. While statistically not significant, the data is highly variable.

      We thank the reviewer for pointing out the variability of the caspase-3 results. We performed a more thorough analysis of activated caspase-3 at multiple developmental stages. Again, we did not find any statistically significant difference in apoptosis between PD:ibot and control oligodendrocytes, OPCs, or cells of other lineages (Figure 3-figure supplement 1, text page 13).

      If true, this would suggest oligodendrocyte differentiation is inhibited, which would coincide with a reduction of OPC proliferation. A complementary experiment comparing the rates of OPC proliferation between control and PD:ibot mice in vivo would provide further clarity on how oligodendrocyte density is being reduced.

      We analyzed OPC proliferation in vivo by staining and quantifying Ki67+PDGFRa+ cells. Intriguingly, we found a modest increase in OPC proliferation in PD:ibot mice (Figure 3-figure supplement 3, text page 14).

      The relevance of these myelination deficits is assessed with a rotarod assay, however, the mice used for these experiments are several times older (2-5 months) than those used for all other histological quantification (P8-P30). The large variance in results could be due to age-related differences in myelination, and it is unclear whether the deficits at early timepoints show a linear progression with age.

      We thank the reviewer for the insightful comment. We have separately labeled data points from 2 months old and 5 months old mice (Figure 3Q-S, text page 17). With the data we have so far (n=20-27 per genotype), there isn’t a striking progression of phenotype with age. Future analysis at multiple time points may resolve any age-dependent changes in the phenotype.

      Reviewer #3 (Public Review):

      The authors pose an important question of whether oligodendrocyte lineage cells have an autocrine/paracrine signaling loop that contributes to their differentiation and myelination. While prior studies have demonstrated oligodendrocyte lineage cells have cell-intrinsic pathways that impact differentiation and myelination, there isn't a strong precedent for oligodendrocytes to promote their own differentiation via autocrine/paracrine mechanisms. The notion that oligodendrocyte lineage cells promote their own differentiation in an autocrine/paracrine manner is an intriguing one that adds a new layer to our understanding of how oligodendrocyte maturation is controlled. I anticipate this paper will prompt a new direction of future investigations to uncover the extent of oligodendrocyte autocrine/paracrine signaling.

      To test the possible role of oligodendrocyte-secreted molecules on oligodendrocyte development, Pan et al. utilized a mouse model where the release of a subset of secretory vesicles (specifically VAMP1/2/3-dependent vesicles) is blocked. Blocking this vesicular release prevented or delayed the differentiation of oligodendrocytes in vivo and in vitro. Further, the authors identified changes to the mRNA and secreted protein levels of prostaglandin D2 synthase (L-PGDS). Prior RNA sequencing and snRNA sequencing datasets of the oligodendrocyte lineage have identified Ptgds as a highly abundant mRNA transcript in oligodendrocyte lineage cells, particularly mature oligodendrocytes. Ptgds encodes L-PGDS, which has an unknown role in oligodendrocyte function. L-PGDS has been shown to regulate Schwann cell myelin formation in the peripheral nervous system, prompting the question of whether this protein acts similarly in the central nervous system. The paper has a clear set of well-rounded experiments, with a few remaining points that would strengthen the conclusions:

      We thank the reviewer for the positive comments on our study.

      One of the foundational conclusions of the study is that VAMP1/2/3-dependent exocytosis is critical to oligodendrocyte maturation, by using a PDGFRa-CreER mouse line combined with iBot mice that express botulinum toxin in Cre-expressing cells (abbreviated as PD:iBot). Prior work has demonstrated in vitro that oligodendrocyte morphological maturation, myelin gene expression and myelin protein transport can all be impacted by the loss of VAMPs, including VAMP3. This paper establishes the importance of these SNARE proteins in the oligodendrocyte lineage in vivo: the number of mature (CC1+) oligodendrocytes and myelin basic protein staining is substantially reduced in PD:iBot mice.

      1) The data in Figure 3M suggests that PD:iBot oligodendrocytes (GFP+) are lacking MBP+ sheaths and that any myelin formed is by the smaller percent of oligodendrocytes that do not express botulinum (GFP- cells). Furthermore, the efficiency of iBot expression (as evaluated by GFP+ cells) shows that 80% of OPCs and just 60% of oligodendrocyte lineage cells express GFP at P8 and supplementary data shows just 30% of oligodendrocyte lineage cells express GFP at P30. This raises the question of whether PD:iBot cells are unable to differentiate and die. While the authors show no change in caspase-dependent apoptosis in PD:iBot cells in vivo and in vitro, the data still suggests that blocking VAMP-dependent exocytosis itself slows or prevents the progression to a fully myelinating oligodendrocyte in vivo rather than the putative autocrine/paracrine signals are required for OPC differentiation. Confirming whether botulinum-expressing cells also contribute to the population of surviving, differentiated oligodendrocytes in vivo to strengthen the conclusions that autocrine/paracrine secreted molecules contribute to the oligodendrocyte maturation in vivo.

      We thank the reviewers for raising a key point in characterizing the consequence of botulinum toxin expression in oligodendrocyte-lineage cells. We analyzed the overlap between GFP+ botulinum-expressing cells and the population of differentiated oligodendrocytes (Olig2+PDGFRa-CC1+ cells) and found that botulinum-expressing cells can survive and become differentiated oligodendrocytes (Figure 3-figure supplement 2, text page 14). Additionally, we performed a more thorough analysis of activated caspase-3+ apoptotic cells than was included in first submission and did not detect statistically significant differences between PD:ibot and control mice (Figure 3-figure supplement 1, text page 13).

      2) The paper has complementary in vitro data to pinpoint a mechanism that results in hindered oligodendrocyte maturation. The authors conduct a well-designed set of in vitro co-culture experiments in Fig4 K-M that led them to conclude oligodendrocyte morphology is impacted by secreted molecules from other oligodendrocytes.

      2a) The key experiment is the transwell co-culture experiment with control and iBot cells, which suggests that blocking secretion itself has the predominant impact on cell morphology: by eye, both group3 and 4 show the largest reduction in lamellar area and the difference between group 3 and 4 is slight. At day 3 of culture (Fig 4E), the authors show the clearest effect as a reduction in cells with lamellar morphology. The quantification of the lamellar cell area is less obvious than the % of cells with arborized vs lamellar shape, as seen in Figures E & F. I would recommend that the authors show representative images of these observations and quantification of morphologies for the transwell experiments. The impact of secreted factors may be clearer with this measure.

      We added representative images (Figure 6G). We quantified both the % and size of lamellar cells. The size of lamellar cells is significantly higher in group 4 than in group 3. Although the % of lamellar cells is numerically higher in group 4 than in group 3, the difference is not statistically significant. To further assess whether cell non-autonomous mechanisms contribute to the oligodendrocyte development defect in PD:ibot mice, we performed additional analysis in culture. We took advantage of the fact that all OPCs purified from PD:ibot mice were not botulinum-GFP-expressing (efficiency ~65% Figure 6B). The GFP- cells in PD:ibot OPC cultures did not express botulinum toxin and were competent in exocytosis. We compared the development of GFP- control cells in cultures generated from PD:ibot mice vs. control cells in cultures generated from control mice. Interestingly, we found that the percentages and sizes of lamellar cells in control cells in PD:ibot cultures is smaller than in control cells in control cultures (Figure 6C, D, text page 25). Although both groups of cells were competent in exocytosis, they were surrounded by exocytosis-deficient vs. exocytosis-competent neighbor cells. The differences in the growth capacity of control cells in the presence of different neighbor cells reveal cell non-autonomous contributions of botulinum-expressing cells in oligodendrocyte development.

      2b) On a related note, the cell morphology data is dependent on MBP staining. The authors show that MBP protein is reduced in cells from iBot mice. Since MBP+ cell area/arborized or lamellar structure is being quantified, there remains the possibility that the cells could display a more complex morphology (lamellar) that may be missed by only staining for MBP. The authors use a CellMask dye to show cellular morphology, which is a great idea. The authors state that it labels the plasma membrane; however, the methods (and images) indicate that a cytoplasmic CellMask was used (cat.no. H32720 labels nuclei and cytoplasm, not membranes). These conclusions about cell morphology vs simply MBP expression would be strengthened by an alternative membrane label (e.g., a CellMask plasma membrane dye).

      We thank the reviewers for the insightful suggestion. We used the membrane version of CellMask and repeated the transwell co-culture experiment. The new results are consistent with the results based on MBP (Figure 6-figure supplement 1, text page 23). In addition, we used the membrane version of CellMask for all the new cell culture experiments (L-PGDS rescue, HPGD etc.)

      3) The authors sought to identify what secreted factors may be affected by blocking VAMP1/2/3-dependent exocytosis. Pan et al. opted for a strategy of examining transcriptional changes, asserting that important genes may be upregulated in response to compensate for blocked secretion. While this is an indirect way to identify secreted candidates, the authors found a fortuitous result that Ptgds was substantially increased in the PD:iBot oligodendrocyte cells. To confirm that L-PGDS secretion is reduced from iBot cells, the authors show Western blots. By eye the change in L-PGDS is variable, however, the authors conduct several experiments with an inhibitor and product of L-PGDS that nonetheless indicate L-PGDS activity can contribute to the morphological maturation of oligodendrocytes. A caveat is that the AT-56 inhibitor reduces MBP+ cells, and the quantification of morphology is dependent on MBP staining (again, see my note in 2b about the CellMask dye). A report on differentiation (% MBP+ cells) may be a more accurate reflection of the result.

      We repeated the AT-56 experiment using the membrane version of CellMask and again found that AT-56 inhibits oligodendrocyte maturation (Figure 7-figure supplement 2, text page 33).

      The key, compelling experiment demonstrating the role of prostaglandin D2 is the authors' rescue experiment in Fig 4G.

      As described above under Essential Revisions 4), we performed additional rescue experiments on the role of L-PGDS in oligodendrocyte development. We found that adding L-PGDS protein extracellularly to PD:ibot oligodendrocyte cultures rescued their development defect (Figure 9A, B, page 34). Moreover, overexpressing Ptgds in PD:ibot mice partially rescued the myelination defect (Figure 9E-H, page 36).

      4) Although it's not a direct demonstration that L-PDGS secretion from oligodendrocytes is the key factor, the global L-PDGS knockout mice phenocopy many of the observations of the PD:iBot mice. This is a nice set of observations consistent with the author's hypothesis that L-PDGS impacts oligodendrocyte maturation. Future work should pinpoint whether oligodendrocyte-derived L-PDGS is critical.

      We agree with the reviewer that pinpointing whether oligodendrocyte-derived L-PGDS promotes oligodendrocyte development and myelination is an interesting direction to pursue in future work. We are breeding L-PGDS conditional knockout mice to address this question and may report the results in a separate paper in the future.

      Minor points:

      1) The authors demonstrate that PD:iBot expresses botulinum and loses VAMP2 protein levels in oligodendrocyte lineage cells, but there is no demonstration of whether VAMP3 is expressed or similarly affected. Prior work has demonstrated in vitro that oligodendrocytes express both VAMP2 and VAMP3 (VAMP1 not detected). This would more clearly demonstrate which VAMP-mediated vesicular transport is blocked for the effects observed.

      We agree with the reviewer and examined VAMP3 levels with Western blot. We found diminished levels of VAMP3 in oligodendrocyte-lineage cells from PD:ibot mice (Figure 1 J, M, text page 10).

      2) It is satisfying to observe a behavioral effect in the PD:iBot mice. I would advise caution in interpreting any direct link between oligodendrocytes maturation and the rotarod behavioral difference at this time. Blocking secretion from PDGFRa-Cre expressing cells may have many indirect effects (beyond myelination) in both the CNS and other cell types that can express PDGFRa and VAMPs1/2/3. I was pleased that the authors did not conclude any direct links at this time.

      We agree with the reviewer.

      Overall, the authors had a well-rounded manuscript with clearly described and thoughtful experiments. The data support the conclusion that VAMP-mediated exocytosis is critical for oligodendrocyte maturation. The evidence that reduced L-PDGS secretion from the oligodendrocytes can explain the effects of the iBot mice is not as clear cut, but their data does demonstrate that L-PDGS is an important molecule for the differentiation of oligodendrocytes. This work will lead a new direction for future studies to investigate autocrine/paracrine signaling in oligodendrocyte maturation.

      We thank the reviewer for the positive comments on our manuscript. As detailed in Essential Revisions 4), we now provide additional evidence on the potential contribution of L-PGDS in the oligodendrocyte development defect in PD:ibot mice.

    1. Author Response

      Reviewer #3 (Public Review):

      Garratt et al. investigated that transient exposure of young mice during their first two months of life with olfactory cues from con-specific adults would have long-lasting effects on their late-life health and lifespan. They find that the olfactory cues have sex-specific effects on lifespan, which only the lifespan of young females can be extended by odours from adult females but no other combinations, neither young females with adult males nor young males with either sex. Interestingly, their data also suggested that depletion of G protein Gαo in the olfactory system played no role in the lifespan extension, indicating it might be another unknown factor(s) mediating this sex-specific effect on longevity in mice. While the conclusions of this study are well supported by the data, there are some issues with parts of the data analysis and presentation that would need to be clarified and extended.

      1) The authors suggested that the G protein Gαo played no role in lifespan extension in the case that transient exposure of young females with olfactory cues from female adults, as they showed in Figure 1. However, it is not clear if the depletion of G Gαo (Gαo mutant) itself has effects on lifespan, compared to its wild type. It would be important to show the lifespan curves from wild type and Gαo mutant individually alongside the pooled lifespan curves, as well as regarding data in a table, followed with a proper discussion.

      Data for genotypes is now shown individually.

      2) Regarding the functional tests, the authors showed that there was only a small fraction of experiments showed differences between treatments, which were all in figure 2. However, it is necessary to also show the data with no differences, particularly since the conclusion of the study suggested the underlying mechanisms are not clear yet. In my opinion, body weight, plasma glucose, and body temperature all deserve to have their figures individually with all data points.

      This data is now shown.

      3) As the authors mentioned in the Introduction, the age at sexual maturity correlates positively with the median lifespan across mice strains (Yuan et al. 2012, Wang et al. 2018). Also, young female mice that were exposed to male odours during their developmental stage accelerated sexual maturity (Drickamer 1983), and the same happened to young males that were exposed to the odours from the opposite sex (Vandenbergh 1971). It is, therefore, surprising to see in this study, the exposure of young females or young males to the olfactory information from their opposite sex had no effects on lifespan. One of the solutions to solve this disparity is to measure the sexual maturity of the mice in this study. The authors should seek the possibility to check the record of when the first litter of pups was born between treatments (Shindyapina et al. 2022) or examine preputial separation and vaginal opening (Hoffmann 2018), for instance.

      The animals used in the lifespan experiment were not allowed to breed so as not to interfere with the lifespan assessment. Similarly, we did not check animals within the lifespan experiment for sexual maturity as we wanted to minimize the handling of animals after weaning, and this requires daily handling and/or vaginal swabbing.

      We conducted a preliminary experiment prior to the main lifespan experiment (in UM-Het3 mice) to test whether sexual maturity was modulated in the expected directions with the odour exposure protocol we planned to impose. This experiment showed that the odor manipulation we applied has the expected effects on sexual maturity. We have now outlined this experiment and its results in the methods section of the paper to justify the odor treatment protocol.

  4. Nov 2022
    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, the author characterizes the lattice of kinesin-decorated microtubule reconstituted from porcine tubulins in vitro and Xenopus egg extract using cryo-electron tomography and subtomogram averaging. Using the SSTA, they looked at the transition in the lattice of individual microtubules. The authors found that the lattice is not always uniform but contains transitions of different types of lattices. The finding is quite interesting and probably will lead to more investigation of the microtubule lattice inside the cells later on for this kind of lattice transition.

      The manuscript is easy to read and well-organized. The supporting data is very well prepared.

      Overall, it seems the conclusion of the author is justified. However, the manuscript appears to show a lack of data. Only 4 tomograms are done for the porcine microtubules. Increasing the data number would make the manuscript statistically convincing.

      One tomogram can contain one to several tens of microtubules. For example, 64 microtubules were analyzed in the Xenopus-DMSO dataset obtained on 5 tomograms, versus 24 microtubules for the GTP-dataset obtained on 4 tomograms (see Table 1). Hence, taking the number of tomograms to assess the statistical relevance of our work cannot be considered as a valid criterion. Tomograms are taken randomly on the EM-grid sample, solely based on ice quality and the covering of microtubules in the holes as determined at low magnification before tomographic acquisition. No prior knowledge of the structure and lattice-type organization of the microtubules can be obtained before acquisition. It appears to us that a more pertinent criterion is the number of events that we characterized, specifically lattice-type transitions along individual microtubules. In the dataset mentioned by the referee (see Figure 2-figure supplement 3-4 and Table I), 24 microtubules were analyzed and further divided into 195 segments, providing an equivalent number of individual 3D reconstructions. For each 3D reconstruction, almost all lateral interactions could be characterized in terms of lattice-type, i.e., 2091 of the B-type, 460 of the A-type, and 112 not determined (essentially at transition regions). Most importantly, we document in this specific dataset 119 transitions in lattice-type, which we think is sufficient to characterize such molecular events and provide solid statistics for this dataset. Adding the GMPCPP and Xenopus data, we end-up with 938 individual 3D reconstructions (not including the full-length microtubule volumes), 12 463 lateral interactions analyzed (A-, B-, or ND-type), and the observation of 172 lattice-type transitions. Therefore, we respectfully disagree with the referee stating that our work lacks data.

      To highlight the quantity of data used in our work, we have modified the following sentences: L124-131: ' Analysis of 24 microtubules taken on 4 tomograms, representing 195 segments of ~160 nm length (i.e., 2664 lateral interactions), allowed us to characterize 119 lattice type transitions with an average frequency of 3.69 µm-1 (Table 1), but with a high heterogeneity' L160-164: ' Analysis of 31 GMPCPP-microtubules taken on 6 tomograms, representing 338 segments of ~150 nm in length (i.e., 3236 lateral interactions), and using the same strategy as in the presence of GTP (Figure 5—figure supplement 1-2) revealed a transition frequency of 1.25 µm-1 (Table 1), i.e., ~3 fold lower than microtubules assembled in the presence of GTP.' L200-203: ' A total of 64 microtubules taken on 5 tomograms were analyzed in the Xenopus-DMSO dataset (i.e., 419 segments from which we characterized 5446 lateral interactions), and 15 microtubules taken on one tomogram for the Xenopus Ran-dataset (i.e., 86 segments from which we characterized 1118 lateral interactions), (Table 1).'

      In addition, having the same transition with the missing wedge orientation randomly from different subtomograms will allow a better average of transition without the missing wedge artifact.

      In this work, we did not aim at averaging transitions. Transitions in lattice-types are highly heterogeneous in nature, and we wonder what additional information an averaging strategy would have provided. Conversely, each transition is a unique event that we characterized to obtain useful statistics, and the missing data at high angle inherent to electron tomography were not an obstacle to fulfill this task.

      Another thing that I found lacking is the mapping of the transition region/alignment in the raw data.

      In Figure 4, we clearly show the correspondence between the segmented sub-tomogram averages (SSTA) and the raw filtered images at the transition region. This is also the case in Figure 5 where the SSTA (Figure 5A) are compared with the raw tomogram (Figure 5B), and where we clearly visualize the holes that result from the transitions in lattice types.

      However, it is not easy for me or the reader to understand how each segment is oriented relative to each other apart from the simplified seam diagrams in the figures, and also the orientation of the seam corresponding to the missing wedge in the average. With these improvements, I think the conclusion of the manuscript will be better justified.

      The segmentation process is explained in Figure 2-figure supplement 2 and in the Materials and Methods section, which shows that each segment is linearly related to the next. Small rotations can happen between individual segments, and it is important to check that the same protofilaments are followed during the initial modeling (see the online tutorial referenced in the manuscript for full-length microtubules). The segment models are derived from that of the full-length microtubule, as explained in the Materials and Methods section, using a new routine (splitIntoNsegments) implemented into the PEET program. In addition, a detailed protocol describing our SSTA strategy will be submitted following publication of our manuscript.

      Reviewer #2 (Public Review):

      Differences in protofilament and subunit helical-start numbers for in vitro polymerized and cellular microtubules have previously been well characterized. In this work, Guyomar et al. analyze the fine organization of tubulin dimers within the microtubule lattice using cryo-electron tomography and subtomogram averaging. Microtubules were assembled in vitro or within Xenopus egg cytoplasmic extracts and plunge frozen after addition of a kinesin motor domain to mark the position of tubulin dimers. By generating subtomogram averages of consecutive sections of each microtubule and manually annotating their lattice geometry, the authors quantified changes in lattice arrangement in individual microtubules. They found in vitro polymerized microtubules often contained multiple seams and lattice-type changes. In contrast, microtubules polymerized in the cytoplasmic extract more frequently contained a single seam and fewer lattice-type transitions.

      Overall, their segmented subtomogram averaging approach is appropriately used to identify regions of lattice-type transition and quantify their abundance. This study provides new data on how often small holes in the lattice occur and suggests that regulators of microtubule growth in cells also control lateral tubulin interactions. However, not all of the claims are well supported by their data and the presentation of their main conclusions could be improved.

      1 - We have corrected approximative claims and conclusions where necessary. In particular, we now discuss separately the Xenopus-DMSO and the Xenopus-Ran egg extract samples, and have modified our conclusions accordingly. We also deposited onto the EMPIAR all tomograms and PEET models to reproduce the 938 segmented sub-tomogram averages analyzed in this study (see new Supplementary file 2).

      Reviewer #3 (Public Review):

      Protofilament number changes have been observed in in vitro assembled microtubules. This study by Guyomar and colleagues uses cryo-ET and subtomogram averaging to investigate the structural plasticity of microtubules assembled in vitro from purified porcine brain tubulin at high concentrations and from Xenopus egg extracts in which polymerization was initiated either by addition of DMSO or by adding a constitutively active Ran. They show that the microtubule lattice is plastic with frequent protofilament changes and contains multiple seams. A model is proposed for microtubule polymerization whereby these lattice discontinuities/defects are introduced due to the addition of tubulin dimers through lateral contacts between alpha and beta tubulin, thus creating gaps in the lattice and shifting the seam. The study clearly shows quantitatively the lattice changes in two separate conditions of assembling microtubules. The high frequency of defects they observe under their microtubule assembly conditions is much higher than what has been observed in vivo in intact cells. Their observations are clear and supported by the data, but it is not at all clear how generalizable they are and whether the defect frequencies they see are not a result of the assembly conditions, dilutions used and presence of kinesin with which the lattice is decorated. The study definitely has implications for mechanistic studies of microtubules in vitro and raises the question of how these defects vary for protocols from different labs and between different tubulin preparations.

      1 - High tubulin concentration: It has been documented by many laboratories since the discovery of tubulin and the characterization of its assembly properties that a sufficient concentration of free tubulin is necessary to self-assemble microtubules. This is called the critical concentration for self-assembly (the CC, i.e., the critical concentration to overcome the nucleation barrier), and has been reported to be in the range 14~25 µM in the presence of GTP depending on laboratories. For example, in the seminal work of Mitchison and Kirschner the CC was estimated at 14 µM (Fig. 5 of ref. (Mitchison & Kirschner, 1984b)) and self-assembly was induced at concentrations in the range 32-59 µM (Mitchison & Kirschner, 1984a). Our own estimate of the CC for porcine brain tubulin was 21 µM (Fig 2C of (Weis et al., 2010)), and we routinely use a tubulin concentration slightly above the CC when we aim at robust microtubule self-assembly. Hence, we argue that 40 µM, which is ~twice the CC, cannot be considered as a "very high" tubulin concentration to induce microtubule self-assembly.

      2 - Protofilament number and lattice-type transitions in cells: While microtubules with protofilament numbers different than 13 have been observed in different cell types and species (reviewed in (Chaaban & Brouhard, 2017)), we are aware of only one recent study where changes in protofilament numbers along individual microtubules have been reported in cells (Foster et al., 2021), but with no statistics concerning their frequencies. Hence, we cannot compare changes in protofilament number frequencies in Xenopus egg extracts with those that occur in intact cells. Concerning lattice-type transitions, we are not aware of any previous study that documented such features, whether in vitro or in cells.

      3 - Generalization of our results, source of tubulin and protocols: Multi-seams in microtubules assembled in vitro have been reported by several groups in the past (see our Introduction, L49-62), starting from (Kikkawa et al., 1994), the Milligan group (Dias & Milligan, 1999; Sosa et al., 1997), and more recently by the Sindelar group (Debs et al., 2020). In Kikkawa et al. (1994), the authors purified tubulin from porcine brain by three cycles of assembly/disassembly followed by phosphocellulose chromatography. Assembly was carried out at 24 µM in the presence of Taxol. In Sosa and Milligan (1996-1997), the authors used a commercial source (Cytoskeleton) and assembled the microtubules at 30 µM in the presence of Taxol. In Debs et al. (2020), the authors used tubulin purified from porcine brain according to (Castoldi & Popov, 2003), as we did, to assemble GMPCPP microtubules, and bovine brain tubulin (Cytoskeleton) to assemble Taxol-stabilized microtubules. Noticeably, they used an initial tubulin concentration of 100 µM to initiate microtubule polymerization and then added Taxol to continue the reaction.

      We add to these previous studies that microtubules with different numbers of seams are not unique ones, but that both the number and location of seams can vary within individual microtubules. The reason why this was not observed before is that the analytical tools used in those previous studies were not suited to reveal this structural heterogeneity within individual microtubules. By contrast, the SSTA approach that we designed was specifically developed towards this aim. Even in the recent work by Debs et al. (2020) that provides the most comprehensive characterization of multi-seams in microtubules assembled in vitro and that obtained a seam distribution very similar to ours (compare their Figure 3C with our new Figure 10C for GDP microtubules, dark blue bars), their protofilament-based approach could not reveal changes in the number and location of seams within individual microtubules. Yet, they probably could have done it if they had asked whether segments with different seam numbers had been extracted from the same microtubules.

      Here, we designed a specific approach to tackle the structural heterogeneity of individual lattices that permitted this discovery. Not only do we confirm results obtained by others, but we also propose a molecular mechanism that explains how multi-seams form in microtubules assembled in vitro and how they change in location in a cytoplasmic environment. By doing so, we propose a novel molecular event - formation of unique lateral interactions without longitudinal ones - that was not envisioned before, and which to our opinion, must be incorporated in further modelling studies concerning microtubule nucleation and assembly, including the mechanism of dynamic instability (see the Ideas and speculation section).

      4 - Dilution: A 50X dilution was used only for Xenopus egg cytoplasmic extracts to decrease their density on the EM grid just before freezing. These conditions were settled by cryo-fluorescence microscopy to ensure that we had the adequate density of microtubules onto the EM-grid (Figure 7 and Figure 2—figure supplement 1D). Of note, the microtubules analyzed by SSTA were assembled in extracts that were not supplemented with fluorescent tubulin. While we could imagine that dilution may induce the removal of dimers from the microtubule lattice, we cannot foresee how this could change the register between tubulin subunits within the microtubule lattice.

      5 - Kinesin decoration: Like many other laboratories (see the Table in Figure 3 of (Manka & Moores, 2018)), we use the non-processive motor domain of kinesin 1 to decorate microtubules, with the aim to differentiate the - and -tubulin monomers within the microtubule lattice. In particular, it has been shown that lattice parameters such as the protofilament skew and lattice spacing are unmodified when kinesin motor domains are added to GMPCPP- or GDP-microtubules (Zhang et al., 2015, 2018). In addition, we cannot envisage how this non processive motor added to preformed microtubules could change the registry of the -tubulin heterodimers within the microtubule lattice.

    1. Author Response

      .Reviewer #1 (Public Review):

      1) It is important to emphasize that the osteoporotic phenotypes were only demonstrated in males, but not in female mice. The observed phenotypes were not hormone-dependent, as no significant differences in examined bone parameters were observed between wild type andPrdx5KO female mice in an ovariectomy-induced osteoporosis model. However, women over 50 have a four times higher rate of osteoporosis compared with men, and the role of testosterone in the development of osteoporosis in Prdx5KO mice should be investigated. It is known that the osteoporosis is increased in men with low level of testosterone.

      Thanks for your comments regarding osteoporosis phenotypes in Prdx5 KO males and their relation with testosterone levels. Based on your suggestion, we re-examined testosterone levels in the serum of male mice and tested the expression levels of the androgen receptor (AR) in the differentiated osteoblasts and osteoclasts of the mice. We have updated the data in Figure 3-figure supplement 2 and included the revised information in the Results (Pages 13-14) and Discussion (Page 34) sections.

      2) It is misleading for authors to state throughout the manuscript that osteoporotic phenotypes are observed in Prdx5KO mice, while it is only observed in male mice.

      We apologize for this oversight. We have modified the text and indicated that all osteoporotic phenotypes were observed in Prdx5 KO male mice.

      Reviewer #2 (Public Review):

      1) While the abstract emphasizes transcriptomic analysis and mass spectrometry, extensive imaging techniques have also been used and should be highlighted to give an overview of results from the performed techniques.

      In addition, make it clear that it is proteomics-based mass spectrometry, since I was only able to confirm that after seeing Figure 5.

      Thanks for your helpful suggestions. We have modified the Abstract based on your suggestions.

      2) Line 46-53: I would add more details of how balanced bone mass looks on average, how much is too much, when should we be concerned about bone mass, and does some amount of stress benefit bone mass?

      Thank you for the suggestion. We have modified the Introduction. We wanted to explain that for bone as a supporting organ, general mechanical stress is required for its remodeling, although we agree that it is not some necessary information related to our study and may confuse the readers.

    1. Author Response

      Reviewer #3 (Public Review):

      Results of this manuscript provide a new link between oxygen sensing and cholesterol synthesis. In previous studies, this group showed that the cholesterol synthetic enzyme squalene monooxygenase (SM) is subjected to partial proteasomal degradation, which leads to the production of a truncated, constitutively active enzyme. In this study, the authors provide evidence for the physiological significance of SM truncation. In a series of experiments, the authors show that subjecting cells to hypoxia (oxygen deprivation) induces truncation of SM. The synthesis of cholesterol requires 11 molecules of oxygen and SM is the first oxygen-dependent enzyme in the cholesterol-committed branch of the pathway. Evidence is presented that hypoxia causes squalene, the substrate of SM, to accumulate, which results in the enzyme's truncation. In addition, hypoxia stabilizes MARCHF6, the E3 ligase required for sterol-dependent ubiquitination and degradation of SM. Finally, the authors provide an experiment showing that truncation of SM correlates with hypoxia in endometrial cancer tissues.

      Overall, the data presented in this manuscript are compelling for the most part. Hypoxia-induced truncation of SM and MARCHF6 is very clear according to the presented results. The specificity of SM-induced truncation is strong; both direct addition and inhibitor studies are presented. The major strength of this manuscript is that it provides the physiological relevance for the authors' previous finding that squalene accumulation leads to truncation of SM. However, there are a few issues that should be addressed to improve the interpretation of the data presented.

      We thank the reviewer for their useful comments.

      The manner in which quantified immunoblots are presented is very confusing and difficult to interpret. This is evident in experiments in several figures. For example, it is difficult to determine the role of ubiquitination (Figure 2D) and MARCHF6 (Figure 2E) in the generation of truncated SM. The authors should present quantified data of all lanes of the immunoblots to reduce confusion.

      The revised manuscript includes quantification of protein levels for all immunoblot lanes, including in Figure 2D and Figure 2E (now Figure 3A). It also contains updates to the text, figure legends, and axis labels to improve clarity about data normalization. For more information, please refer to our response to Essential Revisions comment #1.

      The other important finding of this manuscript is that hypoxia stabilizes MARCHF6. This is supported by the results of Fig. 3A; however, the result of Figure 3B is not clear. A new band appears upon inhibition of VCP and MG-132 seems to reduce protein expression. These results could be removed from the manuscript without impacting the conclusions drawn.

      As suggested, the revised manuscript contains only the initial observation that hypoxia stabilizes MARCHF6. Other experiments investigating the mechanism have been removed. For more information, please refer to our response to Essential Revisions comment #2.

      Finally, the results shown in Figure 5 showing that truncation of SM correlates with hypoxia in endometrial cancer tissues are a little preliminary. Multiple bands are detected in SM immunoblots, which interferes with interpretation. This experiment could be removed and speculated upon in the discussion.

      As suggested, this experiment is removed from the revised manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      They established a "behavioral transcriptomics" platform as they cultured mouse primary cell explant on an apparatus, imaged the cells over time, and analyzed cells with differential physiological status by scRNA-seq. They showed evidence that the system recapitulated physiological features of airway cells, including chemical-induced damage response. They further utilized the system to isolate cells of different cellular features and analyzed gene expression through scRNA-seq. The study demonstrates an interesting establishment and application of an in vitro system mimicking in vivo.

      However, several major concerns need to be resolved.

      First, whereas the overall study seems to focus on the establishment of airway epithelial cell explant apparatus and its application, take home messages that are delivered by the authors seem to emphasize the transcriptome analysis part. The authors introduced "spatial transcriptomics" and"behavioral transcriptomics" in the abstract but it is hard to appreciate that the study resolves spatial transcriptomics. This causes unnecessary confusion. Second, probably related to the first question, it is hard to find the novelty of the study. Third, probably the last and most important part of the manuscript is to analyze the cells by Smart-seq. But the analysis was performed on the SO2 injured animal only and lacked experiment on wildtype mice. If the authors tried to prove the feasibility of the technique rather than resolving physiological mechanism here, then I would recommend explaining why wild type experiment was not performed.

      The method described in the manuscript consists of two components: a novel tissue imaging platform, and characterization of a cellular behavior. Both steps can be generalized to different tissue contexts and different cellular behaviors, respectively. We have revised the title and abstract to specify the scope of this study and have also revised the text accordingly.

      Live imaging allows us to observe cell behaviors in intact tissues but does not provide information on cell type. By profiling cells that are observed by live imaging to share a behavior at single-cell resolution rather than bulk, we can separate out sources of transcriptional variation, like cell type identity, in order to identify the transcriptional signatures that reflect cell behaviors.

      Single-cell sequencing (via Smart-seq) has been previously performed in wild-type mouse trachea (Montoro et al., 2018), and identified underlying cellular heterogeneity. However, the steady state tracheal epithelium is largely quiescent, characterized by slow turnover and a lack of visible cell motility. We performed daily imaging of trachea explants from uninjured mice over 4 days and did not observe any significant displacement of epithelial cells. Furthermore, we also imaged an uninjured explanted tracheal epithelium every 40 minutes for over 19 hours with no significant directional movement (new Movie 3). We added the following text to the manuscript: “Imaging of trachea explant controls from uninjured mice over 19 hours revealed no cellular displacement in the airway epithelium (Movie 3).”

      In contrast, regeneration activates cell motility followed by cell proliferation. Therefore, we chose tissue regeneration as the more suitable biological context for this study to examine cellular dynamics. We leveraged the gene signatures derived from the previous wild-type study (Montoro et al., 2018) to identify different cell types and make like-for-like comparisons. We used an independent regeneration dataset in the same tissue but with a different injury model (Plasschaert et al., 2018) to test whether the molecular signatures derived in our study that differentiate moving and non-moving cells are generalizable to other contexts.

      Reviewer #2 (Public Review):

      Kwok et al. devise a method that uses a transgenic mouse line to make the link between cell behaviour in intact living tissue and subsequent dissociation into distinct groups forsingle cell sequencing. Specifically, they set up a mouse airway culture system in which it is possible to maintain live cells for multiple days and then preserve the same tissue. The analysed tissue section can be fixed and known cell types identified via classical staining protocols. In this system they imaged a number of tissue phenotypes such as ciliary beating, mucociliary clearing and airway regeneration. With respect to airway regeneration they observe that there was cellular heterogeneity between cells with the capacity to move and so-called non-movers, which the authors were able to quantitively track.To make the link with single cell sequencing, they use the Kaede transgenic mouse lines,which contains a green fluorescent reporter gene, that can be converted into a red fluorescent reported gene by illuminating a defined tissue section, in this case regions enriched for movers or non-movers. After dissociation of the tissue, cells were FACSsorted using the reporter protein. Subsequent single cell RNAseq revealed distinct gene signatures that were associated with the mover versus the non-mover phenotype. These phenotypes could also be detected in previously published data sets.

      The conclusions of the paper are supported by the data that is presented, but the comparison to existing mouse injury data could be improved. A weakness of the paper is the implication that the technique can be used for any of the phenotypes that they have examined. However, in order to be assessed by this method,there need to be a reasonably large number of cells that show similar behaviour in a region that can be photoconverted. If it is indeed possible to do the photoconversion at the single cell level, the authors should demonstrate that such resolution is possible, or otherwise clearly state this limitation of the technique they have developed.

      We recognize that the approach in this study does not involve photoconversion at single-cell resolution. While single-cell photoconversion and subsequent intermittent live imaging has been demonstrated in other systems such as zebrafish (Green and Smith, 2018) and mouse skin (Park et al., 2017), the throughput of doing downstream single-cell analysis would be limited, especially in a cell type-specific manner. Having observed a relatively homogeneous behavior of cells within a small region (~200 μm diameter, Movie 1 and Movie 2) of the airway epithelium, we photoconverted a small area with several hundred cells. Subsequent single cell sequencing allowed us to compare differences in gene expression between basal cells of slow/non-moving regions to basal cells of fast/moving regions.

      Reviewer #3 (Public Review):

      In this manuscript, the authors identify a pressing need to couple visualized in situ cell behaviour with deep molecular profiling of visualized cells, aiming to move beyond inferences made from time-lapse tissue sampling approaches or the analysis of transcriptional kinetics to identify the molecular pathways that drive cellular behaviour in situ. The authors identify live cell imaging combined with deep molecular profiling of theimaged cells as one possible solution. To this end, the authors establish a novel platform for live cell imaging of tracheal epithelial cells using explants of mouse trachea that allows long-term visualization of cell behaviour, and try to couple live-cell imaging to the transcriptional cell states.

      Combining single-cell RNA-seq analyses with live cell imaging offers the unique opportunity to link transcriptional and anatomic, morphological or movement phenotypes of individual cells. To be able to do this in intact tissues at baseline and in response to injury would allow a far more detailed and integral analysis of cellular behaviour in their physiological context. As such, the approach of the authors is interesting and clearly focused on achieving this goal. The only data that can support a claim of successfully achieving this ambitious goal are presented in figure 3, where an advanced mouse model(the Kaede-Green mouse) is used that allows labelling individual cells by photo-conversion, followed by isolation of individual cells by flow cytometry and plate-basedsc RNA-seq analysis of sorted cells. By taking this approach, the authors are able to identify transcriptional differences at the group level between tracheal epithelial cell subsets that differ in their movement after injury.

      While this in itself is a remarkable accomplishment, and an interesting observation, the relationship between the 'behaviour' of the cells observed with live cell imaging (the movement after injury) versus the transcriptional phenotype remains rather elusive. One explanation could be that active movement of cells depends on a specific transcriptional program, that is lacking from the non-moving cells. Another explanation could be that the tracheal epithelial cells are inherently heterogeneous, and one subset has the capacity to move whereas others do not, and the transcriptional profile merely identifies these heterogeneous populations. The observation that non-mover cell populations contain both basal and club cells, whereas mover regions only have basal cells seems to support this notion to some extent. However, the authors then claim to use basal-cell derived signatures (excluding the club cells) from mover and non-mover regions and compare this to literature data from another injury model to show that these signatures also identify distinct subsets in a mouse model of polidocanol-induced injury. How the distinction basal vs club cells in the non-mover regions is made remains unclear, and would seem challenging from the number of cells analyzed (as presented in figure 3).

      The identification of two behavioural phenotypes of basal cells (mover vs non-mover) in this manuscript is based on group-level phenotypes: the cells belong to a region of moversor a region of non-movers. This is relevant for figures 2 (including supplemental) and 3. In figure 2 supplemental 2C, it seems evident that within one region (or focussing only on all moving regions?), the behaviour of all cells within that region/selection is quite uniform:the variation is really very limited, and all cells seem to speed up and slow down in a highly coordinated fashion within the selected regions shown. At the same time, in figure2D, the distribution of regions across speed categories at 26-36 hours pi (the peak of the movement in suppl 2C) seems almost bimodal, with regions belonging either to non-mover(range 0.5 - 2.5 uM/hr) or mover (range 3.0-7.0 uM/hr) phenotypes. However, all regions display an increased movement at 16h pi compared to the pre-injury movements (Figure2C), indicating that all cells will be induced to induce movement to some extent.

      My main concern with this analysis is that the behavioural phenotype of the epithelial cells is assumed to be homogeneous within each region, allowing a contrast to be made in figure3 for the transcriptional phenotypes on the basis of moving phenotypes rather than on the basis of the main variation within the dataset.

      For instance, from the t-SNE plot (3B) - for what it's worth of course - and the heatmap (3C) there seems to be at least one non-mover cell that transcriptionally has a higher resemblance to the mover cells than to the other non-mover cells. Of course that can just be the variability present in the dataset, but it could also indicate that non-mover regions are not completely homogeneous, and even more so, that the moving vs non-moving associated transcriptional phenotype is a gradual transition rather than 2 clearly separate sub-phenotypes.

      All-in-all, this manuscript describes an interesting technical advance and shows some of the applications thereof. However, the approach also has its limitations: The requirement to mark cells with specific behavioural features for follow-up transcriptomic analysis (such as by photoconversion) necessitates the division of the epithelial cells into major categories on the basis of certain cellular phenotypes (such as movement) that can be visualized by live cell imaging. This limits the analysis opportunities to group-based contrasts in cellular behaviour as also used here by the authors.

      Also, the use of explanted tissue is of course less ideal than in vivo imaging, but most likely the only technically feasible approach at this moment. At the same time, the capacity to combine image-based features with single-cell transcriptomic data is an important advance, even when initially only possible in explanted tissue from mouse models carrying all kinds of fluorescent reporters. To strengthen the manuscript, it would therefore be important to discuss the limitations of the approach, as well as to provide a more comprehensive overview of the possible applications that the authors foresee.

      We thank the reviewer for the feedback. Our data demonstrates that the movement behavior is an injury-induced phenotype. 24 hours after injury (hpi), the “mover” transcriptional program is transiently enriched, while the “non-mover” transcriptional program is also transiently decreased, consistent with a cell state that is induced by injury (see Figure 4A, 24-hpi).

      SO2 removes nearly all the luminal cells (Rock et al., 2009) so we removed the club cells to compare injury response in basal cells. Distinguishing basal vs club cells is done by hierarchical clustering and comparison to established cell type signatures (Montoro et al., 2018). We apologize that the initial presentation did not make this clear. In the revised manuscript, we have provided an additional figure supplement demonstrating the hierarchical clustering (Figure 3 - figure supplement 1A), and the disjoint expression of canonical markers Krt5 (basal) and Scgb1a1 (club), which enabled us to assign unambiguous cell-type identities to discovered clusters (Figure 3 - figure supplement 1B).

      We agree with the reviewer that all cells, including cells that we classified as “mover” and “nonmover” are induced to move compared to pre-injury as suggested by Figure 2c. However, “mover” and “non-mover” cells differ dramatically in the amplitude and collective directionality of movement. We investigated the movement phenotypes in detail, including high-resolution imaging at shorter time intervals (10 min). We found that the slow “non-movers” had a large circular directionality variance (akin to oscillations), whereas the rapid “movers” moved directionally across the field of view. We quantified this with particle image velocimetry in Figure 2 – figure supplement 3C-D, and we revised the text to provide additional details about this result.

      The reviewer also raises concern about whether the movement is homogeneous enough to account for the variation in the datasets. We used our imaging data to determine the time points in which the mover and non-mover phenotypes varied the most (around 40 hrs post injury) between different regions (Figure 2 - figure supplement 2A, C) but we have also demonstrated that the movement within each region is indeed relatively homogeneous (~200 μm diameter, Movie 1 and Movie 2).

      We acknowledge that the presented data did not eliminate the possibility of another main variation within the dataset. We now perform PCA on the dataset, which confirmed that while the first principal component (PC) is associated with a solitary pulmonary neuroendocrine cell, the second PC is strongly associated with the difference between moving and non-moving cells (p=0.003, Wald test). When analyzing only the basal cells, we find that PC-1 provides a very clean separation and overlaps perfectly with the moving vs non-moving distinction (p<2 x 10-16, Wald test, Figure 3 - figure supplemental 2a). Taken together, with this additional analysis we can confirm that our focus on this behavioral phenotype reflects the main variation within the dataset.

      We appreciate the reviewer’s nuanced question about the single outlier cell. While we do observe a transcriptional phenotype that is clearly distinct, as the reviewer points out, there is a very small degree of overlap between the two cell type clusters visible on the t-SNE plot in Figure 3B. Given that the physical process of movement is a matter of degree, it is possible that this particular cell is simply not moving as much, and thus activating movement-related transcriptional programs to a lower degree. To analyze this question further in response to this question, we analyzed the separability of these groups by training a machine learning (k-nearest neighbor) classifier to distinguish these clusters (new Figure 3 - figure supplement 2b). We found that the groups could be distinguished with a high accuracy of 98.7% (95% CI: 92.7-99.9) using 5 or more of the signature genes that we defined in Figure 3C. This additional analysis we continue to conclude that while the groups have a very small degree of overlap, the moving and non-moving phenotypes are strongly separable.

      We acknowledge the limitations of this approach to groups of cells (see response to Reviewer 1) and both the limitations and advantages of using a tissue rather than cells, and we added these points to the discussion section.

    1. Author Response

      Reviewer 1 (Public Review):

      1) The finding that thalamic activity exhibits a low dimension structure is in my opinion less of a finding, but rather an assumption that motivates the use of dimensionality reduction techniques. When the authors ask (line 101) "whether thalamic task activity exhibits similar low dimensional structure", what is the alternative hypothesis? I think it is a foregone conclusion that with a restricted number of tasks, and the intrinsic smoothness of fMRI activity data, there are always K<<N components that capture 50,75, 90% of the variance. If you had measured the spiking of the entire population of thalamic neurons or increased the threshold to 99%, the structure of activity would be more high dimensional. So I believe you can either frame this as an assumption going in, or you build carefully an alternative hypothesis of what a "high-dimensional" structure would look like. Generating activity data i.i.d would be the simplest case, but given that both signal and measurement noise in fMRI are reasonably smooth, this would be a VERY trivial null hypothesis.

      We thank the reviewer for pointing out this inherent assumption in our analysis. We agree that given the smoothed nature of BOLD signal and the restricted task design we likely cannot effectively test an alternative high dimensional organization hypothesis. We have revised our introduction accordingly and clarify that we use a dimensionality reduction technique with the assumption that we will observe a low dimension structure of thalamic task fMRI data, similar to past fMRI studies that focused on cortical ROIs (line 102). Furthermore, we have revised the discussion section to remove discussion highlighting the low-dimension organization as a novel finding (line 404).

      2) The measure of "task hub" properties that is central to the paper would need to be much better explained and justified. You motivate the measure to be designed to find voxels that are "more flexibly recruited by multiple thalamic activity components", but it is not clear to me at this point that the measure defined on line 634 does this. First, sum_n w_i^2 is constrained to be the variance of the voxel across tasks, correct? Would sum_n abs(w) be higher when the weights are distributed across components? Given that each w is weighted by the variance (eigenvalue) of the component across the thalamus, would the score not be maximal if the voxel only loaded on the most important eigenvector, rather than being involved in a number of components? Also, the measure is clearly not rotational invariant - so would this result change after some rotation PCA solution? Some toy examples and further demonstrations that show why this measure makes sense (and what it really captures) would be essential. The same holds for the participation index for the resting state analysis.

      Please see our response to essential revision point #1.

      3) For the activity flow analysis, the null models (which need to be explained better) appear weak (i.e. no differences across tasks?), and it is no small wonder that the thalamus does significantly better. The Pearson correlations are not overwhelmingly impressive either. To give the reader a feel for how good/bad the prediction actually is, it would be essential that the authors would report noise ceilings - i.e. based on the reliability of the cortical activity patterns and thalamic activity patterns, what correlation would the best model achieve (see King et al., 2022, BioRxiv, as an example).

      Please see our response to essential revision point #4.

      4) Overall it has not been made clear what the RDM analysis adds to the prediction of the actual activity patterns. If you predicted the activity patterns themselves up to the noise ceiling, you would also hit the RDM correctly. The opposite is not the case, you could predict the correct RDM, but not the spatial location of the activity. However, the two prediction performances are never related to each other and it remains unclear what is learned from the latter (less specific) analysis.

      We agree that the utility of the RDM analysis is not clear, and we have removed it from the manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper details the creation and data behind the website http://pandemics.okstate.edu/covid19/. The authors attempt to explore if there is a cause and effect between the detection of unusually increased mutation activity in the genomic surveillance databases and subsequent near-term surges in SARS-CoV-2 case numbers.

      Overall the premise is interesting as other than following case numbers reported to health authorities and observing what is happening in another country, there is no reliable way to predict when a surge is going to occur. Unfortunately, the data demonstrate that there was no reliable metric that could be used to predict surge events. Interestingly, the website has issued a "surge alert" currently for the month of September. It will be interesting to observe whether their model indeed has predictive power or whether the current analysis is merely coincidental with the surges but not necessarily predictive of them.

      In this work, we investigated a number of metrics for finding a reliable signal of surge prediction. The commonly used ratio ka/ks or the derivative of ka/ks with respect to time did not provide a reliable metric. However for the same data, ka has provided a fairly robust surveillance signal so far. We believe ka/ks studies provide insights into genome changes, but not as a function of short time periods such as days (at least not in the case of SARS-CoV-2). As the motivation of our work is to provide the community with a genomic surveillance approach in real time, we believe that the current data shows that ka is, at present, a useful and fairly reliable metric.

      As the reviewer mentioned, while this manuscript was being reviewed, we issued a warning on September 7th 2022. Several different types of data (including number of new infections, number of hospitalizations, and COVID19 related deaths) has indicated that our warning was accurate since there was a surge in reported number of cases in September and reached a peak in October. For instance, plots shown in Figure S6 indicate that there was a surge in number of cases around Europe at large, and several individual countries including France, United Kingdom, Germany and Italy. Similarly our earlier warning in June also was followed by surges being reported across many countries and collectively across the world (Figure S5). Therefore, we believe the presented methodology has been validated.

      Reviewer #2 (Public Review):

      In this manuscript, Najer et al., perform a comprehensive bioinformatic analysis of SARS-CoV-2 sequences available from public repositories. Through a comparison with the genome sequence of the original Wuhan 2020 strain, they identify the total accumulation of non-synonymous mutations as a predictor of the evolution of new strains. The manuscript provides data for three structural proteins - spike (S), membrane (M), and envelope (E) proteins, as well as data for the non-structural RNA-dependent RNA polymerase (RDRp) protein that serves as a negative control. However, the predictivity of this approach is most marked only for the Omicron variant, with considerable variation in the predictive power of SARS-CoV-2 proteins for other variants. Focusing on a spike, the method does not detect the alpha variant or delta variant surges, which were mostly driven by changes in spike protein, although the level of sequencing data available for the delta variant might have been less. Notably, although the authors conclude that other parameters such as the ratio of non-synonymous to synonymous mutations or the rate of accumulation of non-synonymous mutations are not predictive, they appear to have similar success in predicting the omicron surge.

      We agree with the reviewer, the case of spike protein during the Alpha surge could have been affected by insufficient number of sequences. In case of Gamma/Delta variants, we did notice changes in the spike and the membrane protein. For the case of Omicron and its various sub-variants, the use of ka provides a reliable signal due to changes in the spike, membrane and envelope proteins.

    1. **Author Response""

      Reviewer #2 (Public Review):

      The work systematically reassesses fungal mi/miRNA-like characteristics and annotation confidence and identifies that many of the loci fail to meet the key points of the methods developed for animal or plant miRNAs. Therefore, the authors establish a set of criteria suitable for the annotation of fungal miRNAs and provide a centralized annotation of identified mi/milRNA hairpin RNAs in fungi based on their established rules.

      Here are some comments and suggestions for the manuscript to be improved:

      1) The title mentions "ancestral links", however, the main context of this paper does not include the evolution of fungal mi/milRNAs or show the origins of conserved mi/milRNAs in fungi. The authors are suggested to consider a more appropriate title for this work.

      Agreed, we have modified our title to include a more fitting description of the outcome of the study:

      “Comprehensive re-analysis of hairpin small RNAs in fungi reveals loci with conserved links”

      2) The work proposes a fungal mi/milRNAs hairpin precursor recovery pipeline with three minimal criteria to annotate fungal mi/milRNA loci, which allows nearly half of the loci to pass these rules. To highlight the innovation of this annotation, it is strongly suggested that the authors compare their established pipeline and criteria for fungi with those used in animal or plant miRNAs in detail, and emphasize the advantages of the established pipeline. A figure showing the established pipeline and detailed parameters is needed.

      We have now included a clear workflow diagram for establishing miRNA annotation records and confidence tiers (Figure 1-supplemental 3). As for the comparison with rules in plants and animals, this is stated in Table S6, where it shows some rules employed by other tools/papers/species. We believe these combined supplementals give a strong overview of our approach and how it differs from rules in other approaches.

      3) The established "standard rules" for fungal mi/milRNA annotation still require more evaluation. It would be better if there is experimental validation to improve confidence.

      Sequencing evidence is generally regarded as the gold-standard of experimental support for identifying and annotating miRNAs (Axtell and Meyers, 2018) though the rules are not clear yet in fungi. We agree that developing a standard-rule-set is a high-priority for identifying complete annotation standards. We had a statement (~ line 290) affirming this need, and have now modified this sentence to highlight the need for a sufficient standard.

      “While this minimal rule-set is useful for filtering the lowest-confidence loci, it is likely not sufficient to form the basis of an annotation and this analysis further confirms the need for a standardized pipeline and set of criteria for miRNA annotation in fungi.”

      To address the question of experimental validation, we have included descriptions of loci with strong-functional support in Table S5, including a section discussing top-tier loci in the discussion, described in the response to reviewer 3.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors are trying to determine how time is valued by humans relative to energy expenditure during non-steady-state walking - this paper proposes a new cost function in an optimal control framework to predict features of walking bouts that start and stop at rest. This paper's innovation is the addition of a term proportional to the duration of the walking bout in addition to the conventional energetic term. Simulations are used to predict how this additional term affects optimal trajectories, and human subjects experiments are conducted to compare with simulation predictions.

      I think the paper's key strengths are its simulation and experimental studies, which I regard as cleverly-conceived and well-executed. I think the paper's key weakness is the connection between these two studies, which I regard as tenuous for reasons I will now discuss in detail.

      The Title asserts that "humans dynamically optimize walking speed to save energy and time". Directly substantiating this claim would require independently manipulating the (purported) energy and time cost of walking for human subjects, but these manipulations are not undertaken in the present study. What the Results actually report are two findings:

      1. (simulation) minimizing a linear combination of energy and time in an optimal control problem involving an inverted-pendulum model of walking bouts that (i) start and stop at rest and (ii) walk at constant speed yields a gently-rounded speed-vs-time profile (Fig 2A);

      2. (experiment) human subject walking bouts that started and stopped at rest had self-similar speed-vs-time profiles at several bout lengths after normalizing by the average duration and peak speed of each subject's bouts (Fig 4B).

      If the paper established a strong connection between (1.) and (2.), e.g. if speed-vs-time trajectories from the simulation predicted experimental results significantly better than other plausible models (such as the 'steady min-COT' and 'steady accel' models whose trajectories are shown in Fig 2A), this finding could be regarded as providing indirect evidence in support of the claim in the paper's Title. Personally, I would regard this reasoning as rather weak evidence - it would be more accurate to assert 'brief human walking bouts look like trajectories of an inverted-pendulum model that minimize a linear combination of energy and time' (of course this phrasing is too wordy to serve as a replacement Title -- I am just trying to convey what assertion I think can be directly substantiated by the evidence in the paper). But unfortunately, the connection between (1.) and (2.) is only discussed qualitatively, and the other plausible models introduced in the Results are not revisited in the Discussion. To my naive eye, the representative 'steady min-COT' trace in Fig 2A seems like a real contender with the 'Energy-Time' trace for explaining the experimental results in Fig 4, but this candidate is rejected at the end of the third-to-last paragraph in the 'Model Predictions' subsection of Results based on the vague rationale that is never revisited.

      We have addressed most of this comment above, but respond here regarding Fig. 4. The argument against steady min-COT should also point out the peak speed. The Results have been revised thus: “In contrast to the min-COT hypothesis, the human peak speeds increased with distance, many well below the min-COT speed of about 1.25 m/s. The human speed trajectories did not resemble the trapezoidal profiles of the steady min-COT hypothesis for all distances, nor the triangular profiles of steady acceleration.”

      An additional limitation of the approach not discussed in the manuscript is that a fixed step length was prescribed in the simulations. The 'Optimal control formulation' subsection in the Methods summarizes the results of a sensitivity analysis conducted by varying the fixed step length, but all results reported here impose a constant-step-length constraint on the optimal control problem. Although this is a reasonable modeling simplification for steady-state walking, it is less well-motivated for the walking bouts considered here that start and stop at rest. For instance, the representative trial from a human subject in Figure 8 clearly shows initiation and termination steps that differ in length from the intermediate steps (visually discernable via the slope of the dashed line interpolating the black dots). Presumably different trajectories would be produced by the model if the constant-step-length constraint were removed. It is unclear whether this change would significantly alter predictions from either the 'Energy-Time' or 'steady min-COT' model candidates, and I imagine that this change would entail substantial work that may be out of scope for the present paper, but I think it is important to discuss this limitation.

      This is addressed elsewhere (Essential Revisions 2), but we explain more here. One of the parameter studies included step length increasing with speed according to the human preferred relationship. This is included in Fig. 3, and so we concluded that variable step lengths are not critical to the speed trajectories. A related assumption is that the energetic cost of modulating step length/frequency is small compared to the step-to-step transition cost. We believe that humans expend substantial energy for both costs, but that the overall cost of walking is still dominated by step-to-step transitions.

      With my concerns about the paper's framing and through-line noted as above, I want to emphasize that I regard the computational and empirical work reported here to be top-notch and potentially influential. In particular, the experimental study's use of inexpensive wearable sensors (as opposed to more conventional camera-based motion capture) is an excellent demonstration of efficient study design that other researchers may find instructive. To maximize potential impact, I encourage the authors to release their data, simulations, and details about their experimental apparatus (the first two I regard as essential for reproducibility - the third a selfless act of service to the scientific community).

      I think the most important point to emphasize is that the bulk of prior work on human walking has focused on steady-state movement - not because of the real-world relevance (since one study reports 50% of walking bouts in daily life are < 16 steps as summarized in Fig 1B), but rather because steady walking is a convenient behavior to study in the laboratory. Significantly, this paper advances both our theoretical and empirical understanding of the characteristics of non-steady-state walking.

      It is also significant to note the relationship between this study, where time was incorporated as an additive term in the cost of walking, with previous studies that incorporated time in a multiplicative discount in the cost of eye and arm movements. There is an emerging consensus that time plays a key role in the generation of movement across the body - future studies will discern whether and when additive or multiplicative effects dominate.

      We have acknowledged this in a brief sentence: “Indeed, we have found a similar valuation of time to explain how reaching durations and speed trajectories vary with reaching distance (Wong et al., 2021).” As an aside, in that reference we measured metabolic cost of cyclic arm reaching, combined it with a linear time cost, and predicted reaching durations vs. distance and bell-shaped hand speed trajectories. Others (Shadmehr et al. Curr Biol. 2016) have proposed multiplicative (hyperbolic) temporal discounting to explain durations, but the cost formulas are not dynamical, and cannot produce trajectories. We agree with reviewer’s point, but we think the evidence for hyperbolic discounting is not strong. Linear time costs are simpler and work at least as well. This is of great interest to us, but we didn’t discuss beyond the brief mention above, because we fear it is too far afield.

      Reviewer #2 (Public Review):

      This paper provides a novel approach to quantifying the tradeoff between energetic optimality during walking and the valuation of time to travel a given distance. Specifically, the authors investigated the relationships between walking speed trajectories, distance traveled, and the valuation of (completion) time. Time has been proposed as a potential factor influencing movement speed, but less is understood about how individuals balance energetic optimality and time constraints during walking. The authors used a simple, sagittal-plane walking model to test competing hypotheses about how individuals optimize gait speed from gait initiation to gait termination. Their approach extends literature in the space by identifying optimal gaits for shorter, partially non-steady speed walking bouts.

      The authors successfully evaluated three competing walking objectives (constant acceleration, minimum cost of transport at steady speed, and the energy-time objective), showing that the energy-time objective best matched experimental data in able-bodied adults. Although other candidate objectives may exist, the paper's findings provide a likely-generalizable explanation of how able-bodied humans select movement strategies that encompass studies of steady-speed walking.

      Overall, this paper provides a foundation for future studies testing the validity of the energy-time hypothesis for human gait speed selection in able-bodied and patient populations. Extensions of this work to patient populations may explain differences in walking speed during clinical assessments and provide insight into how individual differences in time valuation impact performance on assessments. For example, understanding whether physical capacity or time valuation (or something comparable) better explains individual differences in walking speed may suggest distinct approaches for improving walking speed.

      Strengths:

      The authors presented a compelling rationale for the tradeoffs between energetic optimality and time and their results provide strong support for a majority of their conclusions. In particular, significant reductions in the variance of experimental speed trajectories provides good support for the scaling of speeds across individuals and the plausibility of the energy-time hypothesis. Comparison to theoretical (model-based) reductions across difference time valuation (cT) parameters would further enhance confidence in the practical significance of the variance reductions. Further, while additional work is needed to determine the range of "normal" valuations of time, the authors present experimental ranges that appear reasonable and are well explained. The computational and analytical methods are rigorous and are supported by the literature. Overall, the paper's conclusions are consistent with experimental and computational results.

      The introduction of a model-based analytical approach to quantify the effects of time valuation of walking could generalize to test other cost functions, populations, or locomotion modes. Further, models of varying complexity could be implemented to test more individualized estimates of metabolic cost, ranging from 3D dynamic walking models (Faraji et al., Scientific Reports, 2018) or physiologically-detailed models (Falisse et al., Journal of The Royal Society Interface. 2019). The relatively simple set of analyses used in this paper is consistent with prior literature and should generalize across applications and populations.

      The authors justified simplifications in the analysis and addressed major limitations of the paper, such as using a fixed step length in model predictions, using a 2D model, and basing energy estimates on the mechanical work of a simple model. It is unlikely that the paper's conclusions would change given additional model complexity. For example, a 3D walking model would need to control frontal plane stability. However, in able-bodied adults, valuation of frontal-plane stability during normal walking would not likely alter the overall shape of the predicted speed profiles.

      Weaknesses:

      The primary weakness of this work is that alternative objectives may provide similar speed profiles and thus be plausible objectives for human movement. For example, the authors tested an objective minimizing the steady-speed cost of transport. This cost function is consistent with the literature, but (as predicted) unlikely to explain acceleration and deceleration during gait. An objective more comparable to the energy-time hypothesis would be to minimize the net energy cost over the entire bout, including accelerations and decelerations. This may produce results similar to the energy-time hypothesis. However, a more complex model that incorporates non-mechanical costs (e.g., cost of body weight support) may be needed to test such objectives. Therefore, the energy-time hypothesis should be considered in the context of a simple model that may be incapable of testing certain alternative hypotheses.

      We have addressed some of this comment in Essential Revisions 4.

      We are unsure what is meant by “net energy over the entire bout, including accelerations and decelerations.” Our hypothesis uses total (gross) energy over the entire bout, and already includes accelerations and decelerations. If “net” refers to the customary definition of metabolic energy minus resting, then it differs from our gross cost (Fig. 6A) only in the amount of constant offset, namely resting cost. Removing the offset is equivalent to a decrease in C_T. As shown in Fig. 3, this would reduce peak speeds magnitudes but not change the shape of the speed, peak speed, and duration patterns. There is also another interpretation where the cost of walking includes only net energy, and the cost of time includes the resting metabolic rate (Fig. 6C). This interpretation yields the same predictions, the only difference is whether resting rate is treated as an energy or a time cost. We have not made further changes, because we are unsure what the reviewer meant. The difference between net and total is at most one of degree, not of qualitatively different behavior.

      We do not address the proposed “cost of body weight support” because we are unsure of the definition. There is a hypothesis by Kram & Taylor (1990) that defines a metabolic cost rate proportional to body weight divided by ground contact time. It is unclear if this is what reviewer is referring to, so we did not include it in the manuscript. However, IF this is what reviewer means, we do not consider the Kram & Taylor (“K&T”) cost to be a viable hypothesis for computational models. It is a correlation observed from data, which is inadequate as a model, for several reasons. First, in a model optimization, it leads to absurd predictions, because metabolic cost could then be reduced simply by increasing stance (contact) time. A model could do so simply by walking with very long double support phases, or running with a very brief aerial phase, both of which people clearly do not do. In walking, extended double support durations result in much higher metabolic cost (Gordon et al., APMR 2009). Models must operate quite literally on whatever objective they are given, and here, a literal interpretation of K&T makes absurd predictions.

      Another issue with the K&T cost is that it is not mechanistic. A mechanistic model is concerned with the forces and work performed by an actuator such as muscle. Muscles experience forces far greater than body weight, not captured by the K&T cost. Of course, overall cost for animal locomotion is roughly proportional to body weight, but what a model needs is a cost associated with its control inputs, e.g. actuator forces.

      We have also examined the K&T hypothesis in previous publications. In Schroeder & Kuo (Plos Comp Biol 2021), we used a simple model of running that minimizes an energetic cost dominated by mechanical work. Even though the model has no cost similar to K&T, its predicted metabolic cost is correlated with the K&T cost. Correlation does not imply causation, which is known in this model.

      We have also examined the K&T hypothesis in experimental data. In Riddick & Kuo (Sci Rep 2022), we examined human data and found that there are many variables that correlate quite well with metabolic cost, including the K&T correlate. We use human data to show how mechanical work could explain metabolic cost, and even if it does, the K&T cost appears as a correlate. In our interpretation, both model and data that experience an energetic cost proportional to mechanical work may have a number of variables correlated to energy cost. Those correlates need not have any causal influence.

      There are, of course, many similar correlates that could be or have been proposed to explain the metabolic cost of running. Most such correlates are not operational enough to work in a model, and it is also difficult to predict what a reader might consider plausible, even if we do not.

      We agree with this statement: “the energy-time hypothesis should be considered in the context of a simple model that may be incapable of testing certain alternative hypotheses.” In fact, in Discussion of limitations we listed other potential factors (e.g. forced leg motion, stability, 3D motion), and stated “We did not explore more complex models here, but would expect similar predictions to result if similar, pendulum-like principles of work and energetic cost apply.” We had also cited other models that include such factors and are compatible with the step-to-step transition concept. Finally, we already stated, “the Energy-Time hypothesis should be regarded as a subset of the many factors that should govern human actions, rendered here in a simple but quantitative form.” We believe this is already aligned with reviewer’s comment.

      An experimental design involving an intervention to perturb the valuation of time would provide stronger support for time being a critical factor influencing gait speed trajectories. The authors noted this limitation as an area of future work.

      While the results are compelling, the limited sample size and description of participants limit the obvious generalizability of the results. Older adults tend to have higher metabolic costs of walking than younger adults, which may alter the predicted time-energy relationships (Mian OS, et al., Acta physiologica. 2006). As noted in the introduction, differences in walking speeds have been observed in different living environments. General information on where participants lived (city, small town, etc...) may provide readers with insight into the generalizability of the paper's conclusions. Additionally, the experimental results figures show group-level trends, but individual-specific trends and the existence of exceptional cases are unclear.

      We wish to defend the “limited sample size.” The present sample size was (in our opinion) sufficient to test the hypothesis, and we have reported confidence intervals and other statistics where appropriate. (As always, it is up to the individual reader to decide whether they are convinced or not.) It is true that the data may be insufficient for other purposes, but we cannot anticipate or address all other purposes.

      We appreciate the relevant connection to aging. We have added to Discussion, “We do not know whether that family [of trajectories] also applies to older adults, who prefer slower steady speeds and expend more energy to walk the same speed (Malatesta, 2003). Perhaps an age-related valuation of time might explain some of the differences in speed.”

      We agree about the participants, and have added “Subjects were recruited from the community surrounding the University of Calgary; the city has a moderately affluent population of about 1.4 M, with a developed Western culture.”

      No specific reviewer recommendation was made about individual-specific trends, but there are several indicators already included in the manuscript. First, all trials from all subjects are shown in Fig. 4A. Any truly exceptional cases should be visible as substantial deviations from the group. Second, the normalization by peak speed in Fig. 4B shows how individuals tend to be fairly consistent in their preferred speeds, in that shorter and longer bouts of an individual are consistent with each other, even if some walk faster than others. Third, this observation is analyzed more quantitatively by the reduction in standard deviations with normalization (Results). Fourth, we will provide a data repository with all the data, to allow readers to inspect individuals more carefully (Data availability statement).

      The authors' interpretation of clinical utility is vague and should be interpreted with caution. A simple pendulum-based walking model is unlikely to generalize to patient populations, whose gait energetics may involve greater positive and negative mechanical work (Farris et al., 2015; Holt et al., 2000). Additionally, the proposed analytical framework based on mechanical work as a proxy for the metabolic cost may not generalize to patient populations who have heterogeneous musculotendon properties and increased co-contraction (e.g., children with cerebral palsy; Ries et al., 2018). Consequently, the valuation of time for an individual could be incorrectly estimated if the estimates of metabolic cost were inaccurate. Therefore, as the authors noted for their able-bodied participants, more precise measures of metabolic rates will be critical for translating this work into clinical settings.

      We agree, and did not intend to say that clinical populations must walk the same way, rather that the Normal patterns could be used as a basis of comparison. To make this clearer, we have amended the Discussion of clinical implications (new text emphasized): “it may be possible to predict the duration and steady speed for another distance, referenced from a universal family of walking trajectories. We have identified one such family that applies to healthy individuals with pendulum-like gait. Of course, some clinical conditions might be manifested by a deviance from that family, perhaps in the acceleration or deceleration phases, or in how the trajectories vary with distance. If quantified, such deviance might prove clinically useful… the characterization of distance-dependent speed trajectories can potentially provide more information than available from steady speed alone.”

      We agree that the valuation of time can be inaccurate if the metabolic cost is inaccurate. That is why we did not make a precise estimate of the valuation. We have amended the text to help clarify that our rough estimates are based on previous data. In addition, our general scientific intent is to reveal behavioral sensitivities, for example of walking duration to bout distance, as opposed to absolute numerical quantities.

    1. Author Response

      Reviewer #2 (Public Review):

      One other major concern I have regards the conclusion that the participants in these studies use an additive rather than a multiplicative rule to integrate the risk information. The additive rule is problematic in general because it fails to predict the reversal in the effect of probability on payoffs when the payoffs change sign. More specifically, increasing the probability of winning increases the probability of choosing an option when the payoff is positive, but the effect reverses when the payoff is negative. One needs to impose some pretty ad hoc assumptions to make the additive model account for this fundamental interaction between probability and payoff. Of course, the experiments reported here did not include negative payoffs, and so didn't run into this problem. In fact, when the payoffs are positive, it is possible to transform the multiplicative model to an additive model by a log transform. This transformation is only possible for the simple type of gamble investigated in this manuscript - a single amount to win with some probability of winning, otherwise win or lose nothing. If the gambles involved more than one outcome, then the theorist needs to deal with a sum of products and the log transform is no longer possible. For these reasons I am very skeptical about the general application of a summation rule for probability and value in risk choice. The authors do address this issue to some extent. They point out the abundance of other research supporting a multiplicative rule, and they speculate that the additive rule may have occurred within the restrictions of this special situation. The latter discussion is a good start, but I suggest that the authors discuss this fundamental issue in more depth.

      Thank you for this very insightful comment. We have now included more in-depth discussions about the decision rules (multiplicative vs. additive) in our Discussion, in which we have absorbed and reflected many of the insights offered by Reviewer #2.

    1. Author Response

      Reviewer #3 (Public Review):

      Argenty et al. investigated the role of Lissencephaly gene 1 (LIS1), a dynein-binding protein, in thymic development and T cell proliferation. They find that LIS1 is essential for the early stages of T and B cell development, and demonstrate that loss of LIS1 has a negative impact on the transition from DN3 to DN4 thymocytes and on the maturation of pre-pro-B cells into pro-B cells in the bone marrow. Using a CD2Cre Lis1fl/fl murine model, they observe that in thymocytes LIS1 is critical for DN3 proliferation and completion of cell division. Then, using a CD4Cre Lisfl/fl model (Cd4 promoter is up-regulated just in later stages of thymic development and, thus, does not impact DN3 thymocytes) they show that LIS1-deficient CD4 T cells have proliferation defects following both TCR-dependent or -independent stimulation, which results in apoptosis. They also confirm previous reports that show that LIS1-deficient CD8 T cells do not have their proliferation impaired upon TCR stimulation, which suggests that these two cell types rely on different mechanisms to regulate the cell cycle. Finally, the authors make efforts to determine how LIS1 regulates proliferation in thymocytes and CD4 T cells. Interestingly, they show that LIS1 is important for chromosome alignment and centrosome integrity and provide data that support a model where LIS1 would facilitate the assembly of active dyneindynactin complexes. These data provide interesting insights into how different cell types use distinct strategies to undergo mitosis and how this can impact on their proliferation and fate decisions. The conclusions of the manuscript are mostly supported by the provided data, although certain aspects can be further investigated and clarified.

      Strengths of the paper:

      By combining a re-assessment of previous reports with new findings, the data from this manuscript convincingly demonstrates that LIS1 is crucial for cell proliferation in certain development steps/cell types. Furthermore, the manuscript provides clear evidence of how LIS1 loss causes proliferation defects by disrupting centrosome integrity and chromosome alignment both in CD4+ T cells and thymocytes.

      Weakness of the paper:

      Although authors successfully address the mechanistic role of LIS in thymocyte and CD4+ T cell division, the manuscript would be strengthened by both providing further evidence to support some of their conclusions and a review of some speculations raised in the discussion.

      In Figure 1, the authors claim that LIS1 is not required for pre-TCR assembly, but for expansion/proliferation of DN3 thymocytes as a step prior to reaching the DN4 stage. However, authors indeed observe increased expression of CD5 (which is a downstream event of Notch and IL-7R signalling). Thus, from the data provided it is not clear whether signalling through Notch or IL-7R is definitely not affected, which could be clarified by assessing the expression of other downstream targets of these molecules.

      CD5 is a downstream target of the pre-TCR signaling but to our knowledge, it is not a downstream target of Notch or IL-7R signaling. The sentence p7 of the initial manuscript was re-formulated since we understand that it could be misleading. However, we fully agree with the reviewer’s comment on Notch and IL-7R signaling and included new data in the revised version of the manuscript to address this point. Notch signaling stimulates metabolic changes which lead to the increase of thymocyte cell-size following the b-selection checkpoint (Ciofani M. et al., Nature Immunology, 2005; Maillard I. et al., The Journal of Experimental Medicine, 2006) and to the up-regulation of the transferrin receptor CD71 (Kelly, A.P. et al., The EMBO journal, 2007). We now show in Figure 1E of the revised manuscript that the loss of LIS1 does not affect the average cell-size of post-b-selection thymocytes and the expression level of CD71 in these cells, suggesting that Notch signaling is preserved in the absence of LIS1. This was confirmed in vitro following stimulation of DN3a thymocytes with OP9-dl1 cells (Figure 2D of the revised manuscript). In this Figure, we also analyzed the expression level of Bcl-2, which is regulated by IL-7R signaling (von Freeden-Jeffry, U. et al., Immunity, 1997). We show that Bcl-2 is comparable in abundance in LIS1 wild-type and LIS1-deficient thymocytes following stimulation with OP-9dl1, suggesting that Il-7R signaling is not affected by the absence of LIS1.

      In Figure 3, the authors mostly confirm previous data from Ngoi, Lopez, Chang, Journal of Immunology, 2016 (reference 34), but also provide evidence of a role of LIS1 in CD4+ T cell proliferation in more physiological setups, using OT2-CD4-Cre Lis1flox/flox (or OT2 Lisflox/flox as controls) in adoptive transfer experiments followed by antigen-specific immunization. However, the evidence provided by the authors about proliferation defects in LIS1-deficient cells in this context is limited by the early timepoint chosen: day 3 post-immunization.

      We choose to analyze CD4+ T cells at day 2 and 3 after immunization because we sought to catch early cell-division waves through CTV dilution. We also wanted to show that LIS1 deficient CD4+ T cells could normally survive and migrate to lymph nodes before they start to proliferate. Given the dramatic effect of LIS1 on CD4+ T-cell proliferation at day 3, we anticipated that very low numbers of LIS1 deficient cells would survive at later time points after immunization. To address the reviewer’s comment, we transferred OT2+CD45.1+ CD4+ T cells stained with CTV in C57BL/6 mice and analyzed the percentages and numbers of CD45.1+ T cells as well as the dilution of CTV in those cells at day 7 after immunization. As expected, all CD45.1+ cells were negative for CTV at this time of analysis (data not shown). The percentages and numbers of CD45.1+ T cells were strongly decrease in the absence of LIS1 in comparison to wild-type controls (Figure 3 - Figure Supplement 2C), confirming results obtained at day 3 after immunization.

      In the discussion, the authors speculate about the differences observed between CD4 and CD8 T cells, as the latter do now show proliferative defects upon TCR-triggered stimulation, and come up with the hypothesis that LIS1 might be important for symmetric cell divisions, but not for asymmetric cell divisions. However, the arguments used by the authors have few caveats, especially because CD4+ T cells can also undergo asymmetric cell division following TCR-triggered stimulation upon the first cognate antigen encounter (Chang et al., Science, 2007, Ref. 8).

      We agree that CD4+ T cells can undergo asymmetric division (actually, this is mentioned and referenced p3 and p18 of the manuscript). However, it is unknown whether these divisions occur systematically or whether they occur with variable frequency which could be context-dependent. It is also unclear whether CD4+ and CD8+ T cells have similar rates of asymmetric division. The literature is lacking of comparative studies in which cellular events associated to mitosis would be investigated side-by-side in those two subsets. As mentioned to reviewer-1, only one study to our knowledge performed a comparative analysis of T-bet repartition in daughter cells after a first round of cell division in CD4+ and CD8+ T cells (Chang, J. T. et al., Immunity, 2011). They found that T-bet segregates unequally in daughter cells in both CD4+ and CD8+ T cells. However, the disparity between daughter cells was higher in CD8+ T cells as compared to that in CD4+ T cells (5- versus 3-fold). This suggests that key molecules are either more equally (or less unequally) distributed in daughter cells from the CD4+ lineage or that the rate of symmetric divisions is higher in CD4+ T cells than in the CD8+ T cells. Those results are in accordance with our interpretation and previous findings (Yingling, J. et al., Cell, 2008; Zimdahl, B. et al, Nature Genetics, 2014), suggesting that LIS1 is predominantly involved in mitosis associated to symmetric divisions. Another possibility to explain this difference is that asymmetrical division might occur at different stages in CD4+ and CD8+ T cells. Although some asymmetrical divisions have been detected early after antigen encounter in CD4+ T cells, a more recent study from the same group suggest that asymmetric division might occur mainly later after several rounds of divisions of CD4+ T cells to enable self-renewal to be coupled to production of differentiated effector CD4+ T cells (Nish, S. A., Journal of Experimental Medicine, 2017). It is therefore possible that LIS1 could be critical early in CD4+ T cell expansion, when cells mainly divide through symmetrical process, and less critical later when cells are engaged in asymmetrical division. This is now discussed in greater details p18 of the revised version of the manuscript.

      Finally, the authors discuss that mono-allelic LIS1 defects might contribute to malignancies. Certainly not all points raised in the discussion need to be experimentally addressed, but for this particular hypothesis the authors would likely have the tools to achieve that, which would broaden the relevance of understanding LIS1 function.

      We have addressed this point experimentally in the revised version of the manuscript. We show that mono-allelic LIS1 deficiency does not have a significant impact on the percentages of thymocyte populations in Cd2-Cre Lis1flox/+ mice (Figure 1 - Figure Supplement 1B) and on the numbers of peripheral T cells in Cd4-Cre Lis1flox/+ (Figure 3 - Figure Supplement 1E), suggesting that LIS1 does not operate in a dose-dependent fashion in the context of T-cell development and T-cell homeostatic maintenance. Additionally, Cd4-Cre Lis1flox/+ CD4+ T cells proliferate effectively following TCR and CD28 stimulation (Figure 3 - Figure Supplement 2A), indicating further that mono-allelic LIS1 dosage is sufficient to support cell division of CD4+ T cells. The part of the discussion related to Lis1 haplo-deficiency has been rephrased according to this new set of data.

    1. Author Response

      Reviewer #3 (Public Review):

      In this paper, for the first time, metabolomics, proteomics, and lipidomics are combined to multi-dimensionally obtain more objective and scientific clues about early and advanced PMI, compared to the traditional methods of PMI estimation that relies on the subjective judgment of morphology. The "ForensOMICS" pipeline establishes a multi-omics analysis pipeline based on the LC-MS platform, which will bring influence and inspiration to the related research of PMI estimation based on molecular biological markers in the foreseeable future. However, due to the limitation of the availability of bone samples and metadata (which might contain covariates with latent influences on the PMI estimation), the current research is still a proof-of-concept study which is incomplete for the "ForensOMICS" approach to be applied in court.

      Strengths:

      Combing multiple omics and bioinformatics, as claimed by the authors, the "ForensOMICS" approach is more accurate and precise than the conventional morphological methods and molecular biological methods using single omics. Moreover, the research does not stop at developing time-dependent models using several omics biomarkers but carries on the enrichment analysis of relevant markers to further explore the pathophysiology mechanism behind the great changes in the internal environment after death, so as to provide meaningful reference data for the basic forensic research of death.

      Data Integration Analysis for Biomarker discovery using Latent variable approaches for Omics studies (DIABLO) method and multiple features selecting tools are used in the bioinformatic process to analyze multiple omics data, and PMI classification model constructed based on PLS-DA, with parameters optimized by 3-fold/100 repeats cross-validation. The overall analysis process is relatively complete, and the data and classification model provided have scientific values for reference.

      The "ForensOMICS" workflow in principle is compatible across metabolomics, proteomics, and lipidomics data obtained in different domains of proof-of-concept studies focusing on forensic-related time estimation (e.g. post-mortem submersion interval and time since deposit), for offering relatively complete analysis process.

      Weaknesses:

      Although the paper does have strengths in principle, the limitation of the availability of bone samples and metadata leads to the major weaknesses of the paper. Therein, age bias samples with single bone type and lack of analysis for environmental factors are the major weaknesses that argue against the key claims in the manuscript by the data presented.

      The mean age of body donors is 74 years with {plus minus}11.6 years of standard deviation, while there was only one type of bone tissue (left anterior midshaft tibia). Different structures and locations of the sampled bone tissue as well as metabolic changes and bone degeneration caused by aging may lead to significant discrepancies in different multi-omics data. Moreover, most of the dead found at crime scenes are in the prime of life, and in addition to the tibia, other skeletal remains found at the scenes are commonly skull, ribs, upper limb bones, and teeth. Therefore, the relevant conclusions obtained from the research based on the limited bone samples cannot meet the actual needs for estimating the PMI of skeletal remains. As mentioned by the authors in the discussion, due to the difficulty in acquiring human remain samples with definite post-mortem intervals, this study is still proof-of-concept. If possible, the authors can focus on a larger sample set of different bone remains in younger age groups in future studies.

      The reviewer is describing exactly the purpose of this manuscript. As highlighted by them, this paper is not intended to be an applicable method for PMI estimation at this stage, as we are aware of the differences that may exist between multiple skeletal elements and the omics results (at least, for proteomics data, as we published several papers on this topic). However, this is the proof of concept to demonstrate the potential that multiple omics combined together may have in addressing the PMI. We are committed to increase our sample size in order to develop a forensic technique for PMI estimation, that should anyway be then validated on multiple skeletal elements.

      Tibia is frequently recovered from scenes also involving the presence of incomplete human remains subjected to long PMIs; our previous studies have also demonstrated that midshaft tibia may be an ideal candidate for proteomics analyses, due to its small intra-individual variability in comparison with other bones. Therefore, the selected sample for this pilot has been the anterior midshaft tibia. We do agree with the reviewer that such samples may not be representative of the whole bone proteome, metabolome, and lipidome composition (with particular regards to cortical and trabecular parts); however, this could be addressed as part of future studies on the topic.

      We do agree with the reviewer about the possible confounding factor related to the relatively high variability in terms of age at death differences, that was indeed due to the difficult in acquiring human bodies with a known PMI.

      Although in-life physiological and/or pathological conditions (i.e., osteoporosis) might be responsible for variability among baseline samples and between baseline and different long PMIs’ samples seen in several metabolites and proteins, we believe the biological phenomena underlying PMI are strong enough to overcome such limitations in the design of the experiment. This is also supported by the small inter-individual variability observed amongst the fresh/baseline samples.

      It is suggested that metadata which may be influence factors of PMI such as temperature, humidity, UV-exposure, and deposition context (which is already recorded) should be recorded and statistically analyzed, so as to further optimize the "ForensOMICS" classification model by considering these possible environmental covariates. In addition, according to the No Free Lunch theorem, PLS-DA is very likely not to be the optimal solution for all the above-mentioned PMI classification tasks based on multi-omics data under different environmental conditions. It is recommended to develop and compare more different classification models for improving the generalization performance of the "ForensOMICS" approach.

      We agree with the reviewer that these factors are crucial in the decomposition process. In our opinion, however, at this stage it is not appropriate to include these metadata in the statistical analysis as covariates by applying additional classification models, due to the small sample size available. Additionally, the main focus of the paper is exclusively on PMI-driven modifications. Environmental data have been added for reference in Supplementary File 2 and will be taken into account in future works when a bigger sample size will be evaluated.

      Due to the limitation of sample size and the discrete-time gradients, the omics data obtained in the paper could only be applied to build a classification model rather than the regression model. Since such a model does not give a specific predicted PMI with MSE and RMSE indicating its performance, and the current "ForensOMICS" approach failed to distinguish different samples of late PMI (219-834 days), there is still a distance for "ForensOMICS" approach to apply in the actual forensic practice.

      Thank you for your comments. We agree, and stressed across the whole manuscript, that this is far from being appliable to forensic practice. The proof-of-concept nature of the study represents a mandatory step for the building of a regression model than can be challenged in the future with the highly rigorous standard required in the forensic setting (i.e., Daubert criteria). We appreciate the understanding of the reviewer for the choice of modelling the data using classification rather than regression.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors define regulatory networks across 77 tissue contexts using software they have previously published (PECA2, Duren et al. 2020). Each regulatory network is a set of nodes (transcription factors (TF), target genes (TG), and regulatory elements (RE)) and edges (regulatory scores connecting the nodes). For each context, the authors define context-specific REs, as those that do not overlap REs from any of the other 76 contexts, and context-specific regulatory networks as the collection of TFs, TGs, and REs connected to at least one context-specific RE. This approach essentially creates annotations that are aggregated across genes, elements, and specific contexts. For each tissue, the authors use linkage disequilibrium score regression (LDSC) to calculate enrichment for complex trait heritability within the set of all REs from the corresponding context-specific regulatory network. Heritability enrichments in context-specific regulatory network REs are compared with heritability enrichments in regions defined using other approaches.

      We thank the reviewers for the pertinent and precise summary of our paper.

      Reviewer #2 (Public Review):

      In this manuscript the authors develop a method, SpecVar, to perform heritability estimation from regulatory networks derived from gene expression and chromatin accessibility data. They apply this approach to public datasets available in ENCODE and Roadmap Epigenomics consortia as well as GWAS phenotype associations in UK Biobank. It promises to be a powerful method to interpret mechanisms from genetic associations. Below are some strengths and weaknesses of the paper.

      Strengths

      • The method performs heritability enrichment on two major genomic data types: gene expression and chromatin accessibility.

      • This method leverages gene regulatory networks to perform the heritability estimation, which may better capture complex disease architecture.

      • The authors perform an extensive comparison to other LDSC-based approaches using different tissue datasets.

      Weaknesses

      (1) This approach may represent a modest advance over existing LDSC methods when looking at other complex traits.

      (2) The authors only compare with LDSC using different functional annotations as input, which may not be appropriate. A more broad comparison with other heritability methods would be helpful.

      (3) The method seems to be applied to "paired" data, but this is still bulk profiles not paired single-cell RNA/ATAC data.

      The authors successfully applied a regulatory network approach to improving the heritability estimation of complex traits by using both gene expression and chromatin accessibility data. While the results could be further strengthened by comparing them to other network and non-network-based methods, it provides important insight into a few traits beyond the standard LDSC model with different functional annotations.

      Given that this method is based on the widely used LDSC approach it should be broadly applied in the field. However, the authors should consider adapting this to single-cell data as well as admixed human population genetic data.

      We thank the reviewer for the positive comment on our work by specifically pointing out that SpecVar is a powerful method to interpret mechanisms from genetic associations. We appreciate that the reviewer’s summarized “Strength” part well captures our major contribution in building an atlas of regulatory networks by integrating paired gene expression and chromatin accessibility data, leveraging regulatory networks to perform the heritability enrichment, and identifying relevant tissues and estimate relevance correlation. We also thank the reviewer for pointing out the weakness to further enhance our results. To address the comments, we (1) performed ablation studies and added more description to clarify the novelty of our methods; (2) conducted extensive comparison to another network-based method CoCoNet and non-network-based method RolyPoly; (3) discussed the promising direction in identification of relevant contexts at cell type level by leveraging single cell multi-omics profiles and application on admixed populations.

      Reviewer #3 (Public Review):

      Identifying the critical tissues and cell types in which genetic variants exert their effects on complex traits is an important question that has attracted increasing attention. Feng et al propose a new method, SpecVar, to first construct context-specific regulatory networks by integrating tissue-specific chromatin states and gene expression data, and then run stratified LD score regression (LDSC) to test if the constructed regulatory network in tissue is significantly associated with the trait, measured by a statistic called trait relevance score in this study. They apply their method to 6 traits for which there exists prior evidence on the most relevant tissues in the literature, and then further apply to 206 traits in the UK Biobank. They find that compared to LDSC using other sources of information to define context-specific annotations, their method can "improve heritability enrichment", "accurately detect relevant tissues", helps to "interpret SNPs" identified from GWAS, and "better reveals shared heritability and regulations of phenotypes" between traits.

      We thank the reviewer for the summary and appreciation of our efforts to address the important question: identifying the critical tissues and cell types in which genetic variants exert their effects on complex traits.

      However, I think it requires more work to understand where exactly the benefits come from and the statistical properties of their proposed test statistic (e.g., how to perform hypothesis tests with their relevance score and whether the false positive rate is under control). In addition, it's not clear to me what they can conclude about the shared heritability (which means genetic correlation) by comparing their relevance score correlation across tissues to the phenotypic correlation between traits.

      We thank the reviewer’s advice to do more work to enhance the statistical rigorousness of SpecVar. We have added the significant test of heritability enrichment and our proposed R score in the revision. We also clarified that SpecVar can use common relevant contexts and shared SNP-associated regulatory networks as potential explanation for the correlation between traits.

      They show that SpecVar gives much higher heritability enrichment than the other methods in the trait-relevant tissues (Fig. 2). The fold enrichment from SpecVar is extremely high, e.g., more than 600x in the right lobe of the liver for LDL. First, I think a standard error should be given so that the significance of the differences can be assessed. Second, it is very rare (hence suspicious) to observe such a huge enrichment. Since SpecVar is based on LDSC, the same methodology that other methods in comparison depend on, the differences to the other methods must come from the set of SNPs annotated for each tissue. I think it is important to understand the difference between the SpecVar annotated SNPs and those from other methods. For example, is the extra heritability enrichment mainly from the SpecVar-specific annotation or from the intersection narrowed down by SpecVar?

      The reviewer has pinpointed a question about one important advantage of our method to improve heritability enrichment. We addressed this question by first providing standard errors, p values, and q values of heritability enrichment. Second, we conduct the ablation analysis to study the source of extra heritability enrichment. This question greatly helps us to clarify the main contribution of our method.

      They propose to use the relevance score (R score) to prioritise trait-relevant tissues. In Fig. 3, they show tissue-trait pairs with the highest R scores, and from there they prioritise several tissues for each trait (Table 1). I can see that some tissue has an outstanding R score, however, it is not clear to me where they draw the line to declare a positive result. The threshold doesn't seem to be even consistent across traits. For example, for LDL, only the right lobe of the liver is identified although other tissues have R scores greater than 100, whereas, for EA, Ammor's horn and adrenal gland are identified although their R scores are apparently smaller than 100. It seems to me they use some subjective criteria to pick the results. It leads to a serious question on how to apply their R score in a hypothesis test: how to measure the uncertainty of their R score? What significance threshold should be used? Whether the false positive rate is under control? (Without knowing these statistical properties, readers won't be able to use this method with confidence in their own research.

      We thank the reviewer to raise the question about the hypothesis test of the R score. We used the block Jackknife stratagem to estimate standard errors, p values, and q values in our revision. We added the new result to the main text and they greatly enhanced the statistical rigorousness of our method.

      Another related comment to the above is to investigate false positive associations, they should show the results for all tissues tested to see if SpecVar tends to give higher R scores even in tissues that are not relevant to the trait. It would also be useful to include some negative control traits, such as height for brain tissues.

      We agree that negative control is important and the six phenotypes in our manuscript are negative for each other. For example, LDL is relevant to liver tissue and not relevant to brain tissue. Educational attainment is relevant to brain tissue but not relevant to liver tissue.

      Fig. 3 shows that tissues prioritised by LDSC-SAP and LDSC-SEG seem to make less sense than those from SpecVar. However, some of the results are not consistent with the LDSC-SEG paper (Finucane et al 2018). For example, LDL was significantly associated with the liver in Finucane et al (Fig. 2), but not in this study. How to explain the difference? (Question 3)

      We checked the results in Figure 3 and found that even though the liver was not ranked to be top 5 tissues, it has a significant P-value to LDL in our implementation. There is indeed some difference in heritability enrichment and P-value between the LDSC-SEG paper and our implementation. And the difference was from the different sets of tissues (77 tissues in our paper and 53 tissues in the LDSC-SEG paper) for the two applications.

      The authors highlight an example where SpecVar facilitates the interpretation of GWAS signals near FOXC2. They find GWAS-significant SNPs located in a CNCC-specific RE downstream of FOXC2 and reason these SNPs affect brain shape by regulating the expression of FOXC2. I think more work can be done to consolidate the conclusion. For example, if the GWAS signals are colocalised with the eQTL for FOXC2 in the brain. Also, note that the top GWAS signal is actually on the left of the CNCC-specific RE (Fig. 4b). A deeper investigation should be warranted.

      We agree that more work should be done to consolidate the regulation of FOXC2. In our revision, we used the HiChIP loop in the brain to support the SNP-associated regulation of FOXC2. We also thank the reviewer’s suggestion for the idea of eQTL colocalization and we conduct eQTL colocalization analysis on our method-revealed SNP-associated regulation to show our method can facilitate the fine mapping of GWAS signals. Lastly, brain shape is a complex trait and may be relevant to multiple tissues. Hence it is reasonable to suspect that the top GWAS signal may be active in other relevant tissues’ regulatory elements.

      They show that SpecVar's relevance score correlation across tissues can better approximate phenotypic correlation between traits. However, the estimation of the phenotypic correlation between traits is neither very interesting nor a thing difficult to do (it can be directly estimated from GWAS summary statistics). A more interesting question is to which extent the observed phenotypic correlation is due to common genetic factors acting in the shared tissues/cell types/pathways/regulatory networks between traits. Note that in their Abstract, they use words "depict shared heritability and regulations" but I don't seem to see results supporting that.

      We are sorry that we didn’t make it clear how SpecVar “depict shared heritability and regulations”. We added more results and one example in the UKBB application to show SpecVar can use common relevant contexts and shared SNP-associated regulatory networks as potential explanation for the correlation between traits.

      Line 396-402: "For example, ... heritability could select most relevant tissues ... but failed to get correct tissues for other phenotypes ... P-value could obtain correct tissues for CP ... but failed to get correct tissues for ... SpecVar could prioritize correct relevant tissues for all the six phenotypes." Honestly, I find hard to judge which tissues are "correct" or "incorrect" for a trait in real life. It would be more straightforward to compare methods using simulation where we know which tissues are causal.

      We thank the reviewers to pinpoint the improper statement of “correct”. It is difficult to find phenotypes with gold-standard relevant tissues and we used six relatively well-studied phenotypes with prior knowledge of possible relevant tissues in our paper. We revised the “correct” statement in our revision.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors performed simultaneous extracellular recordings in brain regions (CA1, prefrontal cortex (PFC), olfactory bulb (OB)) that are key to odor-guided decision making to delineate the oscillatory and cell population dynamics that guide decision making based on learned associations. They used complementary analyses to assess the coordination between CA1 and medial PFC (mPFC), using coherence and phase-locking analysis as well as generalized linear models and Bayesian decoding methods.

      One of the strengths of this work is the comparison of beta and respiratory (RR) LFP coherence in several behavioral states to rule out confounds due to sniffing or preparatory motor behavior (e.g., coherence was assessed during decision making with and without an odor present, during reward consumption). These controls allowed the authors to identify a specific enhancement of beta compared to RR coherence during decision making.

      The analyses of task-responsive putative interneuron and pyramidal cells suggest that accurate decision-making is associated with a stronger modulation of beta phase-locking in interneurons. Additional cross-correlation analyses between cell types across regions showed that cells, particularly interneurons, are temporally coordinated in the beta range. Their analyses did not identify a mechanism for this coordination, but the temporal lags between PFC and CA1 cells raise the possibility of top-down interactions mediated by a third brain region.

      The authors used the cellular activity to determine that the animal's upcoming behavior could be predicted from the ensemble activity during decision-making a few hundred milliseconds before the behavioral choice, but decoding accuracy diminished soon after the decision-making period. Interestingly, decoding accuracy increased after decision-making when using the spatially active cell ensembles. As indicated by the authors, these results suggest that different cell ensembles are engaged during decision-making and during the execution of the decision. It is possible that this change in ensemble dynamics before and after decision-making relates to the familiarity of the animals with the task, which makes it likely to involve procedural components (e.g., Jog et al., 1999). As pointed out by the authors in the discussion, several results have implications for the formation of associative memories and provide clues for future experiments. Thus, future work looking at the ensemble dynamics and at the occurrence of CA1 ripples in the early stages of task learning compared to when the animals are very familiar with the task (as in the current study), will provide a better understanding of the shifts that develop during the formation and consolidation of the association.

      One of the considerations in interpreting the results is that the odor sampling and decisionmaking periods overlap, making it difficult to disentangle the neural dynamics that are driven by the recall of the association (cued retrieval) and those that relate to the upcoming turning behavior after odor port disengagement. However, the author's analyses of odor and choice selectivity in correct and incorrect trials demonstrate a preferential association between spike activity and choice selection in this task.

      Overall, the results advance our understanding of odor-guided decision-making mechanisms in CA1 and PFC at the LFP and cell population level. This work will be of significance to further research on the cellular basis of memory-guided decision-making, and to future work characterizing the interactions between CA1 and PFC during learning.

      We thank the Reviewer for their detailed evaluation summarizing and highlighting the strengths of the study. In addition to beta and respiratory rhythm (RR) modulation of CA1-PFC activity and the relationship between spiking activity and choice selection, the Reviewer also highlighted the temporal coordination of CA1 interneurons and change in ensemble dynamics during the decision-making period at the odor-port vs. during the execution of the decision on the maze, which is further emphasized as a novel result in the revised manuscript.

      Reviewer #2 (Public Review):

      Symanski et al. investigated the communication between the medial prefrontal cortex (mPFC), the hippocampal CA1 region, and the olfactory bulb (OB) while rats underwent an odor-cued decision-making task. By recording local field potentials and spiking activity in the three regions, they found that all regions became synchronized at the beta band and respiratory rhythms during cue sampling/decision-making. Although the strength of inter-region synchrony was not predictive of correct choices, both CA1 and mPFC neurons showed stronger phase-locked firings to beta oscillations for correct than incorrect choices. Moreover, a subset of putative pyramidal and interneurons in both regions were selective for task variables, and as ensembles, they formed activity patterns differentiating choices. Also, their firings were temporally coordinated in a direction that the mPFC interneurons led CA1 interneurons and pyramidal neurons. Based on these findings, the authors propose that cue-evoked beta oscillations modulate the activity of interneurons to coordinate ensemble activity in CA1-mPFC networks supporting decision-making.

      Strength:

      The findings uncovered a new style of mPFC-Hippocampal communication through odorevoked beta oscillations, which contrasts with theta oscillations and sharp-wave/ripples reported during memory-guided spatial navigation tasks. The overall quality of the work is outstanding. The data collection and analysis were meticulously conducted with appropriate controls and statistical tests.

      Weakness:

      The initial analysis of LFP activity (Figure 2d) revealed strong coherence in the beta band in all region pairs; however, the subsequent analysis focuses on mPFC-CA1 interaction. To justify this approach, it is essential to establish that the mPFC-CA1 beta synchrony reflects their direct communication rather than a by-product of common inputs from the OB.

      The authors used cross-correlograms to reveal the directionality of mPFC-CA1 interaction. To strengthen the author's view that beta oscillations help coordinate neural activity, it is worth investigating if the same temporal relationship is also detectable within each cycle of beta oscillations. Specifically, mPFC interneurons may fire at earlier phases, followed by firings of CA1 interneurons and pyramidal neurons at later phases.

      We thank the Reviewer for their positive evaluation and constructive comments. We have addressed the weaknesses noted in the revised manuscript. In particular, we have added analyses and text that emphasize the change in beta synchrony in the OB-CA1PFC network during the task, and added analyses that examine phase locking of pyramidal cells and interneurons to beta rhythms in the mPFC, CA1 and OB.

      Reviewer #3 (Public Review):

      Symanski et al. describe a set of interesting results derived from analyzing electrophysiological recordings performed in rats well trained on an associative memory task on a spatial maze (a T maze), in which animals learned to associate a given odor delivered in an initial maze region (upon a nose poke) with a subsequent spatial choice (a left or a right turn) to receive a reward. The authors have obtained LFPs from the OB, PFC, and CA1 from 8 animals subjected to this task, along with single-unit activity from the PFC and CA1. The authors describe that, during odor sampling, there is prominent LFP activity in the beta range (20-30 Hz) as well as prominent activity of the respiration-entrained LFP rhythm (RR, 7-8 Hz). The authors convincingly show that beta activity - but not RR - is specific to odor sampling (RR also shows up during other immobility periods within the task and when animals breathed clean air). They further show that not only beta power but also inter-regional beta coherence significantly enhances during the odor sampling period. In addition, the authors find a higher beta phase modulation of spiking in a subset of neurons associated with subsequent correct decisions. Since the authors also prove - based on behavioral analysis - that the odor-sampling period corresponds to the decisionmaking period in this task, they propose a role for beta coordination of hippocampal-prefrontal networks in sensory-cued decision making. The paper also brings along a set of complementary findings looking at the single unit and ensemble activity in both regions (CA1 and PFC), which are capable of predicting future spatial choices.

      I consider the investigated topic relevant to modern neuroscience and likely to interest a broad audience. Nevertheless, while there is much to like about this paper (e.g., carefully done experiments, advanced computational data analyses, well-written text, and well-crafted figures), I caught some issues that called my attention upon a careful reading, which I list below:

      A) The paper is written in a way clearly centered on rhymical brain activity (c.f. title, abstract, introduction, and discussion). Yet, out of 7 main figures, only 2 of them show data related to oscillations (while 1 figure shows behavioral data and 4 figures show spiking analysis not related to brain rhythms). Therefore, the presentation of the results seems unbalanced and disconnected from the main story.

      B) Somewhat related to the point above, in a strict sense, the title is not well justified ("Rhythmic coordination of hippocampal-prefrontal ensembles (...)") since there is no analysis relating assembly activity with either beta or RR (their results show beta or RR modulating a subset of single units), nor there is a combined ensemble analysis of PFC and hippocampal units (i.e., interregional cell assemblies). Why not try to relate ensemble activity to the observed oscillations?

      C) The main result of increased interregional beta coherence specifically during odor sampling is very interesting and seems quite solid. Though I hate being the one raising questions about the level of advancement, I cannot avoid noticing that similar increases in beta coherence in odor-sampling-based tasks have been observed before (e.g., increased OB-HPC beta coherence during odor sampling has been shown in Martin et al 2007 and between LEC and HPC in Igarashi et al 2014), which is to say that there is overlap between this core finding and previous research. But that said, in times where the reproducibility of our scientific endeavor has been put into question, this particular reviewer favors the publication of similar findings by independent labs, especially given this neatly collected dataset. It is recommended to highlight which results constitute novel insights here and which results provide support for previously published results.

      D) It called to my attention that many of the spiking results were obtained for a small percentage of neurons. For instance, how can the authors be confident that the choice-selective neurons are actually coding for the choice as opposed to being randomly detected by statistical chance? As a case in point, the authors mention that 1309 units were recorded in CA1, and from these 42 cells were choice selective. If the authors have employed a typical alpha of 5% for detecting such neurons, chance alone would predict ~60 neurons being false positives. I apologize if I am missing something, but could the authors clarify? On a related note, even though most findings hold true for a small percentage of neurons, the writing also tends to generalize the findings to the whole population (e.g., "Beta phase modulation of CA1 and PFC neuronal activity during this period was linked to accurate decisions, suggesting that this temporal modulation influences sensory-cued decision making.").

      We thank the Reviewer for their detailed comments and feedback. We have addressed the issues raised by the Reviewer, which has significantly strengthened the manuscript.

      A) We have added several new analyses for rhythmic modulation of spiking activity, and elevated some of the Supplementary Figures related to oscillations to the main figures (Figures 2, 5). In addition, since several of our analyses provide novel results for spiking and ensemble dynamics before and after the decision making period, as noted by Reviewer 1, and we have emphasized these results as a novel advance in the revised manuscript , including the title and abstract.

      B) We agree that our analysis focuses on rhythmic coordination by beta and RR oscillations, phase modulation of single cell spiking activity in CA1 and PFC for accurate odor-cued decision making, and ensemble dynamics during decision making and execution of decisions. While relating ensemble activity to the observed oscillations is a long-term goal, we are limited by the size of simultaneously recorded ensembles within single sessions, since measures of ensemble dynamics per trial are required for such analyses. This is now noted in the Discussion section. We therefore focus our analyses separately on single cell modulation by rhythms and dynamics of ensemble activity during decision making.

      We have also retitled the manuscript to indicate this: “Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network for odor-place associative memory and decision making”, to more accurately reflect our results.

      C) We appreciate the Reviewer’s favorable view on independent confirmation of previous results on beta coherence using our strong dataset. We have referenced previous results on OB-HPC, LEC-HPC and striatal beta coherence in the manuscript (e.g., Kay and Beshel 2010; Igarashi et al. 2014; Rangel et al. 2016; Leventhal et al., 2012).

      In addition, we also highlight the novelty of our results in the manuscript, as noted by Reviewers 1 and 2. Our findings in these specific circuits, namely the PFC-CA1 network, during odor-cued decision making are novel. Our results show that beta phase modulation of a sub-population of phase-coherent CA1 and PFC neurons is linked to accurate decision making, elucidate selectivity and ensemble dynamics in these regions during decision making, and show that independent ensembles are recruited during odor-sampling vs. the execution of decisions on the spatial maze. These results are emphasized in the revised manuscript.

      D) We apologize for the misunderstanding regarding the number of neurons. We had initially reported total number of neurons recorded across run and sleep sessions, including those with very few spikes during the task. In determining task-responsive and task-unresponsive neurons (Figure 3), the task-unresponsive set also includes a very large fraction of neurons that did not have sufficient spikes during the odor-sampling or decision making period (e.g. using a criterion of number of spikes equal to number of trials; similar numbers are seen with other criterion such as an absolute minimum number of spikes). These neurons should be more accurately denoted as “Odor Period Inactive”. Therefore a more accurate estimate of task-responsive neurons in CA1 and PFC indicating their task engagement is now shown in Figure 3, starting with neurons that had sufficient spikes for this analysis. Using this metric, a large fractions of neurons are task responsive and selective, similar to previously reported fractions in other studies (Igarashi, et al., 2014). We have added this description and numbers in the text (page 11 lines 230-241) and Methods (page 37 lines 795-797).

      We have also toned down the interpretation by avoiding generalizing to the whole population, and note that beta phase modulation of phase-locked neurons is related to behavior accuracy. Here, in particular, our results suggest a key role of CA1 interneurons in beta-mediated interactions.

    1. Author Response

      Reviewer #2 (Public Review):

      Reinforcement learning (RL) theory is important because it provides a broad, mathematically proven framework for linking behavioral states to behavioral actions, and has the potential for linking realistic biological network dynamics to behavior. The most detailed neurophysiological modeling uses biophysical compartmental models with the theoretical framework of HodgkinHuxley and Rall to describe the dynamics of real neurons, but those models are extremely difficult to link to behavioral output. RL provides a theoretical framework that could help bridge across the still-underexplored chasm between behavioral modeling and neurophysiological detail.

      On the positive side, this paper uses a network of interacting neurons in region CA3 and CA1 (as used in previous models by McNaughton and Morris, 1987; Hasselmo and Schnell, 1994; Treves and Rolls, 1994; Mehta, Quirk and Wilson. 2000; Hasselmo, Bodelon and Wyble, 2002) to address how a simple representation of biological network dynamics could generate the successor representation used in RL. The successor representation is an interesting theory of hippocampal function, as it contrasts with a previous idea of model-based planning. Previous neuroscience data supports the idea that animals use a model-based representation (a cognitive map made up of place cells or grid cells) to read out potential future paths to plan their behavior in the environment. For example, Johnson and Redish, 2007 showed activity spreading into alternating arms of a T-maze before a decision is made (i.e. a model-based exploration of possible actions, NOT a successor representation), and Pfeiffer and Foster, 2013 showed that replay in 2-dimensions corresponds to future goal directed activity. Models such as Erdem and Hasselmo, 2012 and Fenton and Kubie, 2012 showed how forward planning of possible trajectories could guide performance of behavioral tasks. In contrast, the successor representation proposes that model-based activity is too computationally expensive and proposes that instead of reading out various possible model-based future paths when making a decision, that a simulated agent could instead learn a look-up table indicating the probability of future behavioral states accessible from a given state. In previous work, the successor representations accounted for certain aspects of experimental neuroscience data such as place cells responding to the insertion of barriers as seen by Alvernhe et al. and the backward expansion of place field seen by Mehta et al. The current paper is admirable for addressing the potential role of neural replay in training of successor representations and its relationship to other neural and behavioral data such as the papers by Cheng and Frank 2008 and by Wu et al. 2017.

      However, a lot of this same data could still be interpreted as indicating that animals use a model-based representation as described above. There's nothing in this paper that rules out a model-based interpretation of the results discussed above. In fact, the cited paper by Momennejad et al. 2017 shows that humans extensively use model-based mechanisms along with some use of a successor representation in addition to the model-based mechanism. The description in the article under review needs to avoid treating successor representations as if they are already the ground truth.

      To do this, throughout the paper, the authors need to repeatedly address the fact that the Successor Representation is just a theory and not proven experimental fact. And they need to repeatedly in all sections point out that the successor representations hypothesis can be contrasted with the theory that model-based neural activity could instead guide behavior and could be the correct account for all of the data that they address (i.e. such as the darkavoidance behavior). They should cite the previous examples of neural data that looks like model-based planning such as Johnson and Redish, 2007 in the T-maze and Pfeiffer and Foster, 2013 in open fields, and cite models such as Hasselmo and Eichenbaum, 2005; Erdem and Hasselmo, 2012 and Fenton and Kubie, 2012 that showed how forward replay or planning of possible trajectories could guide performance of behavioral tasks

      We thank the reviewer for the valuable feedback. We have adapted the manuscript throughout to discuss the important point that the SR is not the ground truth (e.g. the final paragraphs in the sections “Bias-variance trade-off” and “Leveraging replays to learn novel trajectories”). We also discussed more extensively the model-based literature and the suggested citations in the manuscript.

      The title and text repeatedly refers to a "spiking" model. They show spikes in Figure 2 and extensively discuss the influence of spiking on STDP, but they ought to more explicitly discuss the interaction of their spike generation mechanisms (using a Poisson process) and the authors should compare their model to the model of George, DeCothi, Stachenfeld and Barry which addresses many of the same questions but using theta phase precession to obtain the correct spike timing in STDP.

      Yes, that's a great suggestion. We have extended our discussion section. In particular, we added:

      In our work, we did not include theta modulation, but phase precession and theta sequences could be yet another type of activity within the TD lambda framework. Interestingly, more groups have recently investigated related ideas. A recent work \citep{George2022} incorporated the theta sweeps into behavioural activity, showing it approximately learns the SR. Moreover, theta sequences allow for fast learning, playing a similar role as replays (or any other fast temporalcode sequences) in our work. By simulating the temporally compressed and precise theta sequences, their model also reconciles the learning over behavioral timescales with STDP. In contrast, our framework reconciles both timescales relying purely on rate-coding during behaviour. Finally, their method allows to learn the SR within continuous space. It would be interesting to investigate whether these methods co-exist in the hippocampus and other brain areas. Furthermore, \citep{Fang2022} et al. recently showed how the SR can be learned using recurrent neural networks with biologically plausible plasticity.

      The introduction and start of the Results section are should have more citations to neuroscience data. The introduction currently cites only three experimental citations (O'Keefe and Dostrovsky, 1971; O'Keefe and Nadel, 1978 and Mehta et al. 2000) and then gives repeated citations of previous theory papers as if those papers define the experimental data that is relevant to this study. The article should review actual neuroscience literature, instead of acting as if a few theory papers in the last five years are more important sources of data than decades worth of experimental work. The start of the results section makes a statement about the role of hippocampus and only cites Stachenfeld et al. 2017 as if it were an experimental paper. The introduction, start of results and discussion need to be modified to address actual experimental data instead of just prior modeling papers. They need to add at least a paragraph to the introduction discussing real experimental data. There are numerous original research papers that should be cited for the role of hippocampus in behavior so that the reader doesn't get the impression all of this work started with the paper by Stachenfeld et al. 2017. For example, the introduction should supplement the citations to O'Keefe and Mehta with other experimental papers including those that they cite later in the paper. They should also cite other seminal work of Morris et al. 1982 in Morris water maze and Olton, 1979 in 8-arm radial maze and work by Wood, Dudchenko, Robitsek and Eichenbaum on neural activity during spatial alternation. At the start of the Results, instead of only citing Stachenfeld (which should have reduced emphasis when speaking about experiments), they should again cite O'Keefe and Nadel, 1978 for the very comprehensive review of the literature up to that time, plus the work of Morris and Eichenbaum and Aggleton and other experimental work.

      We thank the reviewer for the suggested citations. We have added many citations in order to discuss the experimental literature more thoroughly.

      This article is admirable for addressing how to utilize a continuous representation of space and time, which Kenji Doya also addressed in his NeurIPS article in 1995 and Neural Computation 2000 (which should be cited). To emphasize the significance of this continuous representation, they could note that reinforcement learning (RL) theory models still tend to use a discretized grid-like map of the world and discrete representation of time that does not correspond to the probabilistic nature of place cell response properties (Fenton and Muller) and the continuous nature of the response of time cells (Kraus et al. 2013).

      We thank the reviewer for this important comment and this is indeed one of the main strengths of the proposed framework. We have now emphasised this point, by adding the following paragraph to the Discussion:

      “Importantly, the discount parameter also depends on the time spent in each state. This eliminates the need for time discretization, which does not reflect the continuous nature of the response of time cells (Kraus et al. 2013).”

      I think the authors of this article need to be clear about the shortcomings of RL. They should devote some space in the discussion to noting neuroscience data that has not been addressed yet. They could note that most components of their RL framework are still implemented as algorithms rather than neural models. They could note that most RL models usually don't have neurons of any kind in them and that their own model only uses neurons to represent state and successor representations, without representing actions or action selection processes. They could note that the agents in most RL models commonly learn about barriers by needing to bang into the barrier in every location, rather than learning to look at it from a distance. The ultimate goal of research such as this should to link cellular level neurophysiological data to experimental data on behavior. To the extent possible, they should focus on how they link neurophysiological data at the cellular level to spatial behavior and the unit responses of place cells in behaving animals, rather than basing the validity of their work on the assumption that the successor representation is correct.

      We thank the reviewer for this suggestion, we have now extended the Discussion to include a paragraph on the “Limitations of the Reinforcement Learning framework” which we reproduce here:

      We have already outlined some of the perks of using reinforcement learning for modelling behaviour, including providing clear computational and algorithmic frameworks. However, there are several intrinsic limitations to this framework. For example, it needs to be noted that RL agents that only use spatial data do not provide complete descriptions of behavior, which likely arises from integrating information across multiple sensory inputs. Whereas an animal would be able to smell and see a reward from a certain distance, an agent exploring the environment would only be able to discover it when randomly visiting the exact reward location. Furthermore, the framework rests on fairly strict mathematical assumptions: typically the state space needs to be markovian, time and space need to be discretized (which we manage to evade in this particular framework) and the discounting needs to follow an exponential decay. These assumptions are overly simplistic and it is not clear how often they are actually met. Reinforcement Learning is also a sample-intensive technique, whereas we know that some animals, including humans, are capable of much faster or even one-shot learning. \ Regarding the specific limitations of our model, we can note that even though we have provided a neural implementation of the SR, and of the value function as its read-out (see Figure 5-figure supplement S2, the whole action selection process is still computed only at the algorithmic level. It may be interesting to extend the neural implementation to the policy selection mechanism in the future.

    1. Author Response

      Reviewer #1 (Public Review):

      Alexander Komkov et al. developed a novel software/algorithm (iROAR) to utilise naturally occurring non-functional clonotypes as a control repertoire to correct for amplification bias associated with multiplex PCR based technologies commonly used in TCR/BCR repertoire analysis. No new data was generated in this study and utilises only publicly available datasets. The authors firstly determine the over amplification rate (OAR) as a metric which is found to be close to 1 under no or little amplification bias and this was validated by calculating the OAR for repertoires determined using 5'-RACE, a method known to have little to no amplification bias. This was a great control to have and is essential for validating the OAR measurement. In contrast, multiplex PCR based protocols such as VMPlex and VJMplex had significant deviations in the distribution of OAR.

      Strengths: The authors used publicly available datasets that utilise both biased (multiplex PCR based) and low biased (5'-RACE) methods to determine TCR/BCR repertoires. In addition, the authors generated in silico biased 5'-RACE datasets. These comparisons are critical in determining the effect of bias correction.

      Weaknesses: Analysis of TCR/BCR repertoires are very generalised to number of clonotypes. The use of this algorithm could be more widespread if the effect of iROAR on another repertoire analysis tools was determined or discussed. For example, does iROAR affect measures of diversity? Identification of rare but unique clonotypes? The ability to detect true clonal expansions? Additionally, documentation for the software is lacking and largely inaccessible to non-specialists.

      By default, iROAR does not affect diversity and does not remove any clones. This statement was added to the manuscript. For now, the analysis of the potential effect on the detection of true clonal expansion is infeasible due to the lack of appropriate data with sufficient sequencing coverage. Also, we’ve made a more detailed description of iROAR software.

      Reviewer #2 (Public Review):

      In this paper, Komkov et al. describe a novel approach for computational correction of PCR amplification bias in adaptive immune receptor repertoire (AIRR) sequencing data (AIRR-seq). Their correction algorithm is based on using out-of-frame rearrangements to approximate gene-specific amplification bias. Gene-specific relative frequencies among out-of-frame rearrangements are not altered by clonal expansion except to the extent that out-of-frame rearrangements are passengers in clones expanding as a consequence of the specificity of the functional rearrangement. Due to independence between the two rearrangements, it can be reasonably assumed that the effects of clonal expansion are uniform in their impact on the observed V- and J-gene frequencies among out-of-frame rearrangements. Komkov et al. further assume that gene-specific relative frequencies among unique, out-of-frame rearrangements approximate recombination frequencies and that the extent to which gene-specific relative frequencies among all out-of-frame rearrangements deviate from those among unique, out-of-from rearrangements provides an estimate of gene-specific PCR amplification bias. The ratio of V- or J-gene relative frequencies among all out-of-frame rearrangements to the corresponding relative frequency among unique out-of-frame rearrangements provides this estimate and can be used as a correction factor during data processing. It also serves as the basis for a repertoire-level metric of the overall extent of amplification bias in a repertoire.

      This is a very nice and, to the best of my knowledge, novel idea. The proposed correction factor and metric have potential utility in all studies conducting AIRR-seq that use a PCR amplification step. While the proposed approach may not have superior or even equal performance when compared to biological spike-ins, it still has great potential utility given the time and financial costs and required expertise of using biological spike-ins and because it can be applied to data sets that have already been generated. Incorporation of this approach into AIRR-seq data processing has the potential to increase the accuracy of downstream analyses. It also has the potential to enhance the comparability of results across studies and to reduce the effects of different sequencing protocols for data re-use when data are integrated across studies.

      Enthusiasm is dampened by the fact that the proposed method is not directly compared to the gold standard of biological spike-ins.

      During manuscript revision, we designed and performed an additional wet-lab experiment to directly compare the iROAR approach with biological spike-ins.

    1. Author Response

      Reviewer #1 (Public Review):

      This manuscript describes the generation and characterization of a mouse knockout model of Cep78, which codes for a centrosomal protein previously implicated in cone-rod dystrophy (CRD) and hearing loss in humans. Previous work in cultured mammalian cells (including patient fibroblasts) also indicated roles for CEP78 in primary cilium assembly and length control, but so far no animal models for CEP78 were described. Here, the authors first use CRISPR/Cas9 to knock out Cep78 in the mouse and convincingly demonstrate loss of CEP78 protein in lysates of retina and testis of Cep78-/- animals. Next, by careful phenotypic analysis, the authors demonstrate significant defects in photoreceptor structure and function in these mutant animals, which become more severe over a 9 (or 18) month period. Specifically, TEM analysis demonstrates ultrastructural defects of the connecting cilium and photoreceptor outer segments in the Cep78 mutants, which is in line with previously reported roles for CEP78 in CRD and in regulating primary cilia assembly in humans. In addition to a CRD-like phenotype, the authors also convincingly show that male Cep78-/- animals are infertile and exhibit severe defects in spermatogenesis, sperm flagella structure and manchette formation (MMAF phenotype). Furthermore, the authors provide evidence for an MMAF phenotype from a male individual carrying a previously reported CEP78 c.1629-2A>G mutation, substantiating that CEP78 is required for sperm development and function in mammals and supporting previously published work (Ascari et al. 2020).

      Finally, to identify the underlying molecular mechanism by which CEP78 loss causes MMAF, the authors perform some biochemical analyses, which suggest that CEP78 physically interacts with IFT20 and TTC21A (an ortholog of Chlamydomonas IFT139) and might regulate their stability. The authors conclude that CEP78 directly binds IFT20 and TTC21A in a trimeric complex and that disruption of this complex underlies the MMAF phenotype observed in Cep78-/- male mice. However, this conclusion is not fully justified by the data provided, and the mechanism by which CEP78 affects spermatogenesis therefore remains to be clarified.

      Specific strengths are weaknesses of the manuscript are listed below.

      Strengths:

      Overall, the phenotypic characterisation of the Cep78-/- animals appears convincing and provides new evidence supporting that CEP78 plays an important role in the development and function of photoreceptors and sperm cells in vertebrates.

      Weaknesses:

      1) The immunoprecipitation experiments of mouse testis extracts that were used for the mass spectrometry analysis in Table S4 were performed with an antibody against endogenous CEP78 (although antibody details are missing). One caveat with this approach is that the antibody might block binding of CEP78 to some of its interactors, e.g. if the epitope recognized by the antibody is located within one or more interactor binding sites in CEP78. This could explain why the authors did not identify some of the previously identified CEP78 interactors in their IP analysis, such as CEP76 and the EDD-DYRK2-DDB1-VprBP complex (Hossain et al. 2017) as well as CEP350 (Goncalves et al. 2021).

      We thank Reviewer #1 (Public Review) for agreeing with us on Cep78 plays an important role in photoreceptors and sperm cells development. We also appreciate Reviewer #1 (Public Review) for pointing out the weaknesses which helped us improve our study.

      For the immunoprecipitation experiments of mouse testis extracts, the antigenic sequence of the Cep78 antibody used is p457-741 (NP_932136.2). Cep78 was reported to bind DD-DYRK2-DDB1-VprBP complex, the 1-520aa is responsible for Cep78’s interaction with VprBP, and deletion of p450-497 didn’t affect Cep78’s interaction with VprBP, indicating importance of Cep78 (1-450aa) in interaction with VprBp (Hossain et al. 2017). Our anti-Cep78 antibody is generated using antigen sequence p457-741, the binding of p1-450aa to VprBP is not expected to be blocked by our anti-Cep78 antibody. However, VprBp was not detected by our IP-MS experiment. C-terminal region (395-722aa) of Cep78 overlaps with our Cep78 antibody’s antigenic region (p457-741), and was reported to interact with Cep350 (Goncalves et al. 2021). As a polyclonal antibody, our anti-Cep78 antibody didn’t block the interaction with p457-741, because we still identified Cep350 in our IP-MS. Thus, immunoprecipitation experiments using our Cep78 antibody identified some of the previously known interactors, and the interaction with VprBP may not be blocked by our Cep78 antibody.

      The detailed antibody information has now been added to Supplementary Table S7 in our revised supplementary materials.

      2) Figure 7A-D and page 18-25: based on IPs performed on cell or tissue lysates the authors conclude that CEP78 directly binds IFT20 and TTC21A in a "trimeric complex". However, this conclusion is not justified by the data provided, nor by the previous studies that the authors are referring to (Liu et al. 2019 and Zhang et al. 2016). The reported interactions might just as well be indirect. Indeed, IFT20 is a known component of the IFT-B2 complex (Taschner et al., 2016) whereas TTC21A (IFT139) is part of the IFT-A complex, which suggests that they may interact indirectly. In addition, the IPs shown in Figure 7A-D are lacking negative controls that do not coIP with CEP78/IFT20/TTC21A. It is important to include such controls, especially since IFT20 and CEP78 are rich in coiled coils that tend to interact non-specifically with other proteins.

      Thank Reviewer #1 (Public Review) for the comment on protein interaction between Cep78, Ift20, and Ttc21a. As the reviewer pointed out, IFT20 is a known component of the IFT-B2 complex (Taschner et al., 2016) whereas TTC21A (IFT139) is part of the IFT-A complex. Both IFT20 and TTC21a are located at peripheral areas of IFT-B and IFT-A (PMID: 32456460), and are not core components of IFT-A or IFT-B. It is still possible that these two proteins interact with each other. Actually, Liu et al. have revealed interaction between Ift20 and Ttc21a in human sperm (PMID: 30929735). Additionally, to mediate trafficking of ciliary axonemal components, the IFT machinery is recruited to the distal appendages (PMID: 30601682), which is adjacent to the distal end of the (mother) centriole wall, where at the (mother) centriole wall was reported to be located (PMID:35543806). Cep78 may interact with Ift20 and Ttc21a at centriole during cilliogenesis.s

      To rule out the nonspecific interaction between Cep78 and Ttc21a or Ift20, we added additional negative controls of Gapdh (Figure 7D) and Ap80-NB-HA (Supplementary Figures S7A-C) in co-IP as the reviewer suggested, and found that the interaction between Cep78 and Ttc21a or Ift20 is specific. To examine if Cep78, Ift20 and Ttc21a formed a complex, we fractionated testicular protein complexes using size exclusion chromatography, and found that Cep78, Ift20 and Ttc21a co-fractioned at the size between158 kDa to 670 kDa (Figure 7E), supporting the formation of a trimeric complex. And our immunofluorescent analysis by SIM also showed co-localization between Cep78 and Ift20 or Ttc21a (Figure 7F). All these data support the interaction among Cep78, Ttc21a and Ift20. In the revised manuscript, we rephrased “direct interaction” as “interaction” at page 18, line 393 in the revised manuscript.

      3) In Figure 7D, the input blots show similar levels of TTC21A and IFT20 in control and Cep78-/- mouse testicular tissue. This is in contrast to panels E-G in the same figure where TTC21A and IFT20 levels look reduced in the mutant. Please explain this discrepancy.

      Thank you for pointing this out. Deletion of Cep78 caused down-regulation of Ttc21a and Ift20 proteins. To better reveal the change of interaction between Ttc21a and Ift20, we have to normalize their interaction against expression levels. To achieve this, we increased the amount of total Cep78-/- testicular proteins to ensure that Ttc21a and Ift20 in the input are at similar levels between Cep78+/- and Cep78-/- testes. Using 3 times the amount of the Cep78+/- testicular proteins for Cep78-/- testicular proteins, we detected similar protein levels of Ttc21a and Ift20 between Cep78-/- and Cep78+/- testes, and the interaction between Ttc21a and Ift20 was shown to be down-regulated after Cep78 deletion. Consistently, the analysis of GAPDH as a loading control in input proteins showed more Cep78-/- testicular proteins than Cep78+/- testicular proteins subjected to analysis. To avoid confusion, we have added description of “The amount of Cep78-/- testicular proteins used was 3 times of that of Cep78+/- proteins” in the legend of Figure 7D in the revised version of manuscript.

      4) The efficiency of the siRNA knockdown shown in 7J-M was only assessed by qPCR (Figure S4), but this does not necessarily mean the corresponding proteins were depleted. Western blot analysis needs to be performed to show depletion at the protein level. Furthermore, it would be desirable with rescue experiments to validate the specificity of the siRNAs used.

      Thank the reviewer for the suggestion. To validate the specificity of the siRNAs used, we performed rescue experiments using rescue plasmid with siRNA targeting sequence synonymously mutated (Supplementary Table S6). The efficiency of siRNA knockdown and effects of rescue experiments were evaluated by both qPCR (Supplementary Figures S4.A-C) and Western Blot (Figures 7.J-K, Supplementary Figures S4.D-E, H-I). The results showed that siRNAs significantly reduced the expression of Cep78, Ift20, and Ttc21a at both mRNA (Supplementary Figures S4.A-C) and protein levels (Figures 7.J-K, Supplementary Figure S4.A-C). Meanwhile, with siRNA treatment, the rescue plasmids rescued the expression of Cep78, Ift20, and Ttc21a at both mRNA (Supplementary Figures S4.A-C) and protein levels (Figures 7.J-K, Supplementary Figures S4.D-E, H-I) compared with the control groups.

      In the rescue experiments, we further evaluated whether the effects are specific for Cep78, Ift20 and Ttc21siRNAs in the regulation of cilia and centriole lengths. The results showed that suppression of cilia and centriole lengths by Cep78, Ift20 and Ttc21siRNAs could be rescued by overexpression of rescue plasmids of Cep78syn-HA, Ift20syn-Flag and Ttc21asyn-Flag (Figures 7.N-S).

      5) Figure 7I: the resolution of the IFM is not very high and certainly not sufficient to demonstrate that CEP78, IFT20 and TTC21A co-localize to the same region on the centrosome, which one would have expected if they directly interact.

      Thank the reviewer for the constructive comments. To better demonstrate co-localization of CEP78, IFT20 and TTC21A on the centrosome, we overexpressed Cep78-Halo, Ift20-mCherry and Ttc21a-mEmerald in NIH3T3 cells by lentivirus, and acquired super-resolution images with SIM (N-sim, Nikon, Tokyo, Japan). The SIM results showed that Ift20 and Ttc21a co-localized with Cep78 (Figure 7F). Cep78 was previously reported to localize at the centriole (Goncalves et al., 2021). The co-localization of Cep78, Ift20 and Ttc21a indicated possible important roles of Cep78 in the regulation of Ift20 and Ttc21a in centriole. Our interaction analysis revealed that Cep78 interacted with Ift20 and Ttc21a (Figure 7A-C, Supplementary Figure S7), and formed a complex with Ift20 and Ttc21a (Figure 7E). Loss of Cep78 down-regulated the expression of and interaction between Ift20 and Ttc21a (Figures 7D, G-M).

      6) It is not really clear what information the authors seek to obtain from the global proteomic analysis of elongating spermatids shown in Figure 3N, O and Tables S2 and S3. Also, in Table S2, why are the numbers for CEP78 in columns P, Q and R so high when Cep78 is knocked out in these spermatid lysates? Please clarify.

      Thank the reviewer for the comments. Our global proteomic analysis showed that majority of differentially expressed proteins were down-regulated (Figure 3N), and many proteins are centrosome- and cilia-related proteins and important for sperm flagella and acrosome structures (Figure 3O), which provide insights of downstream molecular events in sperm flagella and acrosome defects after Cep78 deletion.

      As to the quantification of CEP78 expression in TMT-based proteomics analysis, the ratio between Cep78-/- and Cep78+/- is relatively high due to the ratio compression effect, a well-known phenomenon in TMT-based proteomics analysis (PMID: 25337643). The actual difference in protein expression is usually higher than the ratio calculated by TMT signals. Actually, our Western blot analysis of CEP78 protein showed absence of expression in Cep78-/- testis. Although TMT labelling has the disadvantage of ratio compression (PMID: 32040177,PMID: 23969891), it is widely used quantitative proteomics analysis, and is demonstrated to be able to identify key pathways and proteins (PMID: 30683861, 33980814).

      7) Figure 1F and Figure 4K: the data needs to be quantified.

      Thank the reviewer for this suggestion. For Figure 4K, we stained Cep78+/- and Cep78-/- spermatids with anti-Centrin 1 to measure the centriole length. The statistical data of centriole length were provided (Figure 4L), showing significantly increased centriole lengths in Cep78-/-spermatids.

      For Figure 1F, we quantified the immunofluorescence intensities of cone arrestin of light-adapted retinas of Cep78+/- and Cep78-/- mice at 3-month. The results indicate that immunofluorescence intensity of the cone arrestin was lower in Cep78-/- mice.

      8) Figure 2A: It is difficult to see a difference in connecting cilium length in control and Cep78-/- mutant retinas based on the images shown here.

      Thank you for your suggestion, we have stained retinal cryosections from Cep78+/- and Cep78-/- mice with anti-Nphp1 to visualize connecting cilium, and the data are provided in the revised Figure 2A-B.

      Reviewer #2 (Public Review):

      In this report, the authors have described the generation and characteristics of Cep78 mutant mice. Consistent with the phenotype observed in patients carrying the mutations in CEP78, Cep78 knock-out mice show degeneration in photoreceptors cells as well as defects in sperm. The author further shows the CEP78 protein can interact with IFT120 and TTC21a. Mutation in CEP78 results in a reduction of protein level of IFT120 and TTC21A and mislocalization of these two proteins, offering mechanistic insights into the sperm defects. Over all the manuscript is well written and easy to follow. Phenotyping is thorough. However, improvement of the background section is needed. In addition, some of the conclusion is not sufficiently supported by the data, warranting further analysis and/or additional experiments. The Cep78 KO mice model established by the author will be a useful model for further elucidating the disease mechanism in human and developing potential therapy.

      My comments are the following:

      1) Introduction. The statement that "CRD usually exists with combination of immotile cilia defects in other systems" is not correct. CRD due to ciliopathy can have cilia-related syndromic defects in other systems but it is a relatively small portion of all CRDs and the most frequently mutated genes are not cilia-related genes, such as ABCA4, GUCY2D, CRX.

      Thank the reviewer for the comments. We agree with the reviewer that only a small portion of CRDs are due to cilia defects and can have cilia-related syndromic defects in other systems. We corrected this statement in Line 4, Page 77-79 of the revised version of our manuscript. In our revised version, the statement has been changed to “A small portion of CRDs are due to retina cilia defects, and they may have cilia-related syndromic defects in other systems[1].”

      2) Introduction: Page 4 CNGB1 encodes channel protein and not a cilia gene. It should be removed since it does not fit.

      Thank the reviewer for the comment. According to the reviewer’s suggestion, we removed the description of “mutations in CNGB1 cause CRD and anosmia [3]” at Page 4, Line 81 in the revised manuscript.

      3) Page 5, given the previous report of CEP78 patients with retina degeneration, hearing loss, and reduced infertility, the statement of "we report CE79 as a NEW causative gene for a distinct syndrome...TWO phenotypes....." Is not accurate.

      Thank the reviewer for the comments. We have removed the statement of “NEW” causative gene in Page 5, Line 104 of the revised version of our manuscript. The revised sentence is “In this study, based on results of a male patient carrying CEP78 mutation and Cep78 gene knockout mice, we report CEP78 as a causative gene for CRD and male sterility.”

      4) Figure 1F, the OS of the cone seems shorter, which might be the reason for weaker arrestin staining in the mutant compared to the heterozygous. Also, it would be better to quantify the staining to substantiate the statement.

      Thanks for this suggestion. For Figure 1F, we have quantified the immunofluorescence intensity of cone arrestin in Cep78+/- and Cep78-/- light-adapted retinas at 3-month. The results indicate that immunofluorescence intensity of the cone arrestin was significantly lower in Cep78-/- mice.

      5) Figure 1K, panel with lower magnification would be useful to get a better sense of the overall structure defect of the retina. Is the defect observed in the cone as well?

      Thank the reviewer for the comment. As suggested by the reviewer, we have provided images of lower magnification to show the overall structure by TEM, showing disruption of most outer segment in Cep78-/- retina. It is difficult to distinguish whether the disordered outer segment structure belongs to a cone or a rod cell. The images are now provided as Figure 1L in the revised manuscript.

      We observed the abnormality of photopic b-wave amplitudes (Figure 1B, E) and decreased intensity of cone arrestin in light-adapted retinas (Figure 1F, G) in Cep78-/- mice, which indicate that the function of cone cells is damaged.

      6) Figure 2A, NPHP1 or other markers specifically label CC would be more useful to quantify the length of CC. Also need to provide a notation for the red arrows in Figure 2. In addition, the shape of CC in the mutant seems differ significantly from the control. It seems disorganized and swollen.

      Thank the reviewer for the suggestion. According to the reviewer’s suggestion, we have stained anti-Nphp1 in retinal cryosections from Cep78+/- and Cep78-/- mice to visualize connecting cilium, and quantified the length of CC. The results showed that connecting cilia were shorter in Cep78-/- mice. These data are showed in Figure 2A-B.

      Besides, we observed that upper parts of connecting cilia were swelled with disorganized microtubules in TEM (Figure 2E-G). The red arrows in Figure 2E-G indicated swelled upper part of connecting cilia and disorganized microtubules of Cep78-/- photphoreceptors, we added this description in the figure legend.

      7) Evidence provided can only indicate direct interaction among CEP78/IFT20/TTC21A.

      Thanks for the comment. To further validate the interaction between Cep78 and Ttc21a or Ift20, we performed reciprocal co-IP between Cep78 and Ttc21a or Ift20 by overexpression (Figure 7A-C), and also added relevant negative control of Gapdh (Figure 7D) and Ap80-NB-HA (Supplementary Figures S7A-C) in co-IP as negative controls to avoid non-specific interaction. Besides, we provided evidence that Cep78, Ift20 and Ttc21a formed a complex, as they all co-fractioned in a testicular protein complex at the size between158 kDa to 670 kDa using size exclusion chromatography (Figure 7E). Additionally, we performed super-resolution analysis of immunofluorescent localizations, and observed co-localization between Cep78 and Ttc21a or Ift20 by SIM. With these data, we think that Cep78 interacts with Ttc21a and Ift20 and they form a complex. We rephrased “direct interaction” as “interaction” in the manuscript.

      Reviewer #3 (Public Review):

      Authors were aiming to bring a deeper understanding of CEP78 function in the development of cone-rod dystrophy as well as to demonstrate previously not reported phenotype of CEP78 role in male infertility.

      It is important to note, that the authors 're-examined' already earlier published human mutation, 10 bp deletion in CEP78 gene (Qing Fu et al., 10.1136/jmedgenet-2016-104166). This should be seen as an advantage since re-visiting an older study has allowed noting the phenotypes that were not reported in the first place, namely impairment of photoreceptor and flagellar structure and function. Authors have generated a new knockout mouse model with deleted Cep78 gene and allowed to convey the in-depth studies of Cep78 function and unleash interacting partners.

      The authors master classical histology techniques for tissue analysis, immunostaining, light, confocal microscopy. They also employed high-end technologies such as spectral domain optical coherence tomography system, electron, and scanning electron microscopy. They performed functional studies such as electroretinogram (ERG) to detect visual functions of Cep78-/- mice and quantitative mass spectrometry (MS) on elongating spermatids.

      The authors used elegant co-immunoprecipitation techniques to demonstrate trimer complex formation.

      Through the manuscript, images are clear and support the intended information and claims. Additionally, where possible, quantifications were provided. Sample number was sufficient and in most cases was n=6 (for mouse specimens).

      The authors could provide more details in the materials and methods section on how some experiments were conducted. Here are a few examples. (i) Authors have performed quantitative mass spectrometry (MS) on elongating spermatids lysates, however, did not present specifically how elongating spermatids were extracted. (ii) In the case of co-IPs authors should provide information on what number of cells (6 well-plate, 10 cm dish etc) were transfected and used for co-IPs. Furthermore, authors could more clearly articulate what were the novel discoveries and what confirmed earlier findings.

      The authors clearly demonstrate and present sufficient evidence to show CEP78/Cep78 importance for proper photoreceptor and flagellar function. Furthermore, they succeed in identifying trimer complex proteins which help to explain the mechanism of Cep78 function.

      The given study provides a rather detailed characterization of human and mouse phenotype in response to the CEP78/Cep78 deletion and possible mechanism causing it. CEP78 was already earlier associated with Cone-rod dystrophy and, this study provides a greater in-depth understanding of the mechanism underlying it. Importantly, scientists have generated a new knock-out mouse model that can be used for further studies or putative treatment-testing.

      CEP78/Cep78 deletion association with male infertility is not previously reported and brings additional value to this study. We know, from numerous studies, that-testes express multiple genes, some are unique to testes some are co-expressed in multiple tissues. However, very few genes are well studied and have clinical significance. Studies like this, combining patient and animal model research, allow to identify and assign function to poorly characterized or yet unstudied genes. This enables data to use in basic research, patient diagnostics and treatment choices.

      We would like to thank Reviewer #3 (Public Review) for positive comments on our work.

      As to the suggestions to provide some details in the materials and methods by the reviewer, we added the description of STA-PUT method for spermatids purification at Page 34, Line 729-741 in the revised manuscript, the amount of cells used for co-IPs “10 cm dish HEK293T were transfected (Vazyme, Nanjing, China) wit 5μg plasmid for each experimental group.” at Page 36, Line 783-784 in the revised manuscript.

      We also highlighted our new discovery and ensured that all previous published findings are accompanied by references, we added “We further explored whether c.1629-2A>G mutation in this previously visited patient would disturb CEP78 protein expression and male fertility. Blood sample was collected from this patient and an unaffected control for protein extraction.” at Page 17, Line 335. We also added “The major findings of our study are as follows: we found CEP78 as the causal gene of CRD with male infertility and multiple morphological abnormalities of the sperm flagella using Cep78-/- mice. A male patient carrying CEP78 c.1629-2A>G mutation, whom we previously reported to have CRD [8], was found to have male infertility and MMAF in this study. Cep78 formed a trimer with sperm flagella formation enssential proteins IFT20 and TTC21A (Figure 8), which are essential for sperm flagella formation[16, 18]. Cep78 played an important role in the interaction and stability of the trimer proteins, which regulate flagella formation and centriole length in spermiogenesis. ” at the first paragraph of discussion, which is Page 21, Line 447-456 of our revised manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      The idea that a passive living being can improve the wind dispersal of its seeds by passively changing their drag is enticing. The manuscript shows that high wind events in Scotland are inversely correlated with the ambient humidity. The dandelion pappus morphs with the ambient humidity, being more open in dry conditions, which is associated with stronger wind events. This passive morphing of the shape of the pappi thus leads to a dispersal of the seeds further away from their origin.

      The analysis and discussion in the paper is focused on "distance", i.e., how far the pappus will fly. Could the notion of time be relevant too? In wet conditions, perhaps it's better for a seed to hit the ground quickly and start germinating, whereas if its dry, staying up in the air for longer to travel farther might be a better strategy.

      This is an interesting point; however, we think that flight time is likely to be less relevant to the dispersal outcomes. This is because seeds mostly remain attached to the parent plant in wet conditions so will not fly at all and therefore will not begin germination. When they do disperse, flight time will generally be only a few seconds for the majority of seeds whether they are wet or dry, and the timescale of wet weather is generally much longer (typically hours).

    1. Author Response

      Reviewer #1 (Public Review):

      This excellent manuscript challenged the premise that NF-kappaB and its upstream kinase IKKbeta play a role in muscle atrophy following tenotomy. Two animal models were used - one leading to enhanced muscle-specific NF-kappaB activation and the other a muscle-specific deletion. In both models, there was no significant relationship to observed muscle changes following tenotomy. Overall this work is significant in that it challenges the existing dogma that NF-kappaB plays a crucial role in muscle atrophy.

      Surprisingly the authors noted that there were basal differences observed in the phenotypes of their models that were sex-dependent. They note that male mice lose more muscle mass after tenotomy and specifically type 2b fiber loss.

      Overall this is an outstanding study that challenges the notion that NF-kappaB inhibitors are likely to improve muscle outcomes following injuries such as rotator cuff tears. Its main weakness is that there were no pharmacological arms of investigation; this fails to definitively exclude the hypothesis that inhibition may exert some effect in healing, perhaps in surrounding non-muscle matrix tissue that in turn may assist in healing.

      Thank you for your careful and thoughtful review. We agree that the finding that NFkb is not driving tenotomy-induced atrophy is both surprising and interesting. We look forward to further uncovering the atrophic mechanisms responsible. We also agree that an investigation using pharmacological NFkb inhibitors will improve our understanding of the full scope of the role of NFkb in the tenotomy pathology. As you and another reviewer note, this work has only blocked NFkb signaling in the mature muscle fiber and thus cannot assess the role of NFkb in satellite cell, fibroblast, immune cell activation etc in the healing response. However, we avoided using these inhibitors in this study due to the potential for these systemic effects to obscure the role of NFkb in the muscle fiber. While we believe that a pharmacological investigation is beyond the scope of this study, it will make an excellent follow on investigation.

      Reviewer #2 (Public Review):

      The primary strength of this paper is a rigorous approach to 'negative' data. Did the authors definitively prove that NF-kB has no role in the tenotomy-induced atrophy? Probably not entirely, since there are limitations of the mouse model and the knockdown mice. There cannot be complete elimination of load since mice heal with some scar tissue, and the knockdown is not complete elimination. However, even with these limitations, this presents important findings that tenotomy, which induces mechanical unloading of the muscle-tendon unit, provides a unique biomechanical environment for the muscle to undergo atrophy, which warrants a more in-depth look given that these injuries are unique and extremely common. It must be mentioned that the results are entirely supported by their data and that even though the model is not 'perfect' it truly supports that NF-kB has a limited role in atrophy. The sex-mediated differences based on autophagy are a secondary hypothesis and are interesting but possibly less clinically relevant based on the differences shown.

      We appreciate your thoughts on the “negative” data in this study. A manuscript in which the data refute your hypothesis and that of the field is difficult to write. There is a higher burden of validation and closer scrutiny of limitations. We agree that the model does have some limitations, but overall strongly supports a limited role for NBkb in tenotomy-induced muscle atrophy.

      The important next step for this group and others is to evaluate the 'how and why' of tenotomy atrophy if not through NF-kB. Is it that there are many redundant processes that the muscle may have to circumnavigate the NF-kB pathway given that it is so ubiquitous that the authors didn't see a difference? Could it be differences in axial vs appendicular muscle? Or should there be a closer look at the mechanosensors in the muscle cells to determine if there are other key drivers of atrophy? Regardless, this paper shows that tenotomy-induced muscle atrophy is unique and supports the conclusion that muscle has many ways to atrophy based on the injury it undergoes.

      We agree that the major next step for this work is to investigate the mechanism(s) responsible for tenotomy-induced atrophy. Autophagy in particular needs a more thorough investigation using autophagic inhibitors in naive wildtype mice to investigate its role in the sex-specificity of tenotomy-induced atrophy. The question of axial vs. appendicular muscle is intriguing. There could also be an upper vs. lower body difference that is worth exploring in future work.

      Reviewer #3Public Review):

      The authors provided thorough analyses of muscle morphology, biochemistry, and function, which is a major strength of the study. However, there are some key confounding variables authors failed to address. For example, the difference in the estrous cycle in female animals was not controlled. The study could have been significantly improved by controlling sex hormone levels or at least testing differences in response to injury.

      We appreciate your careful and insightful review of our work. We designed this study to assess the role of myofiber NFkb in tenotomy-induced atrophy, which led us to a rigorous assessment of morphology, biochemistry and function, which we agree is the strength of the study. We also agree that a major limitation of this study is that the secondary observations of sex-specificity and autophagic signaling are not as well controlled or supported. This is because these observations were made at the end of the study when the histological analyses were completed by the blinded rater. The sex-specificity in the basophilic puncta that the rater observed sparked us to reconsider the sex-specificity in our other data and to stain for autophagic vesicles. As you suggest, to rigorously assess sex-specificity it would be good to control of estrous cycle and analysis of sex hormones which would require initiation of another study, planning for these variables in advance. We think this is beyond the scope of the current question of the role of NFkb in tenotomy-induced atrophy but think it should be undertaken as a follow on to eliminate confounding variables of genetic manipulation and tamoxifen treatment.

      However, since we still need to report the sex specificity we observed while ensuring that our findings are not misconstrued, we reviewed the language in the manuscript to emphasize that these are retrospective observations that require further investigation. We have also added discussion of these variables and their potential influence on the results to the Discussion.

      Discussion: “Additionally, it is important to note that estrous cycle was not controlled in these mice and sex hormone levels weren’t measured in this study. These preliminary observations, though intriguing, will require more rigorous follow up evaluations to define the interaction between sex, tenotomy, and autophagy in naïve wildtype mice.”

      Furthermore, more data are needed to link NFkB signaling and autophagy to make any kind of conclusions. Overall, in the current form of the manuscript, the presented data seem underdeveloped, and the addition of more supporting data could significantly improve the quality of the manuscript and enhance our understanding of NFkB signaling and muscle wasting in rotator cuff injury.

      We agree that more data are needed to complete the picture of autophagy in tenotomy-induced muscle atrophy. The p62 and LC3 positive intracellular puncta in male tenotomized muscle are distinctive, but only limited conclusions can be drawn physiologically because 1) they are only present in a fraction of fibers and 2) it is impossible to tell whether they result from increased autophagic flux or altered vesicle processing. Western blot for LC3 (and now p62) indicates only small changes in total protein, but since these proteins are synthesized and degraded during active autophagy, it is possible for their levels to remain constant while flux increases. Direct measures of autophagic flux would require treating mice with an autophagosome block which would require initiation of another study. However, we agree with the reviewer that we can add some additional measures to better characterize the instantaneous state.

      We have added analysis of p62 protein expression to LC3 since p62 protein content in muscle can be decoupled from LC3 (PMID: 27493873). We also added expression data for genes involved in autophagy (Lc3b, Gabarapl1, Becn1, Bnip3, and Atg5). Finally, we have commented on the limitations of our data in the Discussion.

      Discussion: “Evidence for autophagy regulating tenotomy-induced atrophy has been mounting over recent years (Bialek et al., 2011; Gumucio et al., 2012; Joshi et al., 2014; Ning et al., 2015; Hirunsai & Srikuea, 2021). The evidence presented here supports this contention, but we find surprisingly small effect sizes for all markers investigated. This could be because we are not directly assessing autophagic flux and so are missing some temporal dynamics since synthesis and degradation are ongoing simultaneously.”

    1. Author Response

      Reviewer #1 (Public Review):

      The authors have generated a set of seven nanobody tools against two of the largest Drosophila proteins, which are related to vertebrate titin and essential for muscle function. The study of such gigantic proteins is a challenge. They show that each of these nanobodies recognizes their epitope with high affinity (as expected from antibodies), fails to generate a signal after immune-fixation of a mutant for the cognate protein, do not cross-react with each other, and generates a signal in the muscle that makes sense with what one would anticipate for fly titin homologs. In addition, they show that these nanobodies have better penetration and labeling efficiency than conventional antibodies in thick tissues after classical paraformaldehyde fixation. Using these nanobodies, they could deduce the organization of the epitopes in different muscle types and propose a model for Sallimus and Projectin arrangement in muscles, including in larvae which are difficult to label with traditional antibodies due to their impermeable chitin skeleton. Finally, they could fuse the gene encoding one of the nanobodies to the open reading frame of NeonGreen and express the corresponding fusion protein in animals to use the probe in FRAP assays.

      The work is very well performed and convincing. However, given its significant redundancy in terms of biological conclusions with the companion study "Nanobodies combined with DNAPAINT super-resolution reveal a staggered titin nano-architecture in flight muscles" by the same authors, and other published papers, I recommend the authors further prove the use of their nanobodies in live assays. In particular, the authors should test whether they can use the nanobodies to induce protein degradation either permanently or conditionally.

      Thanks for this nice summary of our findings. We have now extended the analysis of the Nanobody-NeonGreen fusion expressing larval muscles and provide first proof of principle analysis of new fly strains that we generated that contain Sls-Nano2 or Sls-Nano42 nanobodies fused to a degradation signal. These induce lethality of the animals suggesting that Sls protein is partially non functional. We verified this by providing quantitative stainings of various Sls epitopes in these muscles suggesting that Sls is not fully degraded but rather partially modified in the Sls-Nano-deGrad expressing muscle fibers. These will be interesting tools to study Sls function during sarcomere homeostasis.

      Reviewer #2 (Public Review):

      The data presented in this manuscript are sound but rather descriptive. The contribution - as presented - is mostly of a technical nature. The authors correctly state that anti-GFP nanobodies, while used extensively across many model organisms, have limited utility for in vivo applications when the GFP-tagged protein in question displays abnormal behavior or is non-functional. The creation of nanobodies that are uniquely specific for the protein(s) of interest is therefore a significant improvement, especially since the Sallimus and Projectinspecific reagents reported here react with PFA-fixed material. At least one of these nanobodies, when expressed in vivo, decorates the appropriate target. The source of antigens used for the construction of the nanobody library is Drosophila-derived. The extent of homology of Drosophila Sallimus and Projectin with related proteins in other species is not discussed. Whether the nanobodies reported here would be useful in other (closely related?) species, therefore, remains to be established. For those studying muscle biology in Drosophila, the nanobodies described here will be publicly available as cDNAs. Ease of production implies a readily shared and standardized resource for the field.

      We thank this reviewer for appreciating that our Sallimus and Projectin nanobodies are useful. We now have extended the collection even further, including anti-Obscurin, αActinin and Zasp52 nanobodies, the latter two will also be useful for researcher studying other tissues, in particular Drosophila epithelial tissues. As always in the Drosophila field, all the here generated fly strains and plasmids will be made easily available to the community by placing them in stock centers or shipping them to the laboratories directly. As indicated, also the plasmids will be deposited at Addgene.

      Further characterization of these nanobodies by biochemical methods such as immunoblotting would be challenging, given the size of the target proteins. In view of the technical nature of this manuscript, the authors should perhaps critically discuss the distinction between bulky GFP tags versus the much smaller epitope tags and the nanobodies that recognize them, although this was covered in a recent eLife paper from the Perrimon lab. Insertion of small tags, in conjunction with nanobodies that recognize them, would be less perturbing than the much bulkier GFP tag and lend itself to genome-wide applications. Creating nanobodies uniquely specific for each protein encoded in the Drosophila genome is not realistic, and the targeted approach deployed here is obviously valuable.

      We are discussing the drawbacks of solely relying on GFP nanobodies, which requires GFP tagged proteins to be available and being functional. In particular for the sarcomeric proteins this is often not the case. We also cite the Perrimon paper, which was just published as we prepared this manuscript. We would like to point out to this reviewer that even tagging with a small epitope tag is considerable work in Drosophila and that the Perrimon paper, on which this reviewer is an author, does describe only two endogenously tagged genes with a nanotag (histone H2Av and Dilp2) the other genes described were expressed from a UAS source or in cell culture. We show here 22 nanobodies against 11 target epitopes.

      Nanobodies recognise typically folded epitopes and are rather unlikely to work in immunoblotting.

      The authors apply two different approaches to characterize the newly generated Nanobodies: more or less conventional immunohistochemistry with fluorescently labeled nanobodies, and in vivo expression of nanobodies fused to the fluorescent neongreen protein. The superiority of nanobodies in terms of tissue penetration has been shown by others in a direct comparison of intact fluorescently labeled immunoglobulins versus nanobodies. The authors state that in vivo labeling with nanobody fusions "thus far was done only with nanobodies against GFP, mCherry or short epitope tags." There is no fundamental difference between these recognition events and what the authors report for their Sallimus and Projectin-specific reagents. The section that starts at line 304 is thus a little bit of a 'straw man'. There is no reason to assume that a nanobody that recognizes a muscle protein would behave differently than a nanobody that would recognize that same protein (or another) when epitope- or GFP-tagged. What might be interesting is to examine the behavior of these muscle-specific nanobodies in the course of muscle contraction/relaxation: are there conformational alterations that promote dissociation of bound nanobodies? Do different nanobodies display discrete behavior in this regard? The manuscript is silent on how muscles behave in live L3 larvae. The FRAP experiment seems to suggest that not much is happening, but the text refers to the contraction of larval sarcomeres from 8.5 µM to 4.5 µM. Does the in vivo expressed nanobody remain stably bound during this contraction/relaxation cycle? What about the other nanobodies reported in this manuscript? Since the larval motion was reduced by exposure to diethylether, have the authors considered imaging the contractive cycle in the absence of such exposure?

      We appreciate the expert knowledge about nanobodies by this reviewer. However, nanobodies were not extensively applied in Drosophila tissues. Hence, we believe it is important to characterise their penetration in stainings and compare them carefully to antibodies. Such, the Drosophila reader will be aware of their advantages.

      We have now also included more data on the larval muscle morphology in the nanobody expressing muscles. Their morphology is normal. As larvae move around extensively all the time, the binding of the nanobodies to the target must be stable, otherwise it would not be bound when we fix them or anesthetize them. However, we have not attempted to image them at high resolution while crawling freely. From quantifying the crawling speed (about 1.5 mm per second, see Figure 9 S1) we hope this reviewer appreciates that high resolution imaging of sarcomeres in freely crawling larvae is highly non trivial.

      Given that the nanobodies bind well-folded epitopes with low picomolar dissociations constants, it is hard to imagine that conformational changes of the target would dissociate them. The nanobody would stabilise the recognised conformation by a ΔG of ≈60 KJ/ mole, and we would not expect that the chosen domains undergo major conformational changes.

      Reviewer #3 (Public Review):

      Loreau et al. have presented a well-written manuscript reporting clever, original work taking advantage of fairly new biotechnology - the generation and use of single chain antibodies called nanobodies. The authors demonstrate the production of multiple nanobodies to two titin homologs in Drosophila and use these nanobodies to localize these proteins in several fly muscle types and discover interesting aspects of the localization and span of these elongated proteins in the muscle sarcomere. They also demonstrate that one of these single chain antibodies can be expressed in muscle fused to a fluorescent protein to image the localization of a segment of one of these giant proteins called Sallimus in muscle in a live fly. Their project is well-justified given the limitations of the usual approaches for localizing and studying the dynamics of proteins in the muscle of model organisms such as the possibility that GFP tagging of a protein will interfere with its localization or function, and poor penetration of large IgG or IgM antibodies into densly packed structures like the sarcomere after fixation as compared to smaller nanbodies.

      They achieved their goals consistent with the known/expected properties of nanobodies: (1) They demonstrate that at least one of their nanobodies binds with very high affinity. (2) They bind with high specificity. (3) The nanobodies show much better penetration of fixed stage 17 embryos than do conventional antibodies.

      They use their nanobodies mostly generated to the N- and C-terminal ends of Sallimus and Projectin to learn new information about how these elongated proteins span and are oriented in the sarcomere. For example, in examining larval muscles which have long sarcomeres (8.5 microns), using nanobodies to domains located near the N- and C-termini, they show definitively that the predicted 2.1 MDa protein Sallimus spans the entire I-band and extends a bit into the A-band with its N-terminus embedded in the Z-disk and C-terminus in the outer edge of the A-band. Using a similar approach they also show that the 800 kDa Projectin decorates the entire myosin thick filament except for the H-zone and M-line in a polar orientation. Their final experiment is most exciting! They were able to express in fly larval muscles a nanobody directed to near the N-terminus of Sallimus fused to NeonGreen and show that it localizes to Z-disks in living larvae, and by FRAP experiments demonstrate that the binding of this nanobody to Sallimus in vivo is very stable. This opens the door to using a similar approach to study the assembly, dynamics, and even conformational changes of a protein in a complex in a live animal in real time.

      We thank this reviewer for appreciating the quality and impact of our approach and the our obtained results.

      There are only a few minor weaknesses about their conclusions: (1) They should note that in fact their estimate of the span of Sallimus could be an underestimate since their Nano2 nanobody is directed to Ig13/14 so if all of these 12 Ig domains N-terminal of their epitope were unwound it would add 12 X 30 nm = 360 nm of length, and even if unwound would add about 50 nm of length.

      We are discussing the length contribution of the 12 Ig domains now more extensively in the DNA PAINT super-resolution paper, however not in this resource paper as the 50 nm difference was not resolved with the confocal microscopy applied here to the larval muscle sarcomere.

      (2) They discuss how Sallimus and Projectin are the two Drosophila homologs of mammalian titin, however, they ignore the fact that there is more similarity between Sallimus and Projectin to muscle proteins in invertebrates. For example, in C. elegans, TTN-1 is the counterpart of Sallimus, and twitchin is the counterpart of Projectin, both in size and domain organization. The authors present definitive data to support Figure 9, their nice model for a fly larval sarcomere but fail to point out that this model likely pertains to C. elegans and other invertebrates. In Forbes et al. (2010) it was shown that TTN-1, which can be detected by western blot as ~2 MDa protein and using two polyclonal antibodies spans the entire Iband and extends into the outer edge of the A-band, very similar to what the authors here have shown, more elegantly for Sallimus. In addition, several studies have shown that twitchin (Projectin) does not extend into the M-line; the M-line is exclusively occupied by UNC-89, the homolog of Obscurin.

      We thank this reviewer for pointing out the important C. elegans literature that we have now included in this revised manuscript. We apologise for initially omitting them. They are indeed highly relevant.

      Reviewer #4 (Public Review):

      Authors report the generation and characterisation of several nanobodies for giant Drosophila sarcomeric proteins, Sallimus and Projectin the functional orthologs of titin. They describe an efficient pipeline that could potentially help in designing and producing nanobodies for other proteins. There are several advantages to using nanobodies in comparison to conventional antibodies and the authors nicely demonstrate that the generated nanobodies allow to precisely map subcellular localisation and even the protein orientation in the case of Projectin. They also show that small nanobody molecules have superior penetration and labelling efficiencies with respect to classical antibodies. Finally, the authors select one of the nanobodies to test whether it will efficiently detect native proteins in living tissue. They confirm that Sls-Nano2NeoGreen binds Sls in vivo in muscles of temporarily immobilized 3rd instar larva allowing to reveal sarcomeric Sls pattern and to demonstrate by FRAP experiments that Sls does not exchange during a short time period.

      This work is of significant value to a large audience. It provides a clear and precise pipeline for the generation of efficient nanobodies, which are invaluable tools of modern biology.

      We thank this reviewer for expressing strong support for our manuscript and appreciating its value for a large readership.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, Chou-Zheng and Hatoum-Aslan follow up on their previous studies that have characterized the collaborations between the type III-A CRISPR-Cas10 Csm complex and various cellular housekeeping nucleases. The authors have previously demonstrated that the Csm complex associates with several nucleases that are implicated in RNA degradation via pulldown and mass spectrometry analysis. They also previously showed that some of these enzymes, including PNPase, are important for CRISPR RNA (crRNA) maturation and for robust anti-phage defense. They now show that a second housekeeping enzyme, RNase R, is required for crRNA maturation. PNPase and RNase R act in concert to produce the mature crRNA. The authors also analyze the interactions between Csm5 and both housekeeping proteins. Finally, they demonstrate that PNPase and RNase R are important for robust anti-plasmid activity when using crRNAs that are complementary to low-abundance transcripts.

      This is a well-written paper with clear figures and well-described experiments and results. The experiments in Figures 1 and 2 demonstrating the importance of RNase R for crRNA maturation are excellent. The biochemistry experiments in Figure 2 are especially convincing, in which the authors were able to reconstitute the concerted activities of RNase R and PNPase for crRNA biogenesis. The experiments in Figure 5 implicating PNPase and RNase R in robust anti-plasmid activity when targeting low-abundance transcripts are also clear and convincing, and the result is intriguing. Overall, these experiments provide a new example in a growing list of co-opted host proteins that are important for crRNA biogenesis and CRISPR-mediated defense.

      Thank you for your thoughtful review of our manuscript and comments overall!

      I do have some concerns about experiments in Figures 3 and 4 analyzing interactions between PNPase or RNase R and the Csm5 subunit of the Csm complex, and I believe that some of the authors' conclusions are not fully supported by the evidence presented in these experiments. These concerns, along with a question about their model, are detailed below.

      1) The authors used the structure of S. thermophilus Csm5 to guide their design of truncations to probe potential intrinsically disordered regions (IDR1 and IDR2) that may be sites of interaction with PNPase or RNase R. Since the authors submitted their manuscript, an AlphaFold predicted structure of the S. epidermidis Csm5 has been released on the AlphaFold Protein Structure Database. In this model, the IDR2 region is predicted by AlphaFold to be a beta strand at the center of a beta sheet, rather than a disordered region. If the prediction is accurate, deletion of this strand could cause Csm5 to misfold, making it difficult to interpret what causes loss of interaction with PNPase (i.e. deletion of a specific interaction surface versus misfolding of the overall tertiary structure). In light of this, the discussion surrounding these experiments should be altered to include more caveats about the truncations, and conclusions based on this experiment should be softened.

      While this manuscript was under review, several cryo-EM structures of the Cas10-Csm complex from S. epidermidis were solved and reported (Smith et al, 2022, Structure). In the unbound complex (PDB ID 7V02), IDR2 of Csm5 does indeed overlap with a short beta strand, but it is flanked by loops/unstructured regions. In addition, of the 46 residues that we deleted in the Csm546 mutant, 20 residues are unresolved in the experimentally-determined structure, supporting the notion that this region is generally flexible. Also, it is unlikely that this and the other Csm5 deletion mutants are misfolded because they all retain the ability to associate with the complex (Fig. 4B), and we were able to readily purify the mutant with the largest deletion (Csm546) without any issues (Fig. 5). To address this concern, we added panel D in Figure 4-figure supplement 1, which highlights the IDR regions in Csm5 from the recently-published S. epidermidis Cas10-Csm complex structure and integrated the observations mentioned above in the narrative (lines 241-247 in the marked-up revised manuscript). We also softened the conclusions based on these experiments (lines 276-278 in the marked-up revised manuscript): “Taken together, these results suggest that the IDR2 region of Csm5 likely plays a role in the recruitment and stimulation of PNPase, while the binding site for RNase R may reside elsewhere in Csm5”.

      2) The native gels testing interactions between Csm5 and RNase R show a slight change in mobility of RNase R upon the addition of Csm5. Although I agree with the authors' interpretation that this shift could be due to transient interactions between Csm5 and RNase R, it is also possible that the mobility of RNase R is affected simply based on the addition of a large excess of a second protein, even without a specific interaction between the two proteins. As a result, the evidence for direct interaction with Csm5 is limited. Discussion of how RNaseR is recruited by the Csm complex could contain more possible explanations. For example, it is possible that the interaction between RNase R and the Csm complex is mediated by another protein (e.g. PNPase could bridge interaction between the two) or that such an interaction could be stabilized by intermediate crRNA or target RNA binding by the Csm complex.

      Thank you for this comment. To help rule out the possibility that excess Csm5 could cause a shift of any protein nonspecifically, we included a control in the original manuscript in which the same native gel assay was performed with BSA and Csm5, and found that Csm5 fails to cause an upward shift in BSA (Figure 3-figure supplement 1). In addition, to bolster the claim of a direct interaction between Csm5 and RNase R, we performed an additional pulldown assay (Figure 3-figure supplement 2). Details are described under the essential revisions point number 3 above. Regarding the other possibilities mentioned, it is unlikely that PNPase is bridging the interaction with RNase R because when we delete PNPase from cells, we still get some maturation (Fig. 1E and Chou-Zheng and Hatoum-Aslan, eLife, 2019). Also, in the reconstituted system, RNase R can still perform some level of maturation on its own (Fig. 2D). These observations argue against the need for bridging interactions with PNPase. Furthermore, maturation occurs in the absence of target RNA, ruling out the possibility that target RNA bridging is necessary for RNase R-mediated crRNA maturation. However, we agree with the reviewer that it is possible that other components of the Cas10-Csm complex may help to recruit and stabilize the interaction with RNase R in vivo, and this possibility was already mentioned in the narrative in the original submission, although we did not explicitally state the intermediate crRNA as one such component (lines 213-215 and again in lines 413-416 in the marked-up revised manuscript). We have replaced “subunits” with “components” in line 415 to be more inclusive of this possibility. Since this is all still speculative, we opt not to elaborate further on this point in the current manuscript. Needless to say, we are actively pursuing other more quantitative assays to measure the interactions between Csm5 and PNPase/RNase R and hope to have such data available in a follow-up manuscript.

      3) On lines 367-391, the authors propose a model for how PNPase and RNase R may contribute to defense against foreign DNA through their recruitment by the Csm complex to the target transcript. However, their experiments do not test whether PNPase and RNase R must interact with the Csm complex to support anti-plasmid activity. Indeed, it may make more sense for free RNase R to be involved in defense, similar to how free activated Csm6 degrades transcripts non-specifically, rather than only cleaving transcripts in close proximity to the Csm complex. The authors could expand their discussion to mention the possibility that free RNase R or PNPase are acting in anti-plasmid defense.

      Thank you for this suggestion. The following statement has been added to the discussion (lines 393-395 in the marked-up revised manuscript): “Once recruited by the complex, PNPase and RNase R may degrade nucleic acids in the vicinity nonspecifically, similarly to Csm6.”

      Reviewer #2 (Public Review):

      This work follows up on an earlier publication that showed PNPase and RNase J2 play important roles in CRISPR RNA processing (doi: 10.7554/eLife.45393). Here, the authors show that RNase R also plays a critical role in CRISPR RNA maturation. In addition, they show that RNase R and PNPase are both recruited to the type III CRISPR complex (Cas10-Csm) via direct interactions with the Cmr5 subunit and that deletion of an intrinsically disordered region (IDR2) on Cmr5 selectively inhibits PNPase recruitment but not RNase R. The authors show unquantified stimulation of PNPase nuclease activity by Cmr5. Phage challenge assays are performed to test the impact of PNPase and RNase R deletion mutations on CRISPR-Cas mediated phage defense. Contrary to expectation, over-expression of the CRISPR system in cells that contain a deletion of PNPase and/or RNase R, maintain robust anti-phage immunity. The interpretation of this experiment is that RNase R and PNPase may be dispensable in an over-expression system that produces high (non-natural) concentrations of the Csm complex. They test this idea using a system that expresses the CRISPR-Cas components off of a chromosomally encoded locus (strain RP62a) and challenge these cells using a plasmid conjugation assay. In this iteration, deletion of PNPase has no impact on CRISPR performance, while deletion of RNase R "exhibited a moderate" attenuation of the immune response. In contrast, to either single gene deletion, the PNPase and RNase R double mutant showed a near complete loss of immunity.

      Overall, the paper provides convincing evidence that PNPase and RNase R are involved in crRNA processing, and that they are recruited to the type III complex via Cmr5. The work on RNase R is entirely new and the role of PNPase is expanded. The role of cellular RNases in CRISPR RNA biogenesis is important, though some of the results are subtle and some of the biochemistry would benefit from a more quantitative analysis.

      Thank you for your thorough assessment and comments overall.

    1. Author Response

      Reviewer #1 (Public Review):

      Current generative models of protein sequences such as Potts models, Variational autoencoders, or autoregressive models must be trained on MSA data from scratch. Therefore, they cannot learn common substitution or coevolution patterns shared between families, and require a substantial number of sequences, making them less suitable for small protein families (e.g., conserved only for eukaryotes or viruses). MSA transformers are promising alternatives as they can generalize across protein families, but there is no established method to generate samples from them. Here, Sgarbossa et al. propose a simple recursive sampling procedure based on iterative masking to generate novel sequences from an input MSA. The sampling method has three hyperparameters (masking frequency, sampling temperature, and the number of iterations) which are set by rigorous benchmarking. The authors compare their approach to bmDCA, and evaluate i) single sample quality metrics ii) sample diversity and similarity to native sequences iii) similarity between original and generated sequence distribution, and iv) phylogeny/topology in sequence space of the generated distribution.

      Strengths:

      • The proposed sampling approach is simple.

      • The computational benchmarking is thorough.

      • The code is well organized and looks easy to use.

      Weaknesses:

      • There is no experimental data to back up the methodology.

      • It is not clear whether the sampling hyperparameter used is optimal for all protein sizes.

      • I am unsure that the bmDCA baseline method was trained appropriately and that the sampling method was adequate for protein design purposes (regular sampling).

      • Quality assessment of predicted structures is incomplete.

      • The proposed metrics for evaluating the diversity of generated sequences are fairly technical.

      We respond to each of these points below, in the section titled "Recommendations for the authors", since these questions were asked by the reviewer in more detail there.

      Impact assessment: The claim that MSA Transformer could be useful for protein design is supported by the computational benchmark. This work will be useful for researchers interested in applying MSA-Transformer models for protein design

      We thank the reviewer for this encouraging assessment of our work, and for their very interesting suggestions which helped us improve our manuscript.

      Reviewer #2 (Public Review):

      The manuscript by Sgarbossa et al. proposes the use of a machine learning technique used in Language Models (LM) and adapted to protein sequences (PLM) as a means to generate synthetic sequences that retain functional properties contained in the original multiple sequence alignment (MSA) of natural sequences. This technique (or a similar one) called MSA Transformers is also a component of the supervised learning methodology Alphafold which has been successful in predicting protein structures and complexes of proteins. The premise of this study is that an iterative masking approach can be used as a sampling technique to create a diverse set of sequences that still preserve important properties of the original natural sequences. For example, such samples retain homology properties, score well in terms of retaining relevant pairwise or epistatic interactions, and produce "foldable" sequences when used as input for Alphafold and scored via its confidence metric pLDDT. In order to provide support for this claim, the authors compare against Direct Coupling Analysis (DCA), which is a global sequence modeling technique that has shown to be successful in many aspects of the structure and function of proteins and particularly in generating and sampling sequences analogous to the input MSA. Most importantly, DCA and its generative version bmDCA have been shown to produce functional sequences experimentally. The authors then establish that the properties of sequences of the MSA Transformer with iterative masking, have in general better scores in terms of homology, statistical energies, and pLDDT scores than the ones from bmDCA and have spectral, statistical and similarity properties more akin to the natural sequences than those from the bmDCA methodology, except for the reproduction of single and pairwise statistics. The sequences from the MSA Transformer, however, replicate better the three body statistics of the natural sequences. The authors conclude that MSA Transformers with iterative masking is a valid technique for sequence design and it is an important alternative to the use of DCA or de novo physics-based methods or supervised learning techniques.

      Given the success of the use of language models in machine learning and its contributions to the structure prediction of protein and complexes, I see this study as a required follow-up to the breadth of work of amino acid coevolution spearheaded by DCA methodologies. In general, I believe this is a useful and relevant study for the community and opens up several avenues for research connecting Transformers with unsupervised protein design. Although the study provides support for this technique to be potentially useful for protein design, I was not completely convinced that it will yield more transformative results than the ones using Potts models. The differences, although consistent across the study, seem to be within "the margin of error" compared to bmDCA.

      We thank the reviewer for this positive assessment of our work, and for their cogent remarks which helped us improve our manuscript.

      We agree that in the case of large protein families, the main message is that our sequence generation method based on MSA Transformer scores at least as well as bmDCA. Given that bmDCA has been experimentally validated as a generative model, we believe that this is a valuable result. Our revised manuscript makes this point stronger, by showing that our sequence generation method based on MSA Transformer yields sequences that score similarly to those generated by bmDCA at low sampling temperature, while retaining substantially more sequence diversity.

      In addition, following the reviewer's suggestion below, we now present results for smaller protein families, whose shallow MSAs make it difficult to accurately fit Potts models. These results are presented in a new section of Results, titled "Sequence generation by the iterative masking procedure is successful for small protein families", including the new Figure 3. As mentioned there, "Fig. 3 reports all four scores discussed above in the case of these 7 small families, listed in Table S1 (recall that the families considered so far were large, see Table 1). We observe that MSA-Transformer–generated sequences have similar HMMER scores and structural scores to natural sequences. MSA-Transformer–generated sequences also generally have better HMMER scores and structural scores than those generated by bmDCA with default parameters. While low-temperature bmDCA yields better statistical energy scores (as expected), and also gives HMMER scores and structural scores comparable to natural sequences, it in fact generates sequences that are almost exact copies of natural ones (see Fig. 3, bottom row). By contrast, MSA Transformer produces sequences that are quite different from natural ones, and have very good scores." This shows that our method not only performs as well as bmDCA for large families, but also has a broader scope, as it is less limited by MSA depth than bmDCA.

      I also have certain comments related to the use of these 3 metrics to analyze the performance of the sampling. On the one hand, HMMER which has had a great utility for Pfam and the community in general is a score that is not necessarily reflecting the global properties of the sequences. In other words, we might be using a simpler statistical model to evaluate the performance of two other models (MSA Transformers and bmDCA) which are richer and that capture more sequence dependencies than the hidden Markov model.

      We agree with the reviewer that HMMER scores are associated with simpler statistical models, which cannot fully represent the data. We nevertheless believe that these scores remain useful to assess homology. In the framework of our study, they show that the sequences we generate are deemed "good homologs" by HMMER - similarly to natural sequences that would be extracted from a database by this widely-used tool. This said, we agree with the reviewer that one should not overinterpret HMMER scores, and we have reduced our discussion of their correlations with Hamming distances to avoid giving too much importance to this point.

      Moreover, we now present new scores that give a more complete picture of the quality of our generated sequences:

      • Regarding structure, in addition to the AlphaFold pLDDT score, we now also report the RMSD between a reference experimental structure of the relevant family (see Table 1) and the AlphaFold structure predicted for each sequence studied. The results from the RMSD analysis corroborate those obtained with pLDDT and show that predicted structures are indeed similar to the native ones. These results are now discussed in the main text. We believe that this point strengthens our conclusions and we thank the reviewer for suggesting this analysis.

      • We also performed a retrospective validation using published experimental results. For chorismate mutase, a protein family which was experimentally studied in [Russ et al 2020] using bmDCA, we now report estimated relative enrichments for our generated sequences in Figure S8, in addition to our four usual scores now shown for this family in Figure S7. In addition, for protein families PF00595 and PF13354, we now report deep mutational scanning scores for our generated sequences in Figure S9. These results strengthen our conclusion that our sequence generation method based on MSA Transformer is highly promising.

      For the case of the statistical energy score, the authors decided to use a sampling temperature T=1, but the authors note that this temperature can be reduced, as it was done in the experimental paper, to produce sequences with better energies, therefore this metric can be easily improved by modifying the temperature. The authors mentioned that they did try to reduce the temperature and that they also improved their HMMER score, however, they decided against it because the pairwise statistics were affected. However, pairwise statistics was precisely the only factor where bmDCA seemed superior to the MSA transformer, so reducing it should be an acceptable trade-off in order to optimize the other two important metrics.

      We thank both reviewers for raising this very interesting point. As mentioned above in our response to the first reviewer, we have now performed a comprehensive comparison of our MSA Transformer-generated data not only to bmDCA-generated data at sampling temperature T=1 but also at lower sampling temperatures. We considered the two temperature values chosen in [Russ et al 2020], namely T=0.33 and T=0.66. For completeness, we also considered the two values of regularization strength λ from [Russ et al 2020] for these three temperatures, in the case of family PF00072, as reported in Table S5. Given the relatively small impact of λ observed there, we kept only one value of λ for each value of T in the rest of our manuscript namely, λ=0.01 for T=1 to match the parameters in [Figliuzzi et al 2018], and λ=0.001 for T=0.33 and T=0.66 as it gave slightly better scores in Table S5. Note that for our additional study of small protein families, we employed λ=0.01 throughout because it is better suited to small families. In particular, we now include results obtained for bmDCA at λ=0.001 and T=0.33 in all figures of the revised manuscript.

      Our general findings, which are discussed in the revised manuscript, are that decreasing T indeed improves the scores of bmDCA-generated sequences. However, the main improvement regards statistical energy (as expected from lowering T), while the improvements of other scores (HMMER score, and, more importantly, structural scores) are more modest. Even using T=0.33 for bmDCA, our MSA Transformer-generated sequences have similar or better scores compared to bmDCA-generated sequences, apart from statistical energy (see Figure 1 and Tables S2 and S3). Moreover, we find that decreasing T with bmDCA substantially decreases MSA diversity, while MSA Transformer-generated sequences do not suffer from such an issue (see Figure S1). In fact, at low T, bmDCA concentrates on local minima of the statistical energy landscape (see Figures 2, 5 and S5), resulting in low diversity.

      Overall, these new results confirm that our procedure for generating sequences using MSA Transformer is promising, featuring scores comparable with low-temperature bmDCA sequences and high diversity.

      Finally, the use of pLDDT could also present some biases, since Alphafold itself uses transformers, I wonder if this fact could lead to the fact that sequences obtained with transformers simply perform better by definition.

      We thank the reviewer for raising this intriguing point. It is true that MSA Transformer has an architecture that is very similar to that of the EvoFormer module of AlphaFold. However, AlphaFold couples the EvoFormer module to a structural module, and is trained in a supervised way to predict protein structure, which makes it significantly different from MSA Transformer.

      Nevertheless, we agree that the AlphaFold pLDDT score does not give a complete view of structure. As mentioned above, to improve this, in addition to pLDDT, we now also report the RMSD between a reference experimental structure of the relevant family (see Table 1) and the AlphaFold structure predicted for each sequence studied. The results from the RMSD analysis corroborate those obtained with pLDDT and show that predicted structures are indeed similar to the native ones. These results are now discussed in the main text.

      The authors should try to address all these concerns. My assessment is that these concerns do not demerit the relevance and how timely this study is, but I would like to see a more fair comparison of these metrics where more optimizations to bmDCA are made, e.g. lower T, to have a more accurate comparison of the methods, even if that is reflected in lower performance on pairwise statistics.

      We did our best to address all these points. We believe that the additions mentioned above have substantially improved our manuscript.

      My assessment is that this manuscript's main strength is in introducing a state-of-the-art technique that has already been extremely successful in the field of computer science and artificial intelligence into the field of amino acid coevolution. By adapting this technique and creating a sampling version that is compatible with other successful methodologies, this work will lead to many other studies dealing with function and the effects of sequence variation of biomolecules.

      Again, we thank the reviewer for their encouraging assessment.

    1. Author Response

      Reviewer #1 (Public Review):

      This fMRI study investigated how memories are updated after reinterpreting past events. Participants watched a movie and subsequently recalled individual scenes from that movie. Importantly, the movie ends with a twist that changes the interpretation of earlier scenes in the movie. One group of participants watched the movie with the twist at the end, one group did not get to see the twist, and a third group was already informed about this twist before watching the movie. Analyses compared the similarity of activity patterns to (encoded or recalled) events across participants within regions of the default mode network (DMN). The design allowed for multiple relevant comparisons, confirming the prediction that activity patterns in DMN regions reflect the (re)interpretation of the movie (during movie viewing and/or during recall).

      The study is well-designed and executed. The inclusion of multiple analyses involving distinct comparisons strengthens the evidence for the role of the DMN in memory updating.

      The following points may be relevant to consider:

      1) The cross-participant pattern analysis method used here is not standard, with such analyses typically done within participants (or across participants, but after aligning representational spaces). Considering individual variability in functional organization, the method is likely only sensitive to coarse-scale patterns (e.g., anterior vs posterior parts of an ROI). This is not necessarily a weakness but is relevant when interpreting the results.

      We agree with the reviewer that functional misalignment might have played against us here. We designed this study as a natural successor of our previous work in which we captured reliable and multimodal scene-specific cross-participant pattern similarity during encoding and recall in standard space. In this revised version, we provide further evidence on how scene content is captured and influences our results. Nonetheless, we agree with your comment and add the following section to the discussion to encourage considering this point while interpreting the results.

      "Moreover, our current method relies on averaging spatially-coarse activity patterns across subjects (and time points within an event). Future extensions of this work may benefit from using functional alignment methods (Haxby et al 2020, Chen et al 2015) to capture more fine-grained event representations which are shared across participants."

      2) Unlike previous work, analyses are not testing for scene-specific information. Rather, each scene is treated separately to establish between-group differences, and results are averaged across scenes. This raises the question of whether the patterns reflect scene-specific information or generic group differences. For example, knowing the twist may increase overall engagement, both when viewing the movie (spoiled group) and when recalling it (spoiled group + twist group). The DMN may be particularly sensitive to such differences in overall engagement.

      You have brought up great points. We addressed them in two ways: (1) We ran a univariate analysis in each DMN ROI to look at the role of overall regional-average response magnitude in our results. We did not observe a significant effect of group or an interaction between group and condition. (2) We ran a scene-specificity analysis in a new Results section entitled “The role of scene content” (Figure 4). This section is focused on comparing interaction index (Figure 2C), as an indicator of memory updating, under different manipulations. Interaction index reflects the reversal of neural similarity during encoding and recall. Our results suggest that we don’t see the same effects if we shuffle the scene labels and recompute the pattern similarity analyses. Please see added text and figures below:

      "To test whether our reported results were mainly driven by the similarities and differences in multivariate spatial patterns of neural representations, as opposed to by univariate regional-average response magnitudes, we ran a univariate analysis in each ROI. This analysis revealed no significant effect of group (“spoiled”, “twist”, “no-twist”) or interaction between group and condition (movie, recall) (Table 1, see Methods for details).

      Next, to determine whether scene-specific neural event representations—as opposed to coarser differences in general mental state across all scenes with similar interpretations—drive our observed pISC differences, we shuffled the labels of critical scenes within each group before calculating and comparing pISC across groups. By repeating this procedure 1000 times and recalculating the interaction index at each iteration, we constructed a null distribution of interaction indices for shuffled critical scenes (light magenta distributions in Figure 4B). In 12 out of 24 DMN regions, interaction indices were statistically significant based on the shuffled-scene distribution (p < .025, FDR controlled at q < .05). All of these 12 regions were among the ROIs that showed meaningful effects in our original analysis (Figure 2C). Regions with significant scene-specific interaction effects are marked as blue dots with black borders in Figure 4B. Overall, the findings from this analysis confirm that our results are driven by changes to scene-specific representations."

      3) The study does not reveal what the DMN represents about the movie, such that its activity changes after knowing the twist. The Discussion briefly mentions that it may reflect the state of the observer, related to the belief about the identity of the doctor. This suggests a link to the theory of mind/mentalizing, but this is not made explicit. Alternatively, the DMN may be involved in the conflict (or switching) between the two interpretations.

      Great points. We added to the discussion about the role of mentalizing network and in the particular temporo-parietal cortex. About your last point, we think our whole brain findings outside DMN (ACC and dlPFC) might relate to that point. We discussed these further in the paper.

      "We performed two targeted analyses to look for evidence of memory updating across encoding and recall: the interaction analysis (Figure 2C) and the encoding-recall analysis (Figure 3). We hypothesized that a shift in direction of pISC difference would occur when neural representations during recall in the “twist” group start to reflect the Ghost interpretation. The interaction analysis probed this shift indirectly by taking into account the effects of both encoding-encoding and recall-recall analyses. Unlike the interaction analysis, in the encoding-recall analysis, we directly compared neural event representations during encoding and recall. Interestingly, all regions exhibiting an effect across the two encoding-recall analyses, excluding left anterior temporal cortex, were present in the interaction results. Among these regions, the left angular gyrus/TPJ exhibited an effect across all three analyses. As a core hub in the mentalizing network, temporo-parietal cortex has been implicated in theory of mind through perspective-taking, rationalizing the mental state of someone else, and modeling the attentional state of others (Frith and Frith 2006, Guterstam et. al 2021, Saxe and Kanwisher 2003). The motivations behind some actions of the main character in the movie heavily depend on whether the viewer perceives them as a Doctor or a Ghost, and participants may focus on this during both encoding and recall. We speculate that neural event representations in AG/TPJ in the current experiment may be related to mentalizing about the main character’s actions. Under this interpretation, the updated event representations during recall following the twist would be more closely aligned to the “spoiled” encoding representations, as a consequence of memory updating in the “twist” group.

      In our whole brain analysis, these regions did not have significant interaction effects, which suggests that the effects were isolated to encoding. In the whole-brain analysis, we also observed a significant encoding-encoding and interaction effects in anterior cingulate cortex, as well as recall-recall and interaction effects in dlPFC. These results suggest that both the "spoiled" manipulation and the "twist" may recruit top-down control and conflict monitoring processes during naturalistic viewing and recall."

      4) The design has many naturalistic aspects, but it is also different from real life in that the critical twist involves a ghost. Furthermore, all results are based on one movie with a specific plot twist. It is thus not clear whether similar results would be obtained with other and more naturalistic plot twists.

      We added this as a limitation of the study.

      "Our findings provide further insight into the functional role of the DMN. However, these results have been obtained using only one movie. While naturalistic paradigms better capture the complexity of real life and provide greater ecological generalizability than highly-controlled experimental stimuli and tasks (Nastase et al., 2020), they are still limited by the properties of the particular naturalistic stimulus used. For example, this movie—including the twist itself—hinges on suspension of disbelief about the existence of ghosts. Future work is needed to extend our findings about updating event memories to a broader class of naturalistic stimuli: for example, movies with different kinds of (non-supernatural) plot twists, spoken stories with twist endings, or using autobiographical real-life situations where new information (e.g. discovering a longtime friend has lied about something important) triggers re-evaluation of the past (e.g. reinterpreting their friend’s previous actions)."

      5) Only 7 scenes (out of 18) were included in the analysis. It is not clear if/how the results depend on the selection of these 7 scenes.

      Thank you for bringing this up. These scenes were pre-selected for the analyses, as they are the only scenes that are rated high by our independent raters (not study participants) on “twist influence”, meaning that knowing the twist could dramatically change their interpretation. So, we had a priori reasons to hypothesize that the effect will be strong in these scenes. To address your point, we report results by including all 18 scenes in a new Results section entitled “The role of scene content” and in Figure 4A. While the effect was weaker for all scenes it was still apparent in this conservative analysis. As expected, however, including 7 critical scenes produces stronger results than including all scenes or the uncritical scenes (all minus critical scenes). Please see the “The role of scene content” in Results and in Figure 4 for more detailed information.

      "The role of scene content In the prior analyses, we focused on “critical scenes”, selected based on ratings from four raters who quantified the influence of the twist on the interpretation of each scene (see Methods). An independent post-experiment analysis of the verbal recall behavior of the fMRI participants yielded “twist scores” that were also highest for these scenes; that is, the expected and perceived effect of twist information on recall behavior were found to match. In our next analysis, we asked whether the neural event representations reflect these differences in the twist-related content of the scenes. In other words, are the “critical scenes” with highly twist-dependent interpretations truly critical for our observed effects?

      To answer this question, we re-ran our main encoding-encoding and recall-recall pISC analysis in each DMN ROI (Figure 2-3). We calculated interaction indices (Figure 2C) first by including all scenes, and second by including only the 11 non-critical scenes. To better compare the effect of including different subsets of scenes to our original results, in Figure 4 we show the results in 15 ROIs that exhibited meaningful effects in our main analyses (Figure 2C). Figure 4A demonstrates that “critical scenes” yielded higher interaction indices compared to all scenes or non-critical scenes across all ROIs. The interaction score across all DMN ROIs was significantly higher in “critical scenes” than all scenes (t(23) = 7.19, p = 2.53 x 10-7) and non-critical scenes (t(23) = 7.3, p = 1.95 x 10-7). These results show that critical scenes are indeed responsible for the observed pISC differences across groups."

      Reviewer #2 (Public Review):

      In this manuscript titled "Here's the twist: How the brain updates the representations of naturalistic events as our understanding of the past changes", the authors reported a study that examined how new information (manipulated as a twist at the end of a movie) changes the neural representations in the default mode network (DMN) during the recall of prior knowledge. Three groups of participants were compared - one group experienced the twist at the end, one group never experienced the twist, and one group received a spoiler at the beginning. At retrieval, participants received snippets of 18 scenes of the movie as cues and were asked to freely describe the events of each scene and to provide the most accurate interpretation of the scene, given the information they gathered throughout watching.

      All three groups were highly accurate in the recall of content. The groups that experienced the twist at the end as well as at the beginning as a spoiler showed a higher twist score (the extent to which twist information was incorporated into the recall), while seemingly also keeping the interpretation without the twist ("Doctor representation") intact. Neurally, several regions in the DMN showed significant interaction effects in their neural similarity patterns (based on intersubject pattern correlation), indicating a change in interpretation between encoding and recall in the twist group uniquely, presumably reflecting memory updating.

      Several points that I think should be addressed to strengthen the manuscript:

      1) The results from encoding-retrieval similarity analysis (particularly the one depicted in Figure 3B) don't match the results from encoding/retrieval interaction (particularly those shown in Figure 2C). While they were certainly based on different comparisons, I would think that both analyses were set up to test for memory updating. Can the authors comment on this divergence in results?

      Thank you for your comment. Except for one ROI, the other two regions in Figure 2C are present in the interaction analysis. The ROI at the frontal pole might be hard to see from this angle but in fact it holds a high effect size in interaction analysis. So we do not see a big divergence between these two results. But taking into account the recall-recall results, we agree that there seems to be inhomogeneity. We discussed these further in the discussion.

      "We performed two targeted analyses to look for evidence of memory updating across encoding and recall: the interaction analysis (Figure 2C) and the encoding-recall analysis (Figure 3). We hypothesized that a shift in direction of pISC difference would occur when neural representations during recall in the “twist” group start to reflect the Ghost interpretation. The interaction analysis probed this shift indirectly by taking into account the effects of both encoding-encoding and recall-recall analyses. Unlike the interaction analysis, in the encoding-recall analysis, we directly compared neural event representations during encoding and recall. Interestingly, all regions exhibiting an effect across the two encoding-recall analyses, excluding left anterior temporal cortex, were present in the interaction results. Among these regions, the left angular gyrus/TPJ exhibited an effect across all three analyses. As a core hub in the mentalizing network, temporo-parietal cortex has been implicated in theory of mind through perspective-taking, rationalizing the mental state of someone else, and modeling the attentional state of others (Frith and Frith 2006, Guterstam et. al 2021, Saxe and Kanwisher 2003). The motivations behind some actions of the main character in the movie heavily depend on whether the viewer perceives them as a Doctor or a Ghost, and participants may focus on this during both encoding and recall. We speculate that neural event representations in AG/TPJ in the current experiment may be related to mentalizing about the main character’s actions. Under this interpretation, the updated event representations during recall following the twist would be more closely aligned to the “spoiled” encoding representations, as a consequence of memory updating in the “twist” group.

      Our findings are consistent with the view that DMN synthesizes incoming information with one’s prior beliefs and memories (Yeshurun et al 2021). We add to this framework by providing evidence for the involvement of DMN regions in updating prior beliefs in light of new knowledge. Across our different encoding and recall analyses, we observe memory updating effects in a varied subset of DMN regions that do not cleanly map onto a specific subsystem of DMN (Robin and Moscovitch 2017, Ranganath and Ritchey 2012, Ritchey and Cooper 2020). Rather than being divergent, these results might be reflecting inherent differences between the processes of encoding and recall of naturalistic events. It has been proposed that neural representations corresponding to encoding of events are systematically transformed during recall of those events (Chen et al 2017, Favila et al 2020, Musz and Chen 2022). While we provide evidence for reinstatement of memories in DMN, our findings also support a transformation of neural representation during recall, as encoding-recall results were weaker in some areas than recall-recall findings. This transformation could affect how different regions and sub-systems of DMN represent memories, and suggests that the concerted activity of multiple subsystems and neural mechanisms might be at play during encoding, recall and successful updating of naturalistic event memories."

      2) The recall task was self-paced. Can reaction time information be provided on how long participants needed to recall? Did this differ across groups? Presumably in the twist group and spoiled group participants might have needed a longer time to incorporate both the original and twist interpretation.

      This is an interesting idea. Unfortunately, we could not measure this accurately because our recall cues were snippets from the beginning of each scene with different length (selected based on content). And updating could begin from the beginning of those snippets (but we wouldn’t know when). We will consider this point in the future related designs.

      How was the length difference across events taken into consideration in the beta estimates?

      They were used as event durations in the GLM model.

      Also, is there an order effect, such that one type of interpretation tended to be recalled first?

      This is hard to measure as this only occurs in a subset of scenes. But we assume it happens in other people’s brains as well

      This is indeed hard to measure as you mentioned. We will provide the transcripts when sharing the data and hopefully this will facilitate future text-analysis work on this dataset to answer interesting questions like this.

      3) The correlation analysis between neural pattern change and behavioral twist score is based on a small sample size and does not seem to be well suited to test the postulation of the authors, namely that some participants may hold both interpretations in their memory. Interestingly, the twist score of the spoiled group was similar to the twist group, indicating participants in this group might have held both interpretations as well. Could this observation be leveraged, for example by combining both groups (hence better powered with larger sample size), in order to relate individual differences in neural similarity patterns and behavioral tendency to hold both interpretations?

      Even though both groups showed signs of holding both interpretations in mind, the process happening in their brain during the recall is different. In particular, we do not expect to see any updating effect in the spoiled group. So it wouldn’t seem accurate to combine these groups to test the effect of incomplete updating.

      4) Several regions within the DMN were significant across the analysis steps, specifically the angular gyrus, middle temporal cortex, and medial PFC. Can the authors provide more insights on how these widely distributed regions may act together to enable memory updating? The discussion on the main findings is largely at a rather superficial level about DMN, or focuses specifically on vmPFC, but neglects the distributed regions that presumably function interactively

      Thanks for bringing this up. We added text to discussion to respond to this very valid point. Please see the added text in our response to your first point. One more snippet added to the discussion about this:

      "In addition to mPFC, right precuneus and parts of temporal cortex exhibited significantly higher pattern similarity in the “twist” and “spoiled” groups who recalled the movie with the same interpretation. Precuneus is a core region in the posterior medial network, which is hypothesized to be involved in constructing and applying situation models (Ranganath and Ritchey 2012). Our findings support a role for precuneus in deploying interpretation-specific situation models when retrieving event memories. In particular, we suggest that the posterior medial network may encode a shift in the situation model of the “twist” group in order to accommodate the new Ghost interpretation.

      We performed two targeted analyses to look for evidence of memory updating across encoding and recall: the interaction analysis (Figure 2C) and the encoding-recall analysis (Figure 3). We hypothesized that a shift in direction of pISC difference would occur when neural representations during recall in the “twist” group start to reflect the Ghost interpretation. The interaction analysis probed this shift indirectly by taking into account the effects of both encoding-encoding and recall-recall analyses. Unlike the interaction analysis, in the encoding-recall analysis, we directly compared neural event representations during encoding and recall. Interestingly, all regions exhibiting an effect across the two encoding-recall analyses, excluding left anterior temporal cortex, were present in the interaction results. Among these regions, the left angular gyrus/TPJ exhibited an effect across all three analyses. As a core hub in the mentalizing network, temporo-parietal cortex has been implicated in theory of mind through perspective-taking, rationalizing the mental state of someone else, and modeling the attentional state of others (Frith and Frith 2006, Guterstam et. al 2021, Saxe and Kanwisher 2003). The motivations behind some actions of the main character in the movie heavily depend on whether the viewer perceives them as a Doctor or a Ghost, and participants may focus on this during both encoding and recall. We speculate that neural event representations in AG/TPJ in the current experiment may be related to mentalizing about the main character’s actions. Under this interpretation, the updated event representations during recall following the twist would be more closely aligned to the “spoiled” encoding representations, as a consequence of memory updating in the “twist” group.

      Our findings are consistent with the view that DMN synthesizes incoming information with one’s prior beliefs and memories (Yeshurun et al 2021). We add to this framework by providing evidence for the involvement of DMN regions in updating prior beliefs in light of new knowledge. Across our different encoding and recall analyses, we observe memory updating effects in a varied subset of DMN regions that do not cleanly map onto a specific subsystem of DMN (Robin and Moscovitch 2017, Ranganath and Ritchey 2012, Ritchey and Cooper 2020). Rather than being divergent, these results might be reflecting inherent differences between the processes of encoding and recall of naturalistic events. It has been proposed that neural representations corresponding to encoding of events are systematically transformed during recall of those events (Chen et al 2017, Favila et al 2020, Musz and Chen 2022). While we provide evidence for reinstatement of memories in DMN, our findings also support a transformation of neural representation during recall, as encoding-recall results were weaker in some areas than recall-recall findings. This transformation could affect how different regions and sub-systems of DMN represent memories, and suggests that the concerted activity of multiple subsystems and neural mechanisms might be at play during encoding, recall and successful updating of naturalistic event memories."

      Reviewer #3 (Public Review):

      Zadbood and colleagues investigated the way key information used to update interpretations of events alter patterns of activity in the brain. This was cleverly done by the use of "The Sixth Sense," a film featuring a famous "twist ending," which fundamentally alters the way the events in the film are understood. Participants were assigned to three groups: (1) a Spoiled group, in which the twist was revealed at the outset, (2) a Twist group, who experienced the film as normal, and (3) a No-Twist group, in which the twist was removed. Participants were scanned while watching the movie and while performing cued recall of specific scenes. Verbal recall was scored based on recall success, and evidence for descriptive bias toward two ways of understanding the events (specifically, whether a particular character was or was not a ghost). Importantly, this allowed the authors to show that the Twist group updated their interpretation. The authors focused on regions of the Default Mode Network (DMN) based on prior studies showing responsiveness to naturalistic memory paradigms in these areas and analyzed the fMRI data using intersubject pattern similarity analysis. Regions of the DMN carried patterns indicative of story interpretation. That is, encoding similarity was greater between the Twist and No-Twist groups than in the Spoiled group, and retrieval similarity was greater between the Twist and Spoiled groups than in the No-Twist group. The Spoiled group also showed greater pattern similarity with the Twist group's recall than the No-Twist group's recall. The authors also report a weaker effect of greater pattern similarity between the Spoiled group's encoding and the Twist group's recall than between the Twist group's own encoding and recall. Together, the data all converge on the point that one's interpretation of an event is an important determinant of the way it is represented in the brain.

      This is a really nice experiment, with straightforward predictions and analyses that support the claims being made. The results build directly on a prior study by this research group showing how interpretational differences in a narrative drive distinct neural representations (Yeshurun et al., 2017), but extend an understanding of how these interpretational differences might work retrospectively. I do not have any serious concerns or problems with the manuscript, the data, or the analyses. However I have a few points to raise that, if addressed, would make for a stronger paper in my opinion.

      1) My most substantive comment is that I did not find the interpretive framework to be very clear with respect to the brain regions involved. The basic effects the authors report strongly support their claims, but the particular contributions to the field might be stronger if the interpretations could be made more strongly or more specifically. In other words: the DMN is involved in updating interpretations, but how should we now think about the role of the DMN and its constituent regions as a result of this study? There are a number of ideas briefly presented about what the DMN might be doing, but it just did not feel very coherent at times. I will break this down into a few more specific points:

      While many of us would agree that the DMN is likely to be involved in the phenomena at hand, I did not find that the paper communicated the logic for singularly focusing on this subset of regions very compellingly. The authors note a few studies whose main results are found in DMN regions, but I think that this could stand to be unpacked in a more theoretically interesting way in the Introduction.

      Relatedly, I found the summary/description of regional effects in the Discussion to be a bit unsatisfying. The various pattern similarity comparisons yielded results that were actually quite nonoverlapping among DMN regions, which was not really unpacked. To be clear, it is not a 'problem' that the regional effects varied from comparison to comparison, but I do think that a more theoretical exploration of what this could mean would strengthen the paper. To the authors' credit, they describe mPFC effects through the lens of schemas, but this stands in contrast to many other regions which do not receive much consideration.

      Finally, although there is evidence that regions of the DMN act in a coordinated way under some circumstances, there is also ample evidence for distinct regional contributions to cognitive processes, memory being just one of them (e.g., Cooper & Ritchey, 2020; Robin & Moscovitch, 2017; Ranganath & Ritchey, 2012). The authors themselves introduce the idea of temporal receptive windows in a cortical hierarchy, and while DMN regions do appear to show slower temporal drift than sensory areas, those studies show regional differences in pattern stability across time even within DMN regions. Simply put, it is worth considering whether it is ideal to treat the DMN as a singular unit.

      Thank you for your helpful comments. We added text to the introduction and discussion to address your point:

      "Introduction:

      The brain’s default mode network (DMN)—comprising the posterior medial cortex, medial prefrontal cortex, temporoparietal junction, and parts of anterior temporal cortex—was originally described as an intrinsic or “task-negative” network, activated when participants are not engaged with external stimuli (Raichle et al. 2001, Buckner et al 2008). This observation led to a large body of work showing that the DMN is an important hub for supporting internally driven tasks such as memory retrieval, imagination, future planning, theory of mind, and creating and updating situation models (Svoboda et al. 2006; Addis et al. 2007; Hassabis and Maguire 2007, 2009; Schacter et al. 2007; Szpunar et al. 2007; Spreng et al. 2009, Koster-Hale & Saxe, 2013 2013, Ranganath and Ritchey 2012). However, it is not fully understood how this network contributes to these varying functions, and in particular—the focus of the present study—memory processes. Activation of this network during “offline” periods has been proposed to play a role in the consolidation of memories through replay (Kaefer et al 2022). Interestingly, prior work has also shown that the DMN is reliably engaged during “online” processing (encoding) of continuous rich dynamic stimuli such as movies and audio stories (Stephens et al 2013, Hasson et al 2008). Regions in this network have been shown to have long “temporal receptive windows” (Hasson et al 2008; Lerner et al., 2011; Chang et al., 2022), meaning that they integrate and retain high-level information that accumulates over the course of extended timescales (e.g. scenes in movies, paragraphs in text) to support comprehension. This combination of processing characteristics suggests that the DMN integrates past and new knowledge, as regions in this network have access to incoming sensory input, recent active memories, and remote long-term memories or semantic knowledge (Yeshurun et al 2021, Hasson et al 2015). These integration processes feature in many of the “constructive” processes attributed to DMN such as imagination, future planning, mentalizing, and updating situation models (Schacter and Addis 2007, Ranganath and Ritchey 2012). Notably, constructive processes are highly relevant to real-world memory updating, which involves selecting and combining the relevant parts of old and new memories. Recent work has shown that neural patterns during encoding and recall of naturalistic stimuli (movies) are reliably similar across participants in this network (Chen et al. 2017; Oedekoven et al., 2017; Zadbood et al., 2017; see Bird 2020 for a review of recent naturalistic studies on memory), and the DMN displays distinct neural activity when listening to the same story with different perspectives (Yeshurun et al 2017). Building on this foundation of prior work on the DMN, we asked whether we could find neural evidence for the retroactive influence of new knowledge on past memories."

      "Discussion :

      In addition to mPFC, right precuneus and parts of temporal cortex exhibited significantly higher pattern similarity in the “twist” and “spoiled” groups who recalled the movie with the same interpretation. Precuneus is a core region in the posterior medial network, which is hypothesized to be involved in constructing and applying situation models (Ranganath and Ritchey 2012). Our findings support a role for precuneus in deploying interpretation-specific situation models when retrieving event memories. In particular, we suggest that the posterior medial network may encode a shift in the situation model of the “twist” group in order to accommodate the new Ghost interpretation.

      We performed two targeted analyses to look for evidence of memory updating across encoding and recall: the interaction analysis (Figure 2C) and the encoding-recall analysis (Figure 3). We hypothesized that a shift in direction of pISC difference would occur when neural representations during recall in the “twist” group start to reflect the Ghost interpretation. The interaction analysis probed this shift indirectly by taking into account the effects of both encoding-encoding and recall-recall analyses. Unlike the interaction analysis, in the encoding-recall analysis, we directly compared neural event representations during encoding and recall. Interestingly, all regions exhibiting an effect across the two encoding-recall analyses, excluding left anterior temporal cortex, were present in the interaction results. Among these regions, the left angular gyrus/TPJ exhibited an effect across all three analyses. As a core hub in the mentalizing network, temporo-parietal cortex has been implicated in theory of mind through perspective-taking, rationalizing the mental state of someone else, and modeling the attentional state of others (Frith and Frith 2006, Guterstam et. al 2021, Saxe and Kanwisher 2003). The motivations behind some actions of the main character in the movie heavily depend on whether the viewer perceives them as a Doctor or a Ghost, and participants may focus on this during both encoding and recall. We speculate that neural event representations in AG/TPJ in the current experiment may be related to mentalizing about the main character’s actions. Under this interpretation, the updated event representations during recall following the twist would be more closely aligned to the “spoiled” encoding representations, as a consequence of memory updating in the “twist” group.

      Our findings are consistent with the view that DMN synthesizes incoming information with one’s prior beliefs and memories (Yeshurun et al 2021). We add to this framework by providing evidence for the involvement of DMN regions in updating prior beliefs in light of new knowledge. Across our different encoding and recall analyses, we observe memory updating effects in a varied subset of DMN regions that do not cleanly map onto a specific subsystem of DMN (Robin and Moscovitch 2017, Ranganath and Ritchey 2012, Ritchey and Cooper 2020). Rather than being divergent, these results might be reflecting inherent differences between the processes of encoding and recall of naturalistic events. It has been proposed that neural representations corresponding to encoding of events are systematically transformed during recall of those events (Chen et al 2017, Favila et al 2020, Musz and Chen 2022). While we provide evidence for reinstatement of memories in DMN, our findings also support a transformation of neural representation during recall, as encoding-recall results were weaker in some areas than recall-recall findings. This transformation could affect how different regions and sub-systems of DMN represent memories, and suggests that the concerted activity of multiple subsystems and neural mechanisms might be at play during encoding, recall and successful updating of naturalistic event memories."

      2) I think that some direct comparison to regions outside the DMN would speak to whether the DMN is truly unique in carrying the key representations being discussed here. I was reluctant to suggest this because I think that the authors are justified in expecting that DMN regions would show the effects in question. However, there really is no "null" comparison here wherein a set of regions not expected to show these effects (e.g., a somatosensory network, or the frontoparietal network) in fact do not show them. There are not really controls or key differences being hypothesized across different conditions or regions. Rather, we have a set of regions that may or may not show pattern similarity differences to varying degrees, which feels very exploratory. The inclusion of some principled control comparisons, etc. would bolster these findings. The authors do include a whole-brain analysis in Supplementary Figure 1, which indeed produced many DMN regions. However, notably, regions outside the DMN such as the primary visual cortex and mid-cingulate cortex appear to show significant effects (which, based on the color bar, might actually be stronger than effects seen in the DMN). Given the specificity of the language in the paper in terms of the DMN, I think that some direct regional or network-level comparison is needed.

      In the original submission, we included additional analyses for visual and somatosensory networks, which we hypothesized would serve as control networks. Following your comment, in the revision, we added a separate section (included below) more thoroughly examining these analyses. We also added text to the results and discussion to explain our interpretation of these findings.

      "Changes in neural representations beyond DMN We focused our core analyses on regions of the default mode network. Prior work has shown that multimodal neural representations of naturalistic events (e.g. movie scenes) are similar across encoding (movie-watching or story-listening) and verbal recall of the same events in the DMN (Chen et al., 2017; Zadbood et al., 2017). Therefore, in the current work we hypothesized that retrospective changes in the neural representations of events as the narrative interpretation shifts would be observed in the DMN. We did not, for example, expect to observe such effects in lower-level sensory regions, where neural activity differs dramatically for movie-viewing and verbal recall. To be thorough, we ran the same set of analyses we performed in the DMN (Figure 2-3) in regions of the visual and somatomotor networks extracted from the same atlas parcellation (Schaefer et al., 2018). Our results revealed larger overall differences in DMN than in visual and somatosensory networks for the key comparisons discussed previously (Figure S2). In particular, the only regions showing significant differences in pISC in recall-recall and encoding-recall comparisons (p < 0.01, uncorrected) were located in the DMN. We did not observe a notable difference between DMN and the two other networks when comparing recall “twist” to movie “spoiled” and recall “twist” to movie “twist” (RG – MG > RG – MD) which is consistent with the weak effect in the original comparison (Figure 3B). In the encoding-encoding comparison, several ROIs from the visual and somatomotor networks showed relatively strong effects as well (see Discussion).

      In addition, we qualitatively reproduced our results by performing an ROI-based whole brain analysis (Figure S3, p < 0.01 uncorrected). This analysis confirmed the importance of DMN regions for updating neural event representations. However, strong differences in pISC in the hypothesized direction were also observed in a handful of other non-DMN regions, including ROIs partly overlapping with anterior cingulate cortex and dorsolateral prefrontal cortex (see Discussion)."

      "Discussion: While our main goal in this paper was to examine how neural representations of naturalistic events change in the DMN, we also examined visual and somatosensory networks. Aside from the encoding-encoding analysis in which some visual and somatosensory regions showed stronger similarity between two groups with the same interpretation of the movie, we did not find any regions with significant effects in these two networks in the other analyses. Unlike the recall phase where each participant has their unique utterance with their own choice of words and concepts to describe the movie, the encoding (move-watching) stimulus is identical across all groups. Therefore, the effects observed during encoding-encoding analysis in sensory regions could reflect similarity in perception of the movie guided by similar attentional state while watching scenes with the same interpretation (e.g. similarity in gaze location, paying attention to certain dialogues, or small body movements while watching the movie with the same Doctor or Ghost interpretations). In our whole brain analysis, these regions did not have significant interaction effects, which suggests that the effects were isolated to encoding. In the whole-brain analysis, we also observed a significant encoding-encoding and interaction effects in anterior cingulate cortex, as well as recall-recall and interaction effects in dlPFC. These results suggest that both the "spoiled" manipulation and the "twist" may recruit top-down control and conflict monitoring processes during naturalistic viewing and recall."

      3) If I understand correctly, the main analyses of the fMRI data were limited to across-group comparisons of "critical scenes" that were maximally affected by the twist at the end of the movie. In other words, the analyses focused on the scenes whose interpretation hinged on the "doctor" versus "ghost" interpretation. I would be interested in seeing a comparison of "critical" scenes directly against scenes where the interpretation did not change with the twist. This "critical" versus "non-critical" contrast would be a strong confirmatory analysis that could further bolster the authors' claims, but on the other hand, it would be interesting to know whether the overall story interpretation led to any differences in neural patterns assigned to scenes that would not be expected to depend on differences in interpretation. (As a final note, such a comparison might provide additional analytical leverage for exploring the effect described in Figure 3B, which did not survive correction for multiple comparisons.)

      This is a helpful suggestion, and we’ve added an analysis addressing your comment. We found that the interaction index capturing the difference between the three groups was stronger for the critical scenes than for the non-critical scenes for almost all DMN ROIs.

      "The role of scene content In the prior analyses, we focused on “critical scenes”, selected based on ratings from four raters who quantified the influence of the twist on the interpretation of each scene (see Methods). An independent post-experiment analysis of the verbal recall behavior of the fMRI participants yielded “twist scores” that were also highest for these scenes; that is, the expected and perceived effect of twist information on recall behavior were found to match. In our next analysis, we asked whether the neural event representations reflect these differences in the twist-related content of the scenes. In other words, are the “critical scenes” with highly twist-dependent interpretations truly critical for our observed effects?

      To answer this question, we re-ran our main encoding-encoding and recall-recall pISC analysis in each DMN ROI (Figure 2-3). We calculated interaction indices (Figure 2C) first by including all scenes, and second by including only the 11 non-critical scenes. To better compare the effect of including different subsets of scenes to our original results, in Figure 4 we show the results in 15 ROIs that exhibited meaningful effects in our main analyses (Figure 2C). Figure 4A demonstrates that “critical scenes” yielded higher interaction indices compared to all scenes or non-critical scenes across all ROIs. The interaction score across all DMN ROIs was significantly higher in “critical scenes” than all scenes (t(23) = 7.19, p = 2.53 x 10-7) and non-critical scenes (t(23) = 7.3, p = 1.95 x 10-7). These results show that critical scenes are indeed responsible for the observed pISC differences across groups."

      4) I appreciate the code being made available and that the neuroimaging data will be made available soon. I would also appreciate it if the authors made the movie stimulus and behavioral data available. The movie stimulus itself is of interest because it was edited down, and it would be nice for readers to be able to see which scenes were included.

      Unfortunately due to copyright, we cannot share the movie stimulus outright. However, we will share the timing of the cuts used, as well as the time-stamped transcripts of verbal recall.

      To sum up, I think that this is a great experiment with a lot of strengths. The design is fairly clean (especially for a movie stimulus), the analyses are well reasoned, and the data are clear. The only weaknesses I would suggest addressing are with regards to how the DMN is being described and evaluated, and the communication of how this work informs the field on a theoretical level.

    1. Author Response

      Reviewer #1 (Public Review):

      In a very interesting and technically advanced study, the authors measured the force production of curved protofilaments at depolymerizing mammalian microtubule ends using an optical trap assay that they developed previously for yeast microtubules. They found that the magnesium concentration affects this force production, which they argue based on a theoretical model is due to affecting the length of the protofilament curls, as observed previously by electron microscopy. Comparing with their previous force measurements, they conclude that mammalian microtubules produce smaller force pulses than yeast microtubules due to shorter protofilament curls. This work provides new mechanistic insight into how shrinking microtubules exert forces on cargoes such as for example kinetochores during cell division. The experiments are sophisticated and appear to be of high quality, conclusions are well supported by the data, and language is appropriate when conclusions are drawn from more indirect evidence. Given that the experimental setup differs from the previous optical trap assay (antibody plus tubulin attached to bead versus only antibody attached to bead), a control experiment could be useful with yeast microtubules using the same protocol used in the new variant of the assay, or at least a discussion regarding this issue. One open question may be whether the authors can be sure that measured forces are only due to single depolymerizing protofilaments instead of two or more protofilaments staying laterally attached for a while. How would this affect the interpretation of the data?

      This work will be of interest to cell biologists and biophysicists interested in spindle mechanics or generally in filament mechanics.

      Thank you for your careful reading of our manuscript, your kind remarks, and your favorable review.

      Reviewers #1 and #2 both mentioned a concern about potential differences between our previous setup with yeast microtubules, versus our new setup with predominantly bovine microtubules, and whether such differences might underlie the different pulse amplitudes we measured. We think this concern comes mainly from a misunderstanding of how the beads in both setups were tethered to the sides of the microtubules, and we apologize for not making this aspect clearer in our original submission.

      It is true that our new setup requires one additional step, pre-decoration of the anti-His beads with His6-tagged yeast tubulin. However, in both cases, the anti-His antibodies were kept very sparse on the beads to ensure that most beads, if they became tethered to a microtubule, were attached by a single antibody. (~30 pM beads were mixed with 30 pM of anti-His antibody, for a molar ratio of 1:1.) And even though the anti-His beads in our previous work did not undergo a separate incubation step for pre-decoration with tubulin, they undoubtedly were decorated immediately after being mixed into the microtubule growth mix, which in that case included ~1 µM of unpolymerized His6-tagged yeast tubulin dimers. Thus, the arrangement with beads tethered laterally to the sides of microtubules via single antibodies was created in both cases by essentially the same three-step process: First, beads decorated very sparsely with anti-His antibodies were bound to unpolymerized His6-tagged yeast tubulin. Second, a bead-tethered His6-tagged yeast tubulin was incorporated into the growing tip of a microtubule (which could be assembling from either yeast or bovine tubulin, depending on the experiment). Third, the tip grew past the bead to create a large extension. Because the beads in both scenarios were tethered by a single antibody to the same C-terminal tail of yeast β-tubulin, the differences in pulse amplitude cannot be explained by differences in the tethering. In our revised manuscript, we now mention explicitly in Results that the beads were tethered by single antibodies (lines 95 to 100). In Methods we significantly expanded the section about preparation of beads and how they became tethered (lines 365 to 393). [We refer here, and below, to line numbers when the document is viewed with “All Markup” shown.]

      You also raise an interesting, open question: Do protofilaments curl outward entirely independently of their lateral neighbors? Or under some conditions might they tend to stay laterally associated during the curling process, perhaps curling outward in pairs rather than as individual protofilaments? We cannot formally rule out the possibility that such lateral associations sometimes persist during protofilament curling. However, changes in lateral association seem unlikely to explain the magnesium- and species-dependent differences we measured in pulse amplitude, for several reasons: First, there is good evidence for lengthening of protofilament curls at disassembling tips (e.g., Mandelkow 1991, Tran & Salmon 1997), but we are not aware of convincing evidence for magnesium or species-dependent increases in the propensity of curling protofilaments to remain laterally associated. Second, an increase in lateral association should increase the effective flexural rigidity of the curls, but under all the conditions we examined, pulse enlargement was associated with a steepening of the amplitude-vs-force relation – i.e., with softening, not stiffening. Our model indicates that this softening can be fully explained by an increase in protofilament contour length, without any change in the intrinsic flexural rigidity of the protofilament curls.

      Reviewer #2 (Public Review):

      Microtubules are regarded as dynamic tracks for kinesin and dynein motors that generate force for moving cargoes through cells, but microtubules also act as motors themselves by generating force from outward splaying protofilaments at depolymerizing ends. Force from depolymerization has been demonstrated in vitro and is thought to contribute to chromosome movement and other contexts in cells. Although this model has been in the field for many years, key questions have remained unanswered, including the mechanism of force generation, how force generated might be regulated in cells, and how this system might be tuned across cellular contexts or organisms. The barrier is that we lack an understanding of experimental conditions that can be used to control protofilament shape and energetics. This study by Murray and colleagues makes an important advance towards overcoming that barrier.

      This study builds on previous work from the authors where they developed a system to directly measure forces generated by outward curling protofilaments at depolymerizing microtubule ends. That study showed for the first time that protofilaments act like elastic springs and related the generated force to the estimated energy contained in the microtubule lattice. Furthermore, they showed that slowing polymerization rate did not diminish force generation. That study used recombinant yeast tubulin, including a 6x histidine tag on beta tubulin that created attachment points for the bead on the microtubule lattice. The current study extends that system to show that work output is related to the length of protofilament curls.

      We are grateful for your very thoughtful and thorough review, which has helped us improve our manuscript.

      Murray and colleagues show this by manipulating curls in two ways - using bovine brain tubulin instead of yeast tubulin and altering magnesium concentration. Previous EM studies indicated that protofilaments on depolymerizing bovine microtubules have similar curvature but are shorter. The authors here use a blend of bovine brain tubulin and bead-linked recombinant yeast tubulin with the 6x histidine tag in their in vitro system and find smaller deflections of the laser-trapped bead than previously observed with pure yeast tubulin. A concern with comparing this heterogeneous bovine/yeast system to the previous work with homogeneous yeast tubulin is that density of 6x histidine-tagged tubulin subunits is likely to be different between the two systems. Also, the rate of incorporation of 6x histidine yeast tubulin into bovine microtubules in the current study may be different from the rate of incorporation into yeast microtubules in the previous study. These differences could lead to changes in the strength of bead attachment to the microtubule lattice and alter the compliance of the bead to deflection by curling protofilaments. These possibilities and lattice attachment strength are not explored in this study, raising concerns about comparing the two systems.

      Reviewers #1 and #2 both mentioned a concern about potential differences between our previous setup with yeast microtubules, versus our new setup with predominantly bovine microtubules, and whether such differences might underlie the different pulse amplitudes we measured. As detailed in our response to Reviewer #1 above, we think this concern comes mainly from a misunderstanding of how the beads in both setups were tethered to the sides of the microtubules, and we apologize for not making this aspect clearer in our original submission. For both our yeast and bovine microtubule experiments, the anti-His antibodies were kept very sparse on the beads to ensure that most beads, if they became tethered to a microtubule, were attached by a single antibody. Because the beads in both scenarios were tethered by a single antibody to the same C-terminal tail of yeast β-tubulin, the differences in pulse amplitude cannot be explained by differences in the tethering. In our revised manuscript, we now mention explicitly in Results that the beads were tethered by single antibodies (lines 95 to 100). In Methods we significantly expanded the section about preparation of beads and how they became tethered (lines 365 to 393).

      The authors go on to show that magnesium increases bead deflection and work output from the system. The use of magnesium was motivated by earlier studies which showed that increasing magnesium speeds up depolymerization and increases the lengths of protofilament curls. The use of magnesium here provides the first evidence that work output can be tuned biochemically. This is an important finding. The authors then go on to show that the effect of magnesium on bead deflection can be separated from its effect on depolymerization speed. They do this by proteolytically removing the beta tubulin tail domain, which previous studies had shown to be necessary to mediate the magnesium effect on depolymerization rate. The authors arrive at a conclusion that magnesium must promote protofilament work output by increasing their lengths. How magnesium might do this remains unanswered. The mechanistic insight from the magnesium experiments ends there, but the authors discuss possible roles for magnesium in strengthening longitudinal interactions within protofilaments or perhaps complexing with the GDP nucleotide at the exchangeable site, although that seems less likely at the concentrations in these experiments.

      The major conclusion of the study is the finding that work output from curling protofilaments is a tunable system. The examples here demonstrate tuning by tubulin composition and by divalent cations. Whether these examples relate to tuning in biological systems will be an important next question and could expand our appreciation for the versatility of depolymerizing microtubules as a motor.

      We fully agree that two very important next questions are whether work output from curling protofilaments is truly harnessed in vivo, and whether protofilament properties in vivo might be actively regulated for this purpose. Based on your recommendations, and as detailed below (under Major point 2), we have expanded our discussion of these possibilities in our revised manuscript.

      Reviewer #3 (Public Review):

      The authors used a previously established optical tweezers-based assay to measure the regulation of the working stroke of curled protofilaments of bovine microtubules by magnesium. To do so, the authors improved the assay by attaching bovine microtubules to trapping beads through an incorporated tagged yeast tubulin.

      The assay is state-of-the-art and provides a direct measurement of the stroke size of protofilaments and its dependence on magnesium.

      The authors have achieved all their goals and the manuscript is well written.

      The reported findings will be of high interest for the cell biology community.

      Thank you for reading and evaluating our manuscript. We are grateful for your positive comments.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors found that the IDR in Cdc15 gets phosphorylated by multiple kinases, Pom1/Shk1/Pck1/Kin1, and the phosphorylation on IDR inhibits the phase separation of the Cdc15 protein. The phosphorylation was demonstrated in the cell as well as in vitro. Moreover, the phosphorylation sites were identified by mass spectrometry. The phospho-regulation of Cdc15 LLPS was demonstrated by in vitro assay using recombinant proteins. The significance of the phosphorylation on contractile actomyosin ring (CAR) was demonstrated by using a cdc15 mutant carrying 31 Ala-substitutions at the phosphorylation sites (cdc15 31A). The CAR assembled comparable to cdc15+, but maturation and contraction of the ring were faster in the cdc15 31A mutant, suggesting the contribution of the phosphorylation for delaying cytokinesis. This could be one of the mechanisms to ensure the completion of chromosome segregation before the cytokinesis. In this paper, the authors showed over-accumulation of type-II myosin regulatory light chain Rlc1 on CAR in the cdc15 31A mutant during the CAR assembly and its contraction. In addition, the kinases for the Cdc15 IDR phosphorylation are identified as polarity kinases, which restrict the assembly of the CAR formation in the middle. Indeed, inhibition of the kinases increases the ratio of septa formation at the cell tip in the mid1 knockout mutant, which lacks a major positive polarity cue during the mitotic phase. However, in this manuscript, this phenotype is not solely explained by the phosphorylation of the cdc15 31A, because the authors did not show the tip septa formation using cdc15 31A.

      Preventing Cdc15 phosphorylation does not on its own promote tip septa formation (Bhattacharjee et al., 2020). The polarity kinases have other substrates in the tip exclusion pathway that presumably also play a key role in septation. Also, cells must also be in the correct part of the cell cycle to form functional CRs and septa. We described the necessary roles of other polarity kinase substrates in our discussion.

      Overall, the data supports their conclusion, Cdc15 forms LLPS, and the process is inhibited by the phosphorylation of amino acid residues in the IDR in Cdc15 by polarity kinases. It is still unclear whether LLPS formation is a reversible process regulated by the protein kinases. In vitro experiments showed condensate formation by dephosphorylation of Cdc15 IDR but not diffusion of the LLPS by phosphorylation. I wonder if incubation of the kinases and the Cdc15 IDR condensates induces demolition of the LLPS.

      This is an interesting idea but technically challenging. The reactions performed in vitro are done by adding phosphatase to induce droplet formation and there is no way to remove the phosphatase. Therefore, addition of kinase will battle the phosphatase and clear results are unlikely. What we do know from work in vivo is that without the ability to rephosphoryate Cdc15 with the Alanine mutants, the protein remains bound to membrane in clusters so it seems clear that it is the phosphostate of Cdc15 that governs this property of the protein.

      The transition of the Cdc15 IDR phosphorylation and LLPS formation through the cell cycle progression is unclear. In asynchronous cells (most of the cells may be in the G2 phase) and nda3 or cps1 mutants, Cdc15 was still highly phosphorylated. This indicates that the Cdc15 is phosphorylated and the LLPS formation is inhibited throughout the cell cycle. The transition of the phosphorylation status for individual residues could be the next challenge for this research.

      The cell cycle changes in Cdc15 phosphostatus and their correlation with localization have been well-documented (e.g. Fankhauser et al., Cell, 1998; Clifford et al., JCB, 2008; Roberts-Galbriath et al., Mol. Cell, 2010). Upon bulk analysis, Cdc15 is never fully dephosphorylated during mitosis but it is not highly phosphorylated in cells blocked in mitosis with nda3 or in cps1 cells when some portion of it is in CRs (please see the references indicated previously). As shown in the simulations, the protein need not be fully phosphorylated or dephosphorylated in order to undergo a conformational change that would allow condensate formation. A major conclusion of our work is that no particular phosphorylation site or sites is important but rather the overall charge on the dimer is important and that some threshold of phosphorylation keeps the protein off from forming clusters on the membrane. We agree with the reviewer that what that threshold is will be of interest in the future.

      In addition, currently, there is no approach to monitor the LLPS in wild-type cells. Therefore, it is still unclear if LLPS formation is the physiological mechanism regulating cell division in wild-type cells.

      We agree that we have not monitored LLPS in live cells. However, Cdc15’s condensate formation in live cells and its phosphorylation state are highly correlated. This suggestive of LLPS in vivo.

    1. Author Response

      Reviewer #2 (Public Review):

      “To describe LLPS or to distinguish between polymer-polymer phase separation and LLPS, recent studies have used single particle tracking, a technique allowing to follow the dynamics of individual proteins in living cells (https://doi.org/10.7554/eLife.60577; https://doi.org/10.7554/eLife.69181; https://doi.org/10.7554/eLife.47098). The authors should mention that such an approach can be a good alternative to avoid the artefact of fixation. Using techniques such as single particle tracking or FCS, it is possible to estimate the effective diffusion coefficient of protein-living cells. When a liquid phase separation is formed, it is also possible to estimate the diffusion coefficient of the protein of interest (POI) inside versus outside of the LLPS.”

      We thank the reviewer for their insight and fully agree that live-cell techniques like SPT and FCS are valuable for investigating LLPS while avoiding fixation artifacts. We have added discussion emphasizing this fact and incorporated the citations recommended by the reviewer in Paragraph 1 on Page 15: “Live imaging techniques that allow estimation of protein diffusion coefficients within specific cellular compartments, e.g., SPT (Hansen et al., 2018 and Heckert et al., 2022) and fluorescence correlation spectroscopy (Lanzanò et al., 2017), can be useful alternative approaches for diagnosing LLPS in vivo without the potential artifact of fixation, as diffusion dynamics are recently shown to be affected by LLPS (Heltberg et al., 2021; McSwiggen et al., 2019a; Miné-Hattab et al., 2021; Chong et al., 2022; and Ladouceur et al., 2020).”

      “The authors say that less dynamic interactions are better captured by PFA fixation. In the simulation part, would it be possible to predict from the diffusion coefficients of the POI inside a condensate the effect of the PFA fixation? […] In the simulation part, they could try to incorporate the diffusion coefficient of the protein of interest and see if it is possible to predict the effect of fixation as a function of the diffusion coefficient.”

      We thank the reviewer for pointing out the absence of this critical piece that connects our experimental observations to our kinetic model. Our model considers association/dissociation rates rather than diffusion coefficients to describe interaction dynamics, but the reviewers’ point is still very insightful and important. As described in Response 2, we compared two proteins: Halo-TAF15(IDR), which is poorly preserved by fixation, and TAF15(IDR)-Halo-FTH1, which is well preserved by fixation. We used SPT to measure the dissociation rates of Halo-TAF15(IDR) and TAF15(IDR)-Halo-FTH1 and showed that the dissociation rate of Halo-TAF15(IDR) from its puncta is much faster than that of TAF15(IDR)-Halo-FTH1, demonstrating more stable homotypic interactions of the latter than the former. The observation that TAF15(IDR)-Halo-FTH1 has less dynamic interactions and is better preserved by fixation compared to Halo-TAF15(IDR) agrees with our model’s prediction that less dynamic interactions are better captured by fixation. Please see Response 2 for more details. Our new data and discussion have been added to the revised manuscript in Paragraph 3 on Page 13 and in Figure 3B, Figure 3E, Figure 6, and Video 2.

      “Finally, the authors propose that in the future, it will be important to design novel fixatives with significantly faster cross-linking rates than biomolecular interactions to eliminate fixation artifacts in the cell. It would be even more interesting if the authors could propose some ideas of potential novel fixatives. Did they test several concentrations of PFA, for example? Did they test different times of PFA incubation? Did they test cryofixation and do they know what would be their effect on LLPS? Do they have novel fixatives in mind? […] To strengthen the manuscript, the authors should try more protocols of fixation.”

      We thank the reviewer for these good questions. As described in Response 1, we have done additional quantification of the change of LLPS appearance in cells upon treatment of 0% PFA (only PBS buffer), 1% PFA, 2% PFA, and 8% PFA as well as 4% PFA supplemented by 0.2% GA. We saw statistically significant changes in the LLPS-describing parameters upon all the PFA and PFA/GA treatments except the 0% PFA control. To examine how fixation artifacts depend on the time of PFA incubation, we acquired a time-lapse movie of a cell overexpressing EGFP-FUS(IDR) immediately after 4% PFA treatment and quantified the number of puncta over time (Video 1). We showed that fixation is complete (the number of puncta becomes constant) by roughly 100 seconds (Figure 1 – figure supplement 2). Our new data also justified our choice of a 10-minute PFA incubation time for analyzing fixation-induced change of LLPS appearance in the rest of the paper. Please see Response 1 for more details. Our new data and discussion have been added to the revised manuscript in Paragraph 3 on Page 3 and in Figure 1 - figure supplement 2 (time dependence of fixation artifacts), Figure 1 - figure supplement 3 (fixation artifact at various PFA concentrations), and Figure 1 - figure supplement 4 (fixation artifact upon treatment of 4% PFA supplemented with 0.2% GA).

      We agree that testing more cell fixation protocols such as cryofixation on LLPS appearance would be interesting. However, given the complexity of novel fixation protocols like cryofixation and highly specialized equipment and reagents they require, testing widely how different fixation methods might change LLPS appearance would be a tremendous amount of work that is enough to fill a separate paper. These experiments would be much more appropriate for a separate study in the future.

      Reviewer #3 (Public Review):

      “Understanding whether/how fixation methods affect the detection of biomolecular condensates is of broad interest given the importance of LLPS in regulating different aspects of cell biology. However, in this manuscript, the authors use only paraformaldehyde as a fixation method and study only fluorescently-labelled IDR proteins. The work would benefit from a comparison between living cells and cells fixed with other fixation methods.”

      We appreciate the reviewer for this suggestion and agree that more fixation protocols should be investigated. As described in Response 1 and Response 18, besides examining PFA fixation, we have quantified how fixation using 4% PFA supplemented by 0.2% GA changes LLPS appearance in cells. We saw statistically significant changes in all the LLPS-describing parameters upon PFA/GA treatments. Please see Response 1 and Response 18 for details. Our new data and discussion have been added to the revised manuscript in Paragraph 3 on Page 3 and in Figure 1 - figure supplement 4.

      “In addition, it would be useful to test the impact of these fixation methods on the detection of endogenous proteins or IDR proteins without fluorescent tag.”

      We appreciate the reviewer for this suggestion and have now investigated an endogenous IDR-containing protein in the revised manuscript. Specifically, we quantified the effect of 4% PFA fixation on endogenously expressed EWS::FLI1 in an Ewing sarcoma cell line A673, which is an oncogenic fusion transcription factor that causes Ewing sarcoma (Grünewald et al., 2018) and known to form local, high-concentration hubs at target genes associated with GGAA microsatellites (Chong et al., 2018). We previously Halo-tagged endogenous EWS::FLI1 in A673 cells using CRISPR/Cas9-mediated genome editing (Chong et al., 2018). Here, we quantified the effect of PFA fixation on endogenous EWS::FLI1 puncta in this knock-in cell line and found no significant difference in the distribution of EWS::FLI1 upon fixation. This result suggests that PFA fixation does not change the intracellular distribution of all proteins. Our new data and discussion have been added to the revised manuscript in Paragraph 1 on Page 8 and in Figure 3C.

      Unfortunately, testing fixation artifacts of IDR-containing proteins without a fluorescent tag has been infeasible as we rely on fluorescence from a tag on the protein of interest to quantitatively compare LLPS appearance in live and fixed cells. Although we have considered using non-fluorescent methods, e.g., phase contrast microscopy, to visualize putative LLPS in cells, its lack of specificity in imaging proteins or cellular structures makes the type of quantification we do for fixation artifact characterization inaccessible.

    1. Author Response

      Reviewer #1 (Public Review):

      1 - Problems with the analysis of stimulation latency

      The data in this paper show a variable latency in signal propagation from stimulation sites to hippocampal recording electrodes. In an attempt to measure this latency, the authors examine the theta phase offset between each pair of stimulation and recording electrodes (Figure 9). They interpret their results as showing a consistent 90-degree phase offset. However, their data do not support this interpretation because in fact their measurements show a bimodal distribution of phase differences with peaks at 0 and 180 degrees. It is not valid to interpret the circular mean of a bimodal distribution because the result is not well defined. Further, individual electrodes do not show a mean difference of 90 degrees.

      Because the results do not reliably support the claim of a consistent 90 phase difference between the hippocampus and cortex, it is a substantial problem for the paper, given the importance of hippocampal-cortical timing in their interpretation. In particular, the authors should reconsider how they frame their results in relation to the Siegle and Wilson work and others.

      We no longer emphasize the phase difference between hippocampus and neocortex in the revised manuscript. This phase difference was computed to attempt to address the possibility that there was some latency in the propagation of stimulation effects from lateral temporal cortex to hippocampus, which would affect our interpretation of which theta phase angles evoked minimal versus maximal hippocampal response (i.e., “peak” stimulation trials may actually have involved stimulation propagating to hippocampus sometime after its peak). However, as noted above in response to Essential Revisions #1, we cannot fully rule out the possibility that volume conduction influenced our estimates of phase lag. We no longer emphasize this analysis and have moved it to the appendix (Appendix 1-Figure 4), along with a new analysis using bipolar rereferencing to address the volume conduction issue.

      The manuscript is now focused on the main finding of the experiment, of a 180-degree separation between theta phases associated with minimal versus maximal evoked responses. We analyzed this via circular-linear models of phase versus evoked amplitude, as suggested by the reviewers, rather than the phase-binning analyses emphasized in the original manuscript. Circular-linear analyses are indifferent to the specific phase values associated with minimal/maximal response. We have also expanded our Introduction with further discussion of homologies to the rodent literature, including to the Siegle and Wilson paper. Our revised Discussion section emphasizes that the central homology is that there is 180-degree separation between hippocampal theta phase angles associated with minimal versus maximal responsiveness to input, with less emphasis placed on the specific angles (i.e., peak versus trough), given difficulties in comparing specific phase angles across species and recording approaches.

      2 - Problems with the figures

      Some figures in the paper were hard to interpret and I felt it would benefit readers for many to be combined. The results from Figures 3 through 7 would be helpful to see side by side, as they show various investigations of the same data. In Figure 4, it would be helpful to see both plots from (a) on the same axis, as is in (b). I did not find that the accuracy estimation paper in Figure 2 was important to include in the main paper. It would be better suited for the supplement, in my view, unless I am missing something.

      We have substantially revised the figures for clarity. The analyses presented in original Figures 2, 6, and 9 have been moved to the appendix (as revised Appendix Figures 1, 3, and 4). Figure 3 has been combined with Figure 1 into the revised Figure 1. Figures 4 and 7 have been combined in order to show EP data from all four phase bins side-by-side (Figure 3). We did not combine a) and b) from the original figure onto the same axis, as we found it difficult to interpret the four overlaid traces (i.e., 2 EP traces and 2 phase-matched stimulation-free traces). However, these data are now shown side-by-side and on equal axes. We have updated all EP visualizations to improve readability. Figure 5 has been expanded to include component amplitudes comparisons for both peak versus trough and rising versus falling phases, in keeping with the expanded Figure 3.

    1. Author Response

      Reviewer #2 (Public Review):

      This clinical trial is conducted to pursue short course DAA therapy. For an ultra-short course to work, it has to be simple, equally efficacious to established treatments, and requires no additional workup (like genotyping, IL28B, HCV VL determination, etc after initiation of therapy as shown in Liu et al.). This is because our aim is to simplify therapy to treat most people, especially those who are not engaged in care. This work struggles to achieve these goals, as the to the SVR for short-course therapy is unacceptably low. The authors' conclusion that treat short first and then you can treat those who fail again does not appear to achieve these goals, as realistically,it is difficult to re-engage marginalized population from an elimination perspective. The ideal is to treat them in one attempt.

      We would like to clarify that we do not propose treating with 4 weeks and then retreating, because we acknowledge an unacceptable first line cure rate with this approach. We suggest 8 weeks may achieve cure rate of greater than 90% in mild liver disease (18/18 participants with slow virological response were cured with 8 weeks SOF/DCV in this study). Since retreatment with the same drug combination is effective, there is arguably less jeopardy in a regimen with 90% cure rate than previously perceived.

      Reviewer #3 (Public Review):

      This prospective study evaluated the utility of D2 VL determination for response-guided ultra-short (4w) sofosbuvir + daclatasvir treatment of chronic HCV patients (with mild disease) with G1+6. Shortening therapy duration reduces DAA use with a cure rate of 75% overall upon first-line treatment and 100% among retreated patients. In contrast to a previous report in G1b patients that showed a 100% success rate with D2-based 3-week triple therapy, the present study fails to show a good enough yield for a 4w sofosbuvir + daclatasvir regimen among G1+6 patients. Given the small number of patients, additional studies should determine whether a different time point and/or a different viral threshold could be more appropriate indicators to allow a 4-week duration of dual therapy (without a protease inhibitor).

      Strengths:

      A) An important study that is a nice addition to previous reports evaluating the utility of response-guided therapy for shortening the duration of HCV treatment. Given the disease burden and the high costs of treatment, especially in low-income countries, this is a major goal that was also advocated by the WHO.

      B) This study investigates an ultra-short protease-inhibitor-free regimen and therefore complements a previous (positive) RGT study of a 3-week triple regimen.

      C) This study is prospective with careful analyses of ample data, including the evaluation of RAS by gene sequencing. The follow-up was long enough and analyses of viral kinetics were performed. In addition, a detailed analysis of re-treatment outcomes and viral mutations in this population was performed

      D) Although the main objective (shortening therapy to 4 weeks) was not adequately achieved (<90% success rate), the study's results may suggest that re-treatment in case of failure is safe and efficient, although further studies with a higher number of patients are needed for confirmation.

      Limitations:

      A) Relatively small study cohort. Overall, only 34 patients were treated with a 4-week regimen. However, given the results, it seems that this number of patients who achieved only a 75% cure rate, is enough to exclude the use of a D2 RGUT, at least in G1+6 patients treated with sofosbuvir + daclatasvir. On the other hand, even 100% of success rate on 8-week treatment among 17 patients is not really enough to draw firm conclusions on the adequacy of this short regimen among this group of patients. A higher number of patients could better validate this positive result.

      Addressed in discussion. Firstly, it was powered to determine overall cure rate with 4- and 8- weeks treatment, rather than outcomes with each duration. It is possible that we would have seen patients failing 8 weeks therapy with a larger sample, and our cure estimates may therefore be imprecise.

      B) The values chosen for the RGT are arbitrary. The relatively small number of patients could not allow for a more detailed analysis of more appropriate time points and/or viral load thresholds to determine the adequacy of a 4-week of therapy in individual patients. The D2 500IU/ML threshold is based on a small previous phase 2 study on G1b patients treated with a triple-drug regimen, which does not necessarily imply dual therapy (w/o a protease inhibitor) involving patients with a different subtype of the virus. In this context, a control group treated with triple combination therapy (with a protease inhibitor) could be very helpful to the study.

      This was a mechanistic pilot study conducted in Vietnam, where antiviral options are limited. We therefore made a conscious decision to use licensed/available treatments (SOF/DCV) rather than Lau combination which is not WHO-approved.

      C) Is there a particular pattern of viral kinetics to 4w cured patients Vs. failures? Fig 1 (Appendix 1) only shows the means of viral load and the general kinetics for the whole population, but individual plots of viral kinetics are not presented although could potentially be useful. Also, according to the presented data, day 7 VL<LLOQ may be a better indicator for shortening treatment to 4w. A detailed graphical presentation of viral kinetics in these patients could be helpful.

      We have added appendix 1- figure 2 showing HCV RNA kinetics in participants treated with 4 weeks SOF/DCV, with cures (red lines) distinguished from treatment failures. In results section we comment on this that Even though the numbers are small, this helps illustrate that early on-treatment response alone may be of limited value in determining cure with ultra-short therapy.

      D) According to Table 3, no significant differences in the host or viral factors were detected between cured or failures of the 4w regimen. However, the low number of patients makes it very difficult to interpret these data and might miss potential differences between these two groups of patients, emphasizing again the difficulty in drawing firm conclusions from this study. In this context, I wonder whether a regression analysis would better define either viral (subtype, RAS) or host factors that are implicated in a 4w duration success.

      See above.

    1. Author Response

      Reviewer #1 (Public Review):

      Auwerx et al. have taken a new approach to mine large existing datasets of intermediary molecular data between GWAS and phenotype, with the aim of uncovering novel insight into the molecular mechanisms which lead a GWAS hit to have a phenotypic effect. The authors show that you can get additional insight by integrating multiple omics layers rather than analyzing only a single molecular type, including a handful of specific examples, e.g. that the effect of SNPs in ANKH on calcium are mediated by citrate. Such additional data is necessary because, as the authors' point out, while we have thousands of SNPs with significant impact on phenotypes of interest, we often don't know at all the mechanism, given that the majority of significant SNPs found through GWAS are in non-coding (and often intergenic) regions.

      This paper shows how one can mine large existing datasets to better estimate the cellular mechanism of significant, causal SNPs, and the authors have proven that by providing insight into the links between a couple of genes (e.g. FADS2, TMEM258) and metabolite QTLs and consequent phenotypes. There is definitely a need and utility for this, given how few significant SNPs (and even fewer recently-discovered ones) hit parts of the DNA where the causal mechanism is immediately obvious and easily testable through traditional molecular approaches.

      I find the paper interesting and it provides useful insight into a still relatively new approach. However, I would be interested in knowing how well this approach scales to the general genetics community: would this method work with a much smaller N (e.g. n = 500)? Being able to make new insights using cohorts of nearly 10,000 patients is great, but the vast majority of molecular studies are at least an order of magnitude smaller. While sequencing and mass spectrometry are becoming exponentially cheaper, the issue of sample size is likely to remain for the foreseeable future due to the challenges and expenses of the initial sample collection.

      We thank the reviewer for his assessment and have now addressed – in the revised version of the manuscript, as well as in the below point-by-point reply – his specific comments/questions.

      Reviewer #2 (Public Review):

      Auwerx et al. present a framework for the integration of results from expression quantitative trait loci (eQTL), metabolite QTL (mQTL) and genome-wide association (GWA) studies based on the use of summary statistics and Mendelian Randomization (MR). The aim of their study is to provide the field with a method that allows for the detection of causal relationships between transcript levels and phenotypes by integrating information about the effect of transcripts on metabolites and the downstream effect of these metabolites on phenotypes reported by GWA studies. The method requires the mapping of identical SNPs in disconnected mQTL and eQTL studies, which allows MRbased inference of a causal effect from a transcript to a metabolite. The effect of both transcripts and metabolites on phenotypes is evaluated in the same MR-based manner by overlaying eQTL and mQTL SNPs with SNPs present in phenotypic GWA studies.

      The aim of the presented approach is two-fold: (1) to allow identification of additional causal relationships between transcript levels and phenotypes as compared to an approach limited to the evaluation of transcript-to-phenotype associations (transcriptome-wide MR, TWMR) and (2) to provide information about the mechanism of effects originating from causally linked transcripts via the metabolite layer to a phenotype.

      The study is presented in a very clear and concise way. In the part based on empirical study results, the approach leads to the identification of a set of potential causal triplets between transcripts, metabolites and phenotypes. Several examples of such causal links are presented, which are in agreement with literature but also contain testable hypotheses about novel functional relationships. The simulation study is well documented and addresses an important question pertaining to the approach taken: Does the integration of mQTL data at the level of a mediator allow for higher power to detect causal transcript to phenotype associations?

      We thank the reviewer for his/her assessment and have now addressed – in the revised version of the manuscript, as well as in the below point-by-point reply – his/her specific comments/questions.

      Major Concerns

      1) Our most salient concern regarding the presented approach is the presence of multiple testing problems. In the analysis of empirical datasets (p. 4), the rational for setting FDR thresholds is not clearly stated. While this appears to be a Bonferroni-type correction (p-value threshold divided by number of transcripts or metabolites tested), the thresholds do not reflect the actual number of tests performed (7883 transcripts times 453 metabolites for transcript-metabolite associations, 87 metabolites or 10435 transcripts times 28 complex phenotypes). The correct and more stringent thresholds certainly decrease the overlap between causal relationships and thus reduce the identifiable number of causal triplets. Furthermore, we believe that multiple testing has to be considered for correct interpretation of the power analysis. The study compares the power of a TWMR-only approach to the power of mediation-based MR by comparing "power(TP)" against "power(TM) * power(MP)" (p. 12). This comparison is useful in a hypothetical situation given data on a single transcript affecting a single phenotype, and with potential mediation via a single metabolite. However, in an actual empirical situation, the number of non-causal transcript-metabolite-phenotype triplets will exceed the number of non-causal transcript-phenotype associations due to the multiplication with the number of metabolites that have to be evaluated. This creates a tremendous burden of multiple testing, which will very likely outweigh the increase in power afforded by the mediation-based approach in the hypothetical "single transcript-metabolite-phenotype" situation described here. Thus, for explorative detection of causal transcript-phenotype relationships, the TWMR-only method might even outperform the mediation-based method described by the authors, simply because the former requires a smaller number of hypotheses to be tested compared to the latter. The presented simulation would only hold in cases where a single path of causality with a known potential mediator is to be tested.

      We thank the reviewer for pointing out the multiple testing issue. Based on this comment, we have revised our approach by mainly implementing two major modifications to our approach.

      First, we reduce the number of assessed metabolites to 242 compounds for which we were able to identify a Human Metabolome Database (HMDB) identifier through manual curation. This was triggered by the suggestion of reviewer #1 to facilitate the database/literature-based follow-up of our discoveries. The motivation is to only test metabolites that if found to be significantly associated would yield interpretable results, thereby reducing the number of tests to be performed. This modification is described in the revised manuscript:

      Results: “Summary statistics for cis-eQTLs stem from the eQTLGen Consortium metaanalysis of 19,942 transcripts in 31,684 individuals [3], while summary statistics for mQTLs originate from a meta-analysis of 453 metabolites in 7,824 individuals from two independent European cohorts: TwinsUK (N = 6,056) and KORA (N = 1,768) [6]. After selecting SNPs included in both the eQTL and mQTL studies, our analysis was restricted to 7,884 transcripts with ≥ 3 instrumental variables (IVs) (see Methods, Supplemental Figure 1) and 242 metabolites with an identifier in The Human Metabolome Database (HMDB) [28] (see Methods, Supplemental Table 1).”

      Methods: “mQTL data originate from Shin et al. [6], which used ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to measure 486 whole blood metabolites in 7,824 European individuals. Association analyses were carried out on ~2.1 million SNPs and are available for 453 metabolites at the Metabolomics GWAS Server (http://metabolomics.helmholtz-muenchen.de/gwas/). Among these metabolites, 242 were manually annotated with Human Metabolome Database (HMDB) identifiers (Supplemental Table 1) and used in this study.”

      Second, to account for all remaining tests, we now select significant causal effects based on FDR < 5% in all performed univariable MR analyses. With 5% FDR on both the transcript-to-metabolite and metabolite-to-phenotype effects, the FDR for triplets is slightly inflated to 9.75% (= 1-0.952), a consideration that we now explicitly describe. Note that selecting triplets based on transcript-tometabolite and metabolite-to-phenotype effects FDR < 2.5%, result in a FDR < 5% (1-0.9752) for the triplets. This more stringent threshold identifies 135 causal triplets, 39 of which would be missed by TWMR. Overall, Results and Supplemental Tables have been updated and now read as follow:

      “Mapping the transcriptome onto the metabolome […] By testing each gene for association with the 242 metabolites, we detected 96 genes whose transcript levels causally impacted 75 metabolites, resulting in 133 unique transcriptmetabolite associations (FDR 5% considering all 1,907,690 instrumentable gene-metabolite pairs Supplemental Table 2) […].

      Mapping the metabolome onto complex phenotypes […] Overall, 34 metabolites were associated with at least one phenotype (FDR 5% considering all 1,344 metabolite-phenotype pairs), resulting in 132 unique metabolitephenotype associations (Supplemental Table 4).

      Mapping the transcriptome onto complex phenotypes […] In total, 5,140 transcripts associated with at least one phenotype (FDR 5% considering all 292,170 gene-phenotype pairs) resulting in 13,141 unique transcript-phenotype associations (Supplemental Table 5).

      Mapping metabolome-mediated effects of the transcriptome onto complex phenotypes […] We combined the 133 transcript-metabolite (FDR ≤ 5%) and 132 metabolite-trait (FDR ≤ 5%) associations to pinpoint 216 transcript-metabolite-phenotype causal triplets (FDR = 1-0.952 = 9.75%) (Supplemental Table 6).”

      In the simulations performed for the power analysis, we used a Bonferroni correction. We ran each simulation for 500 transcripts, measuring 80 metabolites at each run and performed TWMR and MWMR. The power of TWMR was calculated by counting how many times we obtain p-values ≤ 0.05/500. The power of the mediation analysis was calculated as 𝑝𝑜𝑤𝑒𝑟"$ ∗ 𝑝𝑜𝑤𝑒𝑟$#, where 𝑝𝑜𝑤𝑒𝑟"$ was calculated by counting how many times we obtain p-values ≤ 0.05/(500*80), and 𝑝𝑜𝑤𝑒𝑟$# was calculated by counting how many times we obtain p-values ≤ 0.05/80. In the revised manuscript, we additionally repeated each simulated scenario 10 times to increase robustness of results. This has been clarified in both the Methods and Results sections of the revised manuscript:

      Methods: “Ranging 𝜌 and 𝜎 from -2 to 2 and from 0.1 and 10, respectively, we run each simulation for 500 transcripts measuring 80 metabolites at each run and performed TWMR and MWMR starting from above-described 𝛽7<"=, 𝛽4<"= and 𝛽>?,(. For each MR analysis we calculated the power to detect a significant association as well as the difference in power between TWMR and the mediation analyses (i.e., 𝑝𝑜𝑤𝑒𝑟"# − 𝑝𝑜𝑤𝑒𝑟"$ ∗ 𝑝𝑜𝑤𝑒𝑟$#). Each specific scenario was repeated 10 times and the average difference in power across simulation was plotted as a heatmap.”

      Results: “To characterize the parameter regime where the power to detect indirect effects is larger than it is for total effects, we performed simulations using different settings for the mediated effect. In each scenario we evaluated 500 transcripts and 80 metabolites and varied two parameters characterizing the mediation: a. the proportion (𝜌) of direct (𝛼!) to total (𝛼"#) effect (i.e., effect not mediated by the metabolite) from -2 to 2 to cover the cases where direct and mediated effect have opposite directions (51 values); b. the ratio (𝜎) between the transcript-to-metabolite (𝛼"$) and the metabolite-to-phenotype (𝛼$#) effects, exploring the range from 0.1 to 10 (51 values).<br /> Transcripts were simulated with 6% heritability (i.e., median ℎ@ in the eQTLGen data) and a causal effect of 0.035 (i.e., ~65% of power in TWMR at a = 0.05) on a phenotype. Each scenario was simulated 10 times and results were averaged to assess the mean difference in power (see Methods).”

      2) A second concern regards the interpretation of the results based on the empirical datasets. For the identified 206 transcript-metabolite-phenotype causal triplets, the authors show a comparison between TWMR-based total effect of transcripts on phenotypes and the calculated direct effect based on a multivariable MR (MVMR) test (Figure 2B), which corrects for the indirect effect mediated by the metabolite in the causal triplet. The comparison shows a strong correlation between direct and total effect. A thorough discussion of the potential reasons for deviation (in both negative and positive directions) from the identity line is missing.

      Deviation from the identity line, as observed in Figure 2B, indicates that while there is a strong correlation between direct and total effect, it is not perfect, and part of the total effect is due to an indirect effect mediated by metabolites. This is explained and discussed in the Results and Discussion section:

      Results: “Regressing direct effects (𝛼!) on total effects (𝛼"#) on (Figure 2A), we estimated that for our 216 mediated associations, 77% [95% CI: 70%-85%] of the transcript effect on the phenotype was direct and thus not mediated by the metabolites (Figure 2B).”

      Discussion: “The observation that 77% of the transcript’s effect on the phenotype is not mediated by metabolites suggests that either true direct effects are frequent or that other unassessed metabolites or molecular layers (e.g., proteins, post-translational modifications, etc.) play a crucial role in such mediation. It is to note that in the presence of unmeasured mediators or measured mediators without genetic instruments, our mediation estimates are lower bounds of the total existing mediation. […] Thanks to the flexibility of the proposed framework, we expect that in the future and upon availability of ever larger and more diverse datasets, our method could be applied to estimate the relative contribution of currently unassessed mediators in translating genotypic cascades.”

      Furthermore, no test of significance for potential cases of mediation is presented. Due to the issues of multiple testing discussed above, the significance of the inferred cases of mediation is drawn into question. The examples presented for causal triplets (involving the ANKH and SLC6A12 transcripts) feature transcripts with low total effects and a small ratio between direct and total effect, in line with the power analysis. However, in these examples, the total effects are also quite low. Its significance has to be tested with an appropriate statistical test, incorporating multiple testing correction.

      Following the reviewer’s suggestion, we have modified our criteria to call significant associations to account for multiple testing (see extensive reply to major concern #1). With 5% FDR on both the transcript-to-metabolite and metabolite-to-phenotype effects, the FDR for triplets is slightly inflated to 9.75% (= 1-0.952). We mention this limitation in the revised manuscript:

      “We combined the 133 transcript-metabolite (FDR ≤ 5%) and 132 metabolite-trait (FDR ≤ 5%) associations to pinpoint 216 transcript-metabolite-phenotype causal triplets (FDR = 1-0.952 = 9.75%) (Supplemental Table 6).”

      All examples presented in the original manuscript remained significant. The fact that the total effect in these examples is low makes them particularly interesting as it highlights how our approach can detect biologically plausible associations between a transcript and a phenotype that only show mild evidence through TWMR but are strongly supported when accounting for metabolites that mediate the transcript-phenotype relation, showcasing situations in which our method can provide a true advantage over classical approaches such as TWMR. Such examples may emerge due to opposite signed direct and indirect effects, which cancel each other out when it comes to testing total effects. What is key that we do not claim the total and the mediated effects to be different (as we would have very limited power to do so), but simply point out that under certain settings we are better powered to detect mediated effects than total ones. In the ANKH example (more details below), the total ANKH-calcium effect is almost exactly the same as the product of the 𝛼,-.%→056157 and 𝛼056157→0120*34 effects, simply the latter ones are detectable, while the total effect is not.

      In the revised manuscript the case for our selected examples is made even stronger thanks to an analysis proposed by Reviewer #1 that aimed at estimating the proportion of previously reported associations through automated literature review. For instance, while our literature review found previously reported evidence of the ANKH-calcium link and of the ANKH-citrate link, we did not identify any publication mentioning all 3 terms in combination in the abstract and/or title, illustrating how our approach can establish bridges between knowledge gaps. We revised the Results section describing the ANKH example accordingly:

      “The 126 triplets that were not identified through TWMR due to power issues represent putative new causal relations. This is well illustrated by a proof-of concept example involving ANKH [MIM: 605145] and calcium levels, for which 48 publications were identified through automated literature review (Supplemental Table 6). While the TWMR effect of ANKH expression on calcium levels was not significant (𝛼,-.%→012034 = −0.02; 𝑃 = 0.03), we observed that ANKH expression decreased citrate levels (𝛼,-.%→056157 = −0.30; 𝑃 = 2.2 × 1089:), which itself increased serum calcium levels (𝛼056157→012034 = 0.07; 𝑃 = 6.5 × 108;9). Mutations in ANKH have been associated with several rare mineralization disorders [MIM: 123000, 118600] [32] due to the gene encoding a transmembrane protein that channels inorganic pyrophosphate to the extracellular matrix, where at low concentrations it inhibits mineralization [33]. Recently, a study proposed that ANKH instead exports ATP to the extracellular space (which is then rapidly converted to inorganic pyrophosphate), along with citrate [34]. Citrate has a high binding affinity for calcium and influences its bioavailability by complexing calcium-phosphate during extracellular matrix mineralization and releasing calcium during bone resorption [35]. Together, our data support the role of ANKH in calcium homeostasis through regulation of citrate levels, connecting previously established independent links into a causal triad.”

      Furthermore, the analysis of the empirical data indicates that the ratio between direct and indirect effect of a transcript on a phenotype is in most cases close to identity, except for triplets with low total effects. This fact should be considered in the power analysis, which assigned the highest gain in power by the mediation analysis to cases of low direct to total effect ratio. The empirical data indicate that these cases might be rare or of minor relevance for the tested phenotypes.

      As our previous power analyses did not fully reflect scenarios observed from empirical data, we extended the range of covered 𝜌 (i.e., the ratio between direct and total effect), so that it mimics more closely the observed range of 𝜌. In the revised manuscript, 𝜌 varies from -2 to 2, so that we also consider configurations where direct and total effects have opposite direction. To provide the readers with a rough idea how frequent the different parameter combinations occur in real data, we now provide another heatmap indicating the density of detected associations in those parameter regimes as Supplemental Figure 4.

      This map can be brought in perspective of Figure 4A that illustrates the power of TWMR vs. mediation analysis over the same range of parameter settings.

      It becomes apparent from Supplemental Figure 4 that in real data, 𝜎 is always larger than 1 and often exceeds 10. Note, however, that this heatmap must be interpreted with care, since the “detected” density will be low in regions where both methods have low power.

      3) Related to the interpretation of causal links: horizontal pleiotropy needs to be considered. The authors report the identification of causal links between TMEM258, FADS1 and FADS2, arachidonic acid-derived lipids and complex phenotypes. However, they also mention the high degree of pleiotropy due to linkage disequilibrium at the underlying eQTL and mQTL region as well as the network of over 50 complex lipids known to be associated with the expression of the above transcripts. Thus, it seems possible that the levels of undetected lipid species may be more important for the phenotypic effect of variation in these transcripts and that the reported "mediators" are rather covariates. Such horizontal pleiotropy would violate a basic assumption of the MR approach. While we think that this does not invalidate the approach altogether, it does affect the interpretation of specific metabolites as mediators. This is aggravated by the fact that metabolic networks are more tightly interconnected than macromolecular interaction networks (assortative nature of metabolic networks) and that single point-measurements of metabolites may not be generally informative about the flux through a specific metabolic pathway.

      This is a valid point and we discuss this limitation in the revised Discussion:

      “It is to note that in the presence of unmeasured mediators or measured mediators without genetic instruments, our mediation estimates are lower bounds of the total existing mediation. In addition, unmeasured mediators sharing genetic instruments with the measured ones, can modify result interpretation as some of the observed mediators may simply be correlates of the true underlying mediators. While this is a limitation of all MR methods, metabolic networks may harbor particularly large number of genetically correlated metabolite species.”

    1. Author Response

      Reviewer #2 (Public Review):

      This paper presents novel evidence for the successor representation in the hippocampus and V1 for temporally structured visual sequences. Participants learned sequences of 4 items shown in specific locations (A-B-C-D) on the screen. On a subset of trials, participants were only shown one of the four items, which enabled the authors to test whether the remaining three items were reactivated equivalently, or whether the upcoming items were activated in a temporally graded predictive fashion, consistent with the successor representation. The data suggest the latter interpretation, which was observed in both the hippocampus and V1.

      The approach is well-motivated, and the hypotheses are laid out clearly. The manuscript is very clear and streamlined. The design adopted by the authors, which allowed them to disentangle spatial vs. temporal proximity, is clever and provides an interesting approach to the SR framework. The figures are also very clear and nicely designed. I just have a few comments which I hope the authors can address.

      We thank the reviewer for the positive evaluation.

      1) My main question is related to the difference between the analytic approach to V1 vs. hippocampal representations. In Fig. 3, the authors present evidence of a compelling gradation in V1 representations. However, the corresponding hippocampal results in Fig. 5 are collapsed across all predecessor vs. successor representations.

      I initially thought that the same approach could not be taken in the hippocampus (-3/-2/-1 vs. 1/2/3) due to the coarser representation of space - is that the correct interpretation? However, on p. 9 the authors state that they successfully trained a hippocampal classifier based on spatial locations, so I was unsure why the same approach would not be possible. It would be helpful if the authors could add a sentence clearly explaining why the plots and analyses are not parallel across V1 and the hippocampus.

      We appreciate the reviewer bringing up this point. The reviewer is correct, that in principle the same approach could be applied to both V1 and hippocampus. We have now added our motivation for collapsing the data for hippocampus and also appended the non-averaged hippocampus results as a Supplementary Figure. Below we copy our response to Reviewer #1 from above, who brought up a similar point.

      Given the significant, but very low classification accuracy in within the localizer (accuracy = 15% 3.6%, mean ± s.d.; p = 0.002), we had previously decided to only report averaged location results for the hippocampus as the non-averaged predictions would be very noisy. To put the hippocampus classification accuracy into context, in V1 cross-validated accuracy within the localizer was 92% ± 12%, mean ± s.d.).

      We now stressed this difference between V1 and hippocampus decoding in the Results section and motivate our reason for presenting averaged results:

      "Within localizer decoding accuracy results confirmed that hippocampus has a coarse representation of the eight stimulus locations (Figure 5B) within the localizer (one-sample t-test; t(34) = 3.28, p = 0.002; cross-validated accuracy = 15%  3.6%, mean  s.d.; see Materials and Methods). Notably, compared to V1 (cf. Figure 2A), within localizer accuracy was relatively low and as a consequence tuning curves in hippocampus appeared less sharp (Figure 5C). In order to maximize sensitivity for the hippocampus, we averaged classification evidence across successor and predecessor locations. Non-averaged results can be found in Supplementary Figure 1A."

      Further, we followed the reviewer’s suggestion and added a new supplementary Figure including the non-averaged results for hippocampus. The new Figure also includes the model comparison the reviewers had asked for. The new Supplementary Figure 1 is included here for convenience:

      2) The analysis disentangling temporal vs. spatial proximity in the localizer data (Fig. 6) is interesting, particularly the persistent gradation in hippocampal responses vs. their absence in V1. However, could the same/similar temporal vs. spatial model not be applied in the full vs. partial sequences as well, as one of the alternative models shown in Fig. 4? The CO model in Fig. 4B assumes a flat reactivation of all other items in the sequence, but it might be that the two items closer in terms of Euclidean distance are represented differently than the far item. After reading the detailed methods, I wonder if this was not possible because the second presented item was always the furthest from the start (180 degrees), but it would be helpful if the authors could clarify this.

      The reviewer is correct that the fact that the sequence order and spatial distance were not fully decorrelated (second presentation was always farthest away from starting dot, third and fourth dot always the same distance from start) prevents us from quantifying the interaction of the SR and CO model with a spatial model during the main task.

      We added the following to the Method section to clarify this:

      "Note that because within each dot sequence, temporal order and spatial distance were not perfectly decorrelated (e.g. the second sequence dot was always farthest apart from the starting dot), it is not possible to estimate the combined influence of the SR model and the spatial coactivation model on the observed BOLD activity."

      Having said that, we believe that there is little concern that the reported reactivations of the main task are driven by the Euclidean distance in a meaningful way for two reasons:

      (1) detailed analysis of the localizer data showed that there is no spatial spreading from one dot location to the other sequence locations (Figure 6). This is likely because the relevant dot locations were sufficiently spaced apart (at least 5.36 degrees of visual angle), whereas population receptive field sizes in V1 are well below 2 degrees (Dumoulin & Wandell, 2008). Given the lack of spreading during the localizer, where the dot was flashed for 13.5s, makes the presence of spreading during the main task, where the dot was flashed for only 100ms, equally unlikely.

      (2) the presence of spatial spreading would actually obfuscate the reported SR-like pattern and could not have caused it. Specifically, because the second sequence dot was always farthest apart from the start, this is where one would assume the least amount of activity spread (greatest Euclidean distance). Sequence dots three and four should be more active given that they are both closer to the starting point in terms of Euclidean distance. Our reported results are the opposite of that pattern, ruling out the possibility that these were caused by spatial spreading.

      3) As the authors state on p. 12, the present study did not require any long-term prospective planning. However, the participants' task during the full sequences was closely linked to their predictions about the temporal structure of the four stimuli. It would be useful to see whether the participants who were more closely 'locked' to the sequence and accurate at this temporal detection task also showed stronger SR representations (as these rely on temporal distance).

      This would also provide a useful test of the timescale at which successor representations are behaviorally relevant. In several prior studies, the timescales were quite long, so it would be important to test how strongly SR representations at these timescales relate to behavior.

      We thank the reviewer for this suggestion. In order to relate SR representations to behavior, we first calculated individual BOLD differences for successor vs predecessor locations to get an estimate for how much participant’s predictions were skewed toward future locations. One might argue, that participants with stronger predictions toward future locations would perform better at the behavioral task. We then correlated these values with behavioral accuracy across subjects. No significant correlation was found (r = 0.05; p = 0.769). The lack of significant correlation might not be surprising, given that our design is likely underpowered for such a between-subject correlation analysis. Additionally, there was no behavioral response in the prediction trials, that could be directly related to participants’ BOLD activity. Instead the behavioral response is taken from the full sequence trials.

      These new results were added to the results section:

      "One might argue that participants with stronger predictions toward future locations would perform better at the behavioral detection task. However, no such correlation between individual V1 BOLD activity and task accuracy was found in an across subject correlation analysis (see Materials and Methods, spearman r = 0.05; p = 0.769)."

      And described in the methods:

      "Correlation with behavior. In order to relate SR representations to behavior, we first calculated individual V1 BOLD differences for all successor vs all predecessor locations to get an estimate for how much participant’s predictions were skewed toward future locations. We then correlated these values with behavioral accuracy across subjects using spearman correlation."

    1. Author Response

      Reviewer #2 (Public Review):

      In the manuscript, Mijnheer et al mainly exploited CyTOF Helios mass cytometer and TCRβ repertoire sequencing to investigate the T cell composition and distribution in peripheral blood and synovial fluid, and further explored the temporal and spatial dynamics of regulatory T cells (Tregs) and non-Tregs in the inflamed joints of Juvenile Idiopathic Arthritis (JIA) patients. Their results indicate that the activated effector T cells and hyper-expanded Treg TCRβ clones found at the inflamed joints are highly persistent in the circulation, and the dominant of high degree of sequence similarity of Treg clones could serve as the novel therapeutic targets for the JIA treatment. Overall, the research design is appropriate, and the methods are adequately described in the study. However, several issues are required to be addressed.

      (1) The criteria for the JIA patient's recruitment should be clearly presented in the method section. For example, what is the specific included criteria and excluded criteria? Or did the patients take medicines for the treatment during the study?

      A total of 9 JIA patients were included in this study. Of these, n=2 were diagnosed with extended oligo JIA, n=2 with rheumatoid factor negative poly-articular JIA, and n=5 with oligo JIA, according to the revised criteria for JIA. The average age at the time of inclusion was 13,1 years (range 3,2 – 18,1 years) with a disease duration of 7,3 years (range 0.4 – 14.2 years). Due to limited sample availability, we did not have strict inclusion or exclusion criteria for JIA patient recruitment. For CyTOF analysis, patients were selected based on the criteria that the left and right knee joints should both be affected at the time of inclusion. For sequential TCR sequencing analysis, we included patients with a refractory disease course. At the time of first inclusion, patients were treated with non-steroidal anti-inflammatory drugs (NSAIDs) or methotrexate, but no biologicals. For the refractory time point samples, patients were treated with disease modifying anti-rheumatic drug (DMARDs) (leflunomide) and/or biologicals (Humira) after first sample inclusion due to the refractory nature of their disease.

      We have now updated the methods section (lines 455-463) of the revised manuscript with more information on patient recruitment, and included information on diagnosis, sex, age, disease duration and medication for every patient in Supplementary File 1.

      (2) As for the correlation analysis of the entire spectrum of node frequencies, the SFMCs and PBMCs isolated from 3 patients were conducted in the study. The sample size is too limited to obtain robust results and to make a convincing conclusion from the correlation analysis. And it is shown that a total of 9 JIA patients have been involved in the study. Could the author clarify it?

      In order to strengthen our observations, we now included single-cell transcriptomics data obtained from Zhang, et al. (https://doi.org/10.1038/s41590-019-0378-1). In this data, we identified a cluster of CD4+FOXP3+ Tregs (new Figure 2-figure supplement 2A and 3B) that showed increased frequency in RA patients (new Figure 2-figure supplement 2C), consistent with the high frequency of Tregs that we observed in our JIA SFMC samples. Additionally, the expression of markers of chronic TCR activation (PDCD1 (PD1), CTLA4 and ICOS), and cytokines (TNF, IFNG and GZMB) were significantly increased in RA compared to OA, in line with what we observed in JIA SFMC (new Figure 2-figure supplement 2D). These results demonstrate that, although the number of JIA patients included in our study is low, obtained results are robustly reproducible in an independent, comparable dataset.

      We do agree with the reviewer that the low number of patients included in our study warrants further validation. Therefore, we have now added the following line in the discussion to highlight this (lines 369-371): “Further validation of our observations in larger cohorts of JIA patients should help to substantiate these results and aid the identification of pathogenic Treg populations across patients.”.

      Regarding the number of patients included in our studies, we have now included Supplemental File 1, which clarifies which JIA patients have been used for each analysis in our study.

      (3) The results of the study indicate that the hyper-expanded T cell clones are shared between left and right knee joints. Since JIA may affect one or more joints, did the author check other joints to see if the same expanded T cell clones infiltrate multiple joints, such as hand or wrist?

      Indeed, it would be interesting to see whether hyper-expanded clones are shared between multiple inflamed joints other than knees. However, samples from other locations are very difficult to obtain and very little synovial fluid can be extracted from joints such as hands and wrists. Therefore, the number of cells obtained from these joints would be too limited to perform mass cytometry or TCR sequencing. Thus, we chose to focus on synovial fluid from knee joints in our studies. Moreover, for oligoarticular JIA patients, only the large joints are affected (of which the knees are most typical), so for these patients it would not be possible to include other joints.

      (4) For Fig.2B, the Treg CD25+FOXP3+ population was significantly enriched in synovial fluid (SF). Is it from the left knee joints or the right knee joints?

      Figure 2B shows data from both knee joints. We have now clarified this in the figure legend by adding “For SFMCs, data from the right and left knee joints for all patients is shown” (lines 179-180).

      And in the context of Line 144-148, it indicated the SF, however, the title of axis in Fig.2B indicated Synovial Fluid Mononuclear Cells (SFMCs). Please keep consistent.

      We thank the reviewer for bringing this to our attention. We have critically revised the manuscript and made the use of SF versus SFMCs more consistent.

      (5) For the longitudinal sampling timelines of JIA patients shown in Supplementary Fig.3, the interval of PB and SF sample collection is not consistent. And only 1 patient completed 4 visits and the sample collection. It is hard to make any conclusion from 1 patient.

      In our study, we had longitudinal samples available for 5 JIA patients for which we performed TCR sequencing of Tregs from SFMCs from different joints (right or left) at least two time points. In the manuscript we mainly focused on patient 1, as for this patient the largest amount of data was available. However, for all other longitudinal patient samples included, we also show that dominant clones persist over time (Figure 4A and 5A). To further highlight that our observations are not just applicable to one patient, but consistent for all patients included, we now included detailed analysis for all patients in Figure 4-figure supplement 3 and Figure 5-figure supplement 1. This analysis shows that frequencies of shared TCRβs are consistent over time in all patients.

    1. Author Response

      Reviewer #1 (Public Review):

      Detecting and quantifying balancing selection is a notoriously difficult challenge. Because the distribution of times to fixation or removal of strictly neutral variants has a long tail, it can be hard to exclude the null hypothesis of neutrality when testing for balancing selection that was not established so long ago that trans-specific variants can be observed. As Aqil et al. point out, most efforts to detect balancing selection in the human genome have been focused on single nucleotide variants. The authors seek to characterize the amount of balancing selection specific for polymorphic deletions. The authors justify their focus based on the fact that deletions are more likely to have functional consequences than single nucleotide variants, making it more likely that if they have remained for many generations, this could be a signature of balancing selection. That said, multiple aspects of the analysis deserve more attention.

      I have two broad concerns about the manuscript that the authors need to address. First, the authors use neutral simulations to exclude that neutrality alone can explain the amount of allele sharing observed between African modern humans and the archaic genomes. My concern is that human demography models, including the one from Gravel et al. (2011) used by the author are always simplifications of the complex demographic events that shaped human populations during evolution. In the case of the specific model used by the authors, African populations were inferred by the Gravel et al. model to have a constant population size for the past ~150,000 years (parameters Taf and Naf in the original model). This is an unrealistic assumption of this model. In brief, I am wondering how much the claim of the authors that neutrality alone cannot explain patterns of allele sharing is potentially based on mis-specifications of the neutral demography model. For example, the more fine scale fluctuations of effective population sizes in Africa inferred by author L. Speidel in 2019 Nature (Figure 3) paint a different picture than the Gravel et al. model. The authors need to run extensive testing of the robustness of their conclusions to changes in the neutral demographic model used. What if the average ancestral population size was closer to 20,000? What if it was closer to 50,000 and frequency fluctuations every generation were smaller? Given how uncertain past population sizes really were and the current uncertainties about demographic reconstruction in particular relative to linked selection, the authors need to explore a range of past population size beyond the idiosyncrasies of a specific model.

      These are great suggestions. Based on them, we now conducted 37 additional simulations with different sets of parameters, including adding the Speidel et al. model to the mix (the new Figure 1C). As discussed above (please refer to our response to the general reviews) and in the Results section, realistic neutral scenarios cannot explain the excess allele sharing.

      My second broad concern is that it is difficult to evaluate how novel the findings really are. It is true that the authors focus on deletions while pasts scans for balancing selection in the human genome focused on SNVs. But it could be the case that a substantial number of the deletions identified here as under balancing selection could have previously been identified as such loci through linked SNVs by the scans cited by the authors. The authors need to provide quantification of how many of their deletions are truly novel balancing selection loci as opposed to balancing selection loci already identified through linked SNVs.

      The reviewer is right. We now compared our results with previous genome-wide studies, which have been notoriously inconsistent with each other. We found that virtually all of our candidates are novel, as described in our response to the general reviews and our Results section.

      The novelty of the balanced deletions will also be better established by providing a more quantitative and less anecdotal functional analysis. It is true that the deletions include immune loci, but are they statistically enriched for immune loci as annotated for example by Gene Ontology, in a way that shows that their distribution across the genome is not random but indeed driven by selection enriching them at loci with specific functions? In addition, do the pie charts in Figure 5E, represent a statistically significant deviation from left to right or not?

      We appreciate the reviewers’ suggestions, which led us to conduct a series of very fruitful analyses. As discussed above, we now found that ancient deletions are significantly more likely to have GWAS traits and be exonic (Figure 5B) and significantly more likely to affect immunity, blood, and metabolism-related traits (Figure 5C). Moreover, we found that ancient deletions are depleted for smaller size categories but show significant enrichment for the sizes 95th percentile and above (Figure 7A). We now discussed these findings in the Results section.

      Reviewer #2 (Public Review):

      The authors assess evidence for balancing selection by looking at old polymorphisms where the derived allele is shared by descent with archaic humans, meaning the polymorphism must predate this split. Using simulations and several features of these old polymorphisms, they evaluate whether and what signatures of balancing selection are enriched in these polymorphisms. This is a well-explained and thorough analysis, and a clever way to approach a difficult question, yet the analysis remains fairly descriptive and the claims that can be made are not strong. For instance, the title of the paper does not state a particular finding of balancing selection, and several claims are "may" such as "A significant portion of ancient polymorphisms may have evolved under medium-term balancing selection" and "These results suggest that at least 27% of common functional deletion polymorphisms may have been evolving under balancing selection".

      We thank the reviewer for their insights. We agree that balancing selection is a difficult to elucidate definitively. However, in our revisions, we have conducted several additional analyses based on reviewers’ suggestions as discussed under individual comments. We believe that these analyses strengthen our claims.

      First, using simulations, they show there are more such ancient nonsynonymous and (indirectly) deletion variants than expected under a simple neutral model. The enrichment is nominal when compared only with Denisovan sharing, which could be explained due to some superarchaic ancestry in Denisovans (though not clear if that holds up quantitatively). The classification of the shared polymorphisms as recurrent, recently introgressed, or ancient shared by descent could be more carefully tested. In particular, I'm concerned about the possible inclusion of recurrent mutations among the ancient set. Although the age trend is consistent, it does not indicate how much misclassification there might still be. For example, there are "ancient" deletions that have inferred ages more recent than the human-archaic split (shown in Fig. 3).

      We agree that recurrent mutations are crucial to discriminate from the ancient ones in our analysis. We have now conducted additional analysis of allele frequency and CG content to further test potential recurrent mutations in our datasets as described in our response to general reviews. We described these in our Results section and Figure S1. In addition, we actually conducted even more stringent filtering requiring perfect LD and found that this increased stringency did not affect our results substantially. Thus, we believe that our pipeline identifies ancient deletions very conservatively and likely harbors a considerable number of false negatives, where ancient deletions are categorized as recurrent.

      The reviewer’s observation that some ancient deletions have recent dates is indeed interesting. The dating of individual alleles assumes neutrality and broadly depends on haplotype length and allele frequency. We believe that given the potential soft sweeps acting on these deletions, it is possible that the dates may be biased in some cases. For example, if there is a recent sweep on an ancient deletion, this may lead to longer haplotype lengths and, thus, a more recent date for these alleles. Therefore, the ancient derived alleles (those that are shared with archaic hominins) which happen to have recent allele dates may be of particular interest for future scrutiny. We now discuss this particular issue further in the Results section as follows:

      “Counterintuitively, some “ancient” deletions have very recent dates. This may be due to instances of recent soft sweeps involving some deletions leading to an increased length of the associated haplotype and an artificial decrease in age. Secondly, some ancient deletions may have low frequencies, which too creates a downward bias in age. Lastly, this may be due to rare instances of miscategorization of non-ancient deletions as ancient.”

      For the rest of the paper, the authors then focus on the deletion variants, showing that these ancient deletions show an elevated signature of balancing selection (stdbeta2) but do not show less variance in allele frequency over time as would be expected under an overdominance model. They infer the mechanism to be spatial or temporal variation in selection or negative frequency-dependent selection by process of elimination. They identify the subset of ancient deletion polymorphisms that overlap exons and are associated with phenotypes, finding a high proportion of ancient deletions that fall in both these categories. The identification of this set of potentially causal deletions that may be under balancing selection is a set that is of interest to the wider community for follow up (though several have already been the subject of study and individual publications from this lab). Overall, this is a useful combination of simulation work and assessment of an intriguing set of old deletion polymorphisms. Put together, the analysis does support evidence of balancing selection on some of them, but the extent is still not clear.

      We thank the reviewer. To further determine the extent of balancing selection acting on these ancient deletions, we conducted several enrichment analyses described above (please refer to our response to the general reviews) and in the paper. Briefly, we now added Figures 5B, 5C and 7A to describe these new analyses.

    1. Author Response

      Reviewer #1 (Public Review):

      This study demonstrates the role of the circadian clock in spatiotemporal regulation of floral development. The authors nicely illustrated floral development patterns in domesticated sunflower. In particular, during anthesis, discrete developmental zones, namely pseudowhorls, are established, and hundreds of florets simultaneously undergo maturation in each psudowhorl in a circadian-dependent manner. Consistently, the flower development follows key features of the circadian clock, such as temperature compensation and gating of plant response to environmental stimuli. Evolutionary advantages of this regulation will add more merit to this study.

      We thank the reviewer for this suggestion. We have performed new experiments (Figures 7 and 7-S1) that demonstrate that delays in anthesis relative to dawn and disruption of pseudowhorl formation both negatively impact pollinator visits to flowers. These findings suggest that circadian and light regulation of floral anthesis may have significant impacts on male reproductive fitness.

      Reviewer #2 (Public Review):

      Little is known about how the circadian clock regulates the timing of anthesis. This manuscript shows that the circadian clock regulates the diurnal rhythms in floral development of the sunflower. The authors have developed a new method to characterize the timing of floral development under normal conditions as well as constant dark and light conditions. The results from the treatment of darkness during the subjective night and day suggest that the circadian clock regulates the growth of ovary, stamen, and style differently.

      All clock papers claim that the circadian clock regulates the fitness of organisms, however, it is hard to evaluate how the circadian clock affects the fitness of organisms. The timing of pollen release and stigma maturity is directly related to plant fitness. That's why the authors suggest that the circadian clock in sunflowers increases plant fitness by regulating the timing of anthesis.

      Although the authors manipulated the light and temperature to examine the role of the circadian clock in floral development, the weakness of this manuscript is that there is no molecular evidence to show how the clock regulates floral development.

      We acknowledge that this study does not demonstrate the molecular mechanisms by which the circadian clock and environmental sensing pathways regulate floral anthesis in sunflower. However, we feel that our demonstration that the circadian clock is involved in the generation of spatial patterns of development on the sunflower inflorescence disk is in itself novel and significant.

      Reviewer #3 (Public Review):

      The flowering heads of species in the Asteracaeae comprise large number of flowers, and this phenotype is thought to contribute to their reproductive success. The Harmer lab has developed sunflower as an experimental model to investigate the contribution of circadian regulation to the processes of reproduction in the Asteraceae, and this paper presents a new addition to this line of research.

      The novelty of the article is that it resolves unanswered questions around the processes that underlie coordinated flowering within the disc structure of the floral capitulum. The authors demonstrate a role for circadian clock in the temporal structuring of this process. They identify a free running rhythm in constant darkness of floral anthesis, and this rhythm has several key characteristics of circadian rhythms. The data collected also indicate that the circadian clock might gate the response of anthesis to darkness.

      I like the presentation of an external coincidence model for the interaction of light and circadian cues in the floral developmental program of the capitulum. However, I wonder whether this is the only potential explanation. The data in Fig. 4C look like classical entrainment responses. Are the authors sure that they are not just seeing an entrainment process within the capitulum, combined with a masking effect of continuous light upon the rhythmic phenotype? I encourage the authors to retain speculation about the coincidence model within the discussion- it's so important for future work- but perhaps consider alternative interpretations of the data also.

      We thank the reviewer for their positive comments and overall enthusiasm for the study. We agree that it is entirely plausible that continuous light masks circadian clock-controlled rhythms in floral organ development; in our view, this is a restatement of the external coincidence model. We argue that in developing sunflowers, a circadian clock-regulated process controls elongation of floret organs. Normal development depends upon a dark period of at least 4.5 hours occurring during the subjective night. In constant light conditions, or early in re-entrainment when the dark period occurs during the subjective day, normal development is inhibited. This model is analogous to the photoperiodic control of flowering time in short-day plants, in which light perceived during the subjective night inhibits the floral transition.

    1. Author Response

      Reviewer #1 (Public Review):

      Tafenoquine is an important 8-aminoquinoline antimalarial, mostly aimed at the management of Plasmodium vivax malaria. Through the retrospective analysis of several previously performed efficacy trials, the authors aimed to better understand the drugs mechanism of action, while exploring the possibility of improved efficacy through dose increment.

      Strengths: robust analysis approaches unlocked three main messages with the potential of improving the clinical practice:

      i. P. vivax recurrency is positively associated with tafenoquine terminal half-life and D7 methemoglobin levels.

      ii. The methemoglobin levels support the current view that tafenoquine, acts through its metabolites, similar to what is believed for primaquine.

      ii. Most importantly, the therapeutic window of tafenoquine is wider than previously considered, allowing the suggestion of a significant increase in dosing, from 300 mg to 450 mg, leading to significantly increased efficacy.

      Weaknesses: being a retrospective analysis, the work is limited to the available data. In particular, and as referred by the authors, no drug levels are reported. Additionally, there are some aspects that in my view need more detailed analysis and discussion, in particular, what seems to be a lack of exploration as to the importance (or lack of it) of the patient CYP2D6 status in Tafenoquine T1/2, methemoglobin levels, and overall efficacy. These mild weaknesses do not change the overall conclusions of the study.

      We thank the reviewer for their positive comments.

      The analysis estimates the parameters of the PK model from 4499 measured drug concentrations measured for 718 individuals between days 0 and 180. The active metabolites of tafenoquine are unknown and thus could not be quantified.

      Whilst the study is retrospective it includes 77% (651/847) of all patients enrolled in published P. vivax treatment trials of tafenoquine.

      We respond to the relationship between CYP2D6 polymorphisms and the other outcomes in our response to Reviewer #1, Comment 2.

      Reviewer #3 (Public Review):

      By assembling the vast majority of global tafenoquine pharmacology data from clinical treatment studies that led to the 8-aminoquinoline's registration in 2018, the authors of this manuscript have convincingly made their argument that the currently recommended treatment dosage of 300mg (in combination with chloroquine) is too low and needs to be increased by at least 50%. Access to the multiple data sets is thorough, the modelling reasonable and the conclusion reached is sound.

      How did we get here (again) under-dosing malaria patients with a class of drugs we have been working on for a century? Speaking as someone who was associated with tafenoquine development over two decades, it seems that worry about adverse events, specifically hemolysis in G6PD deficient persons, overcame the operational requirement to give enough drugs in a single dose regimen. However, tafenoquine is very safe in G6PD normal persons who by definition were the ones entered into the clinical treatment trials. Risk-benefit judgments cannot always be weighted towards "safety" especially when the real concern was that a single severe adverse event would derail the entire development program. Real-world effectiveness matters and should now result in the studies the authors state are needed to certify the higher dose regimen.

      1) The schizophrenic nature of tafenoquine development needs to be mentioned. This manuscript discusses malaria treatment and includes nearly all the relevant data, but extensive work was also done to support the chemoprophylaxis indication largely sponsored by the US Army. These prophylaxis efforts were often separate from the parallel efforts on treatment indication to the loss of both groups who were ostensibly working on the same drug. 450mg tafenoquine is not a large dose; 600mg (over 3 days) is routinely given at the beginning of malaria chemoprophylaxis. Up to twice that amount was given in phase 2 studies done in Kenya in 1998 which resulted in the only described severe hemolytic reaction when one G6PD deficient heterozygote woman was given 1200mg over 3 days due to incorrect recording of her G6PD status. It is not easy to hemolyze even G6PD-deficient erythrocytes due to the slow metabolism of tafenoquine. Nearly all clinical trials of both primaquine and tafenoquine have experienced similar hemolytic events when there were errors in the determination of G6PD status. This does not mean that all 8-aminoquinolines are dangerous drugs, only that a known genetic polymorphism needs to be accounted for when treating vivax malaria.

      It is notable that much larger doses of tafenoquine have been evaluated previously and these have been well tolerated in individuals with G6PD activity >30% (previous studies used semi-quantitative tests). We have added a review of all patients with P. vivax malaria who have been studied in treatment trials. A total of 847 were enrolled in all studies and our series contains individual patient data on 651 (77%) of these patients.

      We have added the following to the Discussion on lines 277-283:

      “Much larger doses have been studied in treatment and prophylaxis trials (up to 2100mg given over one week, Walsh et al., 1999, see Supplementary Appendix). The only report of a severe haemolytic reaction occurred in a female patient heterozygous for G6PD deficiency (A- variant) and received a total dose of 1200mg tafenoquine over 3 days (Shanks et al., 2001). In the same study, a homozygous female (A- variant) who was also given 1200mg tafenoquine over 3 days had an estimated 3g/dL drop in haemoglobin, but remained asymptomatic.”

      2) The authors point out the utility of 7-day methemoglobin concentrations in predicted drug success/failure in the prevention of subsequent relapses. This is important and stresses the requirement of drug metabolism to a redox-active intermediate as being a common property of all 8-aminoquinolines. Tafenoquine and primaquine are similar but not identical and the slow metabolism of tafenoquine to its redox-active intermediates explains its main advantage of being capable of supporting a single-dose cure. The main reason this was not appreciated much earlier is we were looking in the wrong place. Metabolic end-products (5,6 orthoquinones) are in very low concentrations after single-dose tafenoquine in the blood, but being water-soluble they are easily located in the urine. Such urine metabolites indicative of redox action are very likely to be complementary to methemoglobin measurements which mark the redox effect on the erythrocyte. Despite earlier simplifying assumptions made during tafenoquine development (no significant metabolites exist), metabolism to redox-active intermediates must be embraced as the explanation of drug efficacy and not a cause of undesirable adverse events.

      Another dark cloud over tafenoquine mentioned by the authors was the very disappointing results of the INSPECTOR trial in Indonesia whose full results are yet to be published. The failure of P vivax relapse prevention using 300mg tafenoquine with dihydroartemisinin-piperaquine in Indonesian soldiers was largely ascribed to under-dosing. Although this may have been partially true, another aspect indicated in figure 15 of the appendix is the nature of the partner drug. Artemisinin combinations with tafenoquine do not produce the same amount of methaemoglobin (indicative of redox metabolism) as when combined with the registered partner drug chloroquine. We do not understand tafenoquine metabolism, but it is increasingly clear that what drug is combined with tafenoquine makes a very substantial difference. Despite the great operational desire to use artemisinin combination therapy for all malaria treatment regimens, this may not be possible with tafenoquine. Chloroquine likely is driving tafenoquine metabolism as it has no real effect on latent hypnozoites in the liver by itself. Increased dose studies with tafenoquine need to be done with chloroquine, not artemisinin.

      We are aware that this is an area of intense interest and that ex vivo data were presented at the recent ASTMH conference in Seattle suggestive of a drug-drug interaction between artemisinisin and tafenoquine. However, there are as yet insufficient in-vivo data to conclude with tafenoquine reducing the methaemoglobin concentration indicative of reducing redox metabolism compared to chloroquine and tafenoquine. In addition these data as yet unpublished.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper is a continuation of other research by this group and represents another step back in time for peptide preservation in eggshells. It is exciting to see Miocene age peptides and that they overlap so completely with both extant ostrich struthiocalcin as well as the previously described Pliocene peptides. The biggest weakness is the lack of tables showing both the de novo peptides as well as those detected by database searching.

      We thank the Reviewer for their positive assessment of our work. We now provide a table with peptides identified by database searching as well as the annotated tandem mass spectra for the peptides.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, Germanos et al present preclinical evidence of a dynamic interplay between tumor microenvironmental elements underlying prostate cancer initiation, progression, and emerging therapeutic resistance in the transgenic mouse model. The authors identify an intermediate luminal cell population trans-differentiating from a hypo-proliferative basal cell subset, meanwhile, hyper-proliferative basal cells replenish a non-differentiating basal subpopulation. The meticulous methodologic approach identifies candidate cellular interactions in fibroblasts, MDSCs, and immune cell populations associated with PTEN loss. The generalization of these findings to human data sets is of particular interest and recommended for future studies on this topic. Mechanistic studies with multi-cellular co-culture models are needed to extend and validate the findings in this report.

      We thank the reviewer for finding our research “meticulous” in its approach. We agree that validating our findings in human contexts is a vital next step and have added new orthogonal datasets in the revised manuscript (Figure 4D-E). We also agree that complex molecular studies will be needed to fully evaluate our cell-cell interaction hypotheses. To this end, we have elaborated on appropriate follow-up studies in the discussion (Lines 625-628, 642-643, 657-659, 675-677).

      Strengths and Weaknesses:

      The study focuses on a clinically highly relevant and timely topic. The strength of this manuscript is the meticulous description of the Methods and model development and the integration of state-of-the-art orthogonal data sets. However, the number of data points across the experiments (n = 2 or 3) with considerable variability in the Ptenfl/fl group limits the interpretation of findings. Additionally, further experiments are needed to validate these observations in human prostate cancer and establish the potential translational relevance of these findings.

      We are ecstatic that the reviewer finds our study “clinically highly relevant.” We agree that the low sample size is a potential limitation but believe that our overall results are robust and enable concrete conclusions for both epithelial and immune cell populations. This is in part because we validated our findings in orthogonal human datasets (Figure 4A-C, Figure 5H) in the original manuscript. However, to add rigor to our study, we have conducted new scRNAseq analysis showing that our findings correlate well with both human patient data (Figure 4D-E) and orthogonal mouse models (Figure 4F-G). Furthermore, we conducted additional scRNAseq on castrated WT murine prostate to demonstrate how castration plays an important role in translational heterogeneity in intermediate cells (Figure 4H, Figure 3 – figure supplement 1G).

      As such, the report is fairly descriptive, and expanding the discussion on the mechanistic studies needed to identify which of these interactions drives aggressive prostate cancer would improve this report.

      We agree with the reviewer that additional discussion of follow-up studies is necessary. As such, we have updated the discussion to highlight the molecular studies needed to fully characterize the cellular phenotypes described in this manuscript (Lines 625-628, 642-643, 657-659, 675-677).

      Reviewer #2 (Public Review):

      This work provides a thorough characterization of tumor cell and microenvironment dynamics in a castrate Pten null prostate cancer model and details the strength of cellular interactions using single-cell RNA sequencing. The search for a preexisting castrate-resistant prostate progenitor has been upended in recent years with the discovery that prostate luminal cells adapt to low androgen environments by undergoing lineage plasticity rather than an expansion of proximal progenitors. This paper provides indirect evidence that basal epithelia give rise to 'intermediate' epithelia through increased translation in intact and castrate Pten null mice cells, which is validated in a Pten null, 4ebp1 mutant mouse model.

      Strengths:

      The single-cell data are robust and expertly presented in the figures. The methods are largely appropriate and the delineation of experimental protocols is straightforward. The analysis is comprehensive and well described in relation to biological questions of interest to the community. The validation of the effect of translation on prostate epithelial viability in relation to initial findings advances our understanding of how cells survive in low androgen environments. The addition of a public portal for the data is highly useful.

      We thank the reviewer for evaluating our work as “robust and expertly presented,” “comprehensive,” and “highly useful.”

      In response to the reviewer’s in-depth comments, we have revised our nomenclature of WT epithelial cell subtypes to specifically distinguish between Krt4+/Tacstd2+ urethral, prostatic, and cancer-derived cells (Lines 163-185). We now find urethral and luminal progenitor groups in WT intact mice, which are distinct from “intermediate” cells arising from Pten loss (Figure 1 – figure supplement 1D-F). We have accordingly revised our interpretation of the potential origins of these intermediate cells in cancer (Lines 256-275).

      Weaknesses:

      The PB-Cre4 promoter seems to be promiscuously inactivating Pten in basal, intermediate, and luminal cells, which is problematic as this confounds the ability to differentiate between cells that are undergoing lineage plasticity vs. expansion of a pre-existing progenitor cell type. Much recent evidence points to lineage plasticity of prostate luminal tumor cells under androgen deprivation rather than survival and expansion of a pre-existing castrate-resistant basal or intermediate cell type. Accordingly, the observation that basal epithelia may transdifferentiate to intermediate epithelia or that a pre-existing intermediate luminal cell state is expanded under castration may be artifacts of the model without reproduction in human prostate cancer. The use of trajectory analysis of single-cell data to demonstrate basal or intermediate cell lineage transdifferentiation is a weaker type of evidence than the lineage tracing of individual cell types provided by other groups, which argue against transdifferentiation and for lineage plasticity.

      This is a very thoughtful and nuanced comment. We agree that the PB-Cre4 promoter is promiscuously inactivating Pten in basal, luminal progenitor cells, and luminal cells which does confound the ability to differentiate between cells that are undergoing lineage plasticity versus expansion of pre-exisiting progenitor cell types. As such, we now expand our results section to include non-basal routes to the expansion of the Pten intermediate cell population (Lines 261-275). Furthermore, we also comprehensively discuss the limitations of our models in the discussion section highlighting the need to validate our findings using lineage tracing or newer techniques such as DNA Typewriter (Lines 616-628) (Choi et al., Nature 2022).

      Currently it is not possible to conduct lineage tracing within the human prostate making it impossible to determine if basal epithelia may transdifferentiate to intermediate epithelia or if a pre-existing intermediate luminal cell state is expanded under castration. However, we do present new human scRNAseq data that the intermediate cell state, as reflected by the 5-gene castration signature, is enriched specifically in metastatic, but not localized prostate cancer (Figure 4D-E). Furthermore, we show that this gene signature is also relevant in a completely different progression model of murine prostate cancer (Figure 4F-G). Thus, while not perfect, our model does have potential human relevance despite the limitations which we address in the manuscript (Lines 261-275, 616-628).

    1. Author Response

      Reviewer #1 (Public Review):

      Kang et al. have performed whole exome sequencing of gall bladder carcinomas and associated metastases, including analysis of rapid autopsy specimens in selected cases. They have also attempted to delineate patterns of clonal and subclonal evolution across this cohort. In cases where BilIN was identified, the authors show that subclones within these precursor lesions can expand and diversify to populate the primary tumor and metastatic sites. They also demonstrate subclonal variation and branching evolution across metastatic sites within the same patient, with the suggestion that multiple subclonal populations may metastasize together to seed different sites. Lastly, they highlight ERBB2 amplification as a recurrent event observed in gall bladder carcinomas.

      While these data add to the literature and start to examine important questions related to clonal evolution in a relatively rare malignancy, the authors' findings are very descriptive and it is hard to draw many generalizable conclusions from their data. In addition, the presentation of their figures is somewhat confusing and difficult to interpret. For example, they do not separate their clonal analyses by disease site and by time in a readily interpretable manner, as in some instances of Figure 2 and Figure 3 the clone maps are from different sites collected at the same time point, while others show some samples at different time points. Depicting these hierarchies in a more organized and clearly understandable manner would help readers more easily interpret the authors' findings. In addition, the clinical implications of these clonal hierarchies and their heterogeneity are unclear, as the authors do not relate the observed evolution to intervening therapies and may not be powered to do so with this dataset.

      Thank you for the constructive and valuable comments about 1) figures and 2) clinical implications.

      1) We agree with your opinion that Figures 2 and 3 are confusing. Reflecting on your comment, Figures 2 and 3 have been modified. Now, the time point at which the tissue was obtained and the anatomical location of the tissue are readily visible in the redesigned figures.

      2) From a clinical point of view, we believe that our study highlights the importance of precise genomic analysis of multi-regional and longitudinal samples in individual cancer patients. In the current oncology clinics, cancer panel data of patients are being used to identify druggable mutations usually with a single tumor sample. However, we found that only a part of the mutations was clonal while a substantial proportion was subclonal, which is usually not an effective druggable target. For example, in the GB-S2 patient, after sequencing with GB tissue, ERBB2 targeting treatment would have been performed if a specific clinical trial is available because ERBB2 p.V777L is pathogenic. However, our clonal evolution analysis suggests that ERBB2 targeting strategy may not be effective in subclones without the ERBB2 p.V777L mutation, especially from regional metastasis. We have added the description for this part to the Discussion section (Page 13, Line 12-15).

      Additional areas that would require clarification include:

      1) There are very few details on how the authors performed their subclone analysis to identify major subclones, and what each of the clusters in Supplemental Figure 1 represents. In addition, they do not describe how they determined that the highlighted mutations in Table 2 were drivers for metastasis and subclonal expansion. Were these the only genes that exhibited increased allele frequencies in metastatic sites, or were other statistical criteria used?

      Thank you for the important comment about 1) clone analysis and 2) highlighted mutations in Table 2.

      1) Mutations were timed as clonal or subclonal through PyClone (Roth A et al., Nat Methods. 2014) clustering (Figure 1—figure supplement 1). Phylogenetic trees were constructed using the mutation clusters identified with PyClone as an input of CITUP (Malikic S et al., Bioinformatics. 2015) (Figures 2 and 3). We added the sentence "See Supplementary File 1 to check the matching information for the PyClone clusters and the CITUP clones." to the supplementary figure legend.

      2) A full list of mutations constituting a CITUP clone can be found in Supplementary File 1. Among the mutations, previously reported cancer-associated genes harboring them were selected manually and listed in Table 2. References for each gene are introduced in the 'Evolutionary trajectories and expansion of subclones during regional and distant metastasis' section.

      2) The authors do not discuss the relevance of variation in mutational signatures observed with disease progression/metastasis, e.g., is there any significance that signature 22 (aristolochic acid) and signature 24 (aflatoxin) are increased in metastases? In addition, when comparing their data to previously published reports in Figure 1B and Figure 4A, it would be helpful if the authors discussed possible reasons for some of the large differences in mutational or signature frequencies across datasets. For example, do the authors think the frequency of ERBB2 alterations is so much higher in their cohort than in prior reports due to methodological/data reasons or due to differences in patient population?

      Thank you for the constructive and valuable comments about 1) mutational signatures observed with disease progression/metastasis and 2) differences in mutational or signature frequencies across datasets.

      1) During the revision process, signatures 22 and 24 highlighted in the metastasis stage were validated by two additional tools, Signal (Degasperi A et al., Nat Cancer. 2020) and MuSiCa (Diaz-Gay M et al., BMC Bioinformatics. 2018) (Figure 4—figure supplement 3). Aristolochic acid is an ingredient of oriental herbal medicine (Debelle FD et al., Kidney Int. 2008, Hoang ML et al., Sci Transl Med. 2013). Given that all the patients in our cohort are Korean, and a recent study found that Korean cancer patients are frequently exposed to herbal medicines (Kwon JH et al., Cancer Res Treat 2019), one possible explanation is that some patients might have been exposed to herbal remedies containing aristolochic acid. On the other hand, aflatoxin is known to be contained in soybean paste and soy sauce, which are widely used in Korean food (Ok HE et al., J Food Prot. 2007). Considering that the signatures 22 and 24 are found not in early carcinogenesis but in late carcinogenesis and metastasis (Figure 4B and Figure 4—figure supplement 3), the two carcinogens appear to have little impact on the early stage of cancer development, but their impacts might be highlighted in overt cancer cells. Further investigation is required because it is difficult to determine the etiology of signatures 22 and 24 with this limited patient data. We updated this part in the Discussion section (Page 13, Line 4-7).

      2) In the two previous genomics studies on GBAC, the prevalence of ERBB2 alteration was 7.9% (Narayan RR et al., Cancer. 2019) and 9.4% (Li M et al., Nat Genet. 2014), respectively. Compared with these data, our data is characterized by relatively higher ERBB2 alterations (54.5%: amplification in 27.3% and SNV in 27.3%) (Figure 1B). A higher prevalence of ERBB2 alteration was also reported in other studies on GBAC, with corresponding rates of 28.6% (amplification and overexpression, Nam AR et al., Oncotarget. 2016) and 36.4% (amplification only, Lin J et al., Nat Commun. 2021). The variations in ethnicity and culture might have contributed to the differences. This part is described in the Discussion section (Page 11, Line 19-23). In addition, the discrepancy in Figure 4A might be attributed to the difference in analyzed samples: our study included precancerous and metastatic lesions while the other two studies uniformly analyzed primary tumors.

      Reference for reply 1)

      • Kwon JH, Lee SC, Lee MA, Kim YJ, Kang JH, Kim JY, et al. Behaviors and Attitudes toward the Use of Complementary and Alternative Medicine among Korean Cancer Patients. Cancer Res Treat. 2019;51(3):851-60.

      3) The authors try to describe and draw conclusions about the possibility of metastasis to metastasis spread in p.6, lines 6-10 "In our study, of 7 patients with 2 or more metastatic lesions, evidence of metastasis-to-metastasis spread was found in 2 patients (28.6%). In GB-A1 (Figure 2A), it appears that CBD, omentum 1-2, mesentery, and abdominal wall 2-4 lesions may originate from abdominal wall 1 (old) rather than from primary GBAC considering clone F." The authors conclude here that the spread arose from abdominal wall 1, but this lesion is only separated from the CBD lesion by 1 month. There is no history given about whether this timing difference is significant or if it was simply due to clinically-driven differences in when each lesion was sampled. Given the proximity of the CBD lesion to the original gall bladder cancer, it seems just as likely that all of these distant lesions were seeded from the CBD lesion. If this is the case, the author's conclusion about "metastasis to metastasis" spread does not seem strongly supported. It would be helpful if the authors could clarify this point and/or provide additional data to strengthen this conclusion.

      We appreciate your valuable comment. As addressed above, the manuscript has been modified to reflect your comments.

      Reviewer #2 (Public Review):

      Minsu Kang et al. analyzed 11 patients with gallbladder adenocarcinoma using multi-point sampling. Mutational analysis revealed evolutional patterns during progression where the authors found metastasis-to-metastasis spread and the migration of a cluster of tumor cells are common in gallbladder adenocarcinomas. The signature analysis detected signatures 22 (aristolochic acid) and 24 (aflatoxin) in metastatic tumors. Overall, the analyses are well-performed using established algorithms. However, the manuscript is highly descriptive. Therefore, it is very difficult to understand what the novel findings are.

      Major comments

      1) The sections "Evolutionary trajectories and expansion of subclones during regional and distant metastasis", "Polyclonal metastasis and intermetastatic heterogeneity", "Mutational signatures during clonal evolution", and "Discussion" are highly descriptive which makes it difficult to understand what the novel and/or important findings are. Those sections would profit from reorganization.

      Thank you for the important comment. We have reorganized the manuscript according to your comments.

      1) In the "Evolutionary trajectories and expansion of subclones during regional and distant metastasis" section, unnecessary sentences have been removed and Figures 2 and 3 have been changed to make it simpler to understand how subclones spread during metastasis.

      2) In the "Polyclonal metastasis and intermetastatic heterogeneity" section, after receiving feedback on statements that were conflicting (Reviewer #1's comment 4), we clarified the statements and removed any other extraneous sentences. Figures 2 and 3 have been changed to make it simpler to understand polyclonal metastasis and intermetastatic heterogeneity.

      3) In the "Mutational signatures during clonal evolution" section, after receiving comments that Figures 4B and 4C were confusing (Essential Revisions #6), we moved Figure 4B to Figure 4—figure supplement 2. Unnecessary sentences have been removed. We emphasized signatures 22 and 24 highlighted during metastasis. This result was validated by using two additional tools, Signal (Degasperi A et al., Nat Cancer. 2020) and MuSiCa (Diaz-Gay M et al., BMC Bioinformatics. 2018).

      4) In the Discussion section, duplicate descriptions and unnecessary extraneous explanations have been deleted. We emphasized that whereas aflatoxin and aristolochic acid had little impact on early cancer formation, their impacts could be more clearly seen in cancer cells that had already manifested (Page 13 Line 2-7). In addition, the limitations of the NGS test currently used in the clinical field were pointed out, and the clinical significance of this study was described (Page 13 Line 8-16).

      2) What would enhance this paper is more of a connection between the bioinformatics analysis and the biology. Although the authors analyzed multi-point sequencing data well, this paper lacks in-depth discussion. I understand that the results in the paper are "computationally" the most likely. However, the impact is lost by an incomplete connection to biology.

      As you commented, we analyzed the WES data obtained from patient samples by computational methods. In this study, we did not validate the various results using in vitro or in vivo models. However, we would like to emphasize the significance of our work because it is the first human study, covering the current theory of carcinogenesis from precancerous lesions to metastasis in GBAC. For example, polyclonal seeding has been previously confirmed in animal models (Cheung KJ et al., Science 2016). In humans, there have been reports in breast cancer (Ullah I et al., J Clin Invest. 2018) and colorectal cancer (Wei Q et al., Ann Oncol. 2017), but not in GBAC yet.

      3) In addition to the above concern, it is difficult to comprehend the cohort as the detailed information is lacking. I would suggest providing a brief table that contains the number of collected samples, frozen or FFPE, the clinical information, etc. by sample.

      Thank you for the constructive comment. Supplementary Table 1 was modified as you mentioned. It is now indicated from which organ, when, and by what method the tissue was obtained, what the tumor purity of the tissue was, and whether the tissue was fresh-frozen or FFPE. In addition, we updated the information about tissue acquisition sites in Figure 1A.

      4) The mutations with very low allele frequency (< 1%) are discussed in the manuscript. However, no validation data is provided. Please add a description of the accuracy of the mutation calling considering the following concerns.

      • FFPE samples are analyzed using the same method as frozen samples. FFPE contains much more artifacts. Is it adequate to use the same methods for both frozen and FFPE samples?

      Thank you for the valuable comment. We also considered the FFPE artifacts. However, we did not remove the possible artifacts. This part has been described above. Please see Essential Revisions #5.

      • How were those mutations with low allele frequency validated? Are those variants validated by other methods? Especially in FFPE.

      Thank you for the important comment. Firstly, we discarded any low-quality, unreliable reads and variants according to the pre-specified filtering criteria used in previous literature analyzed with the Genomon2 pipeline (Yokoyama A et al., Nature. 2019, Kakiuchi N et al., Nature. 2020, Ochi Y et al., Nat Commun. 2021). In the Method section, we have added an explanation for this part (Page 16 Line 5-12).

      As you commented, validation of low VAF mutation is required if the mutation is sample-specific. However, in this study, if a mutation in Supplementary File 1 has a low VAF in one sample, one of the other samples always has a higher VAF, which has passed our pre-specified filter. Therefore, validation is not required for that mutation. In addition, possible sequencing artifacts with low VAFs in FFPE tissues have been discussed above. Please see Essential Revisions #5.

      • Is the low variant allele frequency (0.2~1%) significantly higher than the background noise level?

      Thank you for the important comment. As you expected, FFPE samples had a higher number of sample-specific mutations than fresh-frozen ones in our study. However, we did not remove these mutations in the analysis of the FFPE samples. For a more detailed description, please see Essential Revisions #5.

      5) The authors compared mutational signatures divided by stages or timings. How are the signatures calculated although each sample has a distinct number of somatic mutations? Did the authors correct the difference?

      Thank you for the helpful comment. We classified all the mutations according to the specific criteria (Page 9 Line 9-18). For example, in Figure 4B (before revision, Figure 4C), mutations were classified by the timing of development during clonal evolution. After that, we could calculate the relative contributions of mutational signatures in each group using the three tools, Mutalisk (Lee J et al., Nucleic Acids Res. 2018), Signal (Degasperi A et al., Nat Cancer. 2020) and MuSiCa (Diaz-Gay M et al., BMC Bioinformatics. 2018). Although the number of mutations is different for each group, no additional correction was required because we compared the relative contributions among the groups.

      6) In distant metastasis tumors, signatures 22 and 24 are increased. Those two signatures are strongly associated with a specific carcinogen. Although the clinical information lacks, do the authors think that those patients were exposed to those chemicals after the diagnosis? Why do the authors think the two signatures increased in the metastatic tumors? Were those signatures validated by other methods?

      We appreciate your important and constructive comment.

      1) We think that the patients might have been exposed to aristolochic acid or aflatoxin before or after the cancer diagnosis. Aristolochic acid is an ingredient of oriental herbal medicine (Debelle FD et al., Kidney Int. 2008, Hoang ML et al., Sci Transl Med. 2013). Given that all the patients in our cohort are Korean, and a recent study found that Korean cancer patients are frequently exposed to herbal medicines (Kwon JH et al., Cancer Res Treat 2019), one possible explanation is that some patients might have been exposed to herbal remedies containing aristolochic acid. On the other hand, aflatoxin is known to be contained in soybean paste and soy sauce, which are widely used in Korean food (Ok HE et al., J Food Prot. 2007). Nevertheless, we believe that further investigation is required because it is difficult to determine the etiology of signatures 22 and 24 with this limited patient data.

      2) Summarizing the mutational signature results using the 3 different tools (Figure 4B and Figure 4—figure supplement 3), the signatures 22 and 24 are relatively rare in early carcinogenesis. However, the two signatures contributed more to late carcinogenesis and metastasis. Therefore, it is speculated that the two carcinogens appear to have little impact on the early stage of cancer development but might be highlighted in overt cancer cells. Further studies on this novel hypothesis are necessary.

      3) During the revision process, signatures 22 and 24 highlighted in the metastasis stage were validated by two additional tools, Signal (Degasperi A et al., Nat Cancer. 2020) and MuSiCa (Diaz-Gay M et al., BMC Bioinformatics. 2018) (Figure 4—figure supplement 3). We updated this part in the Result (Page 9 Line 18-21) and Discussion (Page 13 Line 2-7) sections.

      Reference for reply 1)

      • Kwon JH, Lee SC, Lee MA, Kim YJ, Kang JH, Kim JY, et al. Behaviors and Attitudes toward the Use of Complementary and Alternative Medicine among Korean Cancer Patients. Cancer Res Treat. 2019;51(3):851-60.

      7) Figures 2 are well-described. However, they are difficult for readers to fully understand. The colors for each clone are sometimes similar. The results of multi-time point and regional analyses in the cases with multiple sampling are not integrated. Driver mutations are separately described in the small phylogenetic trees. Evolutional patterns (linear or branching) are not described in the figures. Modifying the above concerns would improve the manuscript.

      We appreciate your important comment.

      1) In GB-S1, clones of similar colors were modified to be different colors.

      2) Figures 2 and 3 have been modified to make them easier to understand by separating time and space more clearly.

      3) Driver mutations are now indicated in both the phylogenetic tree and TimeScape result (Figures 2 and 3).

      4) Evolutional patterns (linear or branching) can be discovered by examining the phylogenetic tree in Figures 2 and 3. In addition, we described each patient's evolutionary pattern more clearly in the manuscript.

      8)"Among 6 patients having concurrent BilIN tissues, two patients were excluded from the further analysis because of low tumor purity in one patient and different mutational profiles between BilIN and primary GBAC in the other patient, suggesting different origins of the two tumors (Figure 1-figure supplement 2)." This seems cherry-picking. More explanation is necessary.

      • How is the tumor purity? Although the authors use 0.2% variant allele frequency as true mutation (for example Table 2), is the tumor purity lower than 0,2%?

      Thank you for the important comment. The calculated tumor purity of BilIN in the GB-S8 patient was 0.03 based on the WES data. We added this value to the manuscript (Page 6 Line 9) and Supplementary Table 1. Although variants were called in this case, the tumor purity was too low to estimate the allele-specific copy number, and thus sophisticated analysis as in other patients was not possible. In addition, the value of 0.2% in Table 2 is not the VAF, but cellular prevalence calculated by PyClone and CITUP. Although the value is low in the primary tumor, it is mentioned because it is high in metastatic lesions.

      • BilIN and GBAC of GB-S7 have some shared mutations. Why do the authors conclude that BilIN and GBAC have distinct origins? Do the authors think that those shared mutations are germline mosaic mutations?

      Thank you for the important comment.

      1) We think that the BilIN and GBAC of the GB-S7 patient are tumors of different origins because BilIN and GBAC of the GB-S7 patient have different truncal mutations (Figure 1—figure supplement 2C). This is a markedly different feature compared to BilIN and GBAC samples of other patients. We have added an explanation for this part to the Results section (Page 6 Line 9-11).

      2) We do not think that mosaicism occurred at the developmental stage. In addition, although some mutations were identified from both BilIN and GBAC, we cannot determine their importance because either one of the lesions had a very low VAF ranging from 0.001 to 0.04. If the mosaicism occurred only in the GB at the developmental stage, the VAF values of the shared mutations should be much higher than the current values, and the VAF values of the two BilIN and GBAC lesions should be similar.

      • Was the copy number profile compared between BilIN and GBAC?

      Thank you for the constructive comment. In this study, we obtained allele-specific copy numbers using Control-FREEC version 11.5 (Boeva V et al., Bioinformatics. 2012). The copy number of the mutations in the GB-S8 patient's BilIN could not be estimated by Control-FREEC due to low tumor purity (0.03). In the case of GB-S7, BilIN and GBAC were determined to be of a different tumor origin and thus disregarded from the analysis.

    1. Author Response

      Reviewer #1 (Public Review):

      It's here where my very mild (I truly liked this article - it is well done, well written, and creative) comments arise. The implications for stochastic strategies immediately emerge in the early results - bimodal strategies come about from the introduction of two variables. There is not enough credence given to the field of stochastic behavior in the introduction - the introduction focuses too much on previous models of predator-prey interaction, and in fact, Figure 1, which should set up the main arguments of the article, shows a model that is only slightly different (slight predator adjustment) that is eventually only addressed in the Appendix (see below). The question of "how and when do stochastic strategies emerge?" is a big deal. Figure 1 should set up a dichotomy: optimal strategies are available (i.e., those that minimize Tdiff) which would predict a single unimodal strategy. Many studies often advocate for Bayesian optimal behavior, but multimodal strategies are the reality in this study - why? Because if you consider the finite attack distance and inability of fish to evoke maximum velocity escapes while turning, it actually IS optimal. That's the main point I think of the article and why it's a broadly important piece of work. Further framing within the field of stochastic strategies (i.e., stochastic resonance) could be done in the introduction.

      We appreciate the comment provided by the reviewer. We changed the second paragraph of the introduction so as to focus more on the protean tactic (stochasticity). We added a new figure (Figure 1 in the new version) to conceptually show the escape trajectories (ETs) of a pure optimal tactic, a pure protean tactic, a combination of optimal and protean tactics, and an empirically observed multimodal pattern. We explained each tactic and described that the combination of the optimal and protean tactics still cannot explain the empirically observed multiple preferred ETs.

      The revised paragraph (L49-66) is as follows: Two different escape tactics (and their combination) have been proposed to enhance the success of predator evasion [16, 17]: the optimal tactic (deterministic), which maximizes the distance between the prey and the predator (Figure 1A) [4, 14, 15, 18], and the protean tactic (stochastic), which maximizes unpredictability to prevent predators from adjusting their strike trajectories accordingly (Figure 1B) [19-22]. Previous geometric models, which formulate optimal tactics, predict a single ET that depends on the relative speeds of the predator and the prey [4, 14, 15, 18], and additionally, predator’s turning radii and sensory-motor delay in situations where the predator can adjust its strike path [23-25]. The combination of the optimal tactic (formulated by previous geometric models), which predicts a specific single ET, and the protean tactic, which predicts variability, can explain the ET variability within a limited angular sector that includes the optimal ET (Figure 1C). However, the combination of the two tactics cannot explain the complex ET distributions reported in empirical studies on various taxa of invertebrates and lower vertebrates (reviewed in [26]). Whereas some animals exhibit unimodal ET patterns that satisfy the prediction of the combined tactics or optimal tactic with behavioral imprecision (e.g., [27]), many animal species show multimodal ETs within a limited angular sector (esp., 90–180°) (Figure 1D) (e.g., [4, 5, 28]). To explore the discrepancy between the predictions of the models and empirical data, some researchers have hypothesized mechanical/sensory constraints [17, 29]; however, the reasons why certain animal species prefer specific multiple ETs remain unclear.

      All experiments are well controlled (I especially liked the control where you varied the cutoff distance given that it is so critical to the model). Some of the figures require more labeling and the main marquee Figure 1 needs an overhaul because (1) the predator adjustment model that is only addressed in the Appendix shouldn't be central to the main introductory figure - it's the equivalent of the models/situations in Figure 6, and probably shouldn't take up too much space in the introductory text either (2) the drawing containing the model variables could be more clear and illustrative.

      (1) According to this comment and comment #11 from reviewer #2, we moved the two panels in the figure (Figure 1B and D in the original version) to Appendix-figure 1, and accordingly, we changed the first paragraph of the Model section so as to clearly describe that we focus on Domenici’s model in this study (L103-108).

      As for Figure 6 (Figure 7 in the new version) and related parts, we tempered our claims to clearly describe that our model has only the potential to explain the different patterns of escape trajectories observed in previous works. We would like to keep this figure in the main text because it is fundamental to explain the potential applicability of our model to other predator-prey systems.

      (2) To alleviate the burden for readers, we added the model variables to the figure and made them colored (Figure 2B in the new version).

      Finally, I think a major question could be posed in the article's future recommendations: Is there some threshold for predator learning that the fish's specific distribution of optimal vs. suboptimal choice prevents from happening? That is, the suboptimal choice is performed in proportion to its ability to differentiate Tdiff. This is "bimodal" in a sense, but a probabilistic description of the distribution (e.g., a bernoulli with p proportional to beta) would be really beneficial. Because prey capture is a zero-sum game, the predator will develop new strategies that sometimes allow it to win. It would be interesting if eventually the bernoulli description could be run via a sampler to an actual predator using a prey dummy; one could show that the predator eventually learns the pattern if the bernoulli for choosing optimal escape is set too high, and the prey has balanced its choice of optimal vs. suboptimal to circumvent predator learning.

      We thank the reviewer for this constructive comment. Actually, we are now developing a dummy prey system. We added the following sentence in the Discussion to mention future research.

      The added sentence (L496-499): Further research using a real predator and dummy prey (e.g., [48]) controlled to escape toward an optimal or suboptimal ET with specific probabilities would be beneficial to understand how the prey balances the optimal and suboptimal ETs to circumvent predator learning.

      Reviewer #2 (Public Review):

      First, it is unclear how the dummy predator is actuated. The description in the Methods section does not clearly address how rubber bands are used for this purpose.

      To clearly mention how the dummy predator was actuated by rubber bands, we added a figure (Figure 3-figure supplement 3B) and the following sentences.

      The added sentences (L608-611): The dummy predator was held in place by a metal pipe anchored to a four-wheel dolly, which is connected to a fixed metal frame via two plastic rubber bands (Figure 3—figure supplement 3B). The wheel dolly was drawn back to provide power for the dummy predator to strike toward the prey.

      Second, the predator's speed, which previous research has identified as a critical factor during predator-prey interactions, is not measured from the motion of the dummy predator in the experiments. Instead, it is estimated using an optimization algorithm that utilizes the mathematical model and the prey-specific parameters. It is unclear why the authors chose this method over measuring velocity from their experiments. Since the prey fish are responding to a dummy predator moving toward them at a particular speed during the interaction, it is important to measure the speed of the predator or clearly explain why estimating it using an optimization procedure is more appropriate.

      We chose this method (optimizing predator speed from the prey’s viewpoint) because there was no significant effect of predator speed on the escape trajectory in our experiment (L203-208). In other words, we considered that, at least in our case, the prey did not change the escape trajectory in response to the predator speed, and thus it would be more appropriate to use a specific predator speed estimated through an optimization algorithm from the prey’s point of view. It may be appropriate to use measured predator speed in other cases where the prey adjusts the escape trajectory in response to the change in predator speed. Therefore, we conducted a further analysis using actual predator speeds (both the predator speed at the onset of escape response, and the mean speed for the predator to cover the distance between the predator and prey). The results show that the model fit became worse when using measured predator speed per trial compared to the model using the fixed predator speed estimated through the optimization procedure (Table 3—source data 1; Figure 5—figure supplement 1). We added the above explanation in L219-226.

      One of the major claims of this article is that the model can explain escape trajectories observed in other predator-prey systems (presented in Figure 6). Figure 6 panels A-C show the escape responses of different prey in response to some threatening stimuli. Further, panels D-F suggest that the empirical data can be predicted with the model. But the modeling parameters used to produce the escape trajectories in D-F are derived from the authors' experiments with fish, instead of the experiments with the species shown in panels A-C.

      We thank the reviewer for this comment. We agree that this part in the previous version was an over-interpretation. Therefore, we tempered our statements to simply suggest that our approach has the potential to explain multiple ETs observed in other taxa. The revised sentences are as follows.

      Abstract (L27-30): By changing the parameters of the same model within a realistic range, we were able to produce various patterns of ETs empirically observed in other species (e.g., insects and frogs): a single preferred ET and multiple preferred ETs at small (20–50°) and large (150–180°) angles from the predator.

      Results (L395-407): Potential application of the model to other ET patterns. ...(sip)... To investigate whether our geometric model has the potential to explain these different ET patterns, we changed the values of model parameters (e.g., Upred, Dattack) within a realistic range, and explored whether such adjustments can produce the ET patterns observed in the original work. ...(sip)... These results indicate that our model has the potential to explain various patterns of observed animal escape trajectories.

      Discussion (L538-548): We show that our model has the potential to explain other empirically observed ET patterns (Figure 7). ...(sip)... Further research measuring the escape response in various species and applying the data to our geometric model is required to verify the applicability of our geometric model to various predator-prey systems.

    1. Author Response

      Reviewer #3 (Public Review):

      The authors use two-photon imaging to visualize various axonal organelle populations that they have virally labeled with fluorescent proteins, including DCVs and late endosomes/ lysosomes. The latter topic is a bit contentious, as the authors use two labels that tag potentially overlapping and not highly specific markers so that the nature of the tagged organelle populations remains unclear. Notably, the authors also have previously published a detailed account of how DCVs traffic in vivo, so the novelty is mostly in comparing the behavior of different organelles and the potential influence of activity.

      Overall, the reported results mostly corroborate the expectations from previous in vitro and in vivo work on these organelles and other cargoes, performed by the authors and their collaborators, as well as in many other laboratories:

      (i) Different organelles have different transport behaviors regarding speed, the ratio of anterograde to retrograde moving organelles, etc.

      (ii) Organelles move in different ways when they pass specific anatomical landmarks in the axons, such as presynaptic terminals.

      (iii) Activity of a neuron (here measured by calcium imaging) can impact the measured transport parameters, albeit in a subtle and mechanistically not well-defined manner. The chosen experimental design precludes a more detailed analysis, for example of the precise movement behavior (such as defining the exact pausing/movement behavior of organelles, which would require higher imaging speeds) or of a correlation of different organellar behavior at synaptic sites or during activity (which would require three-channel simultaneous imaging of two organelle classes plus a synaptic or activity marker).

      In summary, this publication uses sophisticated in vivo labeling and imaging methods to corroborate and complement previous observations on how different axonal organelles move, and what influences their trafficking.

      We thank the reviewer for the time dedicated to our manuscript. We are thankful for the critical and specific comments, which allowed us to further improve our manuscript. We agree that it would have been beneficial to have higher frame rates and there instead of two imaging channels. However, this would have further added technical complexity to an already complex experimental setup resolving fluorescent puncta with sizes below the resolution limit. And we are convinced that all our main conclusions are justified based on the imaging settings in the current data sets.

    1. Author Response:

      Reviewer #2 (Public Review):

      The study is well designed and provides exciting new insights into the plasticity of intracortical connections, (over-)compensating for the partial loss of thalamic inputs. To optically resolve the activity of single synapses in vivo during sensory stimulation is technically very challenging. It would be helpful to know whether the recordings were made in the binocular or monocular region of V1. The results argue against a generalized multiplicative upscaling of all inputs and suggest selective boosting of synapses that are part of sensory-driven subnetworks. However, it is not clear whether homeostatic plasticity occurred at the observed spines themselves or on the level of presynaptic neurons, which could then e.g. fire more bursts, leading to larger postsynaptic Ca transients. The possibility that thalamic inputs from the intact eye in layer 4 could be potentiated should be discussed. It would probably help to explain to the reader the layer-specific connectivity of V1 in the introduction, and why thalamic input synapses themselves were not optically monitored (may require adaptive optics). Technical limitations are a main reason why the conclusions are somewhat vague at this point ("... regulation of global responses"), this could be spelled out better.

      We thank the reviewer for these suggestions. We agree with the reviewer that we cannot determine (due to technical limitations) whether the changes are occurring pre- or post-synaptically or some combination (also related to the reviewer’s point 8). We have added this point to the discussion.

      "Finally, it is important to note that while we made these measurements in layer 5 pyramidal cells, the homeostatic changes mediated by TNF-α could occur outside of layer 5, including changes to upstream inputs or changes to the presynaptic responses, either through changes in presynaptic release (Vitureira et al., 2012) or through a change in activity patterns of the presynaptic cell (e.g., bursts compared to single spikes) (Linden et al., 2009)."

      One important point that was unclear in the earlier version of the manuscript is that the experiments conducted in visual cortex were done in the monocular visual cortex. As explained in comments to reviewer 1, there are not any visually-evoked responses following enucleation in our experiments.

      Reviewer #3 (Public Review):

      Weaknesses are largely restricted to suggested changes to the writing - specifically, there are additional explanations of the data whose discussion may strengthen the long-term impact of the manuscript.

      1) Most importantly, the hypothesis at the heart of this work (subset versus global processes) is framed as orthogonal to the status quo model of homeostatic processes (global). I suspect that adherents to the global argument would quickly point out that the current work is conducted in adult animals, and the majority of the homeostatic plasticity research (which forms the basis of the global model) is conducted in juvenile animals. This is an important distinction because the visual system is enriched in plasticity mechanisms during the ocular dominance critical period. Since Hubel and Wiesel at least, there is extensive evidence to suggest that sensory systems take advantage of critical periods to set themselves up in accordance with the statistics of the world in which they are embedded. The flip side of this is that sensory systems are far less readily influenced by experience once the critical period is closed (Vital-Durand et al., 1978, LeVay et al., 1980; Daw et al., 1992, Antonini et al., 1999, Guire et al., 1999, Lehmann and Lowel, 2008). Through this lens, one might predict that a key feature of the adult cortex is that sensory spines could benefit by being selectively protected from what would otherwise be global homeostatic processes. Either way, the manuscript can be read as if it is framing a show-down between the classical model and a newer, higher-resolution model. I worry that this will be interpreted as misleading without careful presentation/contextualization of the role of development in the introduction and a thorough dissection in the discussion. Currently, the first occurrence of the word, "adult", occurs in the methods, on page 27, line 512. "Juvenile" and "critical period" are not in the manuscript. The age of the animals in this study isn't mentioned until the methods (between P88 and P148 at the time of imaging).

      2) Goel and Lee (2007) seem quite pertinent here: they show that L2/3 neurons give rise to homeostatic regulation of mEPSCs in both juvenile and adult animals, but that the process is no longer multiplicative in nature once the animal is post-critical period. Multiplicity has been the basis of the argument for global change since Turrigiano 1998. Thus, the Goel and Lee finding seems to really bolster the current findings - and also perhaps reconcile the likelihood of a mechanistic difference between CP and adult homeostatic plasticity.

      We fully agree with the reviewer that our results are not in conflict with the developmental synaptic scaling literature. We have changed the text throughout the manuscript to highlight previous studies at different ages and made clear the age of the animals in this work (including in the abstract, introduction, results and discussion). We have also referenced Goel and Lee, 2007, which we agree should be included and thank the reviewer for pointing this out.

    1. Author Response

      Reviewer #1 (Public Review):

      While eDNA methods are becoming more established, there remains skepticism by many in the scientific community about the origins of the detected DNA (e.g. does it drift in from other areas or water layers?). If these concerns aren't addressed (i.e. by citing supporting literature on the fate of eDNA), the different biodiversity profiles between trenches could possibly be explained by differing oceanography. There is also some important methodological information that is missing from this manuscript. For example, sampling volumes will affect the amount of biodiversity detected, but it is not clear if sample volumes are consistent across depths and study areas. It was also not indicated whether field controls (blanks) were taken to assess the potential contamination of samples. Lastly, the literature in the eDNA field is progressing rapidly and there are some missing papers (e.g Thomsen et al. 2016, Canals et al. 2021, McClenaghan et al. 2020, Govindarajan et al. 2021, etc.) that are relevant to the technique used in this manuscript and the habitat studied.

      We are very grateful to this reviewer for providing such an in-depth review of our manuscript that allowed us to improve our manuscript significantly. We tried to follow explicitly almost every suggestion. In particular, we appreciate the input of other important missing literature that we readily included in this new version of our paper. The data on the volume of seawater filtered for each sample is given in Table Supplementary file 1a. Regarding field blanks, they were not collected per se. However, as part of the molecular protocol used (see Methodology) a “negative extraction control” was applied to check for possible contamination. Also, from the results themselves, we carefully checked for any indication of contamination that could have biased our results and conclusions.

      Reviewer #2 (Public Review):

      My primary critique is the near-absence of statistical analyses in the current version of the manuscript that are necessary to support the many descriptive observations made with a more formal hypothesis testing framework, as well. Developing an appropriate framework for such analyses throughout the paper, including consideration of the multiple tests that will be performed. This is important for many reasons, including by providing a more formal sense of uncertainty in the conclusions to readers, given the understandable sampling limitations. Planning and conducting these analyses will require considerable work.

      We thank the reviewer for raising such concern. We did include statistical analyses in part of our work. For example, all the phylogenetic analyses (using the IQ-tree software) implicitly include statistical analyses. The calculation of the Gini index in Figure 2 is also a statistical measure. However, we agree with the reviewer that some of our results lacked statistical analysis. We thus now include statistical significance to more statements in the text and additional panels to Figure S2—figure supplement 1 (with support on data in new tables in Supplementary file 1h and 1i) to illustrate the statistical support to some of our claims. We have also removed some unnecessary statement.

    1. Author Response

      Reviewer #2 (Public Review):

      This is a single RNA-seq analysis of traumatic brain injury (TBI) in mice that looks at recovery from milder TBI. It addresses an important question of why older individuals may have poor recovery. The investigators undertake unbiased analysis in both young and old mice and identify a number of macrophage, fibroblast, lymphocyte, and more specifically B cell inflammatory programs that are activated and some of which do not recover well in older mice. Taken together, these findings identify unique pathways that could be further investigated in functional studies to examine what immunologic mechanisms in the meninges may drive long-term problems from TBI. The models and analysis are well performed and compelling. This paper can serve as a resource for those who study brain immunology. Open questions include the following: 1) What exactly predisposes to such pro-inflammatory programs in the aged meninges? Epigenetic alterations?, 2) What are the effector mechanisms that negatively impact brain function, and 3) Can bioinformatic approaches reveal putative intercellular communication networks that would lend insight into the spatiotemporal sequence of events and ligand-receptor interactions?

      We are glad to hear that the Reviewer finds our work compelling, well performed and that it will be a good resource for those who wish to study brain immunology. The open questions that the Reviewer brings forth are very compelling areas of future investigation that we believe will help to shape and advance this field in the coming years.

    1. Reviewer #1 (Public Review):

      In this manuscript by Feng et al., the authors investigate the mechanism regulating the development of the levator veli palatini (LVP) in the posterior palate/pharyngeal region. While set up as a model to understand how myogenic progenitors migrate to discrete sites to form individual muscles, it is not clear how applicable the findings are to other subpopulations, though this is not a weakness. The mechanisms driving LVP development are of great interest to a broad group of developmental biologists, as LVP malformation is a common problem even in mild cases of cleft palate. The authors hypothesized that the perimysial population within palatal mesenchyme cells is a niche required for pharyngeal muscle development. Using exquisite analysis of scRNA-seq data from E13.5-E15.5 palatal cells, the authors illustrate that TGFb signaling is likely involved in perimysial cell development, using gene expression analysis in wild-type palatal sections to show that TGFb signaling precedes the arrival of myogenic cells. Inactivating ALk5 in palatal mesenchyme cells results in failure of LVP formation. The authors continue by identifying a number of transcription factors that presumably function downstream of TGFb signaling that drive LVP development. Among these are Fgf18, in which SMAD sites observed in the upstream region were validated to bind Smad2/3. The authors also identify Creb5 as a potential regulator of Fgf18. Overall, this is a remarkable use of scRNA-seq data, in which findings are supported by subsequent in vivo analysis of gene function using knockout mouse models. These findings will drive further analysis of LVP development and may shed light on the myogenesis of pharyngeal muscle in general.

      Strengths

      1) The treatment of scRNA-seq data using a variety of bioinformatic programs illustrates the utility of this type of data when using sufficient analysis software. The description of the approach is very clear and concise and the controls appear excellent. Further, the use of multiple time points further improves the analysis.

      2) The focus of perimysial cell expression patterns supports the hypothesis of the authors, though as with this type of data, one probably can make a story out of several pathways. The use of RNAscope to carefully examine where TGFb signaling in the posterior pharynx occurs between E12.5 and E16.5 is critical to the setup of this manuscript and is well done. Further aiding the interpretation of these results are cartoons associated with the staining, which illustrate where the staining is occurring, though never over-stating the observed patterns.

      3) Careful histological analysis illustrates the poor myogenic differentiation in the LVP of OSr1-Cre;Alk5fl/fl embryos.

      4) Identifying that TGFb is more important for regulating late perimysial cell development is important in identifying the targets of TGFb signaling.

      5) The use of CellChat to identify sending and receiving cells is well done and further supports the late function of TGFb signaling, in this context working through Fgf18 and Lama4.

      6) The attempt to build a signaling network again using CellChat (Figure 6) is admirable, though there are a few caveats to that approach (see below).

      7) While bead implant studies have been used for 40 years, the approach of culturing a piece of the pharynx and then performing a bead implant to prove that Fgf18 can positively influence myogenic development is admirable.

      Weaknesses

      1) In general, the authors are careful to not suggest that staining is significant unless showing quantification, though, at several points, this is not true.

      2) The authors identify five putative Smad2 sites upstream of Fgf18, using one of them in a Cut and Run assay whose results suggest enhanced Smad2/3 binding. The problem is that this likely would have worked with the other Smad sites and probably would have worked for any other putative site that one might pick. Proving that a putative site can be bound by its cognate transcription factor is not the same as proving that this occurs in vivo and is sufficient to control the process of LVP development. One would need reporter assays using that TF binding site to better support the points being made by the authors.

      3) In a similar manner, the authors try to define which factors might function with TGFb signaling to regulate myogenic development. Using SCENIC, the authors found a number of genes that might be involved in perimysial fibroblast development. Of these, they illustrate that Creb5 siRNA knockdown decreases Fgf18 expression in cultured palates. The focus on Creb5 was based on it showing, "the most specific expression patterning the late perimysial cells (Figure 6H)....". In fact, Creb5 appears the most broad, appearing to be expressed across the entire LVP, not just in the area where myogenic precursors are found. Thus, any statement or discussion about Creb5 being a direct regulator of Fgf18 should be removed probably needs to be reworded. However, the second problem is that Creb5 knockdown reducing Fgf18 expression does not prove any direct regulation. Both of these are rather circuitous arguments.

      4) While the disorganization of myogenic fibers in the posterior LVP is somewhat obvious, it is not as clear as the authors suggest. This change (which I believe) needs to be better quantified (length, width, area, etc.).

      We thank the reviewer for these “Public Review” comments. For point 1, we have added more quantification for clarification and rephased the wording when quantification was not performed. For point 4, we added measurement to quantify the changes of volume and cross-section area of the LVP in Osr2Cre;Fgf18fl/fl mice (Figure 7M-V).

      Reviewer #2 (Public Review):

      In this study, the authors take advantage of unbiased scRNA-seq datasets of the developing mouse soft palate that they previously reported and performed a new bioinformatic analysis to identify differential signaling pathway activities in the heterogeneous palatal mesenchyme. They found a strong association of TGF-beta signaling pathway activity with the perimysial cells and validated through immunofluorescent detection of pSmad2, which led to their hypothesis that TGF-beta signaling in the perimysial cells might regulate palatal muscle formation. They generated and analyzed Osr2-Cre;Alk5fl/fl mice and showed those mice have cleft soft palate and disruption of the levator veli palataini (LVP) muscle. They then performed a comparative scRNA-seq analysis of the soft palate tissues from E14.5 Osr2-Cre;Alk5fl/fl and control embryos and showed that the Osr2-Cre;Alk5fl/fl embryos exhibited defects in the perimysial cells, in particular reduction in Tbx15+ perimysial fibroblasts that directly associate with the LVP muscle progenitors. The FGF18 is one of the most highly enriched signaling molecules in the perimysial cells and showed that the Osr2-Cre;Alk5fl/fl embryos exhibited reduced Fgf18 expression together with loss of MyoD+ myoblasts in the prospective LVP region. Further data showed that pSmad2 bound in the Fgf18 promoter region in the developing soft palate tissues. In addition, bioinformatic gene regulatory network analysis of the scRNA-seq data identified Creb5 as a potential tissue-specific transcription factor in the perimysial cells and RNAi knockdown assays in palatal mesenchyme culture suggested that Creb5 is required for Fgf18 expression. Further studies identified a subtle deficiency in LVP in Osr2-Cre;Fgf18fl/fl mice and showed that exogenous Fgf18 bead implantation in explants of E14 Osr2-Cre;Alk5fl/fl embryonic head increased the MyoD+ myoblast population in the prospective LVP region. The authors concluded that TGF-beta signaling and Creb5 cooperatively regulate Fgf18 to control pharyngeal muscle development. While the study used multiple complementary approaches and the data presented are solid, important questions need to be addressed to resolve reasonable alternative explanations of the data to the authors' main conclusion.

      We thank the reviewer for the evaluation and suggestions. Responses to each of the suggested revisions are detailed below.

      Major points:

      1) TGF-beta signaling is known to be crucial for neural crest-derived palatal mesenchyme cell proliferation from E13.5 to E14.5. The Osr2-Cre;Alk5fl/fl mutant embryos exhibited obvious disruption of LVP myogenesis and reduced soft palatal shelf size at E14.5 (Fig3-Sup2A-D and Fig 4H-K). The cellular and molecular defects likely started prior to E14.5. Thus, it is important to examine at earlier stages (E13.5/E14.0) whether the palatal mesenchyme was already defective in cell proliferation/survival and/or perimysial cell marker expression, including Creb5 and Tbx15, to resolve whether the primary defect in the Osr2-Cre;Alk5fl/fl palatal mesenchyme could be a reduction in perimysial progenitor cell proliferation and/or differentiation of the myoblast-associated subset, for which Tbx15 and Fgf18hi act as marker genes rather than direct molecular targets. Furthermore, the apparent loss of Tbx15+ cells coincided with a specific reduction of Fgf18 expression in the myoblast-associated perimysial cells (Fig 4J/K versus Fig 5H-K), which raises the possibility that TGF-beta signaling regulates the differentiation of the Tbx5+ population from the mesenchymal progenitors while the reduction in Fgf18 expression might be a secondary consequence of the cellular defect. The data in Fig 6O showing a lack of significant induction of Fgf18 expression in the palatal mesenchyme culture in both control and Creb5-RNAi cells is also consistent with this alternative explanation.

      We thank the reviewer for the valuable suggestion to identify the primary defects of the perimysial cells. We compared the expression of Creb5, Tbx15 and Fgf18 as well as Smoc2 in E13.5-E14.5 palatal mesenchyme from control and Osr2-Cre;Alk5fl/fl mice (Osr2Cre;Tgfbr1fl/fl mice). We found that expression of Creb5 is prominent from E13.5 to E14.5 and is not affected in Osr2Cre;Tgfbr1fl/fl mice, suggesting that Creb5 may not be a downstream factor but just a “partner” for TGF-β signaling. At E13.5, Tbx15 is not expressed, while Smoc2 is expressed extensively in the palatal mesenchyme but is not affected in the Osr2Cre;Tgfbr1fl/fl mice. In contrast, Fgf18 is expressed as early as E13.5 and this expression was already reduced in the palatal of Osr2Cre;Tgfbr1fl/fl mice relative to controls at this stage, suggesting the changes of Fgf18 expression are primary and precede changes in the perimysial populations. While the proliferation and apoptosis at E13.5 remain unchanged in Osr2Cre;Tgfbr1fl/fl mice, Smoc2 expression in the palate starts to be reduced at E14.0 in Osr2Cre;Tgfbr1fl/fl mice. This suggests that TGF-β signaling is required for the activation of Smoc2 during E13.5-E14.0. In parallel, Tbx15 expression is just starting to be activated in a few cells at E14.0 and this expression increased between E14.0-E14.5 in the control but failed to increase in Osr2Cre;Tgfbr1fl/fl mice. This suggests that TGF-β signaling is also required for the activation of Tbx15 during E14.0-E14.5. Thus, loss of TGF-β signaling leads to differentiation defects of both Smoc2+ and Tbx15+ perimysial cells. For Figure 6O, we performed a time-course experiment of TGF-β induction and found a significant increase of Fgf18 expression after 4 to 18 hours of treatment (instead of 24 hours used in previous experiments), with more obvious changes at 4 hours, confirming the early response of Fgf18 expression to TGF-β induction. These results have been added to Figure 4-figure supplement 2, Figure 5I-L, 5U, Figure 6-figure supplement 2, and Figure 6C.

      2) Since the Osr2-Cre;Fgf18fl/fl mice exhibited much subtler palatal and LVP defects than the Osr2-Cre;Alk5fl/fl mice even though the latter still had a lot of Fgf18-expressing perimysial cells at E14.5, Fgf18 is likely a minor player in the TGF-beta mediated gene regulatory network regulating LVP formation. The major players acting downstream of TGF-beta signaling in the palatal mesenchyme, that control initial LVP progenitor migration to and/or proliferation in the soft palate region, remain to be identified and functionally validated. Whether and how Fgf18 directly regulates the perimysial-myoblast interaction is also not known.

      We agree with the reviewer that the phenotype of Osr2-Cre;Fgf18fl/fl mice is much milder than that of Osr2-Cre;Alk5fl/fl mice, as we postulate that Fgf18 is just one of several perimysial-derived signals that may be affected. It will be of great interest to explore the function of other players in future studies. However, we are more inclined toward the possibility that there may be no single “major” player but rather a combination of many signals associated with different aspects of the muscle development. For example, loss of Fgf18 seems to mainly affect the Myf5+ cell proliferation in Osr2-Cre;Fgf18fl/fl mice (Osr2Cre;Fgf18fl/fl mice), as we do not observe any differentiation defect except the reduced muscle size. It is likely that other factors may also play specific functions in specific subpopulations as well. To clarify whether Fgf18 can directly affect the myogenic cell fate, we treated C2C12 mouse myogenic cells with exogenous FGF18 and found that this treatment could indeed significantly increase the proliferation of these cells. We have added these results to Figure 7—figure supplement 2.

      3) While the title and the main conclusion of this manuscript imply a crucial role of Creb5 in the regulation of pharyngeal muscle development, there is no data supporting such a crucial role. Do Creb5-/- mice have specific defects in pharyngeal muscle development?

      We thank the reviewer for this insight. We agree that it is very likely that Creb5 itself may have many roles in the regulation of palatal development or pharyngeal muscle development, given the prominent expression of Creb5 throughout soft palate development and in other myogenic sites of the pharyngeal muscles. Creb5-/- mice (reported as Cre-bpa-/- mice) die immediately after birth; however, the detailed phenotype of this mice was merely described as “data not shown” in a previous publication and defects of craniofacial development in these mice remain unclear (Maekawa et al., 2010). In this study, we focused on the role of Creb5 as a partner of TGF-β signaling, but we plan to generate a Creb5fl/fl mouse model to thoroughly evaluate Creb5’s functions in craniofacial development as an independent study following this work.

      4) Data in Fig 6 are not sufficient to conclude that TGF-beta signaling and Creb5 cooperatively regulate Fgf18. The TGFb1 treatment did not significantly induce Fgf18 expression in either the control or Creb5-RNAi palate mesenchyme cells (Fig 6O). No data regarding how they act cooperatively to regulate Fgf18 expression.

      We appreciate the reviewer for carefully reviewing our data. We re-evaluated the temporal response of Fgf18 expression following TGF- induction and found a significant increase of Fgf18 expression 4 hours post-treatment (instead of 24 hours post-treatment as used in previous experiments). We repeated the Creb5-siRNA treatment experiment using the new experimental condition and replaced the previous Figure 6O with new results showing a significant increase of Fgf18 after TGF-β induction, which was attenuated by Creb5-RNAi treatment, suggesting a requirement of Creb5 for TGF-β-mediated Fgf18 expression. The new result is now included in Figure 6Q.

      Reviewer #3 (Public Review):

      In this study, the authors investigated cell-cell communication between perimysial cells and skeletal muscle progenitors during soft palate development in the mouse. The authors have previously reported on the development of this structure and here they propose that a TGF-β signaling and Creb5 act to regulate Fgf18, and this pathway regulates pharyngeal muscle development through the indicated cell populations. The study is of high quality, very nicely illustrated, and uses multiple approaches including inferences from single cell transcriptomics, validations on sections, and lineage-specific gene activations. In addition, the authors successfully optimized an organ culture system from thick sections to test locally the role of FGF signaling (bead implantation). The results largely confer with the conclusions and provide a valuable example of how subjacent cell populations cooperate to establish an embryonic structure.

      We thank the reviewer for the evaluation and suggestions.

    1. Author Response

      Reviewer #3 (Public Review):

      The PCNT gene is found on human chromosome 21, and the same group previously showed that its increased expression is associated with reduced trafficking to the centrosome and reduced cilia frequency, which suggests a possible connection between cilia and ciliary trafficking, SHH signaling, and Down syndrome phenotypes. Jewett et al build upon this prior work by closely examining the trafficking phenotypes in cellular models with different HSA21 ploidy, or its mouse equivalent, thereby increasing the copy number of PCNT (3 or 4 copies of HSA21). They show that most of the trafficking defects can be reversed through the knockdown of PCNT in the context of HSA21 polyploidy. They also begin to examine the in vivo consequences of these trafficking disruptions, using a mouse model (Dp10) that partially recapitulates trisomy 21, including an increased copy number of PCNT. While I think this work advances our understanding of the trafficking defects caused by increased PCNT and has significant implications for our understanding of the cellular basis of a major hereditary human disorder, some improvements can be made to strengthen the conclusions and improve readability.

      Major points:

      I'm a little confused by the authors' conclusion that the increased PCNT levels in T21 and Q21 result in delayed but not attenuated ciliogenesis. The data show lower percentages of ciliated cells at all time points analyzed (Fig 1E) by quite a large margin in both T21 and Q21. Do the frequencies of cilia in the T21 or Q21 cells ever reach the same level as D21, say after 48-72 hours? If not it seems like not simply a delay. A bit more clarity about this point is needed.

      We have now performed a ciliation time course in RPE1 D21, T21, and Q21 cells over 7 days. Our new data confirms that increasing HSA21 dosage delays but does not abolish ciliogenesis (Fig S1H). By day 3 of serum depletion, D21 and T21 cells reach similar ciliation frequencies, and after 4 days all three cell lines reach similar ciliation frequencies.

      The in vivo analysis of the cerebellum was interesting and important but it felt a bit incomplete given that it was a tie between the cell biology and a specific DS- associated phenotype. For example, it is interesting that the EGL of the P4 Dp10 pups is thinner. Does this translate into noticeable defects in cerebellar morphology later? Is there a reduction in proliferation that follows the reduced cilia frequency? I think it would be possible to look at the proliferation and cerebellar morphology at some additional stages without becoming an overly burdensome set of experiments. At a minimum, are there defects in cerebellar morphology at P21 or in the adult mice? The authors allude to developmental delays in these animals - maybe that complicates the analysis? But additional exploration and/or discussion on this point would help the paper.

      We have now analyzed P21 animals and found no significant differences in ciliation frequency or gross cerebellar morphology at this age. This is consistent with our new tissue culture data demonstrating that HSA21 ploidy delays but does not abolish ciliogenesis. We cannot rule out long term changes in neuronal processes or glial cells, but we believe this analysis is outside the scope of this paper.

      It was a bit unclear to me why specific cell lines were used to model trisomy 21 and why this changed part way through the paper. I understand the justification for making the Dp10 mice- to enable the in vivo analysis of the cerebellum, but some additional rationale for why the RPE cell line is initially used and then the switch back to mouse cells would improve readability.

      The rationale for switching to MEFs was twofold. First, Shh ciliary signaling cannot be easily studied in RPE1 cells. Therefore, ciliary function via Smoothened localization or GLI1 transcription, needed to be performed in a different cell line and the most commonly used line is MEFs. Second, the Dp mice allowed us to tease apart contributions to cilia defects from separate regions of HSA21. We have worked to clarify this point in the text.

    1. Author Response

      Reviewer #2 (Public Review):

      Grasses develop morphologically unique stomata for efficient gas exchange. A key feature of stomata is the subsidiary cell (SC), which laterally flanks the guard cell (GC). Although it has been shown that the lateral SC contributes to rapid stomatal opening and closing, little is known about how the SC is generated from the subsidiary mother cell (SMC) and how the SMC acquires its intracellular polarity. The authors identified BdPOLAR as a polarity factor that forms a polarity domain in the SMC in a BdPAN1-dependent manner. They concluded that BdPAN1 and BdPOLAR exhibit mutually exclusive localization patterns within SMCs and that formative SC division requires both. Further mutant analysis showed that BdPAN1 and BdPOLAR act in SMC nuclear migration and the proper placement of the cortical division site marker BdTANGLED1, respectively. This study reveals a unique developmental process of grass stomata, where two opposing polarity factors form domains in the SMC and ensure asymmetric cell division and SC generation.

      The findings of this study, if further validated, are novel and interesting. However, I feel that the data presented in the current manuscript do not fully support some crucial conclusions. The lack of dual-color images is the weakest point of this study. If it is technically impossible to add them, alternative analyses are needed to validate the main conclusions.

      1) Is BdPOLAR-mVenus functional? Although the authors interpret that weak BdPOLAR-mVenus expression partially rescued the bdpolar mutant phenotype in Fig. S4D, the localization pattern visualized by BdPOLAR-mVenus may not be completely reliable with this partial rescue activity.

      This is indeed a valid point. The partial complementation of weakly expressing translational reporters (Figure 3–figure supplement 1D) and the weak effect of BdPOLAR-mVenus overexpression lines (Figure 3–figure supplement 1J) at least suggest partial functionality which is strongly dependent on dosage. Yet the localization pattern and the temporal dynamics might indeed not fully reflect the spatiotemporal dynamics of the endogenous BdPOLAR. This criticism is, however, true for any transgenic reporter line–even when fully complementing–as the requirement for dosage, stability, and turnover likely varies strongly between different protein classes and functions.

      Nonetheless, we have added a sentence on p. 7, which mentions this potential caveat.

      2) Regardless of the functionality of the tagged protein, the authors need to provide more information on their localization. For example, is there a difference in polarity pattern depending on expression level? Does overexpressed BdPOLAR-mVenus invade the BdPAN1 zone? In such cases, might the loss of BdPOLAR polarity in the bdpan1 mutant be a side effect of overexpression, not PAN1 exclusion? Does BdPOLAR expression (no tag) show a dose-dependent effect, similar to the mVenus-tagged protein?

      The difference in polarity patterns in bdpan1 mutants and wild-type does not depend on expression level. BdPOLAR-mVenus was crossed into bdpan1 and mutant and wild-type siblings in the F2 generation were analyzed. This means that the data presented in Fig. 3E and F show exactly the same transgene insertion line in wt and bdpan1 and were imaged with the same setting for comparability. Therefore, the difference in localization is not due to different expression levels but indeed reflects a PAN1-dependent effect.

      To address if BdPOLAR without a tag is also sensitive to dosage, we have generated an untagged complementation line that includes the untagged, genomic locus of BdPOLAR including promoter (-3.1kb) and terminator (+1.1kb). Yet, even though this construct is much better at rescuing the mutant, we still see remaining defects in T0 lines (Figure 3–figure supplement 1K) suggesting that even without a tag we cannot fully recapitulate wild-type functionality. Yet, to actually measure protein levels of untagged BdPOLAR, we would need to raise an antibody against BdPOLAR, which we think is clearly out of the scope of this study.

      3) A major conclusion of this study was that the polarity domains of BdPOLAR and BdPAN1 are mutually exclusive. However, not all the cells in the figures were consistent with this statement. For example, the BdPOLAR signals at the GMC/SMC interphase appear to match BdPAN1 localization (compare 0:03 s in Video 1 and 0:20 s in Video 2 [top cell]). The 3D rendered image in Fig. 2F shows that BdPOLAR is excluded near the GMC on the front side of the SMC, where BdPAN1 is not localized. Some cells did not exhibit polarization (Fig. 3A, bottom left; Fig. 3E, bottom left). The most convincing data are the dual-color images of these two proteins. Otherwise, a sophisticated image analysis is required to support this conclusion.

      We agree that dual-color image analysis would have provided the most convincing data. As mentioned in our answers to the reviewing editor and reviewer 1, we have generated a dual marker line (BdPAN1p:BdPAN1-CFP; BdPOLARp:BdPOLAR-mCitrine), yet the BdPAN1-CFP signal (compared to mCitrine signal) was too weak to visualize the proximal BdPAN1 domain.

      This issue was also raised by reviewer 1 and deemed an essential revision. To determine how BdPOLAR and BdPAN1 relate spatially to each other, we have added data in Figure 2E where we manually traced mature SMC outlines to determine BdPOLAR-mVenus and BdPAN1-mCitrine occupancy along the SMC’s circumference. This confirmed that the polarization is indeed opposite yet not perfectly reciprocal (see details above, Essential Revisions #1).

      Finally, we realized that the 3D image renderings were more confusing than helpful and we removed them from the revised version.

      4) Another central conclusion was that BdPOLAR was excluded at the future SC division site, marked with BdTANGLED1. However, these data are also not very convincing, as such specific exclusion cannot be seen in some figure panels (e.g., Fig. 3A, bottom left; Fig. 3E, all three cells on the left). If dual-color imaging is not feasible, a quantitative image analysis is needed to support this conclusion.

      As for point 3, this was also criticized by reviewer 1 and deemed an essential revision by the reviewing editor.

      To determine whether the absence of BdPOLAR signal and the presence of BdTAN1 signal colocalize, we again manually traced mature SMC outlines to determine BdPOLAR-mVenus and BdTAN1-mCitrine occupancy along the SMC’s circumference. We plotted the relative average fluorescence intensity in Figure 4G-I nicely showing that BdTAN1 indeed resides in the BdPOLAR gaps above and below the GMC (again, details above, Essential Revisions #2).

      5) I could not find detailed imaging conditions and data processing methods. Are Figs. 2B and 2E max-projection or single-plane images? If they are single-plane images, which planes of the SMC are observed? In addition, how were Figs. 2C and 2F rendered? (e.g., number of images, distance intervals, processing procedures). This information is important for data interpretations.

      We agree that we might not have provided sufficient imaging condition details and have added more details regarding image acquisition in the method part (p. 20). We always use a consistent depth and show the midplane of SMCs. As mentioned above, we removed Figs. 2C and 2F and the supplemental movies as these data did not seem to be helpful.

      6) [Minor point] The authors should clearly describe where BdPAN1 is expressed and localized. Is it expressed in the GMC and localized at the GMC/SMC interface? Alternatively, is it expressed and localized in the SMC?

      BdPAN1 is expressed throughout the epidermis but starts to strongly accumulate at the GMC/SMC interface. According to the literature (Cartwright et al 2009 with immunostainings against ZmPAN1 and Sutimantanapi et al. 2014 with PAN1 and PAN2 reporter) and our own observations (Fig. S3), this accumulation occurs in the SMC rather than in the GMC. In Fig. S3A, third panel, second GMC from the top, for example, one can see that the early PAN1 polarity domain expands beyond the GMC/SMC interface suggesting that it is indeed forming in SMCs rather than in GMCs. We have specified this in the text more clearly now (p. 5).

    1. Author Response

      Reviewer #1 (Public Review):

      The research investigates the genetic basis for resistance to high CO2 levels in the human pathogenic fungus Cryptococcus neoformans. Screening collections of over 5,000 gene deletion strains revealed 96 with impaired growth, including a set of genes all related to the same RAM signaling pathway. Further genetic dissection was able compellingly to place where this pathway lies relative to upstream inputs and through the isolation of suppressor mutants as potential downstream targets of the pathway. Given the high levels of CO2 encountered by fungi in the human host, this work may provide new directions for the control of disseminated fungal disease.

      The research presents both strengths and weaknesses.

      Strengths include:

      (1) One of the largest scale analyses of genes involved in growth under high CO2 concentrations in a fungus, revealing a set of just under 100 mutants with impaired growth.

      (2) Elegant genetic epistasis analysis to show where different components fit within a pathway of transmission of CO2 exposure. For example, over expression of one of the kinases, Cbk1, can overcome the CO2-sensitivity of mutations in the CDC24 or CNA1 genes (but not in the reciprocal overexpression direction).

      (3) Isolation of suppressor mutations in the cbk1 background, now able to grow at high CO2 levels, was able to lead to the identification of two genes. Follow up characterization, which included examining in vitro phenotypes, gene expression analysis, and impact during mouse infection was able to reveal that the two suppressors restore a subset of the phenotypes impacted by mutation of CBK1. Indeed, one conclusion from this careful work is that the reduced virulence of the cbk1 mutant is not due to its sensitivity to high levels of CO2, perhaps an unexpected finding given the original goals of the study towards linking CO2 sensitivity with decreased virulence.

      Weaknesses include:

      (1) What is the rationale for examining gene expression using the NanoString technology of 118 genes rather than a more genome-wide approach such as RNA-sequencing?

      (2) Without additional species examined, some of the conclusions about differences in impact between ascomycetes and basidiomycetes might instead reflect differences between species. For example, RAM mutants in other strains of C. neoformans do not exhibit so strong a temperature sensitive phenotype. Or to extend the comparison further, one might assume given the use of CO2 for Drosophila manipulations that the RAM pathway components in an insect would not be required for surviving high CO2.

      (3) Given the relative ease of generate progeny of this species, it would have been informative to explore if the suppressors of cbk1 also suppressed the loss of genes like CDC24, CNA1, etc, equivalent to the experiment performed of overexpression of CBK1 in those backgrounds.

      We thank the reviewer for the kind summary of our work and the highlights of the major findings. We chose NanoString because we have already generated a probe set of 118 genes that are differentially expressed in response to CO2 based on RNA-seq profiles of multiple natural cryptococcal isolates in a separate study. Nanostring allowed us to focus on CO2 relevant transcripts and do multiple replicates and conditions in a way that is not practical using RNA-Seq.

      Although the RAM pathway has not been extensively characterized in different species of Cryptococcus, we do know that RAM pathway mutants lead to pseudohyphal growth in multiple strain backgrounds including two different species of Cryptococcus (Magditch, Liu, Xue, & Idnurm, 2012; Walton, Heitman, & Idnurm, 2006). We have added corresponding references and discussed this point on lines 167-169.

      We agree with the reviewer that it would be interesting to test the effects of the cbk1Δ suppressor mutations in the backgrounds of other CO2-sensitive gene knockout strains. This is part of our plan for future investigation in characterizing the signaling pathways involved in CO2 tolerance.

      Reviewer #2 (Public Review):

      In the paper by Chadwick et al., the authors identify the molecular determinants of CO2 tolerance in the human fungal pathogen Cryptococcus neoformans. The authors have screened a collection of deletion mutants to identify the genes that are sensitive at 37oC (host temperature) and elevated CO2 levels. The authors identified that the genes responsible for CO2 sensitivity are involved in the pathways responsible for thermotolerance mechanisms such as Calcineurin, Ras1-Cdc24, cell wall integrity, and the Regulator of Ace2 and Morphogenesis (RAM) pathways. Moreover, they identified that the mutants of the RAM pathway effector kinase Cbk1 were most sensitive to elevated temperature and CO2 levels. This study uncovers the previously unknown role of the RAM pathway in CO2 tolerance. Transcriptome data indicates that the deletion of CBK1 results in an alteration in the expression of CO2-related genes. To identify the potential downstream targets of Cbk1, the authors performed a suppressor screen and obtained the spontaneous suppressor mutants that rescued the sensitivity of cbk1 mutants to elevated temperature and CO2. Through this screen, the authors identified two suppressor groups that showed a modest improvement in growth at 37˚C and in presence of CO2.

      Interestingly, from the suppressor screen, the authors identified a previously known interactor of Cbk1 which is SSD1, and an uncharacterized gene containing a putative Poly(A)-specific ribonuclease (PARN) domain named PSC1 (Partial Suppressor of cbk1Δ) which acts downstream of Cbk1. Deletion of these two genes in cbk1 null mutants rescued the sensitivity to elevated CO2 levels and temperature but did not fully rescue the ability to cause disease in mice.

      This study highlights the underappreciated role of the host CO2 tolerance and its importance in the ability of a fungal pathogen to survive and cause disease in host conditions. The authors claim to gain insight into the genetic components associated with carbon dioxide tolerance. The experimental results including the data presented, and conclusions drawn do justice to this claim. Overall, it is a well-written manuscript. However, some sections need improvement in terms of clarity and experimental design.

      • One major drawback of the study is the virulence assay performed to test the ability of cbk1 mutants to cause the disease in the mouse model. The cbk1 null mutants are thermosensitive in nature. Using these mutants, establishing the virulence attributes in mice would undermine the mutants' ability to infect mice as they won't be able to survive at the host body temperature.

      • The rationale for choosing the genes to test further is not clear in two instances in the study. a) From a list of 96 genes, how do the authors infer the pathways involved? Was any pathway analysis performed that helped them in shortlisting the pathways that they subsequently tested? A GO term analysis of the list of genes identified through the genetic screen would be more helpful to get an overview of the pathways involved in CO2 tolerance. b) The authors do not clearly mention why they chose only four genes to test for the CO2 sensitivity out of 16 downregulated genes identified from the nano string analysis.

      • It would be more useful to the readers if the authors could also include a thorough analysis of the presence of the putative PARN domain-containing protein across various fungal species rather than mentioning that it is only observed in C. neoformans and S. pombe. Also, the authors may want to discuss the known role(s) of SSD1, if any, in pathogenic ascomycetous yeasts so that the proposed functional divergence is supported further.

      We are glad that the reviewer appreciated the approach, the findings, and the significance of this research, and we are grateful for the helpful suggestions to improve the manuscript.

      To remove temperature sensitivity as a variable when testing virulence, we have added a new infection model in the revised manuscript to test the cbk1Δ mutant and its suppressors. This infection model uses the Galleria mellonella larvae as a host. G. mellonella larvae are commonly used to test virulence for temperature sensitive strains as the body temperature of the larvae is similar to that of the environment. We performed cryptococcal infection in this model and the larvae were kept at 30°C rather than at 37°C. The results of these experiments are now described in results section 5 and shown in Figure 6 of the manuscript. The data using the larva-infection model supports our original conclusion about the virulence of these strains observed in mouse models.

      We performed a GO term analysis of the hits from our screening, but did not find any significant or outstanding pathways. From our list of 96 genes, we chose to focus on the RAM pathway because the mutants were among the most sensitive to CO2. We have added an explanation for the genes we decided to test for host CO2 level sensitivity from the 16 downregulated genes on lines 139-141.

      Through Blast searching, we have found that the PARN domain-containing protein has homologs in other basidiomycetes. There might be some homologs in a few zygomycetes and ascomycetes but the confidence scores were so low that we deemed unlikely. We now report this in the manuscript on lines 210-213, “This domain was previously reported to be found in S. pombe (Marasovic, Zocco, & Halic, 2013). Interestingly, through a Blast search of the PARN domain, we did not identify this domain in the genomes of S. cerevisiae, C. albicans or other ascomycetes, but found it in Basidiomycetes and higher eukaryotes”.

      Ssd1 has been studied in the pathogenic yeast Candida albicans and is also regulated by Cbk1 in this organism. We have added a discussion about possible functions of Ssd1 in C. neoformans based on references to studies in C. albicans in the discussion section on lines 401-408. “In C. albicans, Ssd1 plays an important role in polarized growth and hyphal initiation by negatively regulating the transcription factor Nrg1 (H. J. Lee, Kim, Kang, Yang, & Kim, 2015). The observation that cbk1Δpsc1Δ and cbk1Δssd1Δ suppressor mutants partially rescue cell separation defects or depolarized growth suggests that C. neoformans may primarily utilize Ssd1/Psc1 rather than a potential Ace2 homolog to regulate cell separation or polarization. Differential regulation of target mRNA transcripts by Ssd1 and Psc1 may explain the functional divergence of the RAM pathway we observed here between basidiomycete Cryptococcus and the ascomycete yeasts.”

      Reviewer #3 (Public Review):

      In this work the authors identify genes and pathways important for CO2 and thermotolerance in Cryptococcus neoformans. They additionally rule out the contribution of the bicarbonate or cAMPdependent activation of adenylyl cyclase to this pathway, which is important for CO2 sensing in other fungi, further solidifying the need to characterize CO2 sensing in basidiomycetes. The authors establish the importance of focusing on CO2 tolerance by testing the impact of CO2 on fluconazole susceptibility with varied pH, suggesting the ability of CO2 to sensitize cryptococcal cells to fluconazole. Furthermore, the authors compared the CO2 tolerance of clinical reference strains to environmental isolates. The characterization of the RAM pathway Cbk1 kinase illustrated the integration of multiple stress signaling pathways. By using a series of CBK1OE insertions in strains with deletions in other pathways, the ability of Cbk1 over-expression to rescue several strains from CO2 sensitivity was apparent. Additionally, NanoString expression analysis comparing cbk1∆ to H99 validated the author's screen of CO2-sensitive mutants as 16/57 downregulated genes were found in their screen, further confirming the interconnected nature of these pathways. The importance of the RAM pathway in maintaining CO2 and thermotolerance was also incredibly clear.

      Perhaps most interestingly, the authors identify suppressor colonies with distinctive phenotypes that allowed for the characterization of downstream effectors of the RAM pathway. These suppressor colonies were found to have mutations in SSD1 and PSC1 which somewhat restore growth at 37oC with CO2 exposure. Further confirming the importance of the RAM pathway, the cbk1∆ strain had markedly attenuated virulence during infection. Interestingly, the generated suppressor strains had varying impacts on fungal infection in vivo. While the sup1 suppressor was completely cleared from the lungs during both intranasal and IV infection, the sup2 strain, containing mutations in SSD1, maintained a high fungal load in the lungs and was able to disseminate into host tissues during IV infection but not intranasal infection.

      The authors make a strong case for the exploration of thermotolerance and CO2 tolerance as contributors to virulence. Through screening and characterization of RAM pathway kinase CBK1's ability to rescue other mutants from CO2 sensitivity, the overlapping contributions of several signaling pathways and the importance of this kinase were revealed. This work is important and will be valuable to the field. However, the cbk1∆ strain does show reduced melanization, urease secretion, and higher sensitivity to cell wall stressor Congo Red in SI Appendix, Figure S4. While the authors make a strong argument that these well-established virulence factors are not perfect predictors of virulence in vivo, the cbk1∆ strain is not an example of such a case as it does have defects in these important factors in addition to thermotolerance and CO2 tolerance. Not acknowledging the changes in these virulence factors in the cbk1∆ and their potential contribution to phenotypes observed is a weakness of the manuscript. Interestingly, the sup1 and sup2 strains also rescue these virulence factors compared to cbk1∆. Additionally, the assertion that "the observation that only sup2 can survive, amplify, and persist in animals stresses the importance of CO2 tolerance in cryptococcal pathogens" due to the sup2's slightly higher CO2 tolerance compared to sup1, could be better supported by the data. These suppressors did not restore transcript abundances of the differentially expressed genes to WT levels, suggesting post-transcriptional regulation. However, there may be differences in the ability of sup2 to resist stress better than sup1 especially given the known Ssd1 repression of transcript translation in S. cerevisiae. Finally, pH appears to impact the sup1 and sup2 strain's sensitivity to CO2 in SI Appendix Figure 4. This could be better explained and interrogated in the manuscript. Finally, this work includes a variety of genes in several signaling pathways. The paper would be greatly clarified by a graphical abstract indicating how CBK1 may be integrating these pathways or by indicating which genes belong to which pathways in the Figure 1 legend to make this figure easier to follow.

      We thank the reviewer for the thorough summary of the study. We appreciate the reviewer’s enthusiasm about this study as well as constructive critiques on the manuscript. Indeed, the suppressor mutations in the cbk1Δ mutant rescue more phenotypes of cbk1Δ in vitro than just thermotolerance and CO2 tolerance (Supplemental Figure 5), which could benefit the survival of these suppressor strains in vivo compared to the original the cbk1Δ mutant. However, between the sup1 and the sup2 mutants, the only clear difference in growth we observed was in host levels of CO2 and temperature. There was no obvious difference in their resistance to Congo red (cell wall stress), melanization, susceptibility to FK506 (calcineurin pathway inhibitor), sensitivity to H2O2 (ROS), or urease (Supplemental Figure 5). Nonetheless, we agree with the reviewer that there could be other reasons which may influence the outcome in vivo, given that the host environment is more complex than we know. We have changed our wording in the manuscript to make it clear that contribution of better tolerance of CO2 to better survival of the sup2 mutant is only our hypothesis and there could be other unrecognized contributing factors. “The only in vitro difference observed between sup1 and sup2 was better growth of sup2 at host CO2 levels which may explain the difference in their ability to propagate and persist in the mouse lungs. However, due to the complexity of the host environment, there could be other unrecognized factors contributing to their growth difference in vivo.” (Lines 276279).

      About growth at different pH levels, C. neoformans tends to grow better at lower pH, closer to pH 5. This fungus can grow at pH 3, the lowest pH that our lab had tested (it may be able to sustain viability even at pH 2 based on others’ conference presentations). The high temperature/CO2 combined with neutral or high pH likely causes worse growth of both H99 and the mutants tested.

      We tried making a model to integrate all the pathways and factors identified in this work as the reviewer suggested. However, in this process, we found it difficult to propose a model. Although the current findings clearly demonstrate the importance of Cbk1 in thermotolerance and CO2 tolerance (overexpression of CBK1 can partially restore thermotolerance and/or CO2 tolerance in the mutants defective in the cell wall integrity pathway, the calcineurin pathway or the Cdc24-Ras1 pathway, and that the reciprocal overexpression of these genes in the cbk1∆ mutant does not rescue any of the cbk1∆ mutant’s defects), we do not know the exact mechanisms underlying this phenomenon. Do these pathways directly interact with Cbk1, affect its phosphorylation status, or alter its subcellular localization? Or do these pathways act through some other massagers to indirectly activate Cbk1 or maybe Cbk1’s downstream targets? These are the questions that warrant further investigations in the future. To be prudent, we think it is better not to propose a model at this point given the uncertainty of the mechanism. The mutants belonging to each of the pathways are clearly specified in the texts in this revised manuscript to help orient the readers. For example “As the RAM pathway effector kinase mutant cbk1Δ showed the most severe defect in thermotolerance and CO2 tolerance compared to the mutants of the other pathways, we first overexpressed the gene CBK1 in the following mutants, cdc24∆ (Ras1-Cdc24), mpk1∆ (CWI), cna1∆ (Calcineurin), and the cbk1Δ mutant itself, and observed their growth at host temperature and host CO2 (Figure 2B)...”

    1. Author Response

      Reviewer #2 (Public Review):

      1&2) Throughout the paper, the authors use a BiFC assay to monitor direct interactions between GDOWN1 and other transcription factors in the cell. While this assay works well for their experiments, we are unsure why GDOWN1 appears to interact with every protein found in the cytoplasm. This is particularly concerning when we look at GDOWN1 interacting with itself (Figure 1D), as GDOWN1 is not known to self-oligomerize. The authors should provide a negative control that GDOWN1 does not non-specifically interact with any cytoplasm-localized protein. Additionally, every GDOWN1 truncation tested was able to interact with NELF-E. We are unsure why each truncation tested (given that they tested multiple non-overlapping GDOWN1 regions) can interact with NELF-E. Do the authors believe that NELF-E directly interacts with every tested GDOWN1 construct? We believe that demonstration of BiFC specificity is critical for the conclusions drawn in the manuscript.

      Thank you for your comments and valuable suggestions! We added more negative BiFC controls in the revised manuscript to demonstrate the specificity of BiFC assays (Figure 1——figure supplement 1D). Since both reviewers brought up this question, we provided our answers to this question above in the “Common concerns by the Reviewers” session (Q#1).

      3) The authors note that the NES1 site is not as strong as the NES2 site at regulating exportin 1-dependent nuclear export. However, they suggest this is because mutating the NES2 site is more likely to disrupt the CAS site nearby. We ask the authors to expand on this concept. Do they have direct evidence that NES2 disrupts CAS activity (such as regulating its association with the nuclear pore complex)?

      From Figure 4A, we can see that both NES1 (4A-b) and NES2 (4A-d) work as functional nuclear export signals. When NES1 was mutated (4A-c), NES2 and CAS both remained functional in blocking GDOWN1’s nuclear shuttling upon LMB addition. However, when NES2 was mutated (4A-e), comparing the localization changes before and after LMB addition, we concluded that NES1 remained functional, while the cytoplasmic retention activity of CAS was partially lost. From the quantification of the images, it seems that NES1 has a stronger activity than NES2 in terms of the LMB responsiveness/CRM1-depentent nuclear export activity, while apparently NES2 exhibits another layer of regulation/correlation on the CAS activity.

      To further confirm this observation, we generated a HeLa stably cell line expressing GDOWN1(NES2 mutant)-Venus and tested the subcellular localization of this mutant. As shown in the Figure 4C of the revised manuscript, compared with the wild type GDOWN1, loss of the NES2 activity directly caused the loss of the perinuclear staining, which was consistent to the defect of the CAS mutant. These results further support that the mutagenesis of NES2 disrupts the CAS-mediated association to the nuclear pore complex.

      4) The authors show the critical role of the NES1, NES2, and CAS sites for the localization and function of GDOWN1. Have the authors checked post-translational modification databases to check if any of the identified sites could be post-translationally modified and thereby regulated? Elucidation of the mechanism by which GDOWN1 localization is regulated is of broad interest to the transcription community.

      Good suggestion! It is worthy of checking and testing the potential modifications on the key arginines identified in CAS (R352, R354, and R357). We did check the web tools for arginine methylation site prediction (http://msp.biocuckoo.org/online.php), but none pf the known motifs was found to match with the CAS sequences of GDOWN1. In addition, our pilot studies for the treatments using the inhibitors of arginine methyltransferases (- or + LMB) did not result in any nuclear accumulation of GDOWN1 (data not shown). So far, we do not have any strong evidence to confirm that these arginines are directly modified in our assays, and we cannot exclude the possibilities of other amino acids nearby also play key roles on the CAS function. Thus, more research is badly needed to uncover the regulatory mechanism of CAS.

    1. Author Response

      Reviewer #1 (Public Review):

      This study aimed to test the hypothesis that resident immune cells are strategically positioned along the epididymal duct to provide different immunological environments to prevent pathogens from ascending the urogenital tract. By using an epididymitis mouse model, the differential responses at different segments along the epididymis were examined at both histological and gene expression levels, and the data appeared to support their hypothesis. Furthermore, single-cell RNA-seq analyses identified the composition of resident immune cell types along the epididymal duct, and the parabiosis model further corroborated the major findings. Overall, the study was well conducted and the major conclusion seems well supported. The only caveat is the lack of elucidation on the direct or indirect impact of the resident immune cells on sperm maturation.

      We thank the reviewer for his/her feedback and the valuable comments.

      We are aware of the fact that the current manuscript lacks further experimental evidence on the effects of immune cells on organ function, especially sperm maturation, and agree that this would constitute a relevant object to study. Although the assessment of the direct or indirect impact of particular immune cells on sperm maturation would require further intensive research, encompassing e.g. the consequences of targeted cell depletions (using several transgenic mouse models) with comprehensive follow-up analysis (i.e. by detecting anti-sperm antibodies, assessing the potential appearance of sperm-induced autoimmune reactions in vivo and conducting in vitro co-culture assays besides conducting sperm functional tests to evaluate capacitation and fertilization competencies). A study of this magnitude is outside of the scope of the present manuscript and would form a separate examination that alone would take more than a year to perform. Therefore, our intention was to submit this article as a ‘Tools and Resource’ article as it is providing a detailed overview of all immune cell types that are shaping the regional immunological landscape based on crucial information about their transcriptional profiles on single cell resolution. In our view the provided data are closing a gap in the current state of knowledge (particularly regarding the transcriptional identity and distribution of described immune cell populations) and will serve as a relevant common platform for current and future approaches.

      Reviewer #2 (Public Review):

      Pleuger et al. investigated the heterogeneity of resident immune cells in the murine epididymis. The response of immune cells in the different epididymal segments was characterized following acute bacterial infection by flow cytometry, and immunofluorescence microscopy. Single-cell RNA sequencing analysis and parabiosis experiments were performed to provide an atlas of resident immune cells and their etiology in the epididymis under steady-state conditions. The authors conclude that distinct immune cell phenotypes govern specific responses of the different epididymal segments during acute bacterial infection. Overall, the conclusions of this study are well supported by the data, but some specific aspects related to the region-specific phenotypes of resident immune cells need to be revisited.

      1) In order to conclude that there was an infiltration of neutrophils and monocytes following bacterial injection, the authors should provide flow cytometry quantification of the percentages of immune cell subsets relative to live cells, rather than relative to the CD45+ population.

      Following the reviewer’s request, we have replaced the data previously shown in figure 2 by a completely new high-dimensional flow cytometry analysis including FltSNE visualization of CD45+ cell populations in different epididymal regions (IS, Caput, Corpus, Cauda) under different conditions (naive, sham, UPEC 10 days post infection). In addition, we have included bar diagrams displaying the percentage of all investigated immune cell subsets in relation to single live cells. The results displayed in the new figure are similar to previous shown data, but the overall figure layout and visualization method is clearer and more comprehensible. We thank the reviewer for the helpful comment.

      2) In general, all flow cytometry and immunofluorescence data should be presented and discussed with respect to previously published studies.

      This is reflected in the discussion (line 564-575) and in addition by addressing similar points raised by the reviewers.

      3) A surprisingly low number of CX3CR1-EGFP cells was detected by immunofluorescence in the cauda. This is not in agreement with previous studies showing a similar % of CX3CR1-EGFP cells in the IS and cauda regions by immunofluorescence and flow cytometry. The authors need to discuss this discrepancy. Perhaps the different fixation procedures used in the current study compared to those used in previous studies could account for the loss of EGFP in epididymis cryo-sections. As such, cells that appear to be F4/80 positive but negative for EGFP by immunofluorescence might simply be due to the loss of cytoplasmic EGFP, while F4/80 immunogenicity remained intact.

      Within our study, we have shown by combining scRNASeq, flow cytometry and immunostaining that distinct macrophage subgroups co-exist within the epididymis and that the diversity increases towards the cauda. Based on these data, we can assume that cells that appear to be F4/80 positive but negative for CX3CR1 (e.g. clusters 6-9 of the macrophage clustering show a very low level or even lack of Cx3cr1 expression) are distinct from CX3CR1+F4/80+ cells (e.g. clusters 1 and 2 of the macrophage subclustering, both showing a high expression of Cx3cr1). Therefore, our immunostaining (on Cx3cr1GFPCcr2RFP reporter mice) and flow cytometry data (on wild type C57BL/6J mice) in Figure 6 are in line with our transcriptomic data and strongly support the co-existence of both populations. We have seen the described gradient of macrophage numbers (decreasing from IS towards cauda) in all independently performed experiments (naive control group in infection experiments, steady-state characterization in wild type and transgenic mice). A previous study, however, demonstrated a constant CX3CR1+ cell ‘number’ throughout all epididymal regions (~5-6% in live cells, (Battistone et al., 2020)). Here, indeed we notice a discrepancy to our results that show a relatively high ‘number’ of CX3CR1+ cells in the initial segment of naive mice (20% in single live cells, new Figure 2G) that decreases towards the cauda (~5% in single live cells, data shown in the new Figure 2 of naive mice). [It needs to be mentioned that these numbers are slightly different to the percentage of CD45+ cells in single live cells shown in Figure 4 due to different settings in the flow cytometry (thresholding to exclude spermatozoa and debris)]. However, another study (Voisin et al., 2018) showed a comparable ratio of total macrophages within caput and cauda with a similar gradient throughout the epididymal regions (significantly lower ratio within the cauda compared to the caput). Although this study discriminated only between caput and cauda, these data are in line with our results.

      Nevertheless, it needs to be noted that calculating the percentage of a population in single live cells is not representing an unbiased quantification approach as this calculation is highly dependent on previous gating (thresholding, aimed events, single cells as well as live cells; the latter is, in turn, dependent on the experimental procedures that may have an impact on the cell viability and antigen recognizability, see below). Rather, it provides important information about the population distribution among regions or conditions. For this reason, a comparison among studies as requested above is not expedient from our point of view. This as well as other studies are limited in the way that they lack an absolute quantification of immune cell populations as that would require e.g. a prior cell-counting or the relation of absolute cell numbers to mg of tissue as conducted in the parabiosis experiment shown in Figure 7 (that in turn is also limited for the epididymal regions due to the necessity of pooling tissue from several mice to obtain a sufficient cell number and thus, masking individual differences). Another alternative would be quantitative morphometric analysis of stained sections that has not been performed in the present study.

      By comparing the protocol for the cell isolation and preparation of the single cell suspension between our study and previous reports (Battistone et al., 2020), it appears that different protocols have been applied that indeed could have a major impact. In this regard, the study of (Battistone et al., 2020) used a mixture of collagenase type I (0.5 mg/ml) and collagenase type II (0.5 mg/ml) and incubated tissue fragments for a short period (30 minutes) at 37°C. In contrast, in this study we have chopped the tissue fragments with scissors until no fragments were visible anymore then followed by enzymatic digestion (shaking at 37°C for 45 minutes with 1.5 mg/ml collagenase type IV and 60 U/ ml DNAse). Afterwards, we aspirated the digest 5-6 times through a 30G needle (to release pre-digested sticky cells from each other by shear forces) before passing through a 70 µm cell strainer. We have experienced that we can significantly increase the number of viable cells when using collagenase type IV for a longer time at the ideal concentration at 1.5 mg/ml (similar concentration and incubation duration with collagenase I resulted in a higher proportion of dead cells in the analysis). A longer incubation time increases the obtained cell numbers especially from the IS where the epithelial cells are densely connected to each other. In general, collagenase type IV has a lower tryptic activity than other collagenases and therefore, the usage of collagenase IV limits the damage on membrane proteins and receptors (an overview of the different collagenase types with respective references can be found at: https://www.worthington-biochem.com/products/collagenase/manual).

      In summation, we agree with the reviewer that very likely methodological differences account for the mentioned discrepancy of our data to Battistone et al (2020) and raised this point in the revised discussion(ses line 559-564).

      The statement "Intriguingly, our data revealed that distinct immunological landscapes exist within proximal (IS, caput) and distal regions (corpus, cauda), that are tailored to the respective needs of the microenvironments" implies that this is the first study that describes immune cell heterogeneity in the epididymis. Please rephrase this statement as previous studies have already shown the segment-specific heterogeneity of resident immune cells in this organ.

      To address the reviewer's comment, we have rephrased the statement to “our data unraveled the transcriptional identity and tissue location of extravascular immune cells and further support the existence of distinct immunological environments along the epididymal duct that are tailored to the respective needs of the microenvironment” within the discussion section (line 555-558). Moreover, the previous investigations on epididymal immune cells were acknowledged and cited within the introduction (line 107-124) as well as in the discussion (line 549-554, line 564-575, line 580-584,). We hope that this satisfactorily addresses the reviewer’s critique.

      The conclusion that macrophages constitute the major immune cell population of the murine epididymis is not supported by the data provided here. In fact, the authors found that macrophages account for only approximately 20% of CD45+ immune cells in the cauda. The authors should, therefore, modify their conclusion to state that macrophages constitute the major immune cell population in the IS. In fact, this conclusion would be more in line with previously published studies.

      The reviewer is correct and we have changed the conclusion to “macrophages constitute the major immune cell population, especially within the IS” accordingly (see line 559-560).

      The authors conclude that fewer intraepithelial CX3CR1-EGFP+ cells are present in the cauda, but they do not explain how they actually quantified these intraepithelial cells. A description of how these results were obtained is missing.

      We agree with the reviewer that we did not quantify cells based on our immunostaining. All quantification approaches were obtained by flow cytometry on wild type mice with respective surface staining (acc. to previous selection of markers derived from scRNASeq, see Figure 6) and show only ratios, but no absolute numbers. An additional counting of the immunostained section would be required to ultimately determine whether these cells are quantitatively different in the cauda compared to the IS. The respective sentence, however, does not intend to compare the abundance of these cells among epididymal regions, rather it is stating that ‘the distal regions are populated by a more heterogeneous macrophage pool consisting of less intraepithelial CX3CR1+ macrophages, but higher abundance of interstitial pro-inflammatory monocyte-derived CCR2+MHC-II+, vasculature-associated TLF+ macrophages as well as CX3CR1-TLF-CCR2- macrophages’. This statement is pointing to the increasing macrophage heterogeneity towards the distal parts and is based on the clustering of the scRNASeq data, flow cytometry analysis and supported by the immunostaining that localized these populations in the epididymal compartments. For this reason flow cytometry and immunostaining are combined included in Figure 6 to display the ratio of identified macrophage subgroups to each other (Fig. 6B, bar diagram showing % of distinct subpopulations in total F4/80+ cells) with supportiving immunostaining using the same marker for localization.

    1. Author Response

      Reviewer #3 (Public Review):

      Weaknesses

      The spontaneous activity of the network is extremely low, with [0.02 0.09] spks/s considered as a high activity range. Granted, this is based on ex vivo measurements. However, if this phenomenon is to be considered computationally relevant, as the authors claim, the paper should have examined the reliability of propagation and routing with in vivo activity levels.

      The above weakness is a special case of the issue that the limits of applicability/robustness of results to model assumptions have not been well established. In particular, it is not clear how strong the strongest weights must be whilst still enabling long sequences, and what is the dependence of the results on the parameters of the distance-dependent connectivity.

      Regarding the two first weaknesses listed in Reviewer #3 Public Review, we wish to note that:

      ● The statement that our estimate of spontaneous activity “is based on ex vivo measurements” is incorrect. Our single-cell and connectivity parameters are certainly based on ex vivo measurements, but the range of spontaneous activity that the Reviewer cites ([0.02 0.09] spks/s) is an estimate from in vivo recordings. Furthermore, in our model, we explored mean firing rates higher than this in vivo range and still observed sequences.

      ● While the Reviewer states that “it is not clear how strong the strongest weights must be”, we do provide a lower-bound estimate. We explored simulations where we truncated sections of the distribution of synaptic strengths and observed that networks that included the bottom 90% of connections did not produce sequences.

    1. Author Response

      Reviewer #1 (Public Review):

      This study sets out to decipher whether the eDNA that promotes biofilm dispersal in Caulobacter crescentus biofilms is released when a random portion of cells lyse within biofilms, or whether eDNA release is a regulated process. They start by investigating whether any of the C. crescentus TA systems contribute to biofilm-associated cell death, and find that one of the systems, ParDE4 is responsible for cell death and eDNA release. They go on to show that this system is O2-regulated and thus contributes to cell death in particular in the oxygen limited interior regions of biofilms. These findings contribute significantly to our understanding of the biological functions of toxin-antitoxin systems, mechanisms of bacterial programmed cell death, and biofilm growth. The notion that TA systems function in cell death in particular has been controversial, and often based on overexpression of the toxin component, therefore the fact that this study uses a TA system in its native genomic context is notable. The authors also show clearly the somewhat counterintuitive result that the cell death (and presumably, toxin activity) is negatively correlated with transcription of the TA system. This is consistent with what is known about TA biology (but not with many past TA papers, which often correlated TA transcription with toxin activation). The study also provides a logical rationale for how ParDE4 mediated cell death ultimately contributes to bacterial fitness. The paper is well written and figures are clear and easy to follow.

      There are two relatively minor shortcomings of the paper, both acknowledged as caveats by the authors in their discussion. First, while the authors do include one experiment that addresses whether the toxin is responsible for the cell death (Fig 3), they do not show direct evidence of the activity of the toxin other than cell death/eDNA release. Second, the authors do not address whether the reduced TA transcription they observe is what causes the release of the toxin and thus the cell death phenotype. This seems likely to be the case based on previous studies of other TA systems (e.g. TA systems involved in plasmid segregation, most clearly shown for CcdAB, or more recently the ToxIN system during phage infection). Connecting this directly would be a very valuable addition to this study.

      We thank the reviewer for those positive comments. We agree that the TA system we describe in this study needs to be characterized in more detail. Understanding how this TA expression levels are linked to cell death is our next goal and will be the scope of a future publication.

      We now discuss the important missing point about possible TA expression being linked to cell death and refer to CcdAB, ToxIN and other relevant systems, as well characterized examples of such mechanisms. In the introduction, we now present the role of TAS in plasmid addiction and phage defense mechanisms. We also provide more information about those systems in the discussion and speculate the similarities with the TAS described here (see our reply to essential revisions above).

      Reviewer #2 (Public Review):

      In this work, the authors present compelling evidence that a toxin-antitoxin system contributes to biofilm dispersal under oxygen limited conditions. This work makes important contributions to two areas of microbial physiology; functional understanding of toxin-antitoxin systems, which have remained largely elusive, and mechanistic regulation or biofilm dispersal, is a critical, but less understood aspect of biofilm physiology.

      A major goal of the work described in this manuscript was to better understand the regulation of biofilm dispersal. These authors provide compelling evidence that the parDE4 toxin-antitoxin (TA) system in Caulobacter crescentus mediates enhanced cell death under conditions of oxygen limitation. This group previously reported that extracellular DNA (eDNA) inhibits attachment of new-born swarmer cells. Here they build on that observation by identifying a genetic module that contributes to cell death and DNA release under oxygen limitation, a sub-optimal condition present in a dense biofilm community, and demonstrate that parDE4 affects biofilm development. Together, this work makes important contributions toward understanding functional roles for toxin-antitoxin systems and regulation of mature stages of biofilm development. In addition, although eDNA is often depicted as having a structural role in strengthening and maintaining biofilms in some species, this work further establishes that eDNA can have multiple roles in biofilms including contributing to dispersal in Caulobacter.

      Strengths of this work include 1) comprehensive evaluation of multiple paralogous TAS and specific identification of the contribution of parDE4 to cell death, eDNA release and biofilm restriction, 2) genetic dissection of the TA pair to establish that the ParD4-antitoxin prevents eDNA release and promotes biofilm formation in a ParE4-toxin dependent manner, 3) provision of evidence that the parDE system affects cell death / eDNA release, but not responsiveness to eDNA, 4) demonstration of an anti-correlation between expression of parDE and ccoN, a hypoxic responsive gene, at both the population level under different growth conditions and at the single cell level within different growth conditions.

      We thank the reviewer for these positive comments.

      One weakness of this work is that the authors do not directly measure O2 concentrations in their growth conditions. However, they do monitor activity of an established hypoxic responsive promoter, which provides strong evidence that the various conditions tested do indeed affect oxygen concentrations in the culture medium. Nevertheless, it is difficult to assess oxygen availability in the flow cell experiments, which will be dependent on both dissolved oxygen in the media pumped through the flow cell and cell density within the flow cells. In the competition experiments, the ∆parDE4 mutant has an advantage before there seems to be an appreciable cell density, perhaps reflecting low oxygen in the growth medium or a monolayer of cells that is not obvious in the images as presented. It would be interesting to evaluate expression of ccoN in biofilms grown under these flow conditions.

      We agree with the reviewer that one limitation of our study is that we could not directly measure the O2 concentration in our different growth conditions. Unfortunately, we were unable to find a way to reliably and reproducibly assay the dissolved O2 concentration in our experimental set-ups (both static biofilms and flow-cells). We think that regulation of parDE4 expression is linked to the composition of the local environment surrounding each cell, and offering a proxy via ccoN expression is the best method we could provide to assess this. Results provided in Figures 7 and S3 (now S5) clearly show that cells that respond to limiting O2 levels (by activating ccoN expression) have low parDE4 expression. We also show in this set of experiments that, at the population level, there are cells highly expressing ccoN or parDE4 regardless of the culture conditions and the overall O2 levels.

      We now provide the expression of ccoN in different areas of biofilms, in addition to the already presented parDE4 expression, in Fig. 8A. We quantified ccoN transcription levels using the PccoN-lacZ construct (already used to generate data in Figure 5) and the fluorogenic ß-galactosidase substrate we used to quantify parDE4 expression in biofilms in the first version of this manuscript (Figure 8A). These new results now show that in biofilm areas where parDE4 is more expressed, ccoN expression is low and vice-versa and confirm other observations made throughout this work.

      The discussion regarding the observation that parDE expression drops under activating (oxygen limiting) conditions is contradictory to what I would expect based on the early findings about TA systems as genetic stabilization systems. The authors seem to expect that conditions that activate the toxin should correspond to increase expression of the TA operon. However, TA systems have frequently been characterized as DNA stabilization systems for plasmids or other mobile elements because the toxin proteins are more stable than the antitoxin proteins. In these cases, if the gene pair is lost (or in this case if expression is decreased) then the toxin protein persists longer than the antitoxin protein, effectively activating the toxin to arrest or kill cells that have lost (or in this case turned off) the gene pair. Thus I disagree with the statement that this is a "novel regulatory mechanism of PCD that remains to be understood" (line 436-7).

      The sentence preceding this one was "We are unaware of cases where reduced TAS expression is correlated with the condition that activates the PCD in biofilm regulation." and we suggested a "novel regulatory mechanism of PCD" in the context of biofilm formation. However, we realize now that our statements could be misleading and we entirely rewrote this section (Lines 510-519: " It is interesting to note that the "neutralized" steady state of the ParDE4 TAS, when the toxin is inactivated, seems to be when O2 is abundant, i.e, when parDE4 transcription is at its highest. In most studied TAS, stresses have been shown to induce transcription of TAS (LeRoux et al., 2020, Jurėnas et al., 2022), but here, the stress inflicted on the cells by O2 limitation is accompanied by a lower expression of parDE4. We are unaware of cases where reduced TAS expression is correlated with the condition that activates the PCD in biofilm regulation. This suggests a novel regulatory mechanism of PCD, in the context of biofilms, that remains to be understood.").

      Differential stability of toxin and antitoxin proteins provides a reasonable regulatory mechanism to explain the programed cell death observed. Testing of this, or other, mechanistic model(s) will be important in future studies of this system.

      We agree with the reviewer and testing protein stability is definitively on the list of experiments to do to dissect this TA killing mechanism in the near future. As mentioned above, we have been unable to obtain antibodies to these proteins so far, delaying these types of experiments.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper proposes a 2D U-Net with attention and adaptive batchnorm modules to perform brain extraction that generalises across species. Generalisation is supported by a semi-supervised learning strategy that leverages test-time monte-carlo uncertainty to integrate the best-predicated labels into the training strategy. Monte-Carlo dropout maps also tend to align with inter-rate disagreement from manual segmentations meaning that they can realistically be used for fast QC. The networks (trained on a range of source domains) have been made publicly available, meaning that it should be relatively simple for users to apply them to their own cohorts, allowing for retraining on a very small number of labelled datasets. Overall the paper is exceptionally well written and validated, and the tool has broad application.

      We thank this reviewer very much for these encouraging and valuable comments.

      Reviewer #2 (Public Review):

      In this manuscript, the authors are proposing a generalizable solution to masking brains from medical images from multiple species. This is done via a deep learning architecture, where the key innovation is to incorporate domain transfer techniques that should allow the trained networks to work out of the box on new data or, more likely, need only a limited training set of a few segmented brains in order to become successful.

      The authors show applications of their algorithm to mice, rats, marmosets, and humans. In all cases, they were able to obtain high Dice scores (>0.95) with only a very small number of labelled datasets. Moreover, being deep-learning-based segmentation once a network has been trained is very fast.

      The promise of this work is twofold: to allow for the easy creation of brain masking pipelines in species or modalities where no such algorithms exist, and secondly to provide higher accuracy or robustness of brain masking compared to existing methods.

      I believe that the authors overstate the importance of generalizability somewhat, as masking brains is something that we can by and large do well across multiple species. This often uses specialized tools for human brains that the authors acknowledge work well, and in the usually simpler non-human (i.e. lissencephalic rodent) brains also work well using image registration or multi-atlas segmentation style techniques. So generalizability adds definite convenience but is not a game-changer.

      The key to the proposed algorithm is thus that it works better than, or at least as well as, existing tools. The authors show multiple convincing examples that this is the case even after retraining with only a few samples. Yet in those examples, the authors proposed retraining the network on even subtle acquisition changes, such as moving in field strength from 7 to 9.4T. I tried it on some T2 weighted ex-vivo and T1 weighted manganese enhanced in-vivo mouse data and found that the trained brain extraction net does not generalize well. None of the pre-trained networks provided by the authors produced reasonable masks on my data. Using their domain adaptation retraining algorithm on ~20 brains each resulted in, as promised, excellent brain segmentations. Yet even subtle changes to out-of-sample inputs degraded performance significantly. For example, one set of data with a slight intensity drop-off due to a misplaced sat band created masks that incorrectly excluded those lower intensity voxels. Similarly, training on normal brains and applying the trained algorithm to brains with stroke-induced lesions caused the lesions to be incorrectly masked. BEN thus seems to be in need of regular retraining to very precisely matched inputs. In both those examples, the usual image registration/multi-atlas segmentation approach we use for brain masking worked without needing any adaptation.

      Overall, this paper is filled with excellent ideas for a generalized brain extraction deep learning algorithm that features domain adaptation to allow easy retraining to meet different inputs, be they species or sequence types. The authors are to be highly commended for their work. Yet it appears to at the moment produce overtrained networks that are challenged by even subtle shifts in inputs, something I believe needs to be addressed for BEN to truly meet its promised potential.

      We sincerely thank the reviewer for these constructive comments. We appreciate that the article is considered to be a valuable contribution to the field of neuroimaging by providing BEN as an efficient and generalisable deep learning based tool for brain extraction. The major concern of this Reviewer is that a pretrained BEN leads to unsatisfactory performance on some external data (e.g. the reviewer’s own data), although the domain adaptation retraining algorithm on ~20 brains did lead to, as promised, excellent segmentation results. Here, we would like to emphasize that the initial version of BEN on Github was designed to reproduce the results we presented in the manuscript, not an optimized version for processing external datasets. To address this issue, we have optimized the BEN pipeline in the revised version, which is summarized as follows:

      1) Orientation detection. We found that in the original version of BEN, our training rodent images for BEN are all axial views, so it works the best on testing images of axial view. Therefore, if rodent MR images are loaded in other views (such as sagittal, coronal), the performance of BEN will degrade. To solve this issue, we have updated an orientation detection function in the BEN pipeline and automatically align other orientations to axial view, thus optimizing BEN’s performance.

      2) Performance optimization using plug-and-play functions. We have added post-processing steps to improve performance and running logs for quick inspection.

      3) Validation and tutorials. To further validate BEN’s generalization, we have evaluated BEN on two new external public ex-vivo MRI datasets (rTg4510 mouse: 25 ex-vivo scans, and C57BL/6 mouse: 15 ex-vivo scans). When only one label is used for BEN adaptation/retraining, impressive performance is achieved on both datasets, despite the fact that BEN was originally designed for in-vivo MRI data. To make the implementation transparent and give detailed guidance to users, we have prepared video tutorials on our Github/Documentation (https://github.com/yu02019/BEN#video-tutorials). Note that BEN’s performance may degenerate when dealing with MR images with low image quality. As an open-resource tool, BEN is extensible, our team will continuously maintain and update it.

      Nevertheless, there could be a couple of reasons that cause suboptimal performance when using a pretrained BEN. We discuss them below and have revised the manuscript accordingly (last paragraph in Discussion).

      On the one hand, as pointed out by the reviewer, domain generalization is a challenging task for deep learning. Although BEN could adapt to new out-of-domain images without labels (zero-shot learning) when the domain shift is relatively small (e.g. successful transfer between modalities and scanners with different MR strengths), the domain gap exists in ex-vivo MRI data used by the reviewer and in-vivo images in our training images could be so large that it compromises the performance. In this case, additional labeled data and retraining are indeed necessary for BEN to perform few-shot learning, which we have emphasized and demonstrated in our manuscript and confirmed by the reviewer (although in our opinion, it is possible we only need <5 more brains instead of 20 to complete the task).

      On the other hand, as a deep learning tool, it is difficult or nearly impossible to guarantee optimal performance on any unseen data. This is also a motivation for us to design BEN as an extensible tool. As stated in the manuscript, the source domain for BEN is flexible and does not bind to Mouse-T2-11.7T, in our manuscript. Instead, users can provide their own data and pretrained network as a new source domain, therefore facilitating domain generalization by reducing the domain gap between the new source and target domains.

    1. eLife assessment

      This paper will be of interest to those studying DNA replication in the context of chromatin and development. This important study uncovers a new interaction partner for the chromatin protein SuUR and tries to understand how this complex (SUMM4) functions to control under-replication in polytene chromosomes. While the experiments are of high quality and carefully controlled, the data currently do not fully support all the conclusions, particularly as they relate to conclusions about DNA replication timing.

      We appreciate a positive evaluation of our work. We agree that the relevance of under-replication phenomenon to the establishment of late replication in dividing cells has only been established based on circumstantial evidence. In the revised manuscript, we expand the explanation of this relationship and discuss limitations of the endoreplication model as applied to understanding of late DNA replication in the cell cycle of diploid cells. We also edited the abstract to soften our conclusions. We believe that the improvements made in the revised manuscript produced a more stringent alignment between our data and the conclusions.

      Reviewer #1 (Public Review):

      Andreyeva et al. developed a novel purification/mass spec approach to identify SuUR-associated proteins. From this biochemical tour de force, they identify a complex consisting of the insulator-associated protein Mod(Mdg4) and SuUR that they term, SUMM4. They show that this complex (at least SuUR) has ATPase activity, which is an exciting result was no known biochemical activity associated with SuUR. Given SuUR's function in the under-replication of Drosophila salivary glands, the authors show that SuUR and Mod(Mdg4) at least partially localize on polytene chromosomes and that SuUR displays at least a partial dependence on Mod(Mdg4) for localization to IH, but not PH regions. Finally, using two independent genetic reporters, they show that SuUR itself has an insulator function, which is a new function for SuUR and exciting as it is likely a diploid cell-specific function for SuUR. The authors then attempt to show the Mod(Mdg4) functions in under-replication. Unfortunately, under-replication is minimally, if at all, changed in the Mod(Mdg4) mutant. While the authors bring up several possible scenarios of why this could be, it is still uncertain whether Mod(Mdg4) has a direct effect on under-replication.

      Strengths:<br /> The authors developed a very useful strategy to identify protein interactions through multiple purification steps using mass spectrometry. This approach can be applied to different systems and will be generally useful to the community. Through this approach, they provide very compelling data that SuUR and Mod(Mdg4) form a complex. Furthermore, the experiments all have been rigorously performed and the data is of high quality.

      Weaknesses:<br /> The way the paper is written, its main focus is on under-replication. What the authors were not able to conclusively demonstrate is whether Mod(Mdg4) functions in under-replication.

      We thank the Reviewer for a positive evaluation of our work, specifically the biochemical and cytological results. Unfortunately, this Reviewer was less convinced by our conclusions about the role of Mod(Mdg4) in regulation of under-replication. However, we believe that our data strongly implicate Mod(Mdg4) in under-replication:

      1) Although SuUR is considered a bona fide suppressor of under-replication, its mutation does not fully restore DNA copy numbers in under-replicated regions of polytene chromosomes but, rather, by ~78% on average (Table 1). Although the mutation of mod(mdg4) produces a weaker recovery (~26% on average, Table 1), it is still robust and statistically significant. Presently, there is only one other mutant (Rif1) known to restore DNA copy numbers at most under-replicated regions in salivary gland polytene chromosomes.

      2) DNA copy numbers in SuUR and Rif1 mutants, which are homozygous viable and fertile, are measured in L3 larvae produced from crosses of homozygous parents, i.e. in the absence of maternally contributed gene products. In contrast, mod(mdg4) is essential for viability, and the DNA copy numbers have to be measured in homozygotes that have Mod(Mdg4) protein and RNA loaded by heterozygous mothers. Since endoreplication initiates before the maternal product is exhausted, it limits the observed suppression. However, when we directly compare zygotic functions of SuUR and mod(mdg4) by analyzing the progeny of heterozygous mod(mdg4)/+ and SuUR/+ parents, they appear indistinguishable.

      3) Finally, we demonstrate that Mod(Mdg4) is essential for the proper loading of SUUR in polytene chromosomes, thus implicating it as a direct, SUUR-dependent effector of late DNA replication.

      In the revised manuscript, we provide a clearer explanation of our results. We hope that our arguments and modifications of the manuscript will alleviate the Reviewer’s concerns.

      Reviewer #2 (Public Review):

      This paper from the Fyodorov lab reports the isolation of a native protein complex of SUUR, a Drosophila SNF2-related factor, in a complex with Mdg4, an established chromatin boundary protein. The discovery of this native complex, called SUMM4, was enabled by the development of a mass spec-linked proteomic analysis of fractions from an unbiased, conventional multi-step chromatographic purification of low-abundance protein complexes. The authors validate the native interactions by co-immunoprecipitation and show further with recombinant proteins that SUUR displays ATPase activity, a property not previously shown, and which is stimulated by Mdg4. From a functional perspective, authors demonstrate that both components SUUR and Mdg4 mediate activities of the Drosophila gypsy insulator that blocks enhancer-promoter interactions and acts as a heterochromatin-euchromatin barrier, and moreover, has a role in the under-replication of intercalary heterochromatin.

      Overall, this work is a substantial contribution to the field in two respects. First, it provides a new approach to the identification of novel native complexes that are of low abundance and difficult to isolate and identify by conventional biochemistry and mass spectrometry. Second, the interaction between Mdg4 and SUUR is novel and offers an ATP-driven pathway to be further investigated for understanding the mechanism of insulator (gypsy) function. Together, these advances are supported by the compelling quality and quantity of data. However, the paper does not read smoothly and can benefit from rewriting for readers who are not familiar with mass-spec proteomics or Drosophila biology.

      We thank the Reviewer for a positive evaluation of our work. To improve clarity, we made several modifications of our manuscript as requested by the Reviewer.

    1. Author Response

      Reviewer #1 (Public Review):

      The layered costs and benefits of translational redundancy by Raval et al. aim to investigate the impact of gene copy number redundancy on E. coli fitness, using growth rate in different media as the primary fitness readout. Genes for most tRNAs and the three ribosomal RNAs are present in multiple copies on the E. coli chromosome. The authors ask how alterations in the gene copy number affect the growth rate of E. coli in growth media that support different rates of growth for the wild type.

      While it was shown before that mutants with reduced numbers of ribosomal RNA operons grow at reduced rates in rich medium (LB), this study extends these findings and reaches some important conclusions:

      1) In a poor medium (supporting slow growth rates), the mutants with fewer rRNA operons actually grow faster than the wild type, showing that redundancy comes at a cost.

      2) The same is true for mutants with reduced gene copy number of certain tRNAs and correlates with slower rates of protein synthesis in these mutants.

      3) That rRNA operon gene copy number is more decisive for growth rate than any tRNA gene copy number (>1).

      In addition, measurements of strains with deletions of genes encoding tRNA-modification enzymes that affect tRNA specificity are included. While interesting, no unifying conclusion could be reached on the impact of these mutations on growth rate.

      Thank you for this clear summary of our work.

      The well-known "growth law" relationships between growth rate and macromolecular composition (RNA/protein ratio, for example) specifically concern steady-state growth rates. It is concerning that all growth rates in this work were measured on cultures that were only back-diluted 1:100 from overnight LB precultures. That only allows 6-7 doubling times before the preculture OD is reached again. The exponential part of growth would end before that, allowing perhaps only 3-4 generations of growth in the new medium before the growth rate was measured. Thus, the cultures were not in balanced growth ("steady state") when the measurements were made, rather they were presumably in various states of adapting to altered nutrient availability.

      A detailed connection with exact growth rate laws indeed requires growth rate measurement in steady-state. Hence, we refrained from making such a connection in this manuscript, though it would be an interesting future avenue to explore. Our main goal here was to ask how E. coli growth rate is affected by external nutrient availability and internal translation components. For this, the key comparisons involve the WT vs. gene deletion mutations, and rich vs. poor growth media. For any given comparison, strains were tested under identical conditions and experimental protocols, and hence we can address our main questions without the need to obtain steady-state growth. As an aside, we note that the nutrient fluctuations inherent in such experiments may also be more relevant than steady-state growth for natural bacterial populations.

      As noted by the reviewer, we measured fitness only in a relatively narrow growth regime of several doublings; but we do capture exponential growth by focusing on the early data points (representing the exponential phase) for our growth rate calculations. We have now explicitly mentioned this in the methods section “Measuring growth parameters”.

      A second concern is the use of the term "tRNA expression levels" in the text in Figure 4. I believe the YAMAT-seq method reports on the fractional contribution of a given tRNA to the total tRNA pool. Thus, since the total tRNA pool is larger in fast-growing cells than in slow-growing cells, a given tRNA may be present at a higher absolute concentration in the fast than in the slow-growing cells but will be reported as "higher in poor" in figure 4, if the given tRNA constitutes a smaller fraction of the total tRNA pool in rich than in poor medium. For this reason, the conclusions regarding the effect of growth medium quality on tRNA levels are not justified.

      Thank you for this important point. We agree that our phrasing was incorrect, and we have modified the relevant text and figures accordingly. The fractional contribution of a given tRNA isotype to the total tRNA pool is still useful to compare, and is justified as now rephrased.

      Reviewer #2 (Public Review):

      Raval et al. by creating a series of deletion mutants of tRNAs, rRNAs, and tRNA modifying enzymes, have shown the importance of gene copy number redundancy in rich media. Moreover, they successfully showed that having too many tRNAs in poor media can be harmful (for a subset of the examined tRNAs). Below, please find my comments regarding some of the methodologies, conclusions, and controls needed to stratify this manuscript's findings.

      Figure 2 presents Rrel as a relative measurement (GRmut/GRwt). Therefore, I'm confused as to how Rrel can be negative, as shown in supplemental file 3 (statistics).

      We apologize for the confusion. Supplemental file 3 shows details of the statistical analysis (not raw data), and we included the effect size here (mean difference between the WT and the mutant relative growth rate) along with statistical significance. Thus, if the rel R of a given mutant is 1.1, the mean difference would be (1–1.1) = –0.1, meaning that it is performing 10% better than the WT.

      The “raw” relative growth rates are provided in source data files (labeled figure-wise), and there are no negative values there, as expected.

      We have now explicitly (and separately) referenced the source and statistics data files in the data analysis section in the methods, and in each figure legend. We hope this avoids confusion and makes it easier for readers to find the correct file.

      Does Figure 3 show the mean of 4 biological replicates or technical replicates? It should be stated clearly in the legend of figure 3.

      All replicates are biological replicates until unless stated otherwise. This is now stated in the methods (lines 185-187), and in the figure legends.

      Do all strains (datapoint on figure 3 left panel) significantly perform better than the WT in nutrient downshift? Looking at supplemental file 3 I see this is not the case. Please mark the statistically significant points. I suggest giving each set a different symbol/shape and coloring the significant ones in red.

      We had considered indicating statistical significance in the plot, but decided not to do so because it was difficult to show the many potentially useful layers of information without cluttering the plot. One other practical difficulty was that each point in the figure represents two values: one from the upshift (Y axis) and one from the downshift (X axis). For some mutants the fitness difference was significant in only one direction, so it was not straightforward to indicate significance. Further, our main goal here was to show where strains from different deletion Sets (Figure 1) fall in this plot (i.e. which quadrant they occupy), and so we wanted to ensure that points were easily distinguished by Set. In the text we do not include statistically non-significant points in the summary of observed patterns, and refer readers to information on statistical significance provided in the supplemental file.

      Another issue is that in the statistics of figure 2 (in supplemental file 3), positive values reflect cases where the mutant performs poorly compared to the WT, while in figure 3 the negative values indicate this. Such discrepancy is not very clear. And again, how can Rrel be negative?

      As noted in response to an earlier comment, Rrel values (given in source data files) are not negative, but effect sizes (given in supplemental file with statistics) may be negative or positive since they show differences in the relative growth rate of WT and mutant. We agree that the discrepancy between the calculation of mean difference for Figs 2 and 3 was confusing. We have now fixed this: in both cases, negative mean difference values now indicate that the mutant performs better.

      Both axes say glycerol. What about galactose?

      The typo has been corrected.

      Lines 414-419: The authors state that "all but one had a growth rate that was comparable to WT (16 strains) or higher than WT (10 strains) after transitioning from rich to poor media (i.e. during a nutrient downshift, note data distribution along the x-axis in Fig 3; Supplementary file 3). In contrast, after a nutrient upshift, 11 strains showed significantly slower growth in one or both pairs of media, and only 2 showed significantly faster growth than WT (note data distribution along the y-axis in Fig 3; Supplementary file 3)".

      Looking at the Rrel values when transitioning from TB to Glycerol and vice versa suggests no direction in the effect of reducing redundancy. During downshift, four strains perform better, and three strains perform worse than the WT. During upshift, four stains perform better, and six strains perform worse. Only during downshift and upshift from TB to Gal and vice versa give a strong signal.

      The authors should write it clearly in the text because the effect is specific to that transition/conditions and not of general meaning is written in the text (e.g., transition from every rich to every poor media and vice versa). I am convinced that the authors see an actual effect when downshifting or upshifting from TB to galactose and vice versa. In that case, the conclusion is that redundancy is good or bad depending on the conditions one used and not as a general theme.

      Also, this is true just for some tRNAs, so I don't think the conclusion is general regarding the question of redundancy.

      The fitness impacts of altered redundancy are best explained by a combination of multiple factors (in addition to nutrient availability): the number of tRNA genes deleted, number of tRNA gene copies remaining as a backup, availability of wobble or ME as backup, and codon usage. Thus, any of these variables alone would provide only partial explanation for the observed fitness effects of all strains.

      In many tRNA deletion strains – especially single gene deletions – redundancy was not significantly lowered by the deletion, as we explain in the results section. These strains were therefore not expected to show major fitness impacts or follow strong nutrient dependent trends, and this is what we observe.

      The same is true for nutrient upshift-downshift experiments, where a vast majority of strains were not expected to show a specific pattern because they do not show significant fitness impacts in general, nor do they show a strong correlation in relative fitness impacts vs. growth rate (Figure 1d). In addition, in these experiments the difference between the two media also matters. For example, comparing the maximum WT growth rate, M9 Gal is poorer than M9 Glycerol. Therefore, shifts between TB-Gal are nutritionally more drastic than TB-Gly shifts, and one would expect a larger fitness impact in the former (for strains with significantly altered redundancy). Hence, despite differences across media pairs, our broader conclusions about the impact of redundancy are generalizable as long as redundancy and nutrients are both substantially altered, e.g. due to deletion of 3 tRNA genes, deletion of tRNA+ME, or deletion of multiple rRNA operons.

      Figures are indicated differently along the text. Sometimes they are written "figure X", sometimes FigX. Referring to the supplemental figures are also not consistent.

      We have now corrected this.

      Line 443-444: "In fact, 10 tRNAs were significantly upregulated in the poor medium relative to the rich medium".

      This result contradicts the author's hypothesis. If redundancy is bad in poor media because the cells have more tRNAs than they need, the tRNAs level will be downregulated, not upregulated. How do the authors explain this?

      This statement referred to the WT strain, and was meant to highlight that (as noted by the reviewer) some tRNAs appear to be upregulated in poor medium, which is counterintuitive. However, as noted by reviewer 1 (see their comment on the interpretation of YAMAT-seq data), we can only infer the relative contribution of each tRNA isotype to the total tRNA pool (rather than absolute up- or down- regulation). Thus, we have removed this specific sentence, and instead we focus on the mismatch between the media-dependent changes in the composition of the tRNA pool and the fitness effects of different tRNA isotypes (lines 475-482).

      Line 445-447: "In contrast (and as expected), all tested tRNA deletion strains had lower expression of focal tRNA isotypes in the rich medium (Fig 4B, left panel), showing that the backup gene copies are not upregulated sufficiently to compensate for the loss of deleted tRNAs". It is great that the authors validated the expression in their strains. However, for accuracy, please indicate that it was done in four strains to avoid the impression that they did it in all the strains.

      We have now reworded this sentence to remind readers that we measured 4 tRNA deletion strains in this experiment.

      Finally, across the manuscript, the authors reveal that deleting some tRNAs or modifying enzymes can be deleterious in rich media or advantageous in poor media. However, I think this result and the conclusions derived from it could be more convincing if the authors would show in a subset of their strains that expressing the deleted tRNAs or modifying enzymes from a plasmid can rescue the phenotype.

      Thank you for this suggestion. For a small subset of strains, we now include data showing that complementation from a plasmid indeed rescues the deletion phenotype (Fig 2 – Fig supplement 7).

      Reviewer #3 (Public Review):

      In this manuscript, Raval et al. investigated the cost and benefit of maintaining seemingly redundant components of the translation machinery in the E. coli genome. They used systematic deletion of different components of the translation machinery including tRNA genes, tRNA modification enzymes, and ribosomal RNA genes to create a collection of mutant strains with reduced redundancy. Then they measured the effect of the reduced redundancy on cellular fitness by measuring the growth rate of each mutant strain in different growth conditions.

      This manuscript beautifully shows how maintaining multiple copies of translation machinery genes such as tRNA or ribosomal RNA is beneficial in a nutrient-rich environment, while it is costly in nutrient-poor environments. Similarly, they show how maintaining parallel pathways such as non-target tRNA which directly decodes a codon versus target tRNA plus tRNA modifying enzymes which enable wobble interactions between a tRNA and a codon have a similar effect in terms of cost and benefit.

      Further, the authors show the mechanisms that contribute to the increased or reduced fitness following a reduction in gene copy number by measuring tRNA abundance and translation capacity. This enables them to show how on one hand reduced copy numbers of tRNA genes result in lower tRNA abundance in rich growth media, however in nutrient-limiting media higher copy number leads to increased expression cost which does not lead to an increased translation rate.

      Overall, this work beautifully demonstrates the cost and benefits of the seemingly redundant translation machinery components in E. coli.

      Thank you for the clear summary and encouraging comments.

      However, in my opinion, this work’s conclusion should be that the seeming redundancy of the translation machinery is not redundant after all. As mentioned by the authors, it is known that tRNA gene copy number is associated with tRNA abundance (Dong et al. 1996, doi: 10.1006/jmbi.1996.0428), this effect is also nicely demonstrated by the authors in the section titled “Gene regulation cannot compensate for loss of tRNA gene copies”. Moreover, this work demonstrates how the loss of the seeming redundancy is deleterious in a nutrient-rich environment. Therefore, I believe the experiments presented in this work together with previous works should lead to the conclusion that the multiple gene copies and parallel tRNA decoding pathways are not redundant but rather essential for fast growth in rich environments.

      The point is well taken. However, as described in the introduction, here we focus on functional redundancy at the cellular level, where there are multiple ways of achieving the same translation rate. Hence we say that translation components are redundant at this level of analysis. One of the key conclusions from our work is that such redundancy is context-dependent, i.e. it is essential when rapid growth is possible, but is costly and dispensable otherwise. Therefore, we show that the definition of redundancy itself changes with environmental conditions.

      The following analogy may help convey this. There may be many ways to reach a flight on an airport: multiple entrances, multiple check-in and security check counters, multiple boarding gates, etc. On a deserted airport these may seem redundant and even costly to maintain. On the other hand, they have a utility when traffic is high. Hence even though from a purely architectural perspective the multiple routes are redundant, from a utilitarian perspective it depends on the flux of passengers.

    1. Author Response

      Reviewer 2 (Public Review):

      The paper addresses the question of how brain circuits associate stimuli onto abstract representations, and how both the neuronal activity and the synaptic connectivity change during this process. To do so, the authors make use of a feedforward network model that learns to map stimuli vectors onto two categories by means of gradient descent. They show that the model successfully learns the abstract classes in a simple and context-dependent categorisation task. The authors analyse a number of measures, like category and context selectivity to link their results to experimental findings. Moreover, they analyse the network thoroughly and unravel network and task properties that may underlie previous, seemingly contradictory experimental findings. The paper is very well written, the analyses and mathematical derivations are very thorough and the results are convincing. However, the work and its presentation would benefit from a few changes:

      1) The paper may benefit from a more thorough discussion on how the results fit into the current literature (neuroscience and machine learning) and how the findings may generalise to more complex tasks and network structures (Dale’s principle, including recurrent/feedback connections, more than two categories, more than one hidden layer, alternatives to gradient descent).

      2) While the simulations and detailed analyses in the results and methods section are very convincing, some claims should be also supported by more intuitive explanations so that a broader audience can be reached.

      3) The introduction to the context-dependent task may need to be revised because as now the difference to the simple task presented first is not immediately clear.

      4) It would be nice if their findings could be related back to the experimental literature more qualitatively. While the authors mention the contradictory findings in monkey and rat PFC vs. monkey LIP in their introduction, a thorough comparison with those findings is missing.

      We thank the reviewer for his detailed assessment and his supportive words. We hope that our revision addresses your suggestions. Concerning point 4: we agree with the reviewer that a thorough comparison with experimental findings would be important, and is currently missing. A thorough comparison would require, however, a number of additional steps that we feel lie beyond the scope of this manuscript (adapt the tasks to each different experimental setup, e.g. by increasing the number of categories and changing the structure of context-dependent associations; re-analyse experimental data).

      We have thus decided to leave this major effort for future work.

    1. Author Response

      Reviewer #1 (Public Review):

      This work identifies distinct contribution of direct (D1+) and indirect (Adora+, D2+) amygdalostriatal medium spiny cells in fear learning and plasticity. The authors combined freely moving calcium imaging with auditory fear learning assay to reveal tone, foot-shock and behavior (movement)-evoked activity of the two MSN population. While D1+ cells show plastic changes driven by fear learning and reaching their maximum tone responsiveness (PSTH) at fear retrieval, Adore+ cells activation remained constant. Furthermore, using optogenetic silencing they showed that the two MSN groups differently contribute to retrieval of fear memory. Both cells receive topographically organized insular cortical inputs which go through learning-induced long-term synaptic changes with opposite direction: postsynaptic LTP at D1 cells, while presynaptic LTD at Adora+ cells. These synaptic changes provide some level of explanation for distinct behavioral contribution of the two cell types in fear learning.

      This study focuses on a so far neglected member of the 'extended' amygdalar circuitry, the amygdalostratal transition zone. The data is well-presented, the experiments are in logical order, built on each other and the paper is easy to read and follow.

      However, some information regarding the connectivity (and function) of Astr have been presented in recent and earlier papers are missing from, or contradicting with, the present work. One reason to explain these is that the targeted striatal regions vary between experiments, and so, it is difficult to judge when the Astr and when the other part of the caudal (tail) striatum is examined. As these striatal regions are involved in different neuronal networks, their functional consequences could also be distinct. Without precisely clarifying and consistently targeting the aimed striatal region, it is difficult to interpret the findings of the present study (though those are relevant and important).

      We thank this reviewer for his/her overall positive evaluation of our paper.

      We agree with the criticism that in the first submission, we have not stringently defined the anatomical region of the amygdala - striatal transition zone (AStria). After validating our previous data, and after performing new anatomical experiments studying the expression of Cre in the D1RCre and AdoraCre mouse lines used here (see Figure 1D; Figure 1 - figure supplement 1; Figure 3 - figure supplement 1), we now refer to the region targeted in our study as "ventral tail striatum" (vTS), as opposed to the more narrowly defined, and more ventrally located "AStria". Therefore, we have changed the word "AStria" to ventral tail striatum ("vTS") throughout the paper.

      We have also improved our introduction to the posterior striatum (p. 4 bottom, p. 5 top), and we briefly discuss the targeting of the vTS (as opposed to the AStria)(p. 19 top).

      Reviewer #2 (Public Review):

      Kintscher et al present a nice study on the responses of Adora2a and D1R expressing cells in the tail of the striatum/amygdala transition zone during auditory fear conditioning. Overall the conclusions are that (1) D1R cells show plasticity in activity patterns during the task, with the emergence of tone/movement co-modulated cells; (2) Adora2a cells show less of such changes; (3) gain of function of activity does little where (4) loss of function of activity in each cell class has moderate effects on the learned behavior (i.e. freezing to the CS). There is a nice section on rabies tracing which maps inputs to both cell types which then motivates an analysis of insular cortex inputs onto both cell types and reveals that (5) CS/US pairing alters insular inputs to both cell types.

      Overall the paper is well done and the conclusions are believable. Furthermore, this brain area is understudied yet potentially very important.

      The analysis of the fluorescence transients is heavy handed. This leads to potential for error and could obscure what appear to be large differences that could be extracted more easily. In some instances, the data are interpreted too optimistically, especially that the silencing experiments implicate plasticity of the neurons rather than the need for activity.

      We thank the reviewer for his/her positive evaluation of our paper. For the revision, we have re-analyzed the Ca-imaging data, and we have made changes in the text to avoid a too optimistic interpretation of our data.

    1. Author Response

      Reviewer #2 (Public Review):

      Wild and colleagues develop a barcoding approach, termed WILD-seq, that combines tumor cell barcoding with single cell transcriptional analysis to concurrently examine clonal tumor cell dynamics and cell state changes during drug treatment. They examine two triple-negative breast cancer (TNBC) cell lines in vivo in response to JQ1 and taxanes. Results from these experiments yield several meaningful conclusions. First, they demonstrate that clonal dynamics are fundamentally distinct depend ending on context and microenvironment, with significant differences observable between cell culture, NSG and immunocompetent mice. Second, they show that bulk expression in treatment refractory tumors represents clonal outgrowth of subpopulations in pretreatment tumors that bear gene expression patterns similar to the tumor relapsed. Finally, they identify mechanisms of in vivo taxman resistance, including EMT and high NRF2 expression - the latter yielding tumors that show collateral sensitivity to L-asparaginase and subsequent resistance mediated by high levels of asparagine synthetase.

      This study is a technical tour de force. The authors deeply engage the complexity of cell barcoding, bottle necking, Hamming analysis, single cell expression analysis and microenvironmental cell analysis. The idea that bulk tumor expression states demarcate drug resistant clonal populations in pre-treatment tumors, while not a new concept, finds critical validation using this approach. Moreover, the use of this approach to examine collateral sensitivity and to identify new strategies to target taxane resistance is compelling.

      I support this work but might suggest some comparisons of primary and relapse tumors, as well as the nature of the taxane collateral sensitivity, be further extended.

      Major comments:

      1) The authors suggest that the bulk expression analysis in relapsed tumors mirrors clonal populations in pretreatment tumors (which, while requiring barcoding to validate, somewhat obviates the need for barcoding to identify mechanisms of drug resistance). In cases like EMT, it has been argued that mesenchymal tumor cells survive therapy, but then undergo MET in the relapsed state. Thus, in the long term, tumors may revert to pre-treatment clonal states. It would be interesting to see whether that is the case here - and whether the informative nature of bulk gene expression in the drug resistant tumor is lost over time.

      This is an interesting point. We don’t have any direct evidence of any of the tumour cell lineages in our model undergoing EMT or MET from our work, but it is entirely possible that the tumour cells dynamically transition between states over longer time frames that we haven’t captured in our experiments to date. It is also possible that there are intermediate states that we have not captured by sampling at end-point. WILD-seq presents an excellent method for such studies but these are beyond the scope of the current paper.

      For such experiments, it would be essential to use barcoded cells to track clonal lineage, otherwise it is impossible to determine whether changes in the EMT of a tumour cell population was driven by a change in the transcriptome/cell state or a shift in clonal abundance. We have added discussion of these points to the discussion section of the manuscript.

      With respect to the necessity of barcoding for identifying treatment resistance mechanisms over bulk approaches, lineage-based analysis serves to prioritise pathways that change in the resistance setting that might otherwise be overlooked as being lower down the list of differential expression in bulk analysis. While not specifically addressed here, being able to differentiate between a pre-existing resistance phenotype or an adaptive mechanism of resistance, may also inform the choice of dosing schedule of agents targeting resistant clones.

      2) Collateral resistance can either refer to the outgrowth of clones that show enhanced sensitivity to distinct therapies or the therapeutic induction of cell states that respond differently to other drugs. To confirm that L-asparaginase sensitivity results from the specific outgrowth of NRF2 clones, it would be meaningful to show that these clones are lost upon L-asparaginase-only treatment and that pretreatment of L-asparaginase promotes long term efficacy of taxanes.

      We agree this is a critical question and one that we had already started to address while the manuscript was under review. The Nrf2-high clones are lowly represented in vehicle treated tumours and on the edge of our detection threshold, thus accurate measurements of their depletion by L-asparaginase-only treatment in tumours derived from our heterogeneous WILD-seq clonal pools is very challenging. To address this question, we have instead chosen to isolate individual resistant clones and directly test their response to L-asparaginase. We were able to isolate two of the Nrf2-high clones (751 and 1240) by growing up clones from single cells. After expansion in vitro, these were implanted as pure monoclonal populations and the resulting tumours treated with L-asparaginase. These new data, presented in Fig 7g, demonstrate that tumours derived from these clones (in contrast to tumours derived from our WILD-seq pools) significantly respond to L-asparaginase-only treatment, suggesting that this cell state is a pre-existing intrinsic property of these clones and not one induced by docetaxel treatment.

    1. Author Response

      Reviewer #1 (Public Review):

      It has been shown that selenium protects against the development of epilepsy, and behavioral comorbidities, as pointed out by the authors. This paper attempts to show it does if administered later after chronic seizures start. While clinically relevant, as noted by the authors, the paper seems not to be a major advance beyond the prior study. The antiseizure effect is also not very convincing because the effect size is so small and the variance so high. The data about behavior is more convincing but similar data were in the previous paper, so it is not very novel.

      Thank you for reviewing our paper. Previous work has shown that sodium selenate, not selenium, can delay the appearance of seizures and mitigate behavioural comorbidities if given immediately after the epileptogenic brain insult, but before the appearance of spontaneous recurring seizures (i.e. before epilepsy development), i.e. is anti-epileptogenic. The novelty of our current work is that we are treating once epilepsy develops, i.e. is disease-modifying. This is the first time a pharmacological agent has been shown to be disease-modifying in established epilepsy, resulting in an enduring reduction in seizures suppression even after treatment withdrawal, as well as to mitigate the behavioural comorbidities that commonly are co-morbid with chronic epilepsy. This is potentially ground-breaking new findings for the epilepsy field, as at present the only current disease-modifying therapy for established chronic epilepsy is epilepsy surgery.

    1. Author Response

      Reviewer #1 (Public Review):

      “Even though the methodology was already introduced, it should be described in some detail. Most importantly, AlphAfold's measures of accuracy have been part of the loss function during training/testing. What about the measure of protein-protein interaction accuracy? Was it also in the loss function?”

      We thank the reviewer for this insightful comment. The metrics used for evaluating predicted structure quality, such as the predicted local distance difference test (pLDDT) score and predicted TM score (pTM), both proposed in the AlphaFold 2 publication (Ref. 27), and the interface score (iScore) proposed in the AF2Complex publication (Ref. 23), are not explicitly employed as the loss function in training the main deep learning model for structure prediction. Instead, the main loss function of AF2 is the Frame Aligned Point Error (FAPE) loss, which measures the errors in the predicted atomic coordinates within local coordinate frames spanned by vectors connecting backbone heavy atoms of individual protein residues. However, this FAPE loss function is very much relevant to predicting TM-scores or iScores; both are derived from an additional module that predicts alignment errors (PAEs) viewed from each residue’s local frame. The training of this PAE module was done separately as described in the AF2 publication (Ref. 27). According to DeepMind, the training of the deep learning models for AlphaFold-Multimer (Ref. 25, AF version 2.2.0 and above) has relatively minor changes in the loss function; changes were made mainly to reduce severe clashes, which were not uncommon in modeling large complexes by earlier versions of AF2.

      We added in the Methods section, line 337,

      “The iScore metric was derived from the predicted alignment errors that gives an estimated distance for interface residue j from its position in the experimental structure, as viewed from a local frame of residue interface residue i [23,27]. To better estimate confidence, the contribution of each interface residue to the interface score is calculated using local frames not located within the same protein chain, i.e., residue i and j belonging to different chains.”

      “Figure 1a (upper panel, PpiD) includes quite a few promising hits but only the first, third, and 12th were considered. How were these chosen? For example, why not consider the second? The lower panel (YfgM) also shows many promising hits but only the first was chosen. Why not more? Likewise, only two of the top hits in Figure 4 are considered. What about the rest? For example, why taking into account the second best hit while skipping the first?”

      These are important questions about similar issues raised by all three reviewers, i.e., R2.1 by reviewer 2 and R3.2 by reviewer 3. We emphasize that our approach predicts physical interactions between proteins, not the biological consequence of such interactions. However, since the most interesting predictions are the ones relevant to biological functions, about which the computational method cannot make a judgement, given the space limitations of the manuscript, we opted to select from the top predictions those that likely provide mechanistic insights into biological function, for example, those that might inspire new hypotheses about molecular mechanisms. In practice, our selection process was guided by existing literature and experimental evidence. Since such information is limited, we can only focus on the very few ones with both strong computational and experimental evidence. Most top predictions, including the ones the reviewers questioned, were not pursued further because we cannot at present say anything about the functional consequences of these predicted interactions, even though they may interact physically. One main contribution of this computational screening approach is to provide short lists that accelerate the search for functionally important protein-protein interactions. Thus, in this contribution, we provide some examples found in the top 20 hits ranked from ~1500 possible pairs for a given query protein.

      In this revision, we added from line 85,

      “Note that our computational predictions are about physical interactions between a pair of proteins subjected to screening, not about their biological roles even if they are predicted to interact physically. Moreover, the predicted physical interactions may not be relevant in the cellular environment due to various factors not considered in modeling, e.g., competition from other proteins with stronger binding affinities, post-translational modifications, etc. Thus, it is possible that many protein-protein interactions predicted by this pipeline do not necessarily have biological relevance. Nevertheless, since cognate protein-protein interactions required by their functions are more likely to be detected than randomly selected proteins, biologically interesting protein-protein interactions are enriched at the top of the screening results ranked by iScore. Thus, the screening procedure may provide valuable even critical clues for subsequent investigation. In this study, assisted by existing experimental evidence, we select from high confidence computational predictions those most likely to have significant biological implications, and then predict the structures of larger complexes if more than two proteins are involved according to our predictions or based on literature information. The interactions that we ignored are either of unknown biological significance, physically interacting but biologically irrelevant, or simply false positives.”

      “Authors argue that the unstructured part of OmpA, which wraps around SurA, is to be trusted, which may be the case. But a more likely explanation is that it is an artefact, in agreement with the very low confidence assigned by AlphaFold.”

      While we do not disagree that the structure prediction about SurA/OmpA complex may contain artifacts, there are several reasons why our predications may be insightful, as we explained in the manuscript. First, it is well-known in experimental studies (references 41, 42, 45) that the SurA/OmpA complex is very dynamic and unlikely to possess a stable structural complex as in a typical crystal structure. As such, the low confidence score by AF2Complex is expected, as it reflects uncertainty due to the existence of many possible conformations. Second, it makes physical sense to have loose wrapping of OmpA around SurA, as it reduces the energetic costs to dissociate OmpA from SurA when SurA approaches BAM for its delivery. Our point is a qualitative assessment, rather than claiming a specific complex model as in a typical structure prediction scenario. To be cautious as the reviewer suggested, we added a sentence in the Discussion, from line 309,

      “Despite the low confidence due to weak interactions, the predicted structures delineate a picture for how SurA prevents OmpA from aggregating. Moreover, since it transports OmpA with a relatively small number of intermolecular contacts, the free energy required to dissociate OmpA from SurA is small. Notwithstanding these considerations, we caution that artifacts likely exist in these predicted structural models.”

      “Figure 5. How is (does) this predicted structure compare with the known structure of the complex? In particular, how similar are the predicted and known structures of the individual subunits, and how similar are the predicted docking poses to the known ones?”

      The BAM complex has been studied extensively, with over one hundred experimental structures of its individual subunits or the full complex. Therefore, a thorough structural comparison is a subject of a review beyond the scope of this study. In our computational models, the structures of the individual subunits or of the full BAM complex closely mimic their known experimental structures, which is expected because some of these structures were likely employed in the training of deep learning models and/or structure predictions. We added a comparison to the highest resolution crystal structure in the revised manuscript after line 225,

      “Because BAM has been extensively studied structurally [7,47], we focus on describing its interaction with SurA, though the predicted BAM complex model closely mimics a known crystal structure of the complex determined at 2.9 Å resolution (PDB 5D0O, [48]). The alignment of the two complex structures yields a very high TM-score of 0.94.”

      “Authors should make the results easily accessible to all. Maybe as Cytoscape and CyToStruct sessions for easy visualization.”

      Cytoscape and the add-on CytoStruct are very useful tools to visualize large networks. In our case, however, we are presenting only a handful of complexes, not a massive protein-protein interaction network like those resulting from all-against-all screening at proteome-scale. A diagram such as Fig. 7 is sufficient for our visualization purposes. Moreover, we provide the atomic coordinates in the standard PDB format for readers who wish to examine the respective structures in detail. In the future, if we have opportunity to expand PPI screening to a large number of targets, Cytoscape and add-ons will be handy to display the resulting gigantic network.

      “Finally, AlphaFold was trained and tested mostly with water-soluble protein. Thus, application to outer membrane proteins is a bit risky. Maybe authors can comment on this.”

      While it is true that most experimental structures used for training AlphaFold models are of water-soluble proteins, there are also structures of many membrane proteins available for training, as over 10,000 structures of membrane-proteins were already deposited in the Protein Data Bank, though there are redundancy within these structures and some domains are outside the transmembrane regions. These structures are likely sufficient for machine-learning approaches such as AlphaFold 2 to learn the sequence and structural patterns unique to transmembrane proteins. This view is supported by our empirical experience, because transmembrane regions of membrane proteins are typically among those with high confidence scores, e.g., complex models for a transmembrane molecular system CcmI presented in our AF2Complex work (Ref. 23). And one of these computational models (of CcmA2B2CD) was just confirmed to have high quality by cyro-EM models (Li et.al., Nature Communications 13:6422, 2022) at TM-score 0.89. We note that this was a non-trivial prediction as this structure was not present in the PDB and was long sought by the experimentalists. The view also agrees with the conclusion of a recent published study on AF2 models of transmembrane proteins (Hegedűs, et. al. Cell. Mol. Life Sci. 79:73, 2022).

    1. Author Response

      Reviewer #1 (Public Review):

      The authors present a study of figure-ground segregation in different species. Figure-ground segregation is an important mechanism for the establishment of an accurate 3D model of the environment. The authors examine whether figure-ground segregation occurs in mice in a similar manner to that reported in primates and compare results to two other species (Tree shrews and mouse lemurs). They use both behavioral measures and electrophysiology/twophoton imaging to show that mice and tree shrews do not use opponent motion signals to segregate the visual scene into objects and background whereas mouse lemurs and macaque monkeys do. This information is of great importance for understanding to what extent the rodent visual system is a good model for primate vision and the use of multiple species is highly revealing for understanding the development of figure-ground segregation through evolution.

      The behavioral data is of high quality. I would add one caveat: it seems unfair to report that the tree shrews could not generalize the opponent motion stimulus as it seems they struggled to learn it in the first place. Their performance was below 60% on the training data and they weren't trained for many sessions in comparison to the mice. Perhaps with more training the tree-shrews might have attained higher performance on the textures and this would allow a more sensitive test of generalization. The authors should qualify their statements about the treeshrews to reflect this issue.

      The reviewer is correct in this assertion. For context, we performed the mouse experiments first and were hoping to see texture-invariant performance but instead realized that the mice were resorting to memorizing patterns. With this in mind, when expanding to treeshrews we wanted to prevent this type of learning to really test whether texture invariant recognition was possible, thus we increased the number of orientations tested to 5, resulting in 10 possible textures that would have to be memorized in contrast to the 4 that had to be memorized for the mice. We now clarify this in the text:

      “We reversed the number of train/test patterns compared to what was used for the mice (Fig. 2i1) because we reasoned that animals might be more likely to generalize if given more patterns for training. We had performed the mouse experiments initially, noticed the memorization approach, and were trying to avoid this behavior in treeshrews. This also means that the naturalistic train condition presented to treeshrews was harder than that for mice (5 orientations for treeshrews vs. 2 orientations for mice in the training set).”

      Reviewer #2 (Public Review):

      Luongo et al. investigated the behavioural ability of 4 different species (macaque, mouse lemur, tree shrew and mouse) to segment figures defined by opponent motion, as well as different visual features from the background. With carefully designed experiments they convincingly make the point that figures that are not defined by textural elements (orientation or phase offsets, thus visible in a still frame) but purely by motion contrast, could not be detected by nonprimate species. Interestingly it appears to be particularly motion contrast, since pure motion - figures moving on a static background - could be discriminated better, at least by mice. This is highly interesting and surprising -- especially for a tree shrew, a diurnal, arboreal mammal, very closely related to primates and with a highly evolved visual system. It is also an important difference to take into account considering the multitude of studies on the mouse visual system in recent years.

      The authors additionally present neuronal activity in mice, from three different visual cortical areas recorded with both electrophysiology and imaging. Their conclusions are mostly supported by the data, but some aspects of the recordings and data analysis need to be clarified and extended.

      The main issues are outlined below roughly in order of importance:

      1) The most worrying aspect is that, if I interpret their figures correctly, their recordings seem not very stable and this may account for many of the differences across the visual conditions. The authors do not report in which order the different stimuli were shown, their supplemental movie, however, makes it seem as though they were not recorded fully interleaved, but potentially in a block design with all cross1 positions recorded first, before switching to cross2 positions and then on to iso... If I interpret Figure 6a correctly, each line is the same neuron and the gray scale shows the average response rate for each condition. Many of these neurons, however, show a large change in activity between the cross1 and the cross2 block. Much larger than the variability within each block that should be due to figure location and orientation tuning. If this interpretation is correct, this would mean that either there were significant brain state changes (they do have the mice on a ball but don't report whether and how much the animals were moving) between the blocks or their recordings could be unstable in time. It would be good to know whether similar dramatic changes in overall activity level occur between the blocks also in their imaging data.

      The same might be true for differences in the maps between conditions in figure 4. If indeed the recordings were in blocks and some cells stopped responding, this could explain the low map similarities. For example Cell 1 for the cross stimuli seems to be a simple ON cell, almost like their idealized cell in 3d. However, even though the exact texture in the RF and large parts of the surround for a large part of the locations is exactly identical for Cross1 and Iso2, as well as Cross2 and Iso1, the cells responses for both iso conditions appear to only be noise, or at least extremely noise dominated. Why would the cell not respond in a phase or luminance dependent manner here?

      This could either be due to very high surround suppression in the iso condition (which cannot be judged within condition normalization) or because the cell simply responded much weaker due to recording instability or brain state changes. Without any evidence of significant visual responses, enough spikes in each condition and a stable recording across all blocks, this data is not really interpretable. Instability or generally lower firing rates could easily also explain differences in their decoding accuracy.

      Similarly, it is very hard to judge the quality of their imaging data. They show no example field of views or calcium response traces and never directly compare this data to their electrophysiology data. It is mentioned that the imaging data is noisy and qualitatively similar, but some quantification could help convince the reader. Even if noisy, it is puzzling that the decoding accuracy should be so much worse with the imaging data: Even with ten times more included neurons, accuracy still does not even reach 30% of that of the ephys data. This could point to very poor data quality.

      We address the issue of stability of selectivity in our response to all reviewers above. Note that we wavered on whether to include the imaging data at all given the much better decoding accuracies from the electrophysiology data, and decided to include it for two main reasons:

      1) It qualitatively gives a very similar result, namely that there is a texture-dependent ability to resolve the position of given figures, suggesting that the rodent visual system is indeed better equipped at representing figure locations for the cross and iso stimuli than that nat stimulus.

      2) The correspondence on subsequent days between single cells and their corresponding spatial preference responses suggests that this is a stable and consistent preference represented by these neurons.

      The following verbiage has been added to the methods section

      Matching cells across days. Cells were tracked across days by first re-targeting to the same plane by eye such that the mean fluorescence image on a given day was matched to that on the previous day, with online visual feedback provided by a custom software plugin for Scanbox. […] This result points to the consistency of the spatial responses in the visual cortex as a substrate for inferring figure position.

      2) There is no information on the recorded units given. Were they spike sorted? Did they try to distinguish fast spiking and regular spiking units? What layers were they recorded from? It is well known that there are large laminar differences in the strength of figure ground modulation, as well as orientation tuned surround suppression. If most of their data would be from layer 5, perhaps a lack of clear figure modulation might not be that surprising. This could perhaps also be seen when comparing their electrophysiology data to the imaging data which is reportedly from layer 2/3, where most neurons show larger figure modulation/tuned surround suppression effects. There is, however, no report or discussion of differences in modulation between recording modalities.

      We used Kilosort (Pachitariu et al., 2016) for spike sorting of the data. The output of the automatic template-matching algorithm from Kilosort was visualized on Phy and then curated manually.

      We did not compute current source density. The 64 contacts on our probe spanned 1 mm, so we recorded cells throughout all layers of cortex. We didn’t focus on specific layer, as we didn’t find strong modulation by figure/ground or border ownership in any of our cells. We did not distinguish the fast and regular spike units.

      3) There is an apparent discrepancy between Figure 5d and i. How can their modulation index be around -0.1 for cross (Figure 5d) - which would correspond to on average ~20% weaker responses to a figure than to background, when their PSTH (5i) shows an almost 50% increase of figure over ground. This positive figure modulation has also been widely reported in the literature (Schnabel, Kirchberger, Keller). Are there different populations of cells going into these analyses?

      There was a mismatch in cells for plotting the F/G modulation index and time-course, since we previously set different criteria. Now we used the same criteria and replotted Figure 5d, e, g, h.

      4) In a similar vein, it is not immediately clear why the average map correlation would be bigger for random cell pairs (~0.2, Fig 3g) than for the different conditions of the same cell (~0, Fig 5b). Could this be due to differences in recording modality (imaging in 3g and ephys in 5b)?

      We suspect the reviewer is correct, namely, that the difference in recording modality accounts for these differences. The spatial mixing of signals inherent to calcium imaging can be problematic for the study of these figure ground and border ownership signals. Thus, it can be assumed that the non-zero mean observed in Fig 3g, is likely due to neuropil contamination, whereas Fig. 5 is purely ephys data and thus has no such confounds.

      5) The maps in Figure 4 should show the location of the RF, because they cannot be interpreted without knowledge of the RF center and size. For example cell 4 in the iso 1 condition could be a border cell, or could respond to the center of the figure. It is impossible to deduce without knowledge of the location of the RF.

      We have added the following clarification to the figure legend for Fig. 4a:

      “Overlaid on these example stimuli are grids representing the 128 possible figure positions and a green ellipse representing the ON receptive field. Note that this receptive field is the Gaussian fit from the sparse noise experiment.”

      We have also added the following clarification to the figure legend for Fig. 4b:

      “Please note that for all of these experiments the population receptive field was centered on the grid of positions.”

      6) It could help the reader to discuss the interpretation of the map correlations in Fig 5 a and b in more detail. My guess is that negatively correlated maps (within cross or iso condition) could come from highly orientation tuned neurons, whereas higher correlation values point to more generally figure/contextually modulated cells (within this condition). While the distribution is far from bimodal, this does not rule out a population of nicely figured modulated cells at the high end of the distribution. It might not be necessary at the level of V1 that the figure modulation be consistent across all textures. It would not be surprising, if orientation contrast-defined, phase contrast-defined and motion contrast-defined figures could be signalled to higher areas by discrete populations of V1 or even LM cells.

      We agree the reviewer’s interpretation of the neural findings is possible. But at least from the behavior, it seems unlikely that a motion contrast-defined figure is generated anywhere in the rodent brain.

      7) Some of the behavioural results warrant a little more explanation or discussion, as well. In Figure 2h, the mice seem significantly better on the static version of the iso task, than on the moving one. If statistically significant, this should be discussed. Is this because the static frame was maximally phase offset? Then the figure would indeed be better visible better (bigger phase contrast in more frames) than in the moving condition.

      Yes, indeed, in Figure 2h, the static frame was chosen with maximal positional displacement, and thus the figure can likely be seen better. We have added this clarification to the figure legend for Fig. 2h.

      Figure 2 and extended Figure 1c: why is the mouse lemur performing so poorly on average? It also appears to have biggest problems with the cross stimulus early on in training.

      The behavior experiments in the mouse lemur were carried out under an international collaboration and with substantially less exploratory experiments than was done for mouse, treeshrew, and macaque. For the mouse lemur, we simply went with a training regimen that we knew had worked efficiently for treeshrews and without any optimization of the procedure. Thus we would caution against over-interpreting the exact learning rates of the mouse lemurs and instead focus on the qualitative result that they could generalize for the Nat condition. This was a marked departure from the rodents and shrews and is the main finding we would like to convey. We suspect that with future optimizations of behavior shaping, training times and performances could likely both be improved.

      Tree shrews seem not to be able to memorize the textures as well as the mice do. Is this because of less deprivation/motivation? Or because of the bigger set of textures in training? This would make memorization harder and could thus lower their overall performance. The comparative aspects are very interesting but the absolute differences in performance could be discussed in more detail or explained better.

      Reviewer 1 raised a similar concern, please see our response above

      8) In Figure 7b, why wouldn't the explanation for the linear decodability in cross also hold for iso? There are phase offsets at the borders that simple cells should readily be able to resolve, just as in the case of orientation discontinuities. Could they make a surround phase model, similar to their surround orientation model, that could more readily capture the iso discontinuities?

      The reviewer is likely correct in their assertion that one could consider further hand tuning the model to account for the observed diversity in responses (namely, Cross > Iso > Nat for figure position decoding). We went directly to a DNN to model the data, since we thought this would be more powerful, given that the DNN features were not tuned to explain our neural data per se.

    1. Author Response

      Reviewer #1 (Public Review):

      This study used a multidimensional stimulus-response mapping task to determine how monkeys learn and update complex rules. The subjects had to use either the color or shape of a compound stimulus as the discriminative dimension that instructed them to select a target in different spatial locations on the task screen. Learning occurred across cued block shifts when an old mapping became irrelevant and a new rule had to be discovered. Because potential target locations associated with each rule were grouped into two sets that alternated, and only a subset of possible mapping between stimulus dimensions and response sets were used, the monkeys could discover information about the task structure to guide their block-by-block learning. By comparing behavioral models that assume incremental learning, quantified by Q-learning, Bayesian inference, or a combination, the authors show evidence for a hybrid strategy in which animals use inference to change among response sets (axes), and incremental learning to acquire new mappings within these sets.

      Overall, I think the study is thorough and compelling. The task is cleverly designed, the modeling is rigorous, and the manuscript is clear and well-written. Importantly there are large enough distinctions in the behavior generated by different models to make the authors' conclusions convincing. They make a strong case that animals can adopt mixed inference/updating strategies to solve a rule-based task. My only minor question is about the degree to which this result generalizes beyond the particulars of this task.

      Thanks for these kind comments. Regarding generalization, we agree with the reviewer and did not intend to make any claim about how the particular result generalizes beyond this task. Indeed, the specific result could depend on the training protocol even within the same task. We now discuss this explicitly in the manuscript, lines 800-810. However, we do take the view that even if the way the monkey’s behavior played out in this setting is a lucky accident, that may still reveal something fundamental about learning processes in the brain.

      Reviewer #2 (Public Review):

      The authors trained two monkeys to perform a task that involved sequential (blocked) but unsignalled rules for discriminating the colour and shape of visual stimulus, by responding with a saccade to one of four locations. In rules 1 and 3, the monkeys made shape (rule 1) or colour (rule 3) discriminations using the same response targets (upper left / lower right). In rule 2, the monkeys made colour judgments using a unique response axis (lower left/upper right). The authors report behaviour, with a focus on time to relearn the rules after an (unsignalled) switch for each rule, discrimination sensitivity for partially ambiguous stimuli, and the effect of congruency. They compare the ability of models based on Q-learning, Bayesian inference, and a hybrid to capture the results.

      The two major behavioural observations are (1) that monkeys re-learn faster following a switch to rule 2 (which occurs on 50% of blocks and involves a unique response axis), and (2) that monkeys are more sensitive to partially ambiguous stimuli when the response axis is unique, even for a matched feature (colour). These data are presented clearly and convincingly and, as far as I can tell, they are analysed appropriately. The former finding is not very surprising as rule 2 occurs most frequently and follows each instance of rule 1 or 3 (which is why the ideal observer model successfully predicts that the monkeys will switch by default to rule 2 following an error on rules 1 or 3) but it is nevertheless reassuring that this behaviour is observed in the animals. It additionally clearly confirms that monkeys track the latent state that denotes an uncued rule.

      The latter finding is more interesting and seems to have two potential explanations: (i) sensitivity is enhanced on rule 2 because it is occurs more frequently; (ii) sensitivity is enhanced on rule 2 because it has a unique response axis (and thus involves less resource sharing/conflict in the output pathway).

      The authors do not directly distinguish between these hypotheses per se but their modelling exercise shows that both results (and some additional constraints) can be captured by a hybrid model that combines Bayesian inference and Q learning, but not by models based on either principle alone. A Q-learning model fails to capture the latent state inference and/or the rule 2 advantage. The Bayesian inference model captures the rapid switches to rule 2 (which are more probable following errors on rule 1 and rule 3) but predicts matched discrimination performance for partially ambiguous stimuli on colour rules 2 and 3. This is because although knowing the most likely rule increases the probability of a correct response overall it does not increase discriminability and thus boosts the more ambiguous stimuli. I wondered whether it might be possible to explain this result with the addition of an attention-like mechanism that depends on the top-down inference about the rule. For example, greater certainty about the rule might increase the gain of discrimination (psychometric slope) in a more general way.

      We agree with the reviewer that our logic in ruling out pure inference models assumes that other factors affecting performance, like attention or motivation, are equivalent between blocks. In principle, if there were large and sustained differences in these factors between Rule 2 vs Rule 1 or 3 blocks, that might offer a different explanation for the effect. We now mention this caveat in the manuscript. In terms of actually leveraging this into a full account of the behavior, we are not quite sure how to instantiate the reviewer’s particular idea why this would be the case, however, since (as as we show in Fig. 3a,b,c, and Fig. S4a,b,c) the difference in psychometric slopes lasts at least 200 trials into the rule, even when (in the hybrid learning model) the feature weights have converged (Figure 4 – figure supplement 2). It’s hard to see why elevated uncertainty about the rule would persist this long in anything resembling an informed ideal observer model.

      The authors propose a hybrid model in which there is an implicit assumption that the response axis defines the rule. The model infers the latent state like an ideal observer but learns the stimulus-response mappings by trial and error. This means that the monkeys are obliged to constantly re-learn the response mappings along the shared response axis (for rules 1/3) but they remain fixed for rule 2 because it has a unique response axis. This model can capture the two major effects, and for free captures the relative performance on congruent and incongruent trials (those trials where the required action is the same, or different, for given stimuli across rules) on different blocks.

      I found the author's account to be plausible but it seemed like there might be other possible explanations for the findings. In particular, having read the paper I remained unclear as to whether it was the sharing of response axis per se that drove the cost on rule 3 relative to 2, or whether it was only because of the assumption that response axis = rule that was built into the authors' hybrid model. It would have been interesting to know, for example, whether a similar advantage for ambiguous stimuli on rule 2 occurred under circumstances where the rule blocks occured randomly and with equal frequency (i.e. where there was response axis sharing but no higher probability); or even whether, if the rule was explicitly signalled from trial to trial, the rule 2 advantage would persist in the absence of any latent state inference at all (this seems plausible; one pointer for theories of resource sharing is this recent review: https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(21)00148-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1364661321001480%3Fshowall%3Dtrue). No doubt these questions are beyond the scope of the current project but nevertheless it felt to me that the authors' model remained a bit tentative for the moment.

      Thanks for these interesting thoughts. It is true that the imbalanced pattern of sharing (of response axes, and actually also features) across the three rules has important consequences for learning/inference under our model (and indeed other latent state inference models such as the informed ideal observer). It is an intriguing idea that these features of the design might cause interference even per se, for instance even without the need to do inference or learning because the rules are fully signaled. We agree this (and the other case the reviewer mentioned) is an interesting direction for future work. We have added this in the discussion, line 800-812.