5,643 Matching Annotations
  1. Aug 2025
    1. Author response:

      We thank the reviewers for their thorough evaluation and constructive feedback on our manuscript.

      We think that their valuable suggestions will strengthen the manuscript and help us clarify several important points.

      All reviewers acknowledged the importance of our theoretical results and network classification in making pattern formation analysis a more tractable problem. At the same time, they have also raised a number of important concerns that we shall carefully consider.

      A. A major clarification that the reviewers found important concerns the definition of non-trivial pattern transformations and its generalization to higher dimensions. In this regard, the reviewers’ comments are:

      Reviewer #1:

      (on non-trivial pattern transformations):

      (3) All modelling is confined to one spatial dimension, and the very definition of a "non-trivial" transformation is framed in terms of peak positions along a line, which clearly must be reformulated for higher dimensions. It's well-known that diffusions in 1, 2, and 3 dimensions are also dramatically different, so the relevance of the three-class taxonomy to real multicellular tissues remains unclear, or at least should be explained in more detail. Reviewer #2 (on non-trivial pattern transformations):

      (5) The definition of non-trivial pattern formation is provided only in the Supplementary Information, despite its central importance for interpreting the main results. It would significantly improve clarity if this definition were included and explained in the main text. Additionally, it remains unclear how the definition is consistently applied across the different initial conditions. In particular, the authors should clarify how slope-based measures are determined for both the random noise and sharp peak/step function initial states. Furthermore, the authors do not specify how the sign function is evaluated at zero. If the standard mathematical definition sgn(0)=0 is used, then even a simple widening of a peak could fulfill the criterion for nontrivial pattern transformation.

      We agree with Reviewer #2 that including a more detailed definition of non-trivial pattern transformation in the main text would enhance the clarity of the paper. The one-dimensional (1D) definition currently provided in the Supplementary Information was chosen because all computations presented therein involve exclusively one-dimensional patterns. However, we acknowledge that this definition, as it was, did not have a totally unambiguous generalization  to higher dimensions. Therefore, in a revised version of the manuscript, we will incorporate an expanded definition applicable to higher-dimensional cases.

      This general definition of a non-trivial pattern transformation should make no reference to the sign of spatial derivatives of either the initial or resulting patterns. Specifically, a pattern transformation is considered non-trivial if it satisfies the following criteria:

      - It is heterogeneous: The resulting pattern is heterogeneous in space.

      - It is rearranging: The arrangement of critical points (i.e. peaks, valleys and saddle points in a gene product concentration) along the domain in the resulting pattern of a gene product is different to the arrangement of critical points in its initial pattern. This includes the emergence of new critical points, the disappearance of existing ones, or the spatial displacement of critical points from one location to another.

      - It is non-replicating: The spatial arrangement of critical points in the pattern of one gene product must differ from that of any other upstream gene product.

      Nonetheless, our two initial patterns are spatially discontinuous functions: in homogeneous initial patterns, the white noise is discontinuous by definition; and for the spike and spike+homogeneous initial patterns, we use sharp spikes defined by the rectangular function, which is discontinuous at the spike boundaries. Therefore, the aforementioned definition should be supplemented with the following two ad hoc assumptions:

      - Homogeneous initial patterns do not comprise any critical point. White noise in this type of initial patterns represents small thermodynamic fluctuations around the steady state and, for the purpose of pattern transformation, this is equivalent to a constant concentration along the domain.

      - Spike and spike+homogeneous initial patterns each contain a single critical point located at the center of the spike. The sharp spikes, modeled using the rectangular function, serve as a theoretical idealization to facilitate mathematical analysis. Once diffusion begins to act, these sharp boundaries are smoothed into differentiable gradients, maintaining a unique critical point at the center of the initial spike, which is the most relevant information for pattern transformation.

      Finally, it is worth recalling that our gene network classification is fundamentally based on an analysis of the dispersion relation associated with the gene network, and the construction of this dispersion relation is independent of the spatial dimensionality of the domain (i.e. it does not require assuming any specific number of dimensions). The fact that the description of this dispersion relation was in the SI may have been non-ideal for the understandability of the article and will, consequently, be moved to the main text in an upcoming version of the article. Thus, the gene networks that can lead to pattern transformation are the same in 1D, 2D or 3D. As for the resulting patterns, the broad description we provide also applies to any number of dimensions; these would be periodic, non periodic as in the amplified noise patterns or non periodic as in the hierarchic networks. For the latter notice that, except for boundary effects that we later discuss, the spike initial condition is radially symmetric and thus, the patterns resulting from it will also be radially symmetric. We will make this point more explicit in a revised version of the article, especially since, as suggested, this important portion of the Supplementary Information will be incorporated into the main text.

      Reviewer 2 suggests that with our definition of non-trivial pattern transformation, the simple widening of a concentration peak would constitute a non-trivial pattern transformation. This is not the case, as already shown in the figures as a example, since in a widening there is no change in the position of the critical point. A different situation applies if a wide and completely flat concentration peak (i.e. a plateau) forms. As we will explain in the coming version this is not possible because of requirement R5.

      We think that this clarification of the definition of non-trivial pattern transformation will also help clarify the next point (B below) since it would make it clearer that this article does not intend to explain which specific resulting pattern would arise from any given gene network.

      B. The main concern among these relates to the validity of our linearization of the model equations and the extension of the results obtained for the linear system to the fully nonlinear system. In this regard, the reviewers’ comments are:

      Reviewer #1:

      (on linearization):

      (2) A central step in the model formulation is the linearisation of the reaction term around a homogeneous steady state; higher-order kinetics, including ubiquitous bimolecular sinks such as A + B → AB, are simply collapsed into the Jacobian without any stated amplitude bound on the perturbations. Because the manuscript never analyses how far this assumption can be relaxed, the robustness of the three-class taxonomy under realistic nonlinear reactions or large spike amplitudes remains uncertain.

      Reviewer #2:

      (on linearization):

      (2) Most of the proofs presented in the Supplementary Information rely on linearized versions of the governing equations, and it remains unclear how these results extend to the fully nonlinear system. We are concerned that the generality of the conclusions drawn from the linear analysis may be overstated in the main text. For example, in Section S3, the authors introduce the concept of dynamic equivalence of transitive chains (Proposition S3.1) and intracellular transitive M-branching (Proposition S3.2), which pertains to the system's steady-state behavior. However, the proof is based solely on the linearized equations, without additional justification for why the result should hold in the presence of nonlinearities. Moreover, the linearized system is used to analyze the response to a "spike initial pattern of arbitrary height C" (SI Chapter S5.1), yet it is not clear how conclusions derived from the linear regime can be valid for large perturbations, where nonlinear effects are expected to play a significant role. We encourage the authors to clarify the assumptions under which the linearized analysis remains valid and to discuss the potential limitations of applying these results to the nonlinear regime.

      In this article, we address two main questions: first, which gene network topologies can give rise to non-trivial pattern transformations; and second, which broad types of resulting patterns can these gene network topologies give rise to resulting pattern. Thus, we are not intending to explain which exact resulting patterns would arise from any given gene network (i.e. a gene network topology with specific functions and interaction strengths or weights), a question for which non-linearities do indeed matter.

      For most known gene regulatory networks, available empirical information is typically limited to the nature of gene product regulations -indicating whether they act as activators or inhibitors- while details about the specific functional form of these regulations are rare. For instance, given two gene products, i and j, the network may indicate that i acts as an activator of j, implying that the concentration of j increases with that of i. However, this increase could follow a variety of functional forms: it may be quadratic (e.g., ), cubic (e.g., ), or any other function f j(gi). As we explain in the description of our model, we restrict our study to functions with a monotonicity constraint: higher concentrations of i lead to increased production of j (i.e., ).  In other words, a given gene interaction is always inhibitory or activatory, it does not change of sign. This monotonicity constraint corresponds to requirement (R5) in our main text. This requirement it is based on the biologically plausible idea that the complexity of gene regulation in development stems more from the topology of gene networks than from the complexity of the regulation by which a gene product may regulate another (i.e. we use simple monotonic functions).

      Question 1: A critical part to understand question 1 is in the dispersion relation that was explained in SI. From the reviewers’ comments it is clear that having this crucial part in the main text of an upcoming version of the article would improve understandability, specially for question 1.

      In brief, any pattern transformation requires the initial pattern to change. The trigger of such change is a change in the concentration of some gene product, either conceptualized as a noise fluctuation (in the homogeneous initial pattern) or a regulated change in a specific point (in the spike initial pattern). Mathematically, both can be conceptualized as perturbations and, for pattern transformation to be possible, such perturbation should grow so that the initial pattern becomes unstable and can change to another resulting pattern.

      If the perturbation is small, one can use the standard linear perturbation analysis in S6.2 of our Supplementary Information. In other words, the linear analysis is enough to ascertain if a small perturbation would grow or not. A gene network in which this will not happen would be unable to lead to pattern transformation, whichever the nonlinear part of f(g). In that sense, the linear approximation provides a necessary condition that any gene network needs to fulfill to lead to pattern transformation.

      However, the linear analysis would not ascertain whether a specific gene network will actually lead to pattern transformation (i.e., the condition is not sufficient). This, as well as the shape of the specific resulting pattern, may actually depend on the non-linear parts too. As we discuss, based on the dispersion relation, and other complementing arguments along the article, we can also get some insights on the possible patterns from the linear approximation alone (question 2). This arguments hold thanks to the imposition of requirements (R1-R5) on function f(g), which prevent strange behaviors stemming from the nonlinear part of the equation.

      The amplitude bound of perturbations mentioned by Reviewer #1 is addressed by requirements (R2) and (R4). Although the solution to the linear system predicts unbounded growth of unstable eigenmodes, the assume functions f(g) on which the nonlinear terms  eventually halt this growth, thereby ensuring the boundedness of solutions as imposed by (R4). This assumption on the nonlinear part is literally requirement R2 on f(g) in the main text.

      The transitive chains and branchings in section S3 of the Supplementary Information mentioned by the Reviewer #2 are topological properties of gene networks and therefore they influence only the linear part of the reaction-diffusion equations. This is why the proofs in that section are based on the linearized equations. We agree that clarifying this point in the text, as suggested by the reviewer, would improve the reader’s understanding of the section.

      Regarding Reviewer #2’s concerns about large perturbations, we acknowledge that the phrasing using “arbitrary height” may be confusing. For the homogeneous initial conditions these perturbations are assumed to be small because they are actually molecular noise (otherwise the initial condition could not be considered homogenous in the classical sense of developmental biology models). In the spike initial conditions in hierarchic networks the perturbation is not necessarily small. For the analysis provided in the SI we indeed assume that the perturbations are small enough for the linear approximation to be possible. Notice, however, that since these networks require an intracellular self-activating loop upstream of the first extracellular signal, the effective perturbation would rapidly grow to a value determined by such loop.

      In general the height of the initial spike does not affect the fact that hierarchic networks can lead to non-trivial pattern transformation. By definition these networks require the secretion of an extracellular signal from the cells in the spike (otherwise no change in gene product concentrations can occur over space). By definition this signal is not produced by any other cells and, thus, its concentration is governed by diffusion from the spike and its production in the cells in the spike. Thus, whichever the initial height of the spike and whichever the non-linearities in f(g), the signal’s concentration would decrease with the distance from the spike. As explained in the main text, this would lead to non-trivial pattern transformations if other general conditions are met. In general, the height of the initial perturbation can affect which specific pattern transformation would arise from a specific gene network but not which gene network topologies can lead to pattern transformation. This will be more clearly stated in an upcoming version of the article. C. In the following, we respond to the remaining concerns raised by the reviewers:

      Reviewer #1:

      (1) The Results section is difficult to follow. Key logical steps and network configurations are described shortly in prose, which constantly require the reader to address either SI or other parts of the text (see numerous links on the requirements R1-R5 listed at the beginning of the paper) to gain minimal understanding. As a result, a scientifically literate but non-specialist reader may struggle to grasp the argument with a reasonable time invested.

      We acknowledge that the current version of the main text may not be as clear as we intended. Initially, we believed that placing the more technical mathematical passages in the Supplementary Information would make the main text more accessible to readers. However, we agree with the reviewer that including some of these computations in the main text could improve clarity. We also believe that adding a summary table outlining all the model’s requirements would further contribute to that goal.

      Reviewer #2:

      (1) We have serious concerns regarding the validity of the simulation results presented in the manuscript. Rather than simulating the full nonlinear system described by Equation (1), the authors base their results on a truncated expansion (Equation S.8.2) that captures only the time evolution of small deviations around a spatially homogeneous steady state. However, it remains unclear how this reduced system is derived from the full equations specifically, which terms are retained or neglected and why- and how the expansion of the nonlinear function can be steady-state independent, as claimed. Additionally, in simulations involving the spike plus homogeneous initial condition, it is not evident -or, where equations are provided, it is not correct- that the assumed global homogeneous background actually corresponds to a steady state of the full dynamics. We elaborate on these concerns in the following:

      We believe there has been a misunderstanding regarding the presentation of the model equations (S8.2) used throughout our simulations. Accordingly, we agree that this relevant section of the Supplementary Information should be rewritten in a revised version of the manuscript to clarify this issue. Below, we address all the concerns raised by the reviewer.

      Equation (S8.2) represents the full nonlinear system described in Equation (1). While we recognize that the model may oversimplify real biological processes, its purpose is to illustrate our general statements about pattern formation rather than to capture any specific or detailed mechanism. In this context, model (S8.2) offers three key advantages for our goals: it allows rapid manipulation of gene network topology simply by modifying the matrix J, making it ideal for illustrating pattern formation across different network classes; it accommodates gene networks of arbitrary size -unlike other models, such as the classical Gierer-Meinhardt model, which are limited to two-element Turing or noise-amplifying networks-; and, due to the simplicity of its nonlinear terms, this model involves relatively few free parameters, facilitating the fine-tuning needed to identify parameter regions where non-trivial pattern transformations occur.

      Indeed, we find that the ability of model (S8.2) to illustrate our results despite having such simple nonlinear terms -bearing in mind that at least some nonlinearity is always necessary for selforganization- strongly supports the claim that the capacity of a gene network to produce pattern transformations is fully determined by the linear part of Equation (1). In this sense, nonlinear terms primarily influence the precise parameter values at which these transformations occur and contribute to shaping specific features of the resulting patterns.

      Model (S8.2) has been successfully employed in pattern formation studies elsewhere in the literature; accordingly, we provide relevant bibliographic references to support its widespread use.

      We believe the misunderstanding arises from our explanation of the biological interpretation of the model. As noted in the accompanying bibliography, the model is based on a general reactiondiffusion mechanism assuming the existence of a steady state. However, this conceptual reactiondiffusion framework is not the same as our Equation (1); rather, it was introduced by the original proponents of the model in the seminal paper cited in our text. In this context, Equation (S8.2) describes small concentration perturbations around that steady state, where the variables represent deviations in concentration relative to the general steady state.

      The aforementioned general steady state corresponds to the trivial equilibrium point g≡0 in equations (S8.2). Consequently, all our simulations based on model (S8.2) start from this steady state, to which we add white noise to generate homogeneous initial patterns or a sharp spike for the two types of spike initial patterns.

      It is also worth noting that Equations (S8.2) represent a non-dimensional model.

      It is assumed that the homogeneous steady states are given by g_i=0 and g_i=c_i, where 1/c_i = \mu_i or \hat{\mu}_i, independently of the specific network structure. However, the basis for this assumption is unclear, especially since some of the functions do not satisfy this condition -for example, f5 as defined below Eq. S8.10.5. Moreover, if g_i=c_i does not correspond to a true steady state, then the time evolution of deviations from this state is not correctly described by Eq. S8.2, as the zeroth-order terms do not vanish in that case.

      From the explanations above, it is important to distinguish two scales in the process: the scale of small perturbations, where equations (S8.2) apply; and the global scale, where the conceptual general reaction-diffusion system operates. Since the specific form of this general system does not affect equations (S8.2), we assume that it follows any of the models cited in the text, which yield a non-zero steady state at .

      In this sense, Equation (S8.2) represent a small concentration deviation of such global system and g(t ,x) is a relative concentration where g≡0 represents the steady-state at are concentrations above , and g<0 are concentrations below .

      As previously mentioned, simulations are performed using Equations (S8.2) on the basis of the equilibrium point g≡0. The result of these simulations is then superimposed on the non-zero steady state and presented in the figures along the article.

      Using the full model instead of the simplified Equations (S8.2) may result in slightly different resulting patterns, but it does not affect the gene network’s ability to produce pattern transformations, nor does it alter the main structural properties of the patterns—for example, the periodic nature of patterns generated by Turing networks.

      Additionally, the equations used contain only linear terms and a cubic degradation term for each species g_i, while neglecting all quadratic terms and cubic terms involving cross-species interactions (i≠j). An explanation for this selective truncation is not provided, and without knowledge of the full equation (f), it is impossible to assess whether this expansion is mathematically justified. If, as suggested in the Supplementary Information, the linear and cubic terms are derived from f, then at the very least, the Jacobian matrix should depend on the background steady-state concentration. However, the equations for the small deviation around a steady state (including the Jacobian matrix) used in the simulations appear to be independent of the particular steady state concentration.

      The Jacobian of Equation (S8.2) is independent of g because g represents a small perturbation around a steady state of a general reaction-diffusion system. Consequently, the matrix J corresponds to the Jacobian of the general system evaluated at that steady state. Evaluating the Jacobian of equations (S8.2) at the equilibrium point g≡0 -which represents the general steady state- recovers the matrix J.

      This is why we believe that the differences observed between the spike-only initial condition and the spike superimposed on a homogeneous background are not due to the initial conditions themselves, but rather result from a modified reaction scheme introduced through a questionable cutoff.

      "In simulations with spike initial patterns, the reference value g≡0 represents an actual concentration of 0 and therefore, we must add to (S8.2) a Heaviside function Φ acting of f (i.e., Φ(f(g))=f(g) if f(g)>0 , Φ(f(g))=0 if f(g){less than or equal to}0 ) to prevent the existence of negative concentrations for any gene product (i.e., g_i<0 for some i )." (SI chapter S8).

      This cutoff alters the dynamics (no inhibition) and introduces a different reaction scheme between the two simulations. The need for this correction may itself reflect either a problem in the original equations (which should fulfill the necessary conditions and prevent negative concentrations (R4 in main text)) or the inappropriateness of using an expanded approximation which assumes independence on the steady state concentration. It is already questionable if the linearized equations with a cubic degradation term are valid for the spike initial conditions (with different background concentration values), as the amplitude of this perturbation seems rather large.

      For homogeneous and spike+homogeneous initial conditions, we interpret equations (S8.2) as small perturbations around a non-zero steady state of a general reaction-diffusion system. For spike-only initial conditions, that steady state is zero. As we mention before, g≡0 will then represent such steady-state of zero concentration, g>0 are positive concentrations of the general system, and g<0 would represent unfeasible negative concentrations of the general system. Therefore, the use of a cutoff function to handle such initial conditions is justified. Moreover, this cutoff function is the same as the one employed in the reference general system cited in our paper.

      We acknowledge that the cutoff influences the simulations and accounts for the differences observed between spike and spike+homogeneous initial conditions. However, this distinction reflects what occurs in real biological systems, which is precisely why we differentiate these two types of initial states. For instance, the emergence of a periodic pattern in a noise-amplifying network depends critically on the formation of regions with concentrations below the steady state near the initial spike. Such regions can form in spike-plus-homogeneous initial patterns but not in spike-only initial patterns, where concentrations below the steady state would correspond to biologically unfeasible negative values.

      Lastly, we note that under the current simulation scheme, it is not possible to meaningfully assess criteria RH2a and RH2b, as they rely on nonlinear interactions that are absent from the implemented dynamics.

      It is explicitly stated in the relevant subsections of Section S7 in the Supplementary Information that, for the simulations involving RH2a and RH2b, the function f(g) in equation (S8.2) is modified by adding an ad hoc quadratic term to enable the assessment of these criteria.

      (3) Several statements in the main text are presented without accompanying proof or sufficient explanation, which makes it difficult to assess their validity. In some cases, the lack of justification raises serious doubts about whether the claims are generally true. Examples are:

      "For the purpose of clarity we will explain our results as if these cells have a simple arrangement in space (e.g., a 1D line or a 2D square lattice) but, as we will discuss, our results shall apply with the same logic to any distribution of cells in space." (Main text l.145-l.148).

      We believe that the confusion in this statement arises from the ambiguous use of the phrase “our results”. We will revise the text to provide a more precise description. Specifically, by “our results,” we refer to the conclusion that it is possible to determine whether a gene network leads to nontrivial pattern transformations based solely on its topology. This conclusion is independent of the dimensionality of space, as none of our arguments rely on assumptions specific to spatial dimensions. While one-dimensional examples are used for clarity and illustration, the underlying reasoning applies generally. In an improved version of the article, we will clarify this point explicitly and move relevant arguments from the Supplementary Information into the main text.

      Critically, our classification of gene networks is ultimately based on an argument concerning the dispersion relation associated with the network, and the construction of this dispersion relation is independent of the spatial dimensionality of the domain. In this sense, the networks identified in the text as capable of producing pattern transformations will be able to generate non-trivial pattern transformations in any spatial domain and in any number of dimensions. While the specific parameter values that permit such transformations may vary depending on the geometry and dimensionality of the domain, the existence of at least one such parameter set remains unaffected.

      The geometry of the domain can influence the specific form of the resulting patterns, but it does not alter the broader class of patterns (e.g., periodic patterns, peaks emerging around a spike, etc.) that a given gene network topology can produce. One such geometric influence, commonly observed in simulations, involves boundary effects. For example, structures such as peaks or rings forming near the boundaries may appear higher, broader, or spatially shifted compared to those arising in the central regions of the domain. However, we think a pattern consisting of a periodic train of peaks where only those near the boundary are slightly different can still be classified as a periodic pattern.

      "For any non-trivial pattern transformation (as long as it is symmetric around the initial spike), there exists an H gene network capable of producing it from a spike initial pattern." (Main text l.366f).

      A justification for this statement is provided shortly after the claim, although we acknowledge that the current explanation is somewhat cumbersome and would benefit from a clearer presentation in a revised version of the main text.

      A more detailed justification is provided in the Supplementary Information, based on three key ideas. First, any pattern (provided it is symmetric with respect to the initial spike) can be described as an arrangement of peaks with varying heights and spatial positions along a one-dimensional domain. Second, there exists a simple gene network—the diamond network—that, through parameter tuning, can produce two peaks of arbitrary height and symmetric position relative to the initial spike. Third, by placing multiple diamond networks positively upstream of a common gene product, that gene product can express peaks at each location where the upstream diamond networks induce them. Under mild additional conditions, this mechanism allows the formation of essentially any symmetric pattern. These mild conditions, along with a detailed analysis of the diamond network’s ability to generate peaks with controllable height and position, are discussed in the Supplementary Information.

      "In 2D there are no peaks but concentric rings of high gene product concentration centered around the spike, while in 3D there are concentric spherical shells." (Main text l. 447ff).

      This result pertains specifically to pattern transformations arising from spike initial patterns. As defined in the text, spike initial patterns are radially symmetric. Since diffusion preserves radial symmetry, pattern transformations from spike initial patterns in two or three dimensions reduce to effectively one-dimensional transformations along each radial direction. In this framework, each pair of concentration peaks symmetric with respect to the spike in one dimension corresponds to a ring surrounding the spike in two dimensions, and each ring in two dimensions becomes a hollow spherical shell around the spike in three dimensions.

      We agree that including a brief section in the Supplementary Information to clarify these subtleties would be helpful for readers to better understand the generalization of certain patterns to higher dimensions.

      (4) The study identifies one-signal networks and examines how combinations of these structures can give rise to minimal pattern-forming subnetworks. However, the analysis of the combinations of these minimal pattern-forming subnetworks remains relatively brief, and the manuscript does not explore how the results might change if the subnetworks were combined in upstream and downstream configurations. In our view, it is not evident that all possible gene regulatory networks can be fully characterized by these categories, nor that the resulting patterns can be reliably predicted. Rather, the approach appears more suited to identifying which known subnetworks are present within a larger network, without necessarily capturing the full dynamics of more complex configurations.

      We acknowledge that our explanation regarding the combination of sub-networks was relatively brief, and we intend to address this in a revised version. Our argument that combining sub-networks does not produce qualitatively new types of pattern transformations -beyond those already described- is based on the dispersion relation. Although this relation was only detailed in the Supplementary Information, it is central to our argument and will therefore be moved to the main text. Below, we provide an outline of this argument:

      Our study identifies two distinct behaviors of the principal branch of the dispersion relation at large wavenumbers. Based on this, gene networks capable of pattern formation can be classified into two categories: networks of the first kind, where the real part of the principal branch diverges to infinity as the wavenumber increases; and networks of the second kind, where the real part of the principal branch converges to a positive finite value for large wavenumbers. Naturally this argument applies to any gene network irrespectively of which, or how many, sub-networks are used to built it.

      Any gene regulatory network capable of pattern formation falls into one of these two categories. We identified that networks of the first kind contain at least one Turing sub-network, whereas networks of the second kind include either an H sub-network or a noise-amplifying sub-network. In this way, the primary objective of our study -namely, achieving a topological classification of gene regulatory networks capable of pattern formation- is fulfilled. It is important to note that while the dispersion relation provides broad information about the possible resulting patterns a gene network topology can produce (e.g., periodic versus noisy), it does not specify the exact patterns that emerge for each particular set of parameter values.

      Finally, regarding the shape of the resulting patterns, Figure S10 in the Supplementary Information exemplifies the notion that the behavior of combined networks can be understood as a combination of the individual behaviors of each constituent sub-network (note that the contribution of each type of sub-network in the resulting pattern is readily distinguishable). Consequently, we focus our detailed analysis on the patterning properties of the fundamental classes.

      (6) The manuscript lacks a clear and detailed explanation of the underlying model and its assumptions. In particular, it is not well-defined what constitutes a "cell" in the context of the model, nor is it justified why spatial features of cells -such as their size or boundaries- can be neglected. Furthermore, the concept of the extracellular space in the one-dimensional model remains ambiguous, making it unclear which gene products are assumed to diffuse.

      The size of cells is ignored in our model because we assume that they are small enough with respect to the total size of the domain that the space continuous reaction-diffusion equation (equation (1) in the main text) holds. Conceptually, one could understand cells in our model each of the pieces in an even partition of the domain into small subdomains surrounding each position x. This is anyway the standard procedure in most models of pattern formation by reaction-diffusion in embryonic development.

      For extracellular signals, we assume that g(t ,x) corresponds to the concentration of the signal in the extracellular space surrounding the cell located at position x. The extracellular space is any fluid medium for which Fick Laws apply and, therfore, the Fickian diffusion term in equation (1) is valid.

      For intracellular gene products, we assume that g(t ,x) corresponds to the concentration of such gene product within the cell at position x (if the gene product in hand is a transcription factor, for example), or on its surface (if it is a membrane-bound receptor). When collapsed in the continuous equations there is not such difference between being strictly within the cell or on its boundary. The only important fact is that these gene products cannot diffuse.

      Regarding cell boundaries, let us consider an extracellular signal s that regulates a transcriptor factor i within cells (in our model, i is an intracellular gene product). Such regulation shall be mediated by a membrane-bound receptor, which corresponds to intracellular gene product j. In terms of the gene regulatory network this is sji. Cell boundary effects mentioned by the reviewer should be encapsulated in the specific functional form of the regulation function f(g), but they have no effect in the actual topology of the network. Consequently, they are out of the scope of this study: as we mentioned before, considering different non-linear terms for f(g) will affect the parameter range for which a gene network is capable of producing non-trivial pattern transformations, but not their overall ability to produce non-trivial pattern transformations (i.e., the existence of at least one choice of model parameters for which such transformations take place).

      Finally, we would like to once again express our sincere gratitude to all reviewers for their insightful and constructive feedback. We are confident that the thorough peer review process will significantly enhance both the clarity and depth of our work. We greatly value the detailed comments provided and will carefully incorporate them in the preparation of a revised manuscript, which we intend to submit in the coming months.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The authors developed a sequence-based method to predict drug-interacting residues in IDP, based on their recent work, to predict the transverse relaxation rates (R2) of IDP trained on 45 IDP sequences and their corresponding R2 values. The discovery is that the IDPs interact with drugs mostly using aromatic residues that are easy to understand, as most drugs contain aromatic rings. They validated the method using several case studies, and the predictions are in accordance with chemical shift perturbations and MD simulations. The location of the predicted residues serves as a starting point for ligand optimization.

      Strengths:

      This work provides the first sequence-based prediction method to identify potential drug-interacting residues in IDP. The validity of the method is supported by case studies. It is easy to use, and no time-consuming MD simulations and NMR studies are needed.

      Weaknesses:

      The method does not depend on the information of binding compounds, which may give general features of IDP-drug binding. However, due to the size and chemical structures of the compounds (for example, how many aromatic rings), the number of interacting residues varies, which is not considered in this work. Lacking specific information may restrict its application in compound optimization, aiming to derive specific and potent binding compounds.

      We fully recognize that different compounds may have different interaction propensity profiles along the IDP sequence. In future studies, we will investigate compound-specific parameter values. The limiting factor is training data, but such data are beginning to be available.

      Reviewer #2 (Public review):

      Summary:

      In this work, the authors introduce DIRseq, a fast, sequence-based method that predicts drug-interacting residues (DIRs) in IDPs without requiring structural or drug information. DIRseq builds on the authors' prior work looking at NMR relaxation rates, and presumes that those residues that show enhanced R2 values are the residues that will interact with drugs, allowing these residues to be nominated from the sequence directly. By making small modifications to their prior tool, DIRseq enables the prediction of residues seen to interact with small molecules in vivo.

      Strengths:

      The preprint is well written and easy to follow

      Weaknesses:

      (1) The DIRseq method is based on SeqDYN, which itself is a simple (which I do not mean as a negative - simple is good!) statistical predictor for R2 relaxation rates. The challenge here is that R2 rates cover a range of timescales, so the physical intuition as to what exactly elevated R2 values mean is not necessarily consistent with "drug interacting". Presumably, the authors are not using the helix boost component of SeqDYN here (it would be good to explicitly state this). This is not necessarily a weakness, but I think it would behove the authors to compare a few alternative models before settling on the DIRseq method, given the somewhat ad hoc modifications to SeqDYN to get DIRseq.

      Actually, the factors that elevate R2 are well-established. These are local interactions and residual secondary structures (if any). The basic assumption of our method is that intra-IDP interactions that elevate R2 convert to IDP-drug interactions. This assumption was supported by our initial observation that the drug interaction propensity profiles predicted using the original SeqDYN parameters already showed good agreement with CSP profiles. We only made relatively small adjustments to the parameters to improve the agreement. Indeed we did not apply the helix boost portion of SeqDYN to DIRseq, and will state as such. We will also compare DIRseq with several alternative models.

      Specifically, the authors previously showed good correlation between the stickiness parameter of Tesei et al and the inferred "q" parameter for SeqDYN; as such, I am left wondering if comparable accuracy would be obtained simply by taking the stickiness parameters directly and using these to predict "drug interacting residues", at which point I'd argue we're not really predicting "drug interacting residues" as much as we're predicting "sticky" residues, using the stickiness parameters. It would, I think, be worth the authors comparing the predictive power obtained from DIRseq with the predictive power obtained by using the lambda coefficients from Tesei et al in the model, local density of aromatic residues, local hydrophobicity (note that Tesei at al have tabulated a large set of hydrophobicity scores!) and the raw SeqDYN predictions. In the absence of lots of data to compare against, this is another way to convince readers that DIRseq offers reasonable predictive power.

      We will compare predictions of these various parameter sets, and summarize the results in a table.

      (2) Second, the DIRseq is essentially SeqDYN with some changes to it, but those changes appear somewhat ad hoc. I recognize that there is very limited data, but the tweaking of parameters based on physical intuition feels a bit stochastic in developing a method; presumably (while not explicitly spelt out) those tweaks were chosen to give better agreement with the very limited experimental data (otherwise why make the changes?), which does raise the question of if the DIRseq implementation of SeqDYN is rather over-parameterized to the (very limited) data available now? I want to be clear, the authors should not be critiqued for attempting to develop a model despite a paucity of data, and I'm not necessarily saying this is a problem, but I think it would be really important for the authors to acknowledge to the reader the fact that with such limited data it's possible the model is over-fit to specific sequences studied previously, and generalization will be seen as more data are collected.

      We have explained the rationale for the parameter tweaks, which were limited to q values for four amino-acid types, i.e., to deemphasize hydrophobic interactions and slightly enhance electrostatic interactions (p. 4-5). We will add that these tweaks were motivated by observations from MD simulations of drug interactions with a-syn (ref 20). As already noted in the response to the preceding comment, we will also present results for the original parameter values as well as for when the four q values are changed one at a time.

      (3) Third, perhaps my biggest concern here is that - implicit in the author's assumptions - is that all "drugs" interact with IDPs in the same way and all drugs are "small" (motivating the change in correlation length). Prescribing a specific lengthscale and chemistry to all drugs seems broadly inconsistent with a world in which we presume drugs offer some degree of specificity. While it is perhaps not unexpected that aromatic-rich small molecules tend to interact with aromatic residues, the logical conclusion from this work, if one assumes DIRseq has utility, is that all IDRs bind drugs with similar chemical biases. This, at the very least, deserves some discussion.

      The reviewer raises a very important point. In Discussion, we will add that it is important to further develop DIRseq to include drug-specific parameters when data for training become available.

      (4) Fourth, the authors make some general claims in the introduction regarding the state of the art, which appear to lack sufficient data to be made. I don't necessarily disagree with the author's points, but I'm not sure the claims (as stated) can be made absent strong data to support them. For example, the authors state: "Although an IDP can be locked into a specific conformation by a drug molecule in rare cases, the prevailing scenario is that the protein remains disordered upon drug binding." But is this true? The authors should provide evidence to support this assertion, both examples in which this happens, and evidence to support the idea that it's the "prevailing view" and specific examples where these types of interactions have been biophysically characterized.

      We will cite several studies showing that IDPs remain disordered upon drug binding.

      Similarly, they go on to say:

      "Consequently, the IDP-drug complex typically samples a vast conformational space, and the drug molecule only exhibits preferences, rather than exclusiveness, for interacting with subsets of residues." But again, where is the data to support this assertion? I don't necessarily disagree, but we need specific empirical studies to justify declarative claims like this; otherwise, we propagate lore into the scientific literature. The use of "typically" here is a strong claim, implying most IDP complexes behave in a certain way, yet how can the authors make such a claim? 

      Here again we will add citations to support the statement.

      Finally, they continue to claim:

      "Such drug interacting residues (DIRs), akin to binding pockets in structured proteins, are key to optimizing compounds and elucidating the mechanism of action." But again, is this a fact or a hypothesis? If the latter, it must be stated as such; if the former, we need data and evidence to support the claim. 

      We will add citations to both compound optimization and mechanism of action.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Major concerns:

      (1) Is the direct binding of MCAK to the microtubule cap important for its in vivo function?

      a.The authors claim that their "study provides mechanistic insights into understanding the end-binding mechanism of MCAK". I respectfully disagree. My concern is that the paper offers limited insights into the physiological significance of direct end-binding for MCAK activity, even in vitro. The authors estimate that in the absence of other proteins in vitro, ~95% of MCAK molecules arrive at the tip by direct binding in the presence of ~ physiological ATP concentration (1 mM). In cells, however, the major end-binding pathway may be mediated by EB, with the direct binding pathway contributing little to none. This is a reasonable concern because the apparent dissociation constant measured by the authors shows that MCAK binding to microtubules in the presence of ATP is very weak (69 uM). This concern should be addressed by 1) calculating relative contributions of direct and EB-dependent pathways based on the affinities measured in this and other published papers and estimated intracellular concentrations. Although there are many unknowns about these interactions in cells, a modeling-based analysis may be revealing. 2) the recapitulation of these pathways using purifying proteins in vitro is also feasible. Ideally, some direct evidence should be provided, e.g. based on MCAK function-separating mutants (GDP-Pi tubulin binding vs. catalytic activity at the curled protofilaments) that contribution from the direct binding of MCAK to microtubule cap in EB presence is significant.

      We thank the reviewer for the thoughtful comments.

      (1) We think that the end-binding affinity of MCAK makes a significant contribution for its cellular functions. To elucidate this concept, we now use a simple model shown in Supplementary Appendix-2 (see pages 49-51, lines 1246-1316). In this model, we simplified MCAK and EB1 binding to microtubule ends by considering only these two proteins while neglecting other factors (e.g. XMAP215). Specifically, we considered two scenarios: one in which both proteins freely diffuse in the cytoplasm and another where MCAK is localized to specific cellular structures, such as the centrosome or centromere. Based on the modeling results, we argue that MCAK's functional impact at microtubule ends derives both from its intrinsic end-binding capacity and its ability to strengthen the EB1-mediated end association pathway.

      (2) We agree with the reviewer that MCAK exhibiting a lower end-binding affinity (69 µM) is indeed intriguing, as one might intuitively expect a stronger affinity, e.g. in the nanomolar range. Several factors may contribute to this observation. First, this could be partly due to the in vitro system employed, which may not perfectly replicate in vivo conditions, especially when considering cellular processes quantitatively. Variations in medium composition can significantly influence the binding state. For example, reducing salt concentration leads to a marked increase in MCAK’s binding affinity (Helenius et al., 2006; Maurer et al., 2011; McHugh et al., 2019). Additionally, while numerous binding events with short durations were detected, we excluded transient interactions from our analysis to facilitate quantification. This likely leads to an underestimation of the on-rate and, consequently, the binding affinity. Moreover, to minimize the interference of purification tags (His-tag), we ensured their complete removal during protein sample preparation. Previous studies reported that retaining the His-tag of MAPs affects the binding affinity to microtubules (Maurer et al., 2011; Zhu et al., 2009). Finally, a low affinity is not necessarily unexpected. Considering the microtubule end as a receptor with multiple binding sites for MCAK, the overall binding affinity is in the nanomolar range (260 nM). This does not necessarily contradict MCAK being a microtubule dynamics regulator as only a few MCAK molecules may suffice to induce microtubule catastrophe (as discussed on page 13, lines 408-441).

      (3) Ideally, we would search for mutants that specifically interfere with the binding of GDP-Pi-tubulin or the curled protofilaments. However, the mutant we tested significantly impacts the overall affinity of MCAK to microtubules (both end and lattice), making it challenging to isolate and discuss the function of MCAK with respect to the binding to GDP-Pi-tubulin alone. Additionally, we also think that the GDP-Pi-tubulin in the EB cap and the tubulin in the curved protofilaments may share structural similarities. For instance, the tubulin dimers in both states may be less compact compared to those in the lattice, which could explain why MCAK recognizes both simultaneously (Manka and Moores, 2018). However, this remains a conjecture, as there is currently no direct evidence to support it.

      b. As mentioned in the Discussion, preferential MCAK binding to tubulins near the MT tip may enhance MCAK targeting of terminal tubulins AFTER the MCAK has been "delivered" to the distal cap via the EB-dependent mechanism. This is a different targeting mechanism than the direct MCAK-binding. However, the measured binding affinity between MCAK and GMPCPP tubulins is so weak (69 uM), that this effect is also unlikely to have any impact because the binding events between MCAK and microtubule should be extremely rare. Without hard evidence, the arguments for this enhancement are very speculative.

      Please see our response to the comment No. 1. Additionally, we have revised our discussion to discuss the end-binding affinity of MCAK as well as its physiological relevance (please see page 13, lines 408-441; and see Supplementary Appendix-2 in pages 49-51, lines 1246-1316).

      (2) The authors do not provide sufficient justification and explanation for their investigation of the effects of different nucleotides in MCAK binding affinity. A clear summary of the nucleotide-dependent function of MCAK (introduction with references to prior affinity measurements and corresponding MCAK affinities), the justifications for this investigation, and what has been learned from using different nucleotides (discussion) should be provided. My take on these results is that by far the strongest effect on microtubule wall and tip binding is achieved by adding any adenosine, whereas differences between different nucleotides are relatively minor. Was this expected? What can be learned from the apparent similarity between ATP and AMPPNP effects in some assays (Fig 1E, 4C, etc) but not others (Fig 1D,F, etc)?

      We thank the reviewer for this suggestion. We have revised the manuscript accordingly, and below are the main points of our response

      (1) The experiment investigating the effects of different nucleotides on MCAK binding affinity was inspired by the previous studies demonstrating that kinesin-13 interactions with microtubules are highly dependent on their adenosine-bound states. For example, kinesin-13s tightly bind microtubules and prefer to form protofilament curls or rings with tubulin in the AMPPNP state, whereas kinesin-13s are considered to move along the microtubule lattice via one-dimensional diffusion in the ADP·Pi state (Asenjo et al., 2013; Benoit et al., 2018; Friel and Howard, 2011; Helenius et al., 2006). Based on these observations, we wondered whether MCAK's adenosine-bound states might similarly affect its binding preference for growing microtubule ends. We have made the motivation clear in the revised manuscript (please see page 7, lines 199-209).

      (2) Our main finding regarding the effects of nucleotides is that MCAK shows differential end-binding affinity and preference based on its nucleotide state. First, MCAK shows the greatest preference for growing microtubule ends in the ATP state, supporting the idea that diffusive MCAK (MCAK·ATP) can directly bind to growing microtubule ends. Second, MCAK·ATP also demonstrates a binding preference for GTPγS microtubules and the ends of GMPCPP microtubules. The similar trends in binding preference suggest that the affinity for GDP·Pi-tubulin and GTP-tubulin likely underpins MCAK’s preference for growing microtubule ends. To clarify these points, we have added further discussions in the manuscript (please see page 8, lines 230-233; page9, lines 258-270 and pages 13-14, lines 443-458).

      (3) It is not clear why the authors decided to use these specific mutant MCAK proteins to advance their arguments about the importance of direct tip binding. Both mutants are enzymatically inactive. Both show roughly similar tip interactions, with some (minor) differences. Without a clear understanding of what these mutants represent, the provided interpretations of the corresponding results are not convincing.

      We thank the reviewer for this comment. In the revised manuscript, we no longer draw conclusions about the importance of end-binding based on the mutant data. Instead, we think that the mutant data provide insights into the structural basis of the end-binding preference. Therefore, we have rewritten the results in this section to more accurately reflect these findings (please see page 10, lines 295-327).

      (4) GMPCPP microtubules are used in the current study to represent normal dynamic microtubule ends, based on some published studies. However, there is no consensus in the field regarding the structure of growing vs. GMPCPP-stabilized microtubule ends, which additionally may be sensitive to specific experimental conditions (buffers, temperature, age of microtubules, etc). To strengthen the authors' argument, Taxol-stabilized microtubules should be used as a control to test if the effects are specific. Additionally, the authors should consider the possibility that stronger MCAK binding to the ends of different types of microtubules may reflect MCAK-dependent depolymerization events on a very small scale (several tubulin rows). These nano-scale changes to tubulins and the microtubule end may lead to the accumulation of small tubulin-MCAK aggregates, as is seen with other MAPs and slowly depolymerizing microtubules. These effects for MCAK may also depend on specific nucleotides, further complicating the interpretation. This possibility should be addressed because it provides a different interpretation than presented in the manuscript.

      Regarding the two points raised here, our thoughts are as following

      (1) The end of GMPCPP-stabilized microtubules differs from that of growing microtubules, with the most obvious known difference being the absence of the region enriched in GDP-Pi-tubulin. We consider the end of GMPCPP microtubules as an analogue of the distal tip of growing microtubules, based on two key features: (1) curled protofilaments and (2) GMPCPP-tubulin, a close analogue of GTP-tubulin. Notably, both features are present at the ends of both GMPCPP-stabilized and growing microtubules. Moreover, we agree with the suggestion to use taxol-stabilized microtubules as a control. This would eliminate the second feature (absence of GTP-tubulin), allowing us to isolate the effect of the first feature. Therefore, we conducted this experiment, and our data showed that MCAK exhibits only a mild binding preference for the ends of taxol-stabilized microtubules, which is much less pronounced than for the ends of GMPCPP microtubules. This observation supports the idea that GMPCPP-stabilized ends closely resemble the growing ends of microtubules.

      (2) The reviewer suggested that stronger MCAK binding to the ends of different types of microtubules might reflect MCAK-dependent depolymerization events on a very small scale. This is an insightful possibility, which we had overlooked in the original manuscript. Fortunately, we performed the experiments at the single-molecule concentrations. Upon reviewing the raw data, we found that under ATP conditions, the binding events of MCAK were not cumulative (see Fig. X1 below) and showed no evidence of local accumulation of MCAK-tubulin aggregates.

      Author response image 1.

      The representative kymograph showing GFP-MCAK binding at the ends and lattice of GMPCPP microtubules in the presence of 1 mM ATP (10 nM GFP-MCAK), which corresponded to Fig. 5A. The arrow: the end-binding of MCAK. Vertical bar: 1 s; horizontal bar: 2 mm.

      (5) It would be helpful if the authors provided microtubule polymerization rates and catastrophe frequencies for assays with dynamic microtubules and MCAK in the presence of different nucleotides. The video recordings of microtubules under these conditions are already available to the authors, so it should not be difficult to provide these quantifications. They may reveal that microtubule ends are different (or not) under the examined conditions. It would also help to increase the overall credibility of this study by providing data that are easy to compare between different labs.

      We thank the reviewer for this suggestion. In the revised manuscript, we have provided data on the growth rates, which are similar across the different nucleotide states (Fig. s1). However, due to the short duration of our recordings (usually 5 minutes, but with a high frame rate, 10 fps), we did not observe many catastrophe events, which prevented us from quantifying catastrophe frequency using the current dataset. Since we measured the binding kinetics of MCAK during the growing phase of microtubules, the similar growth rates and microtubule end morphologies suggest that the microtubule ends are comparable across the different conditions.

      Reviewer #1 (Recommendations For The Authors):

      a. Please provide more details about how the microtubule-bound molecules were selected for analysis (include a description of scripts, selection criteria, and filters, if any). Fig 1A arrows do not provide sufficient information.

      We first measured the fluorescence intensity of each binding event. A probability distribution of these intensities was then constructed and fitted with a Gaussian function. A binding event was considered to correspond to a single molecule if its intensity fell within μ±2σ of the distribution. The details of the single-molecule screening process are now provided in the revised manuscript (see page17, lines 574-583).

      b. Evidence that MCAK is dimeric in solution should be provided (gel filtration results, controls for Figs1A - bleaching, or comparison with single GFP fluorophore).

      In the revised manuscript, we provide the gel filtration results of purified MCAK and other proteins used in this study. The elution volume of the peak for GFP-MCAK corresponded to a molecular weight range between 120 kDa (EB1-GFP dimer) and 260 kDa (XMAP215-GFP-his6), suggesting that GFP-MCAK exists as a dimer (~220 kDa) under experimental condition (please see Fig.s1 and page 5, lines 104-105). In addition, we also measured the fluorescence intensity of both MCAK<sup>sN+M</sup> and MCAK. MCAK<sup>sN+M</sup> is a monomeric mutant that contains the neck domain and motor domain (Wang et al., 2012). The average intensity of MCAK<sup>sN+M</sup> is 196 A.U., about 65% of that of MCAK (300 A.U.). These two measurements suggest that the purified MCAK used in this study exists dimers (see Fig. s1).

      c. Evidence that MCAK on microtubules represents single molecules should be provided (distribution of GFP brightness with controls - GFP imaged under identical conditions). Since assay buffers include detergent, which is not desirable, all controls should be done using the same assay conditions. The authors should rule out that their main results are detergent-sensitive.

      (1) Regarding if MCAK on microtubules represent single molecules: please refer to our responses to the two points above.

      (2) To rule out the effect of tween-20 (0.0001%, v/v), we performed additional control experiments. The results showed that it has no significant effect on microtubule-binding affinity of MCAK (see Figure below).

      Author response image 2.

      Tween-20 (0.0001%, v/v) has no significant effect on microtubule-binding affinity of MCAK. (A) The representative projection images of GFP-MCAK (5 nM) binding to taxol-stabled GDP microtubules in the presence of 1 mM AMPPNP with or without tween-20. The upper panel showed the results of the control experiments performed without MCAK. Scale bar: 5 mm. (B) Statistical quantification of the binding intensity of GFP-MCAK binding to GDP microtubules with or without tween-20 (53 microtubules from 3 assays and 70 microtubules from 3 assays, respectively). Data were presented as mean ± SEM. Statistical comparisons were performed using the two-tailed Mann-Whitney U test with Bonferroni correction, n.s., no significance.

      d. How did the authors plot single-molecule intensity distributions? I am confused as to why the intensity distribution for single molecules in Fig 1D and 2A looks so perfectly smooth, non-pixelated, and broader than expected for GFP wavelength. Please provide unprocessed original distributions, pixel size, and more details about how the distributions were processed.

      In the revised manuscript, we provided unprocessed original data in Fig. 1B and Fig. 2A. We thank the reviewer for pointing out this problem.

      e. Many quantifications are based on a limited number of microtubules and the number of molecules is not provided, starting from Fig 1D and down. Please provide detailed statistics and explain what is plotted (mean with SEM?) on each graph.

      We performed a thorough inspection of the manuscript and corrected the identified issues.

      f. Plots with averaged data should be supplemented with error bars and N should be provided in the legend. E.g. Fig 1C - average position of MT and peak positions.

      We agree with the reviewer. In the revised manuscript, we have made the changes accordingly (e.g. Fig. 2C).

      g. Detailed information should be provided about protein constructs used in this work including all tags. The use of truncated proteins or charged/bulky tags can modify protein-microtubule interactions.

      We agree with the reviewer. In the revised manuscript, we provide the information of all constructs (see Fig. s1 and the related descriptions in Methods, pages 15-16, lines 476-534).

      h. Line 515: We estimated that the accuracy of microtubule end tracking was ~6 nm by measuring the standard error of the distribution of the estimated error in the microtubule end position. - evidence should be provided using the conditions of this study, not the reference to the prior work by others.

      i. Line 520: We estimated that the accuracy of the measured position was ~2 nm by measuring the standard error of the fitting peak location". Please provide evidence.

      Point h-i: we now provide detailed descriptions of how to estimate tracking and measurement accuracy and error in our work. Please see pages 18-19, lines 626-645.

      j. Kymographs in Fig 5G are barely visible. Please provide single-channel greyscale images. What are the dim molecules diffusing on this microtubule?

      We have incorporated the changes suggested by the reviewer. We think that some of the dim signals may result from stochastic background noise, while others likely represent transient bindings of MCAK. The exposure time in our experiments was approximately 0.05 seconds; if the binding duration were shorter than this, the signal would be lower (i.e. the “dim” signals). It is important to note that in this study, we selected binding events lasting at least 2 consecutive frames, meaning transient binding events were not included. This point has been clarified in the Methods section (see page17, lines 573-583).

      k. Please provide a methods description for Fig 6. Did the buffer include 1 mM ATP? The presence of ATP would make these conditions more physiological. ATP concentration should be stated clearly in the main text or figure legend.

      The buffer contains ATP. In the revised manuscript, we have provided the methods for the experiments of microtubule dynamics assay, as well as the analysis of microtubule lifetimes and catastrophe frequency (see page 17, lines 561-572 and page 20, lines 685-690).

      l. Line 104: experiment was performed in BRB80 supplemented with 50 mM KCl and 1 mM ATP, providing a nearly physiological ion strength. Please provide a reference or add your calculations in Methods.

      We have provided references on page 5, lines 101-104 of our manuscript.

      m. What was the MCAK concentration in Figure 4? Did the microtubule shorten under any of these conditions?

      In these experiments, we used a very low concentration of MCAK and taxol-stabilized microtubules, so there’s no microtubule shortening observed here. ATP: 10 nM GFP-MCAK; AMPPNP: 1 nM GFP-MCAK; ADP: 10 nM GFP-MCAK; APO state: 0.1 nM GFP-MCAK.

      Other criticism:

      Text improvements are recommended in the Discussion. For example, line 348: Fourth, the loss of the binding preference.. suggests that the binding preference .. is required for the optimal .. preference.

      We thank the reviewer for pointing out this. In the revised manuscript, we conducted a thorough revision and review of the text.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Chen et al. investigate the localization of microtubule kinesin-13 MCAK to the microtubule ends. MCAK is a prominent microtubule depolymerase whose molecular mechanisms of action have been extensively studied by a number of labs over the last ~twenty years. Here, the authors use single-molecule approaches to investigate the precise localization of MCAK on growing microtubules and conclude that MCAK preferentially binds to a GDP-Pi-tubulin portion of the microtubule end. The conclusions are speculative and not well substantiated by the data, making the impact of the study in its current form rather limited. Specifically, greater effort should be made to define the region of MCAK binding on microtubule ends, as well as its structural characteristics. Given that MCAK has been previously shown to effectively tip-track growing microtubule ends through an established interaction with EB proteins, the physiological relevance of the present study is unclear. Finally, the manuscript does not cite or properly discuss a number of relevant literature references, the results of which should be directly compared and contrasted to those presented here.

      We thank the reviewer for the comments. As these suggestions are more thoroughly expressed in the following comments for authors, we will provide the responses in the corresponding sections, as shown below.

      Reviewer #2 (Recommendations For The Authors):

      Significant concerns:

      (1) Establishing the precise localization of MCAK wrt microtubule end is highly non-trivial. More details should be provided, including substantial supplementary data. In particular, the authors claim ~6 nm accuracy in microtubule end positioning - this should be substantiated by data showing individual overlaid microtubule end intensity profiles as well as fits with standard deviations etc. Furthermore, to conclude that MCAK binds behind XMAP215, the authors should look at the localization of the two proteins simultaneously, on the same microtubule end. Notably, EB binding profiles are well known to exponentially decay along the microtubule lattice - this is not very apparent from the presented data. If MCAK's autonomous binding pattern matches that of EB, we should be seeing an exponentially-decaying localization for MCAK as well? However, averaged MCAK signals seem to only be fitted to Gaussian. Note that the EB binding region (i.e. position and size of the EB comet) can be substantially modulated by increasing the microtubule growth rate - this can be easily accomplished by increasing tubulin concentrations or the addition of XMAP215 (e.g. see Maurer et al. Cur Bio 2014). Thus to establish that MCAK on its own binds the same region as EB, experiments that directly modulate the size and the position of this region should be added.

      (1) We thank the reviewer for this comment. Regarding the accuracy in microtubule end positioning, we now provide more details, and please see pages 18-19, lines 625-645 in the revised manuscript.

      (2) Regarding the relative localization of XMAP215 and MCAK, we performed additional experiments to record their colocalizations simultaneously, on the same microtubule end. Our results showed that MCAK predominantly binds behind XMAP215, with 14.5% appearing within the XMAP215’s binding region. Please see Fig. 2.D-E and lines 184-197 in the revised manuscript.

      (3) Regarding the exponential decay of the EB1 signal along microtubules, we observed that the position probability distribution measured in the present study follows a Gaussian distribution, and the expected exponential decay was not apparent. Since the exponential decay is thought to result from the time delay between tubulin polymerization and GTP hydrolysis, slower polymerization is expected to reduce this latency (Maurer et al., 2014). In our experiments, the growth rate was relatively low (~0.7 mm/min), much slower than the rate observed in cells, where the comet-shaped EB1 signal is most pronounced. The previous study has shown that the exponential decay of EB1 is more pronounced at growth rates exceeding 3 mm/min in vitro (Maurer et al., 2014). Therefore, we think that the relatively slow growth may account for the observed non-exponential decay distribution of the EB1 signals. The same reason may also explain the distribution of MCAK.

      (4) We agree with the reviewer’s suggestion that altering microtubule growth rate is a valid and effective approach to regulate the EB cap length. However, the conclusion that MCAK binds to the EB region is supported by three lines of evidence: (1) the localization of MCAK at the ends of microtubules, (2) new experimental data showing that MCAK binds to the proximal end of the XMAP215 site, and (3) the tendency of MCAK to bind GTPγS microtubules, similar to EB1. Based on these findings, we did not pursue additional experiments to modify the length of the EB cap.

      (2) Even if MCAK indeed binds behind XMAP215, there is no evidence that this region is defined by the GDP-Pi nucleotide state; it could still be curved protofilaments. GTPyS is an analogue of GTP - to what extent GTPyS microtubules exactly mimic the GDP-Pi-tubulin state remains controversial. Furthermore, nucleotide sensing for EB is thought to be achieved through its binding at the interface of four tubulin dimers. However MCAK's binding site is distinct, and it has been shown to recognize intradimer tubulin curvature. Thus it is not clear how MCAK would sense the nucleotide state. On the other hand, there is mounting evidence that the morphology of the growing microtubule end can be highly variable, and that curved protofilaments may be protruding off the growing ends for tens of nanometers or more, previously observed both by EM as well as by fluorescence (e.g. Mcintosh, Moores, Chretien, Odde, Gardner, Akhmanova, Hancock, Zanic labs). Thus, to establish that MCAK indeed localizes along the closed lattice, EM approaches should be used.

      First, we conducted additional experiments that demonstrate MCAK indeed binds behind XMAP215, supporting the conclusion that MCAK interacts with the EB cap (please see Fig. 2 in the revised manuscript). Second, our argument that MCAK preferentially binds to GDP-Pi tubulin is based on two observations: (1) the binding regions of MCAK overlap with those of EB1, and (2) MCAK preferentially binds to GTPγS microtubules, which are considered a close analogue of GDP-Pi tubulin. Third, understanding the structural basis of how MCAK senses the nucleotide state of tubulin is beyond the scope of the present study. However, inspired by the reviewer’s suggestion, we looked into the structure of the MCAK-tubulin complex. The L2 loop of MCAK makes direct contact with the interdimer interface (Trofimova et al., 2018; Wang et al., 2017), which could provide a structural basis for recognizing the changes induced by GTP hydrolysis. While this remains a hypothesis, it is certainly a promising direction for future research. Forth, we agree with the reviewer that an EM approach would be ideal for establishing that MCAK localizes along the closed lattice. However, this is not the focus of the current study. Instead, we argue that MCAK binds to the EB cap, where at least some lateral interactions are likely to have formed.

      (3) The physiological relevance of the study is rather questionable: MCAK has been previously established to be able to both diffuse along the microtubule lattice (e.g. Helenius et al.) as well as hitchhike on EBs (Gouveia et al.). Given the established localization of EBs to growing microtubule ends in cells, and apparently higher affinity of MCAK for EB vs. the microtubule end itself (although direct comparisons with the literature have not been reported here), the relevance of MCAK's autonomous binding to dynamic microtubule ends is dubious.

      We thank the reviewer for raising the importance of physiological relevance. Please refer to our response to the comment No.1 of reviewer 1. Briefly, we think that the end-binding affinity of MCAK makes a significant contribution for its cellular functions. To elucidate this concept, we now use a simple model shown in Supplementary Appendix-2 (see pages 49-51, lines 1246-1316). In this model, we simplified MCAK and EB1 binding to microtubule ends by considering only these two proteins while neglecting other factors (e.g. XMAP215). Specifically, we considered two scenarios: one in which both proteins freely diffuse in the cytoplasm and another where MCAK is localized to specific cellular structures, such as the centrosome or centromere. Based on the modeling results, we argue that MCAK's functional impact at microtubule ends derives both from its intrinsic end-binding capacity and its ability to strengthen the EB1-mediated end association pathway.

      (4) Finally, the study seriously lacks discussion of and comparison with the existing literature on this topic. There are major omissions in citing relevant literature, such as e.g. landmark study by Kinoshita et al. Science 2001. Several findings reported here directly contradict previous findings in the literature. Direct comparison with e.g. Gouveia et al findings, Helenius et al. findings, and others need to be included. For example, Gouveia et al reported that EB is necessary for MCAK plus-end-tracking in vitro (please see Figure 1 of their manuscript). The authors should discuss how they reconcile the differences in their findings when compared to this earlier study.

      We thank the reviewer for this helpful suggestion. In the revised manuscript, we have updated the text description and included comparative discussions with other relevant studies in the Discussion section. Specifically, we added comparisons with the research on XMAP215 in page 14, lines 459-472 (Barr and Gergely, 2008; Kinoshita et al., 2001; Tournebize et al., 2000). Additionally, we have compared our findings with those of Gouveia et al. and Helenius et al. regarding MCAK's preference for binding microtubule ends in page 6, lines 145-157 and page 13, 408-441, respectively (Gouveia et al., 2010; Helenius et al., 2006).

      Additional specific comments:

      Figure 1

      Gouveia et al. (Figure 1) reported that MCAK does not autonomously preferentially localize to growing tips. Specifically, Gouveia et al. found equal association rates of MCAK to both the lattice and the tip in the presence of EB3delT, an EB3 construct that does not directly interact with MCAK. How can these findings be reconciled with the results presented here?

      We are uncertain why there was no observed difference in the on-rates to the lattice and the end in the study by Gouveia et al. Even when considering only the known affinity of MCAK for curved protofilaments at the distal tip of growing microtubules, we would still expect to observe an end-binding preference. After carefully comparing the experimental conditions, we nevertheless identified some differences. First, we used a 160 nm tip size to calculate the on-rate (k<sub>on</sub>), whereas Gouveia et al. used a 450 nm tip. Using a longer tip size would naturally lead to a smaller(k<sub>on</sub>) value. Note that we chose 160 nm for several reasons: (i) a previous cryo-electron tomography study has elucidated that the sheet structures of dynamic microtubule ends have an average length of around 180 nm (Guesdon et al., 2016); (ii) Analysis of fluorescence signals at dynamic microtubule ends has demonstrated that the taper length at the microtubule end is less than 180 nm (Maurer et al., 2014); (iii) in the present study, we estimated that the length of MCAK's end-binding region is approximately 160 nm. Second, in Gouveia et al., single-molecule binding events were recorded in the presence of 75 nM EB3ΔT, which could potentially create a crowded environment at the tip, reducing MCAK binding. Third, as mentioned in our response to Reviewer 1, we took great care to minimize the interference from purification tags (e.g., His-tag) by ensuring their complete removal during protein preparation. Previous studies reported that retaining the His-tag of MAPs led to a significant increase in binding for microtubules (Maurer et al., 2011; Zhu et al., 2009). We believe that some of the factors mentioned above, or their combined effects, may account for the differences in these two observations.

      1C shows the decay of tubulin signal over several hundred nm - should show individual traces? How aligned? Doesn't this long decay suggest protruding protofilaments? (E.g. Odde/Gardner work).

      (1) In the revised manuscript, we now show individual traces (e.g. in Fig. 1B and Fig. 2A). The average trace for tubulin signal with standard deviation was shown in Fig. 2C.

      (2) The microtubule lattice was considered as a Gaussian wall and its end as a half-Gaussian in every frame. Use the peak position of the half-Gaussian of every frame to align and average microtubule end signals, during the dwell time. The average microtubule ends' half-Gaussion peak used as a reference to measure the intensity profile of individual single-molecule binding event in every frame (see page18, lines 607-624).

      (3) We think that the decay of tubulin signal results from the convolution of the tapered end structure and the point spread function. In the revised manuscript, we have updated the Figures to provide unprocessed original data in Fig. 1B and Fig. 2A.

      Please show absolute numbers of measurements in 1C (rather than normalized distribution only).

      In the revised manuscript, we have included the raw data for both tubulin and MCAK signals as part of the methods description. In Fig. 1, using normalized values allows for the simultaneous representation of microtubule and protein signals on a unified graph.

      How do the results in 1D-G compare with the previous literature? Particularly comparison of on-rates between this study and the Gouveia et al? Assuming 1 um = 1625 dimers, it appears that in the presence of EB3, the on-rate of MCAK to the tips reported in Gouveia et al. is an order of magnitude higher than reported here in the absence of EB3 (4.3 x 10E-4 vs. 2 x 10E-5). If so, and given the robust presence of EB proteins at growing microtubule ends in cells, this would invalidate the potential physiological relevance of the current study. Note that the dwell times measured in Gouveia et al. are also longer than those measured here.

      Note that in Gouveia et al, the concentration of mCherry-EB3 was 75 nM, about 187.5 times higher than that of MCAK (0.4 nM). The relative concentrations of these two proteins are not always the case in cells. Regarding the physiological relevance of the end-binding affinity of MCAK itself, please refer to our response to the point No.1 of Reviewer 1.

      Notably, Helenius et al reported a diffusion constant for MCAK of 0.38 um^2/s, which is more than an order of magnitude higher than reported here. The authors should comment on this!

      In the revised manuscript, we have provided an explanation for the difference in diffusion coefficient. Please see page 6, line 142-157. In short, low salt condition facilitates rapid diffusion of MCAK.

      Figure 2:

      This figure is critical and really depends on the analysis of the tubulin signal. Note significant variability in tubulin signal between presented examples in 2A. Also, while 2C looks qualitatively similar, there appears to be significant variability over the several hundred nm from the tip along the lattice. This is the crucial region; statistical significance testing should be presented. More detailed info, including SDs etc. is necessary.

      In the revised manuscript, we have provided raw data in Fig. 1B and Fig. 2A. Additionally, we have provided statistical analysis on the tubulin signals (Fig. 2C) and performed significance test. Please see page 5, lines 111-116 and page 7, lines 179-183 for detailed descriptions.

      Insights into the morphology of microtubule ends based on TIRF imaging have been previously gained in the literature, with reports of extended tip structures/protruding protofilaments (see e.g. Coombes et al. Cur Bio 2013, based on the methods of Demchouk et al. 2011). Such analysis should be performed here as well, if we are to conclude that nucleotide state alone, as opposed to the end morphology, specifies MCAK's tip localization.

      We appreciate the reviewer’s suggestion and agree that it provides a valid optical microscopy-based approach for estimating microtubule end morphology. However, this method did not establish a direct correlation between microtubule end morphology and tubulin nucleotide status. Therefore, we think that refining the measurement of microtubule end morphology will not necessarily provide more information to the understanding of tubulin nucleotide status at MCAK binding sites. Based on the available data in the present study, there are two main pieces of evidence supporting the idea that MCAK can sense tubulin nucleotide status: (1) the binding regions of MCAK and EB overlap significantly, and (2) MCAK shows a clear preference for binding to GTPγS microtubules, similar to EB1 (we provide a new control to support this, Fig. s4). Of course, we do not consider this to be a perfect set of evidence. As the reviewer has pointed out here and in other suggestions, future work should aim to further distinguish the nucleotide status of tubulin in the dynamic versus non-dynamic regions at the ends of microtubules, and to investigate the structural basis by which MCAK recognizes tubulin nucleotide status.

      EB comet profile should be clearly reproduced. MCAK should follow the comet profile.

      Please see our 3<sup>rd</sup> response to the point 1 of this reviewer.

      The conclusion that the MCAK binding region is larger than XMAP215 is not firm, based on the data presented. The authors state that 'the binding region of MCAK was longer than that of XMAP215'. What is the exact width of the region of the XMAP215 localization and how much longer is the MCAK end-binding region? Is this statistically significant?

      We have revised this part in the revised manuscript (page 6, lines 167-172). The position probability distributions of MCAK and XMAP215 were significantly different (K-S test, p< 10<sup>-5</sup>), and the binding region of MCAK (FWHM=185 nm) was significantly longer than that of XMAP215 (FWHM=123 nm).

      MCAK localization with AMPPNP should also be performed here. Even low concentrations of MCAK have been shown to induce microtubule catastrophe/end depolymerization. This will dramatically affect microtubule end morphology, and thus apparent positioning of MCAK at the end.

      In the end positioning experiment, we used a low concentration of MCAK (1 nM). Under this condition, microtubule dynamics remained unchanged, and the morphology of the microtubule ends was comparable across different conditions (with EB1, MCAK or XMAP215). Additionally, in the revised manuscript, we present a new experiment in which we recorded the localization of both MCAK and XMAP215 on the same microtubule. The results support the conclusion regarding their relative localization: most MCAK is found at the proximal end of the XMAP215 binding region, while approximately 15% of MCAK is located within the XMAP215 binding region. Please see Fig. 2D-E and page 7, lines 184-197 for the corresponding descriptions.

      Figure 3:

      For clearer presentation, projections showing two microtubule lattice types on the same image (in e.g. two different colors) should be shown first without MCAK, and then with MCAK.

      We thank the reviewer for this suggestion. We have adjusted the figure accordingly. Please see Fig. 4 in the revised manuscript.

      Please comment on absolute intensity values - scales seem to be incredibly variable.

      The fluorescence value presented here is the result of multiple images being summed. Therefore, the difference in absolute values is influenced not only by the binding affinity of MCAK in different states to microtubules, but also by the number of images used. In this analysis, we are not comparing MCAK in different states, but rather evaluating the binding ability of MCAK in the same state on different types of microtubules.

      Given that the authors conclude that MCAK binding mimics that of EB, EB intensity measurements and ratios on different lattice substrates should be performed as a positive control.

      We performed additional experiments with EB1, in the revised manuscript, we provide the data as a positive control (please see Fig. s4).

      Figure 4:

      MCAK-nucleotide dependence of GMPCPP microtubule-end binding has been previously established (see e.g. Helenius et al, others?) - what is new here? Need to discuss the literature. This would be more appropriate as a supplemental figure?

      In the present study, we reproduced the GMPCPP microtubule-end binding of MCAK in the AMPPNP state, as shown in several previous reports (Desai et al., 1999; Hertzer et al., 2006). Here, we also quantified the end to lattice binding preference, and our results showed that the nucleotide state-dependence shows the same trend as the binding preference of MCAK to the growing microtubule ends. Therefore, we prefer to keep this figure in the main text (Fig. 5).

      Figure 5:

      Please note that both MCAK mutants show an additional two orders of magnitude lower microtubule binding on-rates when compared to wt MCAK. This makes the analysis of preferential binding substrate for these mutants dubious.

      We agreed with this point. We have rewritten this part. Please see page 10, lines 295-327, in the revised manuscript.

      Figure 6:

      Combined effects of XMAP215 and XKCM1 (MCAK) have been previously explored in the landmark study by Kinoshita et al. Science 2001, which should be cited and discussed. Also note that Moriwaki et al. JCB 2016 explored the combined effects of XMA215 and MCAK - which should be discussed here and compared to the current results.

      We agree with the reviewer. We have revised the discussion on this part. Please see page 11, lines 329-342 and page 14, lines 459-472 in the revised manuscript.

      Please report quantification for growth rate and lifetime.

      In the revised manuscript, we provide all these data. Please see pages 11-12, lines 343-374.

      To obtain any new quantitative information on the combined effects of the two proteins, at the very minimum, the authors should perform a titration in protein concentration.

      We agree with the reviewer on this point. In our pilot experiments, we performed titration experiments to determine the appropriate concentrations of MCAK and XMAP215, respectively. We selected 50 nM for XMAP215, as it clearly enhances the growth rate and exhibits a mild promoting effect on catastrophe—two key effects of XMAP215 reported in previous studies (Brouhard et al., 2008; Farmer et al., 2021). Reducing the XMAP215 concentration eliminates the catastrophe-promoting effect, while increasing it would not much enhance the growth rate. For MCAK, we chose 20 nM, as it effectively promotes catastrophe; increasing the concentration beyond this point leads to no microtubule growth, at least in the MCAK-only condition. If there’s no microtubule growth, it would be difficult to quantify the parameters of microtubule dynamics, hindering a clear comparison of the combined versus individual effects. Therefore, we think that the concentrations used in this study are appropriate and representative. In the revised manuscript, we make this point clearer (see pages 11 and lines 329-342).

      Finally, the writing could be improved for overall clarity.

      We thank the reviewer for pointing out this. In the revised manuscript, we conducted a thorough revision and review of the text.

      Reviewer #3 (Public Review):

      The authors revisit an old question of how MCAK goes to microtubule ends, partially answered by many groups over the years. The authors seem to have omitted the literature on MCAK in the past 10-15 years. The novelty is limited due to what has previously been done on the question. Previous work showed MCAK targets to microtubule plus-ends in cells through association with EB proteins and Kif18b (work from Wordeman, Medema, Walczak, Welburn, Akhmanova) but none of their work is cited.

      We thank the reviewer for the suggestion. Some of the referenced work has already been cited in our manuscript, such as studies on the interaction between MCAK and EB1. However, other relevant literature had not been properly cited. In the revised manuscript, we have added further discussion on this topic in the context of existing findings. Please refer to pages 3-4, lines 68-85, and pages 13, lines 425-441.

      It is not obvious in the paper that these in vitro studies only reveal microtubule end targeting, rather than plus end targeting. MCAK diffuses on the lattice to both ends and its conformation and association with the lattice and ends has also been addressed by other groups-not cited here. I want to particularly highlight the work from Friel's lab where they identified a CDK phosphomimetic mutant close to helix4 which reduces the end preference of MCAK. This residue is very close to the one mutated in this study and is highly relevant because it is a site that is phosphorylated in vivo. This study and the mutant produced here suggest a charge-based recognition of the end of microtubules.

      Here the authors analyze this MCAK recognition of the lattice and microtubule ends, with different nucleotide states of MCAK and in the presence of different nucleotide states for the microtubule lattice. The main conclusion is that MCAK affinity for microtubules varies in the presence of different nucleotides (ATP and analogs) which was partially known already. How different nucleotide states of the microtubule lattice influence MCAK binding is novel. This information will be interesting to researchers working on the mechanism of motors and microtubules. However, there are some issues with some experiments. In the paper, the authors say they measure MCAK residency of growing end microtubules, but in the kymographs, the microtubules don't appear dynamic - in addition, in Figure 1A, MCAK is at microtubule ends and does not cause depolymerization. I would have expected to see depolymerization of the microtubule after MCAK targeting. The MCAK mutants are not well characterized. Do they still have ATPase activity? Are they folded? Can the authors also highlight T537 and discuss this?

      Finally, a few experiments are done with MCAK and XMAP215, after the authors say they have demonstrated the binding sites overlap. The data supporting this statement were not obvious and the conclusions that the effect of the two molecules are additive would argue against competing binding sites. Overall, while there are some interesting quantitative measurements of MCAK on microtubules - in particular in relation to the nucleotide state of the microtubule lattice - the insights into end-recognition are modest and do not address or discuss how it might happen in cells. Often the number of events is not recorded. Histograms with large SEM bars are presented, so it is hard to get a good idea of data distribution and robustness. Figures lack annotations. This compromises therefore their quantifications and conclusions. The discussion was hard to follow and needs streamlining, as well as putting their work in the context of what is known from other groups who produced work on this in the past few years.

      We thank the reviewer for the comments. Regarding the physiological relevance of the end-binding of MCAK itself, please refer to our response to the point No.1 of reviewer 1. Moreover, as we feel that other suggestions are more thoroughly expressed in the following comments for authors, we will provide the responses in the corresponding sections, as shown below.

      Reviewer #3 (Recommendations For The Authors):

      Why, on dynamic microtubules, is MCAK at microtubule plus ends and does not cause a catastrophe?

      At this concentration (10 nM MCAK with 16 mM tubulin in Fig. 1; 1 nM MCAK with 12 mM tubulin in Fig. 2), MCAK has little effect on microtubule dynamics in our experiments. Using TIRFM, we were able to observe individual MCAK binding events. Based on these observations, we think that in the current experimental condition, a single binding event of MCAK is insufficient to induce microtubule catastrophe; rather, it likely requires cumulative changes resulting from multiple binding events.

      Do the MCAK mutants still have ATPase activity?

      The ATPase activities of MCAK<sup>K525A</sup> and MCAK<sup>V298S</sup> are both reduced to about 1/3 of the wild-type (Fig. s6).

      The intensities of GFP are not all the same on the microtubule lattice (eg 1A). See blue and white arrowheads. The authors could be looking at multiple molecules of GFP-MCAK instead of single dimers. How do they account for this possibility?

      In the revised manuscript, we provide the gel filtration result of the purified MCAK, and the position of the peak corresponds to ~220 kDa, demonstrating that the purified MCAK in solution is dimeric (please see Fig.s1 and page 5, lines 101-103). We measured the fluorescence intensity of each binding event. A probability distribution of these intensities was then constructed and fitted with a Gaussian function. A binding event was considered to correspond to a single molecule if its intensity fell within μ±2σ of the distribution. The details of the single-molecule screening process are provided in the revised manuscript (see page 17, lines 574-583).

      In addition, we also measured the fluorescence intensity of both MCAK<sup>sN+M</sup> and MCAK. MCAK<sup>sN+M</sup> is a monomeric mutant that contains the neck domain and motor domain (Wang et al., 2012). The average intensity of MCAK<sup>sN+M</sup> is 196 A.U., about 65 % of that of MCAK (300 A.U.), suggesting that MCAK is a dimer (see Fig. s1). Moreover, we think that some of the dim signals may result from stochastic background noise, while others likely represent transient bindings of MCAK. The exposure time in our experiments was approximately 0.05 seconds; if the binding duration were shorter than this, the signal would be lower. It is important to note that in this study, we specifically selected binding events lasting at least 2 consecutive frames, meaning transient binding events were not included. This point has been clarified in the Methods section (see page 17, lines 568-569 and lines 574-583).

      Could the authors provide a kymograph of an MT growing, in the presence of MCAK+AMPPNP? Can MCAK track the cap?

      Under single-molecule conditions, we observed a single MCAK molecule briefly binding to the end of the microtubule. However, we did not record if MCAK at high concentrations could track microtubule ends under AMPPNP conditions.

      In the experiments in Figure 6, the authors should also show the localization of MCAK and XMAP215 at microtubule plus ends in their kymographs to show the two molecules overlap.

      Regarding the relative localization of XMAP215 and MCAK, we conducted additional experiments to record their colocalization simultaneously at the same microtubule end. Our results show that MCAK predominantly binds behind XMAP215, with 14.5% of MCAK binding within the XMAP215 binding region. Please see Fig. 2.D-E and page 7, lines 184-197 in the revised manuscript. However, we argue that the effects of XMAP215 and MCAK are additive, and their binding sites do not necessarily need to overlap for these effects to occur.

      The authors do not report what statistical tests are done in their graphs, and one concern is over error propagation of their data. Instead of bar graphs, showing the data points would be helpful.

      We have now shown all data points in the revised manuscript.

      MCAK+AMPPNP accumulates at microtubule ends. Appropriate quotes from previous work should be provided.

      We have made the revisions accordingly. Please see page 9, lines 273-276.

      Controls are missing. An SEC profile for all purified proteins should be presented. Also, the authors need to explain if they report the dimeric or monomeric concentration of MCAK, XMAP215, etc...

      We have provided the gel filtration result for all purified proteins in the revised manuscript (Fig.s1). Moreover, we now make it clear that the concentrations of MCAK and EB1 are monomeric concentration. Please see the legend for Fig. 1, line 893 in the revised manuscript.

      Figure 1: the microtubules don't look dynamic at all. This is also why the authors can record MCAK at microtubule ends, because their structure is not changing.

      The microtubules are dynamic, but they may appear non-dynamic due to the relatively slow growth rate and the high frame rate at which we are recording. We propose that individual binding events of MCAK induce structural changes at the nanoscopic or molecular scale, which are not detectable using TIRFM.

      I recommend the authors measure the Kon and Koff for single GFP-MCAK mutant molecules and provide the information alongside their normalized and averaged binding intensities of GFP-MCAK in Fig 5. Showing data points instead of bar graphs would be better.

      (1) We measured k<sub>on</sub> and dwell time for mutants at growing microtubule end. However, we did not perform single-molecule tracking for MCAK’s binding on stabilized microtubules. This is mainly because the superimposed signal on the stable microtubule already indicates the changes in the mutant's binding affinity to different microtubule structures, and moreover, the binding of the mutants is highly transient, making accurate single-molecule tracking and calculations difficult.

      (2) In the revised figure, we have included the data points in all plots.

      When discussing how Kinesin-13 interacts with the lattice, the authors should quote the papers that report the organization of full-length Kinesin-13 on tubulin heterodimers: Trofimova et al, 2018; McHugh et al 2019; Benoit et al, 2018. It would reinforce their model and account for the full-length protein, rather than just the motor domain.

      We thank the suggestion for the reviewer. In our manuscript, we have cited papers on full-length Kinesin-13 to discuss the interaction between MCAK and microtubule end-curved structure. Additionally, we have utilized the MCAK-tubulin crystal structure (PDB ID: 5MIO) in Fig. 6, as it depicts a human MCAK, which is consistent with the protein used in our study. This structure illustrates the interaction sites between MCAK and tubulin dimer, guiding our mutation studies on specific residues. Thus, we prefer to use the structure (PDB ID: 5MIO) in Fig.6.

      Figure 5A. What type of model is this? A PDB code is mentioned. Is this from an X-ray structure? If so, mention it.

      We have now included the structural information in the Figure legend (see page 37, lines 1045).

      Figure 5B. It is not possible to distinguish the different microtubule lattices (GTPyS, GDP, and GMPCPP). The experiment needs to be better labelled.

      We thank the reviewer for this comment. We have now rearranged the figure for better clarity (see Fig. 6).

      "Figure 5D: what are the statistical tests? I don't understand " The statistical comparisons were made versus the corresponding value of 848 GFP-MCAK".

      We have made this point clearer in the revised manuscript (see pages 38, line 1078-1080).

      What is the "EB cap"? This needs explaining.

      We provide this explanation for this, please see page 4, lines 87-89 in the revised manuscript.

      Work from Friel and co-workers showed MCAK T537E did not have depolymerizing activity and a reduced affinity for microtubule ends. The work of the authors should be discussed with respect to this previously published work.

      We thank the reviewer for this suggestion. In the revised manuscript, we have added discussions on this (see page 10, lines 303-307).

      The concentration of protein used in the assays is not always described.

      We have checked throughout the manuscript and made revisions accordingly.

      "Having revealed the novel binding sites of MCAK in dynamic microtubule ends " should be on "we wondered how MCAK may work ..with EB1". This is not addressed so should be removed. Instead, they can quote the work from Akhmanova's lab. Realistically this section should be rephrased as there are other plus-end targeting molecules that compete with MCAK, not just XMAP215 and EB1.

      We have rephrased this section as suggested by this reviewer to be more specific. Please see page 11, lines 329-342.

      What is AMPCPP?

      It should be “AMPPNP”

      Typos in Figure 5.

      Corrected

    1. Author response:

      The following is the authors’ response to the previous reviews

      We have made the following small adjustments and resubmit the manuscript to be published as a Version of Record with eLife.

      Changes in main text of the manuscript:

      We have moved the “Proposed additional tests” subsection to the Discussion section as suggested by the referee. 

      We have added a link to a Github repository and a link to a Zenodo data repository at the beginning of the Materials and Methods section in the “Data and materials availability” subsection. The Github repository contains simulation code and data, and single-cell data analysis code. The Zenodo link contains our experimental data (we await your confirmation before we publish it officially on Zenodo).   

      Changes in the supplemental information files

      We have fixed the typo on page 29 of the SI in which Eq. (8) was referred to in a derivation. It should be Eq. (5) instead. We thank the referee for catching this mistake which has now been corrected.

      We have fixed a typo on page 29 of SI, in which the word “evoke” is now “invoke”.  

      We have clarified the derivation on page 29 of the SI. The referee is correct that the limit condition was used to set the right-hand side of Eq. (5.11) to zero.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      This study addresses a critical gap in veterinary diagnostics by developing a CRISPR-based diagnostic toolbox (SHERLOCK4AAT) for detecting animal African trypanosomosis. It describes the development and field deployment of SHERLOCK4AAT, a CRISPR-Cas13-based diagnostic toolbox for the eco-epidemiological surveillance of animal African trypanosomosis (AAT) in West Africa.The authors successfully created and validated species-specific assays for multiple trypanosomes, including T. congolense, T. vivax, T. theileri, T. simiae, and T. suis, alongside pan-trypanosomatid and pan-Trypanozoon assays. The field validation in pigs from Guinea and Côte d'Ivoire revealed high trypanosome prevalence (62.7%), frequent co-infections, and importantly identified T. b. gambiense in one animal at each site, suggesting pigs may serve as potential reservoirs for this human-infective parasite.

      A major strength of the study lies in its methodological innovation. By adapting SHERLOCK to target both conserved and species-discriminating sequences, the authors achieved high sensitivity and specificity in detecting Trypanosoma species. Their use of dried blood spots, validated thresholds through ROC analyses, and statistical robustness (e.g., Bayesian latent class modeling) provides a strong foundation for their conclusions.

      The results are significant: over 60% of pigs tested positive for at least one trypanosome species, with co-infections observed frequently and T. b. gambiense detected in pigs at both sites. These findings have direct implications for the role of animal reservoirs in human disease transmission and underscore the value of pigs as sentinel hosts in gHAT elimination efforts.

      The limitations are well acknowledged, particularly the suboptimal sensitivity of the T. vivax assay and the reliance on synthetic controls for T. suis and T. simiae. However, these limitations do not undermine the overall conclusions, and the paper provides a clear roadmap for further assay refinement and implementation.

      This study offers a timely, impactful, and well-substantiated contribution to the field. The SHERLOCK4AAT toolbox holds promise for improving AAT diagnostics in resource-limited settings and advancing One Health surveillance frameworks.

      Thank you

      Strengths: 

      (1) The adaptation of SHERLOCK technology for AAT represents a significant technical advancement, offering higher sensitivity than traditional parasitological methods and the ability to detect multiple species simultaneously.

      (2) Rigorously performed with validation using appropriate controls, ROC curve analyses, and Bayesian latent class modelling, establishing clear analytical sensitivity and specificity for most assays.

      (3) Testing 424 pig samples across two countries provides robust evidence of the tool's utility and reveals important epidemiological insights about trypanosome diversity and prevalence.

      (4) The identification of T. b. gambiense in pigs at both sites has significant implications for HAT elimination strategies and highlights the need for integrated One Health approaches.

      (5) The use of dried blood spots and RNA detection for active infections makes the approach practical for field surveillance in resource-limited settings.

      Thank you

      Weaknesses: 

      (1) The manuscript would benefit from more detailed discussion of practical considerations such as cost, equipment requirements, and training needs for implementing SHERLOCK in endemic areas and rural settings which would improve applicability.

      This is now adressed in the revised discussion (end of the first section).

      (2) Limited discussion of pig selection criteria: More justification for choosing pigs as sentinel animals and discussion of potential limitations of this approach would strengthen the manuscript.

      Yes, this is now more clearly explained in the revised discussion (beginning of the first section).

      (3) More details on why certain genes were targeted would strengthen the methods.

      The first result section ‘Selection of targets for broad and species-specific SHERLOCK assays targeting AAT species (SHERLOCK4AAT)’ is already dedicated to extensively explaining target selection, hence we’re afraid we don’t know what could be added.  

      (4) Table formatting could be improved for readability. 

      (5) Some figures are complex and would benefit from additional explanations in the legends.

      We have tried to improve these two aspects as much as possible in the revised manuscript.

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript is important due to the significance of the findings. The strength of evidence is convincing.

      Thank you

      Strengths: 

      (1) Using a Novel SHERLOCK4AAT toolkit for diagnosis. 

      (2) Identification of various sub-species of Trypanosomes. 

      (3) Differentiating the animal subspecies from the human one. 

      Thank you

      Weaknesses: 

      (1) The title is too long, and the use of definite articles should be reduced in the title.

      The title has been improved in the revised version.

      (2) The route of blood sample collection in the animals should be well defined and explained.

      This has been more clearly explained in the revised method section.

      Reviewer #3 (Public review):

      Summary: 

      The study adapts CRISPR-based detection toolkit (SHERLOCK assay) using conserved and species-specific targets for the detection of some members of the Trypanosomatidae family of veterinary importance and species-specific assays to differentiate between the six most common animal trypanosome species responsible for AAT (SHERLOCK4AAT). The assays were able to discriminate between Trypanozoon (T. b. brucei, T. evansi, and T. equiperdum), T. congolense (Savanah, Forest Kilifi, and Dzanga sangha), T. vivax, T. theileri, T. simiae, and T. suis. The design of both broad and species-specific assays was based primarily on sequences of the 18S rRNA, GAPDH (Glyceraldehyde-3-phosphate dehydrogenase), and invariant flagellum antigen (IFX) genes for species identification. Most importantly, the authors showed varying limits of detection for the different SHERLOCK assays, which is somewhat comparable to PCR-derived molecular techniques currently used for detecting animal trypanosomes, even though some of these methodologies have used other primers that target genes such as ITS1 and 7SL sRNA. <br /> The data presented in the study are particularly useful and of significant interest for the diagnosis of AAT in affected areas.

      Thank you

      Strengths: 

      The assays convincingly allow for the analysis and detection of most trypanosomes in AAT.

      Thank you

      Weaknesses: 

      Inability for the assay to distinguish T. b. brucei, T. evansi, and T. equiperdum using the 18S rRNA gene, as well as the IFX gene, not achieving the sensitivity requirements for detection of T. vivax.  Both T. brucei brucei and T. vivax are the most predominant infective species in animals (in addition to T. congolense), therefore, a reliable assay should be able to convincingly detect these to allow for proper use of the diagnostic assay.

      We agree with this point and aim to improve the toolbox for future studies.

      Reviewer #1 (Recommendations for the authors):

      (1) Provide additional details on the practicality of SHERLOCK deployment in the field, including training, costs, and infrastructure (potential challenges for field deployment, including suggestions for how to overcome these barriers).

      This is now adressed in the revised discussion (end of the first section).

      (2) Provide more detailed justification for choosing pigs as the main study species and discuss potential benefits and limitations of extending the approach to other livestock species.

      Yes, this is now more clearly explained in the revised discussion (beginning of the first section).

      (3) Add a comparison table comparing SHERLOCK4AAT performance metrics (sensitivity, specificity, LoD) with existing molecular diagnostic methods for AAT for ease of reference.

      There are dozens of different serological, immunological and molecular approaches with highlty variable levels of sensitivity and specificities already reviewed and compared in detail in two references from 2022 (Desquesnes et al. a and b), which we have cited, as well as in a newly added reference (EBHODAGHE F acta trop 2018). Hence, we decided to only refer to the most comparable studies in the present article.

      (4) Review complex figures and improve legends for better readability and interpretation.

      We have tried to improve this as much as possible in the revised manuscript.

      Reviewer #2 (Recommendations for the authors): 

      (1) Reduce the number of words in the title from 28 to not more than 20.

      The title has been improved in the revised version.

      (2) Specify the particular route of collection of blood samples in the various animals.

      Yes, this is now more clearly explained in the revised method section.

      (3) Correct all typographical errors. 

      We have tried to improve this as much as possible in the revised manuscript.

      Thanks. I wish you the best in your publication process. 

      Thank you

      Reviewer #3 (Recommendations for the authors): 

      Minor comments 

      (1) The authors can expand the discussion to include other recent diagnostic assays for Animal trypanosomiasis, such as those that target other genes like tubulin.

      Please see response to Review 1 point #3 above.

      (2) The cost-effectiveness of the use of the assay can be discussed since the assay is expected to be used for work in some resource-deprived areas. For example, will it cost a researcher less to do a diagnosis with this assay relative to what is already available?

      This is now adressed in the revised discussion (end of the first section).

      (3) Is Cote d'Ivoire more endemic for AAT than Guinea? Will this account for the apparently consistent differences in the percentage of positive samples, or just because of the type of samples used from the two locations?

      As the sampling method, sample preservation and sample analysis were the same for both groups - yes, it appears that pigs, at least for domesticated ones, in the study region of Cote d'Ivoire were more frequently infected than those in the study region of Guinea. It is however risky to extrapolate these observations to the AAT prevalence in the entire countries and/or to other mammals.

      (4) Can the authors comment on how long one can store the samples for an effective and reliable assay?

      The samples can be stored for several months at ambient temperature in a sealed bag with silica gel packages to reduce humidity. We have added this detail in the revised methods section.

      (5) It is not clear whether the authors used conventional molecular diagnostics to compare the data obtained from this particular cohort of animals as reference is made to published data. It is not surprising that the SHERLOCK performed better than using parasitology-based methodology.

      This is now adressed in the revised discussion.

      (6) (Figure 4D-5D) should be 4D and 5D.

      Thank you, this has been corrected.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment

      This useful study integrates experimental methods from materials science with psychophysical methods to investigate how frictional stabilities influence tactile surface discrimination. The authors argue that force fluctuations arising from transitions between frictional sliding conditions facilitate the discrimination of surfaces with similar friction coefficients. However, the reliance on friction data obtained from an artificial finger, together with the ambiguous correlative analyses relating these measurements to human psychophysics, renders the findings incomplete.

      Our main goal with this paper was to show that the most common metric, i.e. average friction coefficient—widely used in tactile perception and device design – is fundamentally unsound, and to offer a secondary parameter that is compatible with the fact that human motion is unconstrained, leading to dynamic interfacial mechanics.

      We understand the Reviewers wanted, through biomechanical measurements, to demonstrate that humans using instabilities. This is seemingly reasonable, but in individual responses, we explain the significant challenges and fundamental unknowns to those experiments. We believe this paper sets forth an important step to approach this problem. At the same time, we have made several changes in the discussion, conclusion, and title to clarify that our study is correlative between mechanical characterization and human testing.

      In short, there are still several fundamental unknowns that prevented us from basing the study around biomechanical measurements: (1) a decision-making model would need to be created, but it is unknown if tactile decision making follows other models, (2) it is further unknown what constitutes “tactile evidence”, though at our manuscript’s conclusion, we propose that friction instabilities are better suited for to be tactile evidence than the averaging of friction coefficients from a narrow range of human exploration (3) in the design of samples, from a friction mechanics and materials perspective, it is not at this point, possible to pre-program surfaces a priori to deliver friction instabilities and instead must be experimentally determined – especially when attempting to achieve this in controlled surfaces that do not create other overriding tactile cues, like macroscopic bumps or large differences in surface roughness. (4) Given that the basis for tactile percepts, like which object feels “rougher” or “smoother” is not sufficiently established, it is necessary to use a 3-alternative forced choice task which avoids asking objects along a preset perceptual dimension – a challenge recognized by Reviewer 3. However, this would bring in issues of memory in the decision-making model. (5) The prior points are compounded by the fact that, we believe, tactile exploration must be performed in an unconstrained manner, i.e., without an apparatus generating motion onto a stationary finger. Work by Liu et al. (IEEE ToH, 2024) showed that recreating friction obtained during free exploration onto a stationary finger was uninterpretable by the participants, hinting at the importance of efference copies.[1] We believe that many of the above-mentioned issues constitutes a significant advance in knowledge and would require discussion and dissemination with the community.

      Our changes to the manuscript

      Page 1 & SI Page 1, Title

      “Alternatives to Friction Coefficient: Fine Touch Perception Correlates with Frictional Instabilities”

      Reviewer 1 (Public review):

      Summary:

      In this paper, Derkaloustian et. al look at the important topic of what affects fine touch perception. The observations that there may be some level of correlation with instabilities are intriguing. They attempted to characterize different materials by counting the frequency (occurrence #, not of vibration) of instabilities at various speeds and forces of a PDMS slab pulled lengthwise over the material. They then had humans make the same vertical motion to discriminate between these samples. They correlated the % correct in discrimination with differences in frequency of steady sliding over the design space as well as other traditional parameters such as friction coefficient and roughness. The authors pose an interesting hypothesis and make an interesting observation about the occurrences of instability regimes in different materials while in contact with PDMS, which is interesting for the community to see in the publication. It should be noted that the finger is complex, however, and there are many factors that may be quite oversimplified with the use of the PDMS finger, and the consideration and discounting of other parameters are not fully discussed in the main text or SI. Most importantly, however, the conclusions as stated do not align with the primary summary of the data in Figure 2.

      Strengths:

      The strength of this paper is in its intriguing hypothesis and important observation that instabilities may contribute to what humans are detecting as differences in these apparently similar samples.

      We thank Reviewer 1 for their time on the manuscript, recognizing the approach we took, and offering constructive feedback. We believe that our conclusions, in fact, are supported by the primary summary of the data in Fig. 2 but we believe that our use of R<sup>2</sup> could have led to misinterpretation. The trend with friction coefficient and percent correct was indeed statistically significant but was spurious because the slope was negative. In the revision, we add clarifying comments throughout, change from R<sup>2</sup> to r as to highlight the negative trend, and adjust the figures to better focus on friction coefficient.

      Finally, we added a new section to discuss the tradeoffs between using a real human finger versus a mock finger, and which situations may warrant the use of one or the other. In short, for our goal of characterizing surfaces to be used in tactile experiments, we believe a mock finger is more sustainable and practical than using real humans because human fingers are unique per participant, humans move their fingers at constantly changing pressures and velocities, and friction generated during free exploring human cannot be satisfactorily replicated by moving a sample onto a stationary finger. But, we do not disagree that for other types of experiments, characterizing a human participant directly may be more advantageous.

      Weaknesses:

      Comment 1

      The most important weakness is that the findings do not support the statements of findings made in the abstract. Of specific note in this regard is the primary correlation in Figure 2B between SS (steady sliding) and percent correct discrimination. Of specific note in this regard is the primary correlation in Figure 2B between SS (steady sliding) and percent correct discrimination. While the statistical test shows significance (and is interesting!), the R-squared value is 0.38, while the R-squared value for the "Friction Coefficient vs. Percent Correct" plot has an R-squared of 0.6 and a p-value of < 0.01 (including Figure 2B). This suggests that the results do not support the claim in the abstract: "We found that participant accuracy in tactile discrimination was most strongly correlated with formations of steady sliding, and response times were negatively correlated with stiction spikes. Conversely, traditional metrics like surface roughness or average friction coefficient did not predict tactile discriminability."

      We disagree that the trend with friction coefficient suggests the results do not support the claim because the correlation was found to be negative. However, we could have made the comparison more apparent and expanded on this point, given its novelty.

      While the R<sup>2</sup> value corresponding to the “Friction Coefficient vs. Percent Correct” plot is notably higher, our results show that the slope is negative, which would be statistically spurious. This is because a negative correlation between percent correct (accuracy in discriminating surfaces) and difference in friction coefficient means that the more similar two surfaces are (by friction coefficient), the easier it would be for people to tell them apart. That is, it incorrectly concludes that two identical surfaces would be much easier to tell apart than two surfaces with greatly different friction coefficients.

      This is counterintuitive to nearly all existing results, but we believe our samples were well-positioned to uncover this trend by minimizing variability, by controlling multiple physical parameters in the samples, and that the friction coefficient — typically calculated in the field as an average friction coefficient — ignores all the dynamic changes in forces present in elastic systems undergoing mesoscale friction, i.e., human touch, as seen in Fig. 1 in a mock finger and Fig. 3 in a real finger. By demonstrating this statistically spurious trend, we believe this strongly supports our premise that an alternative to friction coefficient is needed in the design of tactile psychophysics and haptic interfaces.

      We believe that this could have been misinterpreted, so we took several steps to improve clarity, given the importance of this finding: we separated the panel on friction coefficient to its own panel, we changed from R<sup>2</sup> to r throughout, and we added clarifying text. We also added a small section focusing on this spurious trend.

      Our changes to the manuscript

      Page 1, Abstract

      “In fact, the typical method of averaging friction coefficients led to a spurious correlation which erroneously suggests that distinct objects should feel identical and identical objects should feel distinct.”

      Page 7

      “As Fig. 1 was constructed from friction measurements, we can also calculate an average friction coefficient, µ, by averaging the friction coefficient obtained at each of the 16 combinations of masses and velocities (Table 1). This calculation is a standard approach in tactile studies for summarizing friction measurements, or in some cases, surfaces are never characterized at multiple masses and velocities. However, summarizing friction data in this manner has been considered as conceptually questionable by others from a mechanics perspective.[3] Fig. 1 shows that the type of instabilities and friction forces encountered on a single surface can vary widely depending on the conditions. As a result, large variations in the friction coefficient are expected, depending on the mass and velocity — even though measurements originate from the same surface. This variability in friction coefficient can be seen with the large interquartile range of friction coefficients, which shows that the variation in friction coefficient across a single surface is similar, or even larger, than the differences in average friction coefficient across two different surfaces. The observation that friction coefficients vary so widely on a single surface calls into question the approach of analyzing how humans may perceive two different objects based on their average friction coefficients.”

      Page 9, Fig. 2 Caption

      “D) GLMM of accuracy vs. difference in average friction coefficient , showing a negative correlation. E) GLMMs of accuracy vs. other commonly used material properties or parameters: ΔAverage roughness R<sub>a</sub>, ΔHurst exponent H, and ΔWater contact angle hysteresis (º) (N = 10 participants_, _n = 600 total trials).”

      Page 9

      “Considering all instabilities individually, we found that only steady sliding was a positive, statistically significant predictor. (r \= 0.62, p < 0.05, shown in Fig. 2B).”

      Page 10

      “To compare the value of looking at frictional instabilities, we also performed GLMM fits on common approaches in the field, like a friction coefficient or material property typically used in tactile discrimination, shown in Fig. 2D-E. Interestingly, in Fig. 2D, we observed a spurious, negative correlation between friction coefficient (typically and often problematically simplified as across all tested conditions) and accuracy (r = -0.64, p < 0.01); that is, the more different the surfaces are by friction coefficient, the less people can tell them apart. This spurious correlation would be the opposite of intuition, and further calls into question the common practice of using friction coefficients in touch-related studies. Interestingly, this spurious correlation was also found by Gueorguiev et al.[21] The alternative, two-term model which includes adhesive contact area for friction coefficient[32] was even less predictive (see Fig. S6A of SI). We believe such a correlation could not have been uncovered previously as our samples are minimal in their physical variations. Yet, the dynamic changes in force even within a single sample are not considered, despite being a key feature of mesoscale friction during human touch.

      We investigate different material properties in Fig. 2E. Differences in average roughness R<sub>a</sub> (or other parameters, like root mean square roughness R<sub>rms</sub> (Fig. S6A of SI) did not show a statistically significant correlation to accuracy. Though roughness is a popular parameter, correlating any roughness parameter to human performance here could be moot: the limit of detecting roughness differences has previously been defined as 13 nm on structured surfaces[36] and much higher for randomly rough surfaces,[49] all of which are magnitudes larger than the roughness differences between our surfaces. The differences in contact angle hysteresis – as an approximation of the adhesion contributions[50] – do not present any statistically significant effects on performance.”

      Page 11-12

      “Despite the correlative nature of this study, we still obtained high correlations compared to existing biomechanical studies[4,19,21], which we speculate is because instabilities are an important predictive phenomenon for models of human touch. We believe that biomechanical studies, including more sophisticated techniques, like spatially resolved force maps from digital image correlation[5,42] may yield stronger correlations and results if they analyze data based on instabilities.

      Added References

      (2) Khamis, H. et al. Friction sensing mechanisms for perception and motor control: passive touch without sliding may not provide perceivable frictional information. J. Neurophysiol. 125, 809– 823 (2021).

      (6) Olczak, D., Sukumar, V. & Pruszynski, J. A. Edge orientation perception during active touch. J. Neurophysiol. 120, 2423–2429 (2018).

      Comment 2, Part 1

      Along the same lines, other parameters that were considered such as the "Percent Correct vs. Difference in Sp" and "Percent Correct vs. Difference in SFW" were not plotted for consideration in the SI. It would be helpful to compare these results with the other three metrics in order to fully understand the relationships.

      We have added these plots to the SI. We note that we had checked these relationships and discussed them briefly, but did not include the plot. The plots show that the type of instability was not as helpful as its presence or absence.

      Our changes to the manuscript

      Page 9

      “Furthermore, a model accounting for slow frictional waves alone specifically shows a significant, negative effect on performance (p < 0.01, Fig. S5 of SI), suggesting that in these samples and task, the type of instability was not as important.”

      “Fig. S5. GLMM fits of participant accuracy vs. the differences in instability incidence for individual instability types. Left: accuracy vs. differences in formation of slow frictional waves (SFW) between pairs. P1 and P5 have the same x-axis value and are shifted for clarity. Right: accuracy vs. differences in formation of stiction spikes (Sp).”

      SI Page 4

      “and no correlation between accuracy and stiction spikes (Fig. S5).”

      Comment 2, Part 2

      Other parameters such as stiction magnitude and differences in friction coefficient over the test space could also be important and interesting.

      We agree these are interesting and have thought about them. We are aware that others, like Gueorguiev et al., have studied stiction magnitudes, and though there was a correlation, the physical differences in surface roughness (glass versus PMMA) investigated made it unclear if these could be generalized further.[3] We are unsure how to proceed here with a satisfactory analysis of stiction magnitude, given that stiction spikes are not always generated. In fact, Fig. 1 shows that for many velocities and pressures, stiction spikes are not formed. In ongoing work, however, we are always cognizant that if stiction spikes are a dominant factor, then a secondary analysis on their magnitude would be important. We offer some speculation on why stiction spikes may be overrepresented in the literature:

      (1) They are prone to being created if the finger was loaded for a long time onto a surface prior to movement, thus creating adhesion by contact aging which is unlike active human exploration. We avoid this by discarding the first pull in our measurements, which is a standard practice in mechanical characterization if contact aging needs to be avoided.

      (2) The ranges of velocities and pressures explored by others were small.

      (3) In an effort to generate strong tactile stimuli, highly adhesive or rough surfaces are used.

      (4) Stiction spikes are visually distinctive on a plot, but we are unaware of any mechanistic reason that mechanoreceptors would be particularly sensitive to this low frequency event over other signals.

      We interpret “difference in friction coefficient over the test space” to be, for a single surface, like C4, to find the highest average friction for a condition of single velocity and mass and subtract that from the lowest average friction for a condition of single velocity and mass. We calculated the difference in friction coefficient in the typical manner of the field, by averaging all data collected at all velocities and masses and assigning a single value for all of a surface, like C4. We had performed this, and have the data, but we are wary of overinterpreting secondary and tertiary metrics because they do not have any fundamental basis in traditional tribology, and this value, if used by humans, would suggest that they rapidly explore a large parameter space to find a “maximum” and “minimum” friction. Furthermore, the range in friction across the test space, after averaging, can be smaller than the range of friction experienced at different masses and velocities on a single surface. We have tabulated and newly included these values (the interquartile range of friction coefficients of different masses and velocities per surface) in Table 1.

      Fig. 2D shows a GLMM fit between percent correct responses across our pairs and the differences in friction coefficient for each pair, where we see a spurious negative correlation. As we had the data of all average friction coefficients for each condition for a given material, we also looked at the difference in maximum and minimum friction coefficients. For our tested pairs, these differences also lined up on a statistically significant, negative GLMM fit (r = -0.86, p < 0.005). However, the values for a given surface can vary drastically, with an interquartile range of 1.20 to 2.09 on a single surface. We fit participant accuracy to the differences in these IQRs across pairs. This also led to a negative GLMM fit (r = -0.65, p < 0.05). However, we are hesitant to add this plot to the manuscript for the reasons stated previously.

      Comment 3, Part 1

      Beyond this fundamental concern, there is a weakness in the representativeness of the PDMS finger, the vertical motion, and the speed of sliding to real human exploration.

      Overall, this is a continuous debate that we think offers two solutions, and we are not advocating for an “either-or” case. There is always a tradeoff between using a synthetic model of a finger versus a real human finger, and there is a place for both models. That is, while our mock finger will be “better” the more similar it is to a human finger, it is not our goal to fully replace a human finger. Rather our goal is to provide a consistent method of characterizing surfaces that is sufficiently similar to human touch as to be a useful and predictive tool.

      The usefulness of the mock finger is in isolating the features of each surface that is independent of human variability, i.e., instabilities that form without changing loading conditions between sliding motions or even within one sliding motion. Of course, with this method, we still require confirmation of these features still forming during human exploration, which we show in Fig. 3. We believe that this method of characterizing surfaces at the mesoscale will ultimately lead to more successful human studies on tactile perception. Currently, and as shown in the paper, characterizing surfaces through traditional techniques, such as a commercial tribometer (friction coefficient, using a steel or hard metal ball), roughness (via atomic force microscopy or some other metrology), surface energy are less or not at all predictive. Thus, we believe this mock finger is better than the current state-of-the-art characterizing surfaces (we are also aware of a commercial mock finger company, but we were unable to purchase or obtain an evaluation model).

      One of the main – and severe – limitations of using a human finger is that all fingers are different, meaning any study focusing on a particular user may not apply to others or be recreated easily by other researchers. We do not think it is feasible to set a standard for replication around a real human finger as that participant may no longer be available, or willing to travel the world as a “standard”. Furthermore, the method in which a person changes their pressures and velocities is different. We note that this is a challenge unique to touch perception – how an object is touched changes the friction generated, and thus the tactile stimulus generated, whereas a standardized stimulus is more straightforward for light or sound.

      However, we do emphasize that we have strongly considered the balance between feasibility and ecological validity in the design of a mock finger. We have a mock finger, with the three components of stiffness of a human finger (more below). Furthermore, we have also successfully used this mock finger in correlations with human psychophysics in previous work, where findings from our mechanical experiments were more predictive of human performance[4–7] than other available methods.

      Our changes to the manuscript Added (Page 2-3)

      “Mock finger as a characterization tool

      We use a mechanical setup with a PDMS (poly(dimethylsiloxane)) mock finger to derive tactile predictors as opposed to direct biomechanical measurements on human participants. While there is a tradeoff in selecting a synthetic finger over a real human finger to modeling human touch, human fingers themselves are also highly variable[23] both in their physical shape and their use during human motion. Our goal is to design a consistent method of characterization of samples that can be easily accessed by other researchers and does not rely on a standard established around single human participant. We believe that sufficient replication of surface, bulk properties, and contact geometry results in characterization that isolates consistent features of surfaces that are not derived from human-to-human variability. We have used this approach to successfully correlate human results with mock finger characterization previously.[8,9,24]

      The major component of a human finger, by volume, is soft tissue (~56%),[25] resulting in an effective modulus close to 100 kPa.[26,27] In order to achieve this same softness, we crosslink PDMS in a 1×1×5 cm mold at a 30:1 elastomer:crosslinker ratio. In addition, two more features in the human finger impart significant mechanical differences. Human fingers have a bone at the fingertip, the distal phalanx,[26–28, 8–10]which we mimic with an acrylic “bone” within our PDMS network. The stratum corneum, the stiffer, glassier outer layer of skin,[29] is replicated with the surface of the mock finger glassified, or further crosslinked, after 8 hours of UV-Ozone treatment.30 This treatment also modifies the surface properties of the native PDMS to align with those of a human finger more closely: it minimizes the viscoelastic tack at the surface, resulting in a comparable non-sticky surface. Stabilizing after one day after treatment, the mock finger surface obtains a moderate hydrophilicity (~60º), as is typically observed for a real finger.[11,31]

      The initial contact area formed before a friction trace is collected is a rectangle of 1×1 cm. While this shape is not entirely representative of a human finger with curves and ridges, human fingers flatten out enough to reduce the effects of curvature with even very light pressures.[31–33] This implies that for most realistic finger pressures, the contact area is largely load-independent, which is more accurately replicated with a rectangular mock finger.

      Lastly, we consider the role of fingerprint ridges. A key finding of our previous work is that while fingerprints enhanced frictional dynamics at certain conditions, key features were still maintained with a flat finger.[11] Furthermore, for some loading conditions, the more amplified signals could also result in more similar friction traces for different surfaces. We have observed good agreement between these friction traces and human experiments.[8,9,22,34]”

      Page 3-4, Materials and Methods

      “Mock Finger Preparation

      Friction forces across all six surfaces were measured using a custom apparatus with a polydimethylsiloxane (PDMS, Dow Sylgard 184) mock finger that mimics a human finger’s mechanical properties and contact mechanics while exploring a surface relatively closely.[8,9] PDMS and crosslinker were combined in a 30:1 ratio to achieve a stiffness of 100 kPa comparable to a real finger, then degassed in a vacuum desiccator for 30 minutes. We are aware that the manufacturer recommended crosslinking ratio for Sylgard 184 is 10:1 due to potential uncrosslinked liquid residues,[35] but further crosslinking concentrated at the surface prevents this. The prepared PDMS was then poured into a 1×1×5 cm mold also containing an acrylic 3D-printed “bone” to attach applied masses on top of the “fingertip” area contacting a surface during friction testing. After crosslinking in the mold at 60ºC for 1 hour, the finger was treated with UV-Ozone for 8 hours out of the mold to minimize viscoelastic tack.

      Mechanical Testing

      A custom device using our PDMS mock finger was used to collect macroscopic friction force traces replicating human exploration.[8,9] After placing a sample surface on a stage, the finger was lowered at a slight angle such that an initial 1×1 cm rectangle of “fingertip” contact area could be established. We considered a broad range of applied masses (M \= 0, 25, 75, and 100 g) added onto the deadweight of the finger (6 g) observed during a tactile discrimination task. The other side of the sensor was connected to a motorized stage (V-508 PIMag Precision Linear Stage, Physikinstrumente) to control both displacement (4 mm across all conditions) and sliding velocity (v \= 5, 10, 25, and 45 mm s<sup>-1</sup>). Forces were measured at all 16 combinations of mass and velocity via a 250 g Futek force sensor (k \= 13.9 kN m<sup>-1</sup>) threaded to the bone, and recorded at an average sampling rate of 550 Hz with a Keithley 7510 DMM digitized multimeter. Force traces were collected in sets of 4 slides, discarding the first due to contact aging. Because some mass-velocity combinations were near the boundaries of instability phase transitions, not all force traces at these given conditions exhibited similar profiles. Thus, three sets were collected on fresh spots for each condition to observe enough occurrences of multiple instabilities, at a total of nine traces per combination for each surface.”

      Added References

      (23) Infante, V. H. P. et al. The role of skin hydration, skin deformability, and age in tactile friction and perception of materials. Sci. Rep. 15, 9935 (2025).

      (24) Nolin, A., Lo, C.-Y., Kayser, L. V. & Dhong, C. B. Transparent and Electrically Switchable Thin Film Tactile Actuators Based on Molecular Orientation. Preprint at https://doi.org/10.48550/arXiv.2411.07968 (2024).

      (25) Murai, M., Lau, H.-K., Pereira, B. P. & Pho, R. W. H. A cadaver study on volume and surface area of the fingertip. J. Hand Surg. 22, 935–941 (1997).

      (26) Abdouni, A. et al. Biophysical properties of the human finger for touch comprehension: influences of ageing and gender. R. Soc. Open Sci. (2017) doi:10.1098/rsos.170321.

      (27) Cornuault, P.-H., Carpentier, L., Bueno, M.-A., Cote, J.-M. & Monteil, G. Influence of physico-chemical, mechanical and morphological fingerpad properties on the frictional distinction of sticky/slippery surfaces. J. R. Soc. Interface (2015) doi:10.1098/rsif.2015.0495.

      (28) Qian, K. et al. Mechanical properties vary for different regions of the finger extensor apparatus. J. Biomech. 47, 3094–3099 (2014).

      (29) Yuan, Y. & Verma, R. Measuring microelastic properties of stratum corneum. Colloids Surf. B Biointerfaces 48, 6–12 (2006).

      (30) Fu, Y.-J. et al. Effect of UV-Ozone Treatment on Poly(dimethylsiloxane) Membranes: Surface Characterization and Gas Separation Performance. Langmuir 26, 4392–4399 (2010).

      Comment 3, Part 2

      The real finger has multiple layers with different moduli. In fact, the stratum corneum cells, which are the outer layer at the interface and determine the friction, have a much higher modulus than PDMS. The real finger has multiple layers with different moduli. In fact, the stratum corneum cells, which are the outer layer at the interface and determine the friction, have a much higher modulus than PDMS.

      We have approximated the softness of the finger with 100 kPa crosslinked PDMS, which is close to what has been reported for the bulk of a human fingertip.[9,10] However, as mentioned in the Materials and Methods, there are two additional features of the mock finger that impart greater strength. The PDMS surrounds a rigid, acrylic bone comparable to the distal phalanx, which provides an additional layer of higher modulus.[8] Additionally, the 8-hour UV-Ozone treatment decreases the viscoelastic tack of the pristine PDMS by glassifying, or further crosslinking the surface of the finger,[12] therefore imparting greater stiffness at the surface similar to the contributions of the stratum corneum, along with a similar surface energy.[13] This technique is widely used in wearables,[14] soft robotics,[15] and microfluidics[16] to induce both these material changes. Additionally, the finger is used at least a day after UV-Ozone treatment is completed to generate a stable surface that is moderately hydrophilic, similar to the outermost layer of human skin.[17]

      Comment 3, Part 3

      In addition, the slanted position of the finger can cause non-uniform pressures across the finger. Both can contribute to making the PDMS finger have much more stick-slip than a real finger.

      To ensure that there is minimal contribution from the slanted position of the finger, an initial contact area of 1×1 cm is established before sliding and recording friction measurements. As the PDMS finger is a soft object, the portion in contact with a surface flattens and the contact area remains largely unchanged during sliding. Any additional stick-slip after this alignment step is caused by contact aging at the interface, but the first trace we collect is always discarded to only consider stick-slip events caused by surface chemistry. We recognize that it is difficult to completely control the pressure distribution due to the planar interface, but this is also expected when humans freely explore a surface.

      Comment 3, Part 4

      In fact, if you look at the regime maps, there is very little space that has steady sliding. This does not represent well human exploration of surfaces. We do not tend to use a force and velocity that will cause extensive stick-slip (frequent regions of 100% stick-slip) and, in fact, the speeds used in the study are on the slow side, which also contributes to more stick-slip. At higher speeds and lower forces, all of the materials had steady sliding regions.”

      We are not aware of published studies that extensively show that humans avoid stickslip regimes. In fact, we are aware familiar with literature where stiction spike formation is suppressed – a recent paper by AliAbbasi, Basdogan et. al. investigates electroadhesion and friction with NaCl solution-infused interfaces, resulting in significantly steadier forces.[18] We also directly showed evidence of instability formation that we observed during human exploration in Fig. 3B-C. These dynamic events are common, despite the lack of control of normal forces and sliding velocities. We also note that Reviewer 1, Comment 2, Part 2 was suggesting that we further explore possible trends from parameterizing the stiction spike.

      We note that many studies have often not gone at the velocities and masses required for stiction spikes – even though these masses and velocities would be routinely seen in free exploration – this is usually due to constraints of their equipment.[19] Sliding events during human free exploration of surfaces can exceed 100 mm/s for rapid touches. However, for the surfaces investigated here, we observe that large regions of stick-slip can emerge at velocities as low as 5 mm/s depending on the applied load. The incidence of steady sliding appears more dependent on the applied mass, with almost no steady sliding observed at or above 75 g. Indeed, the force categorization along our transition zones is the main point of the paper.

      Comment 3, Part 5

      Further, on these very smooth surfaces, the friction and stiction are more complex and cannot dismiss considerations such as finger material property change with sweat pore occlusion and sweat capillary forces. Also, the vertical motion of both the PDMS finger and the instructed human subjects is not the motion that humans typically use to discriminate between surfaces.

      We did not describe the task sufficiently. Humans were only given the instruction to slide their finger along a single axis from top to bottom of a sample, not vertical as in azimuthal to gravity. We have updated our wording in the manuscript to reflect this.

      Page 4

      “Participants could touch for as long as they wanted, but were asked to only use their dominant index fingers along a single axis to better mimic the conditions for instability formation during mechanical testing with the mock finger.”

      Page 11

      “The participant was then asked to explore each sample simultaneously, and ran over each surface in strokes along a single axis until the participant could decide which of the two had “more friction”.”

      Comment 3, Part 6

      Finally, fingerprints may not affect the shape and size of the contact area, but they certainly do affect the dynamic response and detection of vibrations.”

      We are aware of the nuance. Our previous work on the role of fingerprints on friction experienced by a PDMS mock finger showed enhanced signals with the incorporation of ridges on the finger and used a rate-and-state model of a heterogenous, elastic body to find corresponding trends (though there is no existing model of friction that can accurately model experiments on mesoscale friction).[11] The key conclusion was that a flat finger still preserved key dynamic features, and the presence of stronger or more vibrations could result in more similar forces for different surfaces depending on the sliding conditions.

      This is also in the context that we are seeking to provide a reasonable and experimentally accessible method to characterize surfaces, which will always be better as we get closer in replicating a true human finger. But our goal here was to replicate the finger sufficiently for use in human studies. We believe the more appropriate metric of success is if the mock finger is more successful than replacing traditional characterization experiments, like friction coefficient, roughness, surface energy, etc.

      Comment 4

      This all leads to the critical question, why are friction, normal force, and velocity not measured during the measured human exploration and in a systematic study using the real human finger? The authors posed an extremely interesting hypothesis that humans may alter their speed to feel the instability transition regions. This is something that could be measured with a real finger but is not likely to be correlated accurately enough to match regime boundaries with such a simplified artificial finger.

      We are excited that our manuscript offers a tractable manner to test the hypothesis that tactile decision-making models use friction instabilities as evidence. However, we lay out the challenges and barriers, and how the scope of this paper will lead us in that direction. We also clarify that our goals are to provide a method to characterize samples to better design tactile interfaces in haptics or in psychophysical experiments and raise awareness that the common methods of sample characterization in touch by an average friction coefficient or roughness is fundamentally unsound. Throughout the paper, we have made changes to reflect that our study, at this point, is only correlative.

      As discussed in the summary, and with additional detail here, to further support our findings through observation on humans would require answering:

      (1) Which one, or combination of, of the multiple swipes that people make responsible for a tactile decision? (There is a need for a decision-making model)

      (2) Establish what is, or may be, tactile evidence.

      (3) Establish tactile decision-making models are similar or different than existing decision-making models.

      (4) Design a task that does not require the use of subjective tactile descriptors, like “which one feels rougher”, which we have seen causes confusion in participants, which will likely require accounting for memory effects.

      We elaborate these points below:

      To successfully perform this experiment, we note that freely exploring humans make multiple strokes on a surface. Therefore, we would need to construct a decision-making model. It has not yet been demonstrated whether tactile decision making follows visual decision making, but perhaps to start, we can assume it does. Then, in the design of our decision-making paradigm, we immediately run into the problem: What is tactile evidence?

      From Fig. 3C, we already can see that identifying evidence is challenging. Prior to this manuscript, people may have chosen the average force, or the highest force. Or we may choose the average friction force. Then, after deciding on the evidence, we need to find a method to manipulate the evidence, i.e., create samples or a machine that causes high friction, etc. We show that during the course of human touch, due to the dynamic nature of friction, the average can change a large amount and sample design becomes a central barrier to experiments. Others may suggest immobilizing the finger and applying a known force, but given how much friction changes with human exploration, there is no known method to make a machine recreate temporally and spatially varying friction forces during sliding onto a stationary finger. Finally, perhaps most importantly, in addition to mechanical challenges, a study by Liu, Colgate et al. showed that even if they recorded the friction (2D) of a finger exploring a surface and then replicated the same friction forces onto a finger, the participant could not determine which surface the replayed friction force was supposed to represent.[1] This supports that the efference copy is important, that the forces in response to expected motion are important to determine friction. Finally, there is no known method to design instabilities a priori. They must be found through experiments. Especially since if we were to introduce, say a bump or a trough, then we bring in confounding variables to how participants tell surfaces apart.

      Furthermore, even if we had some consistent method to create tactile “evidence”, the paradigm also deserves some consideration. In our experience, the 3-AFC task we perform is important because the vocabulary for touch has not been established. That is, in 3-AFC, by asking to determine which one sample is unlike the others, we do not have to ask the participant questions like “which one is rougher” or “which one has less friction”. In contrast, 2-AFC, which is better for decision-making models because it does not include memory, requires the asking of a perceptual question like: “which one is rougher?”. In our ongoing work, taking two silane coatings, we found that participants could easily identify which surface is unlike the others above chance in a 3-AFC, but participants, even within their own trials, could not consistently identify one silane as perceptually “rougher” by 2-AFC. To us, this calls into question the validity of tactile descriptors, but is beyond the scope of this manuscript.

      This is not our only goal, but in the context of human exploration, in this manuscript here, we believed it was important to identify a mechanical parameter that was consistent with how humans explore surfaces, but was also a parameter that could characterize to some consistent property of a surface – irrespective of whether a human was touching it. We thought that designing human decision-making models and paradigms around the friction coefficient would not be successful.

      Given the scope of these challenges, we do not think it would be possible to establish these conceptual sequences in a single manuscript. However, we think that our manuscript brings an important step forward to approach this problem.

      Reviewer 2 (Public review):

      Summary:

      In this paper, the authors want to test the hypothesis that frictional instabilities rather than friction are the main drivers for discriminating flat surfaces of different sub-nanometric roughness profiles.

      They first produced flat surfaces with 6 different coatings giving them unique and various properties in terms of roughness (picometer scale), contact angles (from hydrophilic to hydrophobic), friction coefficient (as measured against a mock finger), and Hurst exponent.

      Then, they used those surfaces in two different experiments. In the first experiment, they used a mock finger (PDMS of 100kPA molded into a fingertip shape) and slid it over the surfaces at different normal forces and speeds. They categorized the sliding behavior as steady sliding, sticking spikes, and slow frictional waves by visual inspection, and show that the surfaces have different behaviors depending on normal force and speed. In a second experiment, participants (10) were asked to discriminate pairs of those surfaces. It is found that each of those pairs could be reliably discriminated by most participants.

      Finally, the participant's discrimination performance is correlated with differences in the physical attributes observed against the mock finger. The authors found a positive correlation between participants' performances and differences in the count of steady sliding against the mock finger and a negative correlation between participants' reaction time and differences in the count of stiction spikes against the mock finger. They interpret those correlations as evidence that participants use those differences to discriminate the surfaces.

      Strengths:

      The created surfaces are very interesting as they are flat at the nanometer scale, yet have different physical attributes and can be reliably discriminated.

      We thank Reviewer 2 for their notes on our manuscript. The responses below address the reviewer’s comments and recommendations for revised work.

      Weaknesses:

      Comment 1

      In my opinion, the data presented in the paper do not support the conclusions. The conclusions are based on a correlation between results obtained on the mock finger and results obtained with human participants but there is no evidence that the human participants' fingertips will behave similarly to the mock finger during the experiment. Figure 3 gives a hint that the 3 sliding behaviors can be observed in a real finger, but does not prove that the human finger will behave as the mock finger, i.e., there is no evidence that the phase maps in Figure 1C are similar for human fingers and across different people that can have very different stiffness and moisture levels.

      We have made changes throughout the manuscript to acknowledge that our findings are correlative, clarifying this throughout, and incorporating into the discussion how our work may enable biomechanical measurements and tactile decision making models.

      The mechanical characterization conducted with the mock finger seeks to extract significant features of friction traces of a set of surfaces to use as predictors of tactile discriminability. The goal is to find a consistent method to characterize surfaces for use in tactile experiments that can be replicated by others and used prior to any human experiments. However, in the overall response and in a response to a similar comment by Reviewer 1 (recreated below), we also explain why we believe experiments on humans to establish this fact is not yet reasonable.

      First, we discuss the mock finger. The PDMS finger is treated to have comparable surface and bulk properties to a human finger. We have approximated the softness of the finger with 100 kPa crosslinked PDMS, which is close to what has been reported for the bulk of a human fingertip.[9,10] However, as mentioned in the Materials and Methods, there are two additional features of the mock finger that impart greater strength. The PDMS surrounds a rigid, acrylic bone comparable to the distal phalanx, which provides an additional layer of higher modulus.[8] Additionally, the 8-hour UV-Ozone treatment decreases the viscoelastic tack of the pristine PDMS by glassifying, or further crosslinking the surface of the finger,[12] therefore imparting greater stiffness at the surface similar to the contributions of the stratum corneum, along with a similar surface energy.[13] Additionally, the finger is used at least a day after UV-Ozone treatment is completed in order for the surface to return to moderate hydrophilicity, similar to the outermost layer of human skin.[17] We also discuss the shape of the contact formed. To ensure that there is minimal contribution from the slanted position of the finger, an initial contact area of 1×1 cm is established before sliding and recording friction measurements. As the PDMS finger is a soft object, the portion in contact with a surface flattens and the contact area remains largely unchanged during sliding. Any additional stick-slip after this alignment step is caused by contact aging at the interface, but the first trace we collect is always discarded to only consider stick-slip events caused by surface chemistry. We recognize that it is difficult to completely control the pressure distribution due to the planar interface, but this is also expected when humans freely explore a surface. Finally, we consider flat vs. fingerprinted fingers. Our previous work on the role of fingerprints on friction experienced by a PDMS mock finger showed enhanced signals with the incorporation of ridges on the finger and used a rate-and-state model of a heterogenous, elastic body to find corresponding trends.[11] The key conclusion was that a flat finger still preserved key dynamic features, and the presence of stronger or more vibrations could result in more similar forces for different surfaces depending on the sliding conditions. We note that we have subsequently used this flat mock finger in correlations with human psychophysics in previous work, where findings from our mechanical experiments were predictive of human performance.[4–7] We have added these details to the manuscript.

      With this adequately similar mock finger, we collected friction traces at controlled conditions of normal force and velocity in order to extract the signals unique to each material that are not caused by the influence of human variability. For example, we observe the smallest regions of steady sliding on our phase maps (Fig. 1C) for short-chain alkylsilanes C4 and C5, while the increased intermolecular forces of other silanes increase the incidence of steady sliding. We have also previously shown that comparisons of similarly collected mechanical data is predictive of human performance, using the crosscorrelations between signals of two different materials.[4–7] While different participants produce different raw signals, we see that broad categories of stick-slip, i.e. instabilities, can be extracted (Fig. 3B-C) and used as a cue in a tactile discrimination task. As mentioned above, we have provided an additional section about the usefulness of our mock finger, as well as its structure, in the main manuscript.

      Second, we lay out the challenges and barriers to demonstrating this in humans in the manner requested by the reviewer, and how the scope of this paper will lead us in that direction. We also clarify that our goals are to provide a method to characterize samples to better design tactile interfaces in haptics or in psychophysical experiments and raise awareness that the common methods of sample characterization in touch by an average friction coefficient or roughness is fundamentally unsound.

      As discussed in the summary, and with additional detail here, to further support our findings through observation on humans would require answering:

      (1) Which one, or combination of, of the multiple swipes that people make responsible for a tactile decision?

      (2) Establish what is, or may be, tactile evidence.

      (3) Establish tactile decision-making models are similar or different than existing decision-making models.

      (4) Test the hypothesis, in these models, that friction instabilities are evidence, and not some other unknown metric.

      (5) Design a task that does not require the use of subjective tactile descriptors, like “which one feels rougher”, which we see cause confusion in participants, which will likely require accounting for memory effects.

      We elaborate these points below:

      To successfully perform this experiment, we note that freely exploring humans make multiple strokes on a surface. Therefore, we would need to construct a decision-making model. It has not yet been demonstrated whether tactile decision making follows visual decision making, but perhaps to start, we can assume it does. Then, in the design of our decision-making paradigm, we immediately run into the problem: What is tactile evidence?

      From Fig. 3C, we already can see that identifying evidence is challenging. Prior to this manuscript, people may have chosen the average force, or the highest force. Or we may choose the average friction force. Then, after deciding on the evidence, we need to find a method to manipulate the evidence, i.e., create samples or a machine that causes high friction, etc. We show that during the course of human touch, due to the dynamic nature of friction, the average can change a large amount and sample design becomes a central barrier to experiments. Others may suggest immobilizing the finger and applying a known force, but given how much friction changes with human exploration, there is no known method to make a machine recreate temporally and spatially varying friction forces during sliding onto a stationary finger. Finally, perhaps most importantly, in addition to mechanical challenges, a study by Liu, Colgate, et al. showed that even if they recorded the friction (2D) of a finger exploring a surface and then replicated the same friction forces onto a finger, the participant could not determine which surface the replayed friction force was supposed to represent.[1] This supports that the efference copy is important, that the forces in response to expected motion are important to determine friction. Finally, there is no known method to design instabilities a priori. They must be found through experiments, especially since if we were to introduce, say a bump or a trough, then we bring in confounding variables to how participants tell surfaces apart.

      Furthermore, even if we had some consistent method to create tactile “evidence”, the paradigm also deserves some consideration. In our experience, the 3-AFC task we perform is important because the vocabulary for touch has not been established. That is, in 3-AFC, by asking to determine which one sample is unlike the others, we do not have to ask the participant questions like “which one is rougher” or “which one has less friction”. In contrast, 2-AFC, which is better for decision-making models because it does not include memory, requires the asking of a perceptual question like: “which one is rougher?”. In our ongoing work, taking two silane coatings, we found that participants could easily identify which surface is unlike the others above chance in a 3-AFC, but participants, even within their own trials, could not consistently identify one silane as perceptually “rougher” by 2-AFC. To us, this calls into question the validity of tactile descriptors, but is beyond the scope of the current manuscript.

      This is not our only goal, but in the context of human exploration, in this manuscript here, we believed it was important to identify a mechanical parameter that was consistent with how humans explore surfaces, but was also a parameter that could characterize to some consistent property of a surface – irrespective of whether a human was touching it. We thought that designing human decision-making models and paradigms around the friction coefficient would not be successful.

      Given the scope of these challenges, we do not think it would be possible to establish this conceptual sequence in a single manuscript.

      See Reviewer 1, comment 3part 3 for changes to the manuscript

      Comment 2

      I believe that the authors collected the contact forces during the psychophysics experiments, so this shortcoming could be solved if the authors use the actual data, and show that the participant responses can be better predicted by the occurrence of frictional instabilities than by the usual metrics on a trial by trial basis, or at least on a subject by subject basis. I.e. Poor performers should show fewer signs of differences in the sliding behaviors than good performers.

      To fully implement this, a decision-making model is necessary because, as a counter example, a participant could have generated 10 swipes of SFW and 1 swipe of a Sp, but the Sp may have been the most important event for making a tactile decision. This type of scenario is not compatible with the analysis suggested — and similar counterpoints can be made for other types of seemingly straightforward analysis.

      While we are interested and actively working on this, the study here is critical to establish types of evidence for a future decision-making model. We know humans change their friction constantly during real exploration, so it is unclear which of these constantly changing values we should input into the decision making model, and the future challenges we anticipate are explained in Weaknesses, Comment 1.

      Comment 3

      The sample size (10) is very small.

      We recognize that, with all factors being equal, this sample size is on the smaller end. However, we emphasize the degree of control of samples is far above typical, with minimal variations in sample properties such as surface roughness, and every sample for every trial was pristine. Furthermore, the sample preparation (> 300 individual wafers were used) became a factor. Although not typically appropriate, and thus not included in the manuscript, a post-hoc power analysis for our 100 trials of our pair that was closest to chance, P4, (53%, closest to chance at 33%) showed a power of 98.2%, suggesting that the study was appropriately powered.

      Reviewer 2 (Recommendations for the authors):

      Comment 1

      Differences in SS and Sp (Table 2) are NOT physical or mechanical differences but are obtained by counting differences in the number of occurrences of each sliding behavior. It is rather a weird choice.

      We disagree that differences in SS and Sp are not physical or mechanical, as these are well-established phenomena in the soft matter and tribology literature.[20–22] These are known as “mechanical instabilities” and generated due to the effects of two physical phenomena: the elasticity of the finger (which is constant in our mechanical testing) and the friction forces present (which change per sample type). The motivation behind using these different shapes is that the instabilities, in some conditions, can be invariant to external factors like velocity. This would be quite advantageous for human exploration because, unlike friction coefficient, which changes with nearly any factor, including velocity and mass, the instabilities being invariant to velocity would mean that we are accurately characterizing a unique identifier of the surface even though velocity may be variable.

      This “weird choice” is the central innovation of this paper. This choice was necessary because we demonstrated that the common usage of friction coefficient is fundamentally flawed: we see that friction coefficient suggests that surface which are more different would feel more similar – indeed the most distinctive surfaces would be two surfaces that are identical, which is clearly spurious. Furthermore, Table 1 now includes the range of friction generated on a surface, the range of friction coefficients of a single surface is large – of order the differences in friction between two surfaces. This is expected in soft sliding systems and emphasizes our issue with the use of average friction coefficient in psychophysical design. One potential explanation for why we were able to see this is effect is because our surfaces have similar (< 0.6 nm variability) roughness, removing potential confounding factors from large scale roughness, and this type of low roughness control has not been widely used in tactile studies to the best of our knowledge.

      Comment 2

      Figures 2B-C: why are the x-data different than Table 2?

      The x-data in Fig. 2B-C are the absolute differences in the number of occurrences measured for a given instability type or material property out of 144 pulls. Modeling the human participant results in our GLMMs required the independent variables to be in this form rather than percentages. We initially chose to list percent differences in Table 2 to highlight the ranges of differences instead of an absolute value, but have added both for clarity.

      Our changes to the manuscript

      Page 7

      “To determine if humans can detect these three different instabilities, we selected six pairs of surfaces to create a broad range of potential instabilities present across all three types. These are summarized in Table 2, where the first column for each instability is the difference in occurrence of that instability formed between each pair, and the second is the percent difference.”

      “Thus, when comparing C4 versus C4-APTMS, they have a difference in steady sliding of 20 out of a maximum 144 pulls, for a |ΔSS| of 13.9%. The absolute value is taken to compare total differences present, as the psychophysical task does not distinguish between sample order.”

      Comment 3

      We constructed a set of coated surfaces with physical differences which were imperceptible by touch but created different types of instabilities based on how quickly a finger is slid and how hard a human finger is pressed during sliding." Yet, in your experiment, participants could discriminate them, so this is incoherent.

      To clarify the point, macroscopic objects can differ in physical shape and in chemical composition. What we meant was that the physical differences, i.e., roughness, were below a limit (Skedung et al.) that participants, without a coating, would not be able to tell these apart.[23] Therefore, the reason people could tell our surfaces apart was due to the chemical composition of the surface, and not any differences in roughness or physical effects like film stiffness (due to the molecular-scale thinness of the surface coatings, they are mechanically negligible). However, we concede that at the molecular scale, the traditional macroscopic distinction between physical and chemical is blurred.

      We have made minor revisions to the wording in the abstract. We clarify that the surface coatings had physical differences in roughness that were smaller than 0.6 nm, which based purely on roughness, would not be expected to be distinguishable to participants. Therefore, the reason participants can tell these surfaces apart is due to differences in friction generated by chemical composition, and we were able to minimize contributions from physical differences in the sample our study.

      Our changes to the manuscript

      Page 1, Abstract

      “Here, we constructed a set of coated surfaces with minimal physical differences that by themselves, are not perceptible to people, but instead, due to modification in surface chemistry, the surfaces created different types of instabilities based on how quickly a finger is slid and how hard a human finger is pressed during sliding.”

      “In one experiment, we used a mechanical mock finger to quantify and classify differences in instability formation from different coated surfaces. In a second experiment, participants perform a discrimination task using the same coated surfaces. Using the data from these two experiments, we found that human discrimination response times were faster with surfaces where the mock finger produced more stiction spikes and discrimination accuracy was higher where the mock finger produced more steady sliding. Conversely, traditional metrics like surface roughness or average friction coefficient did not relate to tactile discriminability. In fact, the typical method of averaging friction coefficients led to a spurious correlation which erroneously suggests that distinct objects should feel identical and identical objects should feel distinct—similar to findings by others. Friction instabilities may offer a more predictive and tractable framework of fine touch perception than friction coefficients, which would accelerate the design of tactile interfaces.”

      Reviewer 3 (Public review):

      Strengths

      The paper describes a new perspective on friction perception, with the hypothesis that humans are sensitive to the instabilities of the surface rather than the coefficient of friction. The paper is very well written and with a comprehensive literature survey.

      One of the central tools used by the author to characterize the frictional behavior is the frictional instabilities maps. With these maps, it becomes clear that two different surfaces can have both similar and different behavior depending on the normal force and the speed of exploration. It puts forward that friction is a complicated phenomenon, especially for soft materials.

      The psychophysics study is centered around an odd-one-out protocol, which has the advantage of avoiding any external reference to what would mean friction or texture for example. The comparisons are made only based on the texture being similar or not.

      The results show a significant relationship between the distance between frictional maps and the success rate in discriminating two kinds of surface.

      We thank Reviewer 3 for their notes and interesting discussion points on our manuscript. Below, we address the reviewer’s feedback and comments on related works.

      Weaknesses:

      Comment 1

      The main weakness of the paper comes from the fact that the frictional maps and the extensive psychophysics study are not made at the same time, nor with the same finger. The frictional maps are produced with an artificial finger made out of PDMS which is a poor substitute for the complex tribological properties of skin.

      A similar comment was made by Reviewers 1 and 2. We agree in part and have made changes throughout that our study is correlative, but presents an important step forward to these biomechanical measurements and corresponding decision making models.

      We are not claiming that our PDMS fingers are superior to real fingers, but rather, we cannot establish standards in the field by using real human fingers that vary between subjects and researchers. We believe the mock finger we designed is a reasonable mimic of the human finger by matching surface energy, heterogeneous mechanical structure, and the ability to test multiple physiologically relevant pressures and sliding velocities.

      We achieve a heterogeneous mechanical structure with the 3 primary components of stiffness of a human finger. The effective modulus of ~100 kPa, from soft tissue,[9,10] is obtained with a 30:1 ratio of PDMS to crosslinker. The PDMS also surrounds a rigid, acrylic bone comparable to the distal phalanx, which provides an additional layer of higher modulus.[8] Additionally, the 8-hour UV-Ozone treatment decreases the viscoelastic tack of the pristine PDMS by glassifying, or further crosslinking the surface of the finger,[12] therefore imparting greater stiffness at the surface similar to the contributions of the stratum corneum, along with a similar surface energy.[13] The finger is used at least a day after UV-Ozone treatment is completed in order for the surface to return to moderate hydrophilicity, similar to the outermost layer of human skin.[17] We also discuss the shape of the contact formed. To ensure that there is minimal contribution from the slanted position of the finger, an initial contact area of 1×1 cm is established before sliding and recording friction measurements. As the PDMS finger is a soft object, the portion in contact with a surface flattens and the contact area remains largely unchanged during sliding. We recognize that it is difficult to completely control the pressure distribution due to the planar interface, but this variation is also expected when humans freely explore a surface. Finally, we consider flat vs. fingerprinted fingers. Our previous work on the role of fingerprints on friction experienced by a PDMS mock finger showed enhanced signals with the incorporation of ridges on the finger and used a rate-andstate model of a heterogenous, elastic body to find corresponding trends.[11] The key conclusion was that a flat finger still preserved key dynamic features, and the presence of stronger or more vibrations could result in more similar forces for different surfaces depending on the sliding conditions. We note that we have subsequently used the controlled mechanical data collected with this flat mock finger in correlations with human psychophysics in previous work, where findings from our mechanical experiments were predictive of human performance.[4–7] Ultimately, we see from our prior work and here that, despite the drawbacks of our mock finger, it outperforms other standard characterization technique in providing information about the mesoscale that correlates to tactile perception. We have added these details to the manuscript.

      We also note that an intermediate option, replicating real fingers, even in a mold, may also inadvertently limit trends from characterization to a specific finger. One of the main – and severe – limitations of using a human finger is that all fingers are different, meaning any study focusing on a particular user may not apply to others or be recreated easily by other researchers. We cannot set a standard for replication around a real human finger as that participant may no longer be available, or willing to travel the world as a “standard”. Furthermore, the method in which a single person changes their pressures and velocities as they touch a surface is highly variable. We also note that in the Summary Response, we noted that a study by Colgate et al. (IEEE ToH 2024) demonstrated that efference copies may be important, and thus constraining a human finger and replaying the forces recorded during free exploration will not lead to the participant identifying a surface with any consistency. Thus, it is important to allow humans to freely explore surfaces, but creates nearly limitless variability in friction forces.

      This is also against the backdrop that we are seeking to provide a method to characterize surfaces. Indeed, the more features we replicate in the mock finger to a human finger, the more likely it is that the mechanical data will correlate to human performance. However, we have used this technique several times to achieve stronger correlations to human data than other available techniques. We believe the metric of success should be in comparison to the available characterization technique, rather than a 1:1 reconstruction of forces of an arbitrary human finger. Indeed, a 1:1 reconstruction of forces of an arbitrary human finger would be limited to the finger of a single individual, perhaps even to that individual on a given day.

      See Reviewer1 weaknesses, comment 2 part 2 for changes to the manuscript

      Comment 2

      The evidence would have been much stronger if the measurement of the interaction was done during the psychophysical experiment. In addition, because of the protocol, the correlation is based on aggregates rather than on individual interactions.

      We agree that this would have helped further establish our argument, but in the overall statement and in other reviewer responses, we describe the significant challenges to establishing this.

      To fully implement this, a decision-making model is necessary because, as a counter example, a participant could have generated 10 swipes of SFW and 1 swipe of a Sp, but the Sp may have been the most important event for making a tactile decision. We also clarify that our goals are to provide a method to characterize samples to better design tactile interfaces in haptics or in psychophysical experiments.

      As discussed in the summary, and expanded on here, in our view, to develop a decision-making model, the challenges are as follows:

      (1) Which one, or combination of, of the multiple swipes that people make responsible for a tactile decision?

      (2) Establish what is, or may be, tactile evidence.

      (3) Establish tactile decision-making models are similar or different than existing decision-making models.

      (4) Test the hypothesis, in these models, that friction instabilities are evidence, and not some other unknown metric.

      (5) Design a task that does not require the use of subjective tactile descriptors, like “which one feels rougher”, which we see cause confusion in participants, which will likely require accounting for memory effects.

      (6) Design samples that vary in the amount of evidence generated, but this evidence cannot be controlled directly. Rather, the samples indirectly vary evidence by how likely it is for a human to generate different types of friction instabilities during standard exploration.

      We elaborate these points below:

      To successfully perform this experiment, we note that freely exploring humans make multiple strokes on a surface. Therefore, we would need to construct a decision-making model. It has not yet been demonstrated whether tactile decision making follows visual decision making, but perhaps to start, we can assume it does. Then, in the design of our decision-making paradigm, we immediately run into the problem: What is tactile evidence?

      From Fig. 3C, we already can see that identifying evidence is challenging. Prior to this manuscript, people may have chosen the average force, or the highest force. Or we may choose the average friction force. Then, after deciding on the evidence, we need to find a method to manipulate the evidence, i.e., create samples or a machine that causes high friction, etc. We show that during the course of human touch, due to the dynamic nature of friction, the average can change a large amount and sample design becomes a central barrier to experiments. Others may suggest to immobilize the finger and applying a known force, but given how much friction changes with human exploration, there is no known method to make a machine recreate temporally and spatially varying friction forces during sliding onto a stationary finger. Finally, perhaps most importantly, in addition to mechanical challenges, a study by Liu, Colgate et al. showed that even if they recorded the friction (2D) of a finger exploring a surface and then replicated the same friction forces onto a finger, the participant could not determine which surface the replayed friction force was supposed to represent.[1] This supports that the efference copy is important, that the forces in response to expected motion are important to determine friction. Finally, there is no known method to design instabilities a priori. They must be found through experiments, especially since if we were to introduce, say a bump or a trough, then we bring in confounding variables to how participants tell surfaces apart.

      Furthermore, even if we had some consistent method to create tactile “evidence”, the paradigm also deserves some consideration. In our experience, the 3-AFC task we perform is important because the vocabulary for touch has not been established. That is, in 3-AFC, by asking to determine which one sample is unlike the others, we do not have to ask the participant questions like “which one is rougher” or “which one has less friction”. In contrast, 2-AFC, which is better for decision-making models because it does not include memory, requires the asking of a perceptual question like: “which one is rougher?”. In our ongoing work, taking two silane coatings, we found that participants could easily identify which surface is unlike the others above chance in a 3-AFC, but participants, even within their own trials, could not consistently identify one silane as perceptually “rougher” by 2-AFC. To us, this calls into question the validity of tactile descriptors, but is beyond the scope of the current manuscript.

      This is not our only goal, but in the context of human exploration, in this manuscript here, we believed it was important to identify a mechanical parameter that was consistent with how humans explore surfaces, but was also a parameter that could characterize to some consistent property of a surface – irrespective of whether a human was touching it. We thought that designing human decision-making models and paradigms around the friction coefficient would not be successful.

      Given the scope of these challenges, we do not think it would be possible to establish this conceptual sequence in a single manuscript.

      Comment 3

      The authors compensate with a third experiment where they used a 2AFC protocol and an online force measurement. But the results of this third study, fail to convince the relation.

      With this experiment, our central goal was to demonstrate that the instabilities we have identified with the PDMS finger also occur with a human finger. Several instances of SS, Sp, and SFW were recorded with this setup as a participant touched surfaces in real time.

      Comment 4

      No map of the real finger interaction is shown, bringing doubt to the validity of the frictional map for something as variable as human fingers.

      Real fingers change constantly during exploration, and friction is state-dependent, meaning that the friction will depend on how the person was moving the moment prior. Therefore, a map is only valid for a single human movement – even if participants all were instructed to take a single swipe and start from zero motion, humans are unable to maintain constant velocities and pressures. Clearly, this is not sustainable for any analysis, and these drawbacks apply to any measured parameter, whether instabilities suggested here, or friction coefficients used throughout. We believe the difficulty of this approach emphasizes why a standard map of characterization of a surface by a mock finger, even with its drawbacks, is a viable path forward.

      Reviewer 3 (Recommendations for the authors):

      Comment 1

      It would be interesting to comment on a potential connection between the frictional instability maps and Schalamack waves.

      Schallamach waves are a subset of slow frictional waves (SFW). Schallamach waves are very specifically defined in the field. They occur when pockets of air that form between a soft sliding object and rigid surface which then propagate rear-to-front (retrograde waves) relative to motion of the sliding motion and form buckles due to adhesive pinning. Wrinkles then form at the detached portion of the soft material, until the interface reattaches and the process repeats.[24] There is typically a high burden of proof to establish a Schallamach wave over a more general slow frictional wave. We note that it would be exceedingly difficult to design samples that can reliably create subsets of SFW, but we are aware that this may be an interesting question at a future point in our work.

      Comment 2

      The force sensors look very compliant, and given the dynamic nature of the signal, it is important to characterize the frequency response of the system to make sure that the fluctuations are not amplified.

      Thank you for noticing. We mistyped the sensor spring constant as 13.9 N m<sup>-1</sup> instead of kN m<sup>-1</sup>. However, below we show how the instabilities are derived from the mechanics at the interface due to the compliance of the finger. The “springs” of the force sensor and PDMS finger are connected in parallel. Since k<sub>sensor</sub> = 13.9 kN m<sup>-1</sup>, the spring constant of the system overall reflects the compliance of the finger, and highlights the oscillations arising solely from stick-slip. A sample calculation is shown below.

      Author response image 1.

      Fitting a line to the initial slope of the force trace for C6 gives the equation y = 25.679x – 0.2149. The slope here represents force data over time data, and is divided by the velocity (25 mm/s) to determine the spring constant of the system k<sub>total</sub> == 1027.16 N/m. This value is lower than k<sub>sensor</sub> = 13.9 kN/m, indicating that the “springs” representing the force sensor and PDMS finger are connected in parallel:

      . The finger is the compliant component of the system, with k<sub>finger</sub> = 1.11 kN/m, and of course, real human fingers are also compliant so this matches our goals with the design of the mock finger.

      Our changes to the manuscript

      (Page 4) (k = 13.9 kN m<sup>1</sup>)

      Comment 3

      The authors should discuss about the stochastic nature of friction: - Wiertlewski, Hudin, Hayward, IEEE WHC 2011 Greenspon, McLellan, Lieber, Bensmaia, JRSI 2020.

      We believe that, given the references, this comment on “stochastic” refers to the macroscopically-observable fluctuations (i.e., the mechanical “noise” which is not due to instrument noise) in friction arising from the discordant network of stick-slip phenomena occurring throughout the contact zone, and not the stochastic nature of nanoscale friction that occurs thermal fluctuations nor due to statistical distributions in bond breaking associated with soft contact.

      We first note that our small-scale fluctuations do not arise from a periodic surface texture that dominates in the frequency regime. However, even on our comparatively smooth surfaces, we do expect fluctuations due to nanoscale variation in contact, generation of stick-slip across at microscale length scales that occur either concurrently or discordantly across the contact zone, and the nonlinear dependence of friction to nearly any variation in state and composition.[11]

      Perhaps the most relevant to the manuscript is that a major advantage of analysis by friction is that it sidesteps these ever-present microscale fluctuations, leading to more clearly defined classifiers or categories during analysis. Wiertlewski et. al. showed repeated measurements in their systems ultimately gave rise to consistent frequencies[25] (we think their system was in a steady sliding regime and the patterning gave rise to underlying macroscopic waves). These consistent frequencies, at least in soft systems and absent obvious macroscopic patterned features, would be expected to arise from the instability categories and we see them throughout.

      Comment 4

      It is stated that "we observed a spurious, negative correlation between friction coefficient and accuracy".

      What makes you qualify that correlation as spurious?

      We mean this as in the statistical definition of “spurious”.

      This correlation would indicate that by the metric of friction coefficient, more different surfaces are perceived more similarly. Thus, two very different surfaces, like Teflon and sandpaper, by friction coefficient would be expected to feel very similar. Two nearly identical surfaces would be expected to feel very different – but of course, humans cannot consistently distinguish two identical surfaces. This finding is counterintuitive and refutes that friction coefficient is a reliable classifier of surfaces by touch. We do not think it is productive to determine a mechanism for a spurious correlation, but perhaps one reason we were able to observe this is because our study, to the best of our knowledge, is unique for having samples that are controlled in their physical differences in roughness and surface features.

      See response to Reviewer 1 weaknesses, comment 1 for changes to the manuscript

      Comment 5

      The authors should comment on the influence of friction on perceptual invariance. Despite inducing radially different frictional behavior for various conditions, these surfaces are stably perceived. Maybe this is a sign that humans extract a different metric?

      We agree – we are excited that frictional instabilities may offer a more stable perceptual cue because they are not prone to fluctuations (as discussed in Comment 3) and instability formation, in many conditions, is invariant to applied pressures and velocities – thus forming large zones where a human may reasonable encounter a given instability.

      Raw friction is highly prone to variation during human exploration (in alignment with Recommendations for the authors, Comment 3), but ongoing work seeks to explain tactile constancy, or the ability to identify objects despite these large changes in force. Very recently published work by Fehlberg et. al. identified the role of modulating finger speed and normal force in amplifying the differences in friction coefficient between materials in order to identify them,[26] and we postulate that their work may be streamlined and consistent with the idea of friction instabilities, though we have not had a chance to discuss this in-depth with the authors yet.

      We think that the instability maps show a viable path forward to how surfaces are stably perceived, and instabilities themselves show a potential mechanism: mathematically, instabilities for given conditions can be invariant to velocity or mass, creating zones where a certain instability is encountered. This reduces the immense variability of friction to a smaller, more stable classification of surfaces (e.g., a 30% SS surface or a 60% SS surface). A given surface will typically produce the same instability at a specific condition (we found some boundaries of experimental parameters are very condition sensitive, but many conditions are not), whereas a single friction trace which is highly prone to variation is not a stable metric.

      Added Reference

      (53) M. Fehlberg, E. Monfort, S. Saikumar, K. Drewing and R. Bennewitz, IEEE Trans. Haptics, 2024, 17, 957–963.

      References

      (1) Liu, Z., Kim, J.-T., Rogers, J. A., Klatzky, R. L. & Colgate, J. E. Realism of Tactile Texture Playback: A Combination of Stretch and Vibration. IEEE Trans. Haptics 17, 441–450 (2024).

      (2) Waters, I., Alazmani, A. & Culmer, P. Engineering Incipient Slip Into Surgical Graspers to Enhance Grasp Performance. IEEE Transactions on Medical Robotics and Bionics 2, 541–544 (2020).

      (3) Gueorguiev, D., Bochereau, S., Mouraux, A., Hayward, V. & Thonnard, J.-L. Touch uses frictional cues to discriminate flat materials. Sci Rep 6, 25553 (2016).

      (4) Carpenter, C. W. et al. Human ability to discriminate surface chemistry by touch. Mater. Horiz. 5, 70– 77 (2018).

      (5) Nolin, A. et al. Predicting human touch sensitivity to single atom substitutions in surface monolayers for molecular control in tactile interfaces. Soft Matter 17, 5050–5060 (2021).

      (6) Nolin, A. et al. Controlling fine touch sensations with polymer tacticity and crystallinity. Soft Matter 18, 3928–3940 (2022).

      (7) Swain, Z. et al. Self-Assembled Thin Films as Alternative Surface Textures in Assistive Aids with Users Who are Blind. J. Mater. Chem. B (2024) doi:10.1039/D4TB01646G.

      (8) Qian, K. et al. Mechanical properties vary for different regions of the finger extensor apparatus. J Biomech 47, 3094–3099 (2014).

      (9) Abdouni, A. et al. Biophysical properties of the human finger for touch comprehension: influences of ageing and gender. Royal Society Open Science (2017) doi:10.1098/rsos.170321.

      (10) Cornuault, P.-H., Carpentier, L., Bueno, M.-A., Cote, J.-M. & Monteil, G. Influence of physicochemical, mechanical and morphological fingerpad properties on the frictional distinction of sticky/slippery surfaces. Journal of The Royal Society Interface (2015) doi:10.1098/rsif.2015.0495.

      (11) Dhong, C. et al. Role of fingerprint-inspired relief structures in elastomeric slabs for detecting frictional differences arising from surface monolayers. Soft Matter 14, 7483–7491 (2018).

      (12) Fu, Y.-J. et al. Effect of UV-Ozone Treatment on Poly(dimethylsiloxane) Membranes: Surface Characterization and Gas Separation Performance. Langmuir 26, 4392–4399 (2010).

      (13) Yuan, Y. & Verma, R. Measuring microelastic properties of stratum corneum. Colloids Surf B Biointerfaces 48, 6–12 (2006).

      (14) Yu, G. et al. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins. Nanotechnology 29, 115502 (2018).

      (15) Zheng, L. et al. Dual-Stimulus Smart Actuator and Robot Hand Based on a Vapor-Responsive PDMS Film and Triboelectric Nanogenerator. ACS Appl. Mater. Interfaces 11, 42504–42511 (2019).

      (16) Ma, K., Rivera, J., Hirasaki, G. J. & Biswal, S. L. Wettability control and patterning of PDMS using UV–ozone and water immersion. Journal of Colloid and Interface Science 363, 371–378 (2011).

      (17) Mavon, A. et al. Sebum and stratum corneum lipids increase human skin surface free energy as determined from contact angle measurements: A study on two anatomical sites. Colloids and Surfaces B: Biointerfaces 8, 147–155 (1997).

      (18) AliAbbasi, E. et al. Effect of Finger Moisture on Tactile Perception of Electroadhesion. IEEE Trans. Haptics 17, 841–849 (2024).

      (19) Corniani, G. et al. Sub-surface deformation of individual fingerprint ridges during tactile interactions.

      eLife 13, (2024).

      (20) Israelachvili, J. N. Intermolecular and Surface Forces. (Academic Press, 2011).

      (21) Das, S. et al. Stick–slip friction of gecko-mimetic flaps on smooth and rough surfaces. J R Soc Interface 12, 20141346 (2015).

      (22) Persson, B. N. J., Albohr, O., Creton, C. & Peveri, V. Contact area between a viscoelastic solid and a hard, randomly rough, substrate. The Journal of Chemical Physics 120, 8779–8793 (2004).

      (23) Skedung, L. et al. Feeling Small: Exploring the Tactile Perception Limits. Sci Rep 3, 2617 (2013).

      (24) Viswanathan, K., Sundaram, N. K. & Chandrasekar, S. Stick-slip at soft adhesive interfaces mediated by slow frictional waves. Soft Matter 12, 5265–5275 (2016).

      (25) Wiertlewski, M., Hudin, C. & Hayward, V. On the 1/f noise and non-integer harmonic decay of the interaction of a finger sliding on flat and sinusoidal surfaces. in 2011 IEEE World Haptics Conference 25–30 (2011). doi:10.1109/WHC.2011.5945456.

      (26) Fehlberg, M., Monfort, E., Saikumar, S., Drewing, K. & Bennewitz, R. Perceptual Constancy in the Speed Dependence of Friction During Active Tactile Exploration. IEEE Transactions on Haptics 17, 957–963 (2024).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors used a coarse-grained DNA model (cgNA+) to explore how DNA sequences and CpG methylation/hydroxymethylation influence nucleosome wrapping energy and the probability density of optimal nucleosomal configuration. Their findings indicate that both methylated and hydroxymethylated cytosines lead to increased nucleosome wrapping energy. Additionally, the study demonstrates that methylation of CpG islands increases the probability of nucleosome formation.

      Strengths:

      The major strength of this method is that the model explicitly includes elastic constraints on the positions of phosphate groups facing a histone octamer, as DNA-histone binding site constraints. The authors claim that their model enhances the accuracy and computational efficiency and allows comprehensive calculations of DNA mechanical properties and deformation energies.

      Weaknesses:

      A significant limitation of this study is that the parameter sets for the methylated and hydroxymethylated CpG steps in the cgNA+ model are derived from all-atom molecular dynamics (MD) simulations that suggest that both methylated and hydroxymethylated cytosines increase DNA stiffness and nucleosome wrapping energy (P´erez A, et al. Biophys J. 2012; Battistini, et al. PLOS Comput Biol. 2021). It could predispose the coarse-grained model to replicate these findings. Notably, conflicting results from other all-atom MD simulations, such as those by Ngo T in Nat. Commun. 2016, shows that hydroxymethylated cytosines increase DNA flexibility, contrary to methylated cytosines. If the cgNA+ model was trained on these later parameters or other all-atom force fields, different conclusions might be obtained regarding the effects of methylated and hydroxymethylation on nucleosome formation.

      Despite the training parameters of the cgNA+ model, the results presented in the manuscript indicate that methylated cytosines increase both DNA stiffness and nucleosome wrapping energy. However, when comparing nucleosome occupancy scores with predicted nucleosome wrapping energies and optimal configurations, the authors find that methylated CGIs exhibit higher nucleosome occupancies than unmethylated ones, which seems to contradict their findings from the same paper which showed that increased stiffness should reduce nucleosome formation affinity. In the manuscript, the authors also admit that these conclusions “apparently runs counter to the (perhaps naive) intuition that high nucleosome forming affinity should arise for fragments with low wrapping energy”. Previous all-atom MD simulations (P´erez A, et al. Biophys J. 2012; Battistini, et al. PLOS Comput Biol. 202; Ngo T, et al. Nat. Commun. 20161) show that the stiffer DNA upon CpG methylation reduces the affinity of DNA to assemble into nucleosomes or destabilizes nucleosomes. Given these findings, the authors need to address and reconcile these seemingly contradictory results, as the influence of epigenetic modifications on DNA mechanical properties and nucleosome formation are critical aspects of their study. Understanding the influence of sequence-dependent and epigenetic modifications of DNA on mechanical properties and nucleosome formation is crucial for comprehending various cellular processes. The authors’ study, focusing on these aspects, will definitely garner interest from the DNA methylation research community.

      Training the cgNA+ model on alternative MD simulation datasets is certainly of interest to us. However, due to the significant computational cost, this remains a goal for future work. The relationship between nucleosome occupancy scores and nucleosome wrapping energy is still debated, with conflicting findings reported in the literature, as noted in our Discussion section. Interestingly, we find that our predicted log probability density of DNA spontaneously acquiring a nucleosomal configuration is a better indicator of nucleosome occupancy than our predicted DNA nucleosome wrapping energy.

      Reviewer #2 (Public Review):

      Summary:

      This study uses a coarse-grained model for double-stranded DNA, cgNA+, to assess nucleosome sequence affinity. cgNA+ coarse-grains DNA on the level of bases and accounts also explicitly for the positions of the backbone phosphates. It has been proven to reproduce all-atom MD data very accurately. It is also ideally suited to be incorporated into a nucleosome model because it is known that DNA is bound to the protein core of the nucleosome via the phosphates.

      It is still unclear whether this harmonic model parametrized for unbound DNA is accurate in describing DNA inside the nucleosome. Previous models by other authors, using more coarse-grained models of DNA, have been rather successful in predicting base pair sequence-dependent nucleosome behavior. This is at least the case as far as DNA shape is concerned whereas assessing the role of DNA bendability (something this paper focuses on) has been consistently challenging in all nucleosome models, to my knowledge.

      It is thus of major interest whether this more sophisticated model is also more successful in handling this issue. As far as I can tell the work is technically sound and properly accounts for not only the energy required in wrapping DNA but also entropic effects, namely the change in entropy that DNA experiences when going from the free state to the bound state. The authors make an approximation here which seems to me to be a reasonable first step.

      Of interest is also that the authors have the parameters at hand to study the effect of methylation of CpG-steps. This is especially interesting as it allows us to study a scenario where changes in the physical properties of base pair steps via methylation might influence nucleosome positioning and stability in a cell-type-specific way.

      Overall, this is an important contribution to the question of how the sequence affects nucleosome positioning and affinity. The findings suggest that cgNA+ has something new to offer. But the problem is complex, also on the experimental side, so many questions remain open.

      Strengths:

      The authors use their state-of-the-art coarse-grained DNA model which seems ideally suited to be applied to nucleosomes as it accounts explicitly for the backbone phosphates.

      Weaknesses:

      (1) According to the abstract the authors consider two “scalar measures of the sequence-dependent propensity of DNA to wrap into nucleosomes”. One is the bending energy and the other, is the free energy. Specifically in the latter, the authors take the difference between the free energies of the wrapped and the free DNA. Whereas the entropy of the latter can be calculated exactly, they assume that the bound DNA always has the same entropy (independent of sequence) in its more confined state. The problem is the way in which this is written (e.g. below Eq. 6) which is hard to understand. The authors should mention that the negative of Eq. 6 is what physicists call free energy, namely especially the free energy difference between bound and free DNA.

      We have included the necessary clarifications in the revised manuscript, below Eq. 6.

      (2) In Eq. 5 the authors introduce penalty coefficients c<sub>i</sub>. They write that values are “set by numerical experiment to keep distances ... within the ranges observed in the PDB structure, while avoiding sterical clashes in DNA.” This is rather vague, especially since it is unclear to me what type of sterical clashes might occur. Figure 1 shows then a comparison between crystal structures and simulated structures. They are reasonably similar but standard deviations in the fluctuations of the simulation are smaller than in the experiments. Why did the authors not choose smaller c<sub>i</sub>-values to have a better fit? Do smaller values lead to unwanted large fluctuations that would lead to steric clashes between the two DNA turns? I also wonder what side views of the nucleosomes look like (experiments and simulations) and whether in this side view larger fluctuations of the phosphates can be observed in the simulation that would eventually lead to turn-turn clashes for smaller c<sub>i</sub>-values.

      The side view plots of the experimental and predicted nucleosome structures are now added to Supplementary material (Figure S8). Indeed, smaller c<sub>i</sub> values lead to steric clashes between the two turns of DNA – this is now specified in the Methods section. A possible improvement of our optimisation method and a direction of future work would be adding a penalty which prevents steric clashes to the objective function. Then the c<sub>i</sub> values could be reduced to have bigger fluctuations that are even closer to the experimental structures. We added this explanation to the Results section.

      Reviewer #3 (Public Review):

      Summary:

      In this study, the authors utilize biophysical modeling to investigate differences in free energies and nucleosomal configuration probability density of CpG islands and nonmethylated regions in the genome. Toward this goal, they develop and apply the cgNA+ coarse-grained model, an extension of their prior molecular modeling framework.

      Strengths:

      The study utilizes biophysical modeling to gain mechanistic insight into nucleosomal occupancy differences in CpG and nonmethylated regions in the genome.

      Weaknesses:

      Although the overall study is interesting, the manuscripts need more clarity in places. Moreover, the rationale and conclusion for some of the analyses are not well described.

      We edited the manuscript according to the reviewer’s suggestions and hopefully improved its readability.

      Reviewer #1 (Recommendations For The Authors):

      (1) The cgNA+ model parameters are derived from all-atom molecular dynamics (MD) simulations, yet there is no consensus within all-atom MD simulations regarding the impact of CpG methylation on DNA mechanical properties. The authors could consider fitting the coarsegrained model with a different all-atom force field to verify whether the conclusions regarding the effects of methylation and hydroxymethylation on DNA nucleosome wrapping energies still hold. For further details on MD simulations related to CpG methylation effects, the authors are advised to consult the review paper by Li et al. (2022) titled “DNA methylation: Precise modulation of chromatin structure and dynamics” published in Current Opinion in Structural Biology.

      Parametrizing the cgNA+ model using MD simulations with various force fields is certainly of interest to us. However, due to the computational cost involved, it remains a goal for future work.

      (2) Beyond DNA mechanical properties, which are directly linked to nucleosome wrapping energies in this study, the authors might also consider other factors such as geometric properties that could influence nucleosome formation. This approach might help the authors to reconcile the observed higher nucleosome occupancy scores for methylated CpGs. The authors are encouraged to review the aforementioned paper for additional experimental and MD simulation studies that could support this perspective.

      Geometric properties of DNA are directly incorporated into our method through the cgNA+ model equilibrium shape prediction µ. We compute the mechanical energy needed deform µ to a nucleosomal configuration. Notably, the equilibrium shape µ is sensitive to methylation, as demonstrated in Figure 3.

      (3) There are some issues with citation accuracy in the manuscript. For instance, in the Discussion section, the authors attribute a statement to Collings et al. and Anderson (2017), claiming that “methylated regions, known to have high wrapping energy, are among the highest nucleosome occupied elements in the genome.” However, upon reviewing this paper, it appears that it does not make any claims about the high wrapping energy of methylated regions.

      The paragraph is now edited and a separate citation, P´erez et al. (2012), is given for the statement that methylation regions have high wrapping energy.

      Reviewer #2 (Recommendations For The Authors):

      Please improve the readability by:

      (1) making clear that -ln ρ in Eq. 6 on page 4 is actually the free energy. Also, the word entropy comes too late (on page 7) where the best explanation of Eq. 6 is presented.

      We added a comment about -ln ρ being the free energy after Eq. 6 and also included an equation, relating ln ρ and entropy.

      (2) page 12 and 13 show two sets of experimental data. They are quite different from each other. When reading this, I wondered why there is this difference. But only on page 16, you explain that these are different cell types. The difference should be explained already when the papers are introduced on page 12.

      A corresponding sentence already appeared in page 12: “The observations about nucleosome occupancy should be regarded as preliminary, and be treated with caution, as they are based on experimental data obtained for the cancerous HeLa cells Schwartz et al. (2019) and human genome embryonic stem cells Yazdi et al. (2015)”. Now we also added this information to the first paragraph of the subsection for clarity.

      Finally, I add here some general thoughts that came up when reading the paper, comparing your findings with earlier findings in the field. This is not a strict one-to-one comparison and thus does not have to find its way into this manuscript but might give ideas for future studies. Experiments suggest that nucleosomes prefer DNA with a high content of C’s and G’s. Figure 2 does not look at the GC content but at the number of CpG’s. But in any case, let’s use this as a proxy for GC content. Figure 2a suggests that there is not a strong dependence of the bending energy on the number CpG steps. This is consistent with earlier work with the rigid basepair model which shows the same behavior for GC content (for both MD and crystal parametrizations). Figure 2c (related to the negative free energy) shows that with an increasing number of CpG steps the propensity to bind goes down. This suggests that the entropic cost to confine CpG-rich DNA increases, which in turn reflects that these DNA stretches are softer. This is rather interesting since in the case of the rigid basepair model this effect is observed only when stiffnesses are extracted from crystal data not MD data (however, this refers again to CG content). This might indicate a difference between the rigid bp model and cgNA+ which will be interesting to study in the future. Interesting is also the effect of CpG methylation. The stiffer methylated steps lead to an increase in the energy with the number of such steps (Figure 2a). The entropic cost for binding is thus expected to be smaller and this is indeed observed in Figure 2c when compared to the non-methylated steps.

      We thank the reviewer for this comment. As for the GC content, the energy and lnp plots are indeed very similar to those in Figure 2.

      Reviewer #3 (Recommendations For The Authors):

      (1) The formulation of the cgNA+ model in the method section was not easy to follow and can be described better to improve clarity.

      We have revised the model description and hope that its clarity has been improved

      (2) The authors mention utilizing 100 human genome sequences with 100 configurations from DB. It would be helpful to clarify the source of these 100 human genome sequences. Are these 100 distinct regions on the human reference genome, or are they from a specific dataset or database?

      We now include an explanation about the origin of sequences: “The human genome sequences are a random subset of our sequence sample for the CGI and NMI intersection in the Chromosome 1, but the following observations remain unchanged for sequence samples from different genomic regions.”

      (3) The authors mention the lack of tail unwrapping in their model. It would be beneficial to understand the magnitude of this issue and its potential impact on the overall results. How significant is the lack of unwrapping events in their current model?

      We observed the unwrapping of approximately five base-pairs at each end of our predicted nucleosome configurations, in comparison to the experimental configurations (Figure 1). This issue could be solved by adding additional constraints at the ends of the 147 bp sequence. The wrapping energy would increase marginally, as only about 10 of 147 bp would be affected. We added this remark to the main text.

      (4) Observations from Figure 3 are not described properly. Are these differences statistically significant? Why is twist higher for CpG sites but lower for a roll?

      We added an explanation of how the statistics was computed into the caption of Figure 3. In fact, we didn’t use statistical estimates here, but generated all the possible cases and computed the exact statistics (for the given set of our model parameters). Regarding the changes in twist and roll, we have added the following comment on page 7: “The ground state changes resulting from cytosine modifications – primarily characterized by an average increase in roll and a decrease in twist – may be linked to steric hindrance caused by the cytosine 5-substituent (Battistini et al. (2021)). Notably, the negative coupling between twist and roll has already been observed in X-ray crystallography data (Olson et al. (1998)).”

      (5) Figure 4 does not clarify the authors’ conclusion of higher stiffness for ApT and TpA dinucleotides. The authors should provide further explanation for this observation.

      We revised the text to clarify that the statement regarding ApT and TpA being the most stiff and the most flexible dinucleotides is not a conclusion derived from Figure 4, but rather from earlier work that we cite.

      (6) In Figure 7, the authors note that methylated CGIs have higher nucleosome occupancy on average than unmethylated sequences. Is this observation statistically significant?

      We observe that methylated sequences have a higher average occupancy than unmethylated sequences in Yazdi et al. data, when the CpG count falls into the intervals from 5 to 14 and from 15 to 24. For each of the two intervals this difference is statistically significant: the permutation test, used due to the lack of normality, yields a p-value of 0.0001 for both cases. The differences in mean scores shown in Figure 8 are also statistically significant. Such test results are expected, given the large sample sizes and the observed differences in means, therefore we prefer not to include this discussion in main text.

      (7) The authors note that their analyses to correlate nucleosome occupancy profile with the methylation state of underlying sequences are preliminary, as different cell lines were used to perform these analyses. Given this inconsistency, it needs to be clarified why this analysis was performed and what the takeaway is.

      We added the following comment at the end of the Results section: “Although comparing data from different cell lines is not optimal, to the best of our knowledge, no publicly available methylation and nucleosome occupancy data exist for the entire human genome within the same cell type. Nevertheless, since the lowest log probability densities in the human genome are predicted for CpG-rich sequences regardless of their methylation state (Figure 2d), and the same holds for both sets of the nucleosome occupancy scores (Figure 7), we conclude that the lowest occupancies occur for sequences with the lowest log probability densities.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function. 

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on behavioral outcomes were not yet fully resolved. 

      We appreciate the reviewer’s thoughtful understanding and acknowledgment that the conceptual conclusion of asymmetric projections from the cortex to the striatum is well supported by our data. We also recognize the importance of further elucidating the extent of afferent overlap and the causal contributions of asymmetric corticostriatal inputs to behavioral outcomes. However, we respectfully note that current technical limitations pose significant challenges to addressing these questions with high precision.

      In response to the reviewer’s comments, we have now clarified the sample size, added proper analysis and elaborated on the experimental design to ensure that our conclusions are presented more transparently and are more accessible to the reader.

      After virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic. 

      Thank you for highlighting this point. As it lies at the core of our manuscript, we agree that it is essential to present it clearly and convincingly. As shown by the statistics (Fig. 2B-F), non-starter D1- and D2-SPNs appear to receive fewer projections from D1-projecting cortical neurons (Input D1-record D1, 0.63; Input D1-record D2, 0.40) compared to D2-projecting cortical neurons (Input D2 - record D1, 0.73; Input D2 -record D2, 0.79).

      While it is not technically feasible to quantify the number of infected cells in brain slices following electrophysiological recordings, we addressed this limitation by collecting data from multiple animals and restricting recordings to cells located within the injection sites. In Figure 2D, we used 7 mice in the D1-projecting to D1 EGFP(+) group, 8 mice in the D1-projecting to D2 EGFP(-) group, 10 mice in the D2-projecting to D2 EGFP(+) group, and 8 mice in the D2-projecting to D1 EGFP(-) group. In Figure 2G, the group sizes were as follows: 8 mice in the D1-projecting to D2 EGFP(+) group, 7 mice in the D1-projecting to D1 EGFP(-) group, 8 mice in the D2-projecting to D1 EGFP(+) group, and 10 mice in the D2-projecting to D2 EGFP(-) group. In both panels, connection ratios were compared using Fisher’s exact test. Comparisons were then made across experimental groups. Furthermore, as detailed in our Methods section (page 20, line 399-401), we assessed cortical expression levels prior to performing whole-cell recordings. Taken together, these precautions help ensure that the calculated connection ratios are unlikely to be confounded by differences in infection efficiency.

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences? 

      Thank you for bringing this concern to our attention. While optogenetic manipulation has become a widely adopted tool in functional studies of neural circuits, it remains subject to several technical limitations due to the nature of its implementation. Factors such as opsin expression efficiency, optic fiber placement, light intensity, stimulation spread, and other variables can all influence the specificity and extent of neuronal activation or inhibition. As such, rigorous experimental controls are essential when interpreting the outcomes of optogenetic experiments.

      In our study, we verified both the expression of channelrhodopsin in D1- or D2-projecting cortical neurons and the placement of the optic fiber following the completion of behavioral testing. To account for variability, we compared the behavioral effects of optogenetic stimulation within the same animals, stimulated versus non-stimulated conditions, as shown in Figures 3 and 4. Moreover, Figure S3 includes important controls that rule out the possibility that the behavioral effects observed were due to direct activation of D1- or D2-SPNs in striatum or to light alone in the cortex.

      An additional point worth emphasizing is that the behavioral effects observed in the open field and ICSS tests cannot be attributed to differences in the number of neurons activated. Specifically, activation of D1-projecting cortical neurons promoted locomotion in the open field, whereas activation of D2-projecting cortical neurons did not. However, in the ICSS test, activation of both D1- and D2-projecting cortical neurons reinforced lever pressing. Given that only D1-SPN activation, but not D2-SPN activation, supports ICSS behavior, these effects are unlikely to result merely from differences in the number of neurons recruited.

      This rationale underlies our use of multiple behavioral paradigms to examine the functions of D1- and D2-projecting cortical neurons. By assessing behavior across distinct tasks, we aimed to approach the question from multiple angles and reduce the likelihood of spurious or confounding effects influencing our interpretation.

      In general, the manuscript would also benefit from more clarity about the statistical comparisons that were made and sample sizes used to reach their conclusions.

      We thank the reviewer for the valuable suggestion to improve the manuscript. In response, we have made the following changes and provided additional clarification:

      (1) In Figure 2D, we used 7 mice in the D1-projecting to D1 EGFP(+) group, 8 mice in the D1-projecting to D2 EGFP(-) group, 10 mice in the D2-projecting to D2 EGFP(+) group, and 8 mice in the D2-projecting to D1 EGFP(-) group. In Figure 2G, the group sizes were as follows: 8 mice in the D1-projecting to D2 EGFP(+) group, 7 mice in the D1-projecting to D1 EGFP(-) group, 8 mice in the D2-projecting to D1 EGFP(+) group, and 10 mice in the D2-projecting to D2 EGFP(-) group. In both panels, connection ratios were compared using Fisher’s exact test.

      (2) In Figure 3, we reanalyzed the data in panels O, P, R, and S using permutation tests to assess whether each individual group exhibited a significant ICSS learning effect. The figure legend has been revised accordingly as follows:

      (O-P) D1-SPN (red) but not D2-SPN stimulation (black) drives ICSS behavior in both the DMS (O: D1, n = 6, permutation test, slope = 1.5060, P = 0.0378; D2, n = 5, permutation test, slope = -0.2214, P = 0.1021; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0130) and the DLS (P: D1, n = 6, permutation test, slope = 28.1429, P = 0.0082; D2, n = 5, permutation test, slope = -0.3429, P = 0.0463; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0390). *, P < 0.05. (Q) Timeline of helper virus injections, rabies-ChR2 injections and optogenetic stimulation for ICSS behavior. (R-S) Optogenetic stimulation of the cortical neurons projecting to either D1- or D2-SPNs induces ICSS behavior in both the MCC (R: MCC-D1, n = 5, permutation test, Day1-Day7, slope = 2.5857, P = 0.0034; MCC-D2, n = 5, Day2-Day7, permutation test, slope = 1.4229, P = 0.0344; no significant effect on Day7, MCC-D1 vs. MCC-D2,  two-tailed Mann Whitney test, P = 0.9999) and the M1 (S: M1-D1, n = 5, permutation test, Day1-Day7, slope = 1.8214, P = 0.0259; M1-D2, n = 5, Day1-Day7, permutation test, slope = 1.8214, P = 0.0025; no significant effect on Day7, M1-D1 vs. M1-D2, two-tailed Mann Whitney test, P = 0.3810). n.s., not statistically significant.

      (3) In Figure 4, we have added a comparison against a theoretical percentage change of zero to better evaluate the net effect of each manipulation. The results showed that in Figure 4D, optogenetic stimulation of D1-projecting MCC neurons significantly increased the pressing rate, whereas stimulation of D2-projecting MCC neurons did not (MCC-D1: n = 8, one-sample two-tailed t-test, t = 2.814, P = 0.0131; MCC-D2: n = 7, t = 0.8481, P = 0.4117). In contrast, in Figure 4H, optogenetic stimulation of both D1- and D2-projecting M1 neurons significantly increased the sequence press rate (M1-D1: n = 6, one-sample two-tailed Wilcoxon signed-rank test, P = 0.0046; M1-D2: n = 7, P = 0.0479).

      Reviewer #2 (Public Review):

      Summary: 

      Klug et al. use monosynaptic rabies tracing of inputs to D1- vs D2-SPNs in the striatum to study how separate populations of cortical neurons project to D1- and D2-SPNs. They use rabies to express ChR2, then patch D1-or D2-SPNs to measure synaptic input. They report that cortical neurons labeled as D1-SPN-projecting preferentially project to D1-SPNs over D2-SPNs. In contrast, cortical neurons labeled as D2-SPN-projecting project equally to D1- and D2-SPNs. They go on to conduct pathway-specific behavioral stimulation experiments. They compare direct optogenetic stimulation of D1- or D2-SPNs to stimulation of MCC inputs to DMS and M1 inputs to DLS. In three different behavioral assays (open field, intra-cranial self-stimulation, and a fixed ratio 8 task), they show that stimulating MCC or M1 cortical inputs to D1-SPNs is similar to D1-SPN stimulation, but that stimulating MCC or M1 cortical inputs to D2-SPNs does not recapitulate the effects of D2-SPN stimulation (presumably because both D1- and D2-SPNs are being activated by these cortical inputs). 

      Strengths: 

      Showing these same effects in three distinct behaviors is strong. Overall, the functional verification of the consequences of the anatomy is very nice to see. It is a good choice to patch only from mCherry-negative non-starter cells in the striatum.

      Thank you for your profound understanding and appreciation of our manuscript’s design and the methodologies employed. In the realm of neuroscience, quantifying synaptic connections is a formidable challenge. While the roles of the direct and indirect pathways in motor control have long been explored, the mechanism by which upstream cortical inputs govern these pathways remains shrouded in mystery at the circuitry level.

      In the ‘Go/No-Go’ model, the direct and indirect pathways operate antagonistically; in contrast, the ‘Co-activation’ model suggests that they work cooperatively to orchestrate movement. These distinct theories raise a compelling question: Do these two pathways receive inputs from the same upstream cortical neurons, or are they modulated by distinct subpopulations? Answering this question could provide vital clues as to whether these pathways collaborate or operate independently.

      Previous studies have revealed both differences and similarities in the cortical inputs to direct and indirect pathways at population level. However, our investigation delves deeper to understand how a singular cortical input simultaneously drives these pathways, or might it regulate one pathway through distinct subpopulations? To address this, we employed rabies virus–mediated retrograde tracing from D1- or D2-SPNs and recorded non-starter SPNs to determine if they receive the same inputs as the starter SPNs. This approach allowed us to calculate the connection ratio and estimate the probable connection properties.

      Weaknesses: 

      One limitation is that all inputs to SPNs are expressing ChR2, so they cannot distinguish between different cortical subregions during patching experiments. Their results could arise because the same innervation patterns are repeated in many cortical subregions or because some subregions have preferential D1-SPN input while others do not.

      Thank you for raising this thoughtful concern. It is indeed not feasible to restrict ChR2 expression to a specific cortical region using the first-generation rabies-ChR2 system alone. A more refined approach would involve injecting Cre-dependent TVA and RG into the striatum of D1- or A2A-Cre mice, followed by rabies-Flp infection. Subsequently, a Flp-dependent ChR2 virus could be injected into the MCC or M1 to selectively label D1- or D2-projecting cortical neurons. This strategy would allow for more precise targeting and address many of the current limitations.

      However, a significant challenge lies in the cytotoxicity associated with rabies virus infection. Neuronal health begins to deteriorate substantially around 10 days post-infection, which provides an insufficient window for robust Flp-dependent ChR2 expression. We have tested several new rabies virus variants with extended survival times (Chatterjee et al., 2018; Jin et al., 2024), but unfortunately, they did not perform effectively or suitably in the corticostriatal systems we examined.

      In our experimental design, the aim is to delineate the connectivity probabilities to D1 or D2-SPNs from cortical neurons. Our hypothesis considered includes the possibility that similar innervation patterns could occur across multiple cortical subregions, or that some subregions might show preferential input to D1-SPNs while others do not, or a combination of both scenarios. This leads us to perform a series behavior test that using optogenetic activation of the D1- or D2-projecting cortical populations to see which could be the case.

      In the cortical areas we examined, MCC and M1, during behavioral testing, there is consistency with our electrophysiological results. Specifically, when we stimulated the D1-projecting cortical neurons either in MCC or in M1, mice exhibited facilitated local motion in open field test, which is the same to the activation of D1 SPNs in the striatum along (MCC: Fig 3C & D vs. I; M1: Fig 3F & G vs. L). Conversely, stimulation of D2-projecting MCC or M1 cortical neurons resulted in behavioral effects that appeared to combine characteristics of both D1- and D2-SPNs activation in the striatum (MCC: Fig 3C & D vs. J; M1: Fig 3F & G vs. M). The similar results were observed in the ICSS test. Our interpretation of these results is that the activation of D1-projecting neurons in the cortex induces behavior changes akin to D1 neuron activation, while activation of D2-projecting neurons in the cortex leads to a combined effect of both D1 and D2 neuron activation. This suggests that at least some cortical regions, the ones we tested, follow the hypothesis we proposed.

      There are also some caveats with respect to the efficacy of rabies tracing. Although they only patch non-starter cells in the striatum, only 63% of D1-SPNs receive input from D1-SPN-projecting cortical neurons. It's hard to say whether this is "high" or "low," but one question is how far from the starter cell region they are patching. Without this spatial indication of where the cells that are being patched are relative to the starter population, it is difficult to interpret if the cells being patched are receiving cortical inputs from the same neurons that are projecting to the starter population. Convergence of cortical inputs onto SPNs may vary with distance from the starter cell region quite dramatically, as other mapping studies of corticostriatal inputs have shown specialized local input regions can be defined based on cortical input patterns (Hintiryan et al., Nat Neurosci, 2016, Hunnicutt et al., eLife 2016, Peters et al., Nature, 2021).

      This is a valid concern regarding anatomical studies. Investigating cortico-striatal connectivity at the single-cell level remains technically challenging due to current methodological limitations. At present, we rely on rabies virus-mediated trans-synaptic retrograde tracing to identify D1- or D2-projecting cortical populations. This anatomical approach is coupled with ex vivo slice electrophysiology to assess the functional connectivity between these projection-defined cortical neurons and striatal SPNs. This enables us to quantify connection ratios, for example, the proportion of D1-projecting cortical neurons that functionally synapse onto non-starter D1-SPNs.

      To ensure the robustness of our conclusions, it is essential that both the starter cells and the recorded non-starter SPNs receive comparable topographical input from the cortex and other brain regions. Therefore, we carefully designed our experiments so that all recorded cells were located within the injection site, were mCherry-negative (i.e., non-starter cells), and were surrounded by ChR2-mCherry-positive neurons. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.

      These methodological details are also described in the section on ex vivo brain slice electrophysiology, specifically in the Methods section, lines 396–399:

      “D1-SPNs (eGFP-positive in D1-eGFP mice, or eGFP-negative in D2-eGFP mice) or D2-SPNs (eGFP-positive in D2-eGFP mice, or eGFP-negative in D1-eGFP mice) that were ChR2-mCherry-negative, but in the injection site and surrounded by cells expressing ChR2-mCherry were targeted for recording.”

      This experimental strategy was implemented to control for potential spatial biases and to enhance the interpretability of our connectivity measurements.

      A caveat for the optogenetic behavioral experiments is that these optogenetic experiments did not include fluorophore-only controls.

      Thank you for bringing this to our attention. A fluorophore-only control is indeed a valuable negative control, commonly used to rule out effects caused by light exposure independent of optogenetic manipulation. In this study, however, comparisons were made between light-on and light-off conditions within the same animal. This within-subject design, as employed in recent studies (Geddes et al., 2018; Zhu et al., 2025), is considered sufficient to isolate the effects of optogenetic manipulation.

      Furthermore, as shown in Figure S3, we conducted an additional control experiment in which optogenetic stimulation was applied to M1, while ensuring that ChR2 expression was restricted to the striatum via targeted viral infection. This approach serves as a functional equivalent to the control you suggested. Importantly, we observed no effects that could be attributed solely to light exposure, further supporting the conclusion that the observed outcomes in our main experiments are due to targeted optogenetic manipulation, rather than confounding effects of illumination.

      Lastly, by employing an in-animal comparison, measuring changes between stimulated and non-stimulated trials, we account for subject-specific variability and strengthen the interpretability of our findings.

      Another point of confusion is that other studies (Cui et al, J Neurosci, 2021) have reported that stimulation of D1-SPNs in DLS inhibits rather than promotes movement.

      Thank you for bringing the study by Cui and colleagues to our attention. While that study has generated some controversy, other independent investigations have demonstrated that activation of D1-SPNs in DLS facilitates local motion and lever-press behaviors (Dong et al., 2025; Geddes et al., 2018; Kravitz et al., 2010).

      It is still worth to clarify. The differences in behavioral outcomes observed between our study and that of Cui et al. may be attributable to several methodological factors, including differences in both the stereotaxic targeting coordinates and the optical fiber specifications used for stimulation.

      Specifically, in our experiments, the dorsomedial striatum (DMS) was targeted at coordinates AP +0.5 mm, ML ±1.5 mm, DV –2.2 mm, and the DLS at AP +0.5 mm, ML ±2.5 mm, DV –2.2 mm. In contrast, Cui et al. targeted the DMS at AP +0.9 mm, ML ±1.4 mm, DV –3.0 mm and the DLS at AP +0.7 mm, ML ±2.3 mm, DV –3.0 mm. These coordinates correspond to sites that are slightly more rostral and ventral compared to our own. Even subtle differences in anatomical targeting can result in activation of distinct neuronal subpopulations, which may account for the differing behavioral effects observed during optogenetic stimulation.

      In addition, the optical fibers used in the two studies varied considerably. We employed fibers with a 200 µm core diameter and a numerical aperture (NA) of 0.37, whereas Cui et al. used fibers with a 250 µm core diameter and a higher NA of 0.66. The combination of a larger core and higher NA in their setup implies a broader spatial spread and deeper tissue penetration of light, likely resulting in activation of a larger neural volume. This expanded volume of stimulation may have engaged additional neural circuits not recruited in our experiments, further contributing to the divergent behavioral outcomes. Taken together, these differences in targeting and photostimulation parameters are likely key contributors to the distinct effects reported between the two studies.

      Reviewer #3 (Public Review): 

      In the manuscript by Klug and colleagues, the investigators use a rabies virus-based methodology to explore potential differences in connectivity from cortical inputs to the dorsal striatum. They report that the connectivity from cortical inputs onto D1 and D2 MSNs differs in terms of their projections onto the opposing cell type, and use these data to infer that there are differences in cross-talk between cortical cells that project to D1 vs. D2 MSNs. Overall, this manuscript adds to the overall body of work indicating that there are differential functions of different striatal pathways which likely arise at least in part by differences in connectivity that have been difficult to resolve due to difficulty in isolating pathways within striatal connectivity and several interesting and provocative observations were reported. Several different methodologies are used, with partially convergent results, to support their main points.

      However, I have significant technical concerns about the manuscript as presented that make it difficult for me to interpret the results of the experiments. My comments are below.

      Major:

      There is generally a large caveat to the rabies studies performed here, which is that both TVA and the ChR2-expressing rabies virus have the same fluorophore. It is thus essentially impossible to determine how many starter cells there are, what the efficiency of tracing is, and which part of the striatum is being sampled in any given experiment. This is a major caveat given the spatial topography of the cortico-striatal projections. Furthermore, the authors make a point in the introduction about previous studies not having explored absolute numbers of inputs, yet this is not at all controlled in this study. It could be that their rabies virus simply replicates better in D1-MSNs than D2-MSNs. No quantifications are done, and these possibilities do not appear to have been considered. Without a greater standardization of the rabies experiments across conditions, it is difficult to interpret the results.

      We thank the reviewer for raising these questions, which merit further discussion.

      Firstly, the primary aim of our study is to investigate the connectivity of the corticostriatal pathway. Given the current technical limitations, it is not feasible to trace all the striatal SPNs connected to a single cortical neuron. Therefore, we approached this from the opposite direction, starting from D1- or D2-SPNs to retrogradely label upstream cortical neurons, and then identifying their connected SPNs via functional synaptic recordings. To achieve this, we employed the only available transsynaptic retrograde method: rabies virus-mediated tracing. Because we crossed D1- or D2-GFP mice with D1- or A2A-Cre mice to identify SPN subtypes during electrophysiological recordings, the conventional rabies-GFP system could not be used to distinguish starter cells without conflicting with the GFP labeling of SPNs. To overcome this, we tagged ChR2 expression with mCherry. In this setup, we recorded from mCherry-negative D1- or D2-SPNs within the injection site and surrounded by mCherry-positive neurons. This ensures that the recorded neurons are topographically matched to the starter cell population and receive input from the same cortical regions. We acknowledge that TVA-only and ChR2-expressing cells are both mCherry-positive and therefore indistinguishable in our system. As such, mCherry-positive cells likely comprise a mixture of starter cells and TVA-only cells, representing a somewhat broader population than starter cells alone. Nevertheless, by restricting recordings to mCherry-negative SPNs within the injection site, it is ensured that our conclusions about functional connectivity remain valid and aligned with the primary objective of this study.

      Secondly, if rabies virus replication were significantly more efficient in D1-SPNs than in D2-SPNs, this would likely result in a higher observed connection probability in the D1-projecting group. However, we used consistent genetic strategies across all groups: D1-SPNs were defined as GFP-positive in D1-GFP mice and GFP-negative in D2-GFP mice, with D2-SPNs defined analogously. Recordings from both D1- and D2-SPNs were performed using the same methodology and under the same injection conditions within the same animals. This internal control helps mitigate the possibility that differential rabies infection efficiency biased our results.

      With these experimental safeguards in place, we found that 40% of D2-SPNs received input from D1-SPN-projecting cortical neurons, while 73% of D1-SPNs received input from D2-SPN-projecting cortical neurons. Although the ideal scenario would involve an even larger sample size to refine these estimates, the technical demands of post-rabies-infection electrophysiological recordings inherently limit throughput. Nonetheless, our approach represents the most feasible and accurate method currently available, and provides a significant advance in characterizing the functional connectivity within corticostriatal circuits.

      The authors claim using a few current clamp optical stimulation experiments that the cortical cells are healthy, but this result was far from comprehensive. For example, membrane resistance, capacitance, general excitability curves, etc are not reported. In Figure S2, some of the conditions look quite different (e.g., S2B, input D2-record D2, the method used yields quite different results that the authors write off as not different). Furthermore, these experiments do not consider the likely sickness and death that occurs in starter cells, as has been reported elsewhere. The health of cells in the circuit is overall a substantial concern that alone could invalidate a large portion, if not all, of the behavioral results. This is a major confound given those neurons are thought to play critical roles in the behaviors being studied. This is a major reason why first-generation rabies viruses have not been used in combination with behavior, but this significant caveat does not appear to have been considered, and controls e.g., uninfected animals, infected with AAV helpers, etc, were not included.

      We understand and appreciate the reviewer’s concern regarding the potential cytotoxicity of rabies virus infection. Indeed, this is a critical consideration when interpreting functional connectivity data. We have tested several newer rabies virus variants reported to support extended survival times (Chatterjee et al., 2018; Jin et al., 2024), but unfortunately, these variants did not perform reliably in the corticostriatal circuits we examined.

      Given these limitations, we relied on the rabies virus approach originally developed by Osakada et al. (Osakada et al., 2011), which demonstrated that neurons infected with rabies virus expressing ChR2 remain both viable and functional up to at least 10 days post-infection (Fig. 3, cited below). In our own experiments, we further validated the health and viability of cortical neurons, the presynaptic partners of SPNs, particularly around day 7 post-infection.

      To minimize the risk of viral toxicity, we performed ex vivo slice recordings within a conservative time window, between 4 and 8 days after infection, when the health of labeled neurons is well maintained. Moreover, the recorded SPNs were consistently mCherry-negative, indicating they were not directly infected by rabies virus, thus further reducing the likelihood of recording from compromised cells.

      Taken together, these steps help ensure that our synaptic recordings reflect genuine functional connectivity, rather than artifacts of viral toxicity. We hope this clarifies the rationale behind our experimental design.

      For the behavioral tests, including a naïve uninfected group and an AAV helper virus-only group as negative controls could be beneficial to isolate the specific impact of rabies virus infection. However, our primary focus is on the activation of selected presynaptic inputs to D1- or D2-SPNs by optogenetic method. Therefore, comparing stimulated versus non-stimulated trials within the same animal offers more direct and relevant results for our study objectives.

      It is also important to note that the ICSS test is particularly susceptible to the potential cytotoxic effects of rabies virus, as it spans a relatively extended period, from Day 4 to Day 12 post-infection. To mitigate this issue, we focused our analysis on the first 7 days of ICSS testing, thereby keeping the behavioral observations within 10 days post-rabies injection. This approach minimizes potential confounds from rabies-induced neurotoxicity while still capturing the relevant behavioral dynamics. Accordingly, we have revised Figure 3 and updated the statistical analyses to reflect this adjustment.

      The overall purity (e.g., EnvA-pseudotyping efficiency) of the RABV prep is not shown. If there was a virus that was not well EnvA-pseudotyped and thus could directly infect cortical (or other) inputs, it would degrade specificity.

      We agree that anatomical specificity is crucial for accurately labeling inputs to defined SPN populations in our study. The rabies virus strain employed here has been rigorously validated for its specificity in numerous previous studies from our group and others (Aoki et al., 2019; Klug et al., 2018; Osakada et al., 2011; Smith et al., 2016; Wall et al., 2013; Wickersham et al., 2007). For example, in a recent study by Aoki et al. (Aoki et al., 2019), we tested the same rabies virus strain by co-injecting the glycoprotein-deleted rabies virus and the TVA-expressing helper virus, without glycoprotein expressing AAV, into the SNr. As shown in Figure S1 (related to Figure 2), GFP expression was restricted to starter cells within the SNr, with no evidence of transsynaptic labeling in upstream regions such as the striatum, EPN, GPe, or STN (see panels F–H). These findings provide strong evidence that the rabies virus used in our experiments is properly pseudotyped and exhibits high specificity for starter cell labeling without off-target spread.

      We appreciate the reviewer’s emphasis on specificity, and we hope this clarification further supports the reliability of our anatomical tracing approach.

      While most of the study focuses on the cortical inputs, in slice recordings, inputs from the thalamus are not considered, yet likely contribute to the observed results. Related to this, in in vivo optogenetic experiments, technically, if the thalamic or other inputs to the dorsal striatum project to the cortex, their method will not only target cortical neurons but also terminals of other excitatory inputs. If this cannot be ruled it, stating that the authors are able to selectively activate the cortical inputs to one or the other population should be toned down.

      We agree with the reviewer that the thalamus is also a significant source of excitatory input to the striatum. However, current techniques do not allow for precise and exclusive labeling of upstream neurons in a given brain region, such as the cortex or thalamus. This technical limitation indeed makes it difficult to definitively determine whether inputs from these regions follow the same projection rules. Despite this, our findings show that stimulation of defined cortical populations, specifically, D1- or D2-projecting neurons in MCC and M1, elicits behavioral outcomes that closely mirror those observed in our ex vivo slice recordings, providing strong support for the cortical origin of the effects we observed.

      In our in vivo optogenetic experiments, we acknowledge that stimulating a specific cortical region may also activate axonal terminals from rabies-infected cortical or thalamic neurons. While somatic stimulation is generally more effective than terminal stimulation, we recognize the possibility that terminals on non-rabies-traced cortical neurons could be activated through presynaptic connections. To address this, we considered the finding of a previous study (Cruikshank et al., 2010), which demonstrated that while brief optogenetic stimulation (0.05 ms) of thalamo-cortical terminals can elicit few action potentials in postsynaptic cortical neurons, sustained terminal stimulation (500 ms) also results in only transient postsynaptic firing rather than prolonged activation (Fig. 3C, cited below). This suggests that cortical neurons exhibit only short-lived responses to continuous presynaptic stimulation of thalamic origin.

      In comparison, our behavioral paradigms employed prolonged optogenetic stimulation protocols- 20 Hz, 10 ms pulses for 15 s (open-field test), 1 s (ICSS), and 8 s (FR4/8)—which more closely resemble sustained stimulation conditions. Given these parameters, and the robust behavioral responses observed, it means that the effects are primarily mediated by activation of rabies-labeled, ChR2-expressing D1- or D2-projecting cortical neurons rather than indirect activation through thalamic input.

      We appreciate the reviewer’s valuable comment, and we have now incorporated this point into the revised manuscript (page 13, line 265 to 275) to more clearly address the potential contribution of thalamic inputs in our experimental design.

      The statements about specificity of connectivity are not well-founded. It may be that in the specific case where they are assessing outside of the area of injections, their conclusions may hold (e.g., excitatory inputs onto D2s have more inputs onto D1s than vice versa). However, how this relates to the actual site of injection is not clear. At face value, if such a connectivity exists, it would suggest that D1-MSNs receive substantially more overall excitatory inputs than D2s. It is thus possible that this observation would not hold over other spatial intervals. This was not explored and thus the conclusions are over-generalized. e.g., the distance from the area of red cells in the striatum to recordings was not quantified, what constituted a high level of cortical labeling was not quantified, etc. Without more rigorous quantification of what was being done, it is difficult to interpret the results. 

      We sincerely thank the reviewer for the thoughtful comments and critical insights into our interpretation of connectivity data. These concerns are valid and provide an important opportunity to clarify and reinforce our experimental design and conclusions.

      Firstly, as described in our previous response, all patched neurons were carefully selected to be within the injection site and in close proximity to ChR2-mCherry-positive cells. Specifically, the estimated distance from each recorded neuron to the nearest starter cells did not exceed 100 µm. This design choice was made to minimize variability associated with spatial distance or heterogeneity in viral expression, thereby allowing for a more consistent sampling of putatively connected neurons.

      Secondly, quantifying both the number of starter and input neurons would, in principle, provide a more comprehensive picture of connectivity. However, given the technical limitations of the current approach particularly when combining rabies tracing with functional recordings it is not feasible to obtain such precise cell counts. Instead, we focused on connection ratios derived from targeted electrophysiological recordings, which offer a reliable and practical means of estimating connectivity within these defined circuits.

      Thirdly, regarding the potential influence of rabies-labeled neurons beyond the immediate recording site: while we acknowledge that rabies tracing labels a broad set of upstream neurons, our analysis was confined to a well-defined and localized area. The analogy we find helpful here is that of a spotlight - our recordings were restricted to the illuminated region directly under the beam, where the projection pattern is fixed and interpretable, regardless of what lies outside that area. Although we cannot fully account for all possible upstream connections, our methodology was designed to minimize variability and maintain consistency in the region of interest, which we believe supports the robustness of our conclusions in the ex vivo slice recording experiment.

      We hope this additional explanation addresses the reviewer’s concerns and helps clarify the rationale of our experimental strategy.

      The results in figure 3 are not well controlled. The authors show contrasting effects of optogenetic stimulation of D1-MSNs and D2-MSNs in the DMS and DLS, results which are largely consistent with the canon of basal ganglia function. However, when stimulating cortical inputs, stimulating the inputs from D1-MSNs gives the expected results (increased locomotion) while stimulating putative inputs to D2-MSNs had no effect. This is not the same as showing a decrease in locomotion - showing no effect here is not possible to interpret.

      We apologize for any confusion and appreciate the opportunity to clarify this point. Our electrophysiological recordings demonstrated that D1-projecting cortical neurons preferentially innervate D1-SPNs in the striatum, whereas D2-projecting cortical neurons provide input to both D1- and D2-SPNs, without a clear preference. These synaptic connectivity patterns are further supported by our behavioral experiments: optogenetic stimulation of D1-projecting neurons in cortical areas such as MCC and M1 led to behavioral effects consistent with direct D1-SPN activation. In contrast, stimulation of D2-projecting cortical neurons produced behavioral outcomes that appeared to reflect a mixture of both D1- and D2-SPN activation.

      We acknowledge that interpreting negative behavioral findings poses inherent challenges, as it is difficult to distinguish between a true lack of effect and insufficient experimental manipulation. To mitigate this, we ensured that all animals included in the analysis exhibited appropriate viral expression and correctly placed optic fibers in the targeted regions. These controls help to confirm that the observed behavioral effects - or lack thereof - are indeed due to the activation of the intended neuronal populations rather than technical artifacts such as weak expression or fiber misplacement.

      As shown in Author response image 1 below, our verification of virus expression and fiber positioning confirms effective targeting in MCC and M1 of A2A-Cre mice. Therefore, we interpret the negative behavioral outcomes as meaningful consequences of specific neural circuit activation.

      Author response image 1.

      Confocal image from A2A-Cre mouse showing targeted optogenetic stimulation of D2-projecting cortical neurons in MCC or M1. ChR2-mCherry expression highlights D2-projecting neurons, selectively labeled via rabies-mediated tracing. Optic fiber placement is confirmed above the cortical region of interest. Image illustrates robust expression and anatomical specificity necessary for pathway-selective stimulation in behavioral assays.

      In light of their circuit model, the result showing that inputs to D2-MSNs drive ICSS is confusing. How can the authors account for the fact that these cells are not locomotor-activating, stimulation of their putative downstream cells (D2-MSNs) does not drive ICSS, yet the cortical inputs drive ICSS? Is the idea that these inputs somehow also drive D1s? If this is the case, how do D2s get activated, if all of the cortical inputs tested net activate D1s and not D2s? Same with the results in figure 4 - the inputs and putative downstream cells do not have the same effects. Given the potential caveats of differences in viral efficiency, spatial location of injections, and cellular toxicity, I cannot interpret these experiments.

      We apologize for any confusion in our previous explanation. In our behavioral experiments, the primary objective was to determine whether activation of D1- or D2-projecting cortical neurons would produce behavioral outcomes distinct from those observed with pure D1 or D2 activation.

      Our findings show that stimulation of D1-projecting cortical neurons produced behavioral effects closely resembling those of selective D1 activation in both open field and ICSS tests. This is consistent with our slice recording data, which revealed that D1-projecting cortical neurons exhibit a higher connection probability with D1-SPNs than with D2-SPNs.

      In contrast, interpreting the effects of D2-projecting cortical neuron stimulation is inherently more nuanced. In the open field test, activation of these neurons did not significantly modulate local motion. This could reflect a balanced influence of D1 activation, which facilitates movement, and D2 activation, which suppresses it - resulting in a net neutral behavioral outcome. In the ICSS test, the absence of a strong reinforcement effect typically associated with D2 activation, combined with partial reinforcement likely due to concurrent D1 activation, suggests that stimulation of D2-projecting neurons produces a mixed behavioral signal. This outcome supports the interpretation that these neurons synapse onto both D1- and D2-SPNs, leading to a blended behavioral response that differs from selective D1 or D2 activation alone.

      Together, these two behavioral assays offer complementary perspectives, providing a more complete view of how projection-specific cortical inputs influence striatal output and behavior.

      In Figure 4 of the current manuscript (as cited below), we show that optogenetic activation of MCC neurons projecting to D1-SPNs facilitates sequence lever pressing, whereas activation of MCC neurons projecting to D2-SPNs does not induce significant behavioral changes. Conversely, activation of M1 neurons projecting to either D1- or D2-SPNs enhances lever pressing sequences. These observations align with our prior findings (Geddes et al., 2018; Jin et al., 2014), where we demonstrated that in the striatum, D1-SPN activation facilitates ongoing lever pressing, whereas D2-SPN activation is more involved in suppressing ongoing actions and promoting transitions between sub-sequences, shown in Fig. 4 from (Geddes et al., 2018; Jin et al., 2014) and Fig. 5K from (Jin et al., 2014) . Taken together, the facilitation of lever pressing by D1-projecting MCC and M1 neurons is consistent with their preferential connectivity to D1-SPNs and their established behavioral role.

      What is particularly intriguing, though admittedly more complex, is the behavioral divergence observed upon activation of D2-SPN-projecting cortical neurons. Activation of D2-projecting MCC neurons does not alter lever pressing, possibly reflecting a counterbalancing effect from concurrent D1- and D2-SPN activation. In contrast, stimulation of D2-projecting M1 neurons facilitates lever pressing, albeit less robustly than their D1-projecting counterparts. This discrepancy may reflect regional differences in striatal targets, DMS for MCC versus DLS for M1, as also supported by our open field test results. Furthermore, our recent findings (Zhang et al., 2025) show that synaptic strength from Cg to D2-SPNs is stronger than to D1-SPNs, whereas the M1 pathway exhibits the opposite pattern. These data suggest that beyond projection ratios, synaptic strength also shapes cortico-striatal functional output. Thus, stronger D2-SPN synapses in the DMS may offset D1-SPN activation during MCC-D2 stimulation, dampening lever pressing increase. Conversely, weaker D2 synapses in the DLS may permit M1-D2 projections to facilitate behavior more readily.

      In summary, the behavioral outcomes of our optogenetic manipulations support the proposed asymmetric cortico-striatal connectivity model. While the effects of D2-projecting neurons are not uniform, they reflect varying balances of D1 and D2-SPN influence, which further underscores the asymmetrical connections of cortical inputs to the striatum.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors): 

      (1) What are the sample sizes for Fig S2? Some trends that are listed as nonsignificant look like they may just be underpowered. Related to this point, S2C indicates that PPR is statistically similar in all conditions. The traces shown in Figure 2 suggest that PPR is quite different in "Input D1"- vs "Input D2" projections. If there is indeed no difference, the exemplar traces should be replaced with more representative ones to avoid confusion. 

      Thank you for your suggestion. The sample size reported in Figure S2 corresponds to the neurons identified as connected in Figure 2. The representative traces shown in Figure 2 were selected based on their close alignment with the amplitude statistics and are intended to reflect typical responses. Given this, it is appropriate to retain the current examples as they accurately illustrate the underlying data.

      (2) Previous studies have described that SPN-SPN collateral inhibition is also asymmetric, with D2->D1 SPN connectivity stronger than the other direction. While cortical inputs to D2-SPNs may also strongly innervate D1-SPNs, it would be helpful to speculate on how collateral inhibition may further shape the biases (or lack thereof) reported here. 

      This would indeed be an interesting topic to explore. SPN-SPN mutual inhibition and/or interneuron inhibition may also play a role in the functional organization and output of the striatum. In the present study, we focused on the primary layer of cortico-striatal connectivity to examine how cortical neurons selectively connect to the striatal direct and indirect pathways, as these pathways have been shown to have distinct yet cooperative functions. To achieve this, we applied a GABAA receptor inhibitor to isolate only excitatory synaptic currents in SPNs, yielding the relevant results.

      To investigate additional circuit organization involving SPN-SPN mutual inhibition, the current available technique would involve single-cell initiated rabies tracing. This approach would help identify the starter SPN and the upstream SPNs that provide input to the starter cell, thereby offering a clearer understanding of the local circuit.

      (3) In Fig 3N-S there are no stats confirming that optogenetic stimulation does indeed increase lever pressing in each group (though it obviously looks like it does). It would be helpful to add statistics for this comparison, in addition to the between-group comparisons that are shown. 

      We thank the reviewer for this thoughtful suggestion. To assess whether optogenetic stimulation increases lever pressing in each group shown in Figures 3O, 3P, 3R, and 3S, we employed a permutation test (10,000 permutations). This non-parametric statistical method does not rely on assumptions about the underlying data distribution and is particularly appropriate for our analysis given the relatively small sample sizes.

      Additionally, in response to Reviewer 3’s concern regarding the potential cytotoxicity of rabies virus affecting behavioral outcomes during in vivo optogenetic stimulation experiments, we focused our analysis on Days 1 through 7 of the ICSS test. This time window remains within 10 days post-rabies infection, a period during which previous studies have reported minimal cytopathic effects (Osakada et al., 2011).

      Accordingly, we have updated Figure 3N-S and revised the associated statistical analyses in the figure legend as follows:

      (O-P) D1-SPN (red) but not D2-SPN stimulation (black) drives ICSS behavior in both the DMS (O: D1, n = 6, permutation test, slope = 1.5060, P = 0.0378; D2, n = 5, permutation test, slope = -0.2214, P = 0.1021; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0130) and the DLS (P: D1, n = 6, permutation test, slope = 28.1429, P = 0.0082; D2, n = 5, permutation test, slope = -0.3429, P = 0.0463; one-tailed Mann Whitney test, Day 7 D1 vs. D2, P = 0.0390). *, P < 0.05. (Q) Timeline of helper virus injections, rabies-ChR2 injections and optogenetic stimulation for ICSS behavior. (R-S) Optogenetic stimulation of the cortical neurons projecting to either D1- or D2-SPNs induces ICSS behavior in both the MCC (R: MCC-D1, n = 5, permutation test, Day1-Day7, slope = 2.5857, P = 0.0034; MCC-D2, n = 5, Day2-Day7, permutation test, slope = 1.4229, P = 0.0344; no significant effect on Day7, MCC-D1 vs. MCC-D2,  two-tailed Mann Whitney test, P = 0.9999) and the M1 (S: M1-D1, n = 5, permutation test, Day1-Day7, slope = 1.8214, P = 0.0259; M1-D2, n = 5, Day1-Day7, permutation test, slope = 1.8214, P = 0.0025; no significant effect on Day7, M1-D1 vs. M1-D2, two-tailed Mann Whitney test, P = 0.3810). n.s., not statistically significant.

      We believe this updated analysis and additional context further strengthen the validity of our conclusions regarding the reinforcement effects.

      (4) Line 206: mice were trained for "a few more days" is not a very rigorous description. It would be helpful to state the range of additional days of training. 

      We thank the reviewer for the suggestion. In accordance with the Methods section, we have now specified the number of days, which is 4 days, in the main text (line 207).

      (5) In Fig 4D,H, the statistical comparison is relative modulation (% change) by stimulation of D1- vs D2- projecting inputs. Please show statistics comparing the effect of stimulation on lever presses for each individual condition. For example, is the effect of MCC-D2 stimulation in panel D negative or not significant? 

      Thank you for your suggestion. Below are the statistical results, which we have also incorporated into the figure legend for clarity. To assess the net effects of each manipulation, we compared the observed percentage changes with a theoretical value of zero.

      In Figure 4D, optogenetic stimulation of D1-projecting MCC neurons significantly increased the pressing rate (MCC-D1, n = 8, one-sample two-tailed t-test, t = 2.814, P = 0.0131), whereas stimulation of D2-projecting MCC neurons did not produce a significant effect (MCC-D2, n = 7, one-sample two-tailed t-test, t = 0.8481, P = 0.4117).

      In contrast, Figure 4H shows that optogenetic stimulation of both D1- and D2-projecting M1 neurons significantly increased the sequence press rate (M1-D1, n = 6, one-sample two-tailed Wilcoxon signed-rank test, P = 0.0046; M1-D2, n = 7, one-sample two-tailed Wilcoxon signed-rank test, P = 0.0479).

      These analyses help clarify the distinct behavioral effects of manipulating different corticostriatal projections.

      (6) Are data in Fig 1G-H from a D1- or A2a- cre mouse? 

      The data in Fig 1G-H are from a D1-Cre mouse.

      (7) In Fig S3 it looks like there may actually be an effect of 20Hz simulation of D2-SPNs. Though it probably doesn't affect the interpretation. 

      As indicated by the statistics, there is a slight, but not statistically significant, decrease in local motion when 20 Hz stimulation is delivered to the motor cortex with ChR2 expression in D2-SPNs in the striatum.

      Reviewer #2 (Recommendations For The Authors): 

      The rabies tracing is referred to on several occasions as "new" but the reference papers are from 2011, 2013, and 2018. It is unclear what is new about the system used in the paper and what new feature is relevant to the experiments that were performed. Either clarify or remove "new" terminology. 

      Thank you for bringing this to our attention. We have revised the relevant text accordingly at line 20 in the Abstract, line 31 in the In Brief, line 69 in the Introduction, line 83 in the Results, and line 226 in the Discussion to improve clarity and accuracy.

      In Figure 2 D and G, D1 eGFP (+) and D2 eGFP(-) are plotted separately. These are the same cell type; therefore it may work best to combine that data. This could also be done for 'input to D2- Record D2' in panel D as well as 'input D1-Record D2' and 'input D2-Record D1' in panel G. Combining the information in panel D and G and comparing all 4 conditions to each other would give a better understanding of the comparison of functional connectivity between cortical neurons and D1 and D2 SPNs. 

      We thank the reviewer for the thoughtful suggestion. While presenting single bars for each condition (e.g., ‘input D1 - record D1’) might improve visual simplicity, it would obscure an important aspect of our experimental design. Specifically, we aimed to highlight that the comparisons between D1- and D2-projecting neurons to D1 and D2 SPNs were counterbalanced within the same animals - not just across different groups. By showing both D1-eGFP(+) and D2-eGFP(-), or vice versa, within each group and at similar proportions, we provide a more complete picture of the internal control built into our design. This format helps ensure the audience that our conclusions are not biased by group-level differences, but are supported by within-subject comparisons. Therefore, that the current presentation better could serve to communicate the rigor and balance of our experimental approach.

      The findings in Figure 2 are stated as D1 projecting excitatory inputs have a higher probability of targeting D1 SPNs while D2 projecting excitatory inputs target both D1 SPNs and D2 SPNs. It may be more clear to say that some cortical neurons project specifically to D1 SPNs while other cortical neurons project to both D1 and D2 SPNs equally. A better summary diagram could also help with clarity. 

      Thank you for bringing this up. The data we present reflect the connection probabilities of D1- or D2-projecting cortical neurons to D1 or D2 SPNs. One possible interpretation is like the reviewer said that a subset of cortical neurons preferentially target D1 SPNs, while others exhibit more balanced projections to both D1 and D2 SPNs. However, we cannot rule out alternative explanations - for example, that some D2-projecting neurons preferentially target D2 SPNs, or that the observed differences arise from the overall proportions of D1- and D2-projecting cortical neurons connecting to each striatal subtype.

      There are multiple possible patterns of connectivity that could give rise to the observed differences in connection ratios. Based on our current data, we can confidently conclude the existence of asymmetric cortico-striatal projections to the direct and indirect pathways, but the precise nature of this asymmetry will require further investigation.

      Figure 4 introduces the FR8 task, but there are similar takeaways to the findings from Figure 3. Is there another justification for the FR8 task or interesting way of interpreting that data that could add richness to the manuscript?

      The FR8 task is a self-initiated operant sequence task that relies on motor learning mechanisms, whereas the open field test solely assesses spontaneous locomotion. Furthermore, the sequence task enables us to dissect the functional role of specific neuronal populations in the initiation, maintenance, and termination of sequential movements through closed-loop optogenetic manipulations integrated into the task design. These methodological advantages underscore the rationale for including Figure 4 in the manuscript, as it highlights the unique insights afforded by this experimental paradigm.

      I am somewhat surprised to see that D1-SPN stimulation in DLS gave the results in Figure 3 F and P, as mentioned in the public review. These contrast with some previous results (Cui et al, J Neurosci, 2021). Any explanation? Would be useful to speculate or compare parameters as this could have important implications for DLS function.

      Thank you for raising this point. While Cui’s study has generated some debate, several independent investigations have consistently demonstrated that stimulation of D1-SPNs in the dorsolateral striatum (DLS) facilitates local motion and lever-press behaviors (Dong et al., 2025; Geddes et al., 2018; Kravitz et al., 2010). These findings support the functional role of D1-SPNs in promoting movement and motivated actions.

      The differences in behavioral outcomes observed between our study and that of Cui et al. may stem from several methodological factors, particularly related to anatomical targeting and optical stimulation parameters.

      Specifically, our experiments targeted the DMS at AP +0.5 mm, ML ±1.5 mm, DV –2.2 mm, and the DLS at AP +0.5 mm, ML ±2.5 mm, DV –2.2 mm. In contrast, Cui’s study targeted the DMS at AP +0.9 mm, ML ±1.4 mm, DV –3.0 mm, and the DLS at AP +0.7 mm, ML ±2.3 mm, DV –3.0 mm. These differences indicate that their targeting was slightly more rostral and more ventral than ours, which could have led to stimulation of distinct neuronal populations within the striatum, potentially accounting for variations in behavioral effects observed during optogenetic activation.

      In addition, the optical fibers used in the two studies differed markedly. We employed optical fibers with a 200 µm core diameter and a numerical aperture (NA) of 0.37. Cui’s study used fibers with a larger core diameter (250 µm) and a higher NA (0.66), which would produce a broader spread and deeper penetration of light. This increased photostimulation volume may have recruited a more extensive network of neurons, possibly including off-target circuits, thus influencing the behavioral outcomes in a manner not seen in our more spatially constrained stimulation paradigm.

      Taken together, these methodological differences, both in anatomical targeting and optical stimulation parameters, likely contribute to the discrepancies in behavioral results observed between the two studies. Our findings, consistent with other independent reports, support the role of D1-SPNs in facilitating movement and reinforcement behaviors under more controlled and localized stimulation conditions.

      Reviewer #3 (Recommendations For The Authors): 

      Minor: 

      The authors repeatedly state that they are using a new rabies virus system, but the system has been in widespread use for 16 years, including in the exact circuits the authors are studying, for over a decade. I would not consider this new. 

      Thank you for bringing this to our attention. We have revised the relevant text accordingly at line 20 in the Abstract, line 31 in the In Brief, line 69 in the Introduction, line 83 in the Results, and line 226 in the Discussion to improve clarity and accuracy.

      Figure 2G, how many mice were used for recordings?

      In Fig. 2G, we used 8 mice in the D1-projecting to D2 EGFP(+) group, 7 mice in the D1-projecting to D1 EGFP(-) group, 8 mice in the D2-projecting to D1 EGFP(+) group, and 10 mice in the D2-projecting to D2 EGFP(-) group.

      The amplitude of inputs was not reported in figure 2. This is important, as the strength of the connection matters. This is reported in Figure S2, but how exactly this relates to the presence or absence of connections should be made clearer.

      The amplitude data presented in Figure S2 summarize all recorded currents from confirmed connections, as detailed in the Methods section. A connection is defined by the presence of a detectable and reliable postsynaptic current with an onset latency of less than 10 ms following laser stimulation.

      Reference in the reply-to-review comments:

      Aoki, S., Smith, J.B., Li, H., Yen, X.Y., Igarashi, M., Coulon, P., Wickens, J.R., Ruigrok, T.J.H., and Jin, X. (2019). An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. Elife 8, e49995.

      Chatterjee, S., Sullivan, H.A., MacLennan, B.J., Xu, R., Hou, Y.Y., Lavin, T.K., Lea, N.E., Michalski, J.E., Babcock, K.R., Dietrich, S., et al. (2018). Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci 21, 638-646.

      Cruikshank, S.J., Urabe, H., Nurmikko, A.V., and Connors, B.W. (2010). Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons. Neuron 65, 230-245.

      Dong, J., Wang, L.P., Sullivan, B.T., Sun, L.X., Smith, V.M.M., Chang, L.S., Ding, J.H., Le, W.D., Gerfen, C.R., and Cai, H.B. (2025). Molecularly distinct striatonigral neuron subtypes differentially regulate locomotion. Nat Commun 16, 2710.

      Geddes, C.E., Li, H., and Jin, X. (2018). Optogenetic Editing Reveals the Hierarchical Organization of Learned Action Sequences. Cell 174, 32-43.

      Jin, L., Sullivan, H.A., Zhu, M., Lavin, T.K., Matsuyama, M., Fu, X., Lea, N.E., Xu, R., Hou, Y.Y., Rutigliani, L., et al. (2024). Long-term labeling and imaging of synaptically connected neuronal networks in vivo using double-deletion-mutant rabies viruses. Nat Neurosci 27, 373-383.

      Jin, X., Tecuapetla, F., and Costa, R.M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 17, 423-430.

      Klug, J.R., Engelhardt, M.D., Cadman, C.N., Li, H., Smith, J.B., Ayala, S., Williams, E.W., Hoffman, H., and Jin, X. (2018). Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. Elife 7, e35657.

      Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622-626.

      Osakada, F., Mori, T., Cetin, A.H., Marshel, J.H., Virgen, B., and Callaway, E.M. (2011). New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits. Neuron 71, 617-631.

      Smith, J.B., Klug, J.R., Ross, D.L., Howard, C.D., Hollon, N.G., Ko, V.I., Hoffman, H., Callaway, E.M., Gerfen, C.R., and Jin, X. (2016). Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch and Matrix Compartments. Neuron 91, 1069-1084.

      Wall, N.R., De La Parra, M., Callaway, E.M., and Kreitzer, A.C. (2013). Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons. Neuron 79, 347-360.

      Wickersham, I.R., Lyon, D.C., Barnard, R.J.O., Mori, T., Finke, S., Conzelmann, K.K., Young, J.A.T., and Callaway, E.M. (2007). Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639-647.

      Zhang, B.B., Geddes, C.E., and Jin, X. (2025) Complementary corticostriatal circuits orchestrate action repetition and switching. Sci Adv, in press.

      Zhu, Z.G., Gong, R., Rodriguez, V., Quach, K.T., Chen, X.Y., and Sternson, S.M. (2025). Hedonic eating is controlled by dopamine neurons that oppose GLP-1R satiety. Science 387, eadt0773.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Cho et al. present a comprehensive and multidimensional analysis of glutamine metabolism in the regulation of B cell differentiation and function during immune responses. They further demonstrate how glutamine metabolism interacts with glucose uptake and utilization to modulate key intracellular processes. The manuscript is clearly written, and the experimental approaches are informative and well-executed. The authors provide a detailed mechanistic understanding through the use of both in vivo and in vitro models. The conclusions are well supported by the data, and the findings are novel and impactful. I have only a few, mostly minor, concerns related to data presentation and the rationale for certain experimental choices.

      Detailed Comments:

      (1) In Figure 1b, it is unclear whether total B cells or follicular B cells were used in the assay. Additionally, the in vitro class-switch recombination and plasma cell differentiation experiments were conducted without BCR stimulation, which makes the system appear overly artificial and limits physiological relevance. Although the effects of glutamine concentration on the measured parameters are evident, the results cannot be confidently interpreted as true plasma cell generation or IgG1 class switching under these conditions. The authors should moderate these claims or provide stronger justification for the chosen differentiation strategy. Incorporating a parallel assay with anti-BCR stimulation would improve the rigor and interpretability of these findings. 

      We will edit the manuscript to be more explicit that total splenic B cells were used in this set-up figure and the rest of the paper. In addition, we will try to perform new experiments to improve this "set-up figure" (and add old and new data for Supplemental Figure presentation). Specifically, we will increase the range of conditions tested - e.g., styles of stimulating proliferation and differentiation - to foster an increased sense of generality. We plan to compare mitogenic stimulation with anti-CD40 to  anti-IgM and to anti-IgM + anti-CD40, all with BAFF, IL-4, and IL-5, bearing in mind excellent work from Aiba et al, Immunity 2006; 24: 259-268, and similar papers. We also will try to present some representative flow cytometric profiles (presumably in new Supplemental Figure panels).

      To be transparent and add to a more open public discussion (using the virtues of this forum, the senior author and colleagues would caution about whether any in vitro conditions exist that warrant complete confidence. That is the reason for proceeding to immunization experiments in vivo. That is not said to cast doubt on our own in vitro data - there are some experiments (such as those of Fig. 1a-c and associated Supplemental Fig. 1) that only can be done in vitro or are better done that way (e.g., because of rapid uptake of early apoptotic B cells in vivo).

      For instance: Well-respected papers use the CD40LB and NB21.2D9 systems to activate B cells and generate plasma cells. Those appear to be BCR-independent and unfortunately, we found that they cannot be used with a.a. deprivation or these inhibitors due to effects on the engineered stroma-like cells. In considering BCR engagement, Reth has published salient points about signaling and concentrations of the Ab, the upshot being that this means of activating mitogenesis and plasma cell differentiation (when the B cells are costimulated via CD40 or TLR(4 or 7/8) is probably more than a bit artificial. Moreover, although Aiba et al, Immunity 2006; 24: 259-268 is a laudable exception, one rarely finds papers using BAFF despite the strong evidence it is an essential part of the equation of B cell regulation in vivo and a cytokine that modulates BCR signaling - in the cultures. 

      (2) In Figure 1c, the DMK alone condition is not presented. This hinders readers' ability to properly asses the glutaminolysis dependency of the cells for the measured readouts. Also, CD138+ in developing PCs goes hand in hand with decreased B220 expression. A representative FACS plot showing the gating strategy for the in vitro PCs should be added as a supplementary figure. Similarly, division number (going all the way to #7) may be tricky to gate and interpret. A representative FACS plot showing the separation of B cells according to their division numbers and a subsequent gating of CD138 or IgG1 in these gates would be ideal for demonstrating the authors' ability to distinguish these populations effectively.

      We agree that exact placement  of divisions deconvolution by FlowJow is more fraught than might be thought forpresentations in many or most papers. For the revision, we will try to add one or several representative FACS plot(s) with old and new data to provide the gating on CTV fluorescence, bearing these points in mind when extending the experiments from ~7 years ago (Fig. 1b, c). With the representative examples of the old data pasted in here, we will aver, however, that using divisions 0-6, and ≥7 was reasonable. 

      Ditto for DMK with normal glutamine. However, in the spirit of eLife transparency lacking in many other journals, this comparison is more fraught than the referee comment would make things seem. The concentration tolerated by cells is highly dependent on the medium and glutamine concentration, and perhaps on rates of glutaminolysis (due to its generation of ammonia). In practice, we find that DMK becomes more toxic to B cells unless glutamine is low or glutaminolysis is restricted. Thus, the concentration of DMK that is tolerated and used in Fig. 1b, c can become toxic to the B cells when using the higher levels of glutamine in typical culture media (2 mM or more) - at which point the "normal conditions + DMK" "control" involves the surviving cells in conditions with far greater cell death and less population expansion than the "low glutamine + DMK". condition. Overall, we appreciate the suggestion to show more DMK data and will work to do so for the earlier proliferation data (shown above) and the new experiments.  

      Author response image 1.

       

      (3) A brief explanation should be provided for the exclusive use of IgG1 as the readout in class-switching assays, given that naïve B cells are capable of switching to multiple isotypes. Clarifying why IgG1 was preferentially selected would aid in the interpretation of the results.

      We will edit the text to be more explicit and harmonize in light of the referee's suggestion that we focus the presentation of serologic data on IgG1 in the immunization experiments.

      [IgG1 provides the strongest signal and hence better signal/noise both in vitro and with the alum-based immunizations that are avatars for the adjuvant used in the majority of protein-based vaccines for humans.]

      (4) The immunization experiments presented in Figures 1 and 2 are well designed, and the data are comprehensively presented. However, to prevent potential misinterpretation, it should be clarified that the observed differences between NP and OVA immunizations cannot be attributed solely to the chemical nature of the antigens - hapten versus protein. A more significant distinction lies in the route of administration (intraperitoneal vs. intranasal) and the resulting anatomical compartment of the immune response (systemic vs. lung-restricted). This context should be explicitly stated to avoid overinterpretation of the comparative findings.

      We agree with the referee and will edit the text accordingly. Certainly, the difference in how the anti-ova response is elicited compared to the anti-NP response in the same mice or with a bit different an immunization regimen might be another factor - or the major factor - that could contribute towards explaining why glutaminolysis was important after ovalbumin inhalations (used because emergence of anti-ova Ab / ASCs is suppressed by the NP hapten after NP-ova immunization) but not needed for the anti-NP response unless Slc2a1 or Mpc2 also was inactivated. Thank you prompting addition of this caveat.

      Nevertheless, it seems fair to note that in Figures 1 and 2, the ASCs and Ab are being analyzed for NP and ova in the same mice, albeit with the NP-specific components not being driven by the inhalations of ovalbumin. With that in mind, when one compares the IgG1 anti-NP ASC and Ab to those for IgG1 anti-ovalbumin (ASC in bone marrow; Ab), the ovalbumin-specific response was reduced whereas the anti-NP response was not.

      (5) NP immunization is known to be an inducer of an IgG1-dominant Th2-type immune response in mice. IgG2c is not a major player unless a nanoparticle delivery system is used. However, the authors arbitrarily included IgG2c in their assays in Figures 2 and 3. This may be confusing for the readers. The authors should either justify the IgG2c-mediated analyses or remove them from the main figures. (It can be added as supplemental information with proper justification). 

      We will rearrange the Figure panels to move the IgM and IgG2c data to Supplemental Figures.

      For purposes of public discourse, we note that the data of previous Figure 3(c, g) show a very strong NP-specific IgG2c response that seems to contradict the concept that IgG2c responses necessarily are weak in this setting, and the important role of IgG2c (mouse - IgG1 in humans) in controlling or clearing various pathogens as well as in autoimmunity. So from the standpoint of providing a better sense of generality to the loss-of-function effects, we continue to think that these measurements are quite important. That said, the main text has many figure panels and as the review notes, the class switching and in vitro ASC generation were done with IL-4 / IgG1-promoting conditions. If possible, we will try to assay in vitro class switching with IFN-g rather than IL-4 but there may not be enough resources (time before lab closure; money).

      [As a collegial aside, we speculate that a greater or lesser IgG2c anti-NP response may arise due to different preparations of NP-carrier obtained from the vendor (Biosearch) having different amounts of TLR (e.g., TLR4) ligand. In any case, the points of presenting the IgG2c (and IgM) data were to push against the limiting boundaries of convention (which risks perpetuating a narrow view of potential outcomes) and make the breadth of results more apparent to readers.

      (6) Similarly, in affinity maturation analyses, including IgM is somewhat uncommon. I do not see any point in showing high affinity (NP2/NP20) IgMs (Figure 3d), since that data probably does not mean much.

      As noted in the reply immediately preceding this one, we appreciate this suggestion from the reviewer and will move the IgM and IgG2c to Supplemental status.

      Nonetheless, in collegial discourse we disagree a bit with the referee in light of our data as well as of work that (to our minds) leads one to question why inclusion of affinity maturation of IgM is so uncommon - as the referee accurately notes. Of course a defect in the capacity to class-switch is highly deleterious in patients but that is not the same as concluding that recall IgM or its affinity is of little consequence.

      In some of the pioneering work back in the 1980's, Bothwell showed that NP-carrier immunization generated hybridomas producing IgM Ab with extensive SHM (~11% of the 18 lineages; ~ 1/3 of the IgM hybridomas) [PMID: 8487778], IgM B cells appear to move into GC, and there is at least a reasonable published basis for the view that there are GC-derived IgM (unswitched) memory B cells (MBC) that would be more likely, upon recall activation, to differentiate into ASCs. [As an example, albeit with the Jenkins lab anti-rPE response, Taylor, Pape, and Jenkins generated quantitative estimates of the numbers of Ag-specific IgM<sup>+</sup>vs switched MBC that were GC-derived (or not). [PMID: 22370719]. While they emphasized that ~90% of  IgM<sup>+</sup> MBC appeared to be GC-independent, their data also indicated that ~1/2 of all GC-derived MBC were IgM<sup>+</sup> rather than switched (their Fig. 8, B vs C; also 8E, which includes alum-PE). And while we immensely respect the referee, we are perhaps less confident that IgM or high-affinity Ag-specific IgM doesn't mean that much, if only because of evidence that localized Ab compete for Ag and may thus influence selective processes [PMCID: PMC2747358; PMID: 15953185; PMID: 23420879; PMID: 27270306].

      (7) Following on my comment for the PC generation in Figure 1 (see above), in Figure 4, a strategy that relies solely on CD40L stimulation is performed. This is highly artificial for the PC generation and needs to be justified, or more physiologically relevant PC generation strategies involving anti-BCR, CD40L, and various cytokines should be shown. 

      In line with our response to point (1), we plan and will try to self-fund testing BCR-stimulated B cells (anti-CD40 to  anti-IgM and to anti-IgM + anti-CD40, all with BAFF, IL-4, and IL-5).

      (8) The effects of CB839 and UK5099 on cell viability are not shown. Including viability data under these treatment conditions would be a valuable addition to the supplementary materials, as it would help readers more accurately interpret the functional outcomes observed in the study. 

      We will add to the supplemental figures to present data that provide cues as to relative viability / survival under the experimental conditions used. [FSC X SSC as well as 7AAD or Ghost dye panels; we also hope to generate new data that include further experiments scoring annexin V staining.]

      (9) It is not clear how the RNA seq analysis in Figure 4h was generated. The experimental strategy and the setup need to be better explained.

      The revised manuscript will include more information (at minimum in the Methods, Legend), and we apologize that in this and a few other instances sufficiency of detail was sacrificed on the altar of brevity.

      [Adding a brief synopsis to any reader before the final version of record, given the many months it will take to generate new data, thoroughly revise the manuscript, etc:

      In three temporally and biologically independent experiments, cultures were harvested 3.5 days after splenic B cells were purified and cultured as in the experiments of Fig. 4a-e. total cellular RNA prepared from the twelve samples (three replicates for each of four conditions - DMSO vehicle control, CB839, UK5099, and CB839 + UK5099) was analyzed by RNA-seq. After the RNA-seq data were initially processed using the pipeline described in the Methods. For panels g & h of Fig 4, DE Seq2 was used to quantify and compare read counts in the three CB839 + UK5099 samples relative to the three independent vehicle controls and identify all genes for which variances yielded P<0.05. In Fig 4g, all such genes for which the difference was 'statistically significant' (i.e., P<0.05) were entered into the Immgen tool and thereby mapped to the B lineage subsets shown in the figure panels (i.e., g, h). In (g), these are displayed using one format, whereas (h) uses the 'heatmap' tool in MyGeneSet.  

      Reviewer #2 (Public review): 

      Summary: 

      In this manuscript, the authors investigate the functional requirements for glutamine and glutaminolysis in antibody responses. The authors first demonstrate that the concentrations of glutamine in lymph nodes are substantially lower than in plasma, and that at these levels, glutamine is limiting for plasma cell differentiation in vitro. The authors go on to use genetic mouse models in which B cells are deficient in glutaminase 1 (Gls), the glucose transporter Slc2a1, and/or mitochondrial pyruvate carrier 2 (Mpc2) to test the importance of these pathways in vivo. 

      Interestingly, deficiency of Gls alone showed clear antibody defects when ovalbumin was used as the immunogen, but not the hapten NP. For the latter response, defects in antibody titers and affinity were observed only when both Gls and either Mpc2 or Slc2a1 were deleted. These latter findings form the basis of the synthetic auxotrophy conclusion. The authors go on to test these conclusions further using in vitro differentiations, Seahorse assays, pharmacological inhibitors, and targeted quantification of specific metabolites and amino acids. Finally, the authors document reduced STAT3 and STAT1 phosphorylation in response to IL-21 and interferon (both type 1 and 2), respectively, when both glutaminolysis and mitochondrial pyruvate metabolism are prevented. 

      Strengths:

      (1) The main strength of the manuscript is the overall breadth of experiments performed. Orthogonal experiments are performed using genetic models, pharmacological inhibitors, in vitro assays, and in vivo experiments to support the claims. Multiple antigens are used as test immunogens--this is particularly important given the differing results. 

      (2) B cell metabolism is an area of interest but understudied relative to other cell types in the immune system. 

      (3) The importance of metabolic flexibility and caution when interpreting negative results is made clear from this study.

      Weaknesses:

      (1) All of the in vivo studies were done in the context of boosters at 3 weeks and recall responses 1 week later. This makes specific results difficult to interpret. Primary responses, including germinal centers, are still ongoing at 3 weeks after the initial immunization. Thus, untangling what proportion of the defects are due to problems in the primary vs. memory response is difficult.

      (2) Along these lines, the defects shown in Figure 3h-i may not be due to the authors' interpretation that Gls and Mpc2 are required for efficient plasma cell differentiation from memory B cells. This interpretation would only be correct if the absence of Gls/Mpc2 leads to preferential recruitment of low-affinity memory B cells into secondary plasma cells. The more likely interpretation is that ongoing primary germinal centers are negatively impacted by Gls and Mpc2 deficiency, and this, in turn, leads to reduced affinities of serum antibodies

      We provisionally plan to edit the wording of the conclusion a bit to add a possibility we consider unlikely to avoid a conclusion that MBCs bearing switched BCRs are affected once reactivated. We also will perform a new experiment to investigate, but unfortunately time before lab closure has been and remains our enemy both for performance and multiple replication of the work presented in Figure 3, panels h & i, and the related Supplemental Data (Supplemental Fig. 3a-j). Unfortunately, it will not be possible to do a memory experiment with recall immunization out at 8 weeks.  Despite the grant funding running out and institutional belt-tightening, however, we'll try to perform a new head-to-head comparison of 4 wk post-immunization with and without the boost at three weeks.

      The intriguing concern (points 1 & 2) provides a springboard for consideration of generalizations and simplifications. Germinal center durability is not at all monolithic, and instead is quite variable**. The premise (cognitive bias, perhaps?) in the interpretation is that in our previous work we find few if any GC B cells - NP-APC-binding or otherwise - above the background (non-immunized controls) three weeks after immunization with NP-ovalbumin in alum. Recognizing that it is not NP-carrier in alum as immunizations, we note for the readers and referee that Fig. 1 of the Taylor, Pape, & Jenkins paper considered above [PMID: 22370719] reported 10-fold more Ag-specific MBCs than GC B cells at day 29 post-immunization (the point at which the boost / recall challenge was performed in our Figure 3h, i).

      Viewed from that perspective, the surmise of the comment is that a major contribution to the differences in both all-affinity and high-affinity anti-NP IgG1 shown in Fig. 3i derives from the immunization at 4 wk stimulating GC B cells we cannot find as opposed to memory B cells. However, it is true that in the literature (especially with the experimentally different approach of transferring BCR-transgenic / knock-in versions of an NP-biased BCR) there may be meaningful pools of IgG1 and IgG2c GC B cells. Alternatively, our current reagents for immunizations may have become better at maintaining GC than those in the past - which we will try to test.

      The issue and question also relate to rates of output of plasma cells or rises in the serum concentrations of class-switched Ab. To this point, our prior experiences agree with the long-published data of the Kurosaki lab in Figure 3c of the Aiba et al paper noted above (Immunity, 2006) (and other such time courses). Readers can note that the IgG1 anti-NP response (alum adjuvant, as in our work) hits its plateau at 2 wk, and did not increase further from 2 to 3 wk. In other words, GC are on the decline and  Ab production has reached its plateau by the time of the 2nd immunization in Fig. 3h). 

      Assuming we understand the comment and line of reasoning correctly, we also lean towards disagreeing with the statement "This interpretation would only be correct if the absence of Gls/Mpc2 leads to preferential recruitment of low-affinity memory B cells into secondary plasma cells." Our evidence shows that both low-affinity as well as high-affinity anti-NP Ab (IgG1) went down as a result of combined gene-inactivation after the peak primary response (Fig. 3i). Recent papers show that affinity maturation is attributable to greater proliferation of plasmablasts with high-affinity BCR. Accordingly, the findings with loss of GLS and MPC function are quite consistent with the interpretation that much of the response after the second immunization draws on MBC differentiation into plasmablasta and then plasma cells, where the proliferative advantage of high-affinity cells is blunted by the impaired metabolism. The provisional plan, however, is to note the alternative, if less likely, interpretation proposed by the review.

      ** In some contexts, of course, especially certain viral infections or vaccination with lipid nanoparticles carrying modified mRNA, germinal centers are far more persistent; also, in humans even the seasonal flu vaccine **

      (3) The gating strategies for germinal centers and memory B cells in Supplemental Figure 2 are problematic, especially given that these data are used to claim only modest and/or statistically insignificant differences in these populations when Gls and Mpc2 are ablated. Neither strategy shows distinct flow cytometric populations, and it does not seem that the quantification focuses on antigen-specific cells.

      We will enhance these aspects of the presentation, using old and hopefully new data, but note for readers that many many other papers in the best journals show plots in which the separation of, say, GC-Tfh from overall Tfh is based on cut-off within what essentially is a continuous spectrum of emission as adjusted or compensated by the cytometer (spectral or conventional).

      Perhaps incorrectly, we omitted presenting data that included the results with NP-APC-staining - in part because within the GC B cell gate the frequencies of NP-binding events (GCB cells) were similar in double-knockout samples and controls. In practice, that would mean that the metabolic requirement applied about equally to NP+ and the total population. We will try to rectify this point in the revision.

      (4) Along these lines, the conclusions in Figure 6a-d may need to be tempered if the analysis was done on polyclonal, rather than antigen-specific cells. Alum induces a heavily type 2-biased response and is not known to induce much of an interferon signature. The authors' observations might be explained by the inclusion of other ongoing GCs unrelated to the immunization. 

      We will make sure the text is clear that the in vitro experiments do not represent GC B cells and that the RNA-seq data were not an Ag (SRBC)-specific subset.

      We also will try to work in a schematic along with expanding the Legends to make it more readily clear that the RNA-seq data (and hence the GSEA) involved immunizations with SRBC (not the alum / NP system which - it may be noted - in these experiments actually generated a robust IgG2c (type 1-driven) response along with the type 2-enhanced IgG1 response.

      Reviewer #3 (Public review): 

      Summary: 

      In their manuscript, the authors investigate how glutaminolysis (GLS) and mitochondrial pyruvate import (MPC2) jointly shape B cell fate and the humoral immune response. Using inducible knockout systems and metabolic inhibitors, they uncover a "synthetic auxotrophy": When GLS activity/glutaminolysis is lost together with either GLUT1-mediated glucose uptake or MPC2, B cells fail to upregulate mitochondrial respiration, IL 21/STAT3 and IFN/STAT1 signaling is impaired, and the plasma cell output and antigen-specific antibody titers drop significantly. This work thus demonstrates the promotion of plasma cell differentiation and cytokine signaling through parallel activation of two metabolic pathways. The dataset is technically comprehensive and conceptually novel, but some aspects leave the in vivo and translational significance uncertain.

      Strengths:

      (1) Conceptual novelty: the study goes beyond single-enzyme deletions to reveal conditional metabolic vulnerabilities and fate-deciding mechanisms in B cells.

      (2) Mechanistic depth: the study uncovers a novel "metabolic bottleneck" that impairs mitochondrial respiration and elevates ROS, and directly ties these changes to cytokine-receptor signaling. This is both mechanistically compelling and potentially clinically relevant.

      (3) Breadth of models and methods: inducible genetics, pharmacology, metabolomics, seahorse assay, ELISpot/ELISA, RNA-seq, two immunization models.

      (4) Potential clinical angle: the synergy of CB839 with UK5099 and/or hydroxychloroquine hints at a druggable pathway targeting autoantibody-driven diseases.

      We agree and thank the referee for the positive comments and this succinct summary of what we view as contributions of the paper.

      Weaknesses: 

      (1) Physiological relevance of "synthetic auxotrophy"

      The manuscript demonstrates that GLS loss is only crippling when glucose influx or mitochondrial pyruvate import is concurrently reduced, which the authors name "synthetic auxotrophy". I think it would help readers to clarify the terminology more and add a concise definition of "synthetic auxotrophy" versus "synthetic lethality" early in the manuscript and justify its relevance for B cells.

      We will edit the Abstract, Introduction, and Discussion to try to do better on this score. Conscious of how expansive the prose and data are even in the original submission, we appear to have taken some shortcuts that we will try to rectify. Thank you for highlighting this need to improve on a key concept!

      That said, we punctiliously & perhaps pedantically encourage readers to be completely accurate, in that under one condition of immunization GLS loss substantially reduced the anti-ovalbumin response (Fig. 1, Fig. 2a-c). And for this provisional response, we will expand a bit on the notion that synthetic auxotrophy represents effects on differentiation that appear to go beyond and not simply to be selective death, even though decreased population expansion is observed and one cannot exclude some contribution of enhanced death in vivo. Finally, we will note that this comment of the review raises interesting semantic questions about what represents "physiological relevance" but leave it at that.

      While the overall findings, especially the subset specificity and the clinical implications, are generally interesting, the "synthetic auxotrophy" condition feels a little engineered.

      One can readily say that CAR-T cells are 'a little engineered' so it is a matter of balancing this perspective of the referee against the strengths they highlight in points 1, 2, and 4. In any case, we will probably try to expand and be more explicit in the Discussion of the revised manuscript.

      In brief, even were the money not all gone, we would not believe that expanding the heft of this already rather large manuscript and set of data would be appropriate. As matters stand, a basic new insight about metabolic flexibility and its limits leads to evidence of a way to reduce generation of Ab and a novel impairment of STAT transcription factor induction by several cytokine receptors. The vulnerability that could be tested in later work on B cell-dependent autoimmunity includes the capacity to test a compound that already has been to or through FDA phase II in patients together with an FDA-approved standard-of-care agent.

      Put a different way, the point is that a basic curiosity to understand why decreasing glucose influx did not have an even more profound effect than what was observed, combined with curiosity as to why glutaminolysis was dispensable in relatively standard vaccine-like models of immunize / boost, provided a springboard to identification of new vulnerabilities. As above, we appreciate being made aware that this point merits being made more explicit in the Discussion of the edited version.

      Therefore, the findings strongly raise the question of the likelihood of such a "double hit" in vivo and whether there are conditions, disease states, or drug regimens that would realistically generate such a "bottleneck".

      Hence, the authors should document or at least discuss whether GC or inflamed niches naturally show simultaneous downregulation/lack of glutamine and/or pyruvate. The authors should also aim to provide evidence that infections (e.g., influenza), hypoxia, treatments (e.g., rapamycin), or inflammatory diseases like lupus co-limit these pathways. 

      Again, we appreciate some 'licensing' to be more expansive and explicit, and will try to balance editing in such points against undue tedium or tendentiously speculative length in the Discussion. In particular, we will note that a clear, simple implication of the work is to highlight an imperative to test CB839 in lupus patients already on hydroxychloroquine as standard-of-care, and to suggest development of UK5099 (already tested many times in mouse models of cancer) to complement glutaminase inhibition. 

      As backdrop, we note that the failure to advance imaging mass spectrometry to the capacity to quantify relative or absolute (via nano-DESI) concentrations of nutrients in localized interstitia is a critical gap in the entire field. Techniques that sample the interstitial fluid of tumor masses or in our case LN as a work-around have yielded evidence that there can be meaningful limitations of glucose and glutamine, but it needs to be acknowledged that such findings may be very model-specific and, as can be the case with cutting-edge science, are not without controversy. That said, yes, we had found that hypoxia reduced glutamine uptake but given the norms of focused, tidy packages only reported on leucine in an earlier paper [PMID27501247; PMCID5161594].

      It would hence also be beneficial to test the CB839 + UK5099/HCQ combinations in a short, proof-of-concept treatment in vivo, e.g., shortly before and after the booster immunization or in an autoimmune model. Likewise, it may also be insightful to discuss potential effects of existing treatments (especially CB839, HCQ) on human memory B cell or PC pools.

      We certainly agree that the suggestions offered in this comment are important next steps and the right approach to test if the findings reported here translate toward the treatment of autoimmune diseases that involve B cells, interferons, and pathophysiology mediated by auto-Ab. As practical points, performance and replication of such studies would take more time than the year allotted for return of a revised manuscript to eLife and in any case neither funds nor a lab remain to do these important studies. 

      Concrete evidence for our concurrence was embodied in a grant application to NIH that was essential for keeping a lab and doing any such studies. [We note, as a suggestion to others, that an essential component of such studies would be to test the effects of these compounds on B cells from patients and mice with autoimmunity]. Perhaps unfortunately for SLE patients, the review panelists did not agree about the importance of such studies. However, it can be hoped that the patent-holder of CB839 (and perhaps other companies developing glutaminase inhibitors) will see this peer-reviewed pre-print and the public dialogue, and recognize how positive results might open a valuable contribution to mitigation of diseases such as SLE.

      (2) Cell survival versus differentiation phenotype

      Claims that the phenotypes (e.g., reduced PC numbers) are "independent of death" and are not merely the result of artificial cell stress would benefit from Annexin-V/active-caspase 3 analyses of GC B cells and plasmablasts. Please also show viability curves for inhibitor-treated cell

      This comment leads us to see that the wording on this point may have been overly terse in the interests of brevity, and thereby open to some misunderstanding. Accordingly, we will expand out the text of the Abstract and elsewhere in the manuscript, to be more clear. In addition, we will add in some data on the point, hopefully including some results of new experiments.

      To clarify in this public context, it is not that an increase in death (along with the reported decrease in cell cycling) can be or is excluded - and in fact it likely exists in vitro. The point is that beyond any such increase, and taking into account division number (since there is evidence that PC differentiation and output numbers involve a 'division-counting' mechanism), the frequencies of CD138+ cells and of ASCs among the viable cells are lower, as is the level of Prdm1-encoded mRNA even before the big increase in CD138+ cells in the population. 

      (3) Subset specificity of the metabolic phenotype

      Could the metabolic differences, mitochondrial ROS, and membrane-potential changes shown for activated pan-B cells (Figure 5) also be demonstrated ex vivo for KO mouse-derived GC B cells and plasma cells? This would also be insightful to investigate following NP-immunization (e.g., NP+ GC B cells 10 days after NP-OVA immunization).

      We agree that such data could be nice and add to the comprehensiveness of the work. We will try to scrounge the resources (time; money; human) to test this roughly as indicated. That said, we would note that the frequencies and hence numbers of NP+ GC B cells are so low that even in the flow cytometer we suspect there will not be enough "events" to rely on the results with DCFDA in the tiny sub-sub-subset. It also bears noting that reliable flow cytometric identification of the small NP-specific plasmablast/plasma cell subset amidst the overall population, little of which arose from immunization or after deletion of the floxed segments in B cells, would potentially be misleading.

      (4) Memory B cell gating strategy

      I am not fully convinced that the memory-B-cell gate in Supplementary Figure 2d is appropriate. The legend implies the population is defined simply as CD19+GL7-CD38+ (or CD19+CD38++?), with no further restriction to NP-binding cells. Such a gate could also capture naïve or recently activated B cells. From the descriptions in the figure and the figure legend, it is hard to verify that the events plotted truly represent memory B cells. Please clarify the full gating hierarchy and, ideally, restrict the MBC gate to NP+CD19+GL7-CD38+ B cells (or add additional markers such as CD80 and CD273). Generally, the manuscript would benefit from a more transparent presentation of gating strategies.

      We will further expand the supplemental data displays to include more of the gating and analytic scheme, and hope to be able to have performed new experiments and analyses (including additional markers) that could mitigate the concern noted here. In addition, we will include flow data from the non-immunized control mice that had been analyzed concurrently in the experiments illustrated in this Figure.

      Although it should be noted that the labeling indicated that the gating included the important criterion that cells be IgD- (Supplemental Fig. 2b), which excludes the vast majority of naive B cells, in principle marginal zone (MZ) B cells might fall within this gate. However, the MZ B population is unlikely to explain the differences shown in Supplemental Fig. 2b-d.

      (5) Deletion efficiency - [The] mRNA data show residual GLS/MPC2 transcripts (Supplementary Figure 8). Please quantify deletion efficiency in GC B cells and plasmablasts.

      Even were there resources to do this, the degree of reduction in target mRNA (Gls; Mpc2) renders this question superfluous.

      Are there likely to be some cells with only one, or even neither, allele converted from fl to D? Yes, but they would be a minor subset in light of the magnitude of mRNA reduction, in contrast to our published observations with Slc2a1. As to plasmablasts and plasma cells, the pre-existing populations make such an analysis misleading, while the scarcity of such cells recoverable with antigen capture techniques is so low as to make both RNA and genomic DNA analyses questionable.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment

      This valuable study revisits the effects of substitution model selection on phylogenetics by comparing reversible and non-reversible DNA substitution models. The authors provide evidence that 1) non time-reversible models sometimes perform better than general time-reversible models when inferring phylogenetic trees out of simulated viral genome sequence data sets, and that 2) non time-reversible models can fit the real data better than the reversible substitution models commonly used in phylogenetics, a finding consistent with previous work. However, the methods are incomplete in supporting the main conclusion of the manuscript, that is that non time-reversible models should be incorporated in the model selection process for these data sets.

      The non-reversible models should be incorporated in the selection model process not because the significantly perform better but only because the do not perform worse than the reversible models and that true biochemical processes of nucleotide substitution does support the science of non-reversibility.

      Reviewer #1 (Public Review):

      The study by Sianga-Mete et al revisits the effects of substitution model selection on phylogenetics by comparing reversible and non-reversible DNA substitution models. This topic is not new, previous works already showed that non-reversible, and also covarion, substitution models can fit the real data better than the reversible substitution models commonly used in phylogenetics. In this regard, the results of the present study are not surprising. Specific comments are shown below.

      True

      It is well known that non-reversible models can fit the real data better than the commonly used reversible substitution models, see for example,

      https://academic.oup.com/sysbio/article/71/5/1110/6525257

      https://onlinelibrary.wiley.com/doi/10.1111/jeb.14147?af=R

      The manuscript indicates that the results (better fitting of non-reversible models compared to reversible models) are surprising but I do not think so, I think the results would be surprising if the reversible models provide a better fitting.

      I think the introduction of the manuscript should be increased with more information about non-reversible models and the diverse previous studies that already evaluated them. Also I think the manuscript should indicate that the results are not surprising, or more clearly justify why they are surprising.

      The surprise in the findings is in NREV12 performing better than NREV6 for double stranded DNA viruses as it was expected that NREV6 would perform better given the biochemical processes discussed in the introduction.

      In the introduction and/or discussion I missed a discussion about the recent works on the influence of substitution model selection on phylogenetic tree reconstruction. Some works indicated that substitution model selection is not necessary for phylogenetic tree reconstruction,

      https://academic.oup.com/mbe/article/37/7/2110/5810088

      https://www.nature.com/articles/s41467-019-08822-w

      https://academic.oup.com/mbe/article/35/9/2307/5040133

      While others indicated that substitution model selection is recommended for phylogenetic tree reconstruction,

      https://www.sciencedirect.com/science/article/pii/S0378111923001774

      https://academic.oup.com/sysbio/article/53/2/278/1690801

      https://academic.oup.com/mbe/article/33/1/255/2579471

      The results of the present study seem to support this second view. I think this study could be improved by providing a discussion about this aspect, including the specific contribution of this study to that.

      In our conclusion we have stated that:

      The lack of available data regarding the proportions of viral life cycles during which genomes exist in single and double stranded states makes it difficult to rationally predict the situations where the use of models such as GTR, NREV6 and NREV12 might be most justified: particularly in light of the poor over-all performance of NREV6 and GTR relative to NREV12 with respect to describing mutational processes in viral genome sequence datasets. We therefore recommend case-by-case assessments of NREV12 vs NREV6 vs GTR model fit when deciding whether it is appropriate to consider the application of non-reversible models for phylogenetic inference and/or phylogenetic model-based analyses such as those intended to test for evidence of natural section or the existence of molecular clocks.

      The real data was downloaded from Los Alamos HIV database. I am wondering if there were any criterion for selecting the sequences or if just all the sequences of the database for every studied virus category were analysed. Also, was any quality filter applied? How gaps and ambiguous nucleotides were considered? Notice that these aspects could affect the fitting of the models with the data.

      We selected varying number of sequences of the database for every studied virus type. Using the software aliview we did quality filter by re-aligning the sequences per virus type.

      How the non-reversible model and the data are compared considering the non-reversible substitution process? In particular, given an input MSA, how to know if the nucleotide substitution goes from state x to state y or from state y to state x in the real data if there is not a reference (i.e., wild type) sequence? All the sequences are mutants and one may not have a reference to identify the direction of the mutation, which is required for the non-reversible model. Maybe one could consider that the most abundant state is the wild type state but that may not be the case in reality. I think this is a main problem for the practical application of non-reversible substitution models in phylogenetics.

      True

      Reviewer #1 (Recommendations for the authors):

      The reversible and non-reversible models used in this study assume that all the sites evolve under the same substitution matrix, which can be unrealistic. This aspect could be mentioned.

      Done

      The manuscript indicates that "a phylogenetic tree was inferred from an alignment of real sequences (Avian Leukosis virus) with an average sequence identity (API) of ~90%.". I was wondering under which substitution model that phylogenetic tree reconstruction was performed? could the use of that model bias posterior results in terms of favoring results based on such a model?

      We have stated that the GTR+G model was used to reconstruct the tree. The use of the GTR+G model could yes bias the posterior results as we have stated in the paper too.

      I was wondering which specific R function was used to calculate the weighted Robinson-Foulds metric. I think this should be included in the manuscript.

      We stated that We used the weighted Robinson-Foulds metric (wRF; implemented in the R phangorn package (Schliep, 2011)⁠)

      Despite a minority, several datasets fitted better with a reversible model than with a non-reversible model. I think that should be clearly indicated. In addition, in my opinion the AIC does not enough penalizes the number of parameters of the models and favors the non-reversible models over the reversible models, but this is only my opinion based on the definition of AIC and it is not supported. Thus, I think the comparison between phylogenetic trees reconstructed under different substitution models was a good idea (but see also my second major comment).

      Noted

      When comparing phylogenetic trees I was wondering if one should consider the effect of the estimation method and quality of the studied data? For example, should bootstrap values be estimated for all the ancestral nodes and only ancestral nodes with high support be evaluated in the comparison among trees?

      Yes the estimation method and quality of the studied data should be considered. When using RF unlike wRF this will not matter but for weighted RF it does. When building the trees, using RaxML only high support nodes are added to the tree.

      In Figure 3, I do not see (by eye) significant differences among the models. I see in the legend that the statistical evaluation was based on a t test but I am not much convinced. Maybe it is only my view. Exactly, which pairs of datasets are evaluated with the t test? Next, I would expect that the influence of the substitution model on the phylogenetic tree reconstruction is higher at large levels of nucleotide diversity because with more substitution events there is more information to see the effects of the model. However, the t test seems to show that differences are only at low levels of nucleotide diversity (and large DNR), what could be the cause of this?

      The paired T-tests compares the wRF distances of the inferred tree real tree and the trees simulated using the GTR model verses the wRF distances of the inferred true tree from the trees simulated using the NREV12 model.

      The reason why the influence of the NREV12 model on the tree reconstructed is not significantly higher at large levels of nucleotide diversity could be because at a certain level the DNR are simply unrealistic.

      Can the user perform substitution model selection (i.e., AIC) among reversible and non-reversible substitution models with IQTREE? If yes, then doing that should be the recommendation from this study, correct?

      But, can DNR be estimated from a real dataset? DNR seems to be the key factor (Figure 3) for the phylogenetic analysis under a proper model.

      Substitution model selection can be performed among reversible and non-reversible using both HyPhy and IQTREE. And we have recommended that model tests should be done as a first step before tree building. Estimating DNR from real datasets requires a substation rate matrix of a non-reversible.

      The manuscript has many text errors (including typos and incorrect citations). For example, many citations in page 20 show "Error! Reference source not found.". I think authors should double check the manuscript before submitting. Also, some text is not formally written. For example, "G represents gamma-distributed rates", rates of what? The text should be clear for readers that are not familiar with the topic (i.e., G represents gamma-distributed substitution rates among sites). In general, I recommend a detailed revision of the whole text of the manuscript.

      Done

      Reviewer #2 (Public Review):

      The authors evaluate whether non time reversible models fit better data presenting strand-specific substitution biases than time reversible models. Specifically, the authors consider what they call NREV6 and NREV12 as candidate non time-reversible models. On the one hand, they show that AIC tends to select NREV12 more often than GTR on real virus data sets. On the other hand, they show using simulated data that NREV12 leads to inferred trees that are closer to the true generating tree when the data incorporates a certain degree of non time-reversibility.

      Based on these two experimental results, the authors conclude that "We show that non-reversible models such as NREV12 should be evaluated during the model selection phase of phylogenetic analyses involving viral genomic sequences". This is a valuable finding, and I agree that this is potentially good practice.

      However, I miss an experiment that links the two findings to support the conclusion: in particular, an experiment that solves the following question: does the best-fit model also lead to better tree topologies?

      By NREV12 leading to inferred trees that are closer to the true generating tree as compared to GTR, it then shows that the best-fit model in this case being NREV12 leads to better tree topologies.

      On simulated data, the significance of the difference between GTR and NREV12 inferences is evaluated using a paired t test. I miss a rationale or a reference to support that a paired t test is suitable to measure the significance of the differences of the wRF distance. Also, the results show that on average NREV12 performs better than GTR, but a pairwise comparison would be more informative: for how many sequence alignments does NREV12 perform better than GTR?

      We have used the popular paired t-test as it is the most widely used when comparing means values between two matched samples where the difference of each mean pair is normally distributed. And the wRF distances do match the guidelines above.

      The paired t-test contains the pairwise comparison and the boxplots side by side show the pairwise wRF comparisions.

      Reviewer #2 (Recommendations for the authors):

      The authors reference Baele et al., 2010 for describing NREV6 and NREV12. I suggest using the same name used in the referenced paper: GNR-SYM and GNR respectively. Although I do not think there is a standard name for these models, I would use a previously used one.

      We have built studies based on the names NREV6 and NREV12. We would like to keep the naming as standard for our studies.

      GTR and NREV12 models are already described in many other papers. I do not see the need to include such an extensive description. Also, a reference should be included to the discrete Gamma rate categories [1]

      We included the extensive description to enable other readers who are not super familiar with these models better understanding since we have given the models our own naming different from those used in other papers.

      We have added referencing for the discrete gamma rate as recommended. (Yang, 1994)

      To evaluate the exhaustiveness and correctness of the results, I would recommend publishing as supplementary material the simulated data sets or the scripts for generating the data set, the scripts or command lines for the analysis, and the versions of the software used (e.g., IQTREE). Also, to strongly support the main conclusion of the manuscript, I suggest adding to the simulations section results the RF-distances of the best-fit selected model under AIC, AICc, and BIC as well.

      We can go ahead and submit all the needed datasets. The simulated data RF-Distances results are available and will be submitted. We cannot however add them to the main document as this will create very long data tables.

      In some instances, it is mentioned that the selection criterion used is AIC, while in others, AIC-c is referenced. Even in the table captions, both terms are mixed. It should be made clearer which criterion is being employed, as AIC is not suitable for addressing the overparameterization of evolutionary models, given that it does not account for the sample size. A previous pre-print of this article [2] does not mention AIC-c, but also explicitly includes the formulas for AIC that do not take the sample size into account, and reports the same results as this manuscript, what indicates that AIC and not AIC-c was used here. This should be clarified. It is recommended to use AIC-c instead of AIC, especially if the sample size to model parameters ratio is low [3]. Two things may be appointed here: some authors consider tree branch lengths as model free parameters and others do not. In this paper it is not specified how the model parameters are counted. AIC tends to select more parameterized models than AIC-c, and overparameterization can lead to different tree inferences, as evidenced in Hoff et al., 2016. Therefore, it is expected that NREV12 is more frequently selected than NREV6 and GTR.

      In my opinion, a pairwise comparison between GTR and NREV12 performance is of great interest here, and the whiskers plots are not useful. Scatterplots would display the results better.

      Boxplots are meant to offer a simplified view of the results as the paired t-tests does all of the comparisons. We shall provide the scatter plots as supplementary information so that readers can get full detailed plots as recommended.

      Some references are missing.

      Missing references added

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      In this manuscript, Gruber et al perform serial EM sections of the antennal lobe and reconstruct the neurites innervating two types of glomeruli one that is narrowly tuned to geosmin and one that is broadly tuned to other odours. They quantify and describe various aspects of the innervations of olfactory sensory neurons (OSNs), uniglomerlular projection neurons (uPNs), and the multiglomerular Local interneurons (LNs) and PNs (mPNs). They find that narrowly tuned glomeruli had stronger connectivity from OSNs to PNs and LNs, and considerably more connections between sister OSNs and sister PNs than the broadly tuned glomeruli. They also had less connectivity with the contralateral glomeruli. These observations are suggestive of strong feed-forward information flow with minimal presynaptic inhibition in narrowly tuned glomeruli, which might be ecologically relevant, for example, while making quick decisions such as avoiding a geosmin-laden landing site. In contrast, information flow in more broadly tuned glomeruli show much more lateralisation of connectivity to the contralateral glomerulus, as well as to other ipsilateral glomeruli. 

      The data are well presented, the manuscript clearly written, and the results will be useful to the olfaction community. I wonder, given the hemibrain and FAFB datasets exist, whether the authors have considered verifying whether the trends they observe in connectivity hold across three brains? Is it stereotypic? 

      We appreciate the reviewer’s positive view of our study and their thoughtful and relevant comment on the issue of individual variation. We agree in that this is a very important question and notice that it was also asked for by the second Reviewer. It reflects both our limited understanding of the range of individual variation in synaptic connectivity—whether in flies, humans, or other species—and the challenge of determining which of the differences observed in our study are stereotypical features of each glomerulus type. Undoubtedly this criticism addresses a crucial problem of practically all connectome studies so far and for which there is no immediate solution. This type of studies requires so much time, efforts and money that increasing the number of samples is seldom feasible. The Reviewer wonders if we could compare our data with that made available by two of the largest connectome studies of Drosophila. This appeared to us to be a very good idea and we have tried to follow the advice but, unfortunately, it was impracticable because of the reasons we explain below. The hemibrain data cannot be used for this purpose because it does not contain the full glomerulus DA2 (Schlegel et al., 2021). A different problem hindered us from using the FAFB dataset, the other dataset mentioned by the Reviewer. In this case the three glomeruli were sectioned and reconstructed but the dataset lacks an annotated list of all synaptic connections corresponding to each glomerulus. Such annotation (a compendium of all synaptic connections inside each glomerulus informing for each connection which type of neuron provides the presynaptic site and which the postsynaptic site) is essential for direct comparison with our data. It is important to keep in mind that the current analytical tools available for the use of these datasets (e.g., NeuPrint, FlyWire and CATMAID) do not offer the ability to extract data on synapses exclusively from the glomerular volume of DA2 or DL5. In this case, it certainly is theoretically possible to obtain the data by doing ourselves the annotation. However, such a study will demand so much time, efforts and financial resources, which we believe would not be justified solely to increase the number of individuals from one to two. Instead, our manuscript includes a comparison of the OSN connectivity in VA1v and DL5 using the hemibrain dataset published by Schlegel et al. (2021) (see revised manuscript: lines 311–315; 431–434; 558–562; 602–606).

      Beyond the opinion, that we share in full with the Reviewer, that a comparison including three flies will be better than a comparison made with one glomerulus of each type we are still challenged by the question of which -if any- of the differences are stereotypic. The clarification of what are stereotypical differences between particular glomeruli in features as those discussed in our study and what is simply differences within the normal range of individual variation is basically a statistical problem. A first attempt at a comprehensive comparison focusing on intra- and inter-individual variability was recently made by comparing two connectome datasets from two different Drosophila individuals (Dorkenwald et al., 2024; Schlegel et al., 2024). At present, it is still unclear how many samples are needed to make a statistically robust comparison of olfactory synaptic circuits in adult flies—perhaps 3, 6, or even 18 individuals?  

      Reviewer #2 (Public Review):

      The chemoreceptor proteins expressed by olfactory sensory neurons differ in their selectivity such that glomeruli vary in the breadth of volatile chemicals to which they respond. Prior work assessing the relationship between tuning breadth and the demographics of principal neuron types that innervate a glomerulus demonstrated that narrowly tuned glomeruli are innervated more projection neurons (output neurons) and fewer local interneurons relative to more broadly tuned glomeruli. The present study used high-resolution electron microscopy to determine which synaptic relationships between principal cell types also vary with glomerulus tuning breadth using a narrowly tuned glomerulus (DA2) and a broadly tuned glomerulus (DL5). The strength of this study lies in the comprehensive, synapse-level resolution of the approach. Furthermore, the authors implement a very elegant approach of using a 2-photon microscope to score the upper and lower bounds of each glomerulus, thus defining the bounds of their restricted regions of interest. There were several interesting differences including greater axo-axonic afferent synapses and dendrodentric output neuron synapses in the narrowly tuned glomerulus, and greater synapses upon sensory afferents from multiglomerular neurons and output neuron autapses in the broadly tuned glomerulus.     The study is limited by a few factors. There was a technical need to group all local interneurons, centrifugal neurons, and multiglomerular projection neurons into one category ("multiglomerular neurons") which complicates any interpretations as even multiglomerular projection neurons are very diverse. Additionally, there were as many differences between the two narrowly tuned glomeruli as there were comparing the narrowly and broadly tuned glomeruli. Architecture differences may therefore not reflect differences in tuning breadth, but rather the ecological significance of the odors detected by cognate sensory afferents. Finally, some synaptic relationships are described as differing and others as being the same between glomeruli, but with only one sample from each glomerulus, it is difficult to determine when measures differ when there is no measure of inter-animal variability. If these caveats are kept in mind, this work reveals some very interesting potential differences in circuit architecture associated with glomerular tuning breadth.

      This work establishes specific hypotheses about network function within the olfactory system that can be pursued using targeted physiological approaches. It also identifies key traits that can be explored using other high-resolution EM datasets and other glomeruli that vary in their tuning selectivity. Finally, the laser "branding" technique used in this study establishes a reduced-cost procedure for obtaining smaller EM datasets from targeted volumes of interest by leveraging the ability to transgenically label brain regions in Drosophila.

      CLASSIFICATION OF NEURONAL TYPES

      We agree that grouping diverse types of interneurons into a single category (referred to as MGNs) limits the ability to make interpretations about synaptic similarities and differences between specific neuronal types. This was, however, an unavoidable compromise resulting from our decision to generate a comprehensive, synapse-level reconstruction of the restricted regions encompassing the DA2 and DL5 glomeruli. As both reviewers have noted, this approach offers significant value and we hope the Editor will also recognize that this limitation does not prevent readers from gaining important and novel insights into the synaptic circuitry of these two glomeruli.  

      Similar to the approach taken by Tobin at al. (2017) we prioritized producing a densely reconstructed neuropile, in which no synapses were omitted (Tobin et al., 2017). The downside of this method is that not all synaptic connections could be reliably assigned to specific neuronal types, with about 12% remaining unassigned." We anticipate that future research, supported by advances in semi-automated tracing methods, improved imaging technologies, and increased personnel resources, will allow not only for the generation of more complete connectomes of the entire brain (Scheffer et al., 2020; Zheng et al., 2018), but also, for the accurate reconstruction and classification of individual synapses—even in highly complex regions such as the olfactory glomeruli. We also expect that a second complete connectome of a male Drosophila will soon become available, which will provide valuable opportunities for comparisons across individuals and between male and female brains in future studies.

      INTERGLOMERULAR DIFFERENCES

      Thank you for this insightful comment. It is indeed true that despite both DA2 and VA1v being narrowly tuned glomeruli, they exhibit considerable differences in specific connectivity features (e.g., relative synaptic strengths above certain thresholds) and that those differences can be as pronounced as those observed between DA2 and the broadly tuned DL5. For this reason, comparing each individual glomerulus to every other is not a practical or informative approach. To derive robust interpretations, we focused instead on whether two glomeruli that share a particular functional characteristic—namely, being narrowly tuned for single odorants—also share connectivity patterns that distinguish them from a broadly tuned reference glomerulus.

      Our results support this. Furthermore, additional connectomics data reinforce our conclusions.

      For example, OSN-OSN connectivity is stronger in the two narrowly tuned glomeruli (DA2 and VA1v) relative to the broadly tuned glomerulus (DL5). While these pairwise differences alone are not conclusive, the finding that the two narrowly tuned glomeruli studied here share features that distinguish them from the broadly tuned glomerulus supports our interpretation. We found further support for this idea in the data reported by Schlegel et al. (2021) further. In that dataset, other narrowly tuned glomeruli (DA1, DL3, and DL4) also exhibit stronger OSNOSN connectivity than other broadly tuned glomeruli (DM1 or DM4).

      We do not deny that there are many differences between any given pair of glomeruli, regardless of whether they are narrowly or broadly tunned. Instead, we propose that our findings on circuit features indicate that most of the observed differences actually grouped the two narrowly tuned glomeruli together relative to the broadly tuned glomerulus. A more concise summary is now provided in the newly added Figure 8. We also added explanatory lines of text in the beginning of the chapter ‘specific features of narrowly tuned glomerular circuits. 

      ECOLOGICAL SIGNIFICANCE

      This is an interesting point. However, it is difficult to disentangle the "ecological significance" of processed odorants from the "tuning breadth" of a glomerulus. In the Drosophila olfactory system, glomerular circuits that respond to ecologically important odorants—such as those involved in reproduction or danger—tend to be more narrowly tuned. Moreover, while we refer to odorants with specific ecological significance as those linked to survival or reproductive behaviors, defining the significance of an odorant with precision is inherently challenging, as it can vary depending on context and environmental conditions.

      What both circuits share is their narrow tuning breadth. We therefore propose that the common circuit features of VA1v and DA2, highlighted in this study, are functionally related to the fact that each circuit processes single odorants. Consequently, their specificity is most likely determined at the level of the receptor. 

      INDIVIDUAL VARIABILITY

      We agree that accounting for inter-animal variability would strengthen the study. However, we are confident that even a modest statistically sound assessment of this variability would require a larger sample size, certainly more than just two or three flies, which is presently not feasible.

      We refer the reviewer to our response to Reviewer #1 regarding this important issue.

      Initial insights into variability between flies have been provided through comparative analyses of the two most comprehensive female Drosophila melanogaster connectomes—the FAFB and hemibrain datasets (Schlegel et al., 2024). For more detailed quantitative comparisons regarding inter-animal variability, please refer to our response to the second major point raised by Reviewer #2. As highlighted by Schlegel et al. (2024), making definitive statements about the stereotypy of neuron numbers, unitary cell-cell connections (edges), or synaptic strengths (weights) remains a complex challenge."

      While appreciating the rigour of this work we were surprised to notice the omission of a comparison of their observations with the two other existing datasets. This would not only have addressed the technical limitation of this particular study - the inability to identify specific neuron types due to imaging a small part of the brain - but would also have shed light on inter-animal variability 

      We strongly recommend that the authors do make this comparison - the datasets are currently extremely user friendly and so we don't estimate the replication of their key findings will be too onerous. This will be particularly important to resolve the issue of having to classify all multiglomerular local interneurons and multiglomerular projection neurons - broadly into "MGN. Such a comparison will dramatically strengthen this study that poses very interesting questions, but in its current form, has this striking shortcoming. 

      INDIVIDUAL VARIABILITY AS EXPRESSED HERE:

      Earlier on we were of the same opinion that the Reviewer express here but, unfortunately, it was not possible to follow his advice. As far as it was possible, we have compared some of our results to the values of the two datasets that the Reviewer refers to, but the absence of glomerulus DA2 in one of the datasets and the absence of synapse annotation for all the relevant glomeruli in the other dataset prevented us from making a full comparison. Moreover, believe that the problem of individual variation most probably cannot be solved by increasing the comparison with one or two more flies.

      Reviewer #1 (Recommendations for The Authors): 

      The lines 270 - 282 confused me in the backdrop of Figure 3B. 

      The concern may stem from our inclusion of a comparison between the uPNs of glomerulus DA2 and the single uPN of glomerulus DL5 in the statistical analysis presented in Figure 3. This comparison was included to ensure a comprehensive representation of the data, highlighting the variability across all major cell groups. We have clarified this rationale in the revised manuscript (see lines 274-282).

      Reviewer #2 (Recommendations for The Authors): 

      I commend the authors for taking such a thorough approach to advance an interesting topic in olfaction. The following suggestions are intended to strengthen this study: 

      Major points: 

      A color-blind-friendly palette should be used for all figures. Currently, five of seven figures use red and green, and in particular, Figure 5 will be uninterpretable for red/green color-blind readers. 

      We are thankful for this important comment. We changed the color palette as suggested by the reviewer, and replaced Red with Magenta and changed the figure legend accordingly.

      This level of analysis is extremely resource and time-consuming, so even obtaining this information at this resolution is an impressive achievement. However, this study would be well served by strategically supplementing the analysis of this dataset with information from other publicly available connectomics datasets. For instance, some interpretations are limited because there is information from only a single DL5 and DA2 glomerulus. Any claims in which one glomerulus has more, less, or the same of a metric must be tempered because without replicates, there are no measures of inter-animal variability. As an example, on lines 386-387 the authors state "The relative synaptic strength between MGN>uPN was stronger in DA2 (12%) than DL5 (10%)". It is difficult to assess whether this represents a difference that is outside of the range of inter-animal variability inherent to the olfactory system. Taking select measures from the Hemibrain and FAFB (via FlyWire) datasets could help strengthen these claims. 

      We fully agree with the Reviewer’s opinion that since our data is from one glomerulus of each type “It is difficult to assess whether this represents a difference that is outside of the range of inter-animal variability inherent to the olfactory system.” This is a weakness of practically all connectome studies based on electron microscopy in both Drosophila and other animals We cannot be sure that measurements from the Hemibrain and FAFB datasets could help strengthen our claims, because the magnitude of the range of individual variation is presently not known and most probably solving this problem will require more than one or two more flies. In any case, it is not possible to follow this advice and compare our data with that of the hemibrain because the DA2 was not included in that study. We ask the Reviewer to read our more detailed explanation in our response to Reviewer 1.

      In the particular case commented by the Reviewer above, the relative difference in synaptic strength exceeds 20%. Whether such a difference has functional relevance remains an open question but Schlegel et al. (2024) support our interpretation. They showed that synaptic weights with differences larger than 20% tend to be consistent across individuals, with strong correlations within and between animals (Pearson’s R = 0.97 and R = 0.8; Fig. 4).

      Grouping all local interneurons, centrifugal neurons response and multiglomerular PNs into one category limits the ability to make interpretations about similarities or differences in the synaptic relationships involving MGNs. The authors could get an estimate of the number of multiglomerular PNs in DL5, VA1v, and DA2 from Hemibrain and FlyWire platforms to get a better sense of differences between glomeruli in the MGN category. 

      We agree in that grouping a variety of interneurons into a single category (called MGNs) limits the ability to make interpretations about similarities or differences in the synaptic relationships involving different neurons. This was the unavoidable price to be paid once we decided to register a “comprehensive, synapse-level resolution” map of these two glomeruli. It appears to us that both reviewers have clearly recognized the intrinsic value of this approach and we hope that the Editor will share this opinion. 

      Consistent with the assumptions of Tobin et al., (2017) our hypothesis on LN connectivity differences is based on the fact that they are the most numerous and broadly arborizing neurons of the class that we call multiglomerular neurons in the AL (Chou et al., 2010; Lin et al., 2012; Tanaka et al., 2012). Recent connectome studies confirm this feature across all glomeruli (Bates et al., 2020; Horne et al., 2018; Scheffer et al., 2020; Schlegel et al., 2021; Zheng et al., 2018).  

      In response to the reviewer’s question, we conducted a case-specific reanalysis of the data from Horne (2018), which provides comprehensive connectivity information for the VA1v glomerulus. This allowed us to quantify the proportional contributions of LNs (n = 56) and mPNs (n = 13) to all MGN connections (MGN-MGN, MGN>OSN, MGN>uPN, uPN>MGN, OSN>MGN).

      Our analysis showed that 84% of MGN output originates from LNs. 57% of the input to MGN comes from LNs and 43% from mPNs, largely due to strong OSN>mPN input. Thus, for the filtered MGN connections relevant to distinguishing narrowly from broadly tuned circuits (e.g., MGN>OSN, uPN>MGN; see Fig. 8), LNs are the dominant contributors in VA1v. (These data are not included in the resubmitted manuscript.) This supports our interpretation that the LN are responsible for the majority of MGN connections underlying the observed differences between glomeruli.

      For instance, prior work has reported fewer local interneurons innervating DA2, but in this study there was an unexpected result that there was greater MGN innervation density and synapse # for DA2 relative to DL5 This discrepancy could be due to differences in the number of multiglomerular PNs innervating each glomerulus, which would be obscured when these PNs are combined with local interneurons in the MGN category. 

      "We agree that the greater MGN innervation density in DA2 in our study could reflect a stronger contribution from mPNs. However, innervation density alone does not indicate how many mPNs actually innervate DA2 or DL5. Alternatively, increased innervation and/or synaptic frequency of local interneurons (LNs) could also account for this observation. In our view, neuron number does not necessarily correlate with branching complexity or synaptic density. 

      For example, the dendritic length of the single uPN in glomerulus DL5 is approximately equal to the combined dendritic length of the multiple uPNs of the DA2. Similarly, Tobin et al. (2017) reported that when comparing uPNs in glomerulus DM6 between the left and right brain hemispheres, they found variability in cell number but not in dendritic length. More recently, the FAFB and hemibrain datasets showed a similar pattern in another neuronal type. A substantial variation in cell number was observed for Kenyon cells between the two Drosophila individuals, but this cell type consistently makes and receives, in both individuals, similar presynapses and post-synapses (Schlegel et al., 2024).

      On line 33 the authors cannot claim that DA2-OSNs experience less presynaptic inhibition based on the data in this study. Even without the limitations of the MGN category (described above), presynaptic inhibition depends on more than just the number of synapses, rather it is affected by GABA B receptor expression levels and the second messenger components downstream of this receptor. Physiological experiments are needed to justify this claim, so I recommend adjusting accordingly.

      We agree with the Reviewer and have adjusted the text on line 33 and in the main body of the text by referring to this finding as “presynaptic input”, which is what we have quantified, instead of “less presynaptic inhibition”.

      Figures 5 and 6 seek to distill the wealth of information from this study into broad takehome points for the reader, while still providing a good amount of detail. I think a final more concise graphic summary (similar to the graphical abstract or Figure 6 of Grabe et al 2016) depicting the most critical differences between glomeruli would further clarify the broad findings of this study. 

      We appreciate this comment and we have added a “graphic summary” as the Reviewer proposed. We made a new figure that becomes Figure 8 and summarizes our results and highlights differences between narrowly and broadly tuned glomeruli in a more concise graphical abstract format.

      Minor points: 

      Much of the manuscript provides details about synapse fractions or % synapses for a given synaptic relationship. Please ensure that it is clear which principal cell types are being described, as it can be easy to get lost.  - Should line 284 say "...than DL5 as it has been reported that DA2 is innervated by fewer LNs..."?

      We appreciate the reviewer’s comment and we have corrected this sentence that now reads as follows: (see text: beginning at line 290).  

      Taisz et al.  has been published, so the citation should be updated. 

      We have updated the corresponding citation.  

      On line 233, the authors ascribe the small electron-dense vesicles as likely housing sNPF released by MGNs. However, Carlsson et al. (2010) demonstrated that sNPF is released by OSNs, which was further functionally characterized by Root et al. (2011) and Ko et al. (2014). In terms of MGNs that release neuropeptides, Carlsson et al. 2010 demonstrated that local interneurons immunolabel for tachykinin, myoinhibitory peptide, and allatostatin-A, while two extrinsic neurons release SIFamide. In theory, aminergic neurons could also have small electron-dense vesicles, but this can be variable. 

      The Reviewer is completely right in his criticism. The MGN certainly contain neurons that have been reported to contain neuropeptides other than sNPF. We have corrected this sentence and it now reads as follows (page7, line 236): “Interestingly, besides the abundant clear small vesicles..

      On line 636, the Berck and Schlegel studies demonstrated that panglomerular local interneurons synapse upon OSN, but not that they induce presynaptic inhibition (which was demonstrated in the studies cited in the next sentence). I recommend adjusting this sentence.

      We agree and we have corrected the text following the Reviewers advice. It now reads as follows (page 19. Line 663): “We also observed that OSNs received less MGN feedback.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      This is a revision of a manuscript previously submitted to Review Commons. The authors have partially addressed my comments, mainly by expanding the introduction and discussion sections. Sandy Schmid, a leading expert on the AP2 adaptor and CME, has been added as a co-corresponding author. The main message of the manuscript remains unchanged. Through overexpression of fluorescently tagged CCDC32, the authors propose that, in addition to its established role in AP2 assembly, CCDC32 also follows AP2 to the plasma membrane and regulates CCP maturation. The manuscript presents some interesting ideas, but there are still concerns regarding data inconsistencies and gaps in the evidence.

      With due respect, we would argue that a role for CCDC32 in AP2 assembly is hardly ‘established’.  Rather a single publication reporting its role as a co-chaperone for AAGAP appeared while our manuscript was under review.  We find some similar and some conflicting results, which are described in our revised manuscript.  However, in combination our two papers clearly show that CCDC32, a previously unrecognized endocytic accessory protein, deserves further study.

      (1) eGFP-CCDC32 was expressed at 5-10 times higher levels than endogenous CCDC32. This high expression can artificially drive CCDC32 to the cell surface via binding to the alpha appendage domain (AD)-an interaction that may not occur under physiological conditions.

      While we acknowledge that overexpression of eGFP-CCDC32 could result in artificially driving it to CCPs, we do not believe this is the case for the following reasons:

      i. The bulk of our studies (Figures 2-4) demonstrate the effects of siRNA knockdown on CCDC32 on CCP early stages of CME, and so it is likely that these functions require the presence of endogenous CCDC32 at nascent CCPs as detected with overexpressed eGFP-CCDC32 by TIRF imaging.

      ii. At these levels of overexpression eGFP-CCDC32 fully rescues the effects of siRNA KD of endogenous CCCDC32 of Tfn uptake and CCP dynamics (Figure 6F,G). If the protein was artificially recruited to the AP2 appendage domain, one would expect it to compete with the recruitment of other EAPS to CCPs and hence exhibit defects in CCP dynamics. Indeed, we see the opposite: CCPs that are positive for eGFP-CCDC32 show normal dynamics and maturation rates, while CCPs lacking eGFP-CCDC32 are short-lived and more likely to be aborted (Figure 1C).

      iii. We have identified two modes of binding of CCDC32 to AP2 adaptors: one is through canonical AP2-AD binding motifs, the second is through an a-helix in CCDC32 that, by modeling, docks only to the open conformation of AP2.  Overexpressed CCDC32 lacking this a-helix is not recruited to CCPs (Fig. 6 D,E), indicating that the canonical AP2 binding motifs are not sufficient to recruit CCDC32 to CCPs, even when overexpressed.

      (2) Which region of CCDC32 mediates alpha AD binding? Strangely, the only mutant tested in this work, Δ78-98, still binds AP2, but shifts to binding only mu and beta. If the authors claim that CCDC32 is recruited to mature AP2 via the alpha AD, then a mutant deficient in alpha AD binding should not bind AP2 at all. Such a mutant is critical for establish the model proposed in this work.

      We understand the reviewer’s confusion and thus devoted a paragraph in the discussion to this issue.  As revealed by AlphaFold 3.0 modeling (Figure S6) binding of CCDC32 to the alpha AD likely occurs via the 2 canonical AP2-AD binding motifs encoded in CCDC32. Given the highly divergent nature of AP2-AD binding motifs, we did not identify these motifs without the AlphaFold 3.0 modeling. While these interactions could be detected by GST-pull downs, they are apparently not of sufficient affinity to recruit CCDC32 to CCPs in cells. In the text, we now describe the a-helix we identified as being essential of CCP recruitment as ‘a’ AP2 binding site on CCDC32 rather than ‘the’ AP2 binding site.  Interestingly, and also discussed, Alphafold 3.0 identifies a highly predicted docking site on a-adaptin that is only accessible in the open, cargo-bound conformation of intact AP2.  This is also consistent with the inability of CCDC32(D78-99) to bind the a:µ2 hemi-complex in cell lysates.

      We agree that further structural studies on CCDC32’s interactions with AP2 and its targeting to CCPs will be of interest for future work.

      (3) The concept of hemicomplexes is introduced abruptly. What is the evidence that such hemicomplexes exist? If CCDC32 binds to hemicomplexes, this must occur in the cytosol, as only mature AP2 tetramers are recruited to the plasma membrane. The authors state that CCDC32 binds the AD of alpha but not beta, so how can the Δ78-98 mutant bind mu and beta?

      We introduced the concept of hemicomplexes based on our unexpected (and now explicitly stated as such) finding that the CCDC32(D78-99) mutant efficiently co-IPs with a b2:µ2 hemicomplex.  As stated, the efficiency of this pulldown suggests that the presumed stable AP2 heterotetramer must indeed exist in equilibrium between the two a:s2 and b2:µ2 hemicomplexes, such that CCDC32(D78-99) can sequester and efficiently co-IP with the b2:µ2 hemicomplex.  A previous study, now cited, had shown that the b2:µ2 hemicomplex could partially rescue null mutations of a in C. elegans (PMID: 23482940).  We do not know how CCDC32 binds to the b2:µ2 hemicomplex and we did not detect these interactions using AlphaFold 3.0. However, these interactions could be indirect and involve the AAGAB chaperone.  It is also likely, based on the results of Wan et al. (PMID: 39145939), that the binding is through the µ2 subunit rather than b2. As mentioned above, and in our Discussion, further studies are needed to define the complex and multi-faceted nature of CCDC32-AP2 interactions.

      (4) The reported ability of CCDC32 to pull down AP2 beta is puzzling. Beta is not found in the CCDC32 interactome in two independent studies using 293 and HCT116 cells (BioPlex). In addition, clathrin is also absent in the interactome of CCDC32, which is difficult to reconcile with a proposed role in CCPs. Can the authors detect CCDC32 binding to clathrin?

      Based on the studies of Wan et al. (PMID: 39145939), it is likely that CCDC32 binds to µ2, rather than to the b2 in the b2:µ2 hemicomplex.  As to clathrin being absent from the CCDC32 pull down, this is as expected since the interactions of clathrin even with AP2 are weak in solution (as shown in Figure 5C, clathrin is not detected in our AP2 pull down) so as not to have spontaneous assembly of clathrin coats in the cytosol. Rather these interactions are strengthened by both the reduction in dimensionality that occurs on the membrane and by avidity of multivalent interactions.  For example, Kirchausen reported that 2 AP2 complexes are required to recruit one clathrin triskelion to the PM.

      (5) Figure 5B appears unusual-is this a chimera?

      Figure 5B shows an internal insertion of the eGFP tag into an unstructured region in the AP2 hinge. As we have previously shown (PMID: 32657003), this construct, unique among other commonly used AP2 tags, is fully functional.  We have rearranged the text in the Figure legend to make this clearer.

      Figure 5C likely reflects a mixture of immature and mature AP2 adaptor complexes.

      This is possible, but mature heterotetramers are by far the dominant species, otherwise the 4 subunits would not be immuno-precipitated at near stoichiometric levels with the a subunit.  Near stoichiometric IP with antibodies to the a-AD have been shown by many others in many cell types. 

      (6) CCDC32 is reduced by about half in siRNA knockdown. Why not use CRISPR to completely eliminate CCDC32 expression?

      Fortuitously, partial knockdown was essential to reveal this second function of CCDC32, as we have emphasized in our Discussion.  Wan et al, used CRISPR to knockout CCDC32 and reveal its essential role as a AAGAB co-chaperone.  In the complete absence of CCDC32 mature AP2 complexes fail to form.  However, under our conditions of partial CCDC32 depletion, the expression of AP2 heterotetramers is unaffected revealing a second function of CCDC32 at early stages of CME.  We expect that the co-chaperone function of CCDC32 is catalytic, while its role in CME is more structural; hence the different concentration dependencies, the former being less sensitive to KD than the latter.  This is one reason that many researchers are turning to CRISPRi for whole genome perturbation studies as many proteins play multiple roles that can be masked in KO studies.

      Reviewer #2 (Public review):

      Yang et al. describes CCDC32 as a new clathrin mediated endocytosis (CME) accessory protein. The authors show that CCDC32 binds directly to AP2 via a small alpha helical region and cells depleted for this protein show defective CME. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome (CFNDS) disrupt the interaction of this protein to the AP2 complex. The results presented suggest that CCDC32 may act as both a chaperone (as recently published) and a structural component of the AP2 complex.

      Strengths:

      The conclusions presented are generally well supported by experimental data and the authors carefully point out the differences between their results and the results by Wan et al. (PNAS 2024).

      Weaknesses:

      The experiments regarding the role of CCDC32 in CFNDS still require some clarifications to make them clearer to scientists working on this disease. The authors fail to describe that the CCDC32 isoform they use in their studies is different from the one used when CFNDS patient mutations were described. This may create some confusion. Also, the authors did not discuss that the frame-shift mutations in patients may be leading to nonsense mediated decay.

      As requested we have more clearly described our construct with regard to the human mutations and added the possibility of NMD in the context of the human mutations.

      Reviewer #3 (Public review):

      In this manuscript, Yang et al. characterize the endocytic accessory protein CCDC32, which has implications in cardio-facio-neuro-developmental syndrome (CFNDS). The authors clearly demonstrate that the protein CCDC32 has a role in the early stages of endocytosis, mainly through the interaction with the major endocytic adaptor protein AP2, and they identify regions taking part in this recognition. Through live cell fluorescence imaging and electron microscopy of endocytic pits, the authors characterize the lifetimes of endocytic sites, the formation rate of endocytic sites and pits and the invagination depth, in addition to transferrin receptor (TfnR) uptake experiments. Binding between CCDC32 and CCDC32 mutants to the AP2 alpha appendage domain is assessed by pull down experiments. While interaction between CCDC32 and the alpha appendage domain of AP2 is clearly described, a discussion of potential association with other AP2 domains would be beneficial to understand the impact of CCDC32 in endocytosis.

      The reviewer is correct. That CCDC32 also interacts with other subunits of AP2, is evident from the findings of Wan et al. and by the fact that the CCDC32(D78-99) mutant efficiently co-IPs with the b2:µ2 hemicomplex.  We expanded our discussion around this point. CCDC32 remains an, as yet, poorly characterized, but we now believe very interesting EAP worth further study.

      Together, these experiments allow deriving a phenotype of CCDC32 knock-down and CCDC32 mutants within endocytosis, which is a very robust system, in which defects are not so easily detected. A mutation of CCDC32, mimicking CFNDS mutations, is also addressed in this study and shown to have endocytic defects.

      In summary, the authors present a strong combination of techniques, assessing the impact of CCDC32 in clathrin mediated endocytosis and its binding to AP2.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) The authors must be clear about the differences between the CCDC32 isoform they used in their manuscript and the one used to describe the patient mutations. This could be done, for example, in the methods. This is essential for the capacity of other labs to reproduce, follow up and correctly cite these results.

      We have added this information to the Methods. 

      (2) I believe the authors have misunderstood what nonsense mediated decay is. NMD occurs at the mRNA level and requires a full genome context to occur (introns and exons). The fact that a mutant protein is expressed normally from a construct by no means prove that it does not happen. I believe that adding the possibility of NMD occurring would enrich the discussion.

      Thank you, we have now done more homework and have added this possibility into our discussion of the mutant phenotype.  However, if a robust NMD mechanism resulted in a complete loss of CCDC42 protein, then the essential co-chaperone function reported by Wan et al, would result in complete loss of AP2.  A more detailed characterization of the cellular phenotype of these mutations, including assessing the expression levels of AP2 would be informative.

      Reviewer #3 (Recommendations for the authors):

      - It is not clear what the authors mean by '~30s lifetime cohort' (line 159). They refer to Figure 2H, which shows the % of CCPs. Can the authors explain exactly what kind of tracks they used for this analysis, for example which lifetime variations were accepted? Do they refer to the cohorts in Figure S4? In Figure S4, the most frequent tracks have lifetimes < 20 s (in contrast to what is stated in the main text). Why was this cohort not used?

      The ‘30s cohort’ refers to CCPs with lifetimes between 25-35s which encompasses the most abundant species in control cells and CCDC32 KD cells, as shown by the probability curves in Figure 2H. Given the large number of CCPs analyzed we still have large numbers for our analyses n=5998 and 4418, for control and siRNA treated conditions, respectively.  Figure 2H shows the frequency of CCPs in cells treated with CCDC32 siRNA are shifted to shorter lifetimes. We have clarified this in the text.

      - Figure S1: It is now clear, why the mutant versions of CCDC32 are not detected in this western blot. However, data that show the resistance of these proteins to siCCDC32 is still missing (S1 A is in the absence of siCCSC32 I assume, as the legend suggests). A western blot using an anti-GFP antibody, as the one used in Figure S1, after siRNA knock-known would provide clarity.

      That these constructs all contain the same mutation in the siRNA target sequence gives us confidence that they are indeed resistant to siRNA.

      - Note that the anti-CCDC32 antibody does not detect the eGFP-CCDC32(∆78-98) as well as full-length and is unable to detect eGFP-CCDC32(1-54)'. This phrase should belong to Figure S1 (B), not (A)

      Corrected.

      - The immunoprecipitations of CCDC32 and its mutants with AP2 and its subunits are partially confusing. In Figure 5, the authors show that CCDC32 interacts specifically with the alpha-AD, but not with the beta-AD of AP2. In Figure 6B and C, on the other hand, Co-IPs are shown also with the beta and the mu domain of AP2. This is understandable in the context of the full AP2. However, when interaction with the alpha domain (and sigma) is abolished through mutation of helix 78-98, why would beta and mu still interact, when the beta-AD cannot interact with CCDC32 on its own. Are there interaction sites expected outside the ADs in the beta or mu domains?

      See responses to reviewer 1 above.  This result likely reflects the co-chaperone activity of CCDC32 as reported by Wan et al it likely due to their reported interactions of CCDC32 with the µ2 subnit of b2:µ2 hemicomplexes.

      - Figure S6 D, E and F: How much confidence do the authors have on the AlphaFold predictions? Have the same binding poses been obtained repeatedly by independent predictions?

      We provide, with a color scale, the confidence score for each interaction, which is very high (>90%). Of course, this is still a prediction that will need to be verified by further structural studies as we have stated.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Cook et al. have presented an important study on the transcriptomic and epigenomic signature underlying craniofacial development in marsupials. Given the lack of a dunnart genome, the authors also prepared long and short-read sequence datasets to assemble and annotate a novel genome to allow for the mapping of RNAseq and ChIPseq data against H3K4me3 and H3K27ac, which allowed for the identification of putative promoter and enhancer sites in dunnart. They found that genes proximal to these regulatory loci were enriched for functions related to bone, skin, muscle and embryonic development, highlighting the precocious state of newborn dunnart facial tissue. When compared with mouse, the authors found a much higher proportion of promoter regions aligned between species than for enhancer regions, and subsequent profiling identified regulatory elements conserved across species and are important for mammalian craniofacial development. In contrast, the identification of dunnart-specific enhancers and patterns of RNA expression further confirm the precocious state of muscle development, as well as for sensory system development, in dunnart suggesting that early formation of these features are critical for neonate marsupials likely to assist with detecting and responding to cues that direct the joeys to the mother's teat after birth. This is one of the few epigenomic studies performed in marsupials (of any organ) and the first performed in fat-tailed dunnart (also of any organ). Marsupials are emerging as an important model for studying mammalian development and evolution and the authors have performed a novel and thorough analysis, impressively including the assembly of a new marsupial reference genome that will benefit many future studies.

      Strengths:

      The study provides multiple pieces of evidence supporting the important role enhancer elements play in mammalian phenotypic evolution, namely the finding of a lower proportion of peaks present in both dunnart and mouse for enhancers than for promoters, and dunnart showing more genes uniquely associated with it's active enhancers than any other combination of mouse and dunnart samples, whereas this pattern was less pronounced than for promoter-associated genes. In addition, rigorous parameters were used for the cross-species analyses to identify the conserved regulatory elements and the dunnart-specific enhancers. For example, for the results presented in Figure 1, I agree that it is a little surprising that the average promoter-TSS distance is greater than that for enhancers, but that this could be related to the possible presence of unannotated transcripts between genes. The authors addressed this well by examining the distribution of promoter-TSS distances and using proximal promoters (cluster #1) as high confidence promoters for downstream analyses.

      The genome assembly method was thorough, using two different long read methods (Pacbio and ONT) to generate the long reads for contig and scaffold construction, increasing the quality of the final assembled genome.

      Weaknesses:

      Biological replicates of facial tissue were collected at a single developmental time point of the fat-tailed dunnart within the first postnatal day (P0), and analysed this in the context of similar mouse facial samples from the ENCODE consortium at six developmental time points, where previous work from the authors have shown that the younger mouse samples (E11.5-12.5) approximately corresponds to the dunnart developmental stage (Cook et al. 2021). However, it would be useful to have samples from at least one older dunnart time point, for example, at a developmental stage equivalent to mouse E15.5. This would provide additional insight into the extent of accelerated face development in dunnart relative to mouse, i.e. how long do the regulatory elements that activated early in dunnart remain active for and does their function later influence other aspects of craniofacial development?

      We thank the reviewer for their feedback and agree that the inclusion of multiple postnatal stages in the dunnart would give further valuable insights to the comparative analyses. Unfortunately, we were limited by the pouch young available and prioritized ensuring robust data at a single stage for this study. We hope to expand this work to more stages in future studies.

      The authors refer to the development of the CNS being delayed in marsupials relative to placental mammals, however, evidence shows how development of the dunnart brain (whole brain or cortex) is protracted compared to mouse, by a factor of at least 2 times, rather than delayed per se (Workman et al. 2013; Paolino et al. 2023). In addition, there is evidence that cortical formation and cell birth may begin at approximately the same stage across species equivalent to the neonate period in dunnart (E10.5 in mouse), and that shortly after this at the stage equivalent to mouse E12.5, the dunnart cortex shows signs of advanced neurogenesis followed by a protracted phase of neuronal maturation (Paolino et al. 2023). Therefore, it is possible that marsupial CNS development appears delayed relative to mouse but instead begins at the same stage and then proceeds to develop on a different timing scale.

      The comparison here is not directly between CNS development in placental and marsupials but CNS development relative to development of a subset of structures of the cranial skeleton and musculature (as first proposed by Kathleen Smith 1997). For example, Smith 1997 found that in eutherians, evagination of the telencephalon and appearance of the pigment in the eye occur before the ossification of the premaxilla, maxilla, and dentary. However, in marsupials, evagination of the telencephalon and appearance of the pigment in the eye occur concurrently with condensation of cartilage in the basicranium and the ossification of the premaxilla, maxilla, and dentary. Smith 1997 reports both a delay in the initiation of CNS development in marsupials relative to craniofacial ossification and a protraction of CNS development compared to placental mammals.

      This also highlights the challenges of correlating different staging systems between placentals and marsupials as stages determined as equivalent can change depending on which developmental events are used. The protracted development of the CNS in marsupials (Smith 1997, Workman et al. 2013; Paolino et al. 2023) still supports the hypothesis that during the short gestation period in marsupials structures required for life outside the womb in an embryonic-like state, such as the orofacial region, are likely prioritized.

      We have clarified this based on the reviewers feedback and added text referring to the protraction of marsupial CNS development to the Discussion section.

      [New text]: Marsupials display advanced development of the orofacial region relative to development of the central nervous system when compared to placental mammals[3,6].

      [New text]: Although development of the central nervous system is protracted in marsupials compared to placentals, marsupials have well-developed peripheral motor nerves and sensory nerves (eg. the trigeminal) at birth [5].

      Reviewer #2 (Public review):

      This study by Cook and colleagues utilizes genomic techniques to examine gene regulation in the craniofacial region of the fat-tailed dunnart at perinatal stages. Their goal is to understand how accelerated craniofacial development is achieved in marsupials compared to placental mammals.

      The authors employ state-of-the-art genomic techniques, including ChIP-seq, transcriptomics, and high-quality genome assembly, to explore how accelerated craniofacial development is achieved in marsupials compared to placental mammals. This work addresses an important biological question and contributes a valuable dataset to the field of comparative developmental biology. The study represents a commendable effort to expand our understanding of marsupial development, a group often underrepresented in genomic studies.

      The dunnart's unique biology, characterized by a short gestation and rapid craniofacial development, provides a powerful model for examining developmental timing and gene regulation. The authors successfully identified putative regulatory elements in dunnart facial tissue and linked them to genes involved in key developmental processes such as muscle, skin, bone, and blood formation. Comparative analyses between dunnart and mouse chromatin landscapes suggest intriguing differences in deployment of regulatory elements and gene expression patterns.

      Strengths

      (1) The authors employ a broad range of cutting-edge genomic tools to tackle a challenging model organism. The data generated - particularly ChIP-seq and RNA-seq from craniofacial tissue - are a valuable resource for the community, which can be employed for comparative studies. The use of multiple histone marks in the ChIP-seq experiments also adds to the utility of the datasets.

      (2) Marsupial occupy an important phylogenetic position, but they remain an understudied group. By focusing on the dunnart, this study addresses a significant gap in our understanding of mammalian development and evolution. Obtaining enough biological specimens for these experiments studies was likely a big challenge that the authors were able to overcome.

      (3) The comparison of enhancer landscapes and transcriptomes between dunnarts and can serve as the basis of subsequent studies that will examine the mechanisms of developmental timing shifts. The authors also carried out liftover analyses to identify orthologous enhancers and promoters in mice and dunnart.

      Weaknesses and Recommendations

      (1) The absence of genome browser tracks for ChIP-seq data makes it difficult to assess the quality of the datasets, including peak resolution and signal-to-noise ratios. Including browser tracks would significantly strengthen the paper by provide further support for adequate data quality.

      We have put together an IGV session with the dunnart genome, annotation and ChIP-seq tracks. This is now available in the FigShare data repository (10.7554/eLife.103592.1).

      (2) The first two figures of the paper heavily rely in gene orthology analysis, motif enrichment, etc, to describe the genomic data generated from the dunnart. The main point of these figures is to demonstrate that the authors are capturing the epigenetic signature of the craniofacial region, but this is not clearly supported in the results. The manuscript should directly state what these analyses aim to accomplish - and provide statistical tests that strengthen confidence on the quality of the datasets.

      As this is the first epigenomic profiling for this species we performed extensive data quality control (See Supplementary Tables 2-3, 18, 20-23 and Supplementary Figures 1-3, 6-11). These figures and corresponding Supplementary Tables show the robustness of the data, including well-described metrics for assessing promoters and enhancers, GO terms relevant to craniofacial development and binding motifs for key developmental TF families.

      We have emphasised this aspect of the work more strongly in the results section, particularly in [Defining craniofacial putative enhancer- and promoter regions in the dunnart].

      (3) The observation that "promoters are located on average 106 kb from the nearest TSS" raises significant concerns about the quality of the ChIP-seq data and/or genome annotation. The results and supplemental information suggest a combination of factors, including unannotated transcripts and enhancer-associated H3K4me3 peaks - but this issue is not fully resolved in the manuscript. The authors should confirm that this is not caused by spurious peaks in the CHIP-seq analysis - and possibly improve genome annotation with the transcriptomic datasets presented in the study.

      Spurious ChIP-seq peaks could be possible as there is no “blacklisted regions” database for the dunnart to filter on, however we used a no-IP control, a stringent FDR of 0.01 and peaks had to be reproducible in two biological replicates when calling peaks - all of which should reduce the likelihood of false positives.

      H3K4me3 activity at enhancers is well-established, in particular when enhancer sequences are also bound by RNA Pol II ((Koch and Andrau, 2011; Pekowska et al., 2011). However, compared to H3K4me3 activity at promoters, H3K4me3 levels at enhancers are low (Calo and Wysocka, 2013). This is in line with our observations that H3K4me3 levels at enhancers are much lower than observed at promoter regions (see Supplementary Note 2). We found that H3K4me3 peaks located closer to the TSS had a stronger peak signal (mean = 46.10) than distal H3K4me3 peaks (mean = 6.95; Wilcoxon FDR-adjusted p < 2.2 x 10<sup>-16</sup>). This suggests that although some distal promoter peaks may be due to missingness in the annotation, the majority likely represent peaks associated with enhancer regions. We have emphasized this finding more strongly in the results section:

      [New text]: H3K4me3 activity at enhancers is well-established[25,26], however, compared to H3K4me3 activity at promoters, H3K4me3 levels at enhancers are low[27]. This is in line with our observations where H3K4me3 levels at distal enhancer peaks are nearly 7 times lower than those observed at promoter regions (see SupNote2).

      (4) The comparison of gene regulation between a single dunnart stage (P1) and multiple mouse stages lacks proper benchmarking. Morphological and gene expression comparisons should be integrated to identify equivalent developmental stages. This "alignment" is essential for interpreting observed differences as true heterochrony rather than intrinsic regulatory differences.

      Given the developmental differences between eutherian and marsupial mammals it is challenging to assign the dunnart a precise “equivalent” developmental stage to the mouse. From our morphological and developmental characterisation (see Cook et al. 2020 Nat Comms Bio) based on ossification patterns the dunnart orofacial region on the day of birth appears to be similar to that of an E12.5 mouse embryo (just prior to the observation of ossified craniofacial bones). However, when we compared both regulatory elements and expressed genes between the dunnart at this stage (P1) and 5 developmental stages in the mouse, there is no obvious equivalent stage. For example, when we simply compare genes linked to enhancer peaks, the group with the largest intersection between dunnart and any mouse stage are ~500 genes that are present in dunnart, and mouse stages E10.5, E12.5 - E15.5, Figure 5B). When we then compare genes expressed in the dunnart to temporal gene expression dynamics during mouse development we find that the largest overlap is with genes highly expressed at E14.5 or E15.5 in the mouse (Figure 6, Supplementary Figure 5). We have strengthened the rationale for the selected mouse stages in the comparative analyses section of the results.

      (5) The low conservation of putative enhancers between mouse and dunnart (0.74-6.77%) is surprising given previous reports of higher tissue-specific enhancer conservation across mammals. The authors should address whether this low conservation reflects genuine biological divergence or methodological artifacts (e.g., peak-calling parameters or genome quality). Comparisons with published studies could contextualize these findings.

      The reported range (0.74 - 6.77%) refers to the number regions called as an active enhancer peak in both species (conserved activity) divided by the total number of dunnart peaks alignable to the mouse genome, which we expect to be low given sequence turnover rates and the evolutionary distance separating dunnart and mice. The alignability (conserved sequence) for dunnart enhancers to the mouse genome was ~13% for 100bp regions and can be found in Supplementary Table 22, we have now clarified this in the main text.

      [New Text]: After building dunnart-mm10 liftover chains (see Methods and SupNote5) we compared mouse and dunnart regulatory elements. The alignability (conserved sequence) for dunnart enhancers to the mouse genome was ~13% for 100bp regions (Supplementary Table 22).

      The activity conservation range reported here is consistent with previously reported for marsupial-placental enhancer comparisons (Villar et al. 2015), where ~1% of conserved liver-specific human enhancers had conserved activity to opossum. Follow up studies in Berthelot et al 2018 also found that approximately 1% of human liver enhancers were conserved across the placental mammals included in the study.

      (6) Focusing only on genes associated with shared enhancers excludes potentially relevant genes without clear regulatory conservation. A broader analysis incorporating all orthologous genes may reveal additional insights into craniofacial heterochrony.

      We appreciate the reviewers comment, we understand that a broader analysis may provide some additional insights to this question however in this study our focus was understanding the enhancers driving craniofacial development in these species. We linked enhancers with gene expression data as additional evidence of regulatory programs involved in craniofacial development. The majority (~70%) of genes reproducibly expressed were linked to an active enhancer and/or promoter.   This has now been highlighted in the result section.

      [New Text]: There were 12,153 genes reproducibly expressed at a level > 1 TPM across three biological replicates, with the majority of genes 67% of genes expressed (67%; 8158/12153) associated with near an active enhancer and/or promoter peak.

      In conclusion, this study provides an important dataset for understanding marsupial craniofacial development and highlights the potential of genomic approaches in non-traditional model organisms. However, methodological limitations, including incomplete genome annotation and lack of developmental benchmarking weaken the robustness and of the findings. Addressing these issues would significantly enhance the study's utility to the field and its ability to support the study's central conclusion that dunnart-specific enhancers drive accelerated craniofacial development.

      Reviewer #1 (Recommendations for the authors):

      Minor comments and corrections:

      (1) ChIP-seq FRiP fractions were much higher in dunnart samples than in mouse. Is this related to any differences in sample preparation they are aware of in the ENCODE datasets of mouse, such as different anti-histone antibodies used (and therefore different efficiency of binding to the same histone markers across species)? The authors appear to have addressed something similar with respect to the much lower enriched peak number observed in the mouse sample relative to dunnart in Supp note 4. I suspect the "technical cofounder" they refer to there is affecting both the FRiP scores and the higher correlation coefficients between IP and input in mouse.

      We chose the same antibodies used in the mouse craniofacial tissue ENCODE experiments however, the procedure is slightly different. We used the MAGnify Chromatin Immunoprecipitation System while in the ENCODE assays performed by Bing Ren’s group in 2012 was an in-house lab protocol for MicroChIP. Given that the samples for mouse and dunnart were not processed together, by the same researcher, with the same protocol there could be any number of technical cofounders impacting enrichment. A low FRiP score suggests low specificity as the majority of reads are in non-specific regions (low enrichment), consistent with the higher correlation between IP and input in mouse. The data quality also appears to vary between H3K27ac and H3K4me3 in the mouse (Supplementary Table 21), with H3K4me3 FRiP scores more similar to those observed in our dunnart experiments. This suggests a potential confounder specific to the mouse H3K27ac IP. QC metrics (FRiP, bam correlation) are consistent between H3K27ac and H3K4me3 IPs in our experiments (Supplementary Table 20).

      (2) Some of the promoter peak numbers in Supp table 1 do not match the numbers in the main text.

      We have corrected the incorrect number reported in the text for promoter peaks with orthologous genes (8590 -> 8597).

      (3) In Supp tables 2 and 3, the number of GO terms similar across tables is 466, which is ~42% of total number of enriched GO terms. However the authors mention that only 23% of terms were the same between promoters and enhancers, and a value of 42% was applied to the proportion of terms uniquely enriched for terms associated with genes assigned to promoters only. Unless I'm reading these Supp tables incorrectly, is it possible the proportions were mixed up?

      Thanks for catching this. The lists provided in Supplementary Table 2 were incorrect. The Supplementary Tables and in text description has been corrected to reflect this.

      (4) Would be helpful to add a legend for the mouse samples in Supp Figure 10.

      We have added the labels to the plot.

      (5) In Supp note 5, regarding the percentage of alignable peaks recovered, the percentages mentioned for the 50bp and 500bp peak summit lengths for enhancers and promoters do not seem to match the values in Supp tables 22 and 23.

      Thank you for catching this - we have corrected the Supplementary Tables and in text.

      (6) Please provide additional information to explain how dunnart RNA expression was associated with the five temporal expression clusters found in the mouse data shown in Figure 6 given there is only one dunnart time point and so the species temporal pattern's could not be compared, i.e. how was the odds ratio calculated and was this applied iteratively for dunnart against each mouse age and within each temporal cluster?

      The TCseq package takes the mouse expression data across all 6 stages and calls differentially expressed genes with an absolute log<sub>2</sub> fold-change > 2 compared to the starting time-point (E10.5). The mouse gene expression patterns were clustered into 5 clusters that each show distinct temporal expression patterns (see Supplementary Figure 5D). The output from this is 5 lists where within each list are unique genes that share a temporal pattern. These lists of mouse genes were then each compared to the orthologous genes expressed in the dunnart using a Fishers Exact test with corrections for multiple testing using the Holm method. We have added additional details in the methods:

      [New text]: Orthologous genes reproducibly expressed >1 TPM in the dunnart were compared to the list of genes for each cluster using Fisher’s Exact Test followed by p-value corrections for multiple testing with the Holm method.

      (7) SupFile1 and SupFile2 - which supplementary note or figure are these referring to?

      Apologies for this error. These items were meant to link to the FigShare repository where the supplementary files can be found. We have corrected this using the DOI for the repository.

      Reviewer #2 (Recommendations for the authors):

      (1) Authors should clarify that the mouse ENCODE data used for the comparisons was obtained from craniofacial tissue.

      This has now been corrected to clarify that the mouse ENCODE data used was from craniofacial tissues. ENCODE mouse embryonic facial prominence ChIP-seq and gene expression quantification file accession numbers and details used in study can be found in Supplementary Table 17.

      (2) Given the large differences in TPM for highly expressed genes shown in Figure 5, a MA or volcano plot would provide a more comprehensive view of global transcriptome differences between species.

      We have added this plot as Supplementary Figure 13.

      (3) It is unclear whether the enrichment analysis was performed for mouse genes, dunnart genes, or both.

      In reference to Figure 5, Gene Ontology enrichment analysis was performed on the top 500 highly expressed genes in dunnart. Because there is not an ontology database for dunnart gene IDs, these top 500 dunnart gene IDs were converted to the orthologous gene ID in mouse before performing the enrichment analysis. We apologise for the lack of clarity and have added additional text in the results section to make this clearer. In addition, the relevant methods section now reads:

      [New text]: As there is no equivalent gene ontology database for dunnart, we converted the Tasmanian devil RefSeq IDs to Ensembl v103 using biomaRt v2.46.3 and then converted these to mouse Ensembl v103 IDs. In this way we were able to use the mouse Ensembl Gene Ontology annotations for the dunnart gene domains. All gene ontology analyses were performed using clusterProfiler v4.1.4[117], with Gene Ontology from the org.Mm.eg.db v3.12.0 database[118], setting an FDR-corrected p-value threshold of 0.01 for statistical significance.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Recommendation For the Authors):

      Thanks to the authors for addressing my suggestions. I think these modifications have improved the clarity of the data and the overall presentation of the manuscript. The methods are now more clearly explained, and the additional details help make the results easier to interpret. Where addressing the comment wasn't feasible, the authors gave reasonable explanations. Overall, the revisions strengthen the paper, and I have no further concerns.

      Thank you for your recommendations, which have significantly improved our paper.

      Reviewer #2 (Recommendation For the Authors):

      The additional work conducted by the authors is greatly appreciated. All concerns (and beyond) have been thoroughly addressed by the authors and I am thankful for their consideration and attention to detail. Only one possible issue with the revisions is described below for consideration:

      Regarding the CFU counts and/or axis labels in Figure S3B, some of the listed "CFU per 1 mL" values (in both the figure itself and File S2B) are extraordinarily high. For example, the greatest CFU for PA14 observed in Figure 4E is ~1x10^9. However, PA14 at 0 ug/mL Ceftazidime reaches nearly 1x10^16 in Figure S3B. From what I can tell, this should be beyond the capacity of bacteria in this space by several orders of magnitude. (E.g., a cubic centimeter [~1 mL] is ~1x10^12 cubic micrometers. At their smallest dimensions and volume, a maximum of ~1x10^13 cells could theoretically fit in this space assuming no liquid and perfect organization.) Similarly, both "AMM" and "AMM (+PA14)" consistently reach CFUs between 1x10^12 and 1x10^14 in this assay. Are the authors confident in the values and/or depiction of CFUs for this figure? It seems like this could be a labeling or dilutioncounting issue.

      Thank you for your positive remarks on our revised manuscript and for your constructive comments that have strengthened our work.

      We agree with the concern regarding the CFU counts in Figure S3B. The very high values (>10<sup>12</sup>CFU) reflect a technical enumeration artifact that, due to the nature of the assay, cannot be fully avoided. The origin of these inflated counts is described in more detail below:

      Following competition assays between Pseudomonas aeruginosa and Stenotrophomonas maltophilia in liquid culture with antibiotics, we enumerate survivors for each species by colony forming unit (CFU) counts. Because two different bacterial species must be quantified from mixed cultures, we use a gentamicin resistance marker carried by one species at a time.

      Each condition is therefore enumerated twice, as we alternate which species harbors the gentamicin cassette.

      During coculture in antibiotics and minimal medium, clinical isolates of P. aeruginosa and S. maltophilia, like those used here, can transiently increase their tolerance to antibiotics, including aminoglycosides. This reduces the effectiveness of gentamicin selection at the plating step necessary for CFU enumeration. For the data presented in Figure S3B, in a subset of highOD₆₀₀ conditions in the competition assay, this tolerance produces artificially inflated CFU values that exceed the biological carrying capacity during the CFU enumeration step.

      We evaluated alternative enumeration strategies (e.g., fluorescent protein markers with a nonselective medium), but these proved unsuitable for these strains due to differences in growth rates and media compatibility, introducing other large biases. Given these constraints, selective plating remains the only feasible approach for this work, and the associated artifact cannot be eliminated entirely.

      Importantly, transient resistance (tolerance), although common, is not a universal occurrence (e.g., we did not observe it when we performed the experiments shown in Figure 4E). When it does arise, it occurs reproducibly under the same experimental high-OD<sub>600</sub> conditions and does not obscure any of the relative comparisons that underpin our conclusions.

      For transparency, we have retained the measured values in Figure S3B and we note in the legend that counts above ~10<sup>12</sup> CFU represent a technical overestimation due to transient gentamicin tolerance. Counts below 10<sup>12</sup> CFU are accurately enumerated.

      Reviewer #3 (Recommendation For the Authors):

      All concerns have been satisfied and the manuscript is ready for publishing.

      Thank you for your recommendations, which have significantly improved our paper.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      The study would benefit from presenting raw data in some cases, such as MIC values and SDS-PAGE gels, by clarifying the number of independent experiments used, as well as further clarification on statistical significance for some of the data.

      All original data used to generate Fig. 1, Fig. 4E, Fig. S3 and Fig. S4A are presented in File S2. Tab (A) is dedicated to data used for Fig. 1 and Fig. S4A, while tabs (B) and (C) show the data used for Fig. 4E and S3, respectively. This information is indicated in the legends of the relevant figures.

      All experiments in this study were performed in three independent (biological) experiments (with the exception of the complementation data shown in Fig. S1 and Fig. S5, which were performed in two independent (biological) experiments). The number of biological and technical replicates for each experiment is stated in the figure legends, as well as in the “Statistical analysis of experimental data” part of the “Materials and Methods” section of the paper. Specifically, for antibiotic MIC assays we have not performed statistical analyses as per recommended practice. The reason for this is stated in the following section from the “Statistical analysis of experimental data” part of the “Materials and Methods” section of the paper (lines 699-711 of the revised manuscript):

      “Antibiotic MIC values were determined in biological triplicate, except for MIC values recorded for dsbA complementation experiments in our E. coli K-12 inducible system that were carried out in duplicate. All ETEST MICs were determined as a single technical replicate, and all BMD MICs were determined in technical triplicate. All recorded MIC values are displayed in the relevant graphs; for MIC assays where three or more biological experiments were performed, the bars indicate the median value, while for assays where two biological experiments were performed the bars indicate the most conservative of the two values (i.e., for increasing trends, the value representing the smallest increase and for decreasing trends, the value representing the smallest decrease). We note that in line with recommended practice, our MIC results were not averaged. This should be avoided because of the quantized nature of MIC assays, which only inform on bacterial survival for specific antibiotic concentrations and do not provide information for antibiotic concentrations that lie in-between the tested values.”

      Reviewer #2 (Public review):

      While Figure 5E demonstrates a protective effect of DsbA-dependent β-lactamase, the omission of CFU data for S. maltophilia makes it difficult to assess the applicability of the polymicrobial strategy. Since S. maltophilia is pre-cultured prior to the addition of P. aeruginosa and antibiotics, it is unclear whether the protective effect is dependent on high S. maltophilia CFU. It is also unclear what the fate of the S. maltophilia dsbA dsbL mutant is under these conditions. If DsbA-deficient S. maltophilia CFU is not impacted, then this treatment will result in the eradication of only one of the pathogens of interest. If the mutant is lost during treatment, then it is not clear whether the loss of protection is due specifically to the production of non-functional β-lactamase or simply the absence of S. maltophilia.

      We have simultaneously tracked the abundance of P. aeruginosa and S. maltophilia strains in our cross-protection experiment for select antibiotic concentrations. To be able to perform this experiment, we had to label two extremely-drug-resistant strains of S. maltophilia with an antibiotic resistance marker that allowed us to quantify them in mixtures with P. aeruginosa. Our results can be found in Fig. S3 of our revised manuscript and, in a nutshell, show that ceftazidime treatment leads to eradication of both P. aeruginosa and S. maltophilia when disulfide bond formation is impaired in S. maltophilia.

      The following text was added to address the questions of the reviewer:

      “Due to the naturally different growth rates of these two species (S. maltophilia grows much slower than P. aeruginosa) especially in laboratory conditions, the protocol we followed [1] requires S. maltophilia to be grown for 6 hours prior to co-culturing it with P. aeruginosa. To ensure that at this point in the experiment our two S. maltophilia strains, with and without dsbA, had grown comparatively to each other, we determined their cell densities (Fig. S3A). We found that S. maltophilia AMM dsbA dsbL had grown at a similar level as the wild-type strain, and both were at a higher cell density [~10<sup>7</sup> colony forming units (CFUs)] compared to the P. aeruginosa PA14 inoculum (5 x 10<sup>4</sup> CFUs)” (lines 353-361 of the revised manuscript).

      “To ensure that ceftazidime treatment leads to eradication of both P. aeruginosa and S. maltophilia when disulfide bond formation is impaired in S. maltophilia, we monitored the abundance of both strains in each synthetic community for select antibiotic concentrations (Fig. S3B). In this experiment we largely observed the same trends as in Fig. 4E. At low antibiotic concentrations, for example 4 μg/mL of ceftazidime, S. maltophilia AMM is fully resistant and thrives, thus outcompeting P. aeruginosa PA14 (dark pink and dark blue bars in Fig. S3B). The same can also be seen in Fig. 4E, whereby decreased P. aeruginosa PA14 CFUs are recorded. By contrast S. maltophilia AMM dsbA dsbL already displays decreased growth at 4 μg/mL of ceftazidime because of its non-functional L1-1 enzyme, allowing comparatively higher growth of P. aeruginosa (light pink and light blue bars in Fig. S3B). Despite the competition between the two strains, P. aeruginosa PA14 benefits from S. maltophilia AMM’s high hydrolytic activity against ceftazidime, which allows it to survive and grow in high antibiotic concentrations even though it is not resistant (see 128 μg/mL; dark pink and dark blue bars in Fig. S3B). In stark opposition, without its disulfide bond in S. maltophilia AMM dsbA dsbL, L1-1 cannot confer resistance to ceftazidime, resulting in killing of S. maltophilia AMM dsbA dsbL and, consequently, also of P. aeruginosa PA14 (see 128 μg/mL; light pink and light blue bars in Fig. S3B).

      The data presented here show that, at least under laboratory conditions, targeting protein homeostasis pathways in specific recalcitrant pathogens has the potential to not only alter their own antibiotic resistance profiles (Fig. 3 and 4A-D), but also to influence the antibiotic susceptibility profiles of other bacteria that co-occur in the same conditions (Fig. 5). Admittedly, the conditions in a living host are too complex to draw direct conclusions from this experiment. That said, our results show promise for infections, where pathogen interactions affect treatment outcomes, and whereby their inhibition might facilitate treatment” (lines 381406 of the revised manuscript).

      The alleged clinical relevance and immediate, theoretical application of this approach should be properly contextualized. At multiple junctures, the authors state or suggest that interactions between S. maltophilia and P. aeruginosa are known to occur in disease or have known clinical relevance related to treatment failure and disease states. For instance, the citations provided for S. maltophilia protection of P. aeruginosa in the CF lung environment both describe simplified laboratory experiments rather than clinical or in vivo observations. Similarly, the citations provided for both the role of S. maltophilia in treatment failure and CF disease severity do not support either claim. The role of S. maltophilia in CF is currently unsettled, with more recent work reporting conflicting results that support S. maltophilia as a marker, rather than cause, of severe disease. These citations also do not support the suggestion that S. maltophilia specifically contributes to treatment failure. While it is reasonable to pursue these ideas as a hypothesis or potential concern, there is no evidence provided that these specific interactions occur in vivo or that they have clinical relevance.

      Thank you for your comment. You are entirely correct. We have amended the test throughout our revised manuscript to avoid overstating the role of S. maltophilia in CF infections and to reference additional relevant works in the literature. Please find below representative examples of such passages:

      “On the other hand, CF microbiomes are increasingly found to encompass S. maltophilia [2-4], a globally distributed opportunistic pathogen that causes serious nosocomial respiratory and bloodstream infections [5-7]. S. maltophilia is one of the most prevalent emerging pathogens [6] and it is intrinsically resistant to almost all antibiotics, including β-lactams like penicillins, cephalosporins and carbapenems, as well as macrolides, fluoroquinolones, aminoglycosides, chloramphenicol, tetracyclines and colistin. As a result, the standard treatment option for lung infections, i.e., broad-spectrum β-lactam antibiotic therapy, is rarely successful in countering S. maltophilia [7,8], creating a definitive need for approaches that will be effective in eliminating both pathogens” (lines 33-41 of the revised manuscript).

      “Of the organisms studied in this work, S. maltophilia deserves further discussion because of its unique intrinsic resistance profile. The prognosis of CF patients with S. maltophilia lung carriage is still debated [4,9-16], largely because studies with extensive and well-controlled patient cohorts are lacking. This notwithstanding, the therapeutic options against this pathogen are currently limited to one non-β-lactam antibiotic-adjuvant combination, , which is not always effective, trimethoprim-sulfamethoxazole [17-20], and a few last-line β-lactam drugs, like the fifth-generation cephalosporin cefiderocol and the combination aztreonam-avibactam. Resistance to commonly used antibiotics causes many problems during treatment and, as a result, infections that harbor S. maltophilia have high case fatality rates [7]. This is not limited to CF patients, as S. maltophilia is a major cause of death in children with bacteremia [5]” (lines 440-450 of the revised manuscript).

      Reviewer #3 (Public review):

      The impact of the work can be strengthened by demonstrating increased efficacy of antibiotics in mice models or wound models for Pseudomonas infections. Worm models are relevant, but still distant from investigations in animal models.

      Thank you for this comment. We appreciate the sentiment, and we would have liked to be able to perform experiments in a murine model of infection. There are several reasons that made this not possible, and as a result we used G. mellonella as an informative preliminary in vivo infection model. The DSB proteins have been shown to play a central role in bacterial virulence. Because of this our P. aeruginosa and S. maltophilia mutant strains are not efficient in establishing an infection, even in a wound model. This could be overcome had we been able to use the chemical inhibitor of the DSB system in vivo, however this also is not possible This is due to the fact that the chemical compound that we use to inhibit the function of DsbA acts on DsbB. Inhibition of DsbB blocks the re-oxidation of DsbA and leads to its accumulation in its inactive reduced form. However, the action of the inhibitor can be bypassed through reoxidation and re-activation of DsbA by small-molecule oxidants such as L-cystine, which are abundant in rich growth media or animal tissues. This makes the inhibitor only suitable for in vitro assays that can be performed in minimal media, where the presence of small-molecule oxidants can be strictly avoided, but entirely unsuitable for an insect or a vertebrate animal model.

      Reviewer #1 (Recommendation For the Authors):

      (1) The analysis of the role of DsbA in the assembly of cysteine-containing β-lactamases is a significant finding. However, in addition to showing the MIC fold difference, I think, it would be important to show the raw data for the actual MIC values obtained for each β-lactamase enzyme/antibiotic combination and in both strains (+ and - dsbA).

      Also, can the authors clarify whether these experiments were conducted on 3 independent samples (there seems to be some contradicting information in the paper and the supplementary figures). If possible, I would also recommend showing in the figure whether the MIC differences observed were statistically significant.

      All original data used to generate Fig. 1, Fig. 4E, Fig. S3 and Fig. S4A are presented in File S2. Tab (A) is dedicated to data used for Fig. 1 and Fig. S4A, while tabs (B) and (C) show the data used for Fig. 4E and S3, respectively. This information is indicated in the legends of the relevant figures.

      All experiments in this study were performed in three independent (biological) experiments (with the exception of the complementation data shown in Fig. S1 and Fig. S5, which were performed in two independent (biological) experiments). The number of biological and technical replicates for each experiment is stated in the figure legends, as well as in the “Statistical analysis of experimental data” part of the “Materials and Methods” section of the paper. Specifically, for antibiotic MIC assays we have not performed statistical analyses as per recommended practice. The reason for this is stated in the following section from the “Statistical analysis of experimental data” part of the “Materials and Methods” section of the paper (lines 699-711 of the revised manuscript):

      “Antibiotic MIC values were determined in biological triplicate, except for MIC values recorded for dsbA complementation experiments in our E. coli K-12 inducible system that were carried out in duplicate. All ETEST MICs were determined as a single technical replicate, and all BMD MICs were determined in technical triplicate. All recorded MIC values are displayed in the relevant graphs; for MIC assays where three or more biological experiments were performed, the bars indicate the median value, while for assays where two biological experiments were performed the bars indicate the most conservative of the two values (i.e., for increasing trends, the value representing the smallest increase and for decreasing trends, the value representing the smallest decrease). We note that in line with recommended practice, our MIC results were not averaged. This should be avoided because of the quantized nature of MIC assays, which only inform on bacterial survival for specific antibiotic concentrations and do not provide information for antibiotic concentrations that lie in-between the tested values.”

      (2) For Figure 2A, can the authors provide the full Westerns and ideally the SDS-PAGE gel corresponding to the Westerns where the Β-lactamases and the control DNA-K were detected.

      Thank you for this comment. Full immunoblots and SDS PAGE analysis of the immunoblot samples for total protein content are shown in File S3 of our revised manuscript.

      (3) For the enzymatic assays, was the concentration of enzyme used "normalised " based on the amount detected in the westerns where possible or was only the total amount of protein considered. When similar amounts of enzyme were added, was the activity still compromised?

      The β-lactam hydrolysis assay was normalized based on the weight of the cell pellets (wet cell pellet mass) of the tested strains. This means, that for each enzyme expressed in cells with and without DsbA, strains were normalized to the same weight to volume ratio, and thus strains expressing the same enzyme were only compared to each other.

      Because enzyme degradation in the absence of DsbA is a key factor underlying the effects we describe for most of the tested β-lactamases (see Fig. 2A and S4A; no protein band is detected for 5 of the 7 enzymes in the dsbA mutant), it was not possible to normalize our samples based on enzyme levels detected by immunoblot. Normalization based on enzyme amounts would be feasible had we purified each β-lactamase after expression in the two different strain backgrounds (+/- dsbA) assuming sufficient protein amounts could be isolated from the dsbA mutant strain. Nonetheless, we feel that such a comparison would be misleading, since enzyme degradation likely plays the biggest role in the lack of activity observed for most of these enzymes in the absence of DsbA.

      (4) Not sure whether Fig 3 is very informative. Perhaps it could be redesigned to better encapsulate the findings in this manuscript (combine figurer 3 and 6 into one). I would also include the chemical structure of the inhibitors used and perhaps include how they block the system by binding to DsbB.

      Thank you for this comment. Fig. 3 was combined with Fig. 6 of the submitted manuscript. The new model figure is Fig. 5 in our revised manuscript.

      The inhibitor compound used in our study has been extensively characterized in a previous publication [21]. Considering that this inhibitor is not the main focus of our paper, we have avoided showing its chemical structure in any of the main display items. That said, its structure can be found in File S5 of our revised manuscript, which contains the quality control information on this compound. As suggested, we included the following sentence to describe the mode of action of this inhibitor: “Compound 36 was previously shown to inhibit disulfide bond formation in P. aeruginosa via covalently binding onto one of the four essential cysteine residues of DsbB in the DsbA-DsbB complex [21]” (lines 309-311 of the revised manuscript).

      (5) Figure 4: Similar to my comment above showing in the figure whether the differences observed in Figure 4, particularly A-C, are statistically significant (i.e. galleria survival difference in the presence and absence of dsbA) would be beneficial.

      As mentioned in our answer to comment 1 above, we have not performed statistical analyses for antibiotic MIC assays because, in line with recommended practice, our MIC results were not averaged (Fig. 3A,B,D,E of our revised manuscript). This should be avoided because of the quantized nature of MIC assays, which only inform on bacterial survival for specific antibiotic concentrations and do not provide information for antibiotic concentrations that lie in-between the tested values. Statistical analysis of G. mellonella survival data (Fig. 3C,F of our revised manuscript) was performed and is described fully in the legend of Fig. 3, as well as in the “Statistical analysis of experimental data” part of the “Materials and Methods” section of the paper (lines 729-738 of the revised manuscript). Finally, the statistical analyses for the most important comparisons in panels (C) and (F) of Fig. 3 are also marked directly on the figure.

      (6) Were the authors able to test the redox state of DsbA upon addition of the DsbB inhibitor to further demonstrate that the effects observed were indeed due to the obstruction of the Dsb machinery and not due to off target effects.

      Thank you for the opportunity to clarify this. In previous work from our lab, we have used a DSB system inhibitor termed “compound 12” in [22] with activity against DsbB proteins from Enterobacteria. In our previous study [23] we, indeed, tested the redox state of DsbA in the presence of this inhibitor compound. We could not perform the same experiment here with “compound 36” from [21], because we do not have an antibody against the DsbA protein of S. maltophilia. That said, we have carried out experiments that confirm that our results are due to specific inhibition of the DSB system and not because of off-target effects. In particular, we show that the gentamicin MIC values of S. maltophilia AMM remain unchanged in the presence of the inhibitor and treatment of S. maltophilia AMM dsbA dsbL with the compound does not affects its colistin MIC value (Fig. S2E and lines 317-320 of the revised manuscript).

      (7) Given the remarkable effects shown by the DsbB inhibitor, did the authors use this compound to assess whether inhibition of the Dsb system with small molecules would block cross-resistance in S. maltophilia - P. aeruginosa mixed communities (Fig 5D).

      Unfortunately, this was not possible. The decrease in the ceftazidime MIC value of S. maltophilia AMM in the presence of the DSB inhibitor compound is more modest than the effects we observed when the dsbA dsbL mutant is used (compare Fig. 4D (left) with Fig.4A of the revised manuscript). This means that in the presence of the DSB inhibitor there are still sufficient amounts of functional β-lactamase present and we expect that they would contribute to cross-protection of P. aeruginosa. While the use of the DSB inhibitor does have a drastic impact on the colistin resistance profile of S. maltophilia AMM (Fig. 4D of the revised manuscript), unlike β-lactamases, which act as common goods, MCR enzymes act solely on the lipopolysaccharide of their producer and do not contribute to bacterial interactions, precluding the use of colistin for a cross-protection experiment.

      Reviewer #2 (Recommendation For the Authors):

      (1) The acronym used for synthetic cystic fibrosis sputum medium (lines 523, 531, 535, 601, and 603) is defined in the manuscript as 'SCF', but the common formulation is 'SCFM', including in the provided citation. Suggest changing to SCFM for consistency.

      Thank you for this comment. This has been amended throughout our revised manuscript.

      (2) In Figure 1, while the legend states that "No changes in MIC values are observed for strains harboring the empty vector control (pDM1)[...]" (lines 729-30), the median of ceftazidime in the pDM1 control appears to indicate a 2-fold decrease in MIC. This would not seem to significantly impact the other results since the MIC decreases observed for other conditions are all 3-fold or greater, but this should be addressed and/or explained in the text.

      You are correct. Thank you for the opportunity to clarify this. Generally, since MIC assays have a degree of variability, we have only followed decreases in MIC values that are greater than 2fold. Generally, for most of our controls, the recorded MIC fold changes are below 2-fold. The only exception to this is the ceftazidime MIC drop of the empty-vector control, showing a 2fold change, which we do not consider significant.

      To ensure that this is clear in our text and figure legends the following changes were made:

      The clause “only differences larger than 2-fold were considered” was added to the text (lines 110-111 of the revised manuscript).

      We amended the legend of Fig. 1 accordingly: “No changes in MIC values are observed for the aminoglycoside antibiotic gentamicin (white bars) confirming that absence of DsbA does not compromise the general ability of this strain to resist antibiotic stress. Minor changes in MIC values (≤ 2-fold) are observed for strains harboring the empty vector control (pDM1) or those expressing the class A β-lactamases L2-1 and LUT-1, which contain two or more cysteines (Table S1), but no disulfide bonds (top row)”.

      (3) Similarly, in Fig S1E, there appears to be only partial complementation for BPS-1m. Do the authors hypothesize that this observation is related to a folding defect, rather than degradation of protein, as described for BPS-1m for Figure 2?

      Thank you for the opportunity to clarify this. You are correct that we only achieve partial complementation for the E. coli strain expressing the BPS-1m enzyme from the Burkholderia complex. Despite the fact that the gene for this enzyme was codon optimized, we observed that its expression in E. coli is sub-optimal and incurs fitness effects. In fact, to record the data presented in our manuscript the E. coli strains had to be transformed anew every time. Considering that the related enzyme BPS-6 does not present any of these challenges, we attribute the partial complementation to technical difficulties with the expression of the bps-1m gene in E. coli. 

      We clarified this by adding the following clause to our manuscript: “we only achieve partial complementation for the dsbA mutant expressing BPS-1m, which we attribute to the fact that expression of this enzyme in E. coli is sub-optimal” (lines 132-134 of the revised manuscript).

      (4) Lines 204-206: "[...]we deleted the principal dsbA gene, dsbA1 (pathogenic bacteria often encode multiple DsbA analogues [24,25]), in several multidrug-resistant (MDR) P. aeruginosa clinical strains (Table S2)". That multiple DsbA analogues are often encoded is good information to provide, but it was unclear from quickly looking at the citations whether Pa is counted among these. Is it expected that all oxidative protein folding in Pa functions through DsbA1? Conveying this information, if possible, may make the impact of the results in this model clearer.

      Thank you for this comment. To address it we added the following text to our manuscript:

      “To determine whether the effects on β-lactam MICs observed in our inducible system (Fig. 1 and [23]) can be reproduced in the presence of other resistance determinants in a natural context with endogenous enzyme expression levels, we deleted the principal dsbA gene, dsbA1, in several multidrug-resistant (MDR) P. aeruginosa clinical strains (Table S2). Pathogenic bacteria often encode multiple DsbA analogues [24,25] and P. aeruginosa is no exception. It encodes two DsbAs, but DsbA1 has been found to catalyze the vast majority of the oxidative protein folding reactions taking place in its cell envelope [26]” (lines 172-178 of the revised manuscript).

      (5) Regarding the clinical Pa isolates G4R7 and G6R7, have the authors performed any phenotypic testing on these strains to identify differences that might explain the substantial difference in piperacillin MIC? I.e., can these isolates be distinguished by growth rate, genetic markers or expression levels, early or late infection, mucoidy, etc. This is not essential for the current work, but could weigh on the efficacy of this treatment strategy for AIM1expressing clinical isolates. (E.g., the G4R7 dsbA1 strain exhibits a piperacillin MIC still ~2fold higher than WT G6R7).

      Thank you for the opportunity to clarify this. For clinical strains used in our study, we have evaluated their antibiotic resistance profiles, but we have not performed any additional phenotypic characterization. There are many reasons that contribute to differences in antibiotic resistance, starting simply from β-lactamase expression levels and extending to organismal effects, like the ones mentioned by the reviewer. Such characterization would fall outside the scope of our paper, especially since we sensitize our tested P. aeruginosa clinical isolates for the majority of the β-lactams antibiotics tested. 

      We acknowledged this by adding the following sentence to our revised manuscript: 

      “Despite the fact that P. aeruginosa G4R7 dsbA1 was not sensitized for piperacillintazobactam, possibly due to the high level of piperacillin-tazobactam resistance of the parent clinical strain, our results across these two isolates show promise for DsbA as a target against β-lactam resistance in P. aeruginosa” (lines 191-194 of the revised manuscript).

      (6) Lines 180-2: "This shows that without their disulfide bonds, these proteins are unstable and are ultimately degraded by other cell envelope proteostasis components [33]". While it is clear that protein is significantly lost in all cases except for BPS-1m in 2A, the dsbA pDM1bla constructs in 2B appear to all retain non-trivial (>10-fold) nitrocefin hydrolysis activity compared to the dsbA pDM1 control. This does not impact the other results in 2B, but it would seem that a loss-of-function folding defect, as described subsequently for BPS-1m, is also part of the explanation for the observed MIC decreases, and this was not necessarily clear from the quoted passage. This could simply be clarified in the final sentence - that both mechanisms are potentially in play - if the authors agree with that interpretation.

      You are correct, thank you for your comment. We amended the text in our revised manuscript as follows: 

      The data presented so far (Fig. 1 and 2) demonstrate that disulfide bond formation is essential for the biogenesis (stability and/or protein folding) and, in turn, activity of an expanded set of clinically important β-lactamases, including enzymes that currently lack inhibitor options” (lines 158-161 of the revised manuscript).

      (7) While it is clear from Figure S2 that the various dsb mutants do not have a general growth defect or collateral sensitivity to another antibiotic, it does not appear that there is an analogous control for the DSB inhibitor demonstrating no growth/toxic effects at the concentration used. This could be provided similarly to Figure S2, using gentamicin as a control antibiotic.

      We have carried out experiments that confirm that our results are due to specific inhibition of the DSB system and not because of off-target effects. In particular, we show that the gentamicin MIC values of S. maltophilia AMM remain unchanged in the presence of the inhibitor and treatment of S. maltophilia AMM dsbA dsbL with the compound does not affects its colistin MIC value (Fig. S2E and lines 317-320 of the revised manuscript).

      (8) Complementation is appropriately provided for experiments with E. coli, but are not provided for P. aeruginosa or S. maltophilia. It should be straightforward to complement in Pa, but is also probably less critical considering the evidence from E. coli. However, since the Sm mutant is a gene cluster with two genes, it would seem more imperative to complement this strain. This reviewer is not familiar enough with Sm to know if complementation is routine or feasible with this organism; if not, the controls for the DSB inhibitor should at least be provided.

      As mentioned in our response to comment 7 above, we have carried out experiments that confirm that our DSB inhibitor results are due to specific inhibition of the DSB system and not because of off-target effects.

      Moreover, in response to this comment, we have further demonstrated that our results are due to the specific interaction of DsbA with β-lactamase enzymes by complementing dsbA deletions in representative clinical strains of multidrug-resistant Pseudomonas aeruginosa and extremely-drug-resistant Stenotrophomonas maltophilia. We would like to note here that gene complementation in clinical isolates remains very rare in the literature due to their high levels of resistance and limited genetic tractability. Most of the few complementation examples reported for these two organisms are limited to strains that, although pathogenic, are commonly used in the lab, or to complementation efforts in non-clinical strain systems (for example use of P. aeruginosa PA14 for complementation, instead of the focal clinical isolate).

      We tested three different complementation strategies, two of which ended up being unsuccessful. After approximately 9 months of work, we succeeded in complementing a representative clinical strain for each organism (P. aeruginosa CDC #769 dsbA1 and S. maltophilia AMM dsbA dsbL) by inserting the dsbA1 gene from P. aeruginosa PAO1 into the Tn7 site on the chromosome. Both clinical strains show full complementation for every antibiotic tested; our complementation results can be found in Fig. S2B,D of the revised manuscript.

      The following text was added for P. aeruginosa clinical isolates:

      We have demonstrated the specific interaction of DsbA with the tested β-lactamase enzymes in our E. coli K-12 inducible system using gentamicin controls (Fig. 1 and File S2A) and gene complementation (Fig. S1). To confirm the specificity of this interaction in P. aeruginosa, we performed representative control experiments in one of our clinical strains, P. aeruginosa CDC #769. We first tested the general ability of P. aeruginosa CDC #769 dsbA1 to resist antibiotic stress by recording MIC values against gentamicin, and found it unchanged compared to its parent (Fig. S2A). Gene complementation in clinical isolates is especially challenging and rarely attempted due to the high levels of resistance and lack of genetic tractability in these strains. Despite these challenges, to further ensure the specificity of the interaction of DsbA with tested β-lactamases in P. aeruginosa, we have complemented dsbA1 from P. aeruginosa PAO1 into P. aeruginosa CDC #769 dsbA1. We found that complementation of dsbA1 restores MICs to wild-type values for both tested β-lactam compounds (Fig. S2B) further demonstrating that our results in P. aeruginosa clinical strains are not confounded by off-target effects” (lines 226-239 of the revised manuscript).

      The following text was added for S. maltophilia clinical isolates: 

      “Since the dsbA and dsbL are organized in a gene cluster in S. maltophilia, we wanted to ensure that our results reported above were exclusively due to disruption of disulfide bond formation in this organism. First, we recorded gentamicin MIC values for S. maltophilia AMM dsbA dsbL and found them to be unchanged compared to the gentamicin MICs of the parent strain (Fig. S2C). This confirms that disruption of disulfide bond formation does not compromise the general ability of this organism to resist antibiotic stress. Next, we complemented S. maltophilia AMM dsbA dsbL. The specific oxidative roles and exact regulation of DsbA and DsbL in S. maltophilia remain unknown. For this reason and considering that genetic manipulation of extremely-drug-resistant organisms is challenging, we used our genetic construct optimized for complementing P. aeruginosa CDC #769 dsbA1 with dsbA1 from P. aeruginosa PAO1 (Fig. S2B) to also complement S. maltophilia AMM dsbA dsbL. We based this approach on the fact that DsbA proteins from one species have been commonly shown to be functional in other species [27-30]. Indeed, we found that complementation of S. maltophilia AMM dsbA dsbL with P. aeruginosa PAO1 dsbA1 restores MICs to wild-type values for both ceftazidime and colistin (Fig. S2D), conclusively demonstrating that our results in S. maltophilia are not confounded by off-target effects” (lines 282-297 of the revised manuscript).

      (9) In Figure 5E, the growth inhibition and loss of Pa CFU in 4 ug/mL ceftazidime for the Sm co-culture condition, which is subsequently lost in the Sm dsbA dsbL co-culture, does not appear to be discussed. As Pa is shown to grow fine in monoculture at this concentration, this result should be discussed in relation to the co-culture dynamics. Is it expected or observed that WT Sm is out-competing Pa under this condition and growing to a high CFU/mL? This would seem to have parallels to citation 49.

      As requested by this reviewer (see comment 10 below), we simultaneously tracked the abundance of P. aeruginosa and S. maltophilia strains in our cross-protection experiment. During this process we probed the abundances of the two organisms at 4 µg/mL of ceftazidime. Our results can be seen in Fig. S3B of the revised manuscript. The reviewer is correct and these effects are due to competition between P. aeruginosa and S. maltophilia with the latter being able to reach very high CFUs in this antibiotic concentration. 

      The following text on co-culture dynamics was added to our revised manuscript: 

      At low antibiotic concentrations, for example 4 μg/mL of ceftazidime, S. maltophilia AMM is fully resistant and thrives, thus outcompeting P. aeruginosa PA14 (dark pink and dark blue bars in Fig. S3B). The same can also be seen in Fig. 4E, whereby decreased P. aeruginosa PA14 CFUs are recorded. By contrast S. maltophilia AMM dsbA dsbL already displays decreased growth at 4 μg/mL of ceftazidime because of its non-functional L1-1 enzyme, allowing comparatively higher growth of P. aeruginosa (light pink and light blue bars in Fig. S3B)” (lines 384-390 of the revised manuscript).

      (10) The data presented in Figure 5E would be augmented by the inclusion of, for at least a few representative cases, the Sm CFUs relative to the Pa CFUs. In describing the protective effects of Sm on Pa for imipenem treatment, the authors of citation 12 note that the effect was dependent on Sm cell density. This raises the immediate question of whether the protection observed in this work is similarly dependent on cell density of Sm. It is unclear if the authors expect Sm to persist under these conditions, and it seems Sm CFU should be expected to be relatively high considering it is pre-incubated for 6 hours prior to the assay. What is the physiological state of these cells, and how are they affected by ceftazidime? While many other variables are likely relevant to the translation of this protection, the relative abundance and localization of Sm and Pa commonly observed in CF patients, as well as the effective concentration of antibiotic observed in vivo, is likely worth consideration.

      As mentioned in our response to comment 9 above, we have simultaneously tracked the abundance of P. aeruginosa and S. maltophilia strains in our cross-protection experiment for select antibiotic concentrations. To be able to perform this experiment, we had to label two extremely-drug-resistant strains of S. maltophilia with an antibiotic resistance marker that allowed us to quantify them in mixtures with P. aeruginosa. Our results can be found in Fig. S3 of our revised manuscript and, in a nutshell, show that ceftazidime treatment leads to eradication of both P. aeruginosa and S. maltophilia when disulfide bond formation is impaired in S. maltophilia.

      The following text was added to address the questions of the reviewer:

      “Due to the naturally different growth rates of these two species (S. maltophilia grows much slower than P. aeruginosa) especially in laboratory conditions, the protocol we followed [1] requires S. maltophilia to be grown for 6 hours prior to co-culturing it with P. aeruginosa. To ensure that at this point in the experiment our two S. maltophilia strains, with and without dsbA, had grown comparatively to each other, we determined their cell densities (Fig. S3A). We found that S. maltophilia AMM dsbA dsbL had grown at a similar level as the wild-type strain, and both were at a higher cell density [~10<sup>7</sup> colony forming units (CFUs)] compared to the P.aeruginosa PA14 inoculum (5 x 10<sup>4</sup> CFUs)” (lines 353-361 of the revised manuscript).

      “To ensure that ceftazidime treatment leads to eradication of both P. aeruginosa and S. maltophilia when disulfide bond formation is impaired in S. maltophilia, we monitored the abundance of both strains in each synthetic community for select antibiotic concentrations (Fig. S3B). In this experiment we largely observed the same trends as in Fig. 4E. At low antibiotic concentrations, for example 4 μg/mL of ceftazidime, S. maltophilia AMM is fully resistant and thrives, thus outcompeting P. aeruginosa PA14 (dark pink and dark blue bars in Fig. S3B). The same can also be seen in Fig. 4E, whereby decreased P. aeruginosa PA14 CFUs are recorded. By contrast S. maltophilia AMM dsbA dsbL already displays decreased growth at 4 μg/mL of ceftazidime because of its non-functional L1-1 enzyme, allowing comparatively higher growth of P. aeruginosa (light pink and light blue bars in Fig. S3B). Despite the competition between the two strains, P. aeruginosa PA14 benefits from S. maltophilia AMM’s high hydrolytic activity against ceftazidime, which allows it to survive and grow in high antibiotic concentrations even though it is not resistant (see 128 μg/mL; dark pink and dark blue bars in Fig. S3B). In stark opposition, without its disulfide bond in S. maltophilia AMM dsbA dsbL, L1-1 cannot confer resistance to ceftazidime, resulting in killing of S. maltophilia AMM dsbA dsbL and, consequently, also of P. aeruginosa PA14 (see 128 μg/mL; light pink and light blue bars in Fig. S3B).

      The data presented here show that, at least under laboratory conditions, targeting protein homeostasis pathways in specific recalcitrant pathogens has the potential to not only alter their own antibiotic resistance profiles (Fig. 3 and 4A-D), but also to influence the antibiotic susceptibility profiles of other bacteria that co-occur in the same conditions (Fig. 5). Admittedly, the conditions in a living host are too complex to draw direct conclusions from this experiment. That said, our results show promise for infections, where pathogen interactions affect treatment outcomes, and whereby their inhibition might facilitate treatment” (lines 381406 of the revised manuscript).

      (11) Regarding the role of microbial interactions in CF and other disease/infection contexts, the authors should temper their descriptions in accordance with citations provided. As an example, lines 96-99: "For example, in the CF lung, highly drug-resistant S. maltophilia strains actively protect susceptible P. aeruginosa from β-lactam antibiotics [12], and ultimately facilitate the evolution of β-lactam resistance in P. aeruginosa [14]."

      Neither citation provided here attests to Sm protection of Pa "in the CF lung". Both papers use a simplified in vitro co-culture model to assess Sm protection of Pa from antibiotics and the evolution of Pa antibiotic resistance in the presence or absence of Sm, respectively. In the latter case, it should also be noted that while the authors observed somewhat faster Pa resistance evolution in one co-culture condition, they did not observe it in the other, and that resistance evolution in general was observed regardless of co-culture condition. There are also statements in the ultimate and penultimate paragraphs of the Discussion section that repeat these points. The authors could re-frame this aspect of their investigation as part of a working hypothesis related to potential interactions of these pathogens, and should appropriately caveat what is and is not known from in vitro and in vivo/clinical work.

      Thank you for your comment. You are entirely correct. We have amended the test throughout our revised manuscript to avoid overstating these finding and to be clear about the fact that they originate from experimental studies. Please find below representative examples of such passages:

      “In particular, some antibiotic resistance proteins, like β-lactamases, which decrease the quantities of active drug present, function akin to common goods, since their benefits are not limited to the pathogen that produces them but can be shared with the rest of the bacterial community. This means that their activity enables pathogen cross-resistance when multiple species are present [1,31], something that was demonstrated in recent work investigating the interactions between pathogens that naturally co-exist in CF infections. More specifically, it was shown that in laboratory co-culture conditions, highly drug-resistant S. maltophilia strains actively protect susceptible P. aeruginosa from β-lactam antibiotics [1]. Moreover, this crossprotection was found to facilitate, at least under specific conditions, the evolution of β-lactam resistance in P. aeruginosa [32]” (lines 47-57 of the revised manuscript).

      “The antibiotic resistance mechanisms of S. maltophilia impact the antibiotic tolerance profiles of other organisms that are found in the same infection environment. S. maltophilia hydrolyses all β-lactam drugs through the action of its L1 and L2 β-lactamases [7,8]. In doing so, it has been experimentally shown to protect other pathogens that are, in principle, susceptible to treatment, such as P. aeruginosa [1]. This protection, in turn, allows active growth of otherwise treatable P. aeruginosa in the presence of complex β-lactams, like imipenem [1], and, at least in some conditions, increases the rate of resistance evolution of P. aeruginosa against these antibiotics [32]” (lines 332-340 of the revised manuscript).

      (12) Regarding the role of S. maltophilia in CF disease, the authors should either discuss clinical associations more completely or note the conflicting data on its role in disease. As an example, lines 84-87: "As a result, the standard treatment option, i.e., broad-spectrum βlactam antibiotic therapy, constitutes a severe risk for CF patients carrying both P. aeruginosa and S. maltophilia [10,11], creating an urgent need for antimicrobial approaches that will be effective in eliminating both pathogens."

      It is unclear how this treatment results in a "severe risk" for CF patients colonized by both Sm and Pa. Citation 10 suggests an association between anti-pseudomonal antibiotic use and increased prevalence of Sm, but neither citation supports a worsening clinical outcome from this treatment. Citation 10 further notes that clinical scores between Sm-positive and control cohorts could not be distinguished statistically. Citation 11 is a review that makes note of this conflicting data regarding Sm, including reference to a more recent (at the time) result using multivariate analysis showing no independent affect of Sm on survival.

      The above point similarly applies to other statements in the manuscript, for example at lines 266-267: "Considering the contribution of S. maltophilia strains to treatment failure in CF lung infections [8,10,11][...]" As well as lines 79-80: "Pulmonary exacerbations and severe disease states are also associated with the presence of S. maltophilia [8]"

      Again, the provided citations do not support the implication that Sm specifically 'contributes to treatment failure in CF lung infections' or that Sm is specifically associated with severe disease states. In addition to the previously discussed citations, citation 8 describes broad "pulmotypes" composed of 10 species/genera that could be associated with particular clinical (e.g., exacerbation) or treatment (e.g., antibiotic therapy) characteristics, but these cannot, without further analysis, be associated with, or causally linked to, a specific pathogen. While pulmotype 2 in citation 8 was associated with a more severe clinical state and appeared to have the highest relative abundance of Sm compared to other pulmotypes, Sm was not identified (Figure 4A) as an independent factor that distinguishes between moderate and severe disease, unlike Pa and some anaerobes (4F-H). The authors also observed that decreasing relative abundance of Pa, in particuar, is correlated with subsequent exacerbation, but did not correlate this with the presence of any other species or genera. Again, this should be re-framed with the appropriate caveat that this is a hypothesis with possible clinical significance.

      Several suggested papers are included below on Sm association with clinical characteristics to incorporate into the manuscript if the authors choose to do so:

      https://doi.org/10.1177/14782715221088909

      https://doi.org/10.1016/j.prrv.2010.07.003

      https://doi.org/10.1016/j.jcf.2013.05.009 https://doi.org/10.1002/ppul.23943

      https://doi.org/10.1002/14651858.CD005405.pub2

      https://doi.org/10.1164/rccm.2109078 http://dx.doi.org/10.1136/thx.2003.017707

      https://erj.ersjournals.com/content/23/1/98.short

      Thank you for your comment. You are entirely correct. We have amended the test throughout our revised manuscript to avoid overstating the role of S. maltophilia in CF infections and to reference additional relevant works in the literature. Please find below representative examples of such passages:

      “On the other hand, CF microbiomes are increasingly found to encompass S. maltophilia [2-4], a globally distributed opportunistic pathogen that causes serious nosocomial respiratory and bloodstream infections [5-7]. S. maltophilia is one of the most prevalent emerging pathogens [6] and it is intrinsically resistant to almost all antibiotics, including β-lactams like penicillins, cephalosporins and carbapenems, as well as macrolides, fluoroquinolones, aminoglycosides, chloramphenicol, tetracyclines and colistin. As a result, the standard treatment option for lung infections, i.e., broad-spectrum β-lactam antibiotic therapy, is rarely successful in countering S. maltophilia [7,8], creating a definitive need for approaches that will be effective in eliminating both pathogens” (lines 33-41 of the revised manuscript).

      “Of the organisms studied in this work, S. maltophilia deserves further discussion because of its unique intrinsic resistance profile. The prognosis of CF patients with S. maltophilia lung carriage is still debated [4,9-16], largely because studies with extensive and well-controlled patient cohorts are lacking. This notwithstanding, the therapeutic options against this pathogen are currently limited to one non-β-lactam antibiotic-adjuvant combination, , which is not always effective, trimethoprim-sulfamethoxazole [17-20], and a few last-line β-lactam drugs, like the fifth-generation cephalosporin cefiderocol and the combination aztreonam-avibactam. Resistance to commonly used antibiotics causes many problems during treatment and, as a result, infections that harbor S. maltophilia have high case fatality rates [7]. This is not limited to CF patients, as S. maltophilia is a major cause of death in children with bacteremia [5]” (lines 440-450 of the revised manuscript).

      Reviewer #3 (Recommendation For the Authors):

      (1) The referencing of supplemental figures does not follow a sequential order. For example, Figure S2 appears in the text before S1. The sequential ordering of figure numbers improves the readability and can be considered while editing the manuscript for revision.

      Thank you for this comment. This is amended in our revised manuscript and supplemental figures and files are cited in order.

      (2 )It will be useful to provide a brief description of ambler classes since these are important to study design (for a broader audience).

      Thank you for this suggestion. This has been added and can be found in lines 91-101 of the revised manuscript.

      (3) The rationale for using K12 strain for E. coli should be provided. It appears that is a model system that is well established in their lab, but a scientific rationale can be listed. Maybe this strain does not have any lactamases in its genome other than the one being expressed as compared to pathogenic E. coli?

      Thank you for this suggestion. This has been added and can be found in lines 104-106 of the revised manuscript.

      (4) The reviewers used worm model to test their observations, which is relevant. Given the significant implications of their work in overcoming resistance to clinically used antibiotics and availability of already generated dsbA mutants in clinical strains, it will be useful to investigate survival in animal models or at least wound models of Pseudomonas infections. The reviewer does not deem this necessary, but it will significantly increase the impact of their seminal work.

      Thank you for this comment. We appreciate the sentiment, and we would have liked to be able to perform experiments in a murine model of infection. There are several reasons that made this not possible, and as a result we used G. mellonella as an informative preliminary in vivo infection model. The DSB proteins have been shown to play a central role in bacterial virulence. Because of this our P. aeruginosa and S. maltophilia mutant strains are not efficient in establishing an infection, even in a wound model. This could be overcome had we been able to use the chemical inhibitor of the DSB system in vivo, however this also is not possible This is due to the fact that the chemical compound that we use to inhibit the function of DsbA acts on DsbB. Inhibition of DsbB blocks the re-oxidation of DsbA and leads to its accumulation in its inactive reduced form. However, the action of the inhibitor can be bypassed through reoxidation and re-activation of DsbA by small-molecule oxidants such as L-cystine, which are abundant in rich growth media or animal tissues. This makes the inhibitor only suitable for in vitro assays that can be performed in minimal media, where the presence of small-molecule oxidants can be strictly avoided, but entirely unsuitable for an insect or a vertebrate animal model.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Dixit, Noe, and Weikl apply coarse-grained and all-atom molecular dynamics to determine the response of the mechanosensitive proteins Piezo 1 and Piezo 2 proteins to tension. Cryo-EM structures in micelles show a high curvature of the protein whereas structures in lipid bilayers show lower curvature. Is the zero-stress state of the protein closer to the micelle structure or the bilayer structure? Moreover, while the tension sensitivity of channel function can be inferred from the experiment, molecular details are not clearly available. How much does the protein's height and effective area change in response to tension? With these in hand, a quantitative model of its function follows that can be related to the properties of the membrane and the effect of external forces. 

      Simulations indicate that in a bilayer the protein relaxes from the highly curved cryo-EM dome (Figure 1). 

      Under applied tension, the dome flattens (Figure 2) including the underlying lipid bilayer. The shape of the system is a combination of the membrane mechanical and protein conformational energies (Equation 1). The membrane's mechanical energy is well-characterized. It requires only the curvature and bending modulus as inputs. They determine membrane curvature and the local area metric (Equation 4) by averaging the height on a grid and computing second derivatives (Equations 7, 8) consistent with known differential geometric formulas. 

      The bending energy can be limited to the nano dome but this implies that the noise in the membrane energy is significant. Where there is noise outside the dome there is noise inside the dome. At the least, they could characterize the noisy energy due to inadequate averaging of membrane shape. 

      My concern for this paper is that they are significantly overestimating the membrane deformation energy based on their numerical scheme, which in turn leads to a much stiffer model of the protein itself.

      We agree that “thermal noise” is intrinsic to MD simulations, as in “real” systems, leading to thermally excited shape fluctuations of membranes and conformational fluctuations of proteins. However, for our coarse-grained simulations, the thermally excited membrane shape fluctuations can be averaged out quite well, and the resulting average shapes are smooth, see e.g. the shapes and lines of the contour plots in Fig. 1 and 2. For our atomistic simulations, the averaged shapes are not as smooth, see Fig. 3a and the lines of the contour plots in Fig. 3b. Therefore, we do not report bending energies for the nanodome shapes determined from atomistic simulations, because bending energy calculations are sensitive to remaining “noise” on small scales (due to the scale invariance of the bending energy), in contrast to calculations of excess areas, which we state now on lines 620ff.

      For our coarse-grained simulations, we now corroborate our bending energy calculations based on averaged 3d shapes by comparing to bending energy values obtained from highly smoothened 2d mean curvature profiles (see Fig. 1c for mean curvature profiles in tensionless membranes). We discuss this in detail from line 323 on, starting with:

      “To corroborate our bending energy calculations for these averaged three-dimensional nanodome shapes, we note that essentially identical bending energies can be obtained from the highly smoothened mean curvatures M of the two-dimensional membrane profiles. …”

      Two things would address this: 

      (1) Report the membrane energy under different graining schemes (e.g., report schemes up to double the discretization grain). 

      There are two graining schemes in the modeling, and we have followed the reviewer’s recommendation regarding the second scheme. In the first, more central graining scheme, we use quadratic membrane patches with a sidelength of about 2 nm to determine membrane midplane shapes and lipid densities of each simulation conformation. This graining scheme has also been previously employed in Hu, Lipowsky, Weikl, PNAS 38, 15283 (2013) to determine the shape and thermal roughness of coarse-grained membranes. A sidelength of 2 nm is necessary to have sufficiently many lipid headgroups in the upper and lower leaflet in the membrane patches for estimating the local height of these leaflets, and the local membrane midplane height as average of these leaflet heights (see subsection “Membrane shape of simulation conformation” in the Methods section for details).  However, we strongly believe that doubling the sidelength of membrane patches in this discretization is not an option, because a discretization length of 4 nm is too coarse to resolve the membrane deformations in the nanodome, see e.g. the profiles in Fig. 1b. Moreover, any “noise” from this discretization is rather completely smoothened out in the averaging process used in the analysis of the membrane shapes, at least for the coarse-grained simulations. This averaging process requires rotations of membrane conformations to align the protein orientations of the conformations (see subsection “Average membrane shapes and lipid densities” for details). Because of these rotations, the original discretization is “lost” in the averaging, and a continuous membrane shape is generated. To calculate the excess areas and bending energies for this smooth, continuous membrane shape, we use a discretization of the Monge plane into a square lattice with lattice parameter 1 nm. As a response to the referee’s suggestion, we now report that the results for the excess area do not change significantly when doubling this lattice parameter to 2 nm. On line 597, we write:

      “For a lattice constant of a=2 nm, we obtain extrapolated values of the excess area Delta A from the coarse-grained simulations that are 2 to 3% lower than the values for a=1 nm, which is a small compared to statistical uncertainties with relative errors of around 10%.”

      On lines 614ff, we now state that the bending energy results are about 10% to 13% lower for a=2 nm, likely because of the lower resolution of the curvature in the nanodome compared to a=1 nm, rather than incomplete averaging and remaining roughness of the coarse-grained nanodome shapes.

      (2) For a Gaussian bump with sigma=6 nm I obtained a bending energy of 0.6 kappa, so certainly in the ballpark with what they are reporting but significantly lower (compared to 2 kappa, Figure 5 lower left). It would be simpler to use the Gaussian approximation to their curves in Figure 3 - and I would argue more accurate, especially since they have not reported the variation of the membrane energy with respect to the discretization size and so I cannot judge the dependence of the energy on discretization. I view reporting the variation of the membrane energy with respect to discretization as being essential for the analysis if their goal is to provide a quantitative estimate for the force of Piezo. The Helfrich energy computed from an analytical model with a membrane shape closely resembling the simulated shapes would be very helpful. According to my intuition, finite-difference estimates of curvatures will tend to be overestimates of the true membrane deformation energy because white noise tends to lead to high curvature at short-length scales, which is strongly penalized by the bending energy. 

      Instead of Gaussian bumps, we now calculate the membrane bending energy also from the two-dimensional, continuous mean curvature profiles (see Fig. 1c). These mean curvature profiles are highly smoothened (see figure caption for details). Nonetheless, we obtain essentially the same bending energies as in our discrete calculations of averaged, smoothened threedimensional membrane shapes, see new text on lines 326ff. We believe that this agreement corroborates our bending energy calculations. We still focus on values obtained for threedimensional membrane shapes, because of incomplete rotational symmetry. The three-dimensional membrane shapes exhibit variations with the three-fold symmetry of the Piezo proteins, see Figure 2a and b.

      We agree that the bending energy of thermally rough membranes depends on the discretization scheme, because the discretization length of any discretization scheme leads to a cut-off length for fluctuation modes in a Fourier analysis. But again, we average out the thermal noise, for reasons given in the Results section, and analyse smooth membrane shapes.  

      The fitting of the system deformation to the inverse time appears to be incredibly ad hoc ... Nor is it clear that the quantified model will be substantially changed without extrapolation. The authors should either justify the extrapolation more clearly (sorry if I missed it!) or also report the unextrapolated numbers alongside the extrapolated ones. 

      We report the values of the excess area and bending energy in the different time intervals of our analysis as data points in Fig. 4 with supplement. We find it important to report the time dependence of these quantities, because the intended equilibration of the membrane shapes in our simulations is not “complete” within a certain time window of the simulations. So, just “cutting” the first 20 and 50% of the simulation trajectories, and analysing the remaining parts as “equilibrated” does not seem to be a reasonable choice here, at least for the membrane properties, i.e. for the excess area and bending energy. We agree that the linear extrapolation used in our analysis is a matter of choice. At least for the coarse-grained simulations, the extrapolated values of excess areas and bending energies are rather close to the values obtained in the last time windows (see Figure 4). 

      In summary, this paper uses molecular dynamics simulations to quantify the force of the Piezo 1 and Piezo 2 proteins on a lipid bilayer using simulations under controlled tension, observing the membrane deformation, and using that data to infer protein mechanics. While much of the physical mechanism was previously known, the study itself is a valuable quantification. I identified one issue in the membrane deformation energy analysis that has large quantitative repercussions for the extracted model. 

      Reviewer #2 (Public review): 

      Summary: 

      In this study, the authors suggest that the structure of Piezo2 in a tensionless simulation is flatter compared to the electron microscopy structure. This is an interesting observation and highlights the fact that the membrane environment is important for Piezo2 curvature. Additionally, the authors calculate the excess area of Piezo2 and Piezo1, suggesting that it is significantly smaller compared to the area calculated using the EM structure or simulations with restrained Piezo2. Finally, the authors propose an elastic model for Piezo proteins. Those are very important findings, which would be of interest to the mechanobiology field. 

      Whilst I like the suggestion that the membrane environment will change Piezo2 flatness, could this be happening because of the lower resolution of the MARTINI simulations? In other words, would it be possible that MARTINI is not able to model such curvature due to its lower resolution? 

      Related to my comment above, the authors say that they only restrained the secondary structure using an elastic network model. Whilst I understand why they did this, Piezo proteins are relatively large. How can the authors know that this type of elastic network model restrains, combined with the fact that MARTINI simulations are perhaps not very accurate in predicting protein conformations, can accurately represent the changes that happen within the Piezo channel during membrane tension? 

      These questions regarding the reliability of the Martini model are very reasonable and are the reason why we include also results from atomistic simulations, at least for Piezo 2, and compare the results. In the Martini model, secondary structure constraints are standard. In addition, constraints on the tertiary structure (e.g. via an elastic network model) are also typically used in simulations of soluble, globular proteins. However, such tertiary constraints would make it impossible to simulate the tension-induced flattening of the Piezo proteins. So instead, as we write on lines 427ff, “we relied on the capabilities of the Martini coarse-grained force field for modeling membrane systems with TM helix assemblies (Sharma and Juffer, 2013; Chavent et al., 2014; Majumder and Straub, 2021).” In these refences, Martini simulations were used to study the assembly of transmembrane helices, leading to agreement with experimentally observed structures. As we state in our article, our atomistic simulations corroborate the Martini simulations, with the caveats that are now more extensively discussed in the new last paragraph of the Discussion section starting on line 362.

      Modelling or Piezo1, seems to be based on homology to Piezo2. However, the authors need to further evaluate their model, e.g. how it compares with an Alphafold model. 

      We understand the question, but see it beyond the scope of our article, also because of the computational demand of the simulations. The question is: Do coarse-grained simulations of Piezo1 based on an Alphafold model as starting structure lead to different results? It is important to note that we only model the rather flexible 12 TM helices at the outer ends of the Piezo 1 monomers via homology modeling to the Piezo 2 structure, which includes these TM helices. For the inner 26 TM helices, including the channel, we use the high-quality cryo-EM structure of Piezo 1. Alphafold may be an alternative for modeling the outer 12 helices, but we don’t think this would lead to statistically significant differences in simulations – e.g. because of the observed overall agreement of membrane shapes in all our Piezo 1 and Piezo 2 simulation systems.

      To calculate the tension-induced flattening of the Piezo channel, the authors "divide all simulation trajectories into 5 equal intervals and determine the nanodome shape in each interval by averaging over the conformations of all independent simulation runs in this interval.". However, probably the change in the flattening of Piezo channel happens very quickly during the simulations, possibly within the same interval. Is this the case? and if yes does this affect their calculations? 

      Unfortunately, the flattening is not sufficiently quick, so is not complete within the first time windows, see data points in Figure 4. We therefore report the time dependence with the plots in Figure 4 and extrapolate, see also our response above to reviewer 1.

      Finally, the authors use a specific lipid composition, which is asymmetric. Is it possible that the asymmetry of the membrane causes some of the changes in the curvature that they observe? Perhaps more controls, e.g. with a symmetric POPC bilayer are needed to identify whether membrane asymmetry plays a role in the membrane curvature they observe. 

      Because of the rather high computational demands, such controls are beyond our scope. We don’t expect statistically significant differences for symmetric POPC/cholesterol bilayers. On lines 229ff, we now state:

      “Our modelling assumes that any spontaneous curvature from asymmetries in the lipid composition is small compared to the curvature of the nanodome and, thus, negligible, which is plausible for the rather slight lipid asymmetry of our simulated membranes (see Methods).”

      Reviewer #3 (Public review): 

      Strengths: 

      This work focuses on a problem of deep significance: quantifying the structure-tension relationship and underlying mechanism for the mechanosensitive Piezo 1 and 2 channels. This objective presents a few technical challenges for molecular dynamics simulations, due to the relatively large size of each membrane-protein system. Nonetheless, the technical approach chosen is based on the methodology that is, in principle, established and widely accessible. Therefore, another group of practitioners would likely be able to reproduce these findings with reasonable effort. 

      Weaknesses: 

      The two main results of this paper are (1) that both channels exhibit a flatter structure compared to cryo-EM measurements, and (2) their estimated force vs. displacement relationship. Although the former correlates at least quantitatively with prior experimental work, the latter relies exclusively on simulation results and model parameters. 

      Below is a summary of the key points we recommend addressing in a revised version of the manuscript: 

      (1) The authors should report and discuss controls for the membrane energy calculations, specifically by increasing the density of the discretization graining. We also suggest validating the bending modulus used in the energy calculations for the specific lipid mixture employed in the study. 

      We have addressed both points, see our response to the reviewer’s comments for further details.

      (2) The authors should consider and discuss the potential limitations of the coarse-grained simulation force field and clarify how atomistic simulations validate the reported results, with a more detailed explanation of the potential interdependencies between the two. 

      We now discuss the caveats in the comparison of coarse-grained and atomistic simulations in more detail in a new paragraph starting on line 362.

      (3) The authors should provide further clarification on other points raised in the reviewers' comments, for instance, the potential role of membrane asymmetry. 

      We have done this – see above. We now further explain on lines 437ff why we use an asymmetric membrane. On lines 230ff, we discuss that any spontaneous membrane curvature due to lipid asymmetry is likely small compared to the nanodome curvature and, thus, negligible.

      Reviewer #1 (Recommendations for the authors): 

      (1) Report discretization dependence of the membrane energy (up to double the density of the current discretization graining). 

      We have added several text pieces in the paragraph “Excess area and bending energy” starting on line 583 in which we state how the results depend on the lattice constant a of the calculations.

      (2) Evaluate an analytical energy of a membrane bump with a shape similar to the simulation. This would be free of all sampling and discretization artifacts and would thus be an excellent lower bound of the energy. 

      We have done this for the curvature profile in Figure 1c and corresponding curvature profiles of the shape profiles in Figure 2d, see next text on lines 326ff.

      Minor: 

      (1)  The lipid density (Figure 1 right, 2c, 3c) is not interesting nor is it referred to. It can be dropped. 

      We think the lipid density maps are important for two reasons: First, they show the protein shape obtained after averaging conformations, as low-lipid-density regions. Second, the lipid densities are used in the calculation of the bending energies, to limit the bending energy calculations to the membrane in the nanodome, see Eq. 9. We therefore prefer to keep them.

      (2) Figure 7 is attractive but not used in a meaningful way. I suggest inserting the protein graphic from Figure 7 into Figure 1 with the 4-helix bundles numbered alongside the structure. Figure 7 could then be dropped. 

      Figure 7 is a figure of the Methods section. We need it to illustrate and explain aspects of the setup (numbering of helices, missing loops) and analysis (numbering scheme of 4-TM helix units).

      (3) Some editing of the use of the English language would be helpful. "Exemplary" is a bit of a funny word choice, it implies that the conformation is excellent, and not simply representative. I'd suggest "Representative conformation". 

      We agree and have replaced “exemplary” by “representative”.

      (4) Typos: 

      Equation 4 - Missing parentheses before squared operator inside the square root. 

      We have corrected this mistake.

      Reviewer #2 (Recommendations for the authors): 

      This study focuses mainly on Piezo2; the authors do not perform any atomistic simulations of Piezo1, and the coarse-grained simulations for Piezo1 are shorter. As a result, their analysis for Piezo2 seems more complete. It would be good if the authors did similar studies with Piezo1 as with Piezo2. 

      We agree that atomistic simulations of Piezo 1 would be interesting, too. However, because the atomistic simulations are particularly demanding, this is beyond our scope.

      Reviewer #3 (Recommendations for the authors): 

      (1) At line 63, a very large tension from the previous work by De Vecchis et al is reported (68 mN/m). The authors are sampling values up to about 21 mN/m, which is considerably smaller. However, these values greatly exceed what typical lipid membranes can sustain (about 10 mN/m) before rupturing. When mentioning these large tensions, the authors should emphasize that these values are not physiologically significant, because they would rupture most plasma membranes. That said, their use in simulation could be justified to magnify the structural changes compared to experiments. 

      We agree that our largest membrane tension values are unphysiological. However, we see a main novelty and relevance of our simulations in the fact that we obtain a response of the nanodome in the physiological range of membrane tensions, see e.g. the 3<sup>rd</sup> sentence of the abstract. Yes, we include simulations at tensions of 21 mN/m, but most of our simulated tension values are in the range from 0 to 10 mN/m (see e.g. Fig. 3e), in contrast to previous simulation studies.   

      (2) At line 78 and in the Methods, only the reference paper is for the CHARMM protein force field, but not for the lipid force field. 

      We have added the reference Klauda et al., 2010 for the CHARMM36 lipid force field in both spots.

      (3) (Line 83) Acknowledging that the authors needed to use the structure from micelles (because it has atomic resolution), how closely do their relaxed Piezo structures compare with the lowerresolution data from the MacKinnon and Patapoutian papers? 

      There are no structures reported in these papers to compare with, only a clear flattening as stated.  

      (4) (Line 99) The authors chose a slightly asymmetric lipid membrane composition to capture some specific plasma-membrane features. However, they do not discuss which features are described by this particular composition, which doesn't include different acyl-chain unsaturations between leaflets. Further, they do not seem to comment on whether there is enrichment of certain lipid species coupled to curvature, or whether there is any "scrambling" occurring when the dome section and the planar membrane are stitched together in the preparation phase (Figure 8). 

      Enrichment of lipids in contact with the protein is addressed in the reference Buyan et al., 2020, based on Martini simulations with Piezo 1. We have a different focus, but still wanted to keep an asymmetric membrane as in essentially all previous simulation studies as now stated also on lines 439ff, to mimic the native Piezo membrane environment. There is no apparent “scrambling” in the setup of our membrane systems. We also did not explore any coupling between curvature and lipid composition, but will publish the simulation trajectories to enable such studies.  

      (5) (Caption of Figure 2). Please comment briefly in the text why the tensionless simulation required a longer simulation run (e.g. larger fluctuations?) 

      We added as explanation on line 500 as explanation: “ … to explore the role of the long-range shape fluctuations in tensionless membranes for the relaxation into equilibrium”. The relaxation time of membrane shape fluctuations strongly increases with the wave length, which is only limited by the simulation box size in the absence of tensions. However, also for 8 microsecond trajectories, we do not observe complete equilibriation and therefore decided to extrapolate the excess area and bending energy values obtained for different time intervals of the trajectories.

      (6) (Caption of Figure 3). Please clarify in the Methods how the atomistic simulations were initialized were they taken from independent CG simulation snapshots? If not, the use of the adjective "independent" would be questionable given the very short atomistic simulation time length. 

      We now added that the production simulations started from the same structure. On lines 386, we now discuss the starting structure of the atomistic simulations in more detail.

      (7) (Line 202). The approach of discretizing the bilayer shape is reasonable, but no justification was provided for the 1-nm grid spacing. In my opinion, there should be a supporting figure showing how the bending energy varies with the grid spacing. 

      We now report also the effect of a 2-nm grid spacing on the results, see new text passages on page 18, and provide an explanation for the smaller 1-nm grid spacing on lines 587ff, where we write:

      “This lattice constant [a = 1 nm] is chosen to be smaller than the bin width of about 2nm used in determining the membrane shape of the simulation conformations, to take into account that the averaging of these membrane shapes can lead to a higher resolution compared to the 2 nm resolution of the individual membrane shapes.”

      (8) (Line 211). The choice by the authors to use a mixed lipid composition complicates the task of defining a reasonable bending modulus. Experimentally and in atomistic simulations, lipids with one saturated tail (like POPC or SOPC) are much stiffer when they are mixed with cholesterol (https://doi.org/10.1529/biophysj.105.067652, https://doi.org/10.1103/PhysRevE.80.021931, https://doi.org/10.1093/pnasnexus/pgad269). On the other hand, MARTINI seems to predict a slight *softening* for POPC mixed with cholesterol (https://doi.org/10.1038/s41467-023-43892-x). Further complicating this matter, mixtures of phospholipids with different preferred curvatures are predicted to be softer than pure bilayers (e.g. https://doi.org/10.1021/acs.jpcb.3c08117), but asymmetric bilayers are stiffer than symmetric ones in some circumstances (https://doi.org/10.1016/j.bpj.2019.11.3398). 

      This issue can be quite thorny: therefore, my recommendation would be to either: (a) directly compute k for their lipid composition, which is straightforward when using large CG bilayers (as was done in Fowler et al, 2016), but it would also require more advanced methods for the atomistic ones; (b) use a reasonable *experimental* value for k, based on a similar enough lipid composition. 

      We now justify in somewhat more detail why we use an asymmetric membrane, but agree that his complicates the bending energy estimates. We only aim to estimate the bending energy in the Martini 2.2 force field, because our elasticity model is based on and, thus, limited to results obtained with this force field. We have included the two further references using the Martini 2.2 force field suggested by the reviewer on line 213, and discuss now in more detail how the bending rigidity estimate enters and affects the modeling, see lines 226ff.  

      (9) (Line 224). Does this closing statement imply that all experimental work from ex-vivo samples describe Piezo states under some small but measurable tension? 

      We compare here to the cryo-EM structure in detergent micelles. So, there is no membrane tension, there may be a surface tension of the micelle, but we assume here that Piezo proteins are essentially force free in detergent micelles. Membrane embedding, in contrast, leads to strong forces on Piezo proteins already in the absence of membrane tension, because of the membrane bending energy.

      (10) (Line 304). The Discussion concludes with a reasonable point, albeit on a down note: could the authors elaborate on what kind of experimental approach may be able to verify their modeling results? 

      Very good question, but this is somewhat beyond our expertise. We don’t have a clear recommendation – it is complicated. What can be verified is the flattening, i.e. the height and curvature of the nanodome in lower-resolution experiments. We see our results in line with these experiments, see Introduction. 

      (11) (Line 331). The very title of the Majumder and Straub paper addresses the problem of excessive binding strength between protein beads in the MARTINI force field, which should be mentioned. Figure 3(d) shows that the atomistic systems have larger excess areas than the CG ones. This could be related to MARTINI's "stickiness", or just statistical sampling. Characterizing the grid spacing (see point 7 above) might help illuminate this. 

      We discuss now the larger excess area values of the atomistic simulations on lines 381ff.  

      (12) (Lines 367, 375). Are the harmonic restraints absolute position restraints or additional bonds?

      Note also that the schedule at which the restraints are released (10-ns intervals) is relatively quick. Does the membrane have enough time to equilibrate the number of lipids in each leaflet? 

      These are standard, absolute position restraints. The 10-ns intervals may be too short to fully equilibrate the numbers of lipids, we have not explored this. The main point in the setup was to have a reasonable TM helix embedding with a smooth membrane, without any rupturing. This turned out to be tricky, with the procedures illustrated in Figure 8 as solution. If the membrane is smooth, the lipid numbers quickly equilibrate either in the final relaxation or in the initial nanoseconds of the production runs.

      (13) (Line 387) The use of an isotropic barostat for equilibration further impedes the system's ability to relax its structure. I feel that the authors should validate more strongly their protocol to rule out the possibility that incomplete equilibration could bias dynamics towards flatter membranes, which is one of the main results of this paper. 

      We don’t see how choices in the initial relaxation steps could have affected our results, at least for the coarse-grained simulations. There is more and more flattening throughout all simulation trajectories, see e.g. the extrapolations in Figure 4. All initial simulation structures are significantly less flattened than the final structures in the production runs.

      (14) (Line 403). What is the protocol for reducing the membrane size for atomistic simulation? This is even more important to mention than for CG simulations. 

      We just cut lipids beyond the intended box size of the atomistic simulations. As a technical point, we now have also added on line 507 how PIP2 lipids were converted.

      (15) (Line 423). The CHARMM force field requires a cut-off distance of 12 Å for van der Waals forces, with a force-based continuous switching scheme. The authors should briefly comment on this deviation and its possible impact on membrane properties. Quick test simulations of very small atomistic bilayers with the chosen composition could be used as a comparison. 

      We don’t expect any relevant effect on membrane properties within the statistical accuracies of the quantities of interest here (i.e. excess areas).

      (16) (Equation 4). There are some mismatched parentheses: please check. 

      We have corrected this mistake.

      (17) (Equations 7-8). Why did the authors use finite-differences derivatives of z(x,y) instead of using cubic splines and the corresponding analytical derivatives? 

      In our experience, second derivatives of standard cubic splines can be problematic. The continuous membrane shapes we obtain in our analysis are averages of such splines. We find standard finite differences more reliable, and therefore discretize these shapes. Already for the 2d membrane profiles of Figure 1b and 2d, calculating curvatures from interpolations using splines is problematic.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review)

      (1) The authors postulate a synergistic role for Itgb1 and Itgb3 in the intravasation phenotype, because the single KOs did not replicate the phenotype of the DKO. However, this is not a correct interpretation in the opinion of this reviewer. The roles appear rather to be redundant. Synergistic roles would rather demonstrate a modest effect in the single KO with potentiation in the DKO.

      We agree that the interaction between Itgb1 and Itgb3 appears redundant and we have corrected this point in the revised manuscript (page 10).

      (2) The experiment does not explain how these integrins influence the interaction of the MK with their microenvironment. It is not surprising that attachment will be impacted by the presence or absence of integrins. However, it is unclear how activation of integrins allows the MK to become "architects for their ECM microenvironment" as the authors posit. A transcriptomic analysis of control and DKO MKs may help elucidate these effects.

      We do not yet understand how the activation of α5β1 or αvβ3 integrins affects ECM remodeling by megakaryocytes. Integrins are key regulators of ECM remodeling (see https://doi.org/10.1016/j.ceb.2006.08.009) and can transmit traction forces that induce these changes (see https://doi.org/10.1016/j.bpj.2008.10.009). Our previous study also found reduced RhoA activation in double knockout (DKO) megakaryocytes (MKs) (Guinard et al., 2023, PMID: 37171626), which likely affects ECM organization. These findings are discussed in the Discussion section of the paper (page 14).

      As suggested, conducting a transcriptomic analysis of control and DKO MKs may help to elucidate these effects. However, isolating native rare MKs from DKO mice is technically challenging and requires too many animals. To overcome this issue, we instead isolated mouse platelets and used targeted RT-PCR arrays to profile key ECM remodelling (ECM proteins, proteases…) and adhesion molecules (Zifkos et al., Circ. Res. 2024, PMID, 38563147). Quality controls confirmed that integrin RNA was undetectable in the DKO samples, ruling out contamination. Nevertheless, we found no significant expression differences exceeding the 3-fold change threshold between the control and DKO groups. The high Ct (threshold cycles) values indicate low transcript abundance, which may mask subtle changes (see the scatter plot below). As an example, we present a typical result obtained for the reviewer.

      Author response image 1.

      Relative expression comparison of ECM related-genes between control and DKO integrins in washed platelets. The figure shows a log transformation plot of the relative expression level of each gene between normal (x-axis) and DKO integrins (y-axis). The lines indicate the threefold change threshold for gene expression. These are representative results from two independent experiments.

      (3) Integrin DKO have a 50% reduction in platelets counts as reported previously, however laminin α4 deficiency only leads to 20% reduction in counts. This suggests a more nuanced and subtle role of the ECM in platelet growth. To this end, functional assays of the platelets in the KO and wildtype mice may provide more information.

      The exact contribution of the extracellular matrix (ECM) cage to platelet growth remains incompletely understood. In the Lamα4⁻/⁻ model, a collagen-rich ECM cage persists alongside normal fibronectin deposition. By contrast, the integrin DKO model exhibits a markedly severe phenotype characterized by the loss of both the laminin cage and collagen and the absence of fibrillar fibronectin. Also, the preserved collagen and fibronectin in Lamα4⁻/⁻ mice may permit residual activation of signaling pathways - potentially via integrins or alternative mechanisms- compared to the DKO model. We appreciate the reviewer’s feedback on this adjustment, which has been incorporated into the discussion (page 15).

      As suggested by the reviewer, we performed functional assays that demonstrated normal platelet function in Lamα4⁻/⁻ mice and impaired integrin-mediated aggregation in Itgb1<sup>-/-</sup>/Itgb3<sup>-/-</sup>  mice, as shown by the new data presented in the publication (see pages 7 and 9). Platelet function remained preserved following treatment with MMP inhibitors. This supports the idea that differences in ECM composition can influence the signaling environment and megakaryocyte maturation, but do not fully abrogate platelet function (page 15).

      (4) There is insufficient information in the Methods Section to understand the BM isolation approach. Did the authors flush the bone marrow and then image residual bone, or the extruded bone marrow itself as described in PMID: 29104956?

      Additional methodological information has been provided to clarify that only the extruded bone marrow, and not the bone itself, is isolated (page 17).

      (5) The references in the Methods section were very frustrating. The authors reference Eckly et al 2020 (PMID : 32702204) which provides no more detail but references a previous publication (PMID: 24152908), which also offers no information and references a further paper (PMID: 22008103), which, as far as this reviewer can tell, did not describe the methodology of in situ bone marrow imaging.

      To address this confusion, we have added the reference "In Situ Exploration of the Major Steps of Megakaryopoiesis Using Transmission Electron Microscopy" by C. Scandola et al. (PMID : 34570102) in the « Isolation and preservation of murine bone marrow » section (page 20), which provides a standardized protocol for bone marrow isolation and in situ bone marrow imaging.

      Therefore, this reviewer cannot tell how the preparation was performed and, importantly, how can we be sure that the microarchitecture of the tissue did not get distorted in the process?

      Thank you for pointing this out. While we cannot completely rule out the possibility of distortion, we have clarified the precautions taken to minimize it. We used a double fixation procedure immediately after bone marrow extrusion, followed by embedding it in agarose to preserve its integrity as much as possible. We have elaborated on this point in greater detail in the Methods section of the revised version (page 18).

      Reviewer #2 (Public review):

      (1) ECM cage imaging

      (a) The value or additional information provided by the staining on nano-sections (A) is not clear, especially considering that the thick vibratome sections already display the entirety of the laminin γ1 cage structure effectively. Further clarification on the unique insights gained from each approach would help justify its inclusion.

      Ultrathin cryosectioning enables high-resolution imaging with a threefold increase in Z-resolution, facilitating precise analysis of signal superposition. This approach was particularly valuable for clearly visualizing activated integrin in contact with laminin and collagen IV fibers (see Fig. 3 in revised manuscript, pages 6, 8 and 18). Additionally, 3D reconstructions and z-stack data reveal complex interactions between the basement membrane and the cellular ECM cage that are not evident in 2D projections (see page 6). These complementary methods help elucidate the detailed molecular and three-dimensional organization of the ECM cage surrounding megakaryocytes. These points have been clarified in the method and result sections.

      (b) The sMK shown in Supplementary Figure 1C appears to be linked to two sinusoids, releasing proplatelets to the more distant vessels. Is this observation representative, and if so, can further discussion be provided?

      This observation is not representative; MKs can also be associated with just one sinusoid.

      (c) Freshly isolated BM-derived MKs are reported to maintain their laminin γ1 cage. Are the proportions of MKs with/without cages consistent with those observed in microscopy?   

      After mechanical dissociation and size exclusion, almost half of the MKs successfully retained their cages (53.4% ± 5.6%, based on 329 MKs from three experiments; see page 7 of the manuscript for new data). This highlights the strong physical connection between MK and their cage.

      (2) ECM cage formation

      (a) The statement "the full assembly of the 3D ECM cage required megakaryocyte interaction with the sinusoidal basement membrane" on page 7 is too strong given the data presented at this stage of the study. Supplemental Figure 1C shows that approximately 10% of pMKs form cages without direct vessel contact, indicating that other factors may also play a role in cage formation.

      The reviewer is correct. We have adjust the text to reflect a more cautious interpretation of our results. « Althought we cannot exclude that ECM cage can be form on its own, our data suggests that ECM cage assembly may require interactions between megakaryocytes and the sinusoidal basement membrane » suggests that the assembly of the 3D ECM cage may require interactions between megakaryocytes and the sinusoidal basement membrane » (page 7).

      (b) The data supporting the statement that "pMK represent a small fraction of the total MK population" (cell number or density) could be shown to help contextualize the 10% of them with a cage.

      Following the reviewer's recommendation, a new bar graph has been added to illustrate the 18 ± 1.3 % of MK in the parenchyma relative to the total MK in the bone marrow (page 7 and Suppl. Figure 1H).

      (c) How "the full assembly of the 3D ECM cage" is defined at this stage of the study should be clarified, specifically regarding the ECM components and structural features that characterize its completion.

      We recognize that the term ' full assembly' of the 3D ECM cage can be misleading, as it might suggest different stages of cage formation, such as a completed cage, one in the formation process, or an incomplete cage. Since we have not yet studied this concept, we have eliminate the term "full assembly" from the manuscript to avoid confusion. Instead, we mention the presence of a cage.

      (3) Data on MK Circulation and Cage Integrity: Does the cage require full component integrity to prevent MK release in circulation? Are circulating MKs found in Lama4-/- mice? Is the intravasation affected in these mice? Are the ~50% sinusoid associated MK functional?  

      In lamα4-deficient (Lamα4-/-) mice, which possess an intact collagen IV cage but a structurally compromised laminin cage, electron microscopy and whole-mount imaging revealed an absence of intact megakaryocytes within the sinusoidal lumen. This observation indicates that the structural integrity of all components of the ECM cage is critical for preventing megakaryocyte entry into the circulation. Despite the laminin deficiency, mature Lamα4-/- megakaryocytes exhibited normal ultrastructure and maintained typical intravasation behavior. Furthermore, analysis of bone marrow explants from Lamα4-/- mice demonstrated that megakaryocytes retained their capacity to extend proplatelets. These findings are presented on page 7 and further discussed on page 14.

      (4) Methodology

      (a) Details on fixation time are not provided, which is critical as it can impact antibody binding and staining. Including this information would improve reproducibility and feasibility for other researchers.

      We have included this information in the methods section.

      (b) The description of 'random length measuring' is unclear, and the rationale behind choosing random quantification should be explained. Additionally, in the shown image, it appears that only the branching ends were measured, which makes it difficult to discern the randomness in the measurements.

      The random length measurement method uses random sampling to provide unbiased data on laminin/collagen fibers in a 3D cage. Contrary to what the initial image might have suggested, measurements go beyond just the branching ends ; they include intervals between various branching points throughout the cage. This is now explained page 19.

      To clarify this process, we will outline these steps page 19 as : 1) acquire 3D images, 2) project onto 2D planar sections, 3) select random intersection points for measurement, 4) measure intervals using ImageJ software, and 5) repeat the process for a representative dataset. This will better illustrate the randomness of our measurements.

      (5) Figures

      (a) Overall, the figures and their corresponding legends would benefit from greater clarity if some panels were split, such as separating images from graph quantifications.

      Following the reviewer’s suggestion, we will fully update all the Figures and separate images from graph quantifications.

      Reviewer #3 (Public review):

      (1) The data linking ECM cage formation to MK maturation raises several interesting questions. As the authors mention, MKs have been suggested to mature rapidly at the sinusoids, and both integrin KO and laminin KO MKs appear mislocalized away from the sinusoids. Additionally, average MK distances from the sinusoid may also help separate whether the maturation defects could be in part due to impaired migration towards CXCL12 at the sinusoid. Presumably, MKs could appear mislocalized away from the sinusoid given the data presented suggesting they leaving the BM and entering circulation. Additional data or commentary on intrinsic (ex-vivo) MK maturation phenotypes may help strengthen the author's conclusions and shed light on whether an essential function of the ECM cage is integrin activation at the sinusoid.

      The idea that megakaryocytes move toward CXCL12 is still debated. Some studies suggest mature MKs are mainly sessile (PMID: 28743899), while others propose that CXCL12 may guide MK progenitors rather than mature MKs (PMID: 38987596, this reference has been added). To address the reviewer’s concerns regarding CXCL12-mediated migration, we conducted additional investigations.

      For DKO integrins, Guinard et al. (2023, PMID: 37171626) reported no significant change in the distance between MKs and sinusoids, indicating that integrin deficiency does not impair MK migration toward sinusoidal vessels.

      In our own study involving Lamα4-/- mice, we utilized whole-mount bone marrow preparations, labeling MKs with GPIbβ antibodies and sinusoids with FABP4 antibodies. We observed a 1.6-fold increase in the proximity of MKs to sinusoids in Lamα4-/- mice compared to controls (see figure below). However, the absolute distances measured were less than 3 µm in both groups, much smaller than the average diameter of a mature MK (20 - 25 µm), raising questions about the biological significance of these findings in active MK migration. What happens with MK progenitors - a population not detectable in our experiments using morphological criteria or GPIb staining - remains an open question.

      These results are provided for the reviewer’s information and will be available to eLife readers, along with the authors’ responses, in the revised manuscript.

      Author response image 2.

      (2) The data demonstrating intact MKs in the circulation is intriguing - can the authors comment or provide evidence as to whether MKs are detectable in blood? A quantitative metric may strengthen these observations.

      To investigate this, we conducted flow cytometry experiments and prepared blood smears to determine the presence of intact Itgb1-/-/Itgb3-/- megakaryocytes in the blood. Unfortunately, we could not detect any intact megakaryocytes in the blood samples using FACS (see new Supplementary Figure 4E) nor any on the blood smears (data not shown). However, we observed that large, denuded megakaryocyte nuclei were retained in the downstream pulmonary capillaries of these mice. Intravital imaging of the lung has previously provided direct evidence for the phenomenon of microvascular trapping (Lefrançois et al., 2017; PMID: 28329764), demonstrating that megakaryocytes can be physically entrapped within the pulmonary circulation due to size exclusion while releasing platelets. This has been clarified in the revised paper (Results section, page 10).

      (3) Supplementary Figure 6 - shows no effect on in vitro MK maturation and proplt, or MK area - But Figures 6B/6C demonstrate an increase in total MK number in MMP-inhibitor treated mice compared to control. Some additional clarification in the text may substantiate the author's conclusions as to either the source of the MMPs or the in vitro environment not fully reflecting the complex and dynamic niche of the BM ECM in vivo.

      This is a valid point. We have revised the text to be more cautious and to provide further clarification on these points (page 12).

      (4) Similarly, one function of the ECM discussed relates to MK maturation but in the B1/3 integrin KO mice, the presence of the ECM cage is reduced but there appears to be no significant impact upon maturation (Supplementary Figure 4). By contrast, MMP inhibition in vivo (but not in vitro) reduces MK maturation. These data could be better clarified in the text, or by the addition of experiments addressing whether the composition and quantity of ECM cage components directly inhibit maturation versus whether effects of MMP-inhibitors perhaps lead to over-activation of the integrins (as with the B4galt KO in the discussion) are responsible for the differences in maturation.

      We thank the reviewer for pointing this out.

      In our study of DKO integrin mice with a reduced extracellular matrix (ECM) cage, we observed normal proportions of MK maturation stages. However, these mutant MKs had a disorganized membrane system and smaller cytoplasmic areas compared to wild-type cells, indicating issues in their maturation. This is detailed further in the manuscript (see page 9).

      In the context of MMP inhibition in vivo, which also leads to reduced MK maturation, our immunofluorescence analysis revealed in an increased presence of activated β1 integrin in bone marrow sections (see Supplementary Figure 6E). As suggested by the reviewer, this increase may explain the maturation defect.

      In summary, while it's challenging to definitively determine how ECM cage composition and quantity affect MK maturation in vivo, our results show that changes to the ECM cage - whether through genetic modification (DKO) or MMP inhibition - are consistently linked to defects in MK maturation.

      Reviewer #1 (Recommendations for the authors):

      (1) Movies 1-3 are referenced in the Results section, but this reviewer was not able to find a movie file.

      They have now been added to the downloaded revised manuscript.

      (2) Figure 2D is referenced in the Results Section but this panel is not present in the Figure itself. Instead, this seems to be what is referred to as the right panel of 2C. 

      Thank you. Following the suggestion of reviewer 2, we have now split the panels and separated the images from the graph quantifications. This change has modified all the panel annotations, which we have carefully checked both in the legend and in the manuscript.

      (3) Supplemental Fig 3C has Fibrinogen quantification which seems to belong in Supplemental 3 F instead.  

      Supplementary Figure 3C serves as a control for immunofluorescence, indicating that no fibrinogen-positive granules are detectable in the DKO mice. This supports the conclusion that the αIIbβ3 integrin-mediated fibrinogen internalization pathway is non-functional in this model, affirming the bar graph's placement. We appreciate the reviewer’s insight that similar results may arise from the IEM experiments in Figure 3H, which is valuable for strengthening our findings.

      (4) The x-axis labels in Supplemental 5B are not uniform.  

      This has be done. Thank you.

      Reviewer #2 (Recommendations for the authors):

      (1) Figure 1 Panel C: The sinusoidal basement membrane staining is missing, making it difficult to conclude that the collagen IV organization extends radially from the sinusoidal basement membrane.

      As recommended by the reviewer, we have updated Figure 1C with a new image illustrating the basement membrane (FABP4 staining) and the collagen IV cage. This new image confirms that the cage extends radially from the basement membrane.

      (2) Arrows in 1B: Based on the arrow's localisation, the description of "basement membrane-cage connection" is not evident from the images as it looks like the signal colocalization (right lower panel) occurs below the highlighted areas. Clarification or additional evidence of co-localization is required. 

      The apparent localization of the signal "below" the highlighted areas in the maximal projection image is due to the nature of 2D projections, which compress overlapping signals from multiple depths within the bone marrow into a single plane. This can obscure the spatial relationship between the basement membrane and extracellular matrix (ECM) components. However, when the complete z-stack series is examined, the direct connection between the basement membrane and the ECM cage becomes evident in three dimensions. Therefore, we have now added a comprehensive analysis of the entire z-stack dataset, allowing us to accurately interpret the spatial relationships between the basement membrane and ECM in the native bone marrow microenvironments (movies 1 and 2, and Suppl. Figure 1D-E).

      (3) In Figure 4C, GPIX is used to identify MKs by IVM while GP1bβ is used throughout the rest of the manuscript. It would be helpful for readers who are less familiar with MKs to understand whether GPIX and GP1bβ identify the same population of MKs and the rationale for choosing one marker over the other.  

      GPIX and GPIbβ are components of the GPIb-IX complex, identifying mature megakaryocytes (Lepage et al., 2000, PMID : 11110688). The choice of one over the other in different experiments is primarily based on technical considerations. The intravital experiments have been standardized using an AF488-conjugated anti-GPIX to identify mature megakaryocytes consistently. GPIbβ (GP1bβ) is used in the rest of the manuscript due to its strong and specific bright staining. We have clarified this point in the Result (page 10) and in the Material/methods section (page 17).

      (4) The term "total number of MKs" is used (p8), but the associated data presented in the figure reflect MK density per surface area. Descriptions in the text should align with the data format in the figures.

      This has been corrected in the revised manuscript (page 8). Thank you.

      (5) Supplemental Figure 1(B): Collagen I is written as Collagen III in the legend.

      This has been corrected in the legend of the Figure 1B.

      (6) Figure 2D is described in the text but is missing from the figure.

      This has been corrected.

      (7) Supplemental Figure 3: Plot E overlaps with the images, making it unclear.

      To minimise overlap with the images, we've moved the graph with the bars down. Thank you.

      (8) Supplemental Figure 7: The image quality is too low, and spelling underlining issues are present. A better-quality version with clear labelling is essential.

      We have improved the quality of Figure 7 and fixed the underlining problems.

      (9) The movies were not found in the downloads provided.

      They have now been added to the downloaded revised manuscript.

      (10) Some bar graphs are missing the individual data points.

      All figures have been standardized and now include the individual data points.

      Reviewer #3 (Recommendations for the authors):

      Some minor comments:

      (1) If there is specific importance to some of the analyses of the cage structure, such as fiber length, and pore size, (eg. if they may have biological significance to the MK) it may help readers to give additional context to what differences in the pore size might imply. For example, do pores constrain MKs at sites where actin-driven proplatelet formation could be initiated?

      The effects of extracellular matrix (ECM) features - like fiber length and pore size - on megakaryocyte (MK) biology are not fully understood. Longer ECM fibers may help MKs adhere better and sense their environment. Larger pores could make it easier for MKs to grow, communicate, and extend proplatelets through blood vessel walls. The role of matrix metalloproteinases (MMPs), which degrade the ECM, adds to the complexity, and how this occurs in vivo is not yet well understood.

      As suggested, some of these points have been addressed in the revised manuscript (Discussion, page 16).

      (2) "Although fibronectin and fibrinogen were readily detected around megakaryocytes, a reticular network around megakaryocytes was not observed. Furthermore, no connection was identified between fibronectin and fibrinogen deposition with the sinusoid basement membrane, in contrast to the findings for laminin and collagen IV (Supp. Figures 1E)." - Clarification of how these data are interpreted might be helpful as to what the authors are intending to demonstrate with these data as at least in Figure 1E, fibronectin, and fibrinogen do appear expressed along the MK surface and at the sinusoidal-MK interface.

      While fibronectin and fibrinogen are present around megakaryocytes and at the vessel-cell interface, they do not form a reticular ECM cage. The functional implications of this finding remain unclear. One can imagine that the specific spatial arrangement of various ECM components may lead to different functional roles. Laminin and collagen IV may provide structural support by forming a 3D cage that is essential for the proper positioning and maturation of megakaryocytes. In contrast, fibronectin and fibrinogen may have different functions, potentially related to megakaryocyte expansion in bone marrow fibrosis (Malara et al., 2019, PMID : 30733282) and (Matsuura et al., 2020, PMID : 32294178).  

      This topic has been adressed in the Results page 7 and discussion on page 13.

      (3) Given the effects of dual B1/B3 integrin inhibition on MK intravasation, can the authors comment on the use of integrin RGD-based inhibitors? Are these compounds and drugs likely to interfere with MK retention?

      Our study shows that MK retention depends on the integrity of both components of the cage, collagen IV and laminin (see also point 3 of reviewer 2). Collagen IV contains RGD sequences, making it susceptible to RGD-based inhibition, whereas laminin does not utilize the RGD motif, raising questions about the overall efficacy of these inhibitors.

      In addition, the in vivo efficacy and potential off-target effects of these inhibitors in the complex bone marrow microenvironment remain to be fully elucidated. This intriguing issue warrants further investigation.

      (4) Beyond protein components, other non-protein ECM molecules including glycosaminoglycans (HA, HS) have essential roles in supporting MK function, including maturation (PMIDs: 31436532, 36066492, 27398974) and may merit some brief discussion if the authors feel this is helpful.

      We followed reviewer’s suggestion and mention the contribution of glycoaminoglycans in MK maturation. We also added the three references (page 13). 

      (5) In several locations, the text refers to figure panels that are either not present or not annotated correctly (some examples include Figure 2D, Supplementary Figure 3E vs 3D).

      Following the suggestion of reviewer 2, we have now split the panels and separated the images from the graph quantifications. This change has changed all the panel annotations, which we have carefully checked both in the legend and in the manuscript.

      (6) In some cases, the figure legends seem to incorrectly refer to text, colors, or elements in the panels (e.g. Supplementary Figure 3, fibrinogen is referred to as yellow in the legend but is green in the figure). In Supplemental Figure 1, an image is annotated as pryenocyte in the figure, but splenocyte in the text.

      This has been corrected in the figures and in the revised manuscript. Please also see point (7) below.  Thank you very much.

      (7) Images demonstrating GPIX and GPIBb positive cells in the calvarial and lung microcirculation are convincing, but in Figure C these cells are referred to as MKs, whereas in Figure D they are referred to as pyrenocytes (as well as in the discussion). It is not clear if this is intentional and refers to bare nuclei from erythrocytes or indeed refers to MKs or MK nuclei. Clarification would help guide readers.

      We agree with the reviewer and fully acknowledge the need for clarification. We confirm that these circulating cells are megakaryocytes. To avoid confusion, we have ensure that all references to "pyrenocytes" have been replaced with "megakaryocytes."

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors):

      Because many conclusions are drawn from overexpression studies and from a single cell line (HEK293), it is unclear how general these effects are. In particular, one of the main claims put forth in this manuscript is that of specificity, namely, that FZD5/8, and none of the other FZDs, are uniquely involved in this internalization and degradation. While there are examples of similar specificities, many of these examples can be attributed to a particular cellular context. Without demonstrating that this FZD5/8 specificity is observed in multiple cell lines and contexts, this point remains unconvincing and questionable. One way to address this point of criticism is to omit the word "specifically" in the title and soften the language concerning this idea throughout the manuscript.

      We appreciate your valuable comments and suggestions. We have removed the word “specifically” from the title and softened the language concerning this idea throughout the manuscript. Moreover, we performed new experiments to show that Wnt3a/5a induces FZD5/8 endocytosis and degradation and that IWP-2 treatment increases the cell surface levels of FZD5/8 in cell lines other than 293A (Figure 1-Figure supplement 1 and Figure 2-Figure supplement 1). These results indicate that Wnt-induced FZD5/8 endocytosis and degradation are not cell specific.

      The starting point for these studies is a survey of all 10 FZDs, V5-tagged and overexpressed in HEK293 cells. Here, the authors observed a decline in cell surface levels of only FZD5 and 8 in response to Wnt3a and Wnt5a. As illustrated in the immunoblot (Fig 1B), several FZDs were poorly expressed, including FZD1, 3, 6 and 9, which calls into question that only FZD5 and 8 were affected. Furthermore, total levels of FZD8 don't diminish appreciably, as claimed by the authors, and only FZD5 shows a subtle decline upon WNT treatment. All of these experiments are performed with overexpressed V5-tagged FZD proteins or with endogenously V5-tagged (KI) proteins, and it is possible that overexpression or tagging lead to potentially artifactual observations. Examining the effects of WNTs on FZD protein localization and levels need to be done with endogenously expressed, non-tagged FZDs. In this context, it is somewhat puzzling that the authors don't show such an experiment using the pan- and FZD5/8-specific antibodies, which they use in multiple experiments throughout the manuscript. With these available tools it should be possible to examine FZD levels at the cell surface in response to Wnt3a and Wnt5a, ideally in multiple cell lines.

      We appreciate your valuable comments and suggestions. Figure 1B shows the results of the follow-up study shown in Figure 1A. As shown in Figure 1A, we used flow cytometry analysis to detect the cell surface levels of stably expressed FZDs and found that Wnt3a/5a specifically reduced the levels of FZD5/8 on the cell surface, suggesting that Wnt3a/5a induces FZD5/8 endocytosis. As shown in Figure 1B and C, we performed immunoblotting to examine whether Wnt3a/5a-induced FZD5/8 internalization resulted in FZD5/8 degradation. Notably, most FZDs exhibit two bands on immunoblots, as also suggested by other published studies, and the upper bands represent the mature form that is fully glycosylated and presented to the cell surface (see also new Figure 2L), whereas the lower bands represent the immature form. Our results clearly indicated that Wnt3a/5a treatment reduced the levels of the mature forms of both FZD5 and FZD8, although the immunoblotting signals of the mature form of FZD8 (upper bands) were relatively weak. The immunoblotting signals of the other FZDs varied, and some of them (including FZD1, -3, -6 and -9) were relatively weak; however, according to the results in Figure 1A, all of the FZDs were expressed and present on the cell surface.

      Commercially available FZD5/8 antibodies, including those used in published studies, cannot detect endogenous FZD5/8 or can only recognize immature FZD5 in our hands, which is why we have to use the CRISPR-CAS9-based KI technique to introduce a V5 tag to FZD5 and FZD7. Notably, in the overexpression experiments, the V5 tag is on the amino terminus, and in the KI experiments, the V5 tag is on the carboxyl terminus of FZDs, which may minimize the potential artificial effects of the V5 tag on the immunoblotting assays.

      The monoclonal antibodies used in this study, such as anti-pan-FZD, anti-FZD5/8, and anti-FZD4 antibodies, are neutralizing antibodies that can compete with Wnt ligands to bind to the FZD CRD. These antibodies have been successfully used to detect the surface levels of FZDs via flow cytometry assays. However, as the binding affinity of the Wnt-FZD CRD is comparable to the binding affinity of the antibody-FZD, we were cautious in using these antibodies to detect the cell surface levels of FZDs when the cells were treated with Wnt3a/5a CM, which contains relatively high concentrations of Wnt3a/5a. As shown in Author response image 1, Wnt3a or Wnt5a treatment dramatically reduced the endogenous cell surface level of FZD5/8, as detected by flow cytometry using the anti-FZD5/8 antibody. However, in another experiment, HEK293A cells were first incubated with cold Wnt3a or Wnt5a CM at 4°C to minimize endocytosis and then analyzed via flow cytometry using the anti-FZD5/8 antibody. The results showed that Wnt3a/5a incubation reduced the floe cytometry signals, suggesting that Wnt3a/5a binding to FZD5/8 might interfere with antibody-FZD5/8 binding, although we cannot exclude the possibility that Wnt3a/5a may induce FZD5/8 endocytosis at 4°C (Author response image 1).

      Author response image 1.

      (A) HEK293A cells were treated with control, Wnt3a or Wnt5a CM for 2 hours at 37°C in a humidified incubator and were analyzed via flow cytometry using the anti-FZD5/8 antibody.

      (B) HEK293A cells were incubated with control, Wnt3a or Wnt5a CM for 1 h at 4°C and analyzed by flow cytometry using the anti-FZD5/8 antibody.

       

      Several experiments rely on gene-edited clonal cell lines, including knockouts of FZD5/8, RNF43/ZNRF3, and DVL. Gene knockouts were confirmed by genomic DNA sequencing and, for DVL and FZD5/8, by loss of protein expression. While these KO lines are powerful tools to study gene function, there is a concern for clonal variability. Each cell line may have acquired additional changes as a result of gene editing. In addition, there may be compensatory changes in gene expression as a consequence of the loss of certain genes. For example, expression of other FZDs may increase in FZD5/8 DKO cells. To address this critique, the authors should show that re-expression of the knocked-out genes rescues the observed effect. This is done in some instances (Fig 5E, G, H) but not in other instances, such as with the DVL TKO (Fig. 3). Since the authors assert that DVL is important for FZD internalization in the absence of WNT, but not for FZD internalization in the presence of WNT, this particular rescue experiment is important. This is a potentially important finding and it should be confirmed by re-expression of DVL in the TKO line. As an alternative, conditional knockdown using Tet-inducible shRNA expression could address concerns for clonal variability.

      We appreciate your valuable comments and suggestions. We re-expressed DVL2 in DVLTKO cells stably expressing V5-linker-FZD5 or V5-linker-FZD7. As shown in Figure 3G-K, re-expression of DVL2 rescued the decreased Wnt-independent endocytosis of FZD5 and FZD7 caused by DVL1/2/3 knockout.

      Given the significant differences in signaling activity by Wnt3a and Wnt5a, it is somewhat surprising that all experiments shown in this manuscript do not identify distinguishing features between Wnt3a and Wnt5a. In addition, it is unclear why the authors switch between Wnt3a and Wnt5a. For example, Figures 1C, 3G-J, 4C-D only use Wnt5a. In contrast, Figures 6E and H use Wnt3a, most likely because b-catenin stabilization is examined, an effect generally not observed with Wnt5a. The choice of which Wnt is examined/used appears to be somewhat arbitrary and the authors never provide any explanations for these choices. In the end, this type of inconsistency becomes puzzling when the authors present, quite convincingly, in Figure 7, that both Wnt3a and 5a promote an interaction between FZD5/8 and RNF43 through proximity biotin labeling.

      Although Wnt3a and Wnt5a are significantly different in triggering intracellular signaling pathways, both bind FZD5/8 and induce FZD5/8 endocytosis and degradation similarly. When FZD5 is stably overexpressed, Wnt5a has slightly stronger effects on inducing FZD5 endocytosis and degradation, possibly because the Wnt5a concentration may be higher than the Wnt3a concentration in our CM, which is why we used Wnt5a CM in some experiments when V5-FZD5 was overexpressed. In the revised manuscript, we used both Wnt3a and Wnt5a CM in the experiments as you suggested, as shown in Figure 1C, 3G-K and Figure 4-Figure supplement 1.

      Minor Points:

      Figure 3G and I: it is curious that individual cells are shown in the "0 h" samples, while the "Con 1 h" and "Wnt5a 1 h" show multiple cells with several making direct contact with each other. This is notable because the V5 staining at sites of cell-cell contact are quite distinct and variable between control and Wnt5a-treated and WT versus DVL TKO cells. Also, sub-cellular localization of FZD5 (V5 tag) puncta is quite distinct between Con and Wnt5a: puncta in Wnt5a-treated cells appear to be more plasma membrane proximal than in Con cells. These points may be easy to address by showing images of cells that are more similar with respect to cell number and density for each condition.

      Thank you for your suggestions. We repeated these experiments and added Wnt3a treatment and adjusted the cell density. Images including an individual cell were selected for presentation.

      Figure 5E: the following statement is confusing/misleading: "Furthermore, reintroducing ZNRF3 or RNF43 into ZRDKO cells efficiently restored the increase in cytosolic β-catenin levels, whereas the expression of RNF130 or RNF150, two structurally similar transmembrane E3 ubiquitin ligases, did not (Fig. 5E)." First, reintroduction of ZNRF3 or RNF43 restores cytosolic b-catenin levels; it does not restore the increase in b-catenin. Second, the claim that RNF130 fails to have this effect is not substantiated since it is barely expressed.

      Thank you for your suggestions and comments. We reorganized the language to make the statement clearer. Notably, the expression level of RNF130 was relatively low compared with that of other E3 ligases, but RNF130 was expressed (Figure 5E darker exposure) and could reduce the cell surface levels of FZDs, as shown in Figure 5G.

      Reviewer #2 (Recommendations for the authors):

      (1) Given their results the authors conclude that upregulation of Frizzled on the plasma membrane is not sufficient to explain the stabilization of beta-catenin seen in the ZNRF3/RNF43 mutant cells. This interpretation is sound, and they suggest in the discussion that ZNRF3/RNF43-mediated ubiquitination could serve as a sorting signal to sort endocytosed FZD to lysosomes for degradation and that absence or inhibition of this process would promote FZD recycling. This should be relatively easy to test using surface biotinylation experiments and would considerably strengthen the manuscript.

      Thank you for your valuable suggestions and comments. We performed cell surface biotinylation experiments in HEK293A FZD5KI cells, as shown in Figure 2L. The results indicated that Wnt3a or Wnt5a treatment induced the degradation of FZD5 on the cell surface, which was antagonized by cotreatment with RSPO1. We did not perform a more detailed endocytosis/recycling biotinylation experiment that requires complex reversible biotinylation and multiple washing steps because HEK293A cells are fragile in culture and not easy to handle. Furthermore, the results shown in Figure 4 indicate that knockout of ZNRF3/RNF43 or RSPO1 significantly blocked the degradation of internalized FZD5 and reduced the colocalization of internalized FZD5 with lysosomal markers, suggesting that Wnt3a/5a induced lysosomal degradation of FZD5 in the presence of ZNRF3/RNF43 and that the internalized FZD5 was most likely recycled back to the cell surface when ZNRF3/RNF43 was knocked out or inhibited by RSPO1.

      (2) The authors show that the FZD5 CRD domain is required for endocytosis since a mutant FZD5 protein in which the CRD is removed does not undergo endocytosis. This is perhaps not surprising since this is the site of Wnt binding, but the authors show that a chimeric FZD5CRD-FZD4 receptor can confer Wnt-dependent endocytosis to an otherwise endocytosis incompetent FZD4 protein. Since the linker region between the CRD and the first TM differs between FZD5 and FZD4, it would be interesting to understand whether the CRD specifically or the overall arrangement (such as the spacing) is the most important determinant.

      Our results in Figure 1D-H clearly show that the CRD of FZD5 specifically is both necessary and sufficient for Wnt3a/5a-induced FZD5 endocytosis, as replacing the CRD alone in FZD5 with the CRD from either FZD4 or FZD7 completely abolished Wnt-induced endocytosis, whereas replacing the CRD alone in FZD4 or FZD7 with the FZD5 CRD alone could confer Wnt-induced endocytosis.

      (3) I find it surprising that only FZD5 and FZD8 appear to undergo endocytosis or be stabilized at the cell surface upon ZNRF3/RNF43 knockout. Is this consistent with previous literature? Is that a cell-specific feature? These findings should be tested in a different cell line, with possibly different relative levels of ZNRF3 and RNF43 expression.

      Thank you for your comments and suggestions. Our finding that ZNRF3/RNF43 specifically regulates FZD5/8 degradation is consistent with recent published studies in which FZD5 is required for the survival of RNF43-mutant PDAC or colorectal cancer cells (Nature Medicine, 2017, PMID: 27869803) and FZD5 is required for the maintenance of intestinal stem cells (Developmental Cell, 2024, PMID: 39579768 and 39579769), and in both cases, FZDs other than FZD5/8 are also expressed but not sufficient to compensate for the function of FZD5. The mechanism by which Wnt3a/5a specifically induces FZD5/8 endocytosis and degradation is currently unknown and needs to be explored in the future. We speculate that Wnt binding to FZD5/8 may recruit another protein on the cell surface to specifically facilitate FZD5/8 endocytosis. On the other hand, we cannot exclude the possibility that Wnts other than Wnt3a/5a may induce the endocytosis and degradation of FZDs other than FZD5/8 since there are 19 Wnts and 10 FZDs in humans. Notably, several previous studies have suggested that ZNRF3/RNF43 may regulate the endocytosis and degradation of all FZDs without selectivity (such as Nature, 2012, PMID: 22575959; Nature, 2012, PMID: 22895187; Mol Cell, 2015, PMID: 25891077). However, their conclusions were drawn mostly on the basis of overexpression studies. According to the results shown in Figure 5E-H, overexpressing a membrane-tethered E3 ligase (such as ZNRF3, RNF43, RNF130, or RNF150) may nonspecifically degrade FZD proteins on the cell surface.

      Furthermore, in the revised manuscript, we showed that Wnt3a/5a induced FZD5/8 endocytosis and degradation in multiple cell lines, including Huh7, U2OS, MCF7, and 769P cells (Figure 1-Figure supplement 1 and Figure 2-Figure supplement 1), suggesting that these phenomena are not specific to 293A cells.

      (4) If FZD7 is not a substrate of ZNRF3/RNF43 and therefore is not ubiquitinated and degraded, how do the authors reconcile that its overexpression does not lead to elevated cytosolic beta-catenin levels in Figure 5B?

      We are currently not sure of the mechanism underlying this result. Considering that most FZDs are expressed in 293A cells, we do not know how much of the mature form of overexpressed FZD7 was presented to the plasma membrane.

      (5) For Figure 5B, it would be interesting if the authors could evaluate whether overexpression of FZD5 in the ZNRF3/RNF43 double knockout lines would synergize and lead to further increase in cytosolic beta-catenin levels. As control if the substrate selectivity is clear FZD7 overexpression in that line should not do anything.

      Thank you for your suggestion. We performed these experiments as suggested, and the results indicated that overexpressing FZD5 further increased cytosolic beta-catenin levels in ZRDKO cells, whereas FZD7 had no effect (Figure 6D).

      (6) In Figure 6G, the authors need to show cytosolic levels of beta-catenin in the absence of Wnt in all cases.

      We did not add Wnt CM in this experiment. RSPO1 activity, which relies on endogenous Wnt, has been well documented in previous studies.

      (7) Since the authors show that DVL is not involved in the Wnt and ZRNF3-dependent endocytosis they should repeat the proximity biotinylation experiment in figure 7 in the DVL triple KO cells. This is an important experiment since previous studies showed that DVL was required for the ZRNF3/RNF43-mediated ubiqtuonation of FZD.

      Thank you for your valuable suggestions. As you suggested, we performed a proximity biotinylation experiment in DVL TKO cells, and the results showed that Wnt3a/5a could still induce the interaction of FZD5 and RNF43 in DVLTKO cells (Figure 7-figure supplement 1), suggesting that the Wnt-induced FZD5‒RNF43 interaction is DVL independent.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Gerken et al examined how neurons in the human medial temporal lobe respond to and potentially code dynamic movie content. They had 29 patients watch a long-form movie while neurons within their MTL were monitored using depth electrodes. They found that neurons throughout the region were responsive to the content of the movie. In particular, neurons showed significant responses to people, places, and to a lesser extent, movie cuts. Modeling with a neural network suggests that neural activity within the recorded regions was better at predicting the content of the movies as a population, as opposed to individual neural representations. Surprisingly, a subpopulation of unresponsive neurons performed better than the responsive neurons at decoding the movie content, further suggesting that while classically nonresponsive, these neurons nonetheless provided critical information about the content of the visual world. The authors conclude from these results that low-level visual features, such as scene cuts, may be coded at the neuronal level, but that semantic features rely on distributed population-level codes.

      Strengths:

      Overall, the manuscript presents an interesting and reasonable argument for their findings and conclusions. Additionally, the large number of patients and neurons that were recorded and analyzed makes this data set unique and potentially very powerful. On the whole, the manuscript was very well written, and as it is, presents an interesting and useful set of data about the intricacies of how dynamic naturalistic semantic information may be processed within the medial temporal lobe.

      We thank the reviewer for their comments on our manuscript and for describing the strengths of our presented work

      Weaknesses:

      There are a number of concerns I have based on some of the experimental and statistical methods employed that I feel would help to improve our understanding of the current data.

      In particular, the authors do not address the issue of superposed visual features very well throughout the manuscript. Previous research using naturalistic movies has shown that low-level visual features, particularly motion, are capable of driving much of the visual system (e.g, Bartels et al 2005; Bartels et al 2007; Huth et al 2012; Çukur et al 2013; Russ et al 2015; Nentwich et al 2023). In some of these papers, low-level features were regressed out to look at the influence of semantics, in others, the influence of low-level features was explicitly modeled. The current manuscript, for the most part, appears to ignore these features with the exception of scene cuts. Based on the previous evidence that low-level features continue to drive later cortical regions, it seems like including these as regressors of no interest or, more ideally, as additional variables, would help to determine how well MTL codes for semantic features over top of these lower-order variables.

      We thank the reviewer for this insightful comment and for the relevant literature regarding visual motion in not only the primary visual system but in cortical areas as well. While we agree that the inclusion of visual motion as a regressor of no interest or as an additional variable would be overall informative in determining if single neurons in the MTL are driven by this level of feature, we would argue that our analyses already provide some insight into its role and that only the parahippocampal cortical neurons would robustly track this feature.

      As noted by the reviewer, our model includes two features derived from visual motion: Camera Cuts (directly derived from frame-wise changes in pixel values)  and Scene Cuts (a subset of Camera Cuts restricted to changes in scene). As shown in Fig. 5a, decoding performance for these features was strongest in the parahippocampal cortex (~20%), compared to other MTL areas (~10%). While the entorhinal cortex also showed some performance for Scene Cuts (15%), we interpret this as being driven by the changes in location that define a scene, rather than by motion itself.

      These findings suggest that while motion features are tracked in the MTL, the effect may be most robust in the parahippocampal cortex. We believe that quantifying more complex 3D motion in a naturalistic stimulus like a full-length movie is a significant challenge that would likely require a dedicated study. We agree this is an interesting future research direction and will update the manuscript to highlight this for the reader.

      A few more minor points that would help to clarify the current results involve the selection of data for particular analyses. For some analyses, the authors chose to appropriately downsample their data sets to compare across variables. However, there are a few places where similar downsampling would be informative, but was not completed. In particular, the analyses for patients and regions may have a more informative comparison if the full population were downsampled to match the size of the population for each patient or region of interest. This could be done with the Monte Carlo sampling that is used in other analyses, thus providing a control for population size while still sampling the full population.

      We thank the reviewer for raising this important methodological point. The decision not to downsample the patient- and region-specific analyses was deliberate, and we appreciate the opportunity to clarify our rationale.

      Generally, we would like to emphasize that due to technical and ethical limitations of human single-neuron recordings, it is currently not possible to record large populations of neurons simultaneously in individual patients. The limited and variable number of recorded neurons per subject (Fig. S1) generally requires pooling neurons into a pseudo-populations for decoding, which is a well‐established standard in human single‐neuron studies (see e.g., (Jamali et al., 2021; Kamiński et al., 2017; Minxha et al., 2020; Rutishauser et al., 2015; Zheng et al., 2022)).

      For the patient-specific analysis, our primary goal was to show that no single patient's data could match the performance of the complete pseudo-population. Crucially, we found no direct relationship between the number of recorded neurons and decoding performance; patients with the most neurons (patients 4, 13) were not top performers, and those with the fewest (patients 11, 14) were not the worst (see Fig. 4). This indicates that neuron count was not the primary limiting factor and that downsampling would be unlikely to provide additional insight.

      Similarly, for the region-specific analysis, regions with larger neural populations did not systematically outperform those with fewer neurons (Fig. 5). Given the inherent sparseness of single-neuron data, we concluded that retaining the full dataset was more informative than excluding neurons simply to equalize population sizes.

      We agree that this methodological choice should be transparent and explicitly justified in the text. We will add an explanation to the revised manuscript to justify why this approach was taken and how it differs from the analysis in Fig. 6.

      Reviewer #2 (Public review):

      Summary:

      This study introduces an exciting dataset of single-unit responses in humans during a naturalistic and dynamic movie stimulus, with recordings from multiple regions within the medial temporal lobe. The authors use both a traditional firing-rate analysis as well as a sophisticated decoding analysis to connect these neural responses to the visual content of the movie, such as which character is currently on screen.

      Strengths:

      The results reveal some surprising similarities and differences between these two kinds of analyses. For visual transitions (such as camera angle cuts), the neurons identified in the traditional response analysis (looking for changes in firing rate of an individual neuron at a transition) were the most useful for doing population-level decoding of these cuts. Interestingly, this wasn't true for character decoding; excluding these "responsive" neurons largely did not impact population-level decoding, suggesting that the population representation is distributed and not well-captured by individual-neuron analyses.

      The methods and results are well-described both in the text and in the figures. This work could be an excellent starting point for further research on this topic to understand the complex representational dynamics of single neurons during naturalistic perception.

      We thank the reviewer for their feedback and for summarizing the results of our work.

      (1) I am unsure what the central scientific questions of this work are, and how the findings should impact our understanding of neural representations. Among the questions listed in the introduction is "Which brain regions are informative for specific stimulus categories?". This is a broad research area that has been addressed in many neuroimaging studies for decades, and it's not clear that the results tell us new information about region selectivity. "Is the relevant information distributed across the neuronal population?" is also a question with a long history of work in neuroscience about localist vs distributed representations, so I did not understand what specific claim was being made and tested here. Responses in individual neurons were found for all features across many regions (e.g., Table S1), but decodable information was also spread across the population.

      We thank the reviewer for this important point, which gets to the core of our study's contribution. While concepts like regional specificity are well-established from studies on the blood-flow level, their investigation at the single-neuron level in humans during naturalistic, dynamic stimulation remains a critical open question. The type of coding (sparse vs. distributed) on the other hand cannot be investigated with blood-flow studies as the technology lacks the spatial and temporal resolution.

      Our study addresses this gap directly. The exceptional temporal resolution of single-neuron recordings allows us to move beyond traditional paradigms and examine cellular-level dynamics as they unfold in neuronal response on a frame-by-frame basis to a more naturalistic and ecologically valid stimulus. It cannot be assumed that findings from other modalities or simplified stimuli will generalize to this context.

      To meet this challenge, we employed a dual analytical strategy: combining a classic single-unit approach with a machine learning-based population analysis. This allowed us to create a bridge between prior work and our more naturalistic data. A key result is that our findings are often consistent with the existing literature, which validates the generalizability of those principles. However, the differences we observe between these two analytical approaches are equally informative, providing new insights into how the brain processes continuous, real-world information.

      We will revise the introduction and discussion to more explicitly frame our work in this context, emphasizing the specific scientific question driving this study, while also highlighting the strengths of our experimental design and recording methods.

      (2) The character and indoor/outdoor labels seem fundamentally different from the scene/camera cut labels, and I was confused by the way that the cuts were put into the decoding framework. The decoding analyses took a 1600ms window around a frame of the video (despite labeling these as frame "onsets" like the feature onsets in the responsive-neuron analysis, I believe this is for any frame regardless of whether it is the onset of a feature), with the goal of predicting a binary label for that frame. Although this makes sense for the character and indoor/outdoor labels, which are a property of a specific frame, it is confusing for the cut labels since these are inherently about a change across frames. The way the authors handle this is by labeling frames as cuts if they are in the 520ms following a cut (there is no justification given for this specific value). Since the input to a decoder is 1600ms, this seems like a challenging decoding setup; the model must respond that an input is a "cut" if there is a cut-specific pattern present approximately in the middle of the window, but not if the pattern appears near the sides of the window. A more straightforward approach would be, for example, to try to discriminate between windows just after a cut versus windows during other parts of the video. It is also unclear how neurons "responsive" to cuts were defined, since the authors state that this was determined by looking for times when a feature was absent for 1000ms to continuously present for 1000ms, which would never happen for cuts (unless this definition was different for cuts?).

      We thank the reviewer for the valuable comment regarding specifically the cut labels. The choice to label frames that lie in a time window of 520ms following a cut as positive was selected based on prior research and is intended to include the response onsets across all regions within the MTL (Mormann et al., 2008). We agree that this explanation is currently missing from the manuscript, and we will add a brief clarification in the revised version.

      As correctly noted, the decoding analysis does not rely on feature onset but instead continuously decodes features throughout the entire movie. Thus, all frames are included, regardless of whether they correspond to a feature onset.

      Our treatment of cut labels as sustained events is a deliberate methodological choice. Neural responses to events like cuts often unfold over time, and by extending the label, we provide our LSTM network with the necessary temporal window to learn this evolving signature. This approach not only leverages the sequential processing strengths of the LSTM (Hochreiter et al., 1997) but also ensures a consistent analytical framework for both event-based (cuts) and state-based (character or location) features.

      (3) The architecture of the decoding model is interesting but needs more explanation. The data is preprocessed with "a linear layer of same size as the input" (is this a layer added to the LSTM that is also trained for classification, or a separate step?), and the number of linear layers after the LSTM is "adapted" for each label type (how many were used for each label?). The LSTM also gets to see data from 800 ms before and after the labeled frame, but usually LSTMs have internal parameters that are the same for all timesteps; can the model know when the "critical" central frame is being input versus the context, i.e., are the inputs temporally tagged in some way? This may not be a big issue for the character or location labels, which appear to be contiguous over long durations and therefore the same label would usually be present for all 1600ms, but this seems like a major issue for the cut labels since the window will include a mix of frames with opposite labels.

      We thank the reviewer for their insightful comments regarding the decoding architecture. The model consists of an LSTM followed by 1–3 linear readout layers, where the exact number of layers is treated as a hyperparameter and selected based on validation performance for each label type. The initial linear layer applied to the input is part of the trainable model and serves as a projection layer to transform the binned neural activity into a suitable feature space before feeding it into the LSTM. The model is trained in an end-to-end fashion on the classification task.

      Regarding temporal context, the model receives a 1600 ms window (800 ms before and after the labeled frame), and as correctly pointed out by the reviewer, LSTM parameters are shared across time steps. We do not explicitly tag the temporal position of the central frame within the sequence. While this may have limited impact for labels that persist over time (e.g., characters or locations), we agree this could pose a challenge for cut labels, which are more temporally localized.

      This is an important point, and we will clarify this limitation in the revised manuscript and consider incorporating positional encoding in future work to better guide the model’s focus within the temporal window. Additionally, we will add a data table, specifying the ranges of hyperparameters in our decoding networks. Hyperparameters were optimized for each feature and split individually, but we agree that some more details on how these parameters were chosen are important and we will provide a data table in our revised manuscript giving more insights into the ranges of hyperparameters.

      We thank the reviewer for this important point. We will clarify this limitation in the revised manuscript and note that positional encoding is a valuable direction to better guide the model’s focus within the temporal window. To improve methodological transparency, we will also add a supplementary table detailing the hyperparameter ranges used for our optimization process.

      (4) Because this is a naturalistic stimulus, some labels are very imbalanced ("Persons" appears in almost every frame), and the labels are correlated. The authors attempt to address the imbalance issue by oversampling the minority class during training, though it's not clear this is the right approach since the test data does not appear to be oversampled; for example, training the Persons decoder to label 50% of training frames as having people seems like it could lead to poor performance on a test set with nearly 100% Persons frames, versus a model trained to be biased toward the most common class. [...]

      We thank the reviewer for this critical and thoughtful comment. We agree that the imbalanced and correlated nature of labels in naturalistic stimuli is a key challenge.

      To address this, we follow a standard machine learning practice: oversampling is applied exclusively to the training data. This technique helps the model learn from underrepresented classes by creating more balanced training batches, thus preventing it from simply defaulting to the majority class. Crucially, the test set remains unaltered to ensure our evaluation reflects the model's true generalization performance on the natural data distribution.

      For the “Persons” feature, which appears in nearly all frames, defining a meaningful negative class is particularly challenging. The decoder must learn to identify subtle variations within a highly skewed distribution. Oversampling during training helps provide a more balanced learning signal, while keeping the test distribution intact ensures proper evaluation of generalization.

      The reviewer’s comment—that we are “training the Persons decoder to label 50% of training frames as having people”—may suggest that labels were modified. We want to emphasize this is not the case. Our oversampling strategy does not alter the labels; it simply increases the exposure of the rare, underrepresented class during training to ensure the model can learn its pattern despite its low frequency.

      We will revise the Methods section to describe this standard procedure more explicitly, clarifying that oversampling is a training-only strategy to mitigate class imbalance.

      (5) Are "responsive" neurons defined as only those showing firing increases at a feature onset, or would decreased activity also count as responsive? If only positive changes are labeled responsive, this would help explain how non-responsive neurons could be useful in a decoding analysis.

      We define responsive neurons as those showing increased firing rates at feature onset; we did not test for decreases in activity. We thank the reviewer for this valuable comment and will address this point in the revised manuscript by assessing responseness without a restriction on the direction of the firing rate.

      (6) Line 516 states that the scene cuts here are analogous to the hard boundaries in Zheng et al. (2022), but the hard boundaries are transitions between completely unrelated movies rather than scenes within the same movie. Previous work has found that within-movie and across-movie transitions may rely on different mechanisms, e.g., see Lee & Chen, 2022 (10.7554/eLife.73693).

      We thank the reviewer for pointing out this distinction and for including the relevant work from Lee & Chan (2022) which further contextualizes this distinction. Indeed, the hard boundaries defined in the cited paper differ slightly from ours. The study distinguishes between (1) hard boundaries—transitions between unrelated movies—and (2) soft boundaries—transitions between related events within the same movie. While our camera cuts resemble their soft boundaries, our scene cuts do not fully align with either category. We defined scene cuts to be more similar to the study’s hard boundaries, but we recognize this correspondence is not exact. We will clarify the distinctions between our scene cuts and the hard boundaries described in Zheng et al. (2022) in the revised manuscript, and will update our text to include the finding from Lee & Chan (2022).

      Reviewer #3 (Public review):

      This is an excellent, very interesting paper. There is a groundbreaking analysis of the data, going from typical picture presentation paradigms to more realistic conditions. I would like to ask the authors to consider a few points in the comments below.

      (1) From Figure 2, I understand that there are 7 neurons responding to the character Summer, but then in line 157, we learn that there are 46. Are the other 39 from other areas (not parahippocampal)? If this is the case, it would be important to see examples of these responses, as one of the main claims is that it is possible to decode as good or better with non-responsive compared to single responsive neurons, which is, in principle, surprising.

      We thank the reviewer for pointing out this ambiguity in the text. Yes, the other 39 units are responsive neurons from other areas. We will clarify to which neuronal sets the number of responsive neurons corresponds. We will also include response plots depicting the unit activity for the mentioned units.

      (2) Also in Figure 2, there seem to be relatively very few neurons responding to Summer (1.88%) and to outdoor scenes (1.07%). Is this significant? Isn't it also a bit surprising, particularly for outdoor scenes, considering a previous paper of Mormann showing many outdoor scene responses in this area? It would be nice if the authors could comment on this.

      We thank the reviewer for this insightful point. While a low response to the general 'outdoor scene' label seems surprising at first, our findings align with the established role of the parahippocampal cortex (PHC) in processing scenes and spatial layouts. In previous work using static images, each image introduces a new spatial context. In our movie stimulus, new spatial contexts specifically emerge at scene cuts. Accordingly, our data show a strong PHC response precisely at these moments. We will revise the discussion to emphasize this interpretation, highlighting the consistency with prior work.

      Regarding the first comment, we did not originally test if the proportion of the units is significant using e.g. a binomial test. We will include the results of a binomial test for each region and feature pair in the revised manuscript.

      (3) I was also surprised to see that there are many fewer responses to scene cuts (6.7%) compared to camera cuts (51%) because every scene cut involves a camera cut. Could this have been a result of the much larger number of camera cuts? (A way to test this would be to subsample the camera cuts.)

      The decrease in responsive units for scene cuts relative to camera cuts could indeed be due to the overall decrease in “trials” from one label to the other. To test this, we will follow the reviewer’s suggestion and perform tests using sets of randomly subsampled camera cuts and will include the results in the revised manuscript.

      (4) Line 201. The analysis of decoding on a per-patient basis is important, but it should be done on a per-session basis - i.e., considering only simultaneously recorded neurons, without any pooling. This is because pooling can overestimate decoding performances (see e.g. Quian Quiroga and Panzeri NRN 2009). If there was only one session per patient, then this should be called 'per-session' rather than 'per-patient' to make it clear that there was no pooling.

      The per-patient decoding was indeed also a per-session decoding, as each patient contributed only a single session to the dataset. We will make note of this explicitly in the text to resolve the ambiguity.

      (6) Lines 406-407. The claim that stimulus-selective responses to characters did not account for the decoding of the same character is very surprising. If I understood it correctly, the response criterion the authors used gives 'responsiveness' but not 'selectivity'. So, were people's responses selective (e.g., firing only to Summer) or non-selective (firing to a few characters)? This could explain why they didn't get good decoding results with responsive neurons. Again, it would be nice to see confusion matrices with the decoding of the characters. Another reason for this is that what are labelled as responsive neurons have relatively weak and variable responses.

      We thank the reviewer for pointing out the importance of selectivity in addition to responsiveness. Indeed, our response criterion does not take stimulus selectivity into account and exclusively measures increases in firing activity after feature onsets for a given feature irrespective of other features.

      We will adjust the text to reflect this shortcoming of the response-detection approach used here. To clarify the relationship between neural populations, we will add visualizations of the overlap of responsive neurons across labels for each subregion. These figures will be included in the revised manuscript.

      In our approach, we trained separate networks for each feature to effectively mitigate the issue of correlated feature labels within the dataset (see earlier discussion). While this strategy effectively deals with the correlated features, it precluded the generation of standard confusion matrices, as classification was performed independently for each feature.

      To directly assess the feature selectivity of responsive neurons, we will fit generalized linear models to predict their firing rates from the features. This approach will enable us to quantify their selectivity and compare it to that of the broader neuronal population.

      (7) Line 455. The claim that 500 neurons drive decoding performance is very subjective. 500 neurons gives a performance of 0.38, and 50 neurons gives 0.33.

      We agree with the reviewer that the phrasing is unclear. We will adjust our summary of this analysis as given in Line 455 to reflect that the logistic regression-derived neuronal rankings produce a subset which achieve comparable performance.

      (8) Lines 492-494. I disagree with the claim that "character decoding does not rely on individual cells, as removing neurons that responded strongly to character onset had little impact on performance". I have not seen strong responses to characters in the paper. In particular, the response to Summer in Figure 2 looks very variable and relatively weak. If there are stronger responses to characters, please show them to make a convincing argument. It is fine to argue that you can get information from the population, but in my view, there are no good single-cell responses (perhaps because the actors and the movie were unknown to the subjects) to make this claim. Also, an older paper (Quian Quiroga et al J. Neurophysiol. 2007) showed that the decoding of individual stimuli in a picture presentation paradigm was determined by the responsive neurons and that the non-responsive neurons did not add any information. The results here could be different due to the use of movies instead of picture presentations, but most likely due to the fact that, in the picture presentation paradigm, the pictures were of famous people for which there were strong single neuron responses, unlike with the relatively unknown persons in this paper.

      This is an important point and we thank the reviewer for highlighting a previous paradigm in which responsive neurons did drive decoding performance. Indeed, the fact that the movie, its characters and the corresponding actors were novel to patients could explain the disparity in decoding performance by way of weaker and more variable responses. We will include additional examples in the supplement of responses to features. Additionally, we will modify the text to emphasize the point that reliable decoding is possible even in the absence of a robust set of neuronal responses. It could indeed be the case that a decoder would place more weight on responsive units if they were present (as shown in the mentioned paper and in our decoding from visual transitions in the parahippocampal cortex).

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors explore a novel concept: GPCR-mediated regulation of miRNA release via extracellular vesicles (EVs). They perform an EV miRNA cargo profiling approach to investigate how specific GPCR activations influence the selective secretion of particular miRNAs. Given that GPCRs are highly diverse and orchestrate multiple cellular pathways - either independently or collectively - to regulate gene expression and cellular functions under various conditions, it is logical to expect alterations in gene and miRNA expression within target cells.

      Strengths:

      The novel idea of GPCRs-mediated control of EV loading of miRNAs.

      Weaknesses:

      Incomplete findings failed to connect and show evidence of any physiological parameters that are directly related to the observed changes. The mechanical detail is lacking.

      We appreciate the reviewer's acknowledgment of the novelty of this study. We agree with the reviewer that further mechanistic insights would strengthen the manuscript. The mechanisms by which miRNA is sorted into EVs remain poorly understood. Various factors, including RNA-binding protein, sequence motifs, and cellular location, can influence this sorting process(Garcia-Martin et al., 2022; Liu & Halushka, 2025; Villarroya-Beltri et al., 2013; Yoon et al., 2015). Ago2, a key component of the RNA-induced silencing complexes, binds to miRNA and facilitates miRNA sorting. Ago2 has been found in the EVs and can be regulated by the cellular signaling pathway.  For instance, McKenzie et al. demonstrated that KRAS-dependent activation of MEK-ERK can phosphorylate Ago2 protein, thereby regulating the sorting of specific miRNAs into EVs(McKenzie et al., 2016). In the differentiated PC12 cells, Gαq activation leads to the formation of Ago2-associated granules, which selectively sequester unique transcripts(Jackson et al., 2022). Investigating GPCR, G protein, and GPCR signaling on Ago2 expression, location, and phosphorylation states could provide valuable insights into how GPCRs regulate specific miRNAs within EVs. We have expanded these potential mechanisms and future research in the discussion section.

      The manuscript falls short of providing a comprehensive understanding. Identifying changes in cellular and EV-associated miRNAs without elucidating their physiological significance or underlying regulatory mechanisms limits the study's impact. Without demonstrating whether these miRNA alterations have functional consequences, the findings alone are insufficient. The findings may be suitable for more specialized journals.

      Thank you for the feedback. We acknowledge that validating the target genes of the top candidate miRNAs is an important next step. In response to the reviewer's concerns, we have expanded the discussion of future research in the manuscript. Although this initial study is primarily descriptive, it establishes a novel conceptual link between GPCR signaling and EV-mediated communication.

      Furthermore, a critical analysis of the relationship between cellular miRNA levels and EV miRNA cargo is essential. Specifically, comparing the intracellular and EV-associated miRNA pools could reveal whether specific miRNAs are preferentially exported, a behavior that should be inversely related to their cellular abundance if export serves a beneficial function by reducing intracellular levels. This comparison is vital to strengthen the biological relevance of the findings and support the proposed regulatory mechanisms by GPCRs.

      We appreciate the valuable suggestions from the reviewer. EV miRNA and cell miRNAs may exhibit distinct profiles as miRNAs can be selectively sorted into or excluded from EVs(Pultar et al., 2024; Teng et al., 2017; Zubkova et al., 2021). Investigating the difference between cellular miRNA levels and EV miRNA cargo would provide insight into the mechanism of miRNA sorting and the functions of miRNAs in the recipient cells. The expression of the cellular miRNAs is a highly dynamic process. To accurately compare the miRNA expression levels, profiling of EV miRNA and cellular miRNA should be conducted simultaneously. However, as a pilot study, we were unable to measure the cellular miRNAs without conducting the entire experiment again.

      Reviewer #2 (Public review):

      Summary:

      This study examines how activating specific G protein-coupled receptors (GPCRs) affects the microRNA (miRNA) profiles within extracellular vesicles (EVs). The authors seek to identify whether different GPCRs produce unique EV miRNA signatures and what these signatures could indicate about downstream cellular processes and pathological processes.

      Methods:

      (1) Used U2OS human osteosarcoma cells, which naturally express multiple GPCR types.

      (2) Stimulated four distinct GPCRs (ADORA1, HRH1, FZD4, ACKR3) using selective agonists.

      (3) Isolated EVs from culture media and characterized them via size exclusion chromatography, immunoblotting, and microscopy.

      (4) Employed qPCR-based miRNA profiling and bioinformatics analyses (e.g., KEGG, PPI networks) to interpret expression changes.

      Key Findings:

      (1) No significant change in EV quantity or size following GPCR activation.

      (2) Each GPCR triggered a distinct EV miRNA expression profile.

      (3) miRNAs differentially expressed post-stimulation were linked to pathways involved in cancer, insulin resistance, neurodegenerative diseases, and other physiological/pathological processes.

      (4) miRNAs such as miR-550a-5p, miR-502-3p, miR-137, and miR-422a emerged as major regulators following specific receptor activation.

      Conclusions:

      The study offers evidence that GPCR activation can regulate intercellular communication through miRNAs encapsulated within extracellular vesicles (EVs). This finding paves the way for innovative drug-targeting strategies and enhances understanding of drug side effects that are mediated via GPCR-related EV signaling.

      Strengths:

      (1) Innovative concept: The idea of linking GPCR signaling to EV miRNA content is novel and mechanistically important.

      (2) Robust methodology: The use of multiple validation methods (biochemical, biophysical, and statistical) lends credibility to the findings.

      (3) Relevance: GPCRs are major drug targets, and understanding off-target or systemic effects via EVs is highly valuable for pharmacology and medicine.

      Weaknesses:

      (1) Sample Size & Scope: The analysis included only four GPCRs. Expanding to more receptor types or additional cell lines would enhance the study's applicability.

      We are encouraged that the reviewer recognized the novelty, methodological rigor, and significance of our work. We recognize the limitations of our current model system and emphasize the need to test additional GPCR families and cell lines in the future studies, as detailed in the discussion section.

      (2) Exploratory Nature: This study is primarily descriptive and computational. It lacks functional validation, such as assessing phenotypic effects in recipient cells, which is acknowledged as a future step.

      We appreciate the feedback. We recognize the importance of validating the function of the top candidate miRNAs in the recipient cells, and this will be included in future studies. 

      (3) EV heterogeneity: The authors recognize that they did not distinguish EV subpopulations, potentially confounding the origin and function of miRNAs.

      Thank you for the comment. EV isolation and purification are major challenges in EV research. Current isolation techniques are often ineffective at separating vesicles produced by different biogenetic pathways. Furthermore, the lack of specific markers to differentiate EV subtypes adds to this complexity. We recognize that the presence of various subpopulations can complicate the interpretation of EV cargos. In our study, we used a combined approach of ultrafiltration followed by size-exclusion chromatography to achieve a balance between EV purity and yield. We adhere to the MISEV (Minimal Information for Studies of Extracellular Vesicles 2023) guidelines by reporting detailed isolation methods, assessing both positive and negative protein markers, and characterizing EVs by electron microscopy to confirm vesicle structure, as well as nanoparticle tracking analysis to verify particle size distribution(Welsh et al., 2024). By following these guidelines, we can ensure the quality of our study and enhance the ability to compare our findings with other studies.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary: As TDP-43 mislocalization is a hallmark of multiple neurodegenerative diseases, the authors seek to identify pathways that modulate TDP-43 levels. To do this, they use a FACS based genome wide CRISPR KD screen in a Halo tagged TDP-43 KI iPSC line. Their screen identifies a number of genetic modulators of TDP-43 expression including BORC which plays a role in lysosome transport.

      Strengths:

      Genome wide CRISPR based screen identifies a number of modulators of TDP-43 expression to generate hypotheses regarding RNA BP regulation and perhaps insights into disease.

      Weaknesses:

      It is unclear how altering TDP-43 levels may relate to disease where TDP-43 is not altered in expression but mislocalized. This is a solid cell biology study, but the relation to disease is not clear without providing evidence of BORC alterations in disease or manipulation of BORC reversing TDP-43 pathology in disease.

      We thank the reviewer for this comment and have updated the discussion to include more discussion of the role TDP-43 may play in the BORCS8-associated neurodegenerative disorder and how understanding how lysosome localization changing TDP-43 levels may help patients (lines 313-321).

      The mechanisms by which BORC and lysosome transport modulate TDP-43 expression are unclear. Presumably, this may be through altered degradation of TDP protein but this is not addressed.

      We agree with the reviewer that understanding the mechanism by which lysosome transport regulates TDP-43 levels is important and plan to examine this in future studies.

      Previous studies have demonstrated that TDP-43 levels can be modulated by altering lysosomal degradation so the identification of lysosomal pathways is not particularly novel.

      We thank the reviewer for this comment and have updated the text to make this clearer (lines 310-313). What hasn’t been observed previously is a change in lysosome localization affecting TDP-43 levels.

      It is unclear whether this finding is specific to TDP-43 levels or whether lysosome localization may more broadly impact proteostasis in particular of other RNA BPs linked to disease.

      We agree that this is an interesting question and something that should be investigated in future studies.

      Unclear whether BORC depletion alters lysosome function or simply localization.

      We thank the reviewer for this comment. Lysosome function related to protein turnover has not yet been examined in the literature after loss of BORC, but other aspects of lysosome function (including lipid metabolism and autophagic flux) have been shown to be disrupted upon loss of BORC. We have updated the discussion to address this (lines 292-296).

      Reviewer #2 (Public review):

      Summary: The authors employ a novel CRISPRi FACS screen and uncover the lysosomal transport complex BORC as a regulator of TDP-43 protein levels in iNeurons. They also find that BORC subunit knockouts impair lysosomal function, leading to slower protein turnover and implicating lysosomal activity in the regulation of TDP-43 levels. This is highly significant for the field given that a) other proteins could also be regulated in this way, b) understanding mechanisms that influence TDP-43 levels are significant given that its dysregulation is considered a major driver of several neurodegenerative diseases and c) the novelty of the proposed mechanism.

      Strengths:

      The novelty and information provided by the CRISPRi screen. The authors provide evidence indicating that BORC subunit knockouts impair lysosomal function, leading to slower protein turnover and implicating lysosomal activity in the regulation of TDP-43 levels and show a mechanistic link between lysosome mislocalization and TDP-43 dysregulation. The study highlights the importance of localized lysosome activity in axons and suggests that lysosomal dysfunction could drive TDP-43 pathologies associated with neurodegenerative diseases like FTD/ALS. Further, the methods and concepts will have an impact to the larger community as well. The work also sets up for further work to understand the somewhat paradoxical findings that even though the tagged TDP-43 protein is reduced in the screen, it does not alter cryptic exon splicing and there is a longer TDP-43 half-life with BORC KD.

      Weaknesses:

      While the data is very strong, the work requires some additional clarification.

      We thank the reviewer for these comments. Our detailed responses are included below in the “recommendations for authors” section.

      Reviewer #3 (Public review):

      Summary: In this work, Ryan et al. have performed a state-of-the-art full genome CRISP-based screen of iNeurons expressing a tagged version of TDP-43 in order to determine expression modifiers of this protein. Unexpectedly, using this approach the authors have uncovered a previously undescribed role of the BORC complex in affecting the levels of TDP-43 protein, but not mRNA expression. Taken together, these findings represent a very solid piece of work that will certainly be important for the field.

      Strengths:

      BORC is a novel TDP-43 expression modifier that has never been described before and it seemingly acts on regulating protein half life rather than transcriptome level. It has been long known that different labs have reported different half-lives for TDP-43 depending on the experimental system but no work has ever explained these discrepancies. Now, the work of Ryan et al. has for the time identified one of these factors which could account for these differences and play an important role in disease (although this is left to be determined in future studies).

      The genome wide CRISPR screening has demonstrated to yield novel results with high reproducibility and could eventually be used to search for expression modifiers of many other proteins involved in neurodegeneration or other diseases

      Weaknesses:

      The fact that TDP-43 mRNA does not change following BORCS6 KD is based on a single qRT- PCR that does not really cover all possibilities. For example, the mRNA total levels may not change but the polyA sites may have switched from the highly efficient pA1 to the less efficient and nuclear retained pA4. There are therefore a few other experiments that could have been performed to make this conclusion more compelling, maybe also performing RNAscope experiments to make sure that no change occurred in TDP-43 mRNA localisation in cells.

      We thank the reviewer for this comment. To address this point, we performed an analysis of polyA sites on our RNA sequencing data using REPAC and did not find a change in TDP-43 poly adenylation after BORC KD (Figure S6C). Other transcripts do have altered polyA sites, which are summarized in Figure S6C. We also performed HCR FISH for TARDBP mRNA in TDP-43 and BORC KD neurons. While we did not see a difference in RNA localization (see A below, numbers on brackets indicate p-values), we also were not able to detect a significant difference in total TARDBP mRNA levels upon TDP-43 KD (see B below, numbers on brackets indicate p-values), suggesting that some of the signal detected is non-specific to TARDBP. Because of this, we cannot conclusively say that BORC KD does not alter TARDBP mRNA localization using the available tools.

      Author response image 1.

      Even assuming that the mRNA does not change, no explanation for the change in TDP-43 protein half life has been proposed by the authors. This will presumably be addressed in future studies: for example, are mutants that lack different domains of TDP-43 equally affected in their half-lives by BORC KD?. Alternatively, can a mass-spec be attempted to see whether TDP-43 PTMs change following BORCS6 KD?

      We agree with the reviewer that these are important experiments that could be done in the future to further examine the mechanism by which loss of BORC alters TDP-43 half-life. We examined our proteomics data for differential phosphorylation and ubiquitination in NT vs BORC KD (Figure S7G-H). We were unable to detect PTMs on TDP-43, so we cannot say if they contribute to the change in TDP-43 half-life we observed.

      Reviewer #1 (Recommendations for the authors):

      Recommendations are detailed in the public review.

      Reviewer #2 (Recommendations for the authors):

      Ryan et al, employ a CRISPRi FACS screen and uncover the lysosomal transport complex BORC as a regulator of TDP-43 protein levels in iNeurons. The authors provide strong evidence indicating that BORC subunit knockouts impair lysosomal function, leading to slower protein turnover and implicating lysosomal activity in the regulation of TDP-43 levels. The authors then provided additional evidence of TDP-43 perturbations under lysosome-inhibiting drug conditions, underscoring a mechanistic link between lysosome mislocalization and TDP-43 dysregulation. The study highlights the importance of localized lysosome activity in axons and suggests that lysosomal dysfunction could drive TDP-43 pathologies associated with neurodegenerative diseases like FTD/ALS. The work is exciting and could be highly informative for the field.

      Concerns: There are some disconnects between the figures and the main text that can benefit from refining of the figures to align better with the main text. This does not require additional experiments other than perhaps Figure 4B. The impact of the work could be further discussed - it is an interesting disconnect between the fact BORC KD causes decreased IF of the Halo-tagged TDP-43 and lysosomal transport, however this reduction does not impact cryptic exon expression and also increases TDP-43 half life (and of other proteins). It is a very interesting and potentially informative part of the manuscript.

      We thank the reviewer for their detailed reading of our manuscript. We have endeavored to better match the figures and the text and have added more discussion of the impact of the work.

      Minor:

      (1) Suggestion: relating to the statement "Gene editing was efficient, with almost all selected clones correctly edited." - please provide values or %.

      We updated the text to remove the statement about the editing efficiency, instead saying we identified a clone that was correct for both sequence and karyotype (lines 83-85).

      (2) Relating to Figure 1A: Please provide clarification regarding tagging strategy with the halotag - e.g. why in front of exon2.

      We updated the figure legend to reflect that the start codon for TDP-43 is in exon 2, hence why we placed the HaloTag there.

      (3) Relating to Figure S1: A and B seems to have been swapped.

      We thank the reviewer for catching this mistake and have fixed the figure/text.

      (4) Relating to Figure 1B: figure legend does not indicate grayscale coloring of TDP-43 signal.

      We have added text in the figure legend to indicate that the Halo signal is shown in grayscale in the left-handed panels.

      (5) Relating to Figure 1C: can the authors clarify abbreviation for 'NT' in text and legend.

      We thank the reviewer for catching this and have indicated in the text and figure legend that NT refers to the non-targeting sgRNA that was used as a control for comparison to the TDP-43 KD sgRNA.

      (6) Relating to figure 2B and S2A: main text mentioned "Non-targeting Guides" however the figure does not show non-targeting guides to confirm.

      We thank the reviewer for catching this oversight, we updated the figure legends for these figures to indicate that the non-targeting (NT) guides are shown in gray on the rank plot. They cluster towards the middle, more horizontal portion of the graphs, showing that the more vertical sections of the graph are hits.

      (7) Suggestion: To make it easier on the reader, please provide overlap numbers for the following statement ..."In comparing the top GO terms associated with genes that increase or decrease Halo-TDP-43 levels in iNeurons, we found that almost none altered Halo-TDP-43 levels in iPSCs...".

      We thank the reviewer for this comment and have updated the text to indicate that only a single term is shared between the iPSC and iNeuron screens (lines 113-117).

      (8) Relating to the statement "We cloned single sgRNA plasmids for 59 genes that either increased or decreased Halo-TDP-43 in iNeurons but not in iPSCs." Can the authors provide a list of the 59 genes.

      We have included a new column in the supplemental table S1 indicating the result of the Halo microscopy validation to hopefully clarify which genes lead to a validated phenotype and which did not.

      (9) Relating to the statement "To rule out the possibility of neighboring gene or off-target effects of CRISPRi, as has been reported previously15, we examined the impact of BORC knockout (KO) on TDP-43 levels. Using the pLentiCRISPR system, which expresses the sgRNA of interest on the same plasmid as an active Cas916 we found that KO of BORCS7 using two different sgRNAs decreased TDP-43 levels by immunofluorescence (Figure 5C-D)." Please provide clarification as to why BORCS7 was chosen out of all the BORCS? From the data presentation thus far (Figure 4B & 5A), the reader might have anticipated testing BORCS6 for panels 5C-D.

      We thank the reviewer for this comment. We tried a couple of BORCs with the pLentiCRISPR system, but BORCS7 was the only one we were convinced we got functional knockout for based on lysosome localization. We think that either the guides were not ideal for the other BORC components we tried, or we did not get efficient gene editing across the population of cells tested. Because we had previously been working with knock down and CRISPRi guides are not the same as CRISPR knock out guides, we couldn’t use the existing guide sequences we know work well for BORC. Since loss of one BORC gene causes functional loss of the complex and restricts lysosomes to the soma, we did not feel it necessary to assay all 8 genes.

      (10) Relating to the statement "We treated Halo-TDP-43 neurons with various drugs that disrupt distinct processes in the lysosome pathway and asked if Halo-TDP-43 levels changed. Chloroquine (decreases lysosomal acidity), CTSBI (inhibits cathepsin B protease), ammonium chloride (NH4Cl, inhibits lysosome-phagosome fusion), and GPN (ruptures lysosomal membranes) all consistently decreased Halo-TDP-43 levels (Figure 6A-B, S5A-C)" Please provide interpretations for Figures S5A and S5C in text.

      We thank the reviewer for catching this oversight and have updated the text accordingly (lines 183-191).

      (11) Relating to figure 6E: please provide in legend what the different colors used correlate with (i.e. green/brown for BORCS7 KD)?

      We thank the reviewer for pointing this out. These colors were mistakenly left in the figure from a version looking to see if the observed effects were driven by a single replicate rather than a consistent change (each replicate has a slightly different color). As the colors are intermingled and not separated, we concluded the effect was not driven by a single replicate. The colors have been removed from the updated figure for simplicity.

      (12) Relating to the statement "We observed a similar trend for many proteins in the proteome (Figure 8B)" This statement can benefit from stating which trend the authors are referring to, it is currently unclear from the volcano plot shown for Figure 8B.

      We thank the reviewer for catching this and have updated the text accordingly.

      (13) Relating to the statement "For almost every gene, we observed an increase or decrease in Halo-TDP-43 levels without a change in Halo-TDP-43 localization or compartment specific level changes (Figure 4B)." Please provide: (1) the number of genes examined, (2) additional clarification of "localization" and "compartment specific" level changes, (3) some quantification and or additional supporting data of the imaging results. Figures 5A-B presents with the same concern relating to the comment "To determine if results from Halo-TDP-43 expression assays also applied to endogenous, untagged TDP-43 levels, we selected 22 genes that passed Halo validation and performed immunofluorescence microscopy for endogenous (untagged) TDP-43 (Figure 4D-G,5A-B, S4E-F)." please clarify further.

      We thank the reviewer for requesting this clarification. This statement refers to all 59 genes tested by Halo imaging; only one (MFN2) showed any hints of aggregation or changes in localization, every other gene (58) showed what appeared to be global changes in Halo-TDP-43 levels. We were initially intrigued by the MFN2 phenotype; however, we were unable to replicate it on endogenous TDP-43 and thus concluded that this might be an effect specific to the tagged protein. The representative images shown in Figure 4B are representative of the changes we observed across all 59 genes tested (if changes were present). From the 59 genes that we observed a change in Halo-TDP-43 levels by microscopy, we selected a smaller number to move forward to immunofluorescence for TDP-43. We picked a subset of genes from each of the different categories we had identified (mitochondria, m6A, ubiquitination, and some miscellaneous) to validate by immunofluorescence, thinking that genes in the same pathway would act similarly. We have added a column to the supplemental table S1 indicating which genes were tested by immunofluorescence and what the result was. We have also attempted to clarify the results section to make the above clearer.

      (14) Relating to the statement "To determine if results from Halo-TDP-43 expression assays also applied to endogenous, untagged TDP-43 levels, we selected 22 genes that passed Halo validation and performed immunofluorescence microscopy for endogenous (untagged) TDP-43 (Figure 4D-G, 5A-B, S4E-F). Of these, 18 (82%) gene knockdowns showed changes in endogenous TDP-43 levels (Figure 4D-G, S4E-F)." It is difficult to identify the 18 or 22 genes in the figures as described in the main text.

      We added columns to the supplemental table S1 listing the genes and the result in each assay.

      (15) Relating to figures S7A and 8A and the first part of the section "TDP-43, like the proteome, shows longer turnover time in BORC KD neurons" Can the authors provide clarification why the SunTag assay was performed with BORCS6 KD (S7A) but the follow-up experiment (8A) was performed with BORCS7 KD. Does BORCS6 KD show similar results as BORCS7 with the SunTag assay, and does TDP-43 protein abundance with BORCS7 KD show similar results as BORCS6?

      Because loss of any of the 8 BORC genes causes functional loss of BORC and lysosomes to be restricted to the peri-nuclear space, we used BORC KDs interchangeably. Additionally, all BORC KDs had similar effects on Halo-TDP-43 levels.

      Reviewer #3 (Recommendations for the authors):

      Adding more control experiments that TDP-43 mRNA is really not affected following BORC KD

      We performed a FISH experiment to examine TARDBP mRNA localization upon BORC KD but were unable to conclusively say whether BORC KD changes TARDBP mRNA localization (see above). We also analyzed our RNA sequencing experiment for alternative polyadenylation sites upon BORC KD. Results are in Figure S6C.

      Although this could be part of a future study, the authors should try and determine what are the changes to TDP-43 that drive a change in the half-life.

      We agree with the reviewer that these are important experiments and hope to figure this out in the future.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary: 

      Seon and Chung's study investigates the hypothesis that individuals take more risks when observed by others because they perceive others to be riskier than themselves. To test this, the authors designed an innovative experimental paradigm where participants were informed that their decisions would be observed by a "risky" player and a "safe" player. Participants underwent fMRI scanning during the task. 

      Strengths: 

      The research question is sound, and the experimental paradigm is well-suited to address the hypothesis. 

      Weaknesses:

      I have several concerns. Most notably, the manuscript is difficult to read in parts, and I suggest a thorough revision of the writing for clarity, as some sections are nearly incomprehensible. Additionally, key statistical details are missing, and I have reservations about the choice of ROIs.

      We appreciate the reviewer’s interest in and positive assessment of our work, and we thank the reviewer for the constructive feedback. In the current revision, we have revised the manuscript for clarity and added previously omitted statistical details. Furthermore, in the response letter, we have also provided additional explanations to clarify our approach, including the rationale for the choice and use of ROIs.

      Reviewer #2 (Public review): 

      Summary: 

      This study aims to investigate how social observation influences risky decision-making. Using a gambling task, the study explored how participants adjusted their risk-taking behavior when they believed their decisions were being observed by either a risk-averse or risk-seeking partner. The authors hypothesized that individuals would simulate the choices of their observers based on learned preferences and integrate these simulated choices into their own decision-making. In addition to behavioral experiments, the study employed computational modeling to formalize decision processes and fMRI to identify the neural underpinnings of risky decision-making under social observation. 

      Strengths: 

      The study provides a fresh perspective on social influence in decision-making, moving beyond the simple notion that social observation leads to uniformly riskier behavior. Instead, it shows that individuals adjust their choices depending on their beliefs about the observer's risk preferences, offering a more nuanced understanding of how social contexts shape decision-making. The authors provide evidence using comprehensive approaches, including behavioral data based on a well-designed task, computational modeling, and neuroimaging. The three models are well selected to compare at which level (e.g., computing utility, risk preference shift, and choice probability) the social influence alters one's risky decision-making. This approach allows for a more precise understanding of the cognitive processes underlying decision-making under social observation. 

      Weaknesses: 

      While the neuroimaging results are generally consistent with the behavioral and computational findings, the strength of the neural evidence could be improved. The authors' claims about the involvement of the TPJ and mPFC in integrating social information are plausible, but further analysis, such as model comparisons at the neuroimaging level, is needed to decisively rule out alternative interpretations that other computational models suggest. 

      We appreciate the reviewer’s interest in and positive assessment of our work, and we thank the reviewer for the constructive feedback. In the current revision, we have included neural results from additional analyses, which we believe provide stronger support for our proposed computational model.

      Reviewer #3 (Public review): 

      Summary: 

      This is an important paper using a novel paradigm to examine how observation affects the social contagion of risk preferences. There is a lot of interest in the field about the mechanisms of social influence, and adding in the factor of whether observation also influences these contagion effects is intriguing.

      Strengths:

      (1) There is an impressive combination of a multi-stage behavioural task with computational modelling and neuroimaging.

      (2) The analyses are well conducted and the sample size is reasonable. 

      Weaknesses: 

      (1) Anatomically it would be helpful to more explicitly distinguish between dmPFC and vmPFC. Particularly at the end of the introduction when mPFC and vmPFC are distinguished, as the vmPFC is in the mPFC. 

      (2) The authors' definition of ROIs could be elaborated on further. They suggest that peaks are selected from neurosynth for different terms, but were there not multiple peaks identified within a functional or anatomical brain area? This section could be strengthened by confirming with anatomical ROIs where available, such as the atlases here http://www.rbmars.dds.nl/lab/CBPatlases.html and the Harvard-Oxford atlases. 

      (3) How did the authors ensure there were enough trials to generate a reliable BOLD signal? The scanned part of the study seems relatively short. 

      (4) It would be helpful to add whether any brain areas survived whole-brain correction. 

      (5) There is a concern that mediation cannot be used to make causal inferences and much larger samples are needed to support claims of mediation. The authors should change the term mediation in order to not imply causality (they could talk about indirect effects instead) and highlight that the mediation analyses are exploratory as they would not be sufficiently powered (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843527/). 

      (6) The authors may want to speculate on lifespan differences in this susceptibility to risk preferences given recent evidence that older adults are relatively more susceptible to impulsive social influence (Zhu et al, 2024, comms psychology). 

      We appreciate the reviewer’s interest in and positive assessment of our work, and we thank the reviewer for the constructive feedback. In the response letter below, we address each of the reviewer’s comments, including clarifications regarding the ROIs and the limitations of the current study in interpreting the results.

      Reviewer #1 (Recommendations for the authors):

      (1) The neuroimaging hypotheses seem post hoc to me. First, the term "social inference" is used very loosely. In line 103 the authors mentioned that TPJ has been reported to be involved in inferring other's intentions and learning about others. However, in their task, it is not clear where inference is needed. All participants need to do is recall others' "preferences", rather than inferring a hidden variable or hidden intention. In addition, in some of the studies that the authors have cited (e.g., Park et al. 2021), the hippocampus is the focus of the inference, which gets no mention here.

      How does solving this task require inference (as defined by the authors: inferring others' intentions)? And why do they choose TPJ while inference is not needed in this task?

      We regret any confusion and would like to take this chance to clarify our hypothesis on social inference. As the reviewer pointed out, participants were indeed instructed to predict their choices, through which we expected them to learn the demonstrators’ preferences. Our computational model suggests that during the main phase of the task, i.e., the Observed phase, participants simulated others’ choices based on these previously learned risk preferences of others. The gamble choices they encountered (payoffs and associated probabilities) did not overlap with those in the Learning phase, and therefore, we expected that the cognitive process triggered by the social context involved active simulation—what we describe as making inference about others—rather than simple ‘recall’ of previously learned information. In line with this reasoning, we hypothesized that the TPJ, a brain region previously implicated in simulating others’ actions and intentions, would play a key role during the Observed phase.

      Regarding the role of the hippocampus, the paper we cited by BoKyung Park et al. (2021), titled “The role of right temporoparietal junction in processing social prediction error across relationship contexts”, highlights the involvement of the rTPJ but does not mention the hippocampus. We are aware of the study by Seongmin A. Park et al. (2021), “Inferences on a multidimensional social hierarchy use a grid-like code”, which shows the involvement of the hippocampus and entorhinal cortex in making inferences about multidimensional social hierarchies; we believe the reviewer may have mistakenly assumed that we cited this article. As the study showed, the involvement of the hippocampus—and the use of its grid-like representation of social information—is likely tied to the multidimensional nature of task states. In our study, the hippocampus was not included as an ROI because we had no specific rationale to hypothesize that such grid-like representations would be recruited by our task.

      (2) Social influence can be motivated informationally (to improve accuracy) or normatively (to be aligned with others). To me, it seems that the authors have studied the latter, because, first, there is no objectively correct response in this task and second, because participants changed their risk preference according to the preference of the observing partner. This distinction has not been made throughout the manuscript. This is important because the two process (information and normative) are supported by different neural processes and it is extremely useful to understand neural basis of which process the authors are studying.

      We thank the reviewer for the opportunity to clarify the anticipated role of social influence in our study. As the reviewer pointed out, the gambling task used in our task does not have objectively correct or incorrect answers, and naturally, any social influence present during the task would align with normative social influence. To clarify this point, we have revised the discussion section as follows:

      [Page 9, Line 345]

      Observational learning and mimicry of others’ behavior are patterns commonly found in social animals, including nonhuman primates (Van de Waal et al., 2013). Such behaviors are thought to be driven either by a motivation to acquire additional information (‘informational conformity’) or by a motivation to align with group norm (‘normative conformity’), even when doing so does not necessarily lead to better outcomes (e.g., higher accuracy) (Cialdini & Goldstein, 2004). Given that there are no objectively correct or incorrect answers in the gambling task used in our study, the observed social influence is more consistent with normative conformity. However, we cannot rule out the possibility that individuals developed false beliefs about a particular observing partner—namely, that the partner had greater control over or insight into the gambling task. Future studies are needed to directly investigate whether individuals’ beliefs about others modulate informational social influence—that is, their motivation to use social information to gain additional insight by inferring others’ potential choices.

      (3) From Line 160 onward, the authors report several findings without providing any effect sizes or statistics. Please add effect size and statistics for each finding.

      We thank the reviewer for pointing this out. We have now added the corresponding effect sizes and statistical values for the reported findings, beginning from Line 160 in the revised manuscript.

      (4) Line 270: "In particular, bilateral TPJ, brain regions not implicated in the Solo phase, positively tracked trial-by-trial model-estimated decision probabilities". How can the authors conclude that TPJ is not involved in the solo phase? As far as I understood from the text, TPJ was not included as one of the ROIs for analysis of the Solo phase. If it was included, it should be mentioned in the text and there should be a direct comparison between the effect sizes of the solo and the observer phase. If not, "not implicated in the Solo phase" is not justified and should be removed.

      We apologize for the confusion. As the reviewer correctly pointed out, the TPJ was not included among the ROIs in our analysis of the Solo phase data; therefore, its involvement during the Solo phase was never directly assessed using an ROI-based approach.

      To examine brain responses during the Observed phase, we first assessed whether regions that tracked decision probabilities during the Solo phase—vmPFC, vStr, and dACC—were also engaged in the Observed phase. The involvement of the TPJ during the Observed phase was revealed through a subsequent whole-brain analysis. To clarify this point, we now have revised the corresponding part as follows:

      [Page 8, Line 276]

      In particular, bilateral TPJ positively, brain regions not implicated in the Solo phase, tracked trial-by-trial model-estimated decision probabilities

      à Notably, bilateral TPJ showed significant positive tracking of decision probabilities ~

      (5) I am a bit puzzled about the PPI analysis. Is the main finding increased connectivity within mPFC in the observing condition? PPI is often done between two separate brain regions. I am not sure what it means that connectivity within mPFC increases in one condition compared to another. What was the motivation for this analysis? Can you also please explain what it means?

      As the reviewer noted, psychophysiological interaction (PPI) analyses examine functional connectivity between brain regions as modulated by a psychological factor. To clarify our result, the reported ‘mPFC-mPFC connectivity’ refers to functional connectivity between the mPFC region responsive to the presence of an observing partner and an adjacent, anatomically distinct region within the mPFC. Note that we have revised the manuscript to refer to this region more specifically as the dorsomedial prefrontal cortex (dmPFC). Please see our response to Reviewer 3, Comment 1, for further details.

      During the Observed phase of our task, social information was processed at two distinct time points. First, at the beginning of each decision trial, individuals were cued with the presence (or absence) of an observing partner (‘Partner presentation’). Second, the gamble options, as well as the observing partner’s identity, were revealed (‘Options revealed’). Because participants had previously learned about the observing partner’s risk preferences, we expected them to simulate the choice the partner would likely make. We hypothesized that if individuals indeed simulated the partner’s choice and incorporated this information into their decision-making process, the brain region involved in recognizing the partner’s presence (dmPFC<sub>contrast</sub>) would be functionally connected to the region responsible for integrating social information into the final decision (TPJ). Our results showed that the two regions were functionally connected via an indirect path through an anatomically adjacent cluster within the mPFC (dmPFC<sub>PPI</sub>). Given that the recognition of the partner’s presence and the simulation of their choice occurred at two distinct time points, we interpreted the functional connectivity between the two dmPFC clusters (dmPFC<sub>contrast</sub> and dmPFC<sub>PPI</sub>) as evidence that the dmPFC<sub>PPI</sub>) remained engaged during the decision process to support simulation, rather than being involved solely in the passive recognition of the social context (i.e., observed vs not observed). Note that, consistent with this interpretation, functional connectivity was stronger in individuals who showed greater reliance on social information ('Social reliance' parameter in our model).

      To avoid confusion, we have now labeled the two dmPFC clusters as dmPFC<sub>contrast</sub>—the seed region identified at partner presentation—and dmPFC<sub>PPI</sub>—the target region identified in the PPI analysis.

      [Page 8, Line 284]

      This cue was intended to dissociate neural responses to the social context per se (i.e., the presence of an observing partner), which we hypothesized would initiate social processing, from the neural processes involved in incorporating this information during the subsequent decision-making phase.

      [Page 8, Line 291]

      We tested whether the dmPFC was also involved in incorporating social information during the decision process under social observation, particularly among individuals who relied more heavily on simulating others’ behavior.

      [Page 8, Line 297]

      We confirmed that the functional connectivity between the dmPFC<sub>contrast</sub> which is sensitive to cues regarding the presence of an observing partner, and its adjacent, anatomically distinct region within the dmPFC (‘dmPFC<sub>PPI</sub>’ hereafter; x = 3, y = 50, z = 5, k<sub>E</sub> = .74, cluster-level P<sub>FWE, SVC</sub> = 0.011; Fig. 4a, b, Table S5) was positively associated with individuals’ social reliance.

      (6) In Line 107 the authors say "excitatory stimulation of the TPJ improved social cognition". Improved social cognition is too general and unspecific. Please be more specific.

      We agree that the term ‘social cognition’ was too general and unspecific. In the revised manuscript, we have specified that the improvement was observed in tasks specifically involving the control of self-other representation, as demonstrated by Santiesteban et al. (2012).

      [Page 4, Line 106]

      Corroborating with these neuroimaging data, excitatory stimulation of the TPJ improved social cognition (Santiesteban et al., 2012),~

      à Corroborating these neuroimaging findings, excitatory stimulation of the TPJ improved social cognition involving the control of self-other representation (Santiesteban et al., 2012),~

      Writing:

      We thank the reviewer for their thorough evaluation of our manuscript. We have now made the necessary revisions in accordance with the provided comments.

      (7) Line 75: "one risky options" should be one risky option.

      [Page 3, Line 74]

      between one safe (i.e., guaranteed payoff) and one risky options.

      between a safe option (i.e., guaranteed payoff) and a risky option.

      (8) Line 82: were given with the same set of gamble should be "were given the same set of gamble".

      [Page 3, Line 81]

      In the third phase (‘Observed phase’), individuals were given with the same set of gamble choices they faced in the Solo phase,

      In the third phase (‘Observed phase’), individuals were given the same set of gamble choices they faced in the Solo phase,~

      (9) Line 63: and that the extent of such influence depends on the identity of the observer. It is not clear what the authors mean by the "identity of observer". Does it mean the preference of the observer?

      Van Hoorn et al. (2018) showed that the degree of social influence varies depending on whether individuals are being observed by parents or by peers. While one might attribute this difference to divergent preferences typically held by parents and peers, it is important to note that other factors may also differ between these social groups. To avoid overinterpretation while preserving the original meaning, we have revised the sentence as follows:

      [Page 3, Line 61]

      However, recent studies showed that the unidirectional influence of social others’ presence may be also observed in adults (Otterbring, 2021), and that the extent of such influence depends on the identity of the observer (Van Hoorn et al., 2018).  

      However, recent studies showed that the unidirectional influence of social others’ presence can also be observed in adults (Otterbring, 2021), and that the extent of this influence depends on the observer’s identity—specifically, whether the observer is a parent or a peer (Van Hoorn et al., 2018).

      (10) Line 103: "including inferring others' intention and in learning about others." An "in" is missing right before inferring.

      [Page 4, Line 101]

      The temporoparietal junction (TPJ) is another region known to play an important role in social cognitive functions, including inferring others’ intention and in learning about others (Behrens et al., 2008; Boorman et al., 2013; Charpentier et al., 2020; Park et al., 2021; Samson et al., 2004; Saxe & Kanwisher, 2003; Saxe & Kanwisher, 2013; Van Overwalle, 2009; Young et al., 2010).

      The temporoparietal junction (TPJ) is another region known to play an important role in a range of social cognitive functions, including simulating others’ intention and choices, as well as learning about others (Behrens et al., 2008; Boorman et al., 2013; Charpentier et al., 2020; Park et al., 2021; Samson et al., 2004; Saxe & Kanwisher, 2003; Saxe & Kanwisher, 2013; Van Overwalle, 2009; Young et al., 2010).

      (11) 106: "Corroborating with these neuroimaging data." It should be "corroborating these neuroimaging data".

      [Page 4, Line 106]

      Corroborating with these neuroimaging data, ~

      Corroborating these neuroimaging findings, ~

      (12) Lines 113-115. It is not clear what the authors are trying to say here.

      We have now revised the sentence as follows:

      [Page 4, Line 112]

      We hypothesized that even if others’ choices are not explicitly presented, simple presence of social others may trigger inference about others’ potential choices, and the same set of brain regions will play an important role in value-based decision-making.

      We hypothesized that, even in the absence of explicit information about others’ choices, the mere presence of social others could lead participants to conform to the option they believe others would choose. To do so, participants would need to simulate others’ potential choices, particularly when option values vary across trials. As a result, we propose that the same brain regions involved in simulating others’ decisions would also be engaged during value-based decision-making in the presence of social observers.

      (13) Line 151: This sentence is too long and hard to follow:

      We have now revised the sentence as follows:

      [Page 5, Line 154]

      Furthermore, individuals’ prediction responses on subsequent 10 prediction trials where no feedback was provided (Fig. 2b) as well as self-reports about the perceived riskiness of the partners collected at the end of the Learning phase (Fig. 1d) consistently showed that they were able to distinguish one partner from the other, and correctly estimate the partners’ risk preferences (Predicted risk preference: t(42) = -11.46, P = 1.66e-14; Self-report: t(42) = -35.83, P = 4.10e-33).

      Furthermore, individuals’ prediction responses during the subsequent 10 trials without feedback consistently indicated that they could distinguish between the two partners and accurately estimate each partner’s risk preferences (t(42) = -11.46, P = 1.66e-14; Fig. 2b). Self-reported ratings of the partners’ perceived riskiness, collected after the Learning phase, further supported this finding (t(42) = -35.83, P = 4.10e-33; Fig. 1d).

      (14) Line 178: This sentence is very hard to follow. I am not sure what the authors were trying to say here. Please clarify.

      We have now revised the sentence as follows:

      [Page 5, Line 183]

      Various previous studies examined the impacts of social context on decision-making processes, but the suggested mechanisms by which individuals were affected by the social information depended on how the information was presented.

      à Previous studies have shown that social context can influence decision-making processes. However, the underlying mechanisms proposed have varied depending on how the social information was presented.

      (15) Line 183: "when individuals were given with the chances" should be "when individuals were given the chance".

      [Page 5, Line 187]

      On the contrary, when individuals were given with the chances~

      On the contrary, when individuals were given the chances~

      (16) Line 192: "are sensitive to the identity of the currently observing partner...". Do the authors mean are sensitive to the preferences of the currently observing partner? If so, please clarify, it is hard to follow.

      We have now revised the sentence as follows:

      [Page 5, Line 195]

      We hypothesized that if individuals are sensitive to the identity of the currently observing partner, they would take into account the learned preferences of others in computing their choices rather than simply in guiding the direction how to change their own preferences.

      à We hypothesized that if individuals are sensitive to the learned preferences of the observing partner, they would use this information to simulate the partner’s likely choices, rather than simply aligning their own preferences with those of the partner.

      Reviewer #2 (Recommendations for the authors):

      (1) The current neuroimaging findings appear to support the decision processes of all three models. I recommend that the authors provide more detailed evidence of model comparisons in the neuroimaging analysis. This should go beyond simply comparing the goodness of fit of neural activity.

      We acknowledge that neuroimaging data alone often do not provide conclusive evidence for specific information processing. In our study, we examined brain regions that track decision probabilities and are associated with social cognition, such as simulating others’ choice tendencies. Because these processes are general and not tied to a specific computational model, neural responses supporting the occurrence of such processes cannot be used to rule out alternative decision models. For this reason, our approach prioritized a rigorous behavioral model comparison as a critical first step before probing the neural substrates underlying the proposed mechanism. Our behavioral model comparisons, including both quantitative fit indices and qualitative pattern predictions, indicated that the proposed model best accounted for participants' decision patterns across task conditions.

      More importantly, to further validate the model, we conducted a model recovery analysis (see Fig. S2b in SI), which confirmed that our model can be reliably distinguished from alternative accounts even when behavioral differences are subtle. This result suggests that our model captures unique and meaningful characteristics of the decision process that are not equally well explained by competing models.

      With this behavioral foundation, our neuroimaging analyses were designed not to serve as independent model arbiters, but rather to examine whether brain activity in regions of interest reflected the computations specified by the best-fitting model. We believe this two-step approach—first establishing behavioral validity, then linking model-derived variables to neural data—offers a principled framework for identifying the cognitive and neural mechanisms of decision-making.

      Nevertheless, per the reviewer’s suggestion, we further examined whether there is neural encoding of both the participant’s own utility and the observer’s utility—serving as potential neural evidence to differentiate our model from the two alternative models. Please see below for our response to Reviewer 2’s Comment (2).

      (2) Specifically, if participants are combining their own and simulated choices at the level of choice probability, we would expect to see neural encoding of both their own utility and the observer's utility. These may be observed in different areas of the mPFC, as demonstrated by Nicolle et al. (Neuron, 2012). In that study, decisions simulating others' choices were associated with activity in the dorsal mPFC, while one's own decisions were encoded in the vmPFC. On the contrary, if the brain encodes decision values based on the shifted risk preference, rather than encoding each decision's value in separate brain areas, this would support the alternative model.

      We thank the reviewer for this constructive comment. In our Social reliance model, we assumed that the decision probability based on an individual’s own risk preferences, as well as that based on the observing partner’s risk preferences, both contribute to the individual’s final choice. As the reviewer suggested, neural evidence that differentiates our model from the two alternative models—the Risk preference change model and the Other-conferred utility model—would involve demonstrating neural encoding of both the participant’s own utility and the observer’s utility.

      The utility differences between chosen and unchosen options from the two perspectives—self and observer—were highly correlated, preventing us from including both as regressors in the same design matrix. Instead, we defined ROIs along the ventral-to-dorsal axis of the mPFC, and examined whether each ROI more strongly reflected one’s own utility or that of the observer. Based on the meta-analysis by Clithero and Rangel (2014), we defined the most ventral mPFC ROI (ROI1) as a 10 mm-radius sphere centered at coordinate [x=-3, y=41, z=-7], a region previously associated with subjective value. From this ventral seed, we defined four additional spherical ROIs (10 mm radius each) at 12 mm intervals along the ventral-to-dorsal axis, resulting in five ROIs in total: ROI2 [x=-3, y=41, z=5], ROI3 [x=-3, y=41, z=17], ROI4 [x=-3, y=41, z=29], ROI5 [x=-3, y=41, z=41].

      Consistent with Nicolle et al. (2012), the representation of one’s own utility (labelled as ‘Own subjective value’) and that of the observer (‘Observer’s subjective value’) was organized along the ventral-to-dorsal axis of the mPFC. Specifically, utility signals from the participant’s own perspective (SV<sub>chosen, self</sub> – SV<sub>unchosen, self</sub>) were most prominently represented in the ventral-most ROIs (blue), whereas utility signals from the observer’s perspective (SV<sub>chosen, observer</sub> – SV<sub>unchosen, observer</sub>) were most strongly represented in the dorsal-most ROIs (orange).

      (3) Additionally, the authors may be able to detect neural signals related to conflict when the decisions of the individual and the observer differ, compared to when the decisions are congruent. These neural signatures would only be present if social influences are integrated at the choice level, as suggested by the authors.

      If individuals simulate the choices that others might make, they may compare them with the choices they would have made themselves. To investigate this possibility, we categorized task trials as Conflict or No-conflict trials based on greedy choice predictions derived from a softmax decision rule. Conflict trials were those in which the choice predicted from the participant’s own risk preference differed from that predicted for the observer, whereas No-conflict trials involved the same predicted choice from both perspectives. A contrast between Conflict and No-conflict trials revealed that the dACC and dlPFC—regions previously associated with conflict monitoring and cognitive control (Shenhav et al., 2013)—were sensitive to differences in choice tendencies between the self and observer perspectives.

      Author response image 1.

      dACC and dlPFC are associated with the discrepancy between participants’ own choice tendencies and those of observing partners, as estimated based on prior beliefs about the partners’ risk preferences.

      As the reviewer suggested, these results provide evidence in support of the Social Reliance model, which posits that participants simulate the observer's choice and integrate it with their own.

      (4) Incorporating these additional analyses would provide stronger evidence for distinguishing between the models.

      We again thank the reviewer for these constructive suggestions. Based on the new set of analyses and results, we have made the necessary revisions as noted above. We agree that these revisions provide stronger evidence for distinguishing between the models.

      Reviewer #3 (Recommendations for the authors):

      (1) Anatomically it would be helpful to more explicitly distinguish between dmPFC and vmPFC. Particularly at the end of the introduction when mPFC and vmPFC are distinguished, as the vmPFC is in the mPFC.

      We appreciate the reviewer’s suggestion regarding the anatomical distinction between the dmPFC and vmPFC, particularly in relation to our use of the term “mPFC.” We acknowledge that the dmPFC and vmPFC are subregions of the broader mPFC. In our original manuscript, we referred to one region as mPFC in line with prior studies highlighting its role in social cognition and contextual processing (Behrens et al., 2008; Sul et al., 2015; Wittmann et al., 2016). However, in response to the reviewer’s comment and to more clearly distinguish this region from the ventral portion of the mPFC (i.e., vmPFC), which is canonically associated with subjective valuation, we have now revised the manuscript to refer to this region as the dmPFC. This terminology better reflects its association with social cognition, including model-estimated social reliance and sensitivity to social cues in our study.

      (2) The authors' definition of ROIs could be elaborated on further. They suggest that peaks are selected from neurosynth for different terms, but were there not multiple peaks identified within a functional or anatomical brain area? This section could be strengthened by confirming with anatomical ROIs where available, such as the atlases here http://www.rbmars.dds.nl/lab/CBPatlases.html and the Harvard-Oxford atlases.

      We appreciate the opportunity to clarify how our ROIs were defined. To identify the ROIs, we drew upon both prior literature and results from a term-based meta-analysis using Neurosynth. For each meta-map, we applied an FDR-corrected threshold of p < 0.01 and a cluster extent threshold of k ≥ 100 voxels to identify distinct functional clusters. For each cluster, we constructed a spherical ROI (radius = 10 mm) centered on its center of gravity. Note that for each anatomically distinct brain region, only a single center of gravity was identified and used to define the ROI. The resulting ROIs were subsequently used for small volume correction (SVC) in the second-level fMRI analyses.

      For brain regions associated with decision-making processes, we obtained a meta-analytic activation map associated with the term “decision” from Neurosynth. After applying an FDR-corrected threshold of p < 0.001 and a cluster extent threshold of k ≥ 100 voxels, we identified five distinct clusters: vmPFC [x = -3, y = 38, z = -10]; right vStr [x = 12, y = 11, z = -7]; left vStr [x = -12, y = 8, z = -7]; dACC [x = 3, y = 26, z = 44]; and left Insula [x = -30, y = 23, z = -1]. To identify brain regions involved in decision-making under social observation, we used the Neurosynth meta-map associated with the term “social”, applying the same criteria (FDR p < 0.001, k ≥ 100). This analysis revealed several clusters, including bilateral TPJ: right TPJ [x = 51, y = -52, z = 14]; left TPJ [x = -51, y = -58, z = 17]. To isolate brain regions more specifically associated with social processing rather than valuation, we also constructed a conjunction map using the meta-maps for the terms “social” and “value.” We identified clusters present in the “social” map, but not in the “value” map. This analysis yielded, among others, a cluster in the dmPFC [x = 0, y = 50, z = 14].

      To clarify our ROI analysis methods, we have now revised the manuscript to include more detailed information about the procedures used, as follows:

      [Page 19, Line 746]

      Region-of-interest (ROI) analyses. To define ROIs for the neural analyses conducted in the Observed phase, we used significant clusters identified during the Solo phase. Specifically, regions showing significant activation for Prob(chosen) in the DM0 (thresholded at P < 0.001) were selected as ROIs. Three ROI clusters were defined: the vStr (peak voxel at [x = 3, y = 14, z = -10], k<sub>E</sub> = 9), vmPFC (peak voxel at [x = –3, y = 62, z = –13], k<sub>E</sub> = 99), and dACC (peak voxel at [x = 12, y = 32, z = 29], k<sub>E</sub> = 118). These ROIs were then applied in the Observed phase analyses to test whether similar neural representations are also engaged in social contexts.

      Term-based meta-analytic maps from Neurosynth for small volume correction. To reduce the likelihood of false positives arising from random significant activations and to enhance sensitivity within regions of theoretical interest, small volume correction (SVC) was applied using term-based meta-analytic maps from Neurosynth. This approach allows for hypothesis-driven correction by restricting statistical testing to anatomically and functionally defined ROI. Specifically, three meta-analytic maps were generated using Neurosynth’s term-based analyses (Yarkoni et al., 2011), with a false discovery rate (FDR) corrected P < 0.01 and a cluster size > 100 voxels. For each resulting cluster, we defined a spherical ROI with a 10 mm radius centered on the cluster’s center of gravity. For each anatomically distinct brain region, only a single center of gravity was identified and used to define the corresponding ROI.

      First, to identify regions encoding final decision probabilities during the Solo phase and enhance sensitivity, we used the meta-map associated with the term “decision” to identify neural substrates of value-based decision-making. This yielded three clusters: vmPFC ([x = -3, y = 38, z = -10]), vStr ([x = 12, y = 11, z = -7]), and dACC ([x = 3, y = 26, z = 44]) (Fig. 3a, S7). Second, to examine social processing during the Observed phase, we used the meta-map associated with the term “social” to identify brain regions typically involved in social cognition. This analysis revealed clusters, including the rTPJ ([x = 51, y = -52, z = 14]) and lTPJ ([x = -51, y = -58, z = 17]) (Fig. 3c, S8a). Third, to define an ROI involved in processing social cues independent of valuation, we used a meta-map associated with “social” but excluding “value”, isolating regions specific to non-valuation-related social cognition. This analysis revealed a cluster, including the dmPFC ([x = 0, y = 50, z = 14]) (Fig. 3d, 4a, S8b).

      (3) How did the authors ensure there were enough trials to generate a reliable BOLD signal? The scanned part of the study seems relatively short.

      We appreciate the reviewer’s concern regarding the number of trials and the potential implications for the reliability of the resulting BOLD signals. While we did not conduct formal statistical tests to determine the optimal number of trials, our task design, in general, followed well-established principles in functional neuroimaging. Specifically, we employed a jittered event-related design and used both temporal and dispersion derivatives in the GLM analyses. These strategies are widely recognized for enhancing the efficiency of BOLD signal deconvolution and improving model fit by accounting for inter-subject and inter-regional variability in the hemodynamic response function (HRF). Furthermore, the number of trials per condition in our study was comparable to those reported in previous publications (20-30 trials) that employed similar gambling paradigms to examine individual differences in the neural substrates of value-based decision-making (Chung et al., 2015; Chung et al., 2020).

      (4) It would be helpful to add whether any brain areas survived whole-brain correction.

      No brain regions survived whole-brain correction. Nevertheless, as described in the introduction, we had strong a priori hypotheses. Based on these hypotheses, we defined term-based ROIs using Neurosynth, and conducted small volume correction analyses. Per the reviewer’s suggestion, we have added information indicating that no brain regions survived whole-brain correction, as follows:

      [Page 8, Line 281]

      No additional regions survived whole-brain correction.

      (5) There is a concern that mediation cannot be used to make causal inferences and much larger samples are needed to support claims of mediation. The authors should change the term mediation in order to not imply causality (they could talk about indirect effects instead) and highlight that the mediation analyses are exploratory as they would not be sufficiently powered (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843527/).

      We acknowledge the reviewer’s concerns regarding the causal interpretation of mediation analysis results. Per this comment, we have revised the manuscript as follows to avoid overinterpreting these results and to refrain from implying any causal inference.

      [Page 9, Line 327]

      Given that our sample size is smaller than the recommended threshold for detecting mediation effects (Fritz & MacKinnon, 2007), this significant indirect effect should be interpreted with caution, particularly with respect to causal inference.

      (6) The authors may want to speculate on lifespan differences in this susceptibility to risk preferences given recent evidence that older adults are relatively more susceptible to impulsive social influence (Zhu et al, 2024, comms psychology).

      We thank the reviewer for the thoughtful suggestion—we believe the referenced work is Zhilin Su et al. (2024). As noted in our manuscript, all participants in the current study were young adults aged between 18 and 29 years. Given this limited age range, our dataset does not provide sufficient variability to directly examine age-related differences across the lifespan. However, we are planning a follow-up study using the same task with older adult participants, which we believe will provide a valuable opportunity to address this important gap in understanding susceptibility to social influence across the lifespan.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Felipe and colleagues try to answer an important question in Sarbecovirus Orf9b-mediated interferon signaling suppression, given that this small viral protein adopts two distinct conformations, a dimeric β-sheet-rich fold and a helix-rich monomeric fold when bound by Tom70 protein. Two Orf9b structures determined by X-ray crystallography and Cryo-EM suggest an equilibrium between the two Orf9b conformations, and it is important to understand how this equilibrium relates to its functions. To answer these questions, the authors developed a series of ordinary differential equations (ODE) describing the Orf9b conformation equilibrium between homodimers and monomers binding to Tom70. They used SPR and a fluorescent polarization (FP) peptide displacement assay to identify parameters for the equilibrium and create a theoretical model. They then used the model to characterize the effect of lipid-binding and the effects of Orf9b mutations in homodimer stability, lipid binding, and dimer-monomer equilibrium. They used their model to further analyze dimerization, lipid binding, and Orf9b-Tom70 interactions for truncated Orf9b, Orf9b fusion mutant S53E (blocking Tom70 binding), and Orf9b from a set of Sars-CoV-2 VOCs. They evaluated the ability of different Orf9b variants for binding Tom70 using Co-IP experiments and assessed their activity in suppressing IFN signaling in cells.

      Overall, this work is well designed, the results are of high quality and well-presented; the results support their conclusions.

      We thank reviewer #1 for their thoughtful assessment of our work and their constructive feedback.

      Strengths:

      (1) They developed a working biophysical model for analyzing Orf9b monomer-dimer equilibrium and Tom70 binding based on SPR and FP experiments; this is an important tool for future investigation.

      (2) They prepared lipid-free Orf9b homodimer and determined its crystal structure.

      (3) They designed and purified obligate Orf9b monomer, fused-dimer, etc., a very important Orf9b variant for further investigations.

      (4) They identified the lipid bound by Orf9b homodimer using mass spectra data.

      (5) They proposed a working model of Orf9b-Tom70 equilibrium.

      Weaknesses:

      (1) It is difficult to understand why the obligate Orf9b dimer has similar IFN inhibition activity as the WT protein and obligate Orf9b monomer truncations.

      We thank the reviewer for their observation and agree that the obligate homodimer IFN results were not what we expected to observe given our FP kinetic results with the purified obligate homodimer and noted our surprise in the discussion. We also note that we have two possible hypotheses for why this is the case.

      In our discussion, we noted the possible introduction of an increased avidity effect with fused homodimer and have improved it as follows with additions in red:

      “This result was unexpected as we had anticipated the obligate homodimer results to resemble the phosphomimetic. We hypothesize that this may be explained by two possible factors. First, we can’t exclude the introduction of an increased avidity between Orf9b and Tom70 when using the fused homodimer. Although our modeled decrease in the association rate of Orf9b:Tom70 (which increases the K<sub>D</sub> of the complex) suggests that fusing two copies of Orf9b decreases the affinity to Tom70, one copy of the fusion construct could also be capable of either binding to two copies of Tom70, or, one copy of the fusion could undergo rapid rebinding to Tom70. These effects would lead to a much tighter interaction in cellular assays than we modeled in vitro. A second possible explanation is that our assumptions about high lipid binding are not valid for cell based assays.”

      We also noted that a second possible explanation is due to our limitations in isolating the apo-fused homodimer to compare to the lipid-bound fused homodimer and possible differences this could have on our assays and briefly expanded upon this. Again, we improved this with additions in red:

      “As we have shown with both WT and fusion constructs, recombinantly expressed and purified Orf9b is lipid-bound and this can stabilize the homodimer to slow or inhibit the binding to Tom70. For the Orf9b fusion construct, we attempted to isolate the lipid-free species through protein refolding as previously described to compare the effect of lipid-binding on the homodimer fusion (similar to our WT experiments); however, we could not recover the stably folded homodimer. We hypothesize that the discrepancy between our kinetic results and Co-IP/IFN results could be due to subsaturation of the Orf9b fusion homodimers by lipids in cell based assays. While we have shown that lipid-binding occurs in recombinant expression systems, it is possible that in our cell based signaling assays that lipid-binding only affects a minor population of Orf9b. Given that we were unable to isolate the apo-fusion homodimer, we could not directly compare whether there are differences in fusion homodimer stability in the presence or absence of lipid-binding. Therefore, it is possible that the apo-fusion homodimer undergoes unfolding and refolding into alpha helices that lead to Tom70 binding similar to the WT construct.”

      (2) The role of Orf9b homodimer and the role of Orf9b-bound lipid in virus infection, remains unknown.

      We agree that we did not try to directly test for the role of the homodimer during infection and this remains an open area of exploration for future studies. We have included this caveat in our discussion but suggested possible experiments and future directions that could help shed light on this:

      “Although we have not directly tested for the role the homodimer conformation plays during infection, we have demonstrated that lipid-binding to the homodimer can bias the equilibrium away from Tom70. Lipids including palmitate have been shown to act as both a signaling molecule as well as a post-translational modification during antiviral innate immune signaling (S Mesquita et al. 2024; Wen et al. 2022; S. Yang et al. 2019). As a post-translational modification (referred to as S-acylation), MAVS, a mitochondrial type 1 IFN signaling protein that associates with Tom70 (X.-Y. Liu et al. 2010; McWhirter, Tenoever, and Maniatis 2005; Seth et al. 2005), has been shown to be post-translationally palmitoylated which affects its ability to localize to the mitochondrial outer membrane during viral infection and is a known target of Orf9b (Bu et al. 2024; Lee et al. 2024). When this is impaired (either by mutation or by depletion of the palmitoylation enzyme ZDHHC24), IFN activation is impaired (Bu et al. 2024). Therefore, future investigations should consider if the homodimer conformation of Orf9b is capable of antagonizing other IFN signaling factors such as MAVS by binding to palmitoyl groups. Indeed, Orf9b has already been shown to be capable of binding to MAVS by Co-IP (Han et al. 2021), however, whether or not this occurs through the palmitoyl modification remains unknown.”

      Reviewer #2 (Public review):

      Summary:

      This study focuses on Orf9b, a SARS-COV1/2 protein that regulates innate signaling through interaction with Tom70. San Felipe et al use a combination of biophysical methods to characterize the coupling between lipid-binding, dimerization, conformational change, and protein-protein-interaction equilibria for the Orf9b-Tom70 system. Their analysis provides a detailed explanation for previous observations of Orf9b function. In a cellular context, they find other factors may also be important for the biological functioning of Orf9b.

      Strengths:

      San Felipe et al elegantly combine structural biology, biophysics, kinetic modelling, and cellular assays, allowing detailed analysis of the Orf9b-Tom70 system. Such complex systems involving coupled equilibria are prevalent in various aspects of biology, and a quantitative description of them, while challenging, provides a detailed understanding and prediction of biological outcomes. Using SPR to guide initial estimates of the rate constants for solution measurements is an interesting approach.

      Weaknesses:

      This study would benefit from a more quantitative description of uncertainties in the numerous rate constants of the models, either through a detailed presentation of the sensitivity analysis or another approach such as MCMC. Quantitative uncertainty analysis, such as MCMC is not trivial for ODEs, particularly when they involve many parameters and are to be fitted to numerous data points, as is the case for this study. The authors use sensitivity analysis as an alternative, however, the results of the sensitivity analysis are not presented in detail, and I believe the authors should consider whether there is a way to present this analysis more quantitatively. For example, could the residuals for each +/-10% parameter change for the peptide model be presented as a supplementary figure, and similarly for the more complex models? Further details of the range of rate constants tested would be useful, particularly for the ka and kB parameters.

      We thank the reviewer for their constructive feedback and have generated supplemental figures providing a deeper analysis of the residuals for each model parameter adjusted +/- 10% from the reported values which we have added to our supplemental figures as Figure 1 - Supplemental 3 and Figure 4 - Supplemental 5  .

      We note that there are modest improvements in residual plots where model parameters are individually lowered by 10% from their reported value when considering this single dataset, however, our choice of using the reported values was driven by finding values that were suitable for improving model behavior across multiple concentration series in different datasets. Specifically, we have also included the RMSD values for each model parameter subjected to a +/-10% change from a single concentration time course as well as the percent change in RMSD relative to the RMSD generated by our reported model parameters to illustrate this. We have also included text that makes note of the observed pattern in the residuals from Figure 4 - Supplement 5 and provided some explanations for why this may occur.

      “Inspection of the residuals from the 5uM apo-Orf9b homodimer time course showed clear patterns when individual model parameters were subjected to a 10% increase or decrease from the reported values. While our proposed model qualitatively describes the concentration dependent change in kinetic behavior, the residual plots may suggest that additional binding reactions may also be occurring that are not captured by our model.”

      Figure 1 - Supplemental 3. Plots of residuals from Orf9b peptide model showing effect of an increase or decrease by 10% on each model parameter. All residuals and reporting are with respect to the100uM of unlabeled Orf9b peptide condition. Blue dots: reported value. Red dots: 10% increase in reported value. Green dots: 10% decrease in reported value. Table reporting of RMSD values for model fitsafter +/-10% change to model parameter (Left column) and percent change in RMSD relative to reported model RMSD (Right column).

      “As an alternative to attempting to place CIs on the parameters, we performed sensitivity analysis to determine which parameters the model was most sensitive to (see methods and Figure 1 - Supplemental 3). Additionally, we note that the model parameters were derived from the fit of only one concentration (100uM), but fit the other concentrations equally well. We observed that the model parameter that was most sensitive to change was the rate of Orf9b-FITC:Tom70 ([PT]) dissociation when subjected to a 10% increase or decrease whereas all other model parameters showed no sensitivity to change (Figure 1 - Supplemental 3).”

      Figure 4 - Supplemental 5: Plot of residuals showing the effect of increasing or decreasing individual model parameters 10% compared to the reported values. All residual plots are with respect to the 5uM apo-Orf9b homodimer condition. Blue dots: reported value. Red dot: 10% increase in reported value. Green dot: 10% decrease in reported value. (Left columns) Table of RMSD values calculated from model fits showing the effect of both +/-10% change to individual model parameters. (Right columns) Percent change in RMSD values subjected to +/-10% change for individual model parameters relative to the RMSD of the reported model.

      We have also included the following revised text to accompany this figure.

      “Further, we repeated the sensitivity analysis described previously for the peptide model and also considered the sensitivity of model parameters by inspecting each individually (Figure 4- figure supplemental 5). We found that when examining the residuals of the lowest concentration of 5uM, the model was most sensitive to changes in three parameters: the rate of homodimer association and dissociation and the conversion from β to α-monomers.”

      “Therefore, under low concentrations of Orf9b homodimer, binding to Tom70 is limited by the rate of homodimer association and dissociation as well as the conversion of Orf9b monomers to the α-helical conformation.”

      We have also included a supplemental figure showing how changes in the model parameters ka and kB affect the models behavior to help illustrate the range of values tested as Figure 4 - Supplemental 4.

      Figure 4 - Supplemental 4: Plots of model behavior showing the effect of changes to alpha-beta and beta-alpha monomer  interconversion rates compared to experimental values. Data is modeled with respect to the apo-Orf9b homodimer 5uM condition. Black line represents reported model fit and values used.

      We have also incorporated the following revised text.

      “The model parameters k<sub>a</sub> and k<sub>B</sub> describe the rate of interchange between the β-sheet and α-helix monomer conformations. These parameters must be estimated by modeling because our assays do not allow us to directly measure the folding rates between these conformations. To identify these values, we performed a scan of k<sub>a</sub> and k<sub>B</sub> values that yielded the best agreement between the model and the experimental conditions (Figure 4 - figure supplemental 4).”

      The authors build a model that incorporates an α-helix-β-sheet conformational change, but the rate constant for the conversion to the α-helix conformation is required to be second order. Although the authors provide some rationale, I do not find this satisfactorily convincing given the large number of adjustable parameters in the model and the use of manual model fitting. The authors should discuss whether there is any precedence for second-order rate constants for conformational changes in the literature. On page 14, the authors state this rate constant "had to be non-linear in the monomer β-sheet concentration" - how many other models did the authors explore? For example, would αT↔α↔αα↔ββ (i.e., conformational change before dimer dissociation) or α↔βαT↔ββ (i.e., Tom70 binding driving dimer dissociation) be other plausible models for the conformational change that do not require assumptions of second-order rate constants for the conformational change?

      We thank the reviewer for their feedback. During our studies, we tested several models prior to the final one presented in Figure 4A. The first model that we tested as described in Figure 4 - Supplemental 3 described ββ↔α↔αT with no conformational change. We tested several models that integrated the existing structural data for both Orf9b and Tom70 and found that while these models could fit individual time series, they did not explain the concentration dependent changes in subsequent time series nor did they explain changes induced by lipid-binding and mutations in VOC.

      With respect to the possibilities of αT↔α↔αα↔ββ and α↔βαT↔ββ models, we have revised our manuscript to mention that we did test additional models before we settled on the model that we presented.

      “We tested different reaction schemes that incorporated the interconversion between β-sheet to α-helix conformations by considering models that described a conformational change in the homodimer leading to Tom70 binding rather than monomers. None of these models adequately described our experimental results, therefore we continued developing our model as outlined in Figure 4D”

      With respect to the second-order rate describing the fold change from β to α, we have added the revised text to the manuscript:

      “We initially tested the impact of keeping the rate constant k<sub>a</sub> first order, just like k<sub>B</sub> which did yield the sigmoidal behavior we observed in the 5uM apo-homodimer condition. However, this assumption failed to describe the data at other concentrations resulting in a substantial overestimation compared to our experimental results when holding k<sub>B</sub> at a constant value throughout. We found that when the β-sheet to α-helix rate (k<sub>a</sub> ) was made a second order rate constant, we were able to hold the rate constant across all concentrations tested suggesting a non-linearity in the monomer β-sheet concentration.”

      While this was surprising to us, we reasoned that a biological explanation for why the conversion from β to α was second order was that the β-monomers may transiently self-associate to cooperatively fold into the α-helical conformation. We did acknowledge this choice to make the β to α parameter non-linear (unlike the α to β conversion which was single order).

      We concede that we could not find specific examples describing non-linear kinetics comparable to the system we described in literature, however, such systems have been reported for proteins that exhibit high structural plasticity where transient interactions with another copy of the protein or another protein altogether drive folding changes and we have revised this manuscript to include some additional citations to papers that describe such systems (Zuber et al. 2022; Tuinstra et al. 2008).

      Overall, this study progresses the analysis of coupled equilibria and provides insights into Orf9b function.

      Reviewer #1 (Recommendations for the authors):

      (1) What was the unlabeled Orf9b peptide is added to the pre-equilibrated Orf9b-FITC:Tom70 solution as a competitor? Figure 1D illustrates that the competitor was full-length Orf9b.

      We have revised the figure to illustrate that in this experiment, the competitor is the unlabeled FITC peptide and not the full length Orf9b sequence

      (2) Figure 2B, what is the higher Mw peak from refolded Orf9b homodimer.

      We have added the following revised text (highlighted in red) to the manuscript to clarify Figure 2B.

      “The SEC elution profile and retention volume of refolded Orf9b directly overlapped with natively folded homodimeric Orf9b and suggested a high recovery of the refolded homodimer with the early eluting peaks corresponding to either a chaperone-bound species (natively folded) or misfolded protein (refolded) as judged by SDS-PAGE (Figure 2B). Together, the overlap in elution peaks corresponding to the folded homodimer suggested a high recovery of the homodimer from the refolding conditions.”

      (3) Figure 2C, in the main text, the authors state that "...observed that the refolded homodimer structure closely aligned with the lipid-bound reference structure, which shows that the homodimer fold can be recovered after denaturing". Please provide structural comparison details here, software used? Rmsd and Dali Z-score.

      We have added the following revised text (highlighted in red) to the manuscript to clarify Figure 2C.

      “Aligning the structure of the Orf9b homodimer (PDB 6Z4U) with our structure of the refolded Orf9b homodimer (9N55) in Pymol resulted in an RMSD of 1.1Å. Further, we also searched our structures of the refolded Orf9b homodimer on the Dali server against the existing structures of the lipid-bound Orf9b homodimer which yielded a Z-score of 2.2 which shows good correspondence between the structures.”

      (4) To prove the refolded Orf9b homodimer did not contain lipid, could the authors provide mass spectra data for the refolded Orf9b sample and compare it with the results in Figure 2 - Supplemental 1.

      We do not have complete mass spectra data for the refolded homodimer samples, however, we feel that the native mass spectrometry data provides a good orthogonal comparison between natively folded and refolded samples for the presence or absence of lipids. We concede that we only used mass spectrometry to characterize the four peaks that were unique to the natively folded deconvoluted spectra which confirmed that shift in mass relative to the expected homodimer molecular weight corresponded to the two lipids we presented. However, we would expect that performing mass spectrometry on the refolded sample would only further confirm our observations from the crystal structures and the native mass spectrometry.

      (5) Have the authors tried to use analytical ultracentrifugation to analyze the Orf9b dimer-monomer equilibrium, given that AUC provides a much more accurate measurement of molecular mass?

      We thank the reviewer for this suggestion and agree that AUC could be an additional useful strategy for monitoring the dimer-monomer equilibrium and provide additional validation of the molecule weights of both the monomer and homodimer.

      While we have not performed AUC, we have revised our manuscript to include more discussion about the determination of molecular weights by SEC.

      “For the Orf9b homodimer, the retention volume was consistent with molecular weight standards based on the expected molecular weight of the homodimer (~21kDa) and the standard (~29kDa). In the case of the Orf9b monomer, although we would expect the retention volume of the monomer (~10.6kDA) to be between the molecular weight standards of 13.4kDa and 6.5kDa, the greater retention volume could be explained by non-specific hydrophobic interactions between the monomeric Orf9b and the column.”

      (6) The authors used truncation of 7 C-terminal amino acids to generate an obligate Orf9b monomer for their assays. It would be interesting to mutate residues at the homodimer interface to generate Orf9b monomers rather than deleting residues. For example, mutate 91-96aa (FVVVTV) to negatively charged residues, which will not only disrupt the dimerization interface, but also impair lipid binding. The dimer interface mutant should then be tested in their SPR, FP assays, as well as IFN inhibition assays.

      We thank the reviewer for their suggestion and agree that mutation of the 7 C-terminal amino acids into negatively charged residues could be an interesting alternative strategy to generating an obligate Orf9b monomer without the need for truncating the residues. Our choice of using the truncated construct we proposed was driven by our analysis of the structure of the homodimer which reveals that a significant portion of the dimer interface is composed of backbone-backbone hydrogen bonding between the two chains of Orf9b. We reasoned that truncating these residues would be the most effective way to compromise the interface between the two chains and drive a predominantly monomeric behavior, however, compromising the interface with multiple mutations is an intriguing alternative.

      Reviewer #2 (Recommendations for the authors):

      (1) The authors could comment on the slow monomer-dimer exchange observed by SEC and how it fits with their other analysis.

      We thank the reviewer for their comment and concede that the slow exchange may be a limitation of this experimental setup. Our observations from our SPR experiments and modeling showed us that the homodimer may be fast to dissociate into monomer given the off rate which would suggest a half-life for the homodimer to be on the order of seconds, however, we still observe a noticeable dimer species on the chromatograms. We initially allowed the diluted samples to reach equilibrium prior to injection onto the analytical sizing column, however, it is possible that the system is still in a pre-equilibrium prior to injection onto the column. This could be driven by interactions between the protein and the column that prevents full dissociation of the homodimer. While this is a limitation, we note that we did not use the Kd value that we determined by non-linear regression fitting to the equilibrium observed on the chromatograms for downstream experiments but instead used the value to get a ballpark estimate for the homodimer Kd which is on the same order as the Kd determined by SPR.

      (2) It might be useful to include the rate constants on the reaction arrows of the schematic representation of the models.

      We have revised Figure 4D to include the rates for both Orf9b monomer binding to Tom70 and Orf9b binding to Orf9b as derived from the SPR experiments as well as the modeled values for the interconversion between α and β monomers. We also revised Figure 7 to include these values as well as the modeled dissociation rate for homodimer when lipid-bound.

      (3) I couldn't find how the sensitivity analysis was performed for the more complex models. Was this the same +/- 10% as per the peptide model?

      We used the same +/- 10% sensitivity analysis for the peptide model in the more complex equilibrium model and have revised our manuscript to clearly reflect that.

      (4) Further clarification of "inspection of residuals suggested that the fits were accurate". In Figure 1B, the residues look to have systematic errors, perhaps indicating other processes occurring.

      We agree that in the SPR kinetic fitting results for the Orf9b peptide binding to Tom70 in Figure 1B that there are some regions where the fit over or under estimates the experimental results. This is partially the result of limitations in the number of different binding models that we can fit in the analysis software which is why we reported using a 1:1 langmuir binding model. It is certainly possible that there may be some additional binding reactions that occur, however, we limited our use of these specific kinetic results to the peptide model that we proposed in Figure 1D. We did note in the manuscript text that it was necessary for us to change the model parameter values to some extent in order to fit our experimental results which may be partially explained by the SPR fitting errors.

      “With the parameter set obtained from the 100µM condition, we then held all parameters fixed and simply changed the peptide concentrations in the model to fit the remaining conditions by hand. We note that this process saw the model parameter values change between 3% at the lowest end up to 70% at the highest end from the experimentally derived values but remained within an order of magnitude of the experimental SPR values. We speculate that this arises due to the differences in experimental setup between SPR and FP-based methods of measuring kinetics.”

      (5) The manuscript builds logically, but given the sophisticated nature of the system and the modelling could benefit from more clarity/streamlining in the descriptions/illustrations.

      We have revised our manuscript in response to both reviewers comments and hope that the clarity of the work is improved as a result.

      (6) Figure 4 Supplement 3 - where did the rate constants for Model 1 come from? Was there any attempt to alter them to fit the data better?

      We have clarified in the figure description that the rate constants used in Model 1 were the same values used in Figure 4B (but without the interconversion between beta and alpha rates).

      “Comparison of kinetic model 1 and 2 in describing experimental results from the kinetic binding assay. Experimental results using 10uM of refolded Orf9b homodimer are shown as rings with the predicted behavior of model 1 (equilibrium exchange) shown as a dark blue line. The predicted behavior of model 2 (equilibrium exchange with a conformational change between β-sheet and ɑ-helical monomers) is shown as the light blue line. Model parameter values were the same as described in Figure 4D and kept constant in both model comparisons.”

      (7) What are and [PT] in the second set of equations (page 13)?

      [‘PT] refers to the concentration of “fluorescent probe” (Orf9b-FITC) and Tom70.

      (8) "Additionally, the fused homodimer association rate (which can be viewed as a rate of tertiary complex formation)" - can the authors provide a mathematical proof for this?

      In the case of the fused homodimer kinetic data, we did not develop a separate model to explicitly take into account the differences between using a fused construct versus the WT construct that can dissociate into monomers. We have clarified our interpretation of this in the manuscript.

      “Although our model explicitly describes homodimer dissociation into monomers as a requisite step for Orf9b binding to Tom70, we adapted it for the fusion experimental data. In this case, all model parameters other than the association and dissociation kinetics of the fluorescent probe and Tom70 were adjusted to achieve the best agreement with the experimental data. When applied to the fusion homodimer, the parameters describing homodimer dissociation into separate monomers could instead describe the dissociation of the two β-sheet domains away from each other in the tertiary structure but remaining physically linked through the linker region.”

      (9) "For Lambda and Omicron, the P10S mutation results in the serine being positioned to form several hydrogen bonds between R13 and the backbone carbonyl of A11 and L48 within the same chain..." is this taken from AlphaFold predicted structures of the mutants? If so, it should be made clear that this is derived from predicted structures. And even so, AlphaFold can be poor at determining structures of mutants, and so there is greater uncertainty in the prediction of the bonds.

      For Lambda, Omicron, and Delta mutations, we used Pymol to examine how the placement of mutations could structurally explain the kinetic differences we observed in our model. We have gone back and clarified in the figure description that these predictions are not derived from AlphaFold.

      (10) "biological replicates" - is this different protein purifications?

      Yes, in this case biological replicates refer to different protein purifications for all variants described and tested.

      (11) Are any of the authors involved in the Berkeley Madonna commercial software used in the manuscript? If so, should this be in the conflict of interest statement?

      Yes, Michael Grabe is an owner of Berkeley Madonna, and we have updated our conflicts of interest statement to reflect this.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer 1:

      I would suggest that the authors focus on what I think is the main goal of the work, namely, to consider the whole cell contour when characterizing cell shape instead of only some points on the contour. A reference to the connection with Minkowski tensors and the biologically relevant mathematical consequences of this connection would suffice; a detailed definition of the Minkowski tensors does not seem to be necessary. Especially because you do not really use them. You could use the analysis of the simulation data to explain what the γ<sub>p</sub> miss and for which statements they would be sufficient.

      We argue that the explanation of Minkowski tensors is helpful and should remain in the Methods and materials section. There are two reasons: First, our argumentation relays on the robustness and stability properties of Minkowski tensors. Introducing q<sub>p</sub> without the connection to Minkowski tensors would not allow us to make these statements. Second, Minkowski tensors seem not well known in the community, otherwise measures like γ<sub>p</sub> would not have been introduced. Furthermore, readers not interested in the technical details could skip this part of the manuscript and directly go to the Results section. Concerning the questions, what the γ<sub>p</sub> miss and for which statements they would be sufficient, the answer from a purly mathematical point of view is rather simple: As γ<sub>p</sub> does not share robustness and stability it should not be used in any case! The provided results on computational and experimental data demonstrate the consequences of using such measures. In case of the proposed nematic-hexatic transition in Armengol-Collade et al. (2023) the consequence is severe, as this transition is specific only to the used method but not to the underlying physics. A second aspect which we now further highlight is the influence of approximating a cell by a polygon. We demonstrate that this approximation is responsible for a strong hexatic order on the cellular scale in the considered MDCK data from Armengol-Collade et al. (2023).

      It is not clear to me what we should learn about the two tissue models by using q<sub>2</sub> and q<sub>6</sub> to quantify cell shape. Can you clearly formulate one or more conclusions?

      What we can learn from the research is a dependence of q<sub>p</sub> on model parameters in the two tissue models is

      increases with higher activity or deformability

      decreases with higher activity or deformability.

      Furthermore, q<sub>2</sub> and q<sub>6</sub> are independent and describe distinct properties. Using these models as a basis to coarse-grain and derive continuous models on the tissue scale, these results indicate that more general p-atic liquid crystal theories should be used and the simplest nematic liquid crystal theories might not be sufficient.

      The experimental data and their analysis does not seem to add anything to the work. Do you report only data from independent measurements, or did you consider all images of a monolayer?

      As we now also analyze experimental data from Armengol-Collado et al. (2023) which confirm our findings on independency of q<sub>2</sub> and q<sub>6</sub> and also confirm that the proposed nematic-hexatic transition is only specific to the use of γ<sub>p</sub> for characterizing the shape, additional experimental data are indeed no longer needed. We, therefore, skip the detailed analysis of this data and only keep the results in Fig 1 and Fig 2 and the corresponding figures in the appendix as illustrating examples.

      L13: ”P-atic liquid crystal theories offer new perspectives on how cells self-organize (...)” This is a difficult entry, because the average reader of eLife might not be familiar with p-atic liquid crystals.

      We agree that p-atic liquid crystals might not be familiar to the average reader. For this reason we introduce orientational order in the introduction with examples demonstrating that not only nematic, but also tetratic and hexatic order have been identified in tissue and introduce the different symmetries. Furthermore, we provide examples for p-atic liquid crystals from other fields and various references. In the conclusion, we also cite models for p-atic liquid crystal theories. Even if the average reader is not familiar with these theories, it should become evident that nematic order might not be sufficient to describe tissue as other symmetries are present as well.

      L32: ”nematic” needs to be introduced.

      Nematic order is already explained as rotational order with 180° degrees. The references cited discuss nematic liquid crystals in the context of morphological changes in tissue. We therefore only added a standard text book as reference for liquid crystal theories and refrain introducing it in more detail in the manuscript.

      Figure 1: Why do you show the data for q<sub>3</sub>, q<sub>4</sub>, and q<sub>5</sub>, which you do not really consider in this manuscript? Same for Figure 2. Why not combine the two figures? Furthermore, you show q<sub>p</sub> without having defined them yet.

      We consider all p \= 2,3,4,5,6, but focus on p = 2,6 in the main text and p = 3,4,5 in the appendix. Figures 1 and 2 essentially only introduce the subject and help to relate p-atic order to cell shapes and introduce the methodology to analyze the data. Our conclusion is that all p can be important and should be considered in continuous descriptions of tissue.

      Equation 1: The notation is confusing: the domain of integration (C or ∂C) also appears as the variable you integrate.

      The equation is correct. The variable of integration is 1 or H and the domain of integration is C (cell) or ∂C (cell contour).

      L68: ”a snapshot of the considered monolayer of wild-type MDCK cells”. Did you analyse only one monolayer? Please, provide information about the number of monolayers that were imaged and how many cell shapes were analyzed.

      We have analyzed one monolayer and have added the missing information.

      L86: ”field-specific prefactors” I do not understand what is meant by these.

      Different communities, e.g. physics, mathematics, cosmology, .... use different prefactors in the definition. We have removed this statement.

      L89: ”Hadwiger’s characterization theorem”. What is this?

      This mathematical result is important to claim robustness and stability, it can be found in the cited reference.

      L104: ”the essential property is the continuity”. Essential for what?

      Essential ”for our purpose” to characterize the shape of cells by a robust method.

      L120: ”the theory also guarantees robust description of p-atic orientation for p = 3,4,5,6,...” I do not understand what you mean.

      The previous examples only consider p \= 2. However, the cited theoretical results also hold for p = 3,4,5,6,..

      Equations (5) and (6): You define ψ<sub>p</sub>(C) twice. Are the definitions equivalent? Why do you need both?

      This is not a different definition, equation (6) is a reformulation which is more useful for our purpose. But we indeed define ϑ<sub>p</sub> twice. We now use a new symbol to distinguish ϑ<sub>p</sub> in Equation 7 and 9.

      Figure 4: ”The visualization uses rotationally-symmetric direction fields (known as p-RoSy fields in computer graphics (Vaxman et al., 2016)).” I guess that you have used these fields already in Figure 1, so why introduce them only now?

      We have moved this comment to Figure 1.

      Figure 6: Using a few discrete values cannot illustrate continuity. Also, the ”jump” in γ<sub>p</sub> results from deleting a vertex, so I doubt that this is a fair comparison. Still, I think that it is important to point out to the reader that the value γ<sub>p</sub> depends on the number of vertices (here, I allow that two edges connected by a vertex are aligned).

      We adjusted the caption to make our point more clear. The last image is a triangle and according to the definition of γ<sub>p</sub> is, therefore, described by only three vertices. So, it is indeed a fair comparison. The reviewer is right that the value of γ<sub>p</sub> has a strong dependency of the number of used vertices, this is exactly the point that we are trying to make with this figure. Also, adding vertices artificially to make γ<sub>p</sub> continuous leads to more problems, as the values for γ<sub>p</sub> change if we change the number of vertices. But an equilateral triangle should be recognized as an equilateral triangle, no matter if there is an artificial fourth vertex or not. The triangle in our picture and the triangle that the reviewer mentioned (so our triangle with an artificial fourth vertex) both have the shape of an equilateral triangle, yet for one it is |γ<sub>3</sub>| = 1.0 and for the other one it is |γ<sub>3</sub>| = 0.935.

      While we agree on the reviewers statement about continuity, we did not modify the sentence, as the meaning should be clear.

      L160: The definition of the center of mass is incorrect as it is not that of an extended object whose contour is defined by a polygon, but only of the set of vertices. In Figure 6 you write ”the choice of the center of mass highly influences the value of γ<sub>p</sub>” - is there really a choice of the center of mass? I thought that it was uniquely defined.

      We here only repeat the definition from Armengol-Collado et al. (2023) in order to be able to directly compare our analyses with the results presented therein. We adjusted the caption to be more clear.

      L166: What is the weighting you refer to in Equation 9?

      We apologize, the reference is to Equation 8. We have modified this.

      L312: ”Quantifying orientational order in biological tissues can be realized by Minkowsky tensors”. As mentioned above, you do not really use them, but use Equation (7), which can be defined without reference to Minkowski tensors.

      Eq. (7) is part of the irreducible representations of the Minkowsky tensor. Therefore the sentence is correct.

      L318: I do not quite understand the link between being able (or not) to compare q<sub>p</sub>’s for different values of p and the interpretability of q<sub>2</sub> and q<sub>6</sub>. Also, since you introduce q<sub>p</sub>, how can the question about their comparability be a recurrent challenge? Finally, would you agree that even though a comparison between the absolute values of q<sub>2</sub> and q<sub>6</sub> is inappropriate, one can still meaningfully compare relative changes as a parameter is changed or when comparing cells in different conditions?

      We have modified the sentence. Furthermore we agree that one can still meaningfully compare relative changes as a parameter is changed, as we do. However, our claim that q<sub>2</sub> and q<sub>6</sub> are independent, does not allow to conclude any kind of nematic-hexatic phase transition. We have now provided further evidence using the published data of Armengol-Collado et al. (2023), which unequivocally supports this statement. We would also like to remark that the detection of a phase-transition requires a single order parameter, which cannot exist as q<sub>2</sub> and q<sub>6</sub> are independent.

      We have further explained this in the main text.

      Figure 7: The axes are not labeled.

      We added the labels.

      L359: ”q<sub>2</sub> and q<sub>6</sub> values cluster tightly”, L362 ”q<sub>2</sub> and q<sub>6</sub> values become highly scattered” Please, quantify.

      We kept these formulations but have added statistical measures to these qualitative descriptions, see Supplementary Figures to Fig 7 for the distance correlation and the P-values of the distance correlation. These data support our claim of independence.

      L362: ”each q<sub>2</sub> value spans a broad range of q<sub>6</sub> values and vice versa, demonstrating their independence”. Please, use a quantitative test of statistical independence.

      We have added statistical information by using the distance correlation and statistical tests, see Supplementary Figures to Fig 7. Similar results are obtained for the Pearson correlation and corresponding tests. However, they are not included as the distance correlation is more general.

      L371: Please, define Q<sub>2</sub> and Q<sub>6</sub> in the main text.

      We have now added the definition to the Materials and methods section.

      L420: A reference seems to be missing.

      Thanks for pointing this out. This was a formatting error, we only wanted to cite Balasubramaniam et al. (2021).

      L425: ”strong dependence of cell shape on cell density”. But q<sub>6</sub> seems to be rather independent of density, see Figure 11. Also, what do you mean by ”strong”? Can you quantify?

      The dependency of the cell shape on the cell density is shown in detail in (Eckert et al., 2023). Furthermore, to describe the cell shape the values for all p are needed. So the change in q<sub>2</sub> already indicates a change in the overall cell shape even as q<sub>6</sub> is barely changing. As we excluded these experimental results now in favor of the experimental data also used in Armengol-Collado et al. (2023), we did not add further evaluations regarding cell density.

      L453 ”These divergences [nonmonotonic dependence of γ<sub>p</sub> on activity or deformability] highlight the limitations of γ<sub>p</sub> in capturing consistent patterns”. I am not sure to follow your argument here.

      Besides the quantitative differences seen in comparing Fig. 1 and Fig 2 with the corresponding figures in the appendix, these results show qualitative differences. Using a method which is not robust and not continuous leads to qualitative different results. The nonmonotonic dependence of γ<sub>p</sub> is specific to the method but not to the underlying physics.

      Appendix 3 - Figure 20: It is not clear how to compare this figure to Figure 3e of Armengol-Collado et al 2023. Please, provide more details.

      Appendix 3 - Figure 20 (Appendix 3 - Figure 25 in the revised version) and Figure 3e in Armengol-Collado et al. (2023) cannot be directly compared. Fig 3e shows results of experiments and multiphase field simulations for one parameter stetting and Fig 20 results of the active vertex model for various parameter settings. But both are considered using γ<sub>p</sub> and Γ<sub>p</sub>. We have added these computation, see Fig. 13, which indeed reproduces the results from Fig 3e. We refrain from considering corresponding plots to Fig 20 for the multiphase field model, as this first requires computing the vertices and no additional information can be expected.

      Reviewer 2:

      The manuscript lacks statistical information. The following should be addressed: How often have the experiments been performed? How many monolayers have been analyzed? How many time steps have been considered and in what duration? How many cells have been included in the analysis? What are the p-values to determine if q<sub>p</sub>’s (Figure 2, panel a) and γ<sub>p</sub>’s (Appendix 3-Figure 17, panel a) are significantly different? Same figures: How many cells and experiments have been considered here? Figure 11: What is the density of cells for each condition? Please provide the corresponding values. How significant are the differences? How many times has the experiment been repeated? Figure 12: Due to cell proliferation, the cell density changes over time. Does this need to be taken into account?

      We agree, our information have only been qualitative. We have added the missing information. Especially we added statistical information by using the distance correlation and statistical tests, see Supplementary Figures to Fig. 7. Similar results are obtained for the Pearson correlation and corresponding tests (not included). As we excluded the experimental results previously shown in Figure 11 and Figure 12, in the revised version in favor of the experimental data that is already published in Armengol-Collado et al. (2023), we did not add further statistics regarding this. We added the number of frames and cells in the text.

      The image analysis part of the Method section states that time-series were xy-drift corrected, and cells were tracked. However, the manuscript does not contain results of dynamical data, timedependent analyses, or discussions of how q<sub>p</sub> changes over time. The authors mention that the fluidity of the tissue was confirmed by the MSD, neighbor number variance, and the self-intermediate scattering function, but none of the results are shown in the manuscript. I would like to ask the authors to provide the results and related content in the Method section.

      We have modified the description and removed all parts related to dynamical data. Due to the heavy overload of images in the manuscript we refrain from providing all the results for the phase diagram to distinguish solid and fluid phase. These measures have been provided previously for the considered modeling approaches and provide here only a side remark. Our results do not depend on an exact localization of a solid-fluid phase boundary.

      Additional information is missing in the Image analysis part of the Method section. Could the authors provide the information on the image analysis steps between obtaining the segmented image and inputting the parameters for the Minkowski tensor? This should include how the normal vectors have been determined and whether this has been done for all pixels along the contour.

      We added further details in the section Extraction of the contour in Experimental setup in Methods and Materials and also provide the code to compute q<sub>p</sub> for segmented images.

      The authors have analyzed low-resolution phase contrast images acquired with a 10x objective to experimentally support their introduced Minkowski tensors. This may have decreased the resolution of the cell boundary detection and its curvature. I strongly suggest imaging the tissue with higher magnification (40x or 63x) and/or fluorescent markers to visualize the cell boundaries in high quality. This would allow the authors to distinguish between circles and circle-like shapes (lines 432-434) and to further investigate differences between MDCK wild-type and MDCK E-cad KO cells.

      We agree that higher resolution of the images would be beneficial. However, we are convinced that this will not influence our findings. Instead of performing the experiments with higher magnification or using fluorescent markers, we have considered the experimental data from Armengol-Collado et al. (2023) to support our results.

      The authors have coarse-grained the shape function, Γ<sub>p</sub>, and have chosen the active vertex model (Appendix 3-Figure 20) for comparison with the Minkowski tensors, Q<sub>p</sub> (Appendix 2 Figure 13). In both figures, the hexatic-nematic crossover does not occur. Armengol-Collado et al. have previously reported that the Voronoi model failed to achieve the hexatic-nematic crossover and argued that this is due to the artificial enhancement of the polygon’s hexagonality, leading to high hexatic order at the tissue scale. Since the authors have used the Voronoi-tailing method (line 196), I would like to ask the authors to compare the multiphase field models for Γ<sub>p</sub> andQ<sub>p</sub> instead.

      We would like to mention that we do not consider a Voronoi model but an active vertex model. A Voronoi model is only used for initialization. Both models are certainly related but not identical and claims for a Voronoi model do not need to hold for an active vertex model. The suggested comparison for the multi phasefield model is not an easy task as it requires to compute the vertices from the phase field variables. There are gaps between cells and a reliable algorithm to identify the vertices is a task on its own. We, therefore, refrain from doing these calculations. Instead, we have used the experimental data from Armengol-Collado et al. (2023) for which the polygonal information are provided, see Figure 11. Especially for p \= 6, strong differences can be seen by comparing the PDF obtained by the full shape and the polygonal shape. Indeed, the strong hexatic order at the cellular scale is only a consequence of the approximation by polygons. With this result analysing the multi phasefield data by γ<sub>p</sub> does not add any new information as this first requires an approximation by polygons.

      The authors show the q<sub>p</sub> distributions for the experimental systems (Figure 2, Figure 11). For completeness, I would like to ask the authors to also coarse-grain q<sub>p</sub> and γ<sub>p</sub> of the experimental data as shown for the computational models in Appendix 2 - Figure 13 and Appendix 2 - Figure 14. It would be interesting to see if the hexatic-nematic crossover appears. I would recommend that the authors avoid using the Voronoi tailing of the experimental system, as this may fail to obtain the crossover as explained in (5) above. Instead, I suggest using the real vertex positions for γ<sub>p</sub>, which can be obtained from the segmented images.

      It remains open what is meant by ”the real vertex positions for γ<sub>p</sub>, which can be obtained from the segmented images”. Segmenting the images leads to smooth contours, partly even with gaps between cells. As the magnitude of γ<sub>p</sub> depends on the number of points used in the calculation it is not meaningful to use all points of the contour for calculating γ<sub>p</sub>, as this would lead to artificially low values for |γ<sub>p</sub>|. Identifying the vertex positions for an approximating polygon is an issue of its own and the consequence of this approximation is already mentioned above. For a comparison we therefore added the experimental data from Armengol-Collado et al (2023) and used the provided vertex positions to compute q<sub>p</sub> and γ<sub>p</sub> as well as the raw data and performed the segmentation and used these data to compute q<sub>p</sub>. See Figure 11. These results confirm our findings and show that the proposed nematic-hexatic phase transition is specific to γ<sub>p</sub> to characterize shape.

      In order to show that shape descriptors like the shape function, γ<sub>p</sub>, introduced by Armengol-Collado et al., ’fail to capture the nuance of irregular shapes’ (line 445), the authors have compared γ<sub>p</sub> with the Minkowski tensors, q<sub>p</sub>, using the same dataset (Figure 1 with Appendix 3 - Figure 16, Figure 2 with Appendix 3 - Figure 17, and Figure 4 with Appendix 3 - Figure 15 Appendix 3). I agree that γ<sub>p</sub> and q<sub>p</sub> are different, not showing identical values. However, I see no evidence in these figures that q<sub>p</sub> describes the symmetry of a cell better than γ<sub>p</sub>, since the values are similar and vary quite similarly between different p-atic orders. What is the quantitative difference that shows the failure of the shape function to capture the nuance of irregular shapes?

      The statement already follows from the mathematical properties of robustness and stability, which is illustrated in Fig. 6. The mentioned comparisons for simulation and experimental data only demonstrate that the lack of robustness and stability of γ<sub>p</sub> also leads to different results if applied to averages of cell measures. The differences are twofold, first the approximation of cells by polygons leads to different results, and second even for polygons different results follow, as only one approach is continuous and the other not. This has strong consequences for the proposed nematic-hexatic phase transition if coarse-grained. Our added results for the experimental data from Armengo-Collado et al. (2023) show that this behavior is not a physical feature but only specific to the use of γ<sub>p</sub>.

      The authors claim that the Minkowski tensors provide a ’reliable framework’ and that this framework ’opens new pathways for understanding the role of orientational symmetries in tissue mechanics and development’ (line 78-79). However, the p-atic orders in the experimental systems peak at very low orders of q<sub>p</sub> < 0.3, which may not allow conclusions about (non-)dominant orientational symmetry(ies) of cells. Can this framework be applied to experimental systems? Since the Minkowski tensors display the independence of the hexatic and nematic symmetry, the variations of cell shapes in experimental systems are too strong to provide any additional results (line 437), as stated by the authors, and no crossover was found, while the crossover was reported by Armengol-Collado et al., what new pathways can be opened to study tissues?

      We have added a comparison with experimental data from Armengol-Collado et al. (2023) and demonstrate that the proposed nematic-hexatic transition is only specific to the use of γ<sub>p</sub> for characterizing the shape. So our results first of all essentially close the ”pathway for understanding the role of orientational symmetries in tissue mechanics and development”, which was proposed on this nematic-hexatic transition. On the other side, even if q<sub>p</sub> peaks at relatively low values, the results demonstrate independence of the measures for different p’s, for two different modeling approaches and two different sets of experimental data. This motivates to consider p-atic order for different p simultaneously. Such theories of ”multi”-p-atic liquid crystals, as proposed in the conclusions, are the mentioned new pathways.

      In principle, the introduced Minkowski tensors integrate the orientation of the normal vectors (Equation 6) and consider the perimeter of the contour (Equation 1). Do the tensors distinguish between convex and concave curvature since both are present in tissues? Does a square with 4 concave and a square with 4 convex edges (same curvature) have the same q<sub>p</sub> values?

      For the specific situation of a square with 4 concave or 4 convex edges even p would lead to the same orientation and the same value for q<sub>p</sub>, as even p have a 180 degree symmetry. Odd p would result in the same value for q<sub>p</sub> but in a different orientation ϑ<sub>p</sub>. In more general cases, e.g. shapes with concave and convex edges, no general statements can be made. In general the theoretical results on stability of q<sub>p</sub> only hold for convex shapes. However, as discussed in Methods and materials the known counterexamples for concave shapes are not relevant for cell shapes.

      In lines 169-172 and Figure 6, the authors report a jump in γ<sub>p</sub>. Why has the fourth vertex in the last image been removed? The vertices are essential for the calculation of γ<sub>p</sub>. If the fourth vertex is not removed, the following values result: γ<sub>3</sub> = 0.935 and γ<sub>4</sub> = 0.474, which leads to changes of the same order of magnitude as those of q<sub>p</sub>. I think it is therefore not the choice of the center of mass that ’heavily influences the value of γ<sub>p</sub>’, but the removal of the fourth vertex.

      We adjusted the caption to make our point more clear. The last image is a triangle and according to the definition of γ<sub>p</sub> is therefore described by only three vertices. The reviewer is right that the value of γ<sub>p</sub> has a strong dependency of the number of used vertices, this is exactly the point that we are trying to make with this figure. An equilateral triangle should be recognized as an equilateral triangle, no matter if there is an artificial fourth vertex or not. The triangle in our picture and the triangle that the reviewer described (so our triangle with an artificial fourth vertex) both have the shape of an equilateral triangle, yet for one |γ<sub>3</sub>| = 1.0 and for the other one it is |γ<sub>3</sub>| = 0.935. This can be seen even more clearly if even more artificial vertices on the outline of the equilateral triangle are added, which will decrease |γ<sub>3</sub>| even more. Furthermore, we think there was a misunderstanding regarding our statement about the center of mass. The general problem of γ<sub>p</sub> - so the dependence of the values on the number of vertices - is independent of the calculation of the center of mass. The exact values of γ<sub>p</sub> on the other hand depend on the choice of this. We follow Armengol-Collado et al. (2023) and use the mean of all vertex coordinates as center of mass. If the reviewer would use the center of mass of the equilateral triangle and do the same calculations the resulting values for γ<sub>p</sub> would be different. This is what we meant with ’heavily influences the value of γ<sub>p</sub>’.

      In Appendix 3 - Figure 18, the authors show that the shape function, γ<sub>6</sub>, exhibits a non-monotonic trend as a function of activity and deformability. I have no objection to this statement. However, I would like to ask the authors to check the values for γ<sub>6</sub>. In the bottom-left corner, for example, γ<sub>6</sub> = 0.55. This value seems very low to me. In Appendix 3-Figure 20, |Q<sub>6</sub>| for R/Rcell = 2 is already in this range, while |Q<sub>6</sub>| for R/Rcell = 1 (not shown), corresponding to γ<sub>6</sub>, must be even higher. Also, the parameters p<sub>6</sub> = 3.5 and v<sub>0</sub> = 0.1 should result in a nearly hexagonal lattice, which should be captured with high γ<sub>6</sub> values. I would expect γ<sub>6</sub> to be in the same range as q<sub>6</sub>.

      Many thanks for pointing this out. There are two different points addressed in this question: The first is if |Γ<sub>p</sub>| is too high. We checked the values, |Γ<sub>p</sub>| = 0.5075 for R/R<sub>cell</sub> = 2, so it is lower than = 0.58. The second question is why γ<sub>p</sub> and q<sub>p</sub> are not in the same value range. You are right that for a perfectly hexagonal lattice both should give the same value, namely = = 1.0. However, even at p<sub>6</sub> = 3.5 and v<sub>0</sub> = 0.1 this is not a perfectly hexagonal lattice anymore and how fast the values of q<sub>6</sub> and |γ<sub>6</sub>| drop if we move away from a perfect hexagon scales differently. As q<sub>p</sub> is stable and only changes slightly for slight changes in the shape it makes sense, that q<sub>p</sub> is still close to 1.0 . We included an image, see below, of one time step in said parameter to showcase that cells do not form a perfect hexagonal lattice anymore.

      Reviewer 3:

      Could the authors show why and how this method could bring new information which were missing so far in the understanding of morphogenesis in vitro and in vivo with the current quantification?

      The introduction provides examples of how orientational order and its topological defects can be linked to morphological changes in tissues. The orientational order emerges from the shape of the cells. Most commonly nematic order has been considered, but more recently also hexatic order and even a nematic-hexactic crossover on larger scales. This suggests a mechanical mechanism for morphogenesis, like a phase transition from hexatic to nematic, which would have consequences on the evolution of shape. We demonstrate that the measures q<sub>2</sub> and q<sub>6</sub> are independent. Furthermore the proposed nematic-hexatic transition is only specific to the use of γ<sub>p</sub> for characterizing the shape and coarse-graining of the associated order. These measures are not robust and therefore should not be used. Results for the robust measures q<sub>p</sub> suggest to consider all p for a coarse-grained theory to model morphological changes in tissues.

      Could authors show quantitative comparisons between available methods with the same sets of data and highlight pros and cons?

      Author response image 1.

      Screenshot from p<sub>6</sub> = 3.5 and v<sub>0</sub> = 0.1

      In addition to what was already done for the simulation data we have added data from Armengol-Collado et al. (2023) and compared the results for q<sub>p</sub> and Q<sub>p<sub> and γ<sub>p</sub> and Γ<sub>p</sub>. The theoretical results and the illustrating example in Fig. 6 already show that there are no pros for γ<sub>p</sub>. Other methods belong to the class of bond-order methods and measure neighbor relations instead of shape. We already comment that these methods are inappropriate to classify shape, see Methods and materials, last sentence and Mickel et al. (2013) for a detailed discussion why these methods are not robust.

      Instead of using phase contrast images, which exhibit curved cell-cell contours, could authors use data with E-cadherin staining instead - as used in many epithelial studies in vitro and in vivo? Could they show both images for wild type and for the E-cadherin KO cell lines with fluorescent readout?

      We are convinced that our results do not depend on the way to visualize the cell contours. Furthermore the images do not provide additional information. To further strengthen the experimental part of the manuscript, we instead analyzed data from Armengol-Collado et al. (2023).

      They confirm our findings.

      The authors acknowledge differences in density between cell lines p. 13 so this calls for new experiments with solid readouts and analysis using comparable experimental conditions.

      Additionally, we analyzed data from Armengol-Collado et al. (2023) which confirm our findings. Our results are now supported by two different modeling approaches and two different experimental settings. Because of redundancy we removed the original experimental data from the revised manuscript.

    1. Author response:

      Reviewer #1 (Public review):

      Thank you for your thoughtful and constructive feedback on our manuscript. We greatly appreciate your insights regarding our work, as they are invaluable in refining our research.

      We are very happy to hear that you recognize the strengths of our method, particularly the elimination of manual rosette picking, which significantly enhances throughput and reduces variability. We are also pleased that our validation efforts—through flow cytometry, immunocytochemistry, single-cell RNA-sequencing, and functional MEA recordings—effectively demonstrate both the identity and functionality of our derived dorsal forebrain neural rosette stem cells (NRSCs).

      Regarding the identified weaknesses, we agree that a direct comparison with conventional manual-selection protocols, specifically those utilizing dual-SMAD inhibition, would be a significant improvement. To address this, we have initiated additional experiments that will directly compare our single-SMAD inhibition approach (RepSox) with dual-SMAD inhibition (SB/LDN), aiming for a comprehensive evaluation of both protocols.

      In terms of statistical rigor, we appreciate your suggestion on improving our quantitative assays. All data were collected from at least three independent experiments and presented as mean ±standard deviation unless otherwise specified. Due to the qualitative nature of the data, no formal statistical tests were performed for most of the experiments and the mean and standard deviation were calculated for some quantitative measurements obtained, providing a descriptive summary of the data. When possible, we will incorporate appropriate statistical tests, to present our data in a more robust manner, rather than merely reporting mean ± SD.

      Finally, we recognize the importance of situating our work within the broader landscape of neural stem cell research. We aim to elucidate the potential downstream applications for our protocol, which we believe will significantly impact neurodevelopmental and neurodegenerative disorder studies.

      Thank you again for your valuable suggestions. We look forward to refining our manuscript and enhancing the contribution of our research to the field.

      Reviewer #2 (Public review):

      Thank you for your thoughtful and constructive feedback on our manuscript. We appreciate your recognition of the novelty and potential impact of our protocol for obtaining neural rosette stem cells (NRSCs). Your comments are invaluable in improving our work.

      We are pleased that you found our methodology to be a significant advancement in the field, particularly the elimination of the manual rosette selection step, which hopefully will enhance homogeneity and standardization. We agree that this development has implications for research, disease modelling, and compound testing.

      Regarding your specific points:

      Passage expansion: Thank you for your insightful suggestion regarding the analysis beyond passage 12. We have continued passaging our NRSC line for more than 12 passages while maintaining the rosette structure. Although we do not yet have comprehensive and detailed analyses at these later passages, we will include some data and relevant information on our findings in the revised manuscript.

      TJP1+ zones: We appreciate your observation regarding the decreased TJP1+ zones at passage 12. We have not consistently detected a reduction in the number of rosettes or TJP1+ lumens across our cultures between passages. While some variability has been noted, we occasionally observe minor reductions at specific time points, followed by a recovery of rosettes in subsequent passages. This suggests that monitoring the number of rosettes is indeed a useful indicator of cell culture health. Cultures should be discarded if rosettes are completely lost. We will take a closer look at this aspect and report the findings in the revised manuscript.

      PAX6 Gene expression verification: Thank you for highlighting the discrepancy between PAX6 gene expression levels and protein levels. Unfortunately, we have not yet validated these results using an alternative technique. One potential explanation for this discrepancy may be the phenomenon of negative autoregulation, where increased levels of PAX6 protein can inhibit its own mRNA expression (Manuel et al., 2007). Moreover, Hsieh and Yang (2009) observed that during neurogenesis, PAX6 protein levels may not correlate linearly with mRNA levels, particularly in variable cellular environments. Additionally, post-transcriptional regulatory mechanisms, such as translation initiation mediated by Internal Ribosome Entry Sites (IRES), have been documented in various contexts involving PAX6, suggesting that mRNA levels may not fully represent functional protein levels in developing tissues (Li et al., 2023). We will go deeper into this discussion in the revised manuscript.

      GFAP Labeling: We appreciate your comments regarding the nuclear labeling of GFAP. In our astrocyte cultures, we have indeed observed GFAP localization in both the nucleus and the cytoplasm (Figure 5B). We will investigate this phenomenon further and provide a clearer explanation, supported by relevant literature, in the revised version. Although GFAP is primarily categorized as an intermediate filament protein localized in the cytoplasm, evidence suggests its nuclear localization may indicate additional regulatory roles during astrocyte development, activation, and pathology. This finding highlights the potential complexity of GFAP's role during fetal development and cellular stress, suggesting a broader functional scope that may extend into the nuclear space.

      Once again, thank you for your insightful feedback and for recognizing the potential of our research. We are committed to addressing your comments and enhancing the quality of our manuscript.

      Manuel, M. et al. (2007) ‘Controlled overexpression of Pax6 in vivo negatively autoregulates the Pax6 locus, causing cell-autonomous defects of late cortical progenitor proliferation with little effect on cortical arealization’, Development, 134(3), pp. 545–555. Available at: https://doi.org/10.1242/dev.02764.

      Hsieh, Y.-W. and Yang, X.-J. (2009) ‘Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors’, Neural Development, 4(1), p. 32. Available at: https://doi.org/10.1186/1749-8104-4-32.

      Li, Q. et al. (2023) ‘Translation of paired box 6 (PAX6) mRNA is IRES-mediated and inhibited by cymarin in breast cancer cells’, Genes & Genetic Systems, 98(4), pp. 161–169. Available at: https://doi.org/10.1266/ggs.23-00039.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The authors performed genome assemblies for two Fagaceae species and collected transcriptome data from four natural tree species every month over two years. They identified seasonal gene expression patterns and further analyzed species-specific differences.

      Strengths:

      The study of gene expression patterns in natural environments, as opposed to controlled chambers, is gaining increasing attention. The authors collected RNA-seq data monthly for two years from four tree species and analyzed seasonal expression patterns. The data are novel. The authors could revise the manuscript to emphasize seasonal expression patterns in three species (with one additional species having more limited data). Furthermore, the chromosome-scale genome assemblies for the two Fagaceae species represent valuable resources, although the authors did not cite existing assemblies from closely related species.

      Thank you for your careful assessment of our manuscript.

      Weaknesses:

      Comment; The study design has a fundamental flaw regarding the evaluation of genetic or evolutionary effects. As a basic principle in biology, phenotypes, including gene expression levels, are influenced by genetics, environmental factors, and their interaction. This principle is well-established in quantitative genetics.

      In this study, the four species were sampled from three different sites (see Materials and Methods, lines 543-546), and additionally, two species were sampled from 2019-2021, while the other two were sampled from 2021-2023 (see Figure S2). This critical detail should be clearly described in the Results and Materials and Methods. Due to these variations in sampling sites and periods, environmental conditions are not uniform across species.

      Even in studies conducted in natural environments, there are ways to design experiments that allow genetic effects to be evaluated. For example, by studying co-occurring species, or through transplant experiments, or in common gardens. To illustrate the issue, imagine an experiment where clones of a single species were sampled from three sites and two time periods, similar to the current design. RNA-seq analysis would likely detect differences that could qualitatively resemble those reported in this manuscript.

      One example is in line 197, where genus-specific expression patterns are mentioned. While it may be true that the authors' conclusions (e.g., winter synchronization, phylogenetic constraints) reflect real biological trends, these conclusions are also predictable even without empirical data, and the current dataset does not provide quantitative support.

      If the authors can present a valid method to disentangle genetic and environmental effects from their dataset, that would significantly strengthen the manuscript. However, I do not believe the current study design is suitable for this purpose.

      Unless these issues are addressed, the use of the term "evolution" is inappropriate in this context. The title should be revised, and the result sections starting from "Peak months distribution..." should be either removed or fundamentally revised. The entire Discussion section, which is based on evolutionary interpretation, should be deleted in its current form.

      If the authors still wish to explore genetic or evolutionary analyses, the pair of L. edulis and L. glaber, which were sampled at the same site and over the same period, might be used to analyze "seasonal gene expression divergence in relation to sequence divergence." Nevertheless, the manuscript would benefit from focusing on seasonal expression patterns without framing the study in evolutionary terms.

      We sincerely thank the reviewer for the detailed and thoughtful comments. We fully recognize the importance of carefully distinguishing genetic and environmental contributions in transcriptomic studies, particularly when addressing evolutionary questions. The reviewer identified two major concerns regarding our study design: (1) the use of different monitoring periods across species, and (2) the use of samples collected from different study sites. We addressed both concerns with additional analyses using 112 new samples and now present new evidence that supports the robustness of our conclusions.

      (1) Monitoring period variation does not bias our conclusions

      To address concerns about the differing monitoring periods, we added new RNA-seq data (42 samples each for bud and leaf samples for L. glaber and 14 samples each for bud and leaf samples for L. edulis) collected from November 2021 to November 2022, enabling direct comparison across species within a consistent timeframe. Hierarchical clustering of this expanded dataset (Fig. S6) yielded results consistent with our original findings: winter-collected samples cluster together regardless of species identity. This strongly supports our conclusion that the seasonal synchrony observed in winter is not an artifact of the monitoring period and demonstrates the robustness of our conclusions across datasets.

      (2) Site variation is limited and does not confound our findings

      Although the study included three sites, two of them (Imajuku and Ito Campus) are only 7.3 km apart, share nearly identical temperature profiles (see Fig. S2), and are located at the edge of similar evergreen broadleaf forests. Only Q. acuta was sampled from a higher-altitude, cooler site. To assess whether the higher elevation site of Q. acuta introduced confounding environmental effects, we reanalyzed the data after excluding this species. Hierarchical clustering still revealed that winter bud samples formed a distinct cluster regardless of species identity (Fig. S7), consistent with our original finding.

      Furthermore, we recalculated the molecular phenology divergence index D (Fig. 4C) and the interspecific Pearson’s correlation coefficients (Fig. 5A) without including Q. acuta. These analyses produced results that were similar to those obtained from the full dataset (Fig. S12; Fig. S14), indicating that the observed patterns are not driven by environmental differences associated with elevation.

      (3) Justification for our approach in natural systems

      We agree with the reviewer that experimental approaches such as common gardens, reciprocal transplants, and the use of co-occurring species are valuable for disentangling genetic and environmental effects. In fact, we have previously implemented such designs in studies using the perennial herb Arabidopsis halleri (Komoto et al., 2022, https://doi.org/10.1111/pce.14716) and clonal Someiyoshino cherry trees (Miyawaki-Kuwakado et al., 2024, https://doi.org/10.1002/ppp3.10548) to examine environmental effects on gene expression. However, extending these approaches to long-lived tree species in diverse natural ecosystems poses significant logistical and biological challenges. In this study, we addressed this limitation by including three co-occurring species at the same site, which allowed us to evaluate interspecific differences under comparable environmental conditions. Importantly, even when we limited our analyses to these co-occurring species, the results remained consistent, indicating that the observed variation in transcriptomic profiles cannot be attributed to environmental factors alone and likely reflects underlying genetic influences.

      Accordingly, we added four new figures (Fig. S6, Fig. S7, Fig. S12 and Fig. S14) and revised the manuscript to clarify the limitations and strengths of our design, to tone down the evolutionary claims where appropriate, and to more explicitly define the scope of our conclusions in light of the data. We hope that these efforts sufficiently address the reviewer’s concerns and strengthen the manuscript.

      To better support the seasonal expression analysis, the early RNA-seq analysis sections should be strengthened. There is little discussion of biological replicate variation or variation among branches of the same individual. These could be important factors to analyze. In line 137, the mapping rate for two species is mentioned, but the rates for each species should be clearly reported. One RNA-seq dataset is based on a species different from the reference genome, so a lower mapping rate is expected. While this likely does not hinder downstream analysis, quantification is important.

      We thank the reviewer 1 for the helpful comment. To evaluate the variation among biological replicates, we compared the expression level of each gene across different individuals. We observed high correlation between each pair of individuals (Q. glauca (n=3): an average correlation coefficient r = 0.947; Q. acuta (n=3): r = 0.948; L. glaber (n=3): r = 0.948)). This result suggests that the seasonal gene expression pattern is highly synchronized across individuals within the same species. We mentioned this point in the Result section in the revised manuscript. We also calculated the mean mapping rates for each species. As the reviewer expected, the mapping rate was slightly lower in Q. acuta (88.6 ± 2.3%) and L. glaber (84.3 ± 5.4%), whose RNA-Seq data were mapped to reference genomes of related but different species, compared to that in Q. glauca (92.6 ± 2.2%) and L. edulis (89.3 ± 2.7%). However, we minimized the impact of these differences on downstream analysis. These details have been included in the revised main text.

      In Figures 2A and 2B, clustering is used to support several points discussed in the Results section (e.g., lines 175-177). However, clustering is primarily a visualization method or a hypothesis-generating tool; it cannot serve as a statistical test. Stronger conclusions would require further statistical testing.

      We thank the reviewer for the helpful comment. As noted, we acknowledge that hierarchical clustering (Fig. 2A) is primarily a visualization and hypothesis-generating method. To assess the biological relevance of the clusters identified, we conducted a Mann-Whitney U test or the Steel-Dwass test to evaluate whether the environmental temperatures at the time of sample collection differed significantly among the clusters. This analysis (Fig. 2B) revealed statistically significant differences in temperature in the cluster B3 (p < 0.01), indicating that the gene expression clusters are associated with seasonal thermal variation. These results support the interpretation that the clusters reflect coordinated transcriptional responses to environmental temperature. We revised the Results section to clarify this point.

      The quality of the genome assemblies appears adequate, but related assemblies should be cited and discussed. Several assemblies of Fagaceae species already exist, including Quercus mongolica (Ai et al., Mol Ecol Res, 2022), Q. gilva (Front Plant Sci, 2022), and Fagus sylvatica (GigaScience, 2018), among others. Is there any novelty here? Can you compare your results with these existing assemblies?

      We agree that genome assemblies of Fagaceae species are becoming increasing available. However, our study does not aim to emphasize the novelty of the genome assemblies per se. Rather, with the increasing availability of chromosome-level genomes, we regard genome assembly as a necessary foundation for more advanced analyses. The main objective of our study is to investigate how each gene is expressed in response to seasonal environmental changes, and to link genome information with seasonal transcriptomic dynamics. To address the reviewer’s comment in line with this objective, we added a discussion on the syntenic structure of eight genome assemblies spanning four genera within the Fagaceae, including a species from the genus Fagus (Ikezaki et al. 2025, https://doi.org/10.1101/2025.07.31.667835). This addition helps to position our work more clearly within the context of existing genomic resources.

      Most importantly, Figure 1B-D shows synteny between the two genera but also indicates homology between different chromosomes. Does this suggest paleopolyploidy or another novel feature? These chromosome connections should be interpreted in the main text-even if they could be methodological artifacts.

      A previous study on genome size variation in Fagaceae suggested that, given the consistent ploidy level across the family, genome expansion likely occurred through relatively small segmental duplications rather than whole-genome duplications. Because Figure 1B-D supports this view, we cited the following reference in the revised version of the manuscript.

      Chen et al. (2014)  https://doi.org/10.1007/s11295-014-0736-y

      In both the Results and Materials and Methods sections, descriptions of genome and RNA-seq data are unclear. In line 128, a paragraph on genome assembly suddenly introduces expression levels. RNA-seq data should be described before this. Similarly, in line 238, the sentence "we assembled high-quality reference genomes" seems disconnected from the surrounding discussion of expression studies. In line 632, Illumina short-read DNA sequencing is mentioned, but it's unclear how these data were used.

      We relocated the explanation regarding the expression levels of single-copy and multi-copy genes to the section titled “Seasonal gene expression dynamics.” Additionally, we clarified in the Materials and Methods section that short-read sequencing data were used for both genome size estimation and phylogenetic reconstruction.

      Reviewer #2 (Public review):

      Summary:

      This study explores how gene expression evolves in response to seasonal environments, using four evergreen Fagaceae species growing in similar habitats in Japan. By combining chromosome-scale genome assemblies with a two-year RNA-seq time series in leaves and buds, the authors identify seasonal rhythms in gene expression and examine both conserved and divergent patterns. A central result is that winter bud expression is highly conserved across species, likely due to shared physiological demands under cold conditions. One of the intriguing implications of this study is that seasonal cycles might play a role similar to ontogenetic stages in animals. The authors touch on this by comparing their findings to the developmental hourglass model, and indeed, the recurrence of phenological states such as winter dormancy may act as a cyclic form of developmental canalization, shaping expression evolution in a way analogous to embryogenesis in animals.

      Strengths:

      (1) The evolutionary effects of seasonal environments on gene expression are rarely studied at this scale. This paper fills that gap.

      (2) The dataset is extensive, covering two years, two tissues, and four tree species, and is well suited to the questions being asked.

      (3) Transcriptome clustering across species (Figure 2) shows strong grouping by season and tissue rather than species, suggesting that the authors effectively controlled for technical confounders such as batch effects and mapping bias.

      (4) The idea that winter imposes a shared constraint on gene expression, especially in buds, is well argued and supported by the data.

      (5) The discussion links the findings to known concepts like phenological synchrony and the developmental hourglass model, which helps frame the results.

      We are grateful for the reviewer for the detailed and thoughtful review of our manuscript.

      Weaknesses:

      (1) While the hierarchical clustering shown in Figure 2A largely supports separation by tissue type and season, one issue worth noting is that some leaf samples appear to cluster closely with bud samples. The authors do not comment on this pattern, which raises questions about possible biological overlap between tissues during certain seasonal transitions or technical artifacts such as sample contamination. Clarifying this point would improve confidence in the interpretation of tissue-specific seasonal expression patterns.

      Leaf samples clustered into the bud are newly flushed leaves collected in April for Q. glauca, May for Q. acuta, May and June for L. edulis, and August and September for L. glaber. To clarify this point, we highlighted these newly flushed leaf samples as asterisk in the revised figure (Fig. 2A).

      comment; (2) While the study provides compelling evidence of conserved and divergent seasonal gene expression, it does not directly examine the role of cis-regulatory elements or chromatin-level regulatory architecture. Including regulatory genomic or epigenomic data would considerably strengthen the mechanistic understanding of expression divergence.

      We thank the reviewer for this insightful comment. As noted in the Discussion section, we hypothesize that such genome-wide seasonal expression patterns—and their divergence across species—are likely mediated by cis-regulatory elements and chromatin-level mechanisms. While a direct investigation of regulatory architecture was beyond the scope of the present study, we fully agree that incorporating regulatory genomic and epigenomic data would significantly deepen the mechanistic understanding of expression divergence. In this regard, we are currently working to identify putative cis-regulatory elements in non-coding regions and are collecting epigenetic data from the same tree species using ChIP-seq. We believe the current study provide a foundation for these future investigations into the regulatory basis of seasonal transcriptome variation. We made a minor revision to the Discussion to note that an important future direction is to investigate the evolution of non-coding sequences that regulate gene expression in response to seasonal environmental changes.

      (3) The manuscript includes a thoughtful analysis of flowering-related genes and seasonal GO enrichment (e.g., Figure 3C-D), providing an initial link between gene expression timing and phenological functions. However, the analysis remains largely gene-centric, and the study does not incorporate direct measurements of phenological traits (e.g., flowering or bud break dates). As a result, the connection between molecular divergence and phenotypic variation, while suggestive, remains indirect.

      We would like to note that phenological traits have been observed in the field on a monthly basis throughout the sampling period and the phenological data were plotted together with molecular phenology (e.g. Fig. 2A, C; Fig. 3C, D). Although the temporal resolution is limited, these observations captured species-specific differences in key phenological events such as leaf flushing and flowering times. We revised the manuscript to clarify this point.

      (4) Although species were sampled from similar habitats, one species (Q. acuta) was collected at a higher elevation, and factors such as microclimate or local photoperiod conditions could influence expression patterns. These potential confounding variables are not fully accounted for, and their effects should be more thoroughly discussed or controlled in future analyses.

      We fully agree with the reviewer that local environmental conditions, including microclimate and photoperiod differences, could potentially influence gene expression patterns. To assess whether the higher elevation site of Q. acuta introduced confounding environmental effects, we reanalyzed the data after excluding this species. Hierarchical clustering still revealed that winter bud samples formed a distinct cluster regardless of species identity (Fig. S7), consistent with our original finding.

      Furthermore, we recalculated the molecular phenology divergence index D (Fig. 4C) and the interspecific Pearson’s correlation coefficients (Fig. 5A) without including Q. acuta. These analyses produced results that were qualitatively similar to those obtained from the full dataset (Fig. S12; Fig. S14), indicating that the observed patterns are not driven by environmental differences associated with elevation.

      We believe these additional analyses help to decouple the effects of environment and genetics, and support our conclusion that both seasonal synchrony and phylogenetic constraints play key roles in shaping transcriptome dynamics. We added four new figures (Fig. S6, Fig. S7, Fig. S12 and Fig. S14) and revised the text accordingly to clarify this point and to acknowledge the potential impact of site-specific environmental variation.

      (5) Statistical and Interpretive Concerns Regarding Δφ and dN/dS Correlation (Figures 5E and 5F):

      (a) Statistical Inappropriateness: Δφ is a discrete ordinal variable (likely 1-11), making it unsuitable for Pearson correlation, which assumes continuous, normally distributed variables. This undermines the statistical validity of the analysis.

      We thank the reviewer for the insightful comment. We would like to clarify that the analysis presented in Figures 5E and 5F was based on linear regression, not Pearson’s correlation. Although Δφ is a discrete variable, it takes values from 0 to 6 in 0.5 increments, resulting in 13 levels. We treated it as a quasi-continuous variable for the purposes of linear regression analysis. This approach is commonly adopted in practice when a discrete variable has sufficient resolution and ordering to approximate continuity. To enhance clarity, we revised the manuscript to explicitly state that linear regression was used, and we now reported the regression coefficient and associated p-value to support the interpretation of the observed trend.

      (b) Biological Interpretability: Even with the substantial statistical power afforded by genome-wide analysis, the observed correlations are extremely weak. This suggests that the relationship, if any, between temporal divergence in expression and protein-coding evolution is negligible.

      Taken together, these issues weaken the case for any biologically meaningful association between Δφ and dN/dS. I recommend either omitting these panels or clearly reframing them as exploratory and statistically limited observations.

      We agree with the reviewer’s comment. While we retained the original panels, we reframed our interpretation to emphasize that, despite statistical significance, the observed correlation is very weak—suggesting that coding region variation is unlikely to be the primary driver of seasonal gene expression patterns. Accordingly, we revised the “Relating seasonal gene expression divergence to sequence divergence” section in the Results, as well as the relevant part of the Discussion.

    1. Author response:

      We thank the editor and reviewers for their positive and detailed review of the preprint. We will use these comments to improve the manuscript's revised version, which we plan to submit in the coming weeks, including: a) tests of variants of ResNet, other network architectures and the use of pre-trained weights, b) clarification and justification of the accuracy metrics used in the benchmark, c) an expanded study about the fragment connectivity in Figure 3, and d) a study the performance of idmatcher.ai with the new idtracker.ai.

    1. Author response:

      Reviewer #1 (Public review):

      The authors' goal was to arrest PsV capsids on the extracellular matrix using cytochalasin D. The cohort was then released, and interaction with the cell surface, specifically with CD151, was assessed.

      The model that fragmented HS associated with released virions mediates the dominant mechanism of infectious entry has only been suggested by research from a single laboratory and has not been verified in the 10+ years since publication. The authors are basing this study on the assumption that this model is correct, and these data are referred to repeatedly as the accepted model despite much evidence to the contrary.

      Please note that we state in the introduction on line 65/66 ´Two release mechanisms are discussed, that mutually are not exclusive´. This is implying that we do not consider the shedding model as the one accepted model. HS may associate with PsVs despite of a decreased affinity and only after priming (see below the ‘priming model’) may translocate to the cell body.

      Furthermore, we do not state in the discussion either that the shedding model is the preferred one; although it is correct that we refer to the shedding model more extensively, simply because we find HS associated with transferred PsVs, which is in line with this model and requires its citation.

      The discussion in lines 65-71 concerning virion and HSPG affinity changes is greatly simplified. The structural changes in the capsid induced by HS interaction and the role of this priming for KLK8 and furin cleavage have been well researched. Multiple laboratories have independently documented this. If this study aims to verify the shedding model, additional data need to be provided.

      As outlined above, our finding is compatible with both models, and we do not aim to verify the shedding model or disprove the priming model.

      It appears that the referee wishes more visibility of the priming model. Inhibition of KLK8 and furin should reduce the translocation to the cell body, no matter whether PsVs carry HS on their surface or not. For revision, we plan an experiment as in Figure 3 (CytD), testing whether either KLK8 or furin inhibition blocks the transfer to the cell body. Then, our data can be discussed also in the context of the priming model and by this increase its visibility.

      The model should be fitted into established entry events, or at minimum, these conflicting data, a subset of which is noted below, need to be acknowledged.

      (1) The Sapp lab (Richards et al., 2013) found that HSPG-mediated conformational changes in L1 and L2 allowed the release of the virus from primary binding and allowing secondary receptor engagements in the absence of HS shedding.

      (2) Becker et al. found that furin-precleaved capsids could infect cells independently of HSPG interaction, but this infection was still inhibited with cytochalasin D.

      (3) Other work from the Schelhaas lab showed that cytochalasin D inhibition of infection resulted in the accumulation of capsids in deep invaginations from the cell surface, not on the ECM

      (4) Selinka et al., 2007, showed that preventing HSPG-induced conformational changes in the capsid surface resulted in noninfectious uptake that was not prevented with cytochalasin D.

      (5) The well-described capsid processing events by KLK8 and furin need to be mechanistically linked to the proposed model. Does inhibition of either of these cleavages prevent engagement with CD151?

      The authors need to consider an explanation for these discrepancies.

      That PsVs carry HS-cleavage products doesn´t imply that HS cleavage is sufficient or required for infection. Therefore, we do not view our data as being in conflict with the priming model. In fact, our observations are compatible with aspects of both the shedding and the priming model.

      Yet, we acknowledge that the study would gain importance by directly testing the priming model within our experimental system. As requested by the referee, we will discuss the above papers, and further plan to test KLK8 and furin inhibitors.

      Other issues:

      (1) Line 110-111. The statement about PsVs in the ECM being too far away from the cell surface to make physical contact with the cell surface entry receptors is confusing. ECM binding has not been shown to be an obligatory step for in vitro infection.

      Not obligatory, but strongly supportive (Bienkowska-Haba et al., Plos Path., 2018; Surviladze et al., J. Gen. Viro., 2015). As recently published by the Sapp lab (Bienkowska-Haba et al., Plos Path., 2018), ´Direct binding of HPV16 to primary keratinocytes yields very inefficient infection rates for unknown reasons.´ Moreover, the paper shows that HaCaT cell ECM binding of PsVs increases the infection of NHEK by 10-fold and of HFK by almost 50-fold.

      This idea is referred to again on lines 158-159 and 199. The claim (line 158) that PsV does not interact with the cell within an hour needs to be demonstrated experimentally and seems at odds with multiple laboratories' data. PsV has been shown to directly interact with HSPG on the cell surface in addition to the ECM. Why are these PsVs not detected?

      We do not question that in many cellular systems PsVs interact with heparan sulfate proteoglycans (HSPGs) present on the cell surface, or both on the cell surface and the ECM. We stated in the manuscript on line 59 ´While in cell culture virions bind to HS of the cell surface and the ECM, it has been suggested that in vivo they bind predominantly to HS of the extracellular basement membrane (Day and Schelhaas, 2014; Kines et al., 2009; Schiller et al., 2010).´

      Moreover, we ourselves detect these PsVs, for example, in Figure 5A (CytD, 0 min time point), a handful of PsVs localize to the cell body area. However, the large majority overlaps with the strong HS staining at the cell periphery, likely the ECM. An accurate quantification of the fractions of PsVs bound to the ECM/cell body is for the following reasons very difficult. First, the ECM PsVs are very dense and therefore not microscopically resolved into single PsVs, at least not completely (see Figure 1C; the high intensity spots are non-resolved PsVs, please see our discussion on line 148 - 152). For this reason, by just counting spots we strongly underestimate the ECM PsVs versus the cell body PsVs. Second, with the available immunostainings we cannot exactly delineate the ECM from the cell body. In particular, at the cell border region (for example see Figure 4B) we often observe PsV accumulations. Assigning these ´cell border region PsVs´ entirely to the cell body fraction, a preliminary analysis (correcting for the limitation of non-resolved ECM PsVs) suggests that about a quarter of the PsVs bind to the cell body. On the other hand, assigning them to the ECM, the cell body fraction would be much below 10%. Third, we observe that in regions devoid of ECM and cells PsVs apparently adhere unspecifically to the glass-coverslip. This suggests that some of the cell body PsVs are just unspecific background. Subtraction of a background PsV density from the ECM and cell body PsV density will reduce relatively more the cell body PsVs, and consequently decreases the fraction of cell body PsVs even more.

      Moreover, in the course of the project we wondered whether at the basolateral membrane there are not many binding sites anyway. To address this question, in an unpublished experiment, we detached HaCaT cells with trypsin, incubated them with PsVs, and then allowed reattachment to assess the binding in suspension. We detected minimal to no binding, which, however, could also result from apical membrane adherence to the coverslip or trypsin-mediated cleavage of HSPGs. As suggested by the reviewing editor, we agree that repeating this experiment using EDTA for detachment—thus preserving HSPGs—would offer more definitive insight into binding efficiency in the absence of accessibility constraints. In summary, the reason why in our cellular system most PsVs do not bind to the cell surface could be a combination of several factors:

      (1) The primary binding partners are more abundant in the ECM and the polarized HaCaT cells secrete more ECM when compared to other cultured cells used to study HPV infection. This promotes ECM binding.

      (2) In the polarized HaCaT cells, the apical membrane is largely devoid of syndecan-1, CD151 and Itga6, wherefore PsVs infect the cell via the basolateral membrane. However, the accessibility to the basolateral membrane is restricted, PsVs must diffuse through a narrow slit between the glass coverslip and the attached cell to reach HS on the cell surface. This limits cell surface binding.

      (3) If HaCaT cells secrete large amounts of ECM, the may become depleted from cell surface HS. As outlined above, we will try to find out how many PsVs bind to the basolateral membrane in the absence of restricted accessibility. If it turns out that HaCaT cells have not many binding sites anyway, this would additionally promote binding to the ECM.

      The outcome of the above issues, and how we will mention them in the revised version of the manuscript, is open. In any case, we would like to point out that PsVs bound to the cell body do not weaken our main conclusion. Still, we recognize that this point merits attention and plan several modifications of the manuscript. We did already, but now we will mention more explicitly that PsVs have been shown to directly interact with HSPG on the cell surface, in addition to the ECM, but that it also has been shown that the ECM strongly supports infection in NHEK and HFK (Bienkowska-Haba et al., Plos Path., 2018). The following is a draft version of a paragraph we plan to incorporate, explaining the above issue and why we used in our experiments HaCaT cells:

      ´In vitro, PsVs bind to both the cell surface and the ECM, as has been widely documented. In vivo, however, it has been proposed that initial binding occurs predominantly to the basement membrane ECM, rather than directly to the cell surface (Day and Schelhaas, 2014; Kines et al., 2009; Schiller et al., 2010). This distinction reinforces the physiological relevance of ECM-bound particles in the early steps of HPV infection. Support for a functional role of ECM-mediated entry comes from a study showing that PsV binding to ECM derived from HaCaT cells significantly enhances infection of primary keratinocytes (Bienkowska-Haba et al., 2018). For these reasons, we specifically chose polarized HaCaT cells as a model system. These cells secrete abundant ECM from which the cells readily collect bound PsVs. On the other hand, the polarization limits the access of PsVs to basolateral receptors such as CD151 and Itgα6, and also cell body resident Syndecan-1, the most abundant HSPG in keratinocytes (Rapraeger et al., 1986; Hayashi et al., 1987; Kim et al., 1994). Hence, as polarization limits direct cell surface accessibility it biases binding toward the ECM, that in this culture system is abundant. Hence, in the HaCaT cell culture system, like probably in vivo, PsVs cannot circumvent binding to the ECM what they can do in unpolarized cell cultures that may not even secrete significant amounts of ECM. Altogether, this experimental situation closely mimics the in vivo situation where PsVs bind preferentially to the ECM (Day and Schelhaas, 2014; Kines et al., 2009; Schiller et al., 2010).´

      We appreciate the reviewer’s input and believe these additions will strengthen the manuscript with regard to the relevance of the used cellular model system.

      (2) The experiments shown in Figure 5 need to be better controlled. Why is there no HS staining of the cell surface at the early timepoints? This antibody has been shown to recognize N-sulfated glucosamine residues on HS and, therefore, detects HSPG on the ECM and cell surface.

      We have shown all images at the same adjustments of brightness and contrast. As the staining at the periphery is stronger, the impression is given that the cell surface is not stained, although there is some staining. Specific staining is documented in Figure 5D, showing the PCC between PsVs and HS only of the cell body. If there was no HS staining, the PCC would be zero, which is not the case. Yet, it is lower when compared to the PCC measured at the cell border region, with more strongly stained HS.

      We will provide images at different contrast and brightness adjustments enabling the reader to see the staining on the cell surface. We will provide also more overview images to illustrate the strong variability of the HS staining between cells.

      Therefore, the conclusion that this confirms HS coating of PsV during release from the ECM (line 430-431) is unfounded. How do the authors distinguish between "HS-coated virions" and HSPG-associated virions?

      The HS intensity transiently increases on the cell body (Fig. 5D) only after releasing a cohort of PsVs, which can be only explained by PsVs that carry HS from the ECM to the cell body. However, the effect is not significant. Using the antibody 3G10 detecting the HS neoepitope (see the referees’ suggestion below) we will reanalyze this point. This should help clarifying the issue.

      It is difficult to comprehend how the addition of 50 vge/cell of PsV could cause such a global change in HS levels.

      The distribution of bound PsVs largely varies between cells. Some areas are covered with essentially confluent cells, to which hardly any PsVs are bound, because accessing the basolateral membrane of confluent cells is nearly impossible, and PsVs do not bind to the exposed apical membrane. This is different in cultures of unpolarized cells where we expect that PsVs distribute more equally over cells.

      This means that in our experiments the vge/cell is not a suitable parameter for relating the magnitude of an effect to a defined number of PsVs. In the ECM, the PsV density is very high, enabling one cell to collect several hundred PsVs, much more than expected from the 50 vge/cell. We will point this out in the revised version.

      The claim that the HS levels are decreased in the non-cytochalasin-treated cells due to PsV-induced shedding needs to be demonstrated.

      We did not claim that PsVs induce shedding, we rather believe they just take shedded HS with them. Without PsVs, the shedded HS likely remains in the ECM or is washed out very slowly.

      If HS is actually shed, staining of the cell periphery could increase with the antibody 3G10, which detects the HS neoepitope created following heparinase cleavage.

      As outlined above, we plan to test the suggested antibody 3G10. We also plan to repeat the 0 min time point (with and without PsVs, with and without CytD) to find out whether in the PsV absence the HS intensity (at 0 min) is unchanged between control and CytD.

      Reviewer #2 (Public review):

      Summary:

      Massenberg and colleagues aimed to understand how Human papillomavirus particles that bind to the extracellular matrix (ECM) transfer to the cell body for later uptake, entry, and infection. The binding to ECM is key for getting close to the virus's host cell (basal keratinocytes) after a wounding scenario for later infection in a mouse vaginal challenge model, indicating that this is an important question in the field.

      Strengths:

      The authors take on a conceptually interesting and potentially very important question to understand how initial infection occurs in vivo. The authors confirm previous work that actin-based processes contribute to virus transport to the cell body. The superresolution microscopy methods and data collection are state-of-the art and provide an interesting new way of analysing the interaction with host cell proteins on the cell surface in certain infection scenarios. The proposed hypothesis is interesting and, if substantiated, could significantly advance the field.

      Weaknesses:

      As a study design, the authors use infection of HaCaT keratinocytes, and follow virus localisation with and without inhibition of actin polymerisation by cytochalasin D (cytoD) to analyse transfer of virions from the ECM to the cell by filopodial structures using important cellular proteins for cell entry as markers.

      First, the data is mostly descriptive besides the use of cytoD, and does not test the main claim of their model, in which virions that are still bound to heparan sulfate proteoglycans are transferred by binding to tetraspanins along filopodia to the cell body.

      The study identifies a rapid translocation step from the ECM to the cell body. We have no data that demonstrates a physical interaction between PsVs and CD151. In the model figure, we draw CD151 as part of the secondary receptor complex. We are sorry for having raised the impression that PsVs would bind directly to CD151 and will rephrase the respective section.

      Second, using cytoD is a rather broad treatment that not only affects actin retrograde flow, but also virus endocytosis and further vesicular transport in cells, including exocytosis. Inhibition of myosin II, e.g., by blebbistatin, would have been a better choice as it, for instance, does not interfere with endocytosis of the virus.

      We agree, and plan to test whether blebbistatin is equally efficient in blocking the transfer.

      Third, the authors aim to study transfer from ECM to the cell body and the effects thereof. However, there are substantial, if not the majority of, viruses that bind to the cell body compared to ECM-bound viruses in close vicinity to the cells.

      We agree that in multiple cell culture systems viruses bind preferentially to the cell directly. But we respectfully disagree with the assertion that the majority of PsVs bind to the cell body of HaCaT keratinocytes. As noted above (e.g., Figure 5A, CytD, 0 min), only a small fraction of PsVs localize to the cell body, whereas the vast majority overlap with intense HS staining at the cell periphery, consistent with ECM association, as the accessibility to the basolateral expressed HSPG is limited (see above). Based on quantitative estimation from multiple images, ECM-bound PsVs largely outnumber cell-bound particles (see above). These features make HaCaT cells a suitable in vitro model for mimicking in vivo conditions, where HPV has been proposed to bind predominantly to the basement membrane ECM rather than the cell surface (Day and Schelhaas, 2014; Kines et al., 2009; Schiller et al., 2010) which also strongly enhances infection of primary keratinocytes in vitro (Bienkowska-Haba et al., 2018).

      Thus, we believe our system appropriately models the physiologically relevant scenario of ECM-to-cell transfer, and the observed predominance of ECM binding supports the validity of our experimental focus.

      This is in part obscured by the small subcellular regions of interest that are imaged by STED microscopy, or by the use of plasma membrane sheets. As a consequence, the obtained data from time point experiments is skewed, and remains for the most part unconvincing due to the fact that the origin of virions in time and space cannot be taken into account. This is particularly important when interpreting association with HS, the tetraspanin CD151, and integral alpha 6, as the low degree of association could originate from cell-bound and ECM-transferred virions alike.

      As stated above, we observe massive binding of PsVs to the ECM, in contrast to very few PsVs that diffuse beneath the basolateral membrane of the polarized HaCaT cells and do bind directly to the cell surface (or maybe they are simply trapped between glass and basolateral membrane). PsVs are not expected to bind to the apical membrane that is depleted from CD151 and Itga6. In other cellular systems, cells may hardly secrete ECM, are not polarized, and do not adhere so tightly to the substrate. In other cultures, where virions can easily circumvent ECM binding, the large majority of PsVs will likely bind directly to the cell surface.

      As outlined above, in order to quantify PsVs that can bind without restricted accessibility, we plan to detach HaCaT cells by EDTA from the substrate, incubate them with PsVs, and let them adhere again (please see above).

      No matter what is the outcome, the fraction of PsVs that binds directly to the cell surface does not weaken our conclusion that we have identified a very fast and efficient transfer step from the ECM to the cell body.

      Fourth, the use of fixed images in a time course series also does not allow for understanding the issue of a potential contribution of cell membrane retraction upon cytoD treatment due to destabilisation of cortical actin. Or, of cell spreading upon cytoD washout.

      If blebbistatin works as expected, we can safely conclude that we observe the very same process as described in Scheelhas et al., PLoS Pathogens, 2008, showing that the PsVs migrate by retrograde transport to the cell surface and not that the cell spreads out and by this reaches the PsVs.

      The microscopic analysis uses an extension of a plasma membrane stain as a marker for ECM-bound virions, which may introduce a bias and skew the analysis.

      Our plasma membrane stain does not stain the ECM. Please see Figure 1. The stain is actually used to distinguish the cell body from the ECM area.

      Fifth, while the use of randomisation during image analysis is highly recommended to establish significance (flipping), it should be done using only ROIs that have a similar density of objects for which correlations are being established.

      We agree that the way of how randomization is done is very important. Regarding the association of PsVs with CD151 and HS, based on flipped images, we generated a calibration curve used for the correction of random background. For details, please see Supplementary Figures 3 and 5.

      For instance, if one flips an image with half of the image showing the cell body, and half of the image ECM, it is clear that association with cell membrane structures will only be significant in the original. I am rather convinced that using randomisation only on the plasma membrane ROIs will not establish any clear significance of the correlating signals.

      Figure 5D shows the PCC specifically of the cell body. In flipped images (not shown in the manuscript for clarity, but can be added) we obtain a PCC of around zero.  For CytD, the flipped images always have a significantly lower PCC compared to the original images. In the control, the PCC of the flipped images are significantly lower only for the 30 min and 60 min time point. The non-significance of the 0 min and 180 min time point is due to low PCCs also in the original images.

      Also, there should be a higher n for the measurements.

      One n is the average of 15 cells. We realize that with n = 3 we find significant effects only if the effect is very strong or moderate with very low variance.

    1. Author response:

      Reviewer #1 (Public Review):

      In this study, Deng et al. investigate the antibody response against HA antigen following repeated vaccination with the H1N1 2009 pandemic influenza vaccine strain, using in silico modeling. The proposed model provides valuable mechanistic insights into how the broadening of the antibody response takes place upon repeated vaccination.

      Overall, the authors' model effectively explains the mechanistic principles underlying antibody responses against the viral antigens harboring epitope immunodominancy.

      We thank the Reviewer for their positive and thoughtful assessment of the work. We address issues raised in the revised manuscript and in the point-by-point responses below.

      Reviewer #2 (Public Review):

      The authors have been studying the mechanism of breadth expansion in antibody responses with repeated vaccinations using their own mathematical model. In this study, they applied this mathematical model to a cohort data analyzing anti-HA antibody responses after multiple influenza virus vaccination and investigated the mechanism of antibody breadth expansion to diversified target viral strains.

      The manuscript is well written, and the mathematical model is well built that incorporates various parameters related to B cell activation in GC and EGC based on experimental data.

      We thank the reviewer for their positive and thoughtful review and address issues raised in a revised version of the manuscript and in the point-by-point below.

      Strengths:

      By carefully reanalyzing the published cohort data (Nunez IA et al 2017 PLoS One), they have clearly demonstrated that the repeated influenza virus vaccinations result in an expansion of the breadth to unmatched viral strains.

      Using their mathematical model, they have determined the major factors for the breadth expansion following multiple immunizations.

      We thank the reviewer for pointing out the strengths of our study.

      Weaknesses

      The overall concept of their model has already been published (Yang L et al 2023 Cell Reports) with a SARS-CoV-2 vaccine model, and they have applied it to influenza virus vaccine in this study, with the conclusions being largely the same.

      It is unclear how the re-evaluation of public data in the first half part is related to the validation of their model in the later part.

      The reviewer is correct in that we build directly on our model published previously to study related phenomena for SARS-CoV-2. However, a critical advance of the work was to now ask whether antibody broadening following repeated homologous antigen exposure is a general feature of human humoral immunity. As we point out in the introduction of our manuscript, repeated exposure to the same antigen has long been assumed to predominantly boost strain limited humoral immunity, necessitating rational design of vaccines that re-orient antibody responses to target otherwise immune-subdominant targets. Hence, antibody broadening in response to homologous SARS-CoV-2 antigen points to reconsideration of that basic premise in immunology; and if we are to now define this as general feature of human antibody responses, then evaluation of the principle using a different vaccine protocol and antigen is necessitated. Accordingly, we took advantage of the influenza vaccine space where, within the immediate years following the 2009 H1N1 pandemic, the 2009 H1N1 strain was repeatedly applied as the seasonal vaccine strain. This HA was also novel (as it was from a pandemic virus pHA), meaning that traditional back-boosting to historical strains would be limited. We then re-evaluated the longitudinal HAI data of Nurez et al. to define whether a broadening to increasingly divergent vaccine-unmatched strains is observed upon repeated exposure to pHA. This was not done before and was enabled by incorporating our amino acid relatedness parameter and our structure-based definition of the RBS patch. To then query mechanistic origins of the broadening effect, we adapted and extended our previous computational model to: (1) better reflect HA epitope diversity and overlap within the RBS patch; and (2) to better reflect the influenza immunization regimens that are used clinically. The differences between the modeling done in this paper and that in Yang et al. 2023 are described in the Methods section separately. Taken together, our analyses of data in Nunez et al and our simulations strengthen the emerging view that repeated boosting with the same antigen enables the humoral immune system to diversify immune responses because of feedback regulation which leads to enhanced antigen on FDCs, persistent GCs, and epitope masking. This, in turn, enables the immune system to generalize to recognize and respond to unseen variant antigens that harbor mutations in the immunodominant epitopes. Our results point to a new and emerging paradigm regarding booster immunizations and fundamental features of the humoral immune system.

      Other points:

      In the original data by Nurez LA et al., HAI (the inhibitory effect of anti-HA antibodies on the binding of HA to sialic acid on erythrocytes) was used as the lead-out. The authors conclude that the breadth expansion with repeated vaccinations is primarily due to the activation of B cells with BCRs that recognize minor common epitopes, induced by covering up of strain specific major epitopes by pre-existing antibodies. However, as they themselves show in Fig 1, once the sialic acid-binding region is covered, it seems difficult for another BCR to bind to this region. When the target epitope is limited like this, the effect of increasing antigen supply to DCs by pre-existing antibodies and the effect of increasing the presentation of minor epitopes appears to compete with each other. Could the author please explain this point?

      We agree that accounting for epitope overlap is important when the target is limited, as the reviewer indicates. In Figure 6C vs 6D we assess steric effects of possible spatial overlap between dominant and subdominant epitopes. Under overlapping conditions, we find evidence for steric-based constrainment of broadening, as predicted by the reviewer. Depending upon the degree of overlap between the epitopes and differences in germline characteristics in the B cells targeting dominant and subdominant epitopes, this effect could be compensated during subsequent shots, as described by our results (see lines 392-406).

      We also now incorporate the following sentence into our discussion (lines 448-453):

      “Epitope masking will also be constrained by the dimensions of the RBS and our simulations do report attenuation of titers against historical influenza strains when we introduce epitope overlap. Depending upon the degree of overlap between the epitopes and differences in germline characteristics in the B cells targeting dominant and subdominant epitopes, this effect could be compensated during subsequent shots.”

      In relation to this point, please explain the meaning of analysis of the entire ectodomain when the original data's lead-out is HAI.

      We include side-by-side full length ectodomain versus RBS patch (sialic acid binding residues + antibody epitope ring) to demonstrate relatedness differences in the lead-out data. But it is precisely because of the point raised by the reviewer that we focus on using the RBS patch as the relatedness values to assess antibody broadening as defined by HAI activity (see Figure 3 and S2). 

      Minor point:

      The description "The purpose of this model is ...." starting at line 171 and the description of "we obtain results in harmony with the clinical findings ...." starting at line 478 sound to be contradictory. As the authors themselves state at line 171, if the purpose of this model is not to fit the data but to demonstrate the principle, then the prudent sampling and reanalyzing data itself seems to have less meaning.

      We respectfully disagree. Please see above point as to how the clinical data is more than just “reanalyzing” but to first discover the previously unreported broadening effect across highly divergent strains following sequential immunization with homologous antigen in the influenza vaccine space; we then extended and adapted our computational model for the influenza vaccination paradigm to gain mechanistic insight on how such antibody broadening may occur. The word “harmony” was not meant to imply quantitative agreement, and apologize if it caused confusion.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      Summary:

      The study by Wu et al presents interesting data on bacterial cell organization, a field that is progressing now, mainly due to the advances in microscopy. Based mainly on fluorescence microscopy images, the authors aim to demonstrate that the two structures that account for bacterial motility, the chemotaxis complex and the flagella, colocalize to the same pole in Pseudomonas aeruginosa cells and to expose the regulation underlying their spatial organization and functioning.

      Comments on revisions:

      The authors have addressed all major and minor points that I raised in a satisfying way during the revision process. The work can now be regarded as complete, the assumptions were clarified, the results are convincing, the conclusions are justified, and the novelty has been made clear.

      This manuscript will be of interest to cell biologists, mainly those studying bacteria, but not only.

      Reviewer #2 (Public review):

      Summary:

      Here, the authors studied the molecular mechanisms by which the chemoreceptor cluster and flagella motor of Pseudomonas aeruginosa (PA) are spatially organized in the cell. They argue that FlhF is involved in localizing the receptors-motor to the cell pole, and even without FlhF, the two are colocalized. Finally, the authors argue that the functional reason for this colocalization is to insulate chemotactic signaling from other signaling pathways, such as cyclic-di-GMP signaling.

      Strength:

      The experiments and data are high quality. It is clear that the motor and receptors co-localize, and that elevated CheY levels lead to elevated c-di-GMP.

      Weakness:

      The explanation for the functional importance of receptor-motor colocalization is plausible but is still not conclusively demonstrated. Colocalization might reduce CheY levels throughout the cell in order to reduce cross-talk with c-di-GMP. This would mean that if physiologically-relevant levels of CheYp near the pole were present throughout the cell, c-di-GMP levels would be elevated to a point that is problematic for the cell. Clearly demonstrating this seems challenging.

      We acknowledge that directly proving the necessity of colocalization to prevent problematic c-di-GMP elevation is experimentally challenging, as it would require creating a system where CheY-P is artificially distributed throughout the cell at physiologically relevant concentrations while maintaining normal chemotaxis function.

      However, our data provide several lines of evidence supporting this model. First, we show that CheY overexpression leads to substantial c-di-GMP elevation (71.8% increase) and cell aggregation, demonstrating that elevated CheY levels can indeed cause problematic cross-pathway interference. Second, previous work has shown that CheY-P levels near the pole are an order of magnitude higher than in the rest of the cell (ref. 46). If this elevated CheY-P concentration near the pole were present throughout the cell, our data suggest that c-di-GMP levels would be elevated sufficiently to cause cell aggregation (Fig. 4A), thereby disabling normal motility and chemotaxis. Third, the dose-dependent relationship between CheY concentration and aggregation phenotype supports the idea that precise spatial regulation of CheY levels is functionally important for avoiding cross-pathway interference.

      Reviewer #3 (Public review):

      Summary:

      The authors investigated the assembly and polar localization of the chemosensory cluster in P. aeruginosa. They discovered that a certain protein (FlhF) is required for the polar localization of the chemosensory cluster while a fully-assembled motor is necessary for the assembly of the cluster. They found that flagella and chemosensory clusters always co-localize in the cell; either at the cell pole in wild type cells or randomly-located in the cell in FlhF mutant cells. They hypothesize that this co-localization is required to keep the level of another protein (CheY-P), which controls motor switching, at low levels as the presence of high-levels of this protein (if the flagella and chemosensory clusters were not co-localized) is associated with high-levels of c-di-GMP and cell aggregations.

      Strengths:

      The manuscript is clearly written and straightforward. The authors applied multiple techniques to study the bacterial motility system including fluorescence light microscopy and gene editing. In general, the work enhances our understanding of the subtlety of interaction between the chemosensory cluster and the flagellar motor to regulate cell motility.

      Weaknesses:

      The major weakness for me in this paper is that the authors never discussed how the flagellar genes expression is controlled in P. aeruginosa. For example, in E. coli there is a transcriptional hierarchy for the flagellar genes (early, middle, and late genes, see Chilcott and Hughes, 2000). Similarly, Campylobacter and Helicobacter have a different regulatory cascade for their flagellar genes (See Lertsethtakarn, Ottemann, and Hendrixson, 2011). How does the expression of flagellar genes in P. aeruginosa compare to other species? how many classes are there for these genes? is there a hierarchy in their expression and how does this affect the results of the FliF and FliG mutants? In other words, if FliF and FliG are in class I (as in E. coli) then their absence might affect the expression of other later flagellar genes in subsequent classes (i.e., chemosensory genes). Also, in both FliF and FliG mutants no assembly intermediates of the flagellar motor are present in the cell as FliG is required for the assembly of FliF (see Hiroyuki Terashima et al. 2020, Kaplan et al. 2019, Kaplan et al. 2022). It could be argued that when the motor is not assembled then this will affect the expression of the other genes (e.g., those of the chemosensory cluster) which might play a role in the decreased level of chemosensory clusters the authors find in these mutants.

      We thank the reviewer for the valuable suggestions. In the revised manuscript, we have further elaborated on the regulatory control of flagellar genes expression in P. aeruginosa (see our response to comment #4).

      Comments on revisions:

      I believe the authors have performed additional experiments that improved their manuscript and they have answered many of my comments and those of the other reviewers. I am supportive of publishing this manuscript, but I still find the following points that are not clear to me (probably I am misunderstanding some points; the authors can clarify).

      (1) In response to reviewer 1, the authors say that they "analyzed and categorized the distribution of the chemotaxis complex in both wild-type and flhF mutant strains into three patterns: precise-polar, near-polar, and mid-cell localization." I can see what they mean by polar and mid-cell, but near-polar sounds a bit elusive? Can they provide examples of this stage and mention how accurately they can identify it? Also, do the pie charts they show in Figure S4 really show "significant alterations"? There is a difference between 98% and 85% as they mention in their response to reviewer 1, but I am not sure that this is significant? Probably they can explain/change the language in the text? Also, the number of cells they counted for FlhF mutant is more than the double of other strains (WT and FlhF FliF mutant)?

      We thank the reviewer for the valuable suggestions. To clarify, we divided the intracellular area along the cell's long axis into three domains: the two ends each representing 10% of the length as the precise-polar domain, the central 50% as the mid-cell domain, and the remaining regions between these as the near-polar domain. The localization pattern of the chemotaxis complex was assigned based on the position of the fluorescence intensity centroid within these domains.

      Regarding the significance of the changes, you are correct to question our language. When flhF was knocked out, the proportion of chemotaxis complexes with precise-polar distribution decreased from 98% to 85% - a 13% reduction. While this represents a measurable shift in localization pattern, describing this as "significant alterations" was probably imprecise. We have revised this language to more accurately reflect the magnitude of the change (lines 169-177).

      For the cell counting, we increased the sample size for the flhF mutant because this strain exhibited the appearance of mid-cell localization (approximately 5% of cells), which was not observed in wild-type or flhF fliF double mutant strains. To accurately quantify this rare phenotype and ensure statistical reliability, we analyzed more cells for this particular strain. This explains why the flhF mutant dataset contains approximately double the number of cells compared to the other strains.

      We have redrawn Figure S4 to include a clear schematic diagram of the cell partitioning method and provided representative examples of each localization pattern (precise-polar, near-polar, and mid-cell) to better illustrate how we distinguished between these categories.

      (2) One thing that also confused me is the following: One point that the authors stress is that FlhF localizes both the flagellum and the chemoreceptors to the pole. However, if I look at Figure 2B, the flagellum and the chemoreceptors still co-localize together (although not at the pole). If FlhF was responsible for co-localizing both of them to the pole, then wouldn't one expect them to be randomly localized in this mutant and by that I mean that they do not co-localize but that each of them (the flagellum and the chemoreceptors) are located in a different random location of the cell (not co-localized). The fact that they are still co-localized together in this mutant could also be interpreted by, for example, that FlhF localizes the flagellum to the pole and another mechanism localizes the chemoreceptors to the flagellum, hence, they still co-localize in this mutant because the chemoreceptors follow the flagellum by another mechanism to wherever it goes?

      Thank you for this insightful observation. You are correct that our current experimental results do not definitively establish that FlhF directly localizes both the flagellum and chemoreceptors to the pole independently. The persistent colocalization of flagella and chemoreceptors in the DflhF mutant, even when both are mislocalized away from the pole, actually suggests a more complex regulatory mechanism than we initially proposed.

      This observation highlights an important distinction between polar targeting and colocalization maintenance. Our data suggest that FlhF influences the polar targeting of the flagellum-chemoreceptor assembly, but the colocalization itself appears to be governed by a different mechanism that operates independently of FlhF. This could involve direct protein-protein interactions between flagellar and chemotaxis components, or shared assembly machinery that we have yet to identify.

      To better reflect this interpretation, we have revised the subsection title (line 150). We have also modified the relevant discussion (line 180) to more accurately describe FlhF’s role in polar targeting rather than claiming it directly controls chemoreceptor localization.

      (3) In the response to reviewers, the authors mention "suggesting that the assembly of the receptor complex is likely influenced mainly by the C-ring and MS-ring structures rather than by the P ring". However, in the article, they still write "The complete assembly of the motor serves as a partial prerequisite for the assembly of the chemotaxis complex, and its assembly site is also regulated by the polar anchor protein FlhF" despite their FlgI results which is not in accordance with this statement? Also, As I mentioned in my previous report, in FliG and FliF mutant the motor does not assemble (see Hiroyuki Terashima et al. 2020., and Kaplan et al., 2022).

      We thank the reviewer for the suggestions and acknowledge the contradictions in our original text. You are correct that in DfliF and DfliG mutants, the flagellar motor does not assemble, while the P ring (FlgI) functions as a bushing for the peptidoglycan layer and its absence does not prevent motor assembly.

      Our DflgI results, which showed normal chemotaxis complex assembly similar to wild-type, clearly demonstrate that the P ring is not required for chemoreceptor complex formation. This contradicts our original statement that "complete assembly of the motor serves as a partial prerequisite for the assembly of the chemotaxis complex."

      We have corrected this inconsistency by: 1) Revising the subsection title (line 186) to more accurately reflect that core motor structures, rather than complete motor assembly, influences chemoreceptor complex formation. 2) Modifying sentences in the introduction (lines 97-98) to better align with our experimental findings.

      (4) The authors have said in their response to my point "and currently, there is no evidence that FliA activity is influenced by proteins like FliG". I just want to clarify what I meant in my previous report: In E. coli, FliA binds to FlgM, and when the hook is assembled FlgM is secreted outside the cell allowing FliA to trigger the transcription of class III genes, which include the chemosensory genes (see Figure 5 in Beeby et al, 2020 in FEMS Microbiology, and Chilcott and Hughes, 2000). This implies that if the hook is not built, then late genes (including the chemoreceptors) should not be present. However, in Kaplan et al., 2019, the authors imaged a FliF mutant in Shewanella oneidensis (Figure S3) and still saw that chemoreceptors are present (I believe the authors must highlight this). This suggests that species such as Shewanella and Pseudomonas have a different assembly process than that E. coli, and although the authors say that in the text, I believe they still can refine this part more in the spirit of what I wrote here.

      We thank the reviewer for the important clarification regarding the differences in transcriptional regulation among bacterial species. We agree that the observation of chemoreceptors in Shewanella oneidensis DfliF mutants (Kaplan et al., 2019) represents a significant deviation from the well-characterized E. coli model and merits stronger emphasis. In response, we have expanded the discussion to more clearly highlight the critical distinctions in the transcriptional regulatory circuits governing flagellar and chemoreceptor biogenesis between E. coli and species such as Shewanella oneidensis and Pseudomonas aeruginosa (lines 351-363).

      I do not like to ask for additional experiments in the second round of review, so for me if the authors modify the text to tackle these points and allow for probable alternative explanations/ highlight gaps/ modify language used for some claims, then that is fine with me.

      Reviewer #2 (Recommendations for the authors):

      It is plausible that colocalization reduces CheY levels throughout the cell in order to reduce cross-talk with c-di-GMP. This would mean that if physiologically-relevant levels of CheYp near the pole were present throughout the cell, c-di-GMP levels would be elevated to a point that is problematic for the cell. Clearly demonstrating this seems challenging.

      We acknowledge that directly proving the necessity of colocalization to prevent problematic c-di-GMP elevation is experimentally challenging, as it would require creating a system where CheY-P is artificially distributed throughout the cell at physiologically relevant concentrations while maintaining normal chemotaxis function.

      However, our data provide several lines of evidence supporting this model. First, we show that CheY overexpression leads to substantial c-di-GMP elevation (71.8% increase) and cell aggregation, demonstrating that elevated CheY levels can indeed cause problematic cross-pathway interference. Second, previous work has shown that CheY-P levels near the pole are an order of magnitude higher than in the rest of the cell (ref. 46). If this elevated CheY-P concentration near the pole were present throughout the cell, our data suggest that c-di-GMP levels would be elevated sufficiently to cause cell aggregation (Fig. 4A), thereby disabling normal motility and chemotaxis. Third, the dose-dependent relationship between CheY concentration and aggregation phenotype supports the idea that precise spatial regulation of CheY levels is functionally important for avoiding cross-pathway interference.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Major comments:

      (1) The main issue that I have with this study is the lack of exploration of "why" the model produces the results it does. Considering this is a model, it should be possible to find out why the three timescales of half-act/inact parameter modifications lead to different sets of results. Without this, it is simply an exploratory exercise. (The model does this, but we do not know the mechanism.) Perhaps this is enough as an interesting finding, but it remains unconvincing and (clearly) does not have the impact of describing a potential mechanism that could be potentially explored experimentally.

      This is now addressed in a new section in Results (“Potential Mechanism”):

      “To explore why the properties of the resulting bursters depend on the timescale of half-(in)activation adjustments, we examined what happens when SP1 is assembled under different half-(in)activation timescales: (1) fast, (2) intermediate (matching the timescale of ion channel density changes), and (3) infinitely slow (i.e., effectively turned off). The effects of these timescales can be seen by comparing the zoomed-in views of the SP1 activity profiles under each condition (Figure 4).

      When half-(in)activations are fast, the time evolution of — which tracks how far the activity pattern is from its targets (see Methods)—shows an abrupt jump as it searches for a voltage-dependence configuration that meets calcium targets (Figure 4A). As this happens, the channel densities are slightly altered, and this process continues again. Slowing the half-(in)activations alterations reduces these abrupt fluctuations (Figure 4B). Making the alterations infinitely slow effectively removes half-(in)activation changes altogether, leaving the system reliant solely on slower alterations in maximal conductances (Figure 4C). Because each timescale of half-(in)activation produces a different channel repertoire at each time step, different timescales of half-(in)activation alteration led the model through a different path in the space of activity profiles and intrinsic properties. Ultimately, this resulted in distinct final activity patterns – all of which were consistent with the Ca<sup>2+</sup> targets [22].

      (2) A related issue is the use of bootstrapping to do statistics for a family of models, especially when the question is in fact the width of the distribution of output attributes. I don't buy this. One can run enough models to find say N number of models within a tight range (say 2% cycle period) and the same N number within a loose range (say 20%) and compare the statistics within the two groups with the same N.

      We appreciate the reviewer’s skepticism regarding our statistical approach with the “Group of 5” and “Group of 20.” These groups arose from historical aspects of our analysis and this analysis does not directly advance the main point—that changes in the timescale of channel voltage-dependence alterations impact the properties of bursters to which the homeostatic mechanism converges. Therefore, we removed the references to the Group of 5 and focus on how the Group of 20 responds to variations in the timescale of voltage-dependent alterations.

      (3) The third issue is that many of the results that are presented (but not the main one) are completely expected. If one starts with gmax values that would never work (say all of them 0), then it doesn't matter how much one moves the act/inact curves one probably won't get the desired activity. Alternately, if one starts with gmax values that are known to work and randomizes the act/inact midpoints, then the expectation would be that it converges to something that works. This is Figure 1 B and C, no surprise. But it should work the other way around too. If one starts with random act/inact curves that would never work and fixes those, then why would one expect any set of gmax values would produce the desired response? I can easily imagine setting the half-act/inact values to values that never produce any activity with any gmax.

      We appreciate this observation and agree that it highlights a limitation of our initial condition sampling. Our claim that the half-(in)activation mechanism is subordinate to the maximal conductance mechanism is not intended as a general statement. Rather, we make this observation only within the specific range of initial conditions we explored. Within this restricted set, we found that the conductance mechanism was sufficient for successful assembly, while the half-(in)activation mechanism alone was not. We have revised the manuscript to limit the claim.

      “The results shown in Figure 1A require activity-dependent regulation of the maximal conductances. When activity-dependent regulation of the maximal conductances is turned off, the model failed to assemble SP1 into a burster (Figure 1B). This was seen in the other 19 Starting Parameters (SP2-SP20), as well [22].

      (4) A potential response to my previous criticism would be that you put reasonable constraints on gmax's or half-act/inact values or tie the half-act to half-inact. But that is simply arbitrary ad hoc decisions made to make the model work, much like the L8-norm used to amplify some errors. There is absolutely no reason to believe this is tied to the biology of the system.

      Here the reviewer highlights that model choices (e.g., constraints on maximal conductance and half-(in)activation, use of the L8 norm) are not necessarily justified by biology. A discussion of the constraints on maximal conductance and half-(in)activation are in the Model Assumptions section at the end of Methods. The Methods also contains a longer discussion of the use of the L8 norm:

      “To compute this match score, we adapted a formulation from Alonso et al (2023),  who originally used a root-mean-square (RMS) or  norm to combine the sensor mismatches. In that approach, each error (, , and ) is divided by its allowable tolerance (, , and ) to produce a normalized error. These normalized errors are then squared, summed, and square-rooted to produce a single scalar score that reflects how well the model matches the target activity pattern.

      In our version, we instead used an  norm, which raises each normalized error to the 8th power before summing and taking the 1/8th root. This formulation emphasizes large deviations in any one sensor, making it easier to pinpoint which feature of the activity is limiting convergence. By amplifying outlier mismatches, this approach provided a clearer view of which sensor was driving model mismatch, helping us both interpret failure modes and tune the model’s sensitivity by adjusting the tolerances for individual sensor errors.

      Although the  norm emphasizes large deviations more strongly than the  norm, the choice of norm does not fundamentally alter which models can converge—a model that performs well under one norm can also be made to perform well under another by adjusting the allowable tolerances. The biophysical mechanisms by which neurons detect deviations from target activity and convert them into changes in ion channel properties are still not well understood. Given this uncertainty, and the fact that using different norms ultimately shouldn’t affect the convergence of a given model, the use of different norms to combine sensor errors is consistent with the broader basic premise of the model: that intrinsic homeostatic regulation is calcium mediated [22].

      (5) The discussion of this manuscript is at once too long and not adequate. It goes into excruciating detail about things that are simply not explored in this study, such as phosphorylation mechanisms, justification of model assumptions of how these alterations occur, or even the biological relevance. (The whole model is an oversimplification - lack of anatomical structure, three calcium sensors, arbitrary assumptions, and how parameter bounds are implemented.) Lengthy justifications for why channel density & half-act/inact of all currents are obeying the same time constant are answering a question that no one asked. It is a simplified model to make an important point. The authors should make these parts concise and to the point. More importantly, the authors should discuss the mechanism through which these differences may arise. Even if it is not clear, they should speculate.

      We agree. A long discussion on Model Assumptions and potential biological mechanisms that implement alteration in channel voltage-dependence obscure this. The former is relocated to the Methods section. The latter discussion is shortened. A discussion of a potential mechanism is included in the Results (Figure 4).

      (6) There should be some justification or discussion of the arbitrary assumptions made in the model/methods. I understand some of this is to resolve issues that had come up in previous iterations of this approach and in fact the Alonso et al, 2023 paper was mainly to deal with these issues. However, some level of explanation is needed, especially when assumptions are made simply because of the intuition of the modeler rather than the existence of a biological constraint or any other objective measure.

      A discussion of Model Assumptions is included in the Methods.

      Reviewer #2 (Public review):

      Summary:

      In this study, Mondal and co-authors present the development of a computational model of homeostatic plasticity incorporating activity-dependent regulation of gating properties (activation, inactivation) of ion channels. The authors show that, similar to what has been observed for activity-dependent regulation of ion channel conductances, implementing activity-dependent regulation of voltage sensitivity participates in the achievement of a target phenotype (bursting or spiking). The results however suggest that activity-dependent regulation of voltage sensitivity is not sufficient to allow this and needs to be associated with the regulation of ion channel conductances in order to reliably reach the target phenotype. Although the implementation of this biologically relevant phenomenon is undeniably relevant, the main conclusions of the paper and the insights brought by this computational work are difficult to grasp.

      Strengths:

      (1) Implementing activity-dependent regulation of gating properties of ion channels is biologically relevant.

      (2) The modeling work appears to be well performed and provides results that are consistent with previous work performed by the same group.

      Weaknesses:

      (1) The writing is rather confusing, and the state of the art explaining the need for the study is unclear.

      We reorganized the manuscript to make its focus clearer.

      Introduction: We clarified our explanation of the state-of-the-art. Briefly, prior work on activity-dependent homeostasis has focused on regulating ion channel density. Neurons have also been documented to homeostatically regulate channel voltage-dependence. However, the consequences of channel voltage-dependence alterations on homeostatic regulation remain underexplored. To study this, we extend a computational model of activity-dependent homeostasis — originally developed to only alter channel density— to alter channel voltage-dependence.

      Results: We reorganized this section to underscore the main point: that the timescale of half-(in)activation alterations influences the intrinsic properties and activity patterns targeted by a homeostatic mechanism. Figures 1A and 1B were retained to provide context—Figure 1A illustrates how activity can emerge from random initial conditions, while Figure 1B suggests that in these simulations, modulation of half-(in)activation played a specific limited role. Figure 2 builds on Figure 1A by summarizing how intrinsic properties and activity characteristics vary across a population of 20 bursters. Figure 3 then demonstrates that despite playing this specific limited role, altering the timescale of half-(in)activation in these simulations significantly impacted the intrinsic properties and activity characteristics of the bursters targeted by the homeostatic mechanism. Figure 4 supports this by offering a possible mechanistic explanation. Finally, Figure 5 reinforces the central message by showing how the same population responds to perturbation when the timescale of half-(in)activation alterations is varied—essentially extending the analysis of Figure 3 to a perturbed regime.

      Discussion: The Discussion concentrates on more specifically on how the timescale of half-(in)activation alterations shape bursters targeted he homeostatic mechanism. Extended content on model assumptions is moved to Methods. The discussion of biological pathways that implement channel voltage-dependence is shortened to avoid distracting from the main message.

      Methods: Aside from moving model assumptions here, we removed discussion of the “Group of 5” and explained in more detail why we chose the L8 norm.

      (2) The main outcomes and conclusions of the study are difficult to grasp. What is predicted or explained by this new version of homeostatic regulation of neuronal activity?

      Our message is general: the timescale of half-(in)activation alterations influences the intrinsic properties and activity characteristics of bursters targeted by a homeostatic mechanism. As such, the implications are general. Their value lies in circumscribing a conceptual framework from which experimentalists may devise and test new hypotheses. We do not aim to predict or explain any specific phenomenon in this work. To address this concern the Discussion highlights two potential implications of our findings—one to neuronal development and another to pathologies that may arise from disruptions to homeostatic processes:

      “One application for the simulations involving the self-assembly of activity may be to model the initial phases of neural development, when a neuron transitions from having little or no electrical activity to possessing it (Baccaglini & Spitzer 1977). As shown in Figure 6, the timescale of (in)activation curve alterations define a neuron's activity characteristics and intrinsic properties. As such, neurons may actively adjust these timescales to achieve a specific electrical activity aligned with a developmental phase’s activity targets. Indeed, developmental phases are marked by changes in ion channel density and voltage-dependence, leading to distinct electrical activity at each stage (Baccaglini & Spitzer 1977, Gao & Ziskind-Conhaim 1998, Goldberg et al 2011, Hunsberger & Mynlieff 2020, McCormick & Prince 1987, Moody & Bosma 2005, O'Leary et al 2014, Picken Bahrey & Moody 2003).

      Additionally, our results show that activity-dependent regulation of channel voltage-dependence can play a critical role in restoring neuronal activity during perturbations (Figure 5). Specifically, the presence and timing of half-(in)activation modulation influenced whether the model neuron could successfully return to its target activity pattern. Many model neurons only achieved recovery when a half-(in)activation mechanism was present. Moreover, the speed of this modulation shaped recovery outcomes in nuanced ways: some model neurons reached their targets only when voltage-dependence was adjusted rapidly, while others did so only when these changes occurred slowly. These observations all suggest that impairments in a neuron’s ability to modulate the voltage-dependence of its channels may lead to disruptions in activity-dependent homeostasis. This may have implications for conditions such as addiction (Kourrich et al 2015) and Alzheimer’s disease (Styr & Slutsky 2018), where disruptions in homeostatic processes are thought to contribute to pathogenesis.”

      Reviewer #3 (Public review):

      Mondal et al. use computational modeling to investigate how activity-dependent shifts in voltage-dependent (in)activation curves can complement activity-dependent changes in ion channel conductance to support homeostatic plasticity. While changes in the voltage-dependent properties of ion channels are known to modulate neuronal excitability, their role as a homeostatic plasticity mechanism interacting with channel conductance has been largely unexplored. The results presented here demonstrate that activity-dependent regulation of voltage-dependent properties can interact with plasticity in channel conductance to allow neurons to attain and maintain target activity patterns, in this case, intrinsic bursting. These results also show that the rate of channel voltage-dependent shifts can influence steady-state parameters reached as the model stabilizes into a stable intrinsic bursting state. That is, the rate of these modifications shapes the range of channel conductances and half-(in)activation parameters as well as activity characteristics such as burst period and duration. A major conclusion of the study is that altering the timescale of channel voltage dependence can seamlessly shift a neuron's activity characteristics, a mechanism that the authors argue may be employed by neurons to adapt to perturbations. While the study's conclusions are mostly well-supported, additional analyses, and simulations are needed.

      (1) A main conclusion of this study is that the speed at which (in)activation dynamics change determines the range of possible electrical patterns. The authors propose that neurons may dynamically regulate the timescale of these changes (a) to achieve alterations in electrical activity patterns, for example, to preserve the relative phase of neuronal firing in a rhythmic network, and (b) to adapt to perturbations. The results presented in Figure 4 clearly demonstrate that the timescale of (in)activation modifications impacts the range of activity patterns generated by the model as it transitions from an initial state of no activity to a final steady-state intrinsic burster. This may have important implications for neuronal development, as discussed by the authors.

      However, the authors also argue that the model neuron's dynamics - such as period, and burst duration, etc - could be dynamically modified by altering the timescale of (in)activation changes (Figure 6 and related text). The simulations presented here, however, do not test whether modifications in this timescale can shift the model's activity features once it reaches steady state. In fact, it is unlikely that this would be the case since, at steady-state, calcium targets are already satisfied. It is likely, however, as the authors suggest, that the rate at which (in)activation dynamics change may be important for neuronal adaptation to perturbations, such as changes in temperature or extracellular potassium. Yet, the results presented here do not examine how modifying this timescale influences the model's response to perturbations. Adding simulations to characterize how alterations in the rate of (in)activation dynamics affect the model's response to perturbations-such as transiently elevated extracellular potassium (Figure 5) - would strengthen this conclusion.

      The reviewer suggests that our core message — namely, that the timescale of half-(in)activation alterations influences the intrinsic properties and activity patterns targeted by a homeostatic mechanism — should also hold during perturbations. We agree that this extension strengthens the central message and have incorporated it into the subsection of the Results (“Half-(in)activation Alterations Contribute to Activity Homeostasis”) and Figure 5.

      (2) Another key argument in this study is that small, coordinated changes in channel (in)activation contribute to shaping neuronal activity patterns, but that, these subtle effects may be obscured when averaging across a population of neurons. This may be the case; however, the results presented don't clearly demonstrate this point. This point would be strengthened by identifying correlations, if they exist, between (in)activation curves, conductance, and the resulting bursting patterns of the models for the simulations presented in Figure 2 and Figure 4, for example. Alternatively, or additionally, relationships between (in)activation curves could be probed by perturbing individual (in)activation curves and quantifying how the other model parameters compensate, which could clearly illustrate this point.

      In part of the Discussion, we noted that small, coordinated shifts in half-(in)activation curves could be obscured when averaging across a population of neurons. Our intention was not to present this as a primary result, but to highlight an emergent consequence of the model: that distinct initial maximal conductances may converge to activity targets via different small shifts in half-(in)activation, making such changes difficult to detect at the population level. However, we did not systematically examine correlations between (in)activation parameters, conductances, and activity features, nor how these correlations might vary with the timescale of (in)activation modulation. While this observation is consistent with model behavior, it does not directly advance the study’s main point — that the timescale of half-(in)activation modulation influences the types of bursting patterns that satisfy the activity target. To keep the focus clear, we have removed this remark from the Discussion, though we agree that a more detailed analysis of these correlations may offer a fruitful direction for future work.

      Reviewer #1 (Recommendations for the authors):

      Minor comments:

      (1) Page 5: remove "an" from "achieve a given an activity..."

      The sentence containing this error has been removed.

      (2) Page 7, bottom of page. Explain what prespecifying means here. This requires a conceptual explanation, even if the equations are given in the methods. Was one working ad hoc model built from which the three sensor values were chosen? What was this model and how was it benchmarked? The sensors are never shown. In any figure, but presumably they have different kinetics. What is meant by "average value"? What was the window of averaging and why?

      The intention of this passage was to provide a broad overview of the homeostatic mechanism, with the rationale for using sensor “averages” as homeostatic targets explained in detail in the Methods. We have replaced the word “average” with “target” to maintain this focus.

      (3) Page 9: add "the" in "electrical activity of the neuron as [the] model seeks...".

      Done

      (4) Page 9: say briefly what alpha is before using it. Also, please be consistent in either using the symbol for alpha or spelling it out across the manuscript and the figures.

      Done

      (5) Page 10: the paragraph "In general, ..." is confusing although it becomes clear later on what this is all about. Please rewrite and expand this to clarify some points. For instance, the word "degenerate" is first used here and it is unclear in what sense these models are degenerate. Then it is unclear why the first 5 models were chosen and then 15 more added. What was the point of doing this? What is the intent? Set this up properly before saying that you just did it. This also would clarify the weird terminology used later on of Group of 20 vs. Group of 5. The 20 and 5 are arbitrary. Say what the purpose is. Finally, is the "mean" at the very end the same 416 ms? If not, what do you mean by "the mean"? In fact, I find these 2% and 20% to be imprecise substitutes of (say) two distinct values of CV which are an order of magnitude different. Is that the intent?

      This comment refers to a passage that was removed during revision.

      (6) Page 10: this may be clear to you, but it took me a while to understand that in Figure 1C, you took the working model at the end of 1A, fixed the gmax values and randomized just the half-act/inact values to run it. Perhaps rewrite this to clarify?

      This comment refers to a figure that was removed during revision.

      (7) Page 13: why do channel densities not change much after the perturbation?

      This comment refers to a figure that has since been reworked during revision. In particular, we only study what happens during perturbation. This question is interesting and is the subject of ongoing work.

      Reviewer #2 (Recommendations for the authors):

      The article should be carefully corrected, because the current quality of writing might obscure the interest of the study. Particular attention should be paid to the state-of-the-art section and to the discussion, but even the writing of the results should be carefully reworked. The current state of the article makes it very difficult to understand the motivation behind the study but also what the main result provided by this work is.

      The Introduction, Results, and Discussion have been reworked to build on the central premise of the work: the timescale of half-(in)activation alterations influences the intrinsic properties and activity patterns targeted by the neuron’s homeostatic mechanism. These changes are detailed in Public Comment #1.

      Reviewer #3 (Recommendations for the authors):

      The manuscript presents an interesting computational study exploring how activity-dependent regulation of (in)activation dynamics interacts with conductance plasticity to shape neuronal activity patterns. While the study provides valuable insights, some aspects would benefit from clarification, further analyses, and/or additional simulations to strengthen the conclusions. Below, I outline concerns and comments related to specific details of the model and results presentation that were not included in the public review.

      (1) The results presented in Figure 5 show that adaptation occurs in both channel conductances and (in)activation dynamics; however, the changes in conductance remain relatively permanent after the model recovers from the transient elevation in extracellular potassium. It therefore seems likely that the model would recover bursting more quickly in response to a subsequent exposure to simulated elevated extracellular potassium since large modifications in the slowly changing conductances would not be required. If this is the case, it could provide a plausible mechanism for adaptation to repeated high-potassium exposure, as demonstrated experimentally in Cancer borealis by this group (PMID: 36060056).

      This is an astute observation and the subject of our present follow-up investigation.

      (2) In the text relating to Figure 5, it is argued that the resulting shifts in (in)activation curves may be conceptualized as alterations in window currents. It would be helpful to illustrate this by plotting and comparing changes in window currents of these channels alongside the changes in their (in)activation curves.

      This comment refers to a passage that was removed during revision.

      (3) Some discussion of the role these homeostatic mechanisms may play when the neuron is synaptically integrated into a rhythmically active network could be informative. Surely, phasic and tonic inputs to the neuron would alter its conductance and voltage-dependent properties. Therefore, the model's parameters in an intact network could be very different from those in the synaptically isolated case.

      This is an excellent point. We agree that synaptic context—particularly tonic and phasic inputs—would likely influence a neuron’s conductances and voltage-dependent properties, potentially leading to different homeostatic outcomes than in the isolated case. While our current study focuses on synaptically isolated neurons, the Marder lab has considered how homeostatically stabilized neurons might interact in network settings. For example, O'Leary et al (2014) presents an example network of three such neurons operating under homeostatic regulation. However, systematically exploring this question remains a challenge. We are currently developing ideas to study this in the context of a simplified half-center oscillator model, where network-level dynamics can be more tractably analyzed.

      (4) Why are the transitions of alpha typically so abrupt, essentially either 1 or 0? Similarly, what happens in the model when there are transient transitions from what appears to be a steady-state alpha that abruptly shifts from 0 to 1 or 1 to 0? For example, what is occurring in Figure 1A at ~150s and ~180s when alpha jumps between 1 and 0, or in Figure 1B when the model transiently jumps up from 0 to 1 at ~400s and ~830s? In Figure 1A, does the bursting pattern change at all after ~250s, or is it identical to the pattern at c?

      This is addressed in the revision (Lines 141 – 150).

      (5) Are the final steady-state parameters of the 25 (sic) models consistent with experimental observations?

      It is difficult to assess — it is hard to design an experiment to do what the reviewer is suggesting.

      (6) Why isn't gL allowed to change dynamically? This seems like the most straightforward way to allow a neuron to adjust its excitability (aside from tonic synaptic inputs).

      Passive currents could, in principle, be subject to homeostatic regulation. However, our study focused on active intrinsic currents. This focus stems from earlier investigations, which showed that active currents are dynamically regulated during homeostasis – for instance Turrigiano et al (1995) and (Desai et al 1999).

      Alonso LM, Rue MCP, Marder E. 2023. Gating of homeostatic regulation of intrinsic excitability produces cryptic long-term storage of prior perturbations. Proc Natl Acad Sci U S A 120: e2222016120

      Baccaglini PI, Spitzer NC. 1977. Developmental changes in the inward current of the action potential of Rohon-Beard neurones. J Physiol 271: 93-117

      Desai NS, Rutherford LC, Turrigiano GG. 1999. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience 2: 515-20

      Gao BX, Ziskind-Conhaim L. 1998. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. J Neurophysiol 80: 3047-61

      Goldberg EM, Jeong HY, Kruglikov I, Tremblay R, Lazarenko RM, Rudy B. 2011. Rapid developmental maturation of neocortical FS cell intrinsic excitability. Cereb Cortex 21: 666-82

      Hunsberger MS, Mynlieff M. 2020. BK potassium currents contribute differently to action potential waveform and firing rate as rat hippocampal neurons mature in the first postnatal week. J Neurophysiol 124: 703-14

      Kourrich S, Calu DJ, Bonci A. 2015. Intrinsic plasticity: an emerging player in addiction. Nature Reviews Neuroscience 16: 173-84

      McCormick DA, Prince DA. 1987. Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J Physiol 393: 743-62

      Moody WJ, Bosma MM. 2005. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol Rev 85: 883-941

      O'Leary T, Williams AH, Franci A, Marder E. 2014. Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 82: 809-21

      Picken Bahrey HL, Moody WJ. 2003. Early development of voltage-gated ion currents and firing properties in neurons of the mouse cerebral cortex. J Neurophysiol 89: 1761-73

      Styr B, Slutsky I. 2018. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nature Neuroscience 21: 463-73

      Turrigiano G, LeMasson G, Marder E. 1995. Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. J Neurosci 15: 3640-52

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This work starts with the observation that embryo polarization is asynchronous starting at the early 8-cell stage, with early polarizing cells being biased towards producing the trophectoderm (TE) lineage. They further found that reduced CARM1 activity and upregulation of its substrate BAF155 promote early polarization and TE specification, this piece of evidence connects the previous finding that at Carm1 heterogeneity 4-cell stage guide later cell lineages - the higher Carm1-expressing blastomeres are biased towards ICM lineage. Thus, this work provides a link between asymmetries at the 4-cell stage and polarization at the 8-cell stage, providing a cohesive explanation regarding the first lineage allocation in mouse embryos.

      Strengths:

      In addition to what has been put in the summary, the advanced 3D image-based analysis has found that early polarization is associated with a change in cell geometry in blastomeres, regarding the ratio of the long axis to the short axis. This is considered a new observation that has not been identified.

      Weaknesses:

      For the microinjection-based method to overexpression/deletion of proteins, although it has been shown to be effective in the early embryo settings and has been widely used, it may not fully represent the in vivo situation in some cases, compared to other strategies such as the use of knock-in mice. This is a minor weakness; it would be good to include some sentences in the discussion on the potential caveats.

      We thank the reviewer for their insightful summary of our work, and their adjudication on the novelty of our research. We agree with the reviewer that microinjection-based methods, whilst being the standard and widely used in the field, have their weaknesses. In this study, we have primarily used microinjection of previously tested and known constructs which may help mitigate these concerns, and have referenced numerous studies in which these constructs have been used and tested. Nevertheless, the authors are aware of this drawback and have tried to address this previously in other research using novel artificial intelligence techniques (Shen and Lamba et al., 2022 – cited in the manuscript) and this continues to be an active area of investigation for us.

      Reviewer #2 (Public review):

      Summary:

      In this study, Lamba and colleagues suggest a molecular mechanism to explain cell heterogeneity in cell specification during pre-implantation development. They show that embryo polarization is asynchronous. They propose that reduced CARM1 activity and upregulation of its substrate BAF155 promote early polarization and trophectoderm specification.

      Strengths:

      The authors use appropriate and validated methodology to address their scientific questions. They also report excellent live imaging. Most of the data are accompanied by careful quantifications.

      Weaknesses:

      I think this manuscript requires some more quantification, increased number of embryos in their evaluations and clearly stating the number of embryos evaluated per experiments.

      We thank the reviewer for these thoughtful comments on our work, their kind assessment of the strength of our research, and their notes on the weaknesses. We have replied to their points raised below.

      Here are some points:

      (1) It should be clearly stated in all figure legends and in the text how many cells from how many embryos were analyzed.

      We appreciate this comment to provide detailed quantification for every experiment in the paper and stating the numbers of embryos (if a whole embryo level experiment) or blastomeres used for statistical tests and displayed in the graph.

      (2) I think that the number of embryos sometimes are too low. These are mouse embryos easily accessible and the methods used are well established in this lab, so the authors should make an effort to have at least 10/15 embryos per experiment. For example "In agreement with this, hybridization chain reaction (HCR) RNA fluorescence in situ hybridization of early 8-cell stage embryos revealed that the number of CDX2 mRNA puncta was higher in polarized blastomeres with a PARD6-positive apical domain than in unpolarized blastomeres, for 5 out of 6 embryos with EP cells (Figure 3A, B)".. or the data for Figure 4, we know how many cells but now how many embryos.

      We appreciate the reviewer’s comment regarding the number of embryos used in the hybridization chain reaction (HCR) experiment. We agree that increasing the number of embryos could, in principle, further add statistical power. However, both first authors have since left the lab to begin their postdoctoral training or joining a company, and it is not feasible for us to generate additional embryos at this stage.

      Importantly, we believe the number of embryos included in the current manuscript is sufficient to support our conclusions, especially when considered in the context of the broader experimental design, the timing of the study, and our ethical commitment to minimizing animal use.

      Notably, the initial HCR experiment targeting Cdx2 mRNA served as a key indication that prompted further investigation of CDX2 at the protein level. These follow-up experiments were conducted with increased numbers of embryos and/or cells and are presented in Figure 3 and the associated supplementary figures (we now have 124 cells (including 23 EP cells) from 16 embryos), thereby strengthening and confirming the conclusion suggested by the HCR data.

      (3) It would be useful to see in Figure 4 an example of asymmetric cell division as done for symmetric cell division in panel 4B. This could really help the reader to understand how the authors assessed this.

      We used live imaging to track cell division patterns. Cells expressing RFP-tagged polarity proteins were observed during division to identify the resulting daughter cells. Immediately after cytokinesis, we assessed the polarity status of each daughter cell. If both daughter cells were polarized, the division was classified as symmetric; if only one was polarized, it was classified as asymmetric.

      Author response image 1.

      8-cell stage embryos expressing Ezrin-RFP (fire colour) was imaged during 8-16 cell stage division. Top panel arrows indicate a symmetric cell division in which polarity domain became partitioned into both daughter cells; bottom panel indicates asymmetric division in which the polarity domain only get inherited to one cell of the two daughter cells.

      (4) Figure 5C there is a big disproportion of the number of EP and LP identified. Could the authors increase the number of embryos quantified and see if they can increase EP numbers?

      We thank the reviewer for this comment and want to clarify an important detail: EP cells are a phenomenon with average cellular frequency of less than 10% as compared to LP cells (the other 90%). Therefore, when investigating natural embryo development without bias or exclusion, there will likely be an imbalance in the number of EP and LP cells as is the case for Figure 5C. In this case, morphological differences and clear statistical significance were seen between the shape of EP and LP cells within the cells quantified and therefore we decided not to expend further mice for this particular experiment – but we agree with the comment that in most cases additional embryos would help strength our conclusions further.

      (5) Could the authors give more details about how they mount the embryos for live imaging? With agarose or another technique? In which dishes? Overlaid with how much medium and oil? This could help other labs that want to replicate the live imaging in their labs. Also, was it a z-stack analysis? If yes, how many um per stack? Ideally, if they also know the laser power used (at least a range) it would be extremely useful.

      We thank the reviewer for this comment and have provided additional detail here and in the Methods section. For live imaging our embryos, we used glass-bottom 35 mm dishes. We then fixed a small cut square of nylon mesh (5mm to 1cm width and height) onto this plate in the centre using silicon which was used as a grid (diameter of approximately 150 micrometres) for deposition of embryos. After drying of the silicon (overnight) and washing with water, the grid was overlaid with a drop of 100 microlitres of KSOM and then covered with mineral oil until this KSOM drop was submerged. After incubation under conditions for live imaging, single embryos were deposited in each ‘well’ of the grid before being placed in the microscope, which was equilibrated at the correct temperature and CO2.

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the expert reviewers for their careful consideration of our manuscript and the feedback to help us strengthen our work. Please find a response to each reviewer’s comments below. We have included the original text from the reviewer in unbolded text and our response, immediately below, in bold text for clarity. 

      Reviewer #1:

      (1) Appetite is controlled, not regulated; please reword throughout.

      The reviewer raises a valid point that we have misused the word “regulate” in certain instances and “control” would be more accurate term. We have made adjustments throughout the manuscript.

      (2) One minor point that would further strengthen the data is a more distinct analysis of receptors that are characteristic of the different populations of neuronal and non-neuronal cells; this part could be improved. 

      We thank the reviewer for this suggestion as we had not directly compared metabolicallyrelevant peptides/receptors between the mouse and rat DVC. We have included a list of selected receptors and neuropeptides expression (see Figure S13) for neuronal cells in mouse and rat. We have included this figure as a new supplement. There are some interesting insights from this data, including the relatively broad expression of Lepr in the rat compared with the mouse and the absence of proglucagon expressing neurons within the rat DVC.  

      Reviewer #2:

      (1) In some of the graphs, the label AP/NTS is used, but DVC would be more appropriate.

      We have reviewed the figures and legends to ensure appropriate use of DVC. We thank the reviewer for bringing this oversight to our attention.  

      (2) Line 124, p7 - Sprague Dawley RATS

      We have changed the text to “Sprague Dawley rats” 

      (3) Line 132, p7 - The phrase "were provided with given access to food" needs grammatical correction.

      We agree the text was poorly written. The sentence has been corrected to: “Wild-type Sprague

      Dawley rats (Charles River) were provided with ad libitum access to food (Purina Lab Diet

      5001) and water in temperature-controlled (22°C) rooms on a 12-hour light-dark cycle with daily health checks.” We have also reviewed the entire manuscript and made additional amendments where necessary.  

      (4) Page 15 - Mention that GFAP is a marker for astrocytes. Additionally, correct the typo "gfrap".

      We have corrected the misspelling of “Gfap” within the text. We appreciate the reviewer’s comment that there is value in communicating to the nonexpert reader that GFAP is a marker for astrocytes, however, as our data and that from other snRNA-Seq studies show that Gfap mRNA only labels a subset of astrocytes, our preference is to refrain from stating this. Our data suggests the sole use of Gfap as an astrocyte marker will not reflect the true astrocyte population.  

      (5) Line 432, p15 - What was the rationale for selecting clusters 23, 26, and 27?

      We chose to perform subclustering on these clusters because they displayed multiple cell identities when surveyed for the 473 marker genes as described in Methods 2.6. In order to separate these, the granularity was increased in them by sub-clustering.

      (6) Line 533, p18 - only 5 out of 34 neurons express GFRAL, which makes the language used a little bit misleading. As per the comment above, I would specify that only a subset (X%) of neurons express GFRAL, and apply the same approach for other markers.

      We thank the reviewer for raising this point. We agree the text, as written, was an oversimplification. We adjusted the text as recommended: that a subset (~15%) express detectable Gfral mRNA but is likely an underrepresentation due to the challenges in detecting lowly expressed transcripts such as Gfral.  

      (7) Line 547, p18 - This statement appears to refer to rat data specifically, rather than rodent data in general.

      The text has been corrected. 

      (8) Section 3.6 - The discussion on meal-related transcriptional programs in the murine DVC does not mention Figure S10A and B.

      We thank the reviewer for the observation. It is true that we do not discuss this figure. Fig10S is the integration of samples in treeArches, a necessary step to build the hierarchy in python so the learning algorithm uses only genes that are related to identity and not treatment, we obtained the same overlap of samples when we used R to assign identities. This figure demonstrates our integration was successful because it is only considering genes that are not-treatment related to establish identities, those which are expressed by cells regardless of their response to any treatment. For the meal-related analysis, we were interested in the genes that are changed by treatment, and this is why the analysis differed. We have included a sentence in the methods to clarify this point that states: " This sample integration was done to ensure that inter-sample variations were removed for the cell identity steps."

      (9) Page 5, citation 10 - the author cited a clinical trial for glucagon and GLP-1 receptor dual agonist survodutide for "DVC neurons' role in appetite and energy balance stems from their role as therapeutic targets for obesity". A more appropriate citation (such as a review) would be preferable.

      We appreciate the suggestion by the reviewer. We have updated our references to reflect a recent manuscript from the Alhadeff group which demonstrates the DVC acts as the target of GLP1-based therapies. We have also included a review as suggested 10.1038/s42255-02200606-9.

      (10) Line 52, p5 - a citation of obesity is needed, as the current ref only pertains to cancer cachexia.

      We have included a reference for obesity.  

      (11) In the discussion, it would be valuable to elaborate on the potential significance of DVCspecific glial cells (perhaps at the end of the second paragraph?).

      We thank the reviewer for this suggestion. Our discovery of a DVC-specific astrocyte transcriptional profile was underrepresented within the discussion. We have attempted to expand this discussion on the suspected roles for these DVC-specific astrocytes. Much of this discussion is based on the distinct localization pattern of Gfap mRNA in the DVC (see Image on Allen Brain ISH) which shows dense signal at the boundary of the AP and NTS. As astrocytes have well established roles in maintaining BBB integrity, it is our speculation that this is a major role of these cells. However, functional studies will be critical to assess the roles of these astrocytes in DVC biology.  

      (12) Line 683, p22 - Consider adding PMID: 38987598 which describes the dissociable GLP-1R circuits.

      We appreciate this recommendation – we have included this reference.  

      (13) The authors suggest that a possible explanation for the discrepancy between snRNA-Seq and in situ hybridization data is that Agrp and Hcrt mRNA reads in snRNA-Seq overwhelmingly mapped to non-coding regions. To what extent could this limitation affect other genes included in the current analyzed 10x datasets?

      As shown by Pool and cols. (https://doi.org/10.1038/s41592-023-02003-w) including intronic reads improves sensitivity and more accurately reflects endogenous gene expression. Therefore, including intronic reads is considered more of a strength than a limitation and is now default in platforms such as CellRanger. While including intronic reads for mapping snRNA-Seq data, we would advise corroboration of snRNA-Seq findings with published literature or detection of coding mRNA or protein. In our case, the detection of hypothalamic neuropeptide via snRNA-Seq data could not be verified by performing in situ hybridizations using probes that detect exons.  Therefore, Hcrt and Agrp having only intronic reads suggest a regulatory (reviewed in https://doi.org/10.3389/fgene.2018.00672) rather than a coding role in the DVC.

      (14) Given the manuscript's focus on feeding and metabolism, I believe a more detailed description and comparison of the transcription profile of known receptors, neurotransmitters, and neuropeptides involved in food intake and energy homeostasis between mice and rats would add value. Adding a curated list of key genes related to feeding regulation would be particularly informative.

      A similar request was made by reviewer #1. Please see the full response above. Briefly, we have performed additional analysis of the mouse and rat DVC data and included this data as an additional supplemental figure (Figure S13).  

      (15) Line 479-482, p17 - It would be helpful if the authors could quantify (e.g., number and/or percentage) the extent of TH and CCK co-expression.

      We have amended the text of the manuscript to include quantification of Cck and Th colocalization.  According to our snRNA-seq data, out of the 764 Th-expressing neurons, 80 coexpress Cck in the mouse (~10%). The Cck-expressing cells are more numerous, 3,821 in total.  

      (16) The number of animals used differs significantly between species, which the authors acknowledge as a limitation in the discussion. Since the authors took advantage of previously published mouse data sets (Ludwig and Dowsett data sets), I wonder if the authors could compare/integrate any rat data set currently available in rats as well to partially address the sample size disparity.

      We agree with the review that our rat database is considerably smaller than our mouse database, making comparisons between rat and mouse DVC challenging. We attempted to increase the size of our rat DVC atlas by incorporating publicly available rat DVC snRNA-Seq data (Reiner et al 2022). However, we found several issues with the quality of this data including low UMIs/cell and gene #/cell. For these reasons, we decided against merging these two datasets. So while relatively small, our rat DVC atlas uses high quality data and serves as a valuable starting point. By introducing TreeArches as a method to relatively easily incorporate new snRNA-Seq data into our own, it is our hope that future studies will do so and thus expand the rat DVC atlas we have built.    

      (17) In the Materials and Methods section, LiCl is mentioned as one of the treatment conditions; however, very little corresponding data are presented or discussed. Please include these results and elaborate on the rationale for selecting LiCl over other anorectic compounds.

      The reviewer is correct, some of the tissues used in this study were from animals treated with LiCl prior to euthanasia. Our intent was to contrast the transcriptional effects induced by LiCl ( an anorectic agent with aversive properties) with refeeding (a naturally rewarding and satiating stimuli). However, upon analyzing the data, we found very few transcriptional changes induced by LiCl. It is unclear to us whether this was a technical failure in the experiment and so did not elaborate on the results.  

      Reviewer #3 (Recommendations for the authors):

      (1) The use of both sexes is indicated in the discussion, but methods and results do not address sex distribution in the investigated groups. Also, the groups could be more clearly described, e.g., the size of the 2 hour refeeding mouse group varies from n=10 to n=5.

      We have clarified the text, in line with the reviewer’s suggestion. There were two cohorts of fasted/ refed mice (n=5 each), so in the manuscript methods it is stated as n=10 because of this. The fasted-only group, which was not refed before euthanasia is a separate group, n=5.

      (2) Page 20, the last sentence needs to be reworded.

      We thank the reviewer for this recommendation. The text has been amended to improve clarity of the sentence. 

      (3) Page 22, lines 691-692 - this sentence needs to be reworded.

      We thank the reviewer for this comment. The offending sentences have been amended.  

      (4) While the authors find transcriptional changes in all neuronal and non-neuronal cell types, which is interesting, the verification of known transcriptional changes (e.g., cFos) is unaddressed. cFos is a common gene upregulated with refeeding that was surprisingly not investigated, even though this should be a strong maker of proper meal-induced neuronal activation in the DMV. This is a missed opportunity either to verify the data set or to highlight important limitations if that had been attempted without success.

      This is a highly salient point made by the reviewer. Including Fos expression serves as an internal validation of our refeeding condition and the absence of Fos mRNA levels from the original manuscript was an oversight on our part. As shown in our volcano plot, between ad libitum fed and refed mice, there are two significantly Fos-associated genes upregulated in the refed group. Therefore, we are confident that the snRNA-Seq analysis accurately captured rapid changes in response to refeeding in the DVC. Only genes differentially expressed (log2 Fold-change >0.5 per group) were considered in the analysis. NS= non-significant.

      Author response image 1.

      (5) The focus on transmitter classification is highlighted, but surprisingly, the well-accepted distinction of GABAergic neurons by Slc32a1 was not used, instead, Gad1 and Gad2 were used as GABAergic markers. While this may be proper for the DMV, given numerous findings that Gad1/2 are not proper markers for GABAergic neurons and often co-expressed in glutamatergic populations, this confound should have been addressed to make a case if and why they would be proper markers in the DMV.

      The reviewer raises an important point. Indeed, there are discrepancies in expression between the Gad1/2 genes and Slc32a1 gene in other data sets. To analyze this within our data set, we examined the mainly GABAergic magnaclass 1 (see Slc32a1 UMAP plot below).  In magnaclass 1, only 5% and 3% of all neurons exclusively express solely Slc32a1 without either Gad1 or Gad2, respectively. In line with the reviewer’s comment, we found that 54% of neurons express either Gad1 or Gad2 but had no detectable Slc32a1. While our failure to detect more cells that co-express Slc32a1 and Gad genes may be partially due to the low expression of Slc32a1, it is also very likely that the DVC, like other brain regions, contains neurons that express the Gad enzymes without co-expression of Slc32a1.  

      This was very much the case with the GLP1 cell cluster, which we identified as the population which had the highest co-expression of excitatory and inhibitory markers. When we refined this analysis to look at expression of excitatory markers with Slc32a1 (and not other inhibitory genes), there was a marked reduction in the proportion of GLP1 neurons meeting this criterion. We find this is mainly due to the GLP1 cells expressing Gad2 (see plots below). We still find that there are some GLP1-expressing neurons that express excitatory markers and Slc32a1 and that the GLP1 neurons have a higher proportion of these co-expressing cells than other cell types.  

      We have extended our results section to reflect this and thank the reviewer for recommending this analysis.  

      Author response image 2.

      Slc32a1 expression across all neurons.  

      Author response image 3.

      Proportion of neurons in all cell identities expressing glutamatergic markers alone (dark green), Slc32a1 alone (light green), both glutamatergic markers and Slc32a1 (purple) or expressing neither Slc32a1 or glutamatergic markers  (grey).  

      Author response image 4.

      Balloon plot of Slc32a1, Gad1 and Gad2 across cell types. The GLP1-expressing neurons express Gad2 but minimal Slc32a1.  

      (6) The Pdgfra IHC as verification is great, but images are not very convincing in distinguishing the 2 (mouse) or 3 (rat) classes of cells. Why not compare Pdgfra and HuC/D co-localization by IHC and snRNAseq data (using the genes for HuC/D) in the mouse and in the rat? That would also clarify how specific HuC/D is for DMV neurons, or if it may also be expressed in non-neuronal populations.

      In agreement with the suggestion by the reviewer, we reanalyzed the snRNA-Seq data to identify the extent of the co-expression of HuC/HuD (i.e. Elavl3 and Elavl4 genes, respectively) in Pdgfra-expressing neurons. The gene expression of the 34 rat neurons belonging to this group are shown in the following heatmap in which each column represents one neuron. As shown, most neurons co-express Pdgfra and either HuC or HuD gene. In addition, we shown the UMAP plots of the rat neurons showing expression of the same genes regardless of the neuronal identity assigned. The Pdgfra neurons are visible in darker blue in the last UMAP plot. It's important to note that HuD is a more specific neuronal marker as shown in the table with the average expression of Elavl3/4 genes, since HuC is expressed by glial cells, specially OPCs and oligodendrocytes. As the HUC/D antibody detects both proteins, this complicates the interpretation of the immunofluorescent staining. While, the snRNA-Seq data suggests these Pdgfra expressing cells are indeed neurons (albeit a rare population), we aim to confirm this in separate studies.  

      Author response image 5.

      Author response image 6.

      Average expression (log-normalized counts) of HuC/D by layer 1 cell identity in the rat cells:

      Author response table 1.

      (7) The importance of sub-clustering for clusters 23, 26, and 27 is not immediately clear. Does this have any relevance to the mouse vs. rat data? Or fed, fast, refeeding data sets? Or is it just to show the depth that can be achieved?

      We appreciate that our justification was not clear within the manuscript. We have clarified our rationale below but briefly, in each case distinct transcriptional profiles were observed, and we pursued this by performing sub-clustering.   

      Cluster 23 was subclustered as it was found to contain both pre-myelinating and a subset of myelinating oligodendrocytes, therefore, to label them effectively in R instead of cell by cell, those subclusters showing pre-myelinating oligodendrocyte markers were instructed to be labeled as such in the dataset. The remaining cells were labeled as mature oligodendrocytes.

      A similar approach was taken for cluster 27 which contained pericytes, endothelial and smooth muscle cells (Figure S5).

      In the case of cluster 26, it was possible to find two subclusters of fibroblasts when mapping markers, so they were sub-clustered to instruct in R to label a group with one identity and the other, with the other identity. Therefore, the sub-clustering was done as an aid to label the different identities found through markers mapping (Table S5) in the first clustering round.

      All labels were transferred from mouse to rat data using treeArches, including those resulting from the sub-clustering of these clusters. Because this was done to establish identity, it should not be relevant for treatment analyses (e.g. fasted, refed) since they are built from markers that don't change by conditions but remain as identity markers. Indeed, our dataset has an even distribution of these subclusters among samples.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This work focuses on the connection strength of the corticostriatal projections, without considering the involvement of synaptic plasticity in sensory integration.

      Thank you for raising this point. Indeed, sensory integration is a complex process with a multitude of factors beyond connectivity patterns and synaptic strength. In addition, it is true that both connectivity levels and synaptic strength can be modified by plasticity. 

      We modified our conclusion as follows, line 354: 

      “Since the inputs to a single SPN represent only a limited subset of whisker columns, a complete representation of whiskers could emerge at the population level, with each SPN’s representation complementing those of its neighbors (Fig. 7). These observations raise the hypothesis of a selective or competitive process underlying the formation of corticostriatal synapses. The degree of input convergence onto SPNs could be modulated by plasticity, potentially enabling experience-driven reconfiguration of S1 corticostriatal coupling. “

      Reviewer #2 (Public review):

      A few minor changes to the figures and text could be made to improve clarity.

      We thank you for having taken the time to indicate where changes could benefit the paper. We followed your recommendations. 

      Reviewer #3 (Public review):

      (1) Several factors may contribute to an underestimation of barrel cortex inputs to SPNs (and thus an overestimate of the input heterogeneity among SPNs). First, by virtue of the experiments being performed in an acute slice prep, it is probable that portions of recorded SPN dendritic trees have been dissected (in an operationally consistent anatomical orientation). If afferents happen to systematically target the rostral/caudal projections of SPN dendritic fields, these inputs could be missed. Similarly, the dendritic locations of presynaptic cortical inputs remain unknown (e.g., do some inputs preferentially target distal vs proximal dendritic positions?). As synaptic connectivity was inferred from somatic recordings, it's likely that inputs targeting the proximal dendritic arbor are the ones most efficiently detected. Mapping the dendritic organization of synapses is beyond the scope of this work, but these points could be broached in the text.

      Thank you for this analysis. The positions of S1 spines have been mapped on the SPN dendritic arbor by the group of Margolis (B.D. Sanabria et al., ENeuro 2024,10.1523/ENEURO.0503-23.2023). They observed that S1 spines were at 80 % on dendrites but with a specific distribution, on average rather close to the soma.  In this study, S1 spines did not exhibit a specific distribution that would systematically hinder their detection in a slice. But, it remains that the position in the dendritic arbor where an S1 input is received does indeed impact its detection in somatic recordings. We modified the discussion as follows, line 275:

      “The LSPS combined with glutamate uncaging mapped projections contained in the slice, intact from the presynaptic cell bodies to the SPN dendrites. Some cortical inputs targeting distal SPN dendrites may have gone undetected, either due to attenuation of synaptic events recorded at the soma or because distal dendritic branches were lost during slice preparation. Indeed, about 80 % of S1 synaptic contacts are distributed along dendrites (Sanabria et al., 2024). However, synapses located distally are proportionally rare (Sanabria et al., 2024), and our estimates suggest that the loss of S1 input was minimal (see Methods). More significantly, our mapping only included projections from neuronal somata located within the S1 barrel field in the slice: projections from cortical columns outside the slice were not stimulated. For this reason, our study characterized connectivity patterns rather than the full extent of connectivity with the barrel cortex.”

      We explain our estimation of truncated S1 contacts in the Methods, line 434:

      “To estimate the loss of S1 synaptic contacts caused by slice preparation, we modeled the SPN dendritic field as a sphere centered on the soma. S1 synapses were at 80 % distributed radially along dendrites, according to the specific distribution described by Sanabria et al. (2024). The simulation also incorporated the known distribution of SPN dendritic length as a function of distance from the soma (Gertler et al., 2008). Finally, it assumed that synapse placement was isotropic, with equal probability in all directions from the soma. Truncation was simulated by removing a spherical cap at one pole of the sphere, reflecting the depth of our recordings (beyond 80 μm). Based on this simulation, the loss of S1 inputs was < 10 %.”

      (2) In general, how specific (or generalizable) is the observed SPN-specific convergence of cortical barrel cortex projections in the dorsolateral striatum? In other words, does a similar cortical stimulation protocol targeted to a non-barrel sensory (or motor) cortex region produce similar SPN-specific innervation patterns in the dorsolateral striatum?

      This is an interesting question that could be addressed using the LSPS approach in areas for which ex vivo preparations have been designed to maintain the integrity of the corticostriatal projections, such as A1, M1 and S2.  

      We included this point in the discussion, line 299: 

      ” The speckled connectivity pattern of individual SPNs, arising from the abundant and diffuse cortical innervation in the DLS, suggests that somatosensory corticostriatal synapses are established through a selective and/or competitive process. It is important to determine whether this sparse innervation of SPNs by S1 is a characteristic shared with other projections. In particular, it will be interesting to test this hypothesis on the auditory projections targeting the posterior striatum, where neurons exhibit clear tone frequency selectivity (Guo et al., 2018).”

      (3) In general, some of the figure legends are extremely brief, making many details difficult to infer. Similarly, some statistical analyses were either not carried out or not consistently reported.

      We thank you for having taken the time to indicate where changes could benefit the paper. We have followed your recommendations. 

      Reviewer #1 (Recommendations for the authors):

      A few limitations should be discussed in the manuscript:

      (1) The manuscript should mention that most corticostriatal synapses are formed at the dendritic spines of the SPNs, not their cell bodies. This is particularly important regarding the analysis and interpretation of the data in Figure 4.

      Thank you for this comment. This characteristic is important with regards to a limitation of electrophysiological recordings. This is now discussed:

      Line 275:

      “The LSPS combined with glutamate uncaging mapped projections contained in the slice, intact from the presynaptic cell bodies to the SPN dendrites. Some cortical inputs targeting distal SPN dendrites may have gone undetected, either due to attenuation of synaptic events recorded at the soma or because distal dendritic branches were lost during slice preparation. Indeed, about 80 % of S1 synaptic contacts are distributed along dendrites (Sanabria et al., 2024). However, synapses located distally are proportionally rare (Sanabria et al., 2024), and our estimates suggest that the loss of S1 input was minimal (see Methods).“

      Line 313:

      [...],, we found that overlaps between the connectivity maps of SPNs were rare and, when present, involved only a small fraction of the connected sites. This indicates that neighboring SPNs predominantly integrated distinct inputs from the barrel cortex, although it is possible that overlapping inputs received in distal dendrites were not all detected”

      (1) SPNs show up- and down-states in vivo, which were not mimicked by the present study since all cells were held at - 80 mV (Line 364) and recorded at room temperature (Line 368). It should be discussed how the conclusion of the present work may be affected by the up/down states of SPNs in vivo.

      Thank you for raising this point. Indeed, our experimental conditions were not designed to capture the effects of network oscillatory activity. Instead, LSPS conditions were optimized to reveal monosynaptic connectivity between neurons in S1 and their postsynaptic targets. These optimizations include the use of a high concentration of extracellular divalents (4 mM Ca<sup>2+</sup> and Mg<sup>2+</sup>) to generate robust yet moderate and spatially-restricted stimulations of cortical cells and reliable neurotransmitter release (Shepherd, Pologruto and Svoboda, Neuron 2003; 10.1016/s0896-6273(03)00152-1; in our study, see Fig. 1D  and Suppl Fig. 2). Investigating the pre- and postsynaptic modulations of the corticostriatal coupling by up- and down-states would require specific conditions. 

      The conclusion now acknowledges that functional connectivity is subject to plasticity in general, line 358:

      “The degree of input convergence onto SPNs could be modulated by plasticity, potentially enabling experience-driven reconfiguration of S1 corticostriatal coupling.”

      (2) In addition to population-level integration (Line 337), sensory integration is likely to involve synaptic plasticity (like via NMDARs), which was not studied in the present work

      Thank you for raising this point. Indeed, we agree that sensory integration is a complex process with a multitude of factors beyond connectivity patterns and synaptic strength. We also agree that both connectivity levels and synaptic strength can be modified by plasticity. 

      We modified our conclusion as follows, line 354:

      “Since the inputs to a single SPN represent only a limited subset of whisker columns, a complete representation of whiskers could emerge at the population level, with each SPN’s representation complementing those of its neighbors (Fig. 7). These observations raise the hypothesis of a selective or competitive process underlying the formation of corticostriatal synapses. The degree of input convergence onto SPNs could be modulated by plasticity, potentially enabling experience-driven reconfiguration of S1 corticostriatal coupling. “

      (3) The potential corticostriatal connectivity may be underestimated due to loss of axonal branches during slice resection, and this might contribute to the conclusion of "sparse connectivity". Whether the author has considered performing LSPS studies within the striatum (i.e., stimulating ChR2-expressing cortical axon terminals) and whether this experiment may consolidate the conclusion of the present work.

      We appreciate the suggestion to employ Subcellular Channelrhodopsin-2-Assisted Circuit Mapping (sCRACM) to study the density of S1 spines on SPNs dendritic arbor. If ChR2 is broadly expressed in S1, this approach would likely increase spine detection, as spines contacted by presynaptic neurons located inside and outside the slice would now be activated. If ChR2 expression could be restricted to the whisker columns present in our preparation, enhanced detection could still occur, but in this case, it would reflect the activation of spines contacted by specific ChR2<sup>+</sup> axonal branches that exit and re-enter the slice to form synapses on the recorded SPN. The anatomy of corticostriatal axonal arbors suggest convoluted axonal trajectories could be relatively rare (T. Zheng and C.J. Wilson, J Neurophysiol. 2001; 10.1152/jn.00519.2001; M. Lévesque et al., Brain Res. 1996; 10.1016/0006-8993(95)01333-4).  

      Moreover, it is important to remember that sCRACM does not generate connectivity maps between 2 structures, but maps of spines on dendritic arbors (Petreanu L.T. et al., Nature 2009; 10.1038/nature07709.). Precise localization of presynaptic cell bodies was key for the present study, as it enabled distinguishing between different connectivity patterns and between different degrees of convergence of inputs from adjacent S1 cortical columns present in the slice (schematized in Fig. 1). Distinguishing these inputs using the stimulation of axon terminals would require the possibility to express one distinct opsin in each whisker column (or each cortical layer, depending on the axis of investigation). This is an exciting perspective but the technology is not yet available to our knowledge. 

      To emphasize our reasons for using LSPS, we revised the final paragraph of the Introduction, line 69: 

      “LSPS enabled precise mapping of corticostriatal functional connectivity by identifying cortical sites where stimulation evoked synaptic currents in the recorded SPNs, thereby localizing the cell bodies of their presynaptic neurons. This approach allowed us to determine both the cortical column and layer of origin within the barrel field in the slice for each SPN input.”

      Reviewer #2 (Recommendations for the authors):

      (1)  Figure 2F: SPN and cortical regions - both are shown in green. The distinction between the two would be clearer if SPNs were made a different color.

      Done

      (2)  Figure 2H: Based on their data, the authors conclude that since EPSCs in SPNs had small amplitudes (~40pA), only one or a few presynaptic cortical neurons (< 5) were activated by uncaging. It is not clear how this number was estimated. Either this statement should be qualified with data or citations provided to support it.

      We thank you for noticing it. We modified this part as follows, line 105:

      “Based on known amplitudes of spontaneous and miniature EPSCs in SPNs (10-20 pA on average; Kreitzer and Malenka, 2007; Cepeda et al., 2008; Dehorter et al., 2011; Peixoto et al., 2016), this finding is consistent with the presence of only one or a few presynaptic cells (≤ 5) at each connected site of the map.”

      (3) Figure 2I: The top graph is difficult to understand without already seeing the lower plot. Moving it below or to the side would help the reader follow the data more easily.

      done

      (4) Figure 3D: In Line 162, the authors state, " Furthermore, SPNs receiving input from a single column were often located near others receiving input from multiple ones (Figure 3D), reinforcing that the low functional connectivity with barrel columns in the slice was genuine in these cases." However, Figure 3D does not show spatial information about SPNs relative to each other. This data should be added or the statement adjusted to reflect what is shown in the panel.

      Corrected as follows, line 167:

      “Furthermore, SPNs receiving input from a single column were often located in slices where other cells received input from multiple ones (Fig. 3D), reinforcing that the low functional connectivity with barrel columns in the slice was genuine in these cases.”

      (5) Figure 3F: Are the authors attempting to show how cluster number, cluster width, and connectivity gaps contribute to input field width? If so, this could be clarified by flipping the x- and y-axes so that the input field width is the y-axis in each case. Additionally, the difference between black and white points should be stated (or, if there is no difference, made to be the same). The significance of the dotted red line vs. the solid red lines should also be stated in the figure legend.

      These plots illustrate how cluster number, cluster width, and ratio of connectivity gaps over total length vary as a function of input field width. As expected, wider input fields contain more clusters (top). However, the overall density of connected sites does not increase with input field width, as indicated by a higher ratio of connectivity gaps over total length (bottom).

      This suggests the presence of a mechanism that regulates the connectivity level of individual SPNs (mentioned in the discussion). We prefer this orientation because the flipped one makes a cluttered panel due to different X axis labels. Symbols and lines were corrected. The correlation coefficients and statistics are now indicated in the panels and in the legend.

      (6) Figure 3H: The schematic is very useful for highlighting the core conclusions and is greatly appreciated. The pie charts are a bit hard to see and could be replaced with the percentages stated simply as text within the figure. It would also help to label the panel as "Summary," so readers can quickly identify its purpose.

      Done

      (7) Figures 4B-D: To clarify the overall percentage, the maximum for the y-axis should be set to 100% in each panel.

      Done

      Reviewer #3 (Recommendations for the authors):

      (1) Though mostly minor, several sentences/statements in the manuscript are confusing or overstated. For example:

      a. Lines 62-63: "Studies have found that inputs received by D1 SPNs were stronger than those received by D2 SPNs" is a broad statement that should be qualified.

      We changed this sentence for: 

      “Electrophysiological studies have found that inputs received by D1 SPNs were stronger than those received by D2 SPNs, both in vivo and ex vivo (Reig and Silberberg, 2014 ; Filipović et al., 2019 ; Kress et al., 2013 ; Parker et al., 2016).”

      b. Lines 118-119: "EPSCs evoked with stimulations in L2/3 to L5b had similar amplitudes (Figure 2H), suggesting that L5a dominated these other layers thanks to a greater connectivity with SPNs principally." Here, the word "connectivity" is vague and could easily be misunderstood. Connectivity could refer to the amplitude of corticostriatal EPSCs, which the authors stated are not different between L2/3-L5b. Presumably, connectivity here refers to % of connected SPNs, but for the sake of clarity, the authors should be more explicit, e.g,. "...L5a dominated the other layers because a larger fraction of SPNs received connections from L5a, rather than because L5a synapses were stronger."

      We changed the sentence for (line 122): 

      “EPSCs evoked with stimulations in L2/3 to L5b had similar amplitudes (Fig. 2H), suggesting that L5a dominance over these other layers is primarily due to a higher likelihood of SPNs being connected to it, rather than to stronger synaptic inputs.”

      c. In the Figure 4 legend, (A) says "Four example slices with 2 to 4 recordings. Same as in Figure 2A." Did the authors mean Figure 3A?

      Done

      d.Line 184: Should Figure 4B, C actually be Figure 4D?

      Done

      (2) Line 32: typo in Sippy et al. reference.

      Done

      (3) In Figure 2I, the label "dSPN" is confusing, as in the literature, dSPN often refers to the direct pathway SPN.

      Done

      (4) The y-axes in Figure 3C should be better labeled/explained.

      Fig.3C. Median (red) and 25-75th percentiles (box) of cluster width and spacing, expressed in µm (left Y axis) and number of cortical columns (right Y axis). Labels have been changed in the figure.

      (5)  Lines 150-152: "...45 % of the input fields with several clusters produced no synaptic response upon stimulation." This wording is confusing. It can be inferred that the authors mean "no synaptic response in the gaps between clusters." However, their phrasing omits this crucial detail and reads as though those input fields produce no response at all.

      We changed this sentence for (line 154):

      “Strikingly, regions lacking evoked synaptic responses (i.e., connectivity gaps) made up an average of 45 % of the length of input fields with multiple clusters (maps collapsed along the vertical axis; Fig. 3F, bottom). “

      (6)  Lines 184-186: "DLS SPNs could receive inputs from the same domain in the barrel cortex and yet have patterns of cortical innervation without or little redundancy." This should be rephrased to "with little to no redundancy."

      Done

      (7)  Lines 186-187: "They support a connectivity model in which synaptic connections on each SPNs..." should be revised to "connections to each SPN...".

      Done

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review)

      As this code was developed for use with a 4096 electrode array, it is important to be aware of double-counting neurons across the many electrodes. I understand that there are ways within the code to ensure that this does not happen, but care must be taken in two key areas. Firstly, action potentials traveling down axons will exhibit a triphasic waveform that is different from the biphasic waveform that appears near the cell body, but these two signals will still be from the same neuron (for example, see Litke et al., 2004 "What does the eye tell the brain: Development of a System for the Large-Scale Recording of Retinal Output Activity"; figure 14). I did not see anything that would directly address this situation, so it might be something for you to consider in updated versions of the code.

      Thank you for this comment. We have added a routine to the SpikeMAP to remove highly correlated spikes detected within a given spatial radius of each other. The following was added to the main text (line 149):

      “As an additional verification step, SpikeMAP allows the computation of spike-count correlations between putative neurons located within a user-defined radius. Signals that exceed a defined threshold of correlation can be rejected as they likely reflect the same underlying cell.”

      Secondly, spike shapes are known to change when firing rates are high, like in bursting neurons (Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsáki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141-149 (2001)). I did not see this addressed in the present version of the manuscript.

      We have added a routine to SpikeMAP that computes population spike rates to verify stationarity over time. We have also added a routine to identify putative bursting neurons through a Hartigan statistical dip test applied to the inter-spike distribution of individual cells.

      We added the following (line 204):

      “Further, SpikeMAP contains a routine to perform a Hartigan statistical dip test on the inter-spike distribution of individual cells to detect putative bursting neurons.”

      Another area for possible improvement would be to build on the excellent validation experiments you have already conducted with parvalbumin interneurons. Although it would take more work, similar experiments could be conducted for somatostatin and vasoactive intestinal peptide neurons against a background of excitatory neurons. These may have different spike profiles, but your success in distinguishing them can only be known if you validate against ground truth, like you did for the PV interneurons.

      We have added the following (line 326):

      “future work could include different inhibitory interneurons such as somatostatin (SOM) and vasoactive intestinal polypeptide (VIP) neurons to improve the classification of inhibitory cell types. Another avenue could involve applying SpikeMAP on artificially generated spike data (Buccino & Einevoll 2021; Laquitaine et al., 2024).”

      Reviewer #2 (Public review)

      Summary:

      While I find that the paper is nicely written and easy to follow, I find that the algorithmic part of the paper is not really new and should have been more carefully compared to existing solutions. While the GT recordings to assess the possibilities of a spike sorting tool to distinguish properly between excitatory and inhibitory neurons are interesting, spikeMAP does not seem to bring anything new to state-of-the-art solutions, and/or, at least, it would deserve to be properly benchmarked. I would suggest that the authors perform a more intensive comparison with existing spike sorters.

      Thank you for your insightful comment. A full comparison between SpikeMAP and related methods is provided in Table. 1. As can be seen, SpikeMAP is the only method listed that performs E/I sorting on large-scale multielectrodes. Nonetheless, several aspects of SpikeMAP included in the spike sorting pipeline do overlap with existing methods, as these constitute necessary steps prior to performing E/I identification. These steps are not novel to the current work, nor do they constitute rigid options that cannot be substituted by the user. Rather, we aim to offer SpikeMAP users the option to combine E/I identification with preliminary steps performed either through our software or through another package of their choosing. For instance, preliminary spike sorting could be done through Kilosort before importing the spike data into SpikeMAP for E/I identification. To allow greater flexibility, we have now modularized our suite so that E/I identification can be performed as a stand-alone module. We have clarified the text accordingly (line 317):

      “While SpikeMAP is the only known method to enable the identification of putative excitatory and inhibitory neurons on high-density multielectrode arrays (Table 1), several aspects of SpikeMAP included in the spike sorting pipeline (Figure 1) overlap with existing methods, as these constitute required steps prior to performing E/I identification. To enable users the ability to integrate SpikeMAP with existing toolboxes, we provide a modularized suite of protocols so that E/I identification can be performed separately from preliminary spike sorting steps. In this way, a user could carry out spike sorting through Kilosort or another package before importing their data to SpikeMAP for E/I identification.”

      Weaknesses:

      (1) The global workflow of spikeMAP, described in Figure 1, seems to be very similar to that of Hilgen et al. 2020 (10.1016/j.celrep.2017.02.038). Therefore, the first question is what is the rationale of reinventing the wheel, and not using tools that are doing something very similar (as mentioned by the authors themselves). I have a hard time, in general, believing that spikeMAP has something particularly special, given its Methods, compared to state-of-the-art spike sorters.

      The paper by Hilgen et al. is reported in Table 1. As seen, while this paper employs optogenetics, it does not target inhibitory (e.g., PV) cells. We have added the following clarification (line 82):

      “Despite evidence showing differences in action potential kinetics for distinct cell-types as well as the use of optogenetics (Hilgen et al., 2017), there exists no large-scale validation efforts, to our knowledge, showing that extracellular waveforms can be used to reliably distinguish cell-types.”

      This is why, at the very least, the title of the paper is misleading, because it lets the reader think that the core of the paper will be about a new spike sorting pipeline. If this is the main message the authors want to convey, then I think that numerous validations/benchmarks are missing to assess first how good spikeMAP is, with reference to spike sorting in general, before deciding if this is indeed the right tool to discriminate excitatory vs inhibitory cells. The GT validation, while interesting, is not enough to entirely validate the paper. The details are a bit too scarce for me, or would deserve to be better explained (see other comments after).

      We thank the reviewer for this comment, and have amended the title as follows:

      “SpikeMAP: An unsupervised pipeline for the identification of cortical excitatory and inhibitory neurons in high-density multielectrode arrays with ground-truth validation”

      (2) Regarding the putative location of the spikes, it has been shown that the center of mass, while easy to compute, is not the most accurate solution [Scopin et al, 2024, 10.1016/j.jneumeth.2024.110297]. For example, it has an intrinsic bias for finding positions within the boundaries of the electrodes, while some other methods, such as monopolar triangulation or grid-based convolution,n might have better performances. Can the authors comment on the choice of the Center of Mass as a unique way to triangulate the sources?

      We agree with the reviewer that the center-of-mass algorithm carries limitations that are addressed by other methods. To address this issue, we have included two additional protocols in SpikeMAP to perform monopolar triangulation and grid-based convolution, offering additional options for users of the package. The text has been clarified as follows (line 429):

      “In addition to center-of-mass triangulation, SpikeMAP includes protocols to perform monopolar triangulation and grid-based convolution, offering additional options to estimate putative soma locations based on waveform amplitudes.”

      (3) Still in Figure 1, I am not sure I really see the point of Spline Interpolation. I see the point of such a smoothing, but the authors should demonstrate that it has a key impact on the distinction of Excitatory vs. Inhibitory cells. What is special about the value of 90kHz for a signal recorded at 18kHz? What is the gain with spline enhancement compared to without? Does such a value depend on the sampling rate, or is it a global optimum found by the authors?

      We clarified the text as follows (line 183):

      “While we found that a resolution of 90 kHZ provided a reasonable estimate of spike waveforms, this value can be adjusted as a parameter in SpikeMAP.”

      (4) Figure 2 is not really clear, especially panel B. The choice of the time scale for the B panel might not be the most appropriate, and the legend filtered/unfiltered with a dot is not clear to me in Bii.

      We apologize for the rendering issues in the Figures that occurred during conversion into PDF format. We have now ensured that all figures are properly displayed.

      In panel E, the authors are making two clusters with PCA projections on single waveforms. Does this mean that the PCA is only applied to the main waveforms, i.e. the ones obtained where the amplitudes are peaking the most? This is not really clear from the methods, but if this is the case, then this approach is a bit simplistic and does not really match state-of-the-art solutions. Spike waveforms are quite often, especially with such high-density arrays, covering multiple channels at once, and thus the extracellular patterns triggered by the single units on the MEA are spatio-temporal motifs occurring on several channels. This is why, in modern spike sorters, the information in a local neighbourhood is often kept to be projected, via PCA, on the lower-dimensional space before clustering. Information on a single channel only might not be informative enough to disambiguate sources. Can the authors comment on that, and what is the exact spatial resolution of the 3Brain device? The way the authors are performing the SVD should be clarified in the methods section. Is it on a single channel, and/or on multiple channels in a local neighbourhood?

      We agree with the reviewer that it would be useful to have the option of performing PCA on several channels at once, since spikes can occur at several channels at the same time. We have now added a routine to SpikeMAP that allows users to define a radius around individual channels prior to performing PCA. The text was clarified as follows (line 131):

      “The SpikeMAP suite also offers a routine to select a radius around individual channels in order to enter groups of adjacent channels in PCA.”

      (5) About the isolation of the single units, here again, I think the manuscript lacks some technical details. The authors are saying that they are using a k-means cluster analysis with k=2. This means that the authors are explicitly looking for 2 clusters per electrode? If so, this is a really strong assumption that should not be held in the context of spike sorting, because, since it is a blind source separation technique, one can not pre-determine in advance how many sources are present in the vicinity of a given electrode. While the illustration in Figure 2E is ok, there is no guarantee that one can not find more clusters, so why this choice of k=2? Again, this is why most modern spike sorting pipelines do not rely on k-means, to avoid any hard-coded number of clusters. Can the authors comment on that?

      We clarified the text as follows (line 135):

      “In SpikeMAP, the optimal number of k-means clusters can be chosen by a Calinski-Harabasz criterion (Calinski and Harabasz, 1974) or pre-selected by the user.”

      (6) I'm surprised by the linear decay of the maximal amplitude as a function of the distance from the soma, as shown in Figure 2H. Is it really what should be expected? Based on the properties of the extracellular media, shouldn't we expect a power law for the decay of the amplitude? This is strange that up to 100um away from the soma, the max amplitude only dropped from 260 to 240 uV. Can the authors comment on that? It would be interesting to plot that for all neurons recorded, in a normed manner V/max(V) as function of distances, to see what the curve looks like.

      We added Supplemental Figure 1 showing the drop in voltage over all putative somas (N=1,950) of one recording, after excluding somas with an increase voltage away from electrode peak and computing normed values V/max(V). We see a distribution of slopes as well as intercepts across somas, showing some variability across recordings sites. As the reviewer suggests, it is possible that a power-law describes these data better than a linear function, and this would need to be investigated further by quantitatively comparing the fit of these functions.

      (7) In Figure 3A, it seems that the total number of cells is rather low for such a large number of electrodes. What are the quality criteria that are used to keep these cells? Did the authors exclude some cells from the analysis, and if yes, what are the quality criteria that are used to keep cells? If no criteria are used (because none are mentioned in the Methods), then how come so few cells are detected, and can the authors convince us that these neurons are indeed "clean" units (RPVs, SNRs, ...)?

      The reviewer is correct to point out that a number of stringent criteria were employed to exclude some putative cells. We now outline these criteria directly in the text (line 161):

      “ At different steps in the process, conditions for rejecting spikes can be tailored by applying: (1) a stringent threshold to filtered voltages; (2) a minimal cut-off on the signal-to-noise ratio of voltages (see Supplemental Figure 2); (3) an LDA for cluster separability; (4) a minimal spike rate to putative neurons; (5) a Hartigan statistical dip test to detect spike bursting; (6) a decrease in voltage away from putative somas; and (7) a maximum spike-count correlation for nearby channels. Together, these criteria allow SpikeMAP users the ability to precisely control parameters relevant to automated spike sorting.”

      Further, we provide SNRs of individual channels (Supplemental Figure 2), and added to the SpikeMAP software the ability to apply a minimal criterion based on SNR.

      (8) Still in Figure 3A, it looks like there is a bias to find inhibitory cells at the borders, since they do not appear to be uniformly distributed over the MEA. Can the authors comment on that? What would be the explanation for such a behaviour? It would be interesting to see some macroscopic quantities on Excitatory/Inhibitory cells, such as mean firing rates, averaged SNRs... Because again, in Figure 3C, it is not clear to me that the firing rates of inhibitory cells are higher than Excitatory ones, whilst they should be in theory.

      We have added figures showing the distribution of E and I firing rates across a population of N=1,950 putative cells (Supplemental Figure 3). Firing rates of inhibitory neurons are marginally higher than excitatory neurons, and both E and I follow an approximately exponential distribution of rates.

      Reviewer may be right that there are more I neurons at borders in Fig.3B because injections were done in medial prefrontal cortex, so this may reflect an experimental artefact related to a high probability of activating I neurons in locations where the opsin was activated. We added a sentence to the text to clarify this point (line 201):

      “It is possible that the spatial location of putative I cells reflects the site of injection of the opsin in medial prefrontal cortex.”

      (9) For Figure 3 in general, I would have performed an exhaustive comparison of putative cells found by spikeMAP and other sorters. More precisely, I think that to prove the point that spikeMAP is indeed bringing something new to the field of spike sorting, the authors should have compared the performances of various spike sorters to discriminate Exc vs Inh cells based on their ground truth recordings. For example, either using Kilosort [Pachitariu et al, 2024, 10.1038/s41592-024-02232-7], or some other sorters that might be working with such large high-density data [Yger et al, 2018, 10.7554/eLife.34518].

      The reviewer is correct to point out that our the spike-sorting portion of our pipeline shares similarities with related approaches. Other aspects, however, are unique to SpikeMAP. We have clarified the text accordingly:

      “In sum, SpikeMAP provides an end-to-end pipeline to perform spike-sorting on high-density multielectrode arrays. Some elements of this pipeline are similar to related approaches (Table 1), including the use of voltage filtering, PCA, and k-means clustering. Other elements are novel, including the use of spline interpolation, LDA, and the ability to identify putative excitatory and inhibitory cells.”

      (10) Figure 4 has a big issue, and I guess the panels A and B should be redrawn. I don't understand what the red rectangle is displaying.

      Again, we apologize for the rendering issues in the Figures that occurred during conversion into PDF format. We have now ensured that all figures are properly displayed.

      (11) I understand that Figure 4 is only one example, but I have a hard time understanding from the manuscript how many slices/mices were used to obtain the GT data? I guess the manuscript could be enhanced by turning the data into an open-access dataset, but then some clarification is needed. How many flashes/animals/slices are we talking about? Maybe this should be illustrated in Figure 4, if this figure is devoted to the introduction of the GT data.

      Details of the open access data are now provided in Supplemental Table 1. We also clarified Figure 5B:

      “Quantification of change in firing rate following optogenetic stimulation. Average firing rates are taken over four recordings obtained from 3 mice.”

      (12) While there is no doubt that GT data as the ones recorded here by the authors are the most interesting data from a validation point of view, the pretty low yield of such experiments should not discourage the use of artificially generated recordings such as the ones made in [Buccino et al, 2020, 10.1007/s12021-020-09467-7] or even recently in [Laquitaine et al, 2024, 10.1101/2024.12.04.626805v1]. In these papers, the authors have putative waveforms/firing rate patterns for excitatory and inhibitory cells, and thus, the authors could test how good they are in discriminating the two subtypes.

      We agree with the reviewer that it would be worthwhile for future work to apply SpikeMAP to artificially generated spike trains, and have added the following (line 328):

      “Another avenue could involve applying SpikeMAP on artificially generated spike data (Buccino & Einevoll 2021; Laquitaine et al., 2024).”

      Reviewer #1 (Recommendations for the authors):

      (1) Line 154 seems to include a parenthetical expression left over from editing: "sensitive to noise (contamination? Better than noise?) generated by the signal of proximal units." See also line 186: "use (reliance?) of light-sensitive" and line 245: "In the absence of synaptic blockers (right?)," and line 270: "the size of the data prevents manual intervention (curation?)." Check carefully for all parentheses like that, which should be removed.

      Thank you for pointing this out. We have revised the text and removed parenthetical expressions left over from editing.

      (2) In lines 285-286, you state that: "k-mean clustering of spike waveform properties best differentiated the two principal classes of cells..." But I could not find where you compared k-means clustering to other methods. I think you just argued that k-means seemed to work well, but not better than, another method. If that is so, then you should probably rephrase those lines.

      The reviewer is correct that direct comparisons are not performed here, hence we removed this sentence.

      (3) Methods section, E/I classification, lines 396-405: You give us figures on what fraction was E and I (PV subtype) (94.75% and 5.25%), but there is more that you could have said. First of all, what is the expected fraction of parvalbumin-sensitive interneurons in the cortex - is it near 5%?

      We clarified the text as follows (line 444): “This number is close to the expected percentage of PV interneurons in cortex (4-6%) (Markram et al. 2004).”

      Second, how would these percentages change if you altered the threshold from 3 s.d. to something lower, like 2 s.d.? Giving us some idea of how the threshold affects the fraction of PV interneurons could give us an idea of whether this method agrees with our expectations or not.

      While SpikeMAP offers the flexibility to set the voltage threshold manually, we opted for a stringent threshold to demonstrate the capabilities of the software. As seen in Figure 2D, at 2 and 3 s.d., the signal is largely accounted for by Gaussian noise, while deviation from noise arises around 4 s.d. We clarified the text as follows (line 120):

      “At a threshold of -3 , the signal could be largely accounted for by Gaussian noise, while a separation between signal and noise began around a threshold of -4 ”

      Third, did the inhibitory neurons identified by this optogenetic method also have narrow spike widths at half amplitude? Could you do a scatterplot of all the spike widths and inter-peak distances that had color-coded dots for E and I based on your optogenetic method?

      We have added a scatterplot (Supplemental Figure 5).

      (4) Can you compare your methods with others now widely in use, like, for example, Spiking Circus or Kilosort? You do that in Table 1 in terms of features, but not in terms of performance. For example, you could have applied Kilosort4 to your data from the 4096 electrode array and seen how often it sorted the same neurons that SpikeMAP did. I realize this could not give you a comparison of how many were E/I, but it could tell you how close your numbers of neurons agreed with their numbers. Were your numbers within 5% of each other? This would be helpful for groups who are already using Kilosort4.

      As mentioned ealier, packages listed in Table 1 do not provide an identification of putative E/I neurons on high-density electrode arrays. To facilitation the integration of SpikeMAP with other spike sorting packages, our suite now provides a stand-alone module to perform E/I identification. This is now mentioned in the text (see earlier comment).

      Reviewer #2 (Recommendations for the authors):

      I would encourage the authors to decide what the paper is about: is it about a new sorting method (and if yes, more tests/benchmarks are needed to explain the pros and the cons of the pipelines, and the Methods need to be expanded). Or is it about the new data for Ground Truth validation, and again, if yes, then maybe explain more what they are, how many slices/mice/cells, ... Maybe also consider making the data available online as an open dataset.

      We agree with the reviewer that the paper is best slated toward ground truth validation of E/I identification. We now specify how many slices/mice/cells etc. (see Supplemental Table 1) and make the data available online as open source.

    1. Author response:

      (1) Explore the temporal component of neural responses (instead of collapsing responses to a single number, i.e., the average response over 4s), and determine which of the three models can recapitulate the observed dynamics.

      (2) Expand the polar plot visualization to show all three slopes (changes in responses across all three successive concentrations) instead of only two slopes.

      (3) Attempt to collect and analyze, from published papers, data of: (a) first-order neuron responses to odors to determine the role of first-order inhibition towards generating non-monotonic responses, and (b) PN responses in Drosophila to properly compare with corresponding first-order neuron responses.

      (4) Further discuss: (a) why the brain may need to encode absolute concentration, (b) the distinction between non-monotonic responses and cross-over responses, and (c) potential limitations of the primacy model.

      (5) Expand the divisive normalization model by evaluating different values of k and R, and study the effects of divisive normalization on tufted cells.

      (6) Add discussion of other potential inhibitory mechanisms that could contribute towards the observed effects.

      Reviewer #1:

      The article starts from the premise that animals need to know the absolute concentration of an odor over many log units, but the need for this isn't obvious. The introduction cites an analogy to vision and audition. These are cases where we know for a fact that the absolute intensity of the stimulus is not relevant. Instead, sensory perception relies on processing small differences in intensity across space or time. And to maintain that sensitivity to small differences, the system discards the stimulus baseline. Humans are notoriously bad at judging the absolute light level. That information gets discarded even before light reaches the retina, namely through contraction of the pupil. Similarly, it seems plausible that a behavior like olfactory tracking relies on sensing small gradients across time (when weaving back and forth across the track) or space (across nostrils). It is important that the system function over many log units of concentration (e.g., far and close to a source) but not that it accurately represents what that current concentration is [see e.g., Wachowiak et al, 2025 Recalibrating Olfactory Neuroscience..].

      We thank the Reviewer for the insightful input and agree that gradients across time and space are important for various olfactory behaviors, such as tracking. At the same time, we think that absolute concentration is also needed for two reasons. First, in order to extract changes in concentration, the absolute concentration needs to be normalized out; i.e., change needs to be encoded with respect to some baseline, which is what divisive normalization computes. Second, while it is true that representing the exact number of odor molecules present is not important, this number directly relates to distance from the odor source, which does provide ethological value (e.g., is the tiger 100m or 1000m away?). Indeed, our decoding experiments focused on discriminating relative, and not on absolute, concentrations by classifying between each pair of concentrations (i.e., relative distances), which is effectively an assessment of the gradient. In our revision, we will make all of these points clearer.

      Still, many experiments in olfactory research have delivered square pulses of odor at concentrations spanning many log units, rather than the sorts of stimuli an animal might encounter during tracking. Even within that framework, though, it doesn't seem mysterious anymore how odor identity and odor concentration are represented differently. For example, Stopfer et al 2003 showed that the population response of locust PNs traces a dynamic trajectory. Trajectories for a given odor form a manifold, within which trajectories for different concentrations are distinct by their excursions on the manifold. To see this, one must recognize that the PN responds to an odor pulse with a time-varying firing rate, that different PNs have different dynamics, and that the dynamics can change with concentration. This is also well recognized in the mammalian systems. Much has been written about the topic of dynamic coding of identity and intensity - see the reviews of Laurent (2002) and Uchida (2014).

      Given the above comments on the dynamics of odor responses in first- and second-order neurons, it seems insufficient to capture the response of a neuron with a single number. Even if one somehow had to use a single number, the mean firing rate during the odor pulse may not be the best choice. For example, the rodent mitral cells fire in rhythm with the animal's sniffing cycle, and certain odors will just shift the phase of the rhythm without changing the total number of spikes (see e.g., Fantana et al, 2008). During olfactory search or tracking, the sub-second movements of the animal in the odor landscape get superposed on the sniffing cycle. Given all this, it seems unlikely that the total number of spikes from a neuron in a 4-second period is going to be a relevant variable for neural processing downstream.

      To our knowledge, it is not well understood how downstream brain regions read out mitral cell responses to guide olfactory behavior. The olfactory bulb projects to more than a dozen brain regions, and different regions could decode signals in different ways. We focused on the mean response because it is a simple, natural construct.

      The datasets we analyzed may not include all relevant timing information; for example, the mouse data is from calcium imaging studies that did not track sniff timing. Nonetheless, we plan to address this comment within our framework by binning time into smaller-sized windows (e.g., 0-0.2s, 0.2-0.4s, etc.) and repeating our analysis for each of these windows. Specifically, we will determine how each normalization method fares in recapitulating statistics of the population responses of each window, beyond simply assessing the population mean.

      Much of the analysis focuses on the mean activity of the entire population. Why is this an interesting quantity? Apparently, the mean stays similar because some neurons increase and others decrease their firing rate. It would be more revealing, perhaps, to show the distribution of firing rates at different concentrations and see how that distribution is predicted by different models of normalization. This could provide a stronger test than just the mean.

      We agree that mean activity is only one measure to summarize a rich data set and will perform the suggested analysis.

      The question "if concentration information is discarded in second-order neurons, which exclusively transmit odor information to the rest of the brain, how does the brain support olfactory behaviors, such as tracking and navigation?" is really not an open question anymore. For example, reference 23 reports in the abstract that "Odorant concentration had no systematic effect on spike counts, indicating that rate cannot encode intensity. Instead, odor intensity can be encoded by temporal features of the population response. We found a subpopulation of rapid, largely concentration-invariant responses was followed by another population of responses whose latencies systematically decreased at higher concentrations."

      Primacy coding does provide one plausible mechanism to decode concentration. Our manuscript demonstrated how such a code could emerge in second-order neurons with the help of divisive normalization, though it does require maintaining at least partial rank invariance across concentrations, which may not be robust. We also showed how concentration could be decoded via spike rates, even if average rates are constant, which provides an alternative hypothesis to that of ref 23.

      Further, ref 23 only considers the piriform cortex, which, as mentioned above, is one of many targets of the olfactory bulb, and it remains unclear what the decoding mechanisms are of each of these targets. In addition, work from the same authors of ref 23 found multiple potential decoding strategies in the piriform cortex itself, including changes in firing rate (see Fig. 2E of ref. 23 - Bolding & Franks, 2017; as well as Fig. 4 in Roland et al., 2017).

      It would be useful to state early in the manuscript what kinds of stimuli are being considered and how the response of a neuron is summarized by one number. There are many alternative ways to treat both stimuli and responses.

      We will add this explanation to the manuscript.

      "The change in response across consecutive concentration levels may not be robust due to experimental noise and the somewhat limited range of concentrations sampled": Yes, a number of the curves just look like "no response". It would help the reader to show some examples of raw data, e.g. the time course of one neuron's firing rate to 4 concentrations, and for the authors to illustrate how they compress those responses into single numbers.

      We agree and will add this information to the manuscript.

      "We then calculated the angle between these two slopes for each neuron and plotted a polar histogram of these angles." The methods suggest that this angle is the arctan of the ratio of the two slopes in the response curve. A ratio of 2 would result from a slope change from 0.0001 to 0.0002 (i.e., virtually no change in slope) or from 1 to 2 (a huge change). Those are completely different response curves. Is it reasonable to lump them into the same bin of the polar plot? This seems an unusual way to illustrate the diversity of response curve shapes.

      We agree that the two changes in the reviewer’s example will be categorized in the same quadrant in our analysis. We did not focus on the absolute changes because our analysis covers many log ratios of concentrations. Instead, we focused on the relative shapes of the concentration response curves, and more specifically, the direction of the change (i.e., the sign of the slope). We will better motivate this style of analysis in the revision. Moreover, in response to comments by Reviewer 2, we will compare response shapes between all three successive levels of concentration changes, as opposed to only two levels.

      The Drosophila OSN data are passed through normalization models and then compared to locust PN data. This seems dangerous, as flies and locusts are separated by about 300 M years of evolution, and we don't know that fly PNs act like locust PNs. Their antennal lobe anatomy differs in many ways, as does the olfactory physiology. To draw any conclusions about a change in neural representation, it would be preferable to have OSN and PN data from the same species.

      We are in the process of requesting PN response data in Drosophila from groups that have collected such data and will repeat the analysis once we get access to the data.

      One conclusion is that divisive normalization could account for some of the change in responses from receptors to 2nd order neurons. This seems to be well appreciated already [e.g., Olsen 2010, Papadopoulou 2011, minireview in Hong & Wilson 2013].

      While we agree that these manuscripts do study the effects of divisive normalization in insects and fish, here we show that this computation also generalizes to rodents. In addition, these previous studies do not focus on divisive normalization’s role towards concentration encoding/decoding, which is our focus. We will clarify this difference in the revision.

      Another claim is that subtractive normalization cannot perform that function. What model was used for subtractive normalization is unclear (there is an error in the Methods). It would be interesting if there were a categorical difference between divisive and subtractive normalization.

      We apologize for the mistake in the subtractive normalization equation and will correct it. Thank you for catching it.

      Looking closer at the divisive normalization model, it really has two components: (a) the "lateral inhibition" by which a neuron gets suppressed if other neurons fire (here scaled by the parameter k) , and (b) a nonlinear sigmoid transformation (determined by the parameters n and sigma). Both lateral inhibition and nonlinearity are known to contribute to decorrelation in a neural population (e.g., Pitkow 2012). The "intraglomerular gain control" contains only the nonlinearity. The "subtractive normalization" we don't know. But if one wanted to put divisive and subtractive inhibition on the same footing, one should add a sigmoid nonlinearity in both cases.

      Our intent was not to place all the methods on the “same footing” but rather to isolate the two primary components of normalization methods – non-linearity and lateral inhibition – and determine which of these, and in which combination, could generate the desired effects. Divisive normalization incorporates both components, whereas intraglomerular gain control and subtractive normalization only incorporate one of these components. We will clarify this reasoning in the revision.

      The response models could be made more realistic in other ways. For example, in both locusts and fish, the 2nd order neurons get inputs from multiple receptor types; presumably, that will affect their response functions. Also, lateral inhibition can take quite different forms. In locusts, the inhibitory neurons seem to collect from many glomeruli. But in rats, the inhibition by short axon cells may originate from just a few sparse glomeruli, and those might be different for every mitral cell (Fantana 2008).

      We thank the Reviewer for the input. Instead of fixing k for all second-order neurons, we will apply different k values for different neurons. We will also systematically vary the percentage of neurons used for the divisive normalization calculation in the denominator, and determine the regime under which the effects experimentally observed are reproducible. This approach takes into account the scenario that inter-glomerular inhibitory interactions are sparse.

      There are questions raised by the following statements: "traded-off energy for faster and finer concentration discrimination" and "an additional type of second-order neuron (tufted cells) that has evolved in land vertebrates and that outperforms mitral cells in concentration encoding" and later "These results suggest a trade-off between concentration decoding and normalization processes, which prevent saturation and reduce energy consumption.". Are the tufted cells inferior to the mitral cells in any respect? Do they suffer from saturation at high concentration? And do they then fail in their postulated role for odor tracking? If not, then what was the evolutionary driver for normalization in the mitral cell pathway? Certainly not lower energy consumption (50,000 mitral cells = 1% of rod photoreceptors, each of which consumes way more energy than a mitral cell).

      The question of what mitral cells are “good for”, compared to tufted cells, remains unclear in our view. We speculate that mitral cells provide superior context-dependent processing and are better for determining stimuli-reward contingencies, but this remains far from settled experimentally.

      We believe the mitral cell pathway evolved earlier than tufted cells, since the former appear akin to projection neurons in insects. Nonetheless, we agree that differences in energy consumption are unlikely to be the primary distinguishing factor, and in the revision, we will drop this argument.

      Reviewer #2:

      The main premise that divisive normalization generates this diversity of dose-response curves in the second-order neurons is a little problematic. … The analysis in [Figure 3] indicates that divisive normalization does what it is supposed to do, i.e., compresses concentration information and not alter the rank-order of neurons or the combinatorial patterns. Changes in the combinations of neurons activated with intensity arise directly from the fact that the first-order neurons did not have monotonic responses with odor intensity (i.e., crossovers). This was the necessary condition, and not the divisive normalization for changes in the combinatorial code. There seems to be a confusion/urge to attribute all coding properties found in the second-order neurons to 'divisive normalization.' If the input from sensory neurons is monotonic (i.e., no crossovers), then divisive normalization did not change the rank order, and the same combinations of neurons are activated in a similar fashion (same vector direction or combinatorial profile) to encode for different odor intensities. Concentration invariance is achieved, and concentration information is lost. However, when the first-order neurons are non-monotonic (i.e., with crossovers), that causes the second-order neurons to have different rank orders with different concentrations. Divisive normalization compresses information about concentrations, and rank-order differences preserve information about the odor concentration. Does this not mean that the non-monotonicity of sensory neuron response is vital for robustly maintaining information about odor concentration? Naturally, the question that arises is whether many of the important features of the second-order neuron's response simply seem to follow the input. Or is my understanding of the figures and the write-up flawed, and are there more ways in which divisive normalization contributes to reshaping the second-order neural response? This must be clarified. Lastly, the tufted cells in the mouse OB are also driven by this sensory input with crossovers. How does the OB circuit convert the input with crossovers into one that is monotonic with concentration? I think that is an important question that this computational effort could clarify.

      It appears that there is confusion about the definitions of “non-monotonicity” and “crossovers”.  These are two independent concepts – one does not necessarily lead to the other. Non-monotonicity concerns the response of a single neuron to different concentration levels. A neuron’s response is considered non-monotonic if its response goes up then down, or down then up, across increasing concentrations. A “cross-over” is defined based on the responses of multiple neurons. A cross-over occurs when the response of one neuron is lower than another neuron at one concentration, but higher than the other at a different concentration. For example, the responses of both neurons could increase monotonically with increasing concentration, but one neuron might start lower and grow faster, hence creating a cross-over. We will clarify this in the manuscript, which we believe will resolve the questions raised above.

      The way the decoding results and analysis are presented does not add a lot of information to what has already been presented. For example, based on the differences in rank-order with concentration, I would expect the combinatorial code to be different. Hence, a very simple classifier based on cosine or correlation distance would work well. However, since divisive normalization (DN) is applied, I would expect a simple classification scheme that uses the Euclidean distance metric to work equally as well after DN. Is this the case?

      Yes, we used a simple classification scheme, logistic regression with a linear kernel, which is essentially a Euclidean distance-based classification. This scheme works better for tufted cells because they are more monotonic; i.e., if neuron A and B both increase their responsiveness with concentration, then Euclidean distance would be fine. But if neuron A’s response amplitude goes up and neuron B’s response goes down – as often happens for mitral cells – then Euclidean distance does not work as well. We will add intuition about this in the manuscript.

      Leave-one-trial/sample-out seems too conservative. How robust are the combinatorial patterns across trials? Would just one or two training trials suffice for creating templates for robust classification? Based on my prior experience (https://elifesciences.org/reviewed-preprints/89330https://elifesciences.org/reviewed-preprints/89330), I do expect that the combinatorial patterns would be more robust to adaptation and hence also allow robust recognition of odor intensity across repeated encounters.

      As suggested, we will compute the correlation coefficient of the similarity of neural responses for each odor (across trials). We will repeat this analysis for both mitral and tufted cells. To determine the effect of adaptation, we will compute correlation coefficients of responses between the 1st and 2nd trials vs the 1st and final trial.

      Lastly, in the simulated data, since the affinity of the first-order sensory neurons to odorants is expected to be constant across concentration, and "Jaccard similarity between the sets of highest-affinity neurons for each pair of concentration levels was > 0.96," why would the rank-order change across concentration? DN should not alter the rank order.

      We agree that divisive normalization should not alter the rank order, but the rank order may change in first-order neurons, which carries through to second-order neurons. This confusion may be related to the one mentioned above re: cross-overs vs non-monotonicity. Moreover, in the simulated data (Fig. 4D-H), the Jaccard similarity was calculated based on only the 50 neurons with the highest affinity, not the entire population of neurons. As shown in Fig. 4H, most of the rank-order change happens in the remaining 150 neurons.

      Note that in response to a comment by Reviewer 3, we will change the presentation of Fig. 4H in the revision.

      If the set of early responders does change, how will the decoder need to change, and what precise predictions can be made that can be tested experimentally? The lack of exploration of this aspect of the results seems like a missed opportunity.

      In the Discussion, we wrote about how downstream circuits will need to learn which set of neurons are to be associated with each distinct concentration level. We will expand upon this point and include experimentally testable predictions.

      Based on the methods, for Figures 1 and 2, it appears the responses across time, trials, and odorants were averaged to get a single data point per neuron for each concentration. Would this averaging not severely dilute trends in the data? The one that particularly concerns me is the averaging across different odorants. If you do odor-by-odor analysis, is the flattening of second-order neural responses still observable? Because some odorants activate more globally and some locally, I would expect a wide variety of dose-response relationships that vary with odor identity (more compressed in second-order neurons, of course). It would be good to show some representative neural responses and show how the extracted values for each neuron are a faithful/good representation of its response variation across intensities.

      It appears there is some confusion here; we will clarify in the text and figure captions that we did not average across different odors in our analysis. We will also add figure panels showing some representative neural responses as suggested by the Reviewer.

      A lot of neurons seem to have responses that flat line closer to zero (both firing rate and dF/F in Figure 1). Are these responsive neurons? The mean dF/F also seems to hover not significantly above zero. Hence, I was wondering if the number of neurons is reducing the trend in the data significantly.

      Yes, if a neuron responds to at least one concentration level in at least 50% of the trials, it is considered responsive. So it is possible that some neurons respond to one concentration level and otherwise flatline near zero.  We will highlight a few example neurons to visualize this scenario.

      I did not fully understand the need to show the increase in the odor response across concentrations as a polar plot. I see potential issues with the same. For example, the following dose-response trend at four intensities (C4 being the highest concentration and C1 the lowest): response at C3 > response at C1 and response at C4 > response at C2. But response at C3 < response at C2. Hence, it will be in the top right segment of the polar plot. However, the responses are not monotonic with concentrations. So, I am not convinced that the polar plot is the right way to characterize the dose-response curves. Just my 2 cents.

      Your 2 cents are valuable! Thank you for raising this point. Instead of computing two slopes (C1-C3 and C2-C4), we will expand our analysis to include all three slopes (C1-C2, C2-C3, C3-C4). Consequently, there are 2^3 = 8 different response shapes, and we will list them and quantify the fraction of the responses that fall into each shape category.

      In many analyses, simulated data were used (Figures 3 and 4). However, there is no comparison of how well the simulated data fit the experimental data. For example, the Simulated 1st order neuron in Figure 3D does not show a change in rank-order for the first-order neuron. In Figure 3E, temporal response patterns in second-order neurons look unrealistic. Some objective comparison of simulated and experimental data would help bolster confidence in these results.

      We believe the Reviewer is referring to Figs. 4D and 4E, since Fig. 3D does not show a first-order neuron simulation, and there is no Fig 3E. In Fig. 4D there is no change of rank order because the simulation is for a single odor and single concentration level, and the change of rank-order (i.e., cross-overs) as we define occurs between concentration levels. We will clarify this in the manuscript.

      Reviewer #3:

      While the authors focus on concentration-dependent increases in first-order neuron activity, reflecting the majority of observed responses, recent work from the Imai group shows that odorants can also lead to direct first-order neuron inhibition (i.e., reduction in spontaneous activity), and within this subset, increasing odorant concentration tends to increase the degree of inhibition. Some discussion of these findings and how they may complement divisive normalization to contribute to the diverse second-order neuron concentration-dependence would be of interest and help expand the context of the current results.

      We thank the Reviewer for the suggestion. We will request datasets of first-order neuron responses from the groups who acquired them. We will analyze this data to determine the role of inhibition or antagonistic binding and quantify what percentage of first-order neurons respond less strongly with larger concentrations.

      Related to the above point, odorant-evoked inhibition of second-order neurons is widespread in mammalian mitral cells and significantly contributes to the flattened concentration-dependence of mitral cells at the population level. Such responses are clearly seen in Figure 1D. Some discussion of how odorant-evoked mitral cell inhibition may complement divisive normalization, and likewise relate to comparatively lower levels of odorant-evoked inhibition among tufted cells, would further expand the context of the current results. Toward this end, replication of analyses in Figures 1D and E following exclusion of mitral cell inhibitory responses would provide insight into the contribution of such inhibition to the flattening of the mitral cell population concentration dependence.

      We will perform the analysis suggested, specifically, we will set the negative mitral cell responses to 0 and assess whether the population mean remains flat.

      The idea of concentration-dependent crossover responses across the first-order population being required for divisive normalization to generate individually diverse concentration response functions across the second-order population is notable. The intuition of the crossover responses is that first-order neurons that respond most sensitively to any particular odorant (i.e., at the lowest concentration) respond with overall lower activity at higher concentrations than other first-order neurons less sensitively tuned to the odorant. Whether this is a consistent, generalizable property of odorant binding and first-order neuron responsiveness is not addressed by the authors, however. Biologically, one mechanism that may support such crossover events is intraglomerular presynaptic/feedback inhibition, which would be expected to increase with increasing first-order neuron activation such that the most-sensitively responding first-order neurons would also recruit the strongest inhibition as concentration increases, enabling other first-order neurons to begin to respond more strongly. Discussion of this and/or other biological mechanisms (e.g., first-order neuron depolarization block) supporting such crossover responses would strengthen these results.

      We thank the reviewer for providing additional mechanisms to consider. As suggested, we will add discussion of these alternatives to divisive normalization.

      It is unclear to what degree the latency analysis considered in Figures 4D-H works with the overall framework of divisive normalization, which in Figure 3 we see depends on first-order neuron crossover in concentration response functions. Figure 4D suggests that all first-order neurons respond with the same response amplitude (R in eq. 3), even though this is supposed to be pulled from a distribution. It's possible that Figure 4D is plotting normalized response functions to highlight the difference in latency, but this is not clear from the plot or caption. If response amplitudes are all the same, and the response curves are, as plotted in Figure 4D, identical except for their time to half-max, then it seems somewhat trivial that the resulting second-order neuron activation will follow the same latency ranking, regardless of whether divisive normalization exists or not. However, there is some small jitter in these rankings across concentrations (Figure 4G), suggesting there is some randomness to the simulations. It would be helpful if this were clarified (e.g., by showing a non-normalized Figure 4D, with different response amplitudes), and more broadly, it would be extremely helpful in evaluating the latency coding within the broader framework proposed if the authors clarified whether the simulated first-order neuron response timecourses, when factoring in potentially different amplitudes (R) and averaging across the entire response window, reproduces the concentration response crossovers observed experimentally. In summary, in the present manuscript, it remains unclear if concentration crossovers are captured in the latency simulations, and if not, the authors do not clearly address what impact such variation in response amplitudes across concentrations may have on the latency results. It is further unclear to what degree divisive normalization is necessary for the second-order neurons to establish and maintain their latency ranks across concentrations, or to exhibit concentration-dependent changes in latency.

      As suggested by the Reviewer, we will add another simulation scenario where the response amplitudes (R) are different for different neurons. For each concentration, we will then average each neuron’s response across the entire response window and determine if the simulation reproduces the cross-overs as observed experimentally.

      How the authors get from Figure 4G to 4H is not clear. Figure 4G shows second-order neuron response latencies across all latencies, with ordering based on their sorted latency to low concentration. This shows that very few neurons appear to change latency ranks going from low to high concentration, with a change in rank appearing as any deviation in a monotonically increasing trend. Focusing on the high concentration points, there appear to be 2 latency ranks switched in the first 10 responding neurons (reflecting the 1 downward dip in the points around neuron 8), rather than the 7 stated in the text. Across the first 50 responding neurons, I see only ~14 potential switches (reflecting the ~7 downward dips in the points around neurons 8, 20, 32, 33, 41, 44, 50), rather than the 32 stated in the text. It is possible that the unaccounted rank changes reflect fairly minute differences in latencies that are not visible in the plot in Figure 4G. This may be clarified by plotting each neuron's latency at low concentration vs. high concentration (i.e., similar to Figure 4H, but plotting absolute latency, not latency rank) to allow assessment of the absolute changes. If such minute differences are not driving latency rank changes in Fig. 4G, then a trend much closer to the unity line would be expected in Figure 4H. Instead, however, there are many massive deviations from unity, even within the first 50 responding neurons plotted in Figure 4G. These deviations include a jump in latency rank from 2 at low concentration to ~48 at high concentration. Such a jump is simply not seen in Figure 4G.

      We apologize that Fig. 4H was a poor choice for visualization. What is plotted in Fig. 4H is the sorted identity of neurons under low and high concentrations, and points on the y=x line indicate that the two corresponding neurons have the same rank under the two concentrations. We will replace this panel with a more intuitive visualization, where the x and y axes are the ranks of the neurons; and deviation from the y=x line indicates how different the ranks are of a neuron to the two concentrations.

      In the text, the authors state that "Odor identity can be encoded by the set of highest-affinity neurons (which remains invariant across concentrations)." Presumably, this is a restatement of the primacy model and refers to invariance in latency rank (since the authors have not shown that the highest-affinity neurons have invariant response amplitudes across concentration). To what degree this statement holds given the results in Figure 4H, however, which appear to show that some neurons with the earliest latency rank at low concentration jump to much later latency ranks at high concentration, remains unclear. Such changes in latency rank for only a few of the first responding neurons may be negligible for classifying odor identity among a small handful of odorants, but not among 1-2 orders of magnitude more odors, which may feasibly occur in a natural setting. Collectively, these issues with the execution and presentation of the latency analysis make it unclear how robust the latency results are.

      The original primacy model states that the latency of a neuron decreases with increasing concentration, while the ranks of neurons remain unaltered. Our results, on the other hand, suggest that the ranks do at least partially change across concentrations. This leads to two possible decoding mechanisms. First, if the top K responding neurons remain invariant across concentrations (even if their individual ranks change within the top K), then the brain could learn to associate a population of K neurons with a response latency; lower response latency means higher concentration. Second, if the top K responding neurons do not remain invariant across concentrations, then the brain would need to learn to associate a different set of neurons with each concentration level. The latter imposes additional constraints on the robustness of the primacy model and the corresponding read-out mechanism. We will include more discussion of these possibilities in the revision.

      Analysis in Figures 4A-C shows that concentration can be decoded from first-order neurons, second-order neurons, or first-order neurons with divisive normalization imposed (i.e., simulating second-order responses). This does not say that divisive normalization is necessary to encode concentration, however. Therefore, for the authors to say that divisive normalization is "a potential mechanism for generating odor-specific subsets of second-order neurons whose combinatorial activity or whose response latencies represent concentration information" seems too strong a conclusion. Divisive normalization is not generating the concentration information, since that can be decoded just as well from the first-order neurons. Rather, divisive normalization can account for the different population patterns in concentration response functions between first- and second-order neurons without discarding concentration-dependent information.

      We agree that the word “generating” is faulty. We thank the reviewer for their more precise wording, which we will adopt.

      Performing the same polar histogram analysis of tufted vs. mitral cell concentration response functions (Figure 5B) provides a compelling new visualization of how these two cell types differ in their concentration variance. The projected importance of tufted cells to navigation, emerging directly through the inverse relationship between average concentration and distance (Figure 5C), is not surprising, and is largely a conceptual analysis rather than new quantitative analysis per se, but nevertheless, this is an important point to make. Another important consideration absent from this section, however, is whether and how divisive normalization may impact tufted cell activity. Previous work from the authors, as well as from Schoppa, Shipley, and Westbrook labs, has compellingly demonstrated that a major circuit mediating divisive normalization of mitral cells (GABA/DAergic short-axon cells) directly targets external tufted cells, and is thus very likely to also influence projection tufted cells. Such analysis would additionally provide substantially more justification for the Discussion statement "we analyzed an additional type of second-order neuron (tufted cells)", which at present instead reflects fairly minimal analysis.

      We agree that tufted cells are subject to divisive normalization as well, albeit probably to a less degree than mitral cells. To determine the effect of this, we will alter the strength (and degree of sparseness of interglomerular interactions) of divisive normalization and determine if there is a regime where response features of tufted cells match those observed experimentally.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Zhang et al. used a conditional knockout mouse model to re-examine the role of the RNA-binding protein PTBP1 in the transdifferentiation of astroglial cells into neurons. Several earlier studies reported that PTBP1 knockdown can efficiently induce the transdifferentiation of rodent glial cells into neurons, suggesting potential therapeutic applications for neurodegenerative diseases. However, these findings have been contested by subsequent studies, which in turn have been challenged by more recent publications. In their current work, Zhang et al. deleted exon 2 of the Ptbp1 gene using an astrocyte-specific, tamoxifen-inducible Cre line and investigated, using fluorescence imaging and bulk and single-cell RNA-sequencing, whether this manipulation promotes the transdifferentiation of astrocytes into neurons across various brain regions. The data strongly indicate that genetic ablation of PTBP1 is not sufficient to drive efficient conversion of astrocytes into neurons. Interestingly, while PTBP1 loss alters splicing patterns in numerous genes, these changes do not shift the astroglial transcriptome toward a neuronal profile.

      Strengths:

      Although this is not the first report of PTBP1 ablation in mouse astrocytes in vivo, this study utilizes a distinct knockout strategy and provides novel insights into PTBP1-regulated splicing events in astrocytes. The manuscript is well written, and the experiments are technically sound and properly controlled. I believe this study will be of considerable interest to a broad readership.

      Weaknesses:

      (1) The primary point that needs to be addressed is a better understanding of the effect of exon 2 deletion on PTBP1 expression. Figure 4D shows successful deletion of exon 2 in knockout astrocytes. However, assuming that the coverage plots are CPM-normalized, the overall PTBP1 mRNA expression level appears unchanged. Figure 6A further supports this observation. This is surprising, as one would expect that the loss of exon 2 would shift the open reading frame and trigger nonsense-mediated decay of the PTBP1 transcript. Given this uncertainty, the authors should confirm the successful elimination of PTBP1 protein in cKO astrocytes using an orthogonal approach, such as Western blotting, in addition to immunofluorescence. They should also discuss possible reasons why PTBP1 mRNA abundance is not detectably affected by the frameshift.

      We thank the reviewer for raising this important point. Indeed, the deletion of exon 2 introduces a frameshift that is predicted to disrupt the PTBP1 open reading frame and trigger nonsensemediated decay (NMD). While our CPM-normalized coverage plots (Figure 4D) and gene-level expression analysis (Figure 6A) suggest that PTBP1 mRNA levels remain largely unchanged in cKO astrocytes, we acknowledge that this observation is counterintuitive and merits further clarification.

      We suspect that the process of brain tissue dissociation and FACS sorting for bulk or single cell RNA-seq may enrich for nucleic material and thus dilute the NMD signal, which occurs in the cytoplasm. Alternatively, the transcripts (like other genes) may escape NMD for unknown mechanisms. Although a frameshift is a strong indicator for triggering NMD, it does not guarantee NMD will occur in every case. We will include this discussion in the revised manuscript to provide additional context for the apparent discrepancy between mRNA abundance and protein loss.

      Regarding the validation of PTBP1 protein depletion in cKO astrocytes by Western blotting, we acknowledge that orthogonal approaches to confirm PTBP1 elimination would address uncertainty around the effect of exon 2 deletion on PTBP1 expression. The low cell yield of cKO astrocytes poses a significant burden on obtaining sufficient samples for immunoblotting detection of PTBP1 depletion. On average 3-5 adult animals per genotype are needed for each biological replicate. Our characterization of this Ptbp1 deletion allele in other contexts show the loss of full length PTBP1 proteins in ESCs and NPCs using Western blotting. Furthermore, germline homozygous mutant mice do not survive beyond embryonic day 6, supporting that it is  a loss of function allele.

      (2) The authors should analyze PTBP1 expression in WT and cKO substantia nigra samples shown in Figure 3 or justify why this analysis is not necessary.

      We thank the reviewer for pointing out this important question. We used Aldh1l1-CreERT2, which is designed to be active in all the astrocyte throughout mouse brain. Although we have systematically verified PTBP1 elimination in different mouse brain regions (cortex and striatum) at multiple time points (from 4w to 12w after tamoxifen administration), we agree that it remains necessary and important to demonstrate whether the observed lack of astrocyte-to-neuron conversion is indeed associated with sufficient PTBP1 depletion. We will analyze the PTBP1 expression in the substantia nigra, as we did in the cortex and striatum. 

      (3) Lines 236-238 and Figure 4E: The authors report an enrichment of CU-rich sequences near PTBP1-regulated exons. To better compare this with previous studies on position-specific splicing regulation by PTBP1, it would be helpful to assess whether the position of such motifs differs between PTBP1-activated and PTBP1-repressed exons.

      We thank the reviewer for this insightful comment. We agree that assessing the positional distribution of CU-rich motifs between PTBP1-activated and PTBP1-repressed exons would provide valuable insight into the position-specific regulatory mechanisms of PTBP1. In response, we will perform separate motif enrichment analyses for PTBP1-activated and PTBP1-repressed exons and examine whether their positional patterns differ. This will help clarify whether these exons are differentially regulated by PTBP1 through distinct motif positioning in mature astrocytes.

      (4) The analyses in Figure 5 and its supplement strongly suggest that the splicing changes in PTBP1-depleted astrocytes are distinct from those occurring during neuronal differentiation. However, the authors should ensure that these comparisons are not confounded by transcriptome-wide differences in gene expression levels between astrocytes and developing neurons. One way to address this concern would be to compare the new PTBP1 cKO data with publicly available RNA-seq datasets of astrocytes induced to transdifferentiate into neurons using proneural transcription factors (e.g., PMID: 38956165).

      We would like to express our gratitude for the thoughtful feedback. We agree that transcriptomewide differences in gene expression between astrocytes and developing neurons could confound the interpretation of splicing differences. To address this concern, we will incorporate publicly available RNA-seq datasets from studies in which astrocytes are reprogrammed into neurons using proneural transcription factors (PMID: 38956165). 

      Reviewer #2 (Public review):

      Summary:

      The manuscript by Zhang and colleagues describes a study that investigated whether the deletion of PTBP1 in adult astrocytes in mice led to an astrocyte-to-neuron conversion. The study revisited the hypothesis that reduced PTBP1 expression reprogrammed astrocytes to neurons. More than 10 studies have been published on this subject, with contradicting results. Half of the studies supported the hypothesis while the other half did not. The question being addressed is an important one because if the hypothesis is correct, it can lead to exciting therapeutic applications for treating neurodegenerative diseases such as Parkinson's disease.

      In this study, Zhang and colleagues conducted a conditional mouse knockout study to address the question. They used the Cre-LoxP system to specifically delete PTBP1 in adult astrocytes. Through a series of carefully controlled experiments, including cell lineage tracing, the authors found no evidence for the astrocyte-to-neuron conversion.

      The authors then carried out a key experiment that none of the previous studies on the subject did: investigating alternative splicing pattern changes in PTBP1-depleted cells using RNA-seq analysis. The idea is to compare the splicing pattern change caused by PTBP1 deletion in astrocytes to what occurs during neurodevelopment. This is an important experiment that will help illuminate whether the astrocyte-to-neuron transition occurred in the system. The result was consistent with that of the cell staining experiments: no significant transition was detected.

      These experiments demonstrate that, in this experimental setting, PTBT1 deletion in adult astrocytes did not convert the cells to neurons.

      Strengths:

      This is a well-designed, elegantly conducted, and clearly described study that addresses an important question. The conclusions provide important information to the field.

      To this reviewer, this study provided convincing and solid experimental evidence to support the authors' conclusions.

      Weaknesses:

      The Discussion in this manuscript is short and can be expanded. Can the authors speculate what led to the contradictory results in the published studies? The current study, in combination with the study published in Cell in 2021 by Wang and colleagues, suggests that observed difference is not caused by the difference of knockdown vs. knockout. Is it possible that other glial cell types are responsible for the transition? If so, what cells? Oligodendrocytes?

      We are grateful for the reviewer’s careful reading and valuable suggestions. These will help us improve the manuscript. We will expand the Discussion. The contradictory results in the previously published studies can be due to the stringency and neuronal leakage of the astrocytespecific GFAP promoter that some investigators chose. Other possibilities include alternative cell origin, increased neuronal resilience, or combinations of as yet unidentified factors.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Weaknesses:

      (1) The manuscript's logical flow is challenging and hard to follow, and key arguments could be more clearly structured, particularly in transitions between mechanistic components.

      We have revised our manuscript so as to make it easy for readers to follow the logical flow in transitions between mechanistic components by adding the descriptions of Figure S1E-J, Figure S2F-K, Figure S3A-H, Figure S4A-F, Figure S5, and Figure S6 in the revised manuscript.

      (2) The causality between stress-induced α2A-AR internalization and the enhanced MAO-A remains unclear. Direct experimental evidence is needed to determine whether α2A-AR internalization itself or Ca2+ drives MAO-A activation, and how they activate MAO-A should be considered.

      We believe that the causality between stress-induced α2A-AR internalization and the enhancement of MAO-A is clearly demonstrated by our current experiments, while our explanations may be improved by making them easier to understand especially for those who are not expert on electrophysiology.

      Firstly, it is well established that autoinhibition in LC neurons is mediated by α2A-AR coupled-GIRK (Arima et al., 1998, J Physiol; Williams et al., 1985, Neuroscience). We found that spike frequency adaptation in LC neurons was also mediated by α2A-AR coupled GIRK-I (Figure 1A-I), and that α2A-AR coupled GIRK-I underwent [Ca<sup>2+</sup>]<sub>i</sub> dependent rundown (Figures 2, S1, S2), leading to an abolishment of spike-frequency adaptation (Figures S4). [Ca<sup>2+</sup>]<sub>i</sub> dependent rundown of α2A-AR coupled GIRK-I was prevented by barbadin (Figure 2G-J), which prevents the internalization of G-protein coupled receptor (GPCR) channels.

      Abolishment of spike frequency adaptation itself, i.e., “increased spike activity” can increase [Ca<sup>2+</sup>]<sub>i</sub> because [Ca<sup>2+</sup>]<sub>i</sub> is entirely dependent on the spike activity as shown by [Ca<sup>2+</sup>]<sub>i</sub> imaging method in Figure S3.

      Thus, α2A-AR internalization can increase [Ca<sup>2+</sup>]<sub>i</sub> through the abolishment of autoinhibition or spike frequency adaptation, and a [Ca<sup>2+</sup>]<sub>i</sub> increase drives MAO-A activation as reported previously (Cao et al., 2007, BMC Neurosci). The mechanism how Ca<sup>2+</sup> activates MAO-A is beyond the scope of the current study.

      Our study just focused on the mechanism how chronic or sever stress can cause persistent overexcitation and how it results in LC degeneration.

      (3) The connection between α2A-AR internalization and increased cytosolic NA levels lacks direct quantification, which is necessary to validate the proposed mechanism.

      Direct quantification of the relationship between α2A-AR internalization and increased cytosolic NA levels may not be possible, and may not be necessarily needed to be demonstrated as explained below.

      The internalization of α2A-AR can increase [Ca<sup>2+</sup>]<sub>i</sub> through the abolishment of autoinhibition or spike frequency adaptation, and [Ca<sup>2+</sup>]<sub>i</sub> increases can facilitate NA autocrine (Huang et al., 2007), similar to the transmitter release from nerve terminals (Kaeser & Regehr, 2014, Annu Rev Physiol).

      Autocrine released NA must be re-uptaken by NAT (NA transporter), which is firmly established (Torres et al., 2003, Nat Rev Neurosci). Re-uptake of NA by NAT is the only source of intracellular NA, and NA re-uptake by NAT should be increased as the internalization of NA biding site (α2A-AR) progresses in association with [Ca<sup>2+</sup>]<sub>i</sub> increases (see page 11, lines 334-336).

      Thus, the connection between α2A-AR internalization and increased cytosolic NA levels is logically compelling, and the quantification of such connection may not be possible at present (see the response to the comment made by the Reviewer #1 as Recommendations for the authors (2) and beyond the scope of our current study.

      (4) The chronic stress model needs further validation, including measurements of stress-induced physiological changes (e.g., corticosterone levels) to rule out systemic effects that may influence LC activity. Additional behavioral assays for spatial memory impairment should also be included, as a single behavioral test is insufficient to confirm memory dysfunction.

      It is well established that restraint stress (RS) increases corticosterone levels depending on the period of RS (García-Iglesias et al., 2014, Neuropharmacology), although we are not reluctant to measure the corticosterone levels. In addition, there are numerous reports that showed the increased activity of LC neurons in response to various stresses (Valentino et al., 1983; Valentino and Foote, 1988; Valentino et al., 2001; McCall et al., 2015), as described in the text (page 4, lines 96-98). Measurement of cortisol levels may not be able to rule out systemic effects of CRS on the whole brain.

      We had already done another behavioral test using elevated plus maze (EPM) test.By combining the two tests, it may be possible to more accurately evaluate the results of Y-maze test by differentiating the memory impairment from anxiety. However, the results obtained by these behavioral tests are just supplementary to our current aim to elucidate the cellular mechanisms for the accumulation of cytosolic free NA. Therefore, we have softened the implication of anxiety and memory impairment (page 13, lines 397-400 in the revised manuscript).

      (5) Beyond b-arrestin binding, the role of alternative internalization pathways (e.g., phosphorylation, ubiquitination) in α2A-AR desensitization should be considered, as current evidence is insufficient to establish a purely Ca<sup>2+</sup> -dependent mechanism.

      We can hardly agree with this comment. 

      It was clearly demonstrated that repeated application of NA itself did not cause desensitization of α2A-AR (Figure S1A-D), and that the blockade of b-arrestin binding by barbadin completely suppressed the Ca<sup>2a</sup>-dependent downregulation of GIRK (Figure 2G-K). These observations can clearly rule out the possible involvement of phosphorylation or ubiquitination for the desensitization.

      Not only the barbadin experiment, but also the immunohistochemistry and western blot method clearly demonstrated the decrease of α2A-AR expression on the cell membrane (Figure 3).

      Ca<sup>2+</sup>-dependent mechanism of the rundown of GIRK was convincingly demonstrated by a set of different protocols of voltage-clamp study, in which Ca<sup>2+</sup> influx was differentially increased. The rundown of GIRK-I was orderly potentiated or accelerated by increasing the number of positive command pulses each of which induces Ca<sup>2+</sup> influx (compare Figure S1E-J, Figure S2A-E and Figure S2F-K along with Figure 2A-F). The presence or absence of Ca<sup>2+</sup> currents and the amount of Ca<sup>2+</sup> currents determined the trend of the rundown of GIRK-I (Figures 2, S1 and S2). Because the same voltage protocol hardly caused the rundown when it did not induce Ca<sup>2+</sup> currents in the absence of TEA (Figure S1F; compare with Figure 2B), blockade of Ca<sup>2+</sup> currents by nifedipine would not be so beneficial.

      We believe the series of voltage-clamp protocols convincingly demonstrated the orderly involvement of [Ca<sup>2+</sup>]<sub>i</sub> in accelerating the rundown of GIRK-I.

      (6) NA leakage for free NA accumulation is also influenced by NAT or VMAT2. Please discuss the potential role of VMAT2 in NA accumulation within the LC in AD. 

      It has been demonstrated that reduced VMAT2 levels increased susceptibility to neuronal damage: VMAT2 heterozygote mice displayed increased vulnerability to MPTP as evidenced by reductions in nigral dopamine cell counts (Takahashi et al, 1997, PNAS). Thus, when the activity of VMAT2 in LC neurons were impaired by chronic restraint stress, cytosolic NA levels in LC neurons would increase. We have added such discussion in the revised manuscript (page 12, lines 381-384).

      (7) Since the LC is a small brain region, proper staining is required to differentiate it from surrounding areas. Please provide a detailed explanation of the methodology used to define LC regions and how LC neurons were selected among different cell types in brain slices for whole-cell recordings.

      LC neurons were identified immunohistochemically and electrophysiologically as we previously reported (see Fig. 2 in Front. Cell. Neurosci. 16:841239. doi: 10.3389/fncel.2022.841239). We have added this explanation in the method section of the revised manuscript (page 15, lines 474-475). A delayed spiking pattern in response to depolarizing pulses (Figure S10 in the revised manuscript) applied at a hyperpolarized membrane potential was commonly observed in LC neurons in many studies (Masuko et al., 1986; van den Pol et al., 2002; Wagner-Altendorf et al., 2019).

      Reviewer #2 (Public review):

      Weaknesses:

      (1) The manuscript reports that chronic stress for 5 days increases MAO-A levels in LC neurons, leading to the production of DOPEGAL, activation of AEP, and subsequent tau cleavage into the tau N368 fragment, ultimately contributing to neuronal damage. However, the authors used wild-type C57BL/6 mice, and previous literature has indicated that AEP-mediated tau cleavage in wild-type mice is minimal and generally insufficient to cause significant behavioral alterations. Please clarify and discuss this apparent discrepancy.

      In our study, normalized relative value of AEP-mediated tau cleavage (Tau N368) was much higher in CRS mice than non-stress wild-type mice. It is not possible to compare AEP-mediated tau cleavage between our non-stress wild type mice and those observed in previous study (Zhang et al., 2014, Nat Med), because band intensity is largely dependent on the exposure time and its numerical value is the normalized relative value. In view of such differences, our apparent band expression might have been intensified to detect small changes.

      (2) It is recommended that the authors include additional experiments to examine the effects of different durations and intensities of stress on MAO-A expression and AEP activity. This would strengthen the understanding of stress-induced biochemical changes and their thresholds.

      GIRK rundown was almost saturated after 3-day RS and remained the same in 5-day RS mice (Fig. 4A-G), which is consistent with the downregulation of α2A-AR and GIRK1 expression by 3-day RS (Fig. 3C, F and G; Fig. 4J and K). However, we examined the protein levels of MAO-A, pro/active-AEP and Tau N368 only in 5-day RS mice without examining in 3-day RS mice. This is because we considered the possibility that a high [Ca<sup>2+</sup>]<sub>i</sub> condition may have to be sustained for some period of time to induce changes in MAO-A, AEP and Tau N368, and therefore 3-day RS may be insufficient to induce such changes. We have added this in the revised manuscript (page 17, lines 521-525).

      (3) Please clarify the rationale for the inconsistent stress durations used across Figures 3, 4, and 5. In some cases, a 3-day stress protocol is used, while in others, a 5-day protocol is applied. This discrepancy should be addressed to ensure clarity and experimental consistency.

      Please see our response to the comment (2).

      (4) The abbreviation "vMAT2" is incorrectly formatted. It should be "VMAT2," and the full name (vesicular monoamine transporter 2) should be provided at first mention.

      Thank you for your suggestion. We have revised accordingly.

      Reviewer #3 (Public review):

      Weaknesses:

      Nevertheless, the manuscript currently reads as a sequence of discrete experiments rather than a single causal chain. Below, I outline the key points that should be addressed to make the model convincing.

      Please see the responses to the recommendation for the authors made by reviewer #3.

      Reviewer #1 (Recommendations for the authors):

      (1) Improve the clarity and organization of the manuscript, ensuring smoother transitions between concepts and mechanisms.

      Please see the response to the comment raised by Reviewer #1 as Weakness

      (2) Adjust any quantifying method for cytosolic NA levels under different conditions to support the link between receptor internalization and NA accumulation.

      If fluorescent indicator of cytosolic free NA is available, it would be possible to measure changes in cytosolic NA levels. However, at present, there appeared to be no fluorescence probe to label cytosolic NA. For example, NS521 labels both dopamine and norepinephrine inside neurosecretory vesicles (Hettie & Glass et al., 2014, Chemistry), and BPS3 fluorescence sensor labels NA around cell membrane by anchoring on the cell membrane (Mao et al., 2023, Nat Comm). Furthermore, the method reported in “A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine” is limited to detect NA only when α2AR is expressed. In the present study, increases in cytosolic NA levels are caused by internalization of α2AR. Cytosolic NA measurements with GRAB NE photometry may not be applicable in the present study. However, we have discussed the availability of such fluorescent methods to directly prove the increase in cytosolic NA as a limitation of our study (page 14, lines 429-436 in the revised manuscript).

      (3) Include validation of the chronic stress model with physiological and behavioral measures (e.g., corticosterone levels and another behavioral test).

      Please see the response to the comment raised by Reviewer #1 as Weakness (4).

      (4) All supplemental figures should be explicitly explained in the Results section. Specifically, clarify and describe the details of Figure S1G-K, Figure S2F-K, Figure S3A-H, Figure S4A-F, Figure S5, and Figure S6 to ensure all supplementary data are fully integrated into the main text.

      We have more explicitly and clearly described the details of Figure S1E-J, Figure S2F-K, Figure S3A-H, Figure S4A-F, Figure S5, and Figure S6 and fully integrated those explanations into the main text in the revised manuscript.

      (5) In Figure 3, the morphology of TH-positive cells differs between panels D and E. Additionally, TH is typically expressed in the cytosol, but in the provided images, it appears to be localized only to the membrane. Please clarify this discrepancy and provide a lower-magnification image to display a larger area, not one cell.

      In a confocal image, TH is not necessarily expressed homogenously in the cytosol, but is expressed in a ring-shaped pattern inside the plasma membrane, avoiding the cell nucleus and its surrounding Golgi apparatus and endoplasmic reticulum (ER) (Henrich et al., 2018, Acta Neuropathol Commun; see Fig. 4a and 6e), especially when the number of z-stack of confocal images is small. This is presumably because LC neurons are especially enriched with numerous Golgi apparatus and ER (Groves & Wilson, 1980, J Comp Neurol).

      In Figure S7, we showed a lower-magnification image of LC and its adjacent area (mesencephalic trigeminal nucleus). In the LC area, there are a variety of LC neurons, which include oval shaped neurons (open arrowhead; similar to Figure 3D) and also rhombus-like shaped neurons (open double arrowheads, similar to Figure 3E). A much lower-magnification image of LC neurons constituting LC nucleus was shown in Figure 5A.

      (6) In Figure 5, the difference in MAO-A expression is not clearly visible in the fluorescence images. Enzymatic assays for AEP and MAO-A should be included to demonstrate the increased activity better.

      In the current study, we did not elaborate to detect the changes in TH, MAO-A and AEP in terms of immunohistochemical method. Instead, we elaborated to detect such changes in terms of western blot method. The main conclusions in the current study were drawn primarily by electrophysiological techniques as we have expended much effort on electrophysiological experiments. Because the relative quantification of active AEP and Tau N368 proteins by western blotting analysis may accurately reflect changes in those enzyme activities, enzymatic assay may not be necessarily required but is helpful to better demonstrate AEP and MAO-A activity. We have described the necessity of enzymatic assay to better demonstrate the AEP and MAO-A activities (page 10, lines 314-315).

      Reviewer #3 (Recommendations for the authors):

      (1) Causality across the pathway

      Each step (α2A internalisation, GIRK rundown, Ca<sup>2+</sup> rise, MAO-A/AEP upregulation) is demonstrated separately, but no experiment links them in a single preparation. Consider in vivo Ca<sup>2+</sup> or GRAB NE photometry during restraint stress while probing α2A levels with i.p. clonidine injection or optogenetic over excitation coupled to biochemical readouts. Such integrated evidence would help to overcome the correlational nature of the manuscript to a more mechanistic study.

      It is not possible to measure free cytosolic NA levels with GRAB NE photometry when α2A AR is internalized as described above (see the response to the comment made by reviewer #1 as the recommendation for the authors).

      (2) Pharmacology and NE concentration

      The use of 100 µM noradrenaline saturates α and β adrenergic receptors alike. Please provide ramp measurements of GIRK current in dose-response at 1-10 µM NE (blocked by atipamezole) to confirm that the rundown really reflects α2A activity rather than mixed receptor effects.

      It is true that 100 µM noradrenaline activates both α and β adrenergic receptors alike. However, it was clearly showed that enhancement of GIRK-I by 100 µM noradrenaline was completely antagonized by 10 µM atipamezole and the Ca<sup>2+</sup> dependent rundown of NA-induced GIRK-I was prevented by 10 µM atipamezole. Considering the Ki values of atipamezole for α2A AR (=1~3 nM) (Vacher et al., 2010, J Med Chem) and β AR (>10 µM) (Virtanen et al., 1989, Arch Int Pharmacodyn Ther), these results really reflect α2A AR activity but not β AR activity (Figure S5). Furthermore, because it is already well established that NA-induced GIRK-I was mediated by α2A AR activity in LC neurons (Arima et al., 1998, J Physiol; Williams et al., 1985, Neuroscience), it is not necessarily need to re-examine 1-10 µM NA on GIRK-I.

      (3) Calcium dependence is not yet definitive

      The rundown is induced with a TEA-enhanced pulse protocol. Blocking L-type channels with nifedipine (or using Cd²⁺) during this protocol should show whether Ca<sup>2+</sup> entry is necessary. Without such a control, the Ca<sup>2+</sup> link remains inferential.

      The Ca<sup>2+</sup> link was precisely demonstrated by a series of voltage clamp experiment, in which Ca<sup>2+</sup> influx was orderly potentiated by increasing the number of positive voltage pulses (Figures S1 and S2). As the number of positive voltage pulses was increased, the rundown of GIRK-I was accelerated or enhanced more. The relationship between the number of spikes and the Ca<sup>2+</sup> influx detected as Ca<sup>2+</sup> transients was well documented in Ca2+ imaging experiments using fura-2 (Figure S3).

      The presence or absence of Ca<sup>2+</sup> currents and the amount of Ca<sup>2+</sup> currents determined the trend of the rundown of GIRK-I (Figs. 2, S1 and S2). The same voltage protocol hardly caused the rundown when it did not induce Ca<sup>2+</sup> currents in the absence of TEA (Fig. S1F; compare with Fig. 2B), and the series of voltage-clamp protocols convincingly demonstrated the orderly involvement of [Ca<sup>2+</sup>]<sub>i</sub> in accelerating the rundown of GIRK-I. Therefore, blockade of Ca<sup>2+</sup> currents by nifedipine may not be so beneficial.

      (4) Age mismatch and disease claims

      All electrophysiology and biochemical data come from juvenile (< P30) mice, yet the conclusions stress Alzheimer-related degeneration. Key endpoints need to be replicated in adult or aged mice, or the manuscript should soften its neurodegenerative scope.

      As described in the section of Conclusion, we never stress Alzheimer-related degeneration, but might give such an impression. To avoid such a misunderstanding, we have added a description “However, the present mechanism must be proven to be valid in adult or old mice, to validate its involvement in the pathogenesis of AD.” (page 14, lines 448-450).

      (5) Direct evidence for extracellular/cytosolic NE

      The proposed rise in reuptake NA is inferred from electrophysiology. Modern fluorescent sensors (GRAB NE, nLight) or fast scan voltammetry could quantify NE overflow and clearance during stress, directly testing the model.

      Please see the response to the comment made by Reviewer #1 as the Recommendations for the authors (2) as described above.

      (6) Quantitative histology

      Figure 5 presents attractive images but no numerical analysis. Please provide ROI-based fluorescence quantification (with n values) or move the images to the supplement and rely on the Western blots.

      We have moved the immunohistochemical results in Fig. 5 to the supplement as we believe the quantification of immunohistochemical staining is not necessarily correct.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      The chosen classification scheme for aGPCRs may require reassessment and amendment by the authors in order to prevent confusion with previously issued classification attempts of this family. (…) Can the authors suggest another scheme (mind to avoid the subfamily IIX or the alternative ADGRA-G,L,V subfamily schemes of metazoan aGPCRs), and adapt their numbering throughout the text and all figures/supplementary figures/supplementary files?

      We appreciate the reviewer's comment and agree that a different nomenclature should be used for choanoflagellate aGPCRs to avoid possible confusion. We have now re-labeled the choanoflagellate aGPCR subfamilies, previously numbered from I to XIX, using alphabetical enumeration (from A to S). Changes have been made throughout the main text, in Figure 5, and in Supplementary Figures S6 and S7.

      line 10: The abbreviation 'GPCR-TKL/Ks' is not explained.

      Thank you for pointing this out. We have now revised the text to explain the abbreviation:

      “Adhesion GPCRs and a class of GPCRs fused to kinases (the GPCR-TKL/Ks) are the most abundant GPCRs in choanoflagellates.”

      line 30: "7TM domain is diagnostic for GPCRs": strange wording. Use an alternative expression.

      We changed the wording to: 

      “A conserved seven transmembrane (7TM) domain is a hallmark of GPCRs, while the wide spectrum of extracellular and intracellular domains in some GPCRs reflects the diversification of the gene family and its functions (Schiöth and Lagerström 2008).”

      line 33: In the case of rhodopsins, not the GPCR (i.e., the apoprotein) responds directly to photons, but the retinal, which isomerises upon illumination.

      We thank the reviewer for bringing this to our attention, and we have now removed mention of photons from the list of cues detected by GPCRs.

      “For example, the extracellular N-terminus and the three extracellular loops of the 7TM domain respond to a wide range of cues, including odorant molecules, peptides, amines, lipids, nucleotides, and other molecules (Yang et al. 2021).”

      line 111: What are "genome-enabled choanoflagellates"? Explain the term. As it stands, it doesn't make sense to me.

      We meant only to highlight that these two species have sequenced genomes. We have deleted the phrase “genome enabled.”

      “To assess the predictive power of our protein-detection pipeline, we then compared the new GPCR and cytosolic signaling component datasets from two choanoflagellates – Salpingoeca rosetta and Monosiga brevicollis – with previously published GPCR and downstream GPCR signaling component counts for these two species (Nordström et al. 2009a; Krishnan et al. 2012; De Mendoza et al. 2014; Krishnan et al. 2015; Lokits et al. 2018).”

      line 145: Please give a reasoning for the naming of each of the new families (e.g., RemiSens, Hidden Gold, GPCR-TLK/K, etc.) or at least the explanations of the acronyms/names early in the manuscript, even if they are discussed later in more detail.

      Thank you for identifying this as an area of confusion. While we feel that going into the rationale behind each of the names here would interrupt the flow of the manuscript, we have added a phrase encouraging readers to “hold that thought” with the hope that they can wait for the sections that specifically focus on each of these new GPCR families.

      “This left twelve new GPCR families that had not, to our knowledge, been previously detected in choanoflagellates: Rhodopsin, TMEM145, GPR180, TMEM87, GPR155, GPR157, and six additional GPCR families that appear to fall outside all previously characterized GPCR families in eukaryotes. For reasons that will be discussed further below, we have named these six new GPCR families “Rémi-Sans-Famille” (RSF), “Hidden Gold” (Hi-GOLD), GPCR-TKL/K, GPRch1, GPRch2, and GPRch3. (Fig. 1B; Table 1).”

      lines 297/298 and 2049: Rename tethered agonist "peptide" to "element". Synthetic peptides resembling the TA were used in experiments to test for the sufficiency of the TA for receptor activation, but because the naturally occurring TAs are part of the receptor protein, they are not peptides.

      Thank you for pointing this out. We have revised the text as suggested.

      line 2026: I think the letters in the acronym "CMR" are mixed up and were intended to read "CRM".

      Good catch! We have corrected the text.

      line 2048: "diagnostic" again. Change to "tell-tale", "hallmark", or another similar descriptor.

      We have corrected the text accordingly.

      2058: Strike "motif" in order to avoid confusion with the now obsolete term "GPS motif", which entailed the five most C-terminal β-strands of GAIN subdomain B (not thus neither the full GAIN domain nor the GPS).

      Thank you for pointing this out. We have corrected the text.

      Figure 5: Did the authors also find homologs placed in the aGPCR family based on their 7TM domain sequence but lacking a GAIN domain similar to vertebrate ADGRA/GPR123, the only aGPCR known to lack a GAIN domain (10.1016/j.tips.2013.06.002)? Irrespective of the authors' findings or non-finding on that matter, please insert a note on this in the results text.

      We thank the reviewer for bringing this interesting point to our attention. We have now added a new supplementary figure A in Fig. S9 to answer the reviewer's comment. We also modified the legend of Fig. S9  to take into account this change and uploaded a new supplementary data file 20 to support Fig. S9A. Finally, we revised the main text under the section “Adhesion GPCRs” as requested: 

      Lines 328-331: “ While the GAIN and aGPCR 7TM domains evolved before the origin of opisthokonts (Araç et al.2012; Krishnan et al. 2012; De Mendoza et al. 2014), we detected the fusion of these two domains into a single module (GAIN/7TM) in most, but not all, holozoan aGPCRs (Fig. 5D, Fig.S7B and S9A; Supplementary file 20; Prömel et al, 2013; Krishnan et al. 2014).

      Reviewer #2:

      While the study contributes several interesting observations, it does not radically revise the evolutionary history of the GPCR family. However, in an era increasingly concerned with the reproducibility of scientific findings, this is arguably a strength rather than a weakness. It is encouraging to see that previously established patterns largely hold, and that with expanded sampling and improved methods, new insights can be gained, especially at the level of specific GPCR subfamilies. Then, no functional follow-ups are provided in the model system Salpingoeca rosetta, but I am sure functional work on GPCRs in choanoflagellates is set to reveal very interesting molecular adaptations in the future.

      We agree with the reviewer and anticipate that this work will provide a useful resource to motivate the future functional characterization of GPCRs in choanoflagellates, other CRMs, as well as in metazoans.

      The GPCR-TKL fusion is a particularly interesting finding, especially given the presence of such sequences in sponges. This could potentially represent a synapomorphy shared between sponges and choanoflagellates, later lost in other animals. The authors mention that BLASTP searches using the kinase domain recover the sponge GPCR-TKLs, suggesting the fusion may be ancestral. It would be useful to include phylogenetic trees of both the GPCR and TKL domains to assess this possibility. The authors might also consider examining sponge genomes released by the DTOL project to increase representation from this group.

      We agree and thank the reviewer for this suggestion. We have now added the requested phylogenetic analyses to the new Figure S17, revised the supplementary files and Methods accordingly, and commented on these results in the main text under the section “GPCR-TKL/K and GPCR-TKs“.  

      Lines 579 – 589: “While no metazoan homologs were found when using the 7TM domain of choanoflagellate GPCR-TKs as queries, using the conserved tyrosine kinase domains as queries recovered GPCR-TKs in sponges but not in other metazoan lineages or other holozoans (Fig. S17E). To test whether GPCR-TKs in sponges and choanoflagellates are homologous, we performed phylogenetic analyses of their TK and 7TM domains (Fig. S17F and G). While the TK domains of GPCR-TKs from sponges and choanoflagellates formed a well-supported clade, their 7TM domains did not. These results point to a heterogeneous evolutionary history that may include domain swapping (i.e. ancestral GPCR-TKs in which the 7TM domain was replaced in either the sponge or choanoflagellate lineages) or convergent evolution, in which homologous 7TM domains fused with unrelated 7TM domains in the sponge and choanoflagellate lineages.”

      Added to the Method section “Sequence alignment and phylogenetic analyses”:

      Lines 913 – 933: “Phylogenetic analyses of holozoan aGPCRs, Glutamate Receptors, and Gα subunits, and the 7TM and Kinase domains from GPCR TK/TKL/Ks were performed in this study. (…) To construct the phylogenies of the Kinase domain and 7TM domain from the GPCR TK/TKL/Ks, we first built a dataset including all the GPCR TK/TKL/Ks sequences identified in choanoflagellates and in sponges, as well as the GPCR TKL/Ks previously published in oomycetes and amoebozoans (Van Den Hoogen et al. 2018). We extracted the 7TM domain and Kinase domain from each sequence by combining the transmembrane domain prediction tool TMHMM-2.0 and the protein domain prediction tool InterProScan with the alignment tool MAFFT (E-INS-I algorithm) on Geneious Prime v2024.07 (Supplementary Files 30 and 32). We then aligned the aGPCR, Glutamate and Glutamate GPCR TK/TKL/K Receptor 7TMs, the GPCR TK/TKL/Ks Kinase domain, or the full-length Gα sequences using MAFFT with the E-INS-I algorithm. The resulting alignments were then used for Maximum-likelihood and/or Bayesian inference of phylogenies (Fig. 3B, Fig. 5A, Fig. S3D, and Fig. S6A, and Fig. S17F and G; Supplementary Files 5, 9, 16,18, 31, and 33).”

      Rhodopsin-like receptors are proposed in the discussion to be potential cases of lateral gene transfer (LGT) between eukaryotes. To support or refute this hypothesis, it would be valuable to place the choanoflagellate and ichthyosporean Rhodopsins within a broader phylogeny of this family, including (a few) representatives from animals and other eukaryotes. Even if deep branching relationships remain unresolved, signs such as unusually short branches could point toward recent LGT events.

      Thank you for your suggestion. While we originally considered testing these alternative hypotheses in this manuscript by building a phylogeny, the rapid sequence evolution of the Rhodopsin family has stymied similar efforts in the past and instead motivated others to use clustering approaches like those used in our study (Hu et al. 2017; Thiel et al. 2023). Unfortunately, these types of analyses cannot be used to readily identify instances of LGT.

      Therefore, following the suggestion of the reviewer, we bit the bullet and performed phylogenetic analyses on the sequences in question. Unfortunately, these analyses were completely inconclusive, and we feel they do not warrant inclusion in the manuscript. The topologies of the sequence trees recovered were poorly supported and sensitive to most of the variables we tested – the set of rhodopsin sequences included, the multiple alignment algorithms used, and the probabilistic methods employed to infer the phylogenies. 

      Instead, we have revised the manuscript to highlight the challenge of differentiating between the different hypotheses that are consistent with the phylogenetic distribution of Rhodopsins:

      Lines 670 – 678: “Thus, while it is formally possible that Rhodopsins existed in stem choanoflagellates and were lost in most modern choanoflagellate lineages, either horizontal gene transfer or convergent evolution in the shared ancestor of S. macrocollata and S. punica are similarly plausible explanations for their presence in these species. Differentiating between these alternative evolutionary scenarios is challenging because of rapid rate of sequence evolution within the family and the resultant loss of phylogenetic signal. Our own preliminary investigations of Rhodopsin evolution in non-metazoans were inconclusive. Therefore, ambiguities about the provenance and function of CRM Rhodopsins currently obscure the ancestry of metazoan Rhodopsins and opsins.”

      While the study surveys most available holozoan genomes, it appears that the genomes of Amoebidium spp.-which are cited in the manuscript- were not included. It may not be necessary to repeat all analyses with these two species (A. appalachense and A. parasiticum), but a preliminary search indicates the presence of four candidate 7tm_1 (Rhodopsin-like) proteins in their proteomes. These may warrant closer inspection (e.g., via BLASTP against animal databases) to confirm whether they are genuine GPCRs or false positives.

      Author response image 1.

      We thank the reviewer for bringing these sequences to our attention. To be clear, we did not analyze the Amoebidium spp. genome and we can find no reference to it in our manuscript. If the reviewer had the impression that the genome was analyzed, we would be grateful to know the source of the confusion so that it can be corrected. (We did not intentionally exclude the genome; it simply was not available on the Multicell Genome database from which we retrieved the ichthyosporean genomes and transcriptomes used in this study.)

      Nevertheless, out of curiosity, we have now analyzed the sequences provided by the reviewer and summarize our findings here for the interest of the reviewer. Although the sequences were annotated as 7tm_1 (Rhodopsin-like) proteins in the original genome study, none of these sequences group with metazoan or choanoflagellate Rhodopsins in our clustering analysis; instead, we found that these putative GPCRs form a distinct cluster that only weakly resembles cAMP receptors, both on the basis of their sequence and predicted structures. 

      It is not surprising to find new GPCR clusters as new taxa are folded into the study, and these Amoebidium sequences do not add to our understanding of Rhodopsin evolution. Therefore, we have not added their analysis to the manuscript, but we hope the reviewer finds our quick analysis of interest.

      Author response image 2.

      In Figure 2, perhaps expanding the other holozoan clades would have been nice, as there are not too many species, but I understand if that's beyond the point of the manuscript, focused on choanoflagellates.

      Thank you for this comment. However, given the focus of this study, we feel that an expansion of the other holozoan clades would reduce the clarity of the figure.

      line 87 - "To this end, the 671 validated choanoflagellate GPCRs were sorted by sequence similarity, resulting in 18 clusters. "Some details in the results section would be nice, or at least clear references to where this is explained in more detail. How were the extra choanoflagellate GPCRs added if they failed to be identified with quite sensitive HMM profiles?

      We apologize for the possible confusion and thank the reviewer for the suggestion; we have now added specific references to the related sections from the material and methods for interested readers.

      We believe that the "extra choanoflagellate GPCRs" mentioned by the reviewer refer to the choanoflagellate GPCRs that failed to be detected when the choanoflagellate genomes and transcriptomes were searched with the predominantly metazoan-derived GPCRHMM and HMMs from the GPCR_A Pfam clan (CL0192). We were able to recover these extra choanoflagellate GPCRs by using custom choanoflagellate-specific GPCR HMMs and by blasting the choanoflagellate GPCRs previously identified as queries against the 23 choanoflagellate proteomes. We hope that the referencing of the Methods section "Recovering additional choanoflagellate GPCRs using choanoflagellate GPCR BLAST queries and custom choanoflagellate GPCR HMMs", in lines 91 and 93, will help clarify this point.

      line 108 - Well, from the figure it seems that most eukaryotes have an 'animal-like' G protein signalling, so that's perhaps more of an eukaryotic signature than something that puts choanoflagellates and animals together.

      Excellent point! We have revised the text.

      line 132 - It is unclear what the criteria are to include these taxa as helpers for choanoflagellate classification, and not adding the other unicellular holozoans. Just some text justification could help.

      Thank you for pointing this out. We have added an explanation of the rationale to the methods — section “Clustering of the 918 validated choanoflagellate GPCRs” — and referred to it in the main text.

      New text added to methods:

      “The non-choanoflagellate sequences added to the dataset were either top blast hits recovered after searching the entire Eukprot v3 dataset (993 species) with choanoflagellate GPCRs as queries, or previously published and well-documented GPCR sequences from metazoans.”

      line 145 - These families are listed, but perhaps it would be nice to explicitly mention that they will be covered in more detail later on in the manuscript. I found myself wondering about those exotic names, until I reached the sections in the manuscript where they are explained.

      Thank you for this suggestion. We have now modified our sentence to refer to the related sections.

      “For reasons that will be discussed further below, we have named these six new GPCR families “Rémi-Sans-Famille” (RSF), “Hidden Gold” (Hi-GOLD), GPCR-TKL/K, GPRch1, GPRch2, and GPRch3. (Fig. 1B; Table 1).”

      line 199 - perhaps would be nice to explain domain architecture of validated Dictyostelium GABA-like receptors (ANF domain?).

      Thank you for your suggestion. We have now modified the sentence to mention the protein domain composition of the validated GABA-like receptor, GrlE, in Dictyostelium.

      “The Glutamate Receptors from the amoebozan Dictyostelium discoideum, of which at least one, GrlE, binds both GABA and Glutamate presumably through its conserved ANF domain (Anjard and Loomis 2006; Taniura et al. 2006; Wu and Janetopoulos 2013), grouped separately from metazoan and CRM GPCRs in our analysis.”

      Figure S4 - Perhaps a stacked bar chart would be easier to browse than a bunch of pie charts, notoriously difficult to quantify.

      Thank you for this comment. Opinions differ on how best on whether pie charts or bar charts are more effective in this context (including between the authors of this manuscript). However, we think the point of Figure S4 a minor point, only to be appreciated by a tiny number of readers, and therefore have left the data presentation as it was in the original submission.

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the reviewers for the constructive comments, which have improved the manuscript. In response to these comments, we have made the following major changes to the main text and reviewer response:

      (1) Added experimental and computational evidence to support the use of Cut&Tag to determine speckle location.

      (2) Performed new Transmission Electron Microscopy (TEM) experiments to visualize interchromatin granule clusters +/- speckle degradation.

      (3) Altered the text of the manuscript to remove qualitative statements and clarify effect sizes.

      (4) Performed new analyses of published whole genome bisulfite data from LIMe-Hi-C following DNMT1 inhibition to demonstrate that CpG methylation is lost at DNMT1i-specific gained CTCF sites.

      (5) Included citations for relevant literature throughout the text.

      These revisions in addition to others are described in the point-by-point response below.

      Reviewer #1 (Public review):

      Summary

      Roseman et al. use a new inhibitor of the maintenance DNA methyltransferase DNMT1 to probe the role of methylation on binding of the CTCF protein, which is known to be involved chromatin loop formation. As previous reported, and as expected based on our knowledge that CTCF binding is methylation-sensitive, the authors find that loss of methylation leads to additional CTCF binding sites and increased loop formation. By comparing novel loops with the binding of the pre-mRNA splicing factor SON, which localizes to the nuclear speckle compartment, they propose that these reactivated loops localize to near speckles. This behavior is dependent on CTCF whereas degradation of two speckle proteins does not affect CTCF binding or loop formation. The authors propose a model in which DNA methylation controls the association of genome regions with speckles via CTCF-mediated insulation.

      Strengths

      The strengths of the study are 1) the use of a new, specific DNMT1 inhibitor and 2) the observation that genes whose expression is sensitive to DNMT1 inhibition and dependent on CTCF (cluster 2) show higher association with SON than genes which are sensitive to DNMT1 inhibition but are CTCF insensitive, is in line with the authors' general model.

      Weaknesses

      There are a number of significant weaknesses that as a whole undermine many of the key conclusions, including the overall mechanistic model of a direct regulatory role of DNA methylation on CTCF-mediated speckle association of chromatin loops.

      We appreciate the reviewer’s constructive comments and address them point-by-point below.

      (1) The authors frequently make quasi-quantitative statements but do not actually provide the quantitative data, which they actually all have in hand. To give a few examples: "reactivated CTCF sites were largely methylated (p. 4/5), "many CTCF binding motifs enriched..." (p.5), "a large subset of reactivated peaks..."(p.5), "increase in strength upon DNMT1 inhibition" (p.5); "a greater total number....." (p.7). These statements are all made based on actual numbers and the authors should mention the numbers in the text to give an impression of the extent of these changes (see below) and to clarify what the qualitative terms like "largely", "many", "large", and "increase" mean. This is an issue throughout the manuscript and not limited to the above examples.

      Related to this issue, many of the comparisons which the authors interpret to show differences in behavior seem quite minor. For example, visual inspection suggests that the difference in loop strength shown in figure 1E is something like from 0 to 0.1 for K562 cells and a little less for KCT116 cells. What is a positive control here to give a sense of whether these minor changes are relevant. Another example is on p. 7, where the authors claim that CTCF partners of reactivated peaks tend to engage in a "greater number" of looping partners, but inspection of Figure 2A shows a very minor difference from maybe 7 to 7.5 partners. While a Mann-Whitney test may call this difference significant and give a significant P value, likely due to high sample number, it is questionable that this is a biologically relevant difference.

      We have amended the text to include actual values, instead of just qualitative statements. We have also moderated our claims in the text to note where effect sizes are more modest.

      The following literature examples can serve as positive controls for the effect sizes that we might expect when perturbing CTCF. Our observed effect sizes are largely in line with these expected magnitudes.

      https://pmc.ncbi.nlm.nih.gov/articles/PMC8386078/ Fig. 2E

      https://www.cell.com/cell-reports/pdf/S2211-1247(23)01674-1.pdf Fig. 3J,K

      https://academic.oup.com/nar/article/52/18/10934/7740592 Fig. S5D (CTCF binding only).

      (2) The data to support the central claim of localization of reactivated loops to speckles is not overly convincing. The overlap with SON Cut&Tag (figure 2F) is partial at best and although it is better with the publicly available TSA-seq data, the latter is less sensitive than Cut&Tag and more difficult to interpret. It would be helpful to validate these data with FISH experiments to directly demonstrate and measure the association of loops with speckles (see below).

      A recent publication we co-authored validated the use of speckle (SON) Cut&Run using FISH (Yu et al, NSMB 2025, doi: 10.1038/s41594-024-01465-6). This paper also supports a role of CTCF in positioning DNA near speckles. Unfortunately, the resolution of these FISH probes is in the realm of hundreds of kilobases. This was not an issue for Yu et. al., as they were looking at large-scale effects of CTCF degradation on positioning near speckles. However, FISH does not provide the resolution we need to look at more localized changes over methylation-specific peak sites.

      Instead, we use Cut&Tag to look at these high-resolution changes. In Figure 3C, we show that SON localizes to DNMT1i-specific peaks only upon DNMT1 inhibition. We further demonstrate that this interaction is dependent on CTCF. In response to reviewer comments, we have now also performed spike-in normalized Cut&Tag upon acute (6 hr) SON degradation to validate that our signal is also directly dependent on SON and not merely due to a bias toward open chromatin.

      Author response image 1.

      TSA-seq has been validated with FISH (Chen et. al., doi: 10.1083/jcb.201807108), Alexander et. Al 10.1016/j.molcel.2021.03.006) Fig 6. We include TSA-seq data where possible in our manuscript to support our claims.

      We also note that Fig 2F shows all CTCF peaks and loops, not just methylation-sensitive peaks and loops, to give a sense of the data. We apologize for any confusion and have clarified this in the figure legend.

      (3) It is not clear that the authors have indeed disrupted speckles from cells by degrading SON and SRRM2. Speckles contain a large number of proteins and considering their phase separated nature stronger evidence for their complete removal is needed. Note that the data published in ref 58 suffers from the same caveat.

      Based upon the reviewers’ feedback, we generated Tranmission electron microscopy (TEM) data to visualize nuclear speckles +/- degradation of SON and SRRM2 (DMSO and dTAG). We were able to detect Interchromatin Granules Clusters (ICGs) that are representative of nuclear speckles in the DMSO condition. However, even at baseline, we observed a large degree of cell-to-cell variability in these structures. In addition, we also observe potential structural changes in the distribution of heterochromatin upon speckle degradation. Consequently, we hesitate to make quantitative conclusions regarding loss of these nuclear bodies. In the interest of transparency, we have included representative raw images from both conditions for the reviewers’ consideration.

      We also note that in Ref 58 (Ilik et. Al., https://doi.org/10.7554/eLife.60579), the authors show diffusion of speckle client proteins RBM25, SRRM1, and PNN upon SON and SRRM2 depletion, further supporting speckle dissociation in these conditions.

      Author response image 2.

      Author response image 3.

      (4) The authors ascribe a direct regulatory role to DNA methylation in controlling the association of some CTCF-mediated loops to speckles (p. 20). However, an active regulatory role of speckle association has not been demonstrated and the observed data are equally explainable by a more parsimonious model in which DNA methylation regulates gene expression via looping and that the association with speckles is merely an indirect bystander effect of the activated genes because we know that active genes are generally associated with speckles. The proposed mechanism of a regulatory role of DNA methylation in controlling speckle association is not convincingly demonstrated by the data. As a consequence, the title of the paper is also misleading.

      While it is difficult to completely rule out indirect effects, we do not believe that the relationship between methylation-sensitive CTCF sites and speckles relies only on gene activity.

      We can partially decouple SON Cut&Tag signal from gene activation if we break down Figure 4D to look only at methylation-sensitive CTCF peaks on genes whose expression is unchanged upon DNMT1 inhibition (using thresholds from manuscript, P-adj > 0.05 and/or |log2(fold-change)| < 0.5). This analysis shows that many methylation-sensitive CTCF peaks on genes with unchanged expression still change speckle association upon DNMT1 inhibition. This result refutes the necessity of transcriptional activation to recruit speckles to CTCF.

      Author response image 4.

      We note the comparator upregulated gene set here is small (~20 genes with our stringent threshold for methylation-sensitive CTCF after 1 day DNMT1i treatment).

      However, we acknowledge that these effects cannot be completely disentangled. We previously included the statement “other features enriched near speckles, such as open chromatin, high GC content, and active gene expression, could instead contribute to increased CTCF binding and looping near speckles” in the discussion. In response to the reviewer’s comment, we have further tempered our statements on page 20/21 and also added a statement noting that DNA demethylation and gene activation cannot be fully disentangled. While we are also open to a title change, we are unsure which part of the title is problematic. 

      (5) As a minor point, the authors imply on p. 15 that ablation of speckles leads to misregulation of genes by altering transcription. This is not shown as the authors only measure RNA abundance, which may be affected by depletion of constitutive splicing factors, but not transcription. The authors would need to show direct effects on transcription.

      We agree, and we have changed this wording to say RNA abundance.

      Reviewer #2 (Public review):

      Summary:

      CTCF is one of the most well-characterized regulators of chromatin architecture in mammals. Given that CTCF is an essential protein, understanding how its binding is regulated is a very active area of research. It has been known for decades that CTCF is sensitive to 5-cystosine DNA methylation (5meC) in certain contexts. Moreover, at genomic imprints and in certain oncogenes, 5meC-mediated CTCF antagonism has very important gene regulatory implications. A number of labs (eg, Schubeler and Stamatoyannopoulos) have assessed the impact of DNA methylation on CTCF binding, but it is important to also interrogate the effect on chromatin organization (ie, looping). Here, Roseman and colleagues used a DNMT1 inhibitor in two established human cancer lines (HCT116 [colon] and K562 [leukemia]), and performed CTCF ChIPseq and HiChIP. They showed that "reactivated" CTCF sites-that is, bound in the absence of 5meC-are enriched in gene bodies, participate in many looping events, and intriguingly, appear associated with nuclear speckles. This last aspect suggests that these reactivated loops might play an important role in increased gene transcription. They showed a number of genes that are upregulated in the DNA hypomethylated state actually require CTCF binding, which is an important result.

      Strengths:

      Overall, I found the paper to be succinctly written and the data presented clearly. The relationship between CTCF binding in gene bodies and association with nuclear speckles is an interesting result. Another strong point of the paper was combining DNMT1 inhibition with CTCF degradation.

      Weaknesses:

      The most problematic aspect of this paper in my view is the insufficient evidence for the association of "reactivated" CTCF binding sites with nuclear speckles needs to be more diligently demonstrated (see Major Comment). One unfortunate aspect was that this paper neglected to discuss findings from our recent paper, wherein we also performed CTCF HiChIP in a DNA methylation mutant (Monteagudo-Sanchez et al., 2024 PMID: 39180406). It is true, this is a relatively recent publication, although the BioRxiv version has been available since fall 2023. I do not wish to accuse the authors of actively disregarding our study, but I do insist that they refer to it in a revised version. Moreover, there are a number of differences between the studies such that I find them more complementary rather than overlapping. To wit, the species (mouse vs human), the cell type (pluripotent vs human cancer), the use of a CTCF degron, and the conclusions of the paper (we did not make a link with nuclear speckles). Furthermore, we used a constitutive DNMT knockout which is not viable in most cell types (HCT116 cells being an exception), and in the discussion mentioned the advantage of using degron technology:

      "With high-resolution techniques, such as HiChIP or Micro-C (119-121), a degron system can be coupled with an assessment of the cis-regulatory interactome (118). Such techniques could be adapted for DNA methylation degrons (eg, DNMT1) in differentiated cell types in order to gauge the impact of 5meC on the 3D genome."

      The authors here used a DNMT1 inhibitor, which for intents and purposes, is akin to a DNMT1 degron, thus I was happy to see a study employ such a technique. A comparison between the findings from the two studies would strengthen the current manuscript, in addition to being more ethically responsible.

      We thank the reviewer for the helpful comments, which we address in the point-by-point response below. We sincerely apologize for this oversight in our references. We have included references to your paper in our revised manuscript. It is exciting to see these complementary results! We now include discussion of this work to contextualize the importance of methylation-sensitive CTCF sites and motivate our study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      To address the above points, the authors should:

      (1) Provide quantitative information in the text on all comparisons and justify that the small differences observed, albeit statistically significant, are biologically relevant. Inclusion of positive controls to give an indication of what types of changes can be expected would be helpful.

      We have added quantitative information to the text, as discussed in the response to public comments above.  We also provide literature evidence of expected effect sizes in that response.

      (2) Provide FISH data to a) validate the analysis of comparing looping patterns with SON Cut&Tag data as an indicator of physical association of loops with speckles and b) demonstrate by FISH increased association of some of the CTCF-dependent loops/genes (cluster 2) with speckles upon DNMT1 inhibition.

      Please see response to Reviewer 1 comment #2 above. Unfortunately, FISH will not provide the resolution we need for point a). We have confidence in our use of TSA-seq and Cut&Tag to study SON association with CTCF sites on a genome-wide scale, which would not be possible with individual FISH probes. Specifically, since the submission of our manuscript several other researchers (Yu et al, Nat. Struct. and Mol. Biol. 2025, Gholamalamdari et al eLife 2025) have leveraged CUT&RUN/CUT&TAG and TSA-seq to map speckle associated chromatin and have validated these methods with orthogonal imaging based approaches.

      (3) Demonstrate loss of speckles upon SON or SRRM2 by probing for other speckle components and ideally analysis by electron microscopy which should show loss of interchromatin granules.  

      We have performed TEM in K562 cells +/- SON/SRRM2 degradation. Please see response to Reviewer 1 comment #3. Specifically, interchromatin granule clusters are visible in the TEM images of the DMSO sample (see highlighted example above), however, given the heterogeneity of these structures and potential global alterations in heterochromatin that may be occurring following speckle loss, we refrained from making quantitative conclusions from this data. We instead include the raw images above.

      (4) The authors should either perform experiments to clearly show whether loop association is transcription dependent or whether association is merely a consequence of gene activation. Alternatively, they should tone down their model ascribing a direct regulatory role of methylation in control of loop association with speckles and also discuss other models. Unless the model is more clearly demonstrated, the title of the paper should be changed to reflect the uncertainty of the central conclusion.

      Please see response to Reviewer 1 comment #4 above.

      (5) The authors should either probe directly for the effect of speckle ablation on transcription or change their wording.

      We have changed our wording to RNA abundance.

      Reviewer #2 (Recommendations for the authors):

      Major:

      ⁃ There was no DNA methylation analysis after inhibitor treatment. Ideally, genome bisulfite sequencing should be performed to show that the DNMT1i-specific CTCF binding sites are indeed unmethylated. But at the very least, a quantitative method should be employed to show the extent to which 5meC levels decrease in the presence of the DNMT1 inhibitor

      Response: We have now included analysis of genome wide bisulfite information from LIMe-Hi-C (bisulfite Hi-C) in K562 following DNMT1i inhibition. Specifically, we leverage the CpG methylation readout and find that DNTM1i-specific CTCF sites are more methylated than non-responsive CTCF peaks at baseline. In addition, these sites show the greatest decrease in CpG methylation upon 3 days of DNMT1 inhibition. We include a figure detailing these analyses in the supplement (Fig S1E). In addition, we have added CpG methylation genome browser tracks to (Fig S1D). In terms of global change, we have found that 3 days of DNMT1 inhibitor treatment leads to a reduction in methylation to about ~1/4 the level at baseline.

      I am not convinced that CUT&Tag is the proper technique to assess SON binding. CUT&Tag only works under stringent conditions (high salt), and can be a problematic assay for non-histone proteins, which bind less well to chromatin. In our experience, even strong binders such as CTCF exhibit a depleted binding profile when compared to ChIP seq data. I would need to be strongly convinced that the analysis presented in figures 2F-J and S2 D-I simply do not represent ATAC signal (ie, default Tn5 activity). For example, SON ChIP Seq, CUT&Tag in the SON degron and/or ATAC seq could be performed. What worries me is that increased chromatin accessibility would also be associated with increased looping, so they have generated artifactual results that are consistent with their model.

      As the reviewer suggested, we have now performed spike-in normalized SON Cut&Tag with DNMT1 inhibition and 6 hours of SON/SRRM2 degradation in our speckle dTAG knockin cell line. These experiments confirm that the SON Cut&Tag signal we see is SON-dependent. If the signal was truly due to artifactual binding, gained peaks would be open irrespective of speckle binding, however we see a clear speckle dependence as this signal is much lower if SON is degraded.

      Author response image 5.

      Moreover, in our original Cut&Tag experiments, we did not enrich detectable DNA without using the SON antibody (see last 4 samples-IgG controls). This further suggests that our signal is SON-dependent.

      Author response image 6.

      Finally, we see good agreement between Cut&Tag and TSA-seq (Spearman R=0.82).  The agreement is particularly strong in the top quadrant, which is most relevant since this is where the non-zero signal is.

      Author response image 7.

      Minor points

      ⁃ Why are HCT116 cells more responsive to treatment than K562 cells? This is something that could be addressed with DNA methylation analysis, for example

      K562 is a broadly hypomethylated cell line (Siegenfeld et.al, 2022 https://doi.org/10.1038/s41467-022-31857-5 Fig S2A-C). Thus, there may be less dynamic range to lose methylation compared to HCT116.

      Our results are also consistent with previous results comparing DKO HCT116 and aza-treated K562 cells (Maurano 2015, http://dx.doi.org/10.1016/j.celrep.2015.07.024). They state “In K562 cells, 5-aza-CdR treatment resulted in weaker reactivation than in DKO cells…”  In addition, cell-type-specific responsiveness to DNA methyltransferase KO depending upon global CpG methylation levels, has also been observed in ES and EpiLC cells (Monteagudo-Sanchez et al., 2024), which we now comment on in the manuscript.

      ⁃ How many significant CTCF loops in DNMTi, compared to DMSO? It was unclear what the difference in raw totals is.

      We now include a supplemental table with the HiChIP loop information. We call similar numbers of raw loops comparing DNMT1i and DMSO, as only a small subset of loops is changing.

      ⁃ For the architectural stripes, it would be nice to see a representative example in the form of a contact plot. Is that possible to do with the hiChIP data?

      As described in our methods, we called architectural stripes using Stripenn (Yoon et al 2022) from LIMe-Hi-C data under DNMT1i conditions (Siegenfeld et al, 2022). Shown below is a representative example of a stripe in the form of a Hi-C contact map.

      Author response image 8.

      ⁃ Here 4-10x more DNMT1i-specific CTCF binding sites were observed than we saw in our study. What are thresholds? Could the thresholds for DNMT1i-specific peaks be defined more clearly? For what it's worth, we defined our DNMT KO-specific peaks as fold-change {greater than or equal to} 2, adjusted P< 0.05. The scatterplots (1B) indicate a lot of "small" peaks being called "reactivated."

      We called DNMT1i-specific peaks using HOMER getDifferentialPeaksReplicates function. We used foldchange >2 and padj <0.05. We further restricted these peaks to those that were not called in the DMSO condition. 

      ⁃ On this note, is "reactivated" the proper term? Reactivated with regards to what? A prior cell state? I think DNMT1i-specific is a safer descriptor.

      We chose this term based on prior literature (Maurano 2015 http://dx.doi.org/10.1016/j.celrep.2015.07.024, Spracklin 2023 https://doi.org/10.1038/s41594-022-00892-7) . However, we agree it is not very clear, so we’ve altered the text to say “DNMT1i-specific”. We thank the reviewer for suggesting this improved terminology.

      ⁃ It appears there is a relatively small enrichment for CTCF peaks (of any class) in intergenic regions. How were intergenic regions defined? For us, it is virtually half of the genome. We did some enrichment of DNMT KO-specific peaks in gene bodies (our Supplemental Figure 1C), but a substantial proportion were still intergenic.

      We defined intergenic peaks using HOMER’s annotatepeaks function, with the -gtf option using Ensembl gene annotations (v104). We used the standard annotatepeaks priority order, which is TSS > TTS> CDS Exons > 5’UTR exons >3’ UTR exons > Introns > Intergenic.

      Maurano et. al. 2015 (http://dx.doi.org/10.1016/j.celrep.2015.07.024) also found reduced representation of intergenic sites among demethylation-reactivated CTCF sites in their Fig S5A. We note this is not a perfect comparison because their data is displayed as a fraction of all intergenic peaks.

      ⁃ We also recently published a review on this subject: The impact of DNA methylation on CTCF-mediated 3D genome organization NSMB 2024 (PMID: 38499830) which could be cited if the authors choose.

      We have cited this relevant review.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This manuscript investigates beta burst dynamics in the primate motor cortex during movement and recovery from stroke. The authors differentiate between "global" beta bursts, which are synchronous across cortical and often subcortical regions, and more spatially confined "local" bursts. Global bursts are associated with reduced spiking variability, slower movements, and are more frequent after stroke, while local bursts increase during recovery and grasp execution. The study provides compelling evidence that beta bursts with different spatial and temporal characteristics may play distinct roles in motor control and recovery.

      We thank the reviewer for their assessment that the manuscript proves compelling evidence for distinct roles of local and global beta bursts on motor control and recovery.  

      Strengths:

      The major strength of this paper lies in its conceptual advance: the identification and characterization of distinct global and local beta bursts in the primate motor cortex. This distinction builds upon and considerably extends previous work on the heterogeneity of beta bursts. The paper is methodologically rigorous, using simultaneous cortical and subcortical recordings, detailed behavioral tracking, and thorough analyses of spikeLFP interactions. The use of stroke models and neurotypical animals provides converging evidence for the functional dissociation between burst types. The observation that local bursts increase with motor recovery and occur during grasping is particularly novel and may prove valuable for developing biomarkers of motor function.

      We thank the reviewer for recognizing the strengths of this manuscript. 

      Weaknesses:

      There are several conceptual and methodological limitations that should be addressed. First, the burst detection method relies on an amplitude threshold (median + 1 SD), which is susceptible to false positives and variability (Langford & Wilson, 2025). The classification into global or local bursts then depends on the number of co-bursting channels, compounding the arbitrariness. Second, the imposition of a minimum of three co-bursting cortical channels may bias against the detection of truly local bursts. 

      We thank the reviewer for bringing up these methodological details. We plan to conduct a follow-up analysis using alternative burst detection methods to verify that the paper’s main results hold when using different burst detection methodologies. We anticipate this will improve confidence in our results. 

      Third, the classification is entirely cortical; subcortical activity is considered post hoc rather than integrated into the classification, despite the key role of subcortical-cortical synchrony in motor control. 

      We thank the reviewer for this comment. First, because the different animals had subcortical recording sites in different locations, we hesitate to use subcortical activity in the classification of bursts since we were not sure we would be identifying the same burst-phenomenon (e.g. thalamo-cortical bursts vs. capsule-cortical bursts may differ). Second, we believe that having a cortical-only criteria allows the designation of local vs. global bursts to be more widely applied in preparations that only have access to cortical data (e.g. surface ECoG recordings, EEG, Utah array recordings). Thus, in this study we chose to analyze the subcortical data post-hoc (after burst detection and classification) to support our “global” vs. “local” designation of burst types 

      Fourth, the apparent dissociation between global and local bursts raises important questions about their spatial distribution across areas like M1 and PMv, which are not thoroughly analyzed. 

      We thank the reviewer for this comment. In our study’s stroke animals, we chose to study PMv due to its role in compensating for damage to M1, thus we hesitate to make any comparisons between PMv (which was recorded in stroke animals) and M1 (recorded in healthy unimpaired animals). Furthermore, animals are doing different tasks (e.g. reaching vs. reaching and grasping) which may also influence the spatial distribution. We agree that future work should certainly investigate the spatial distribution of global vs. local beta bursts across areas of sensorimotor cortex and subcortex, and that this comparison would be best done in healthy animals with both reaching and grasping behaviors.  

      Finally, while the authors interpret local bursts during grasping as novel, similar findings have been reported (e.g., Szul et al., 2023; Rayson et al., 2023), and a deeper discussion of these precedents would strengthen the argument.

      Thank you for these references! We will review them and incorporate them into our discussion of our results. 

      Impact:

      This work is likely to have a substantial impact on the field of motor systems neuroscience. The distinction between global and local beta bursts offers a promising framework for understanding the dual roles of beta in motor inhibition and sensorimotor computation. The findings are relevant not only for basic research but also for translational efforts in stroke rehabilitation and neuromodulation, particularly given the emerging interest in beta burst-based biomarkers and stimulation targets. The dataset and analytical framework will be useful to researchers investigating beta dynamics, spike-field relationships, and recovery from neural injury.

      We thank the reviewers for their assessment that our work will likely have a substantial impact on the field of motor systems neuroscience. 

      Reviewer #2 (Public review):

      Summary:

      The paper by Khanna et al. describes global vs local beta synchrony between a cortical premotor area (PMv) and subcortical structures during motor tasks in the non-human primate, specifically investigating the progression following M1 injury. They found that increases in global beta synchrony between PMv and subcortical structures during the sub-acute phase of injury, and that global synchrony was associated with relatively slower motor movements. As recovery progressed, they report a shift from global synchrony to local synchrony and a subsequent reduction in the movement time. The authors suggest that global changes in subcortical and cortical beta synchrony may generally underpin a variety of movement disorders, including Parkinson's disease, and that shifting from global to local (or reducing global synchrony) might improve functional outcomes.

      Strengths:

      Ischemic insults and other acquired brain injuries have a significant public health impact. While there is a large body of clinical and basic science studies describing the behavioral, neurophysiological, and mechanistic outcomes of such injury, there is a significant lack studies looking at longitudinal, behaviorally-related neurophysiological measures following cortical injury, so any information has outsized contribution to understanding how brain injury disrupts underlying neural activity and how this may contribute to injury presentation and recovery.

      A significant percentage of pre-clinical stroke studies tend to focus on peri-infarct or other cortical structures and their role in recovery. The addition of subcortical recordings allows for the investigation of the role of thalamo-basal gangliar-cortical loops that may be contributing to the degree of impairment or to the recovery process is important for the field. Here, there are longitudinal (up to 3 months post-injury) recordings in the ventral premotor area (PMv) and either the internal capsule or sensorimotor thalamus that can be synchronized with phases of behavioral recovery.

      The methods are well described and can act as a framework for assessing synchrony across other data sets with similar recording locations. Limitations in methodology, recordings, and behavior were noted.

      We thank the reviewer for their comments on the strengths of this paper.  

      Weaknesses:

      A major limitation of this paper is that it is a set of case studies rather than a welldesigned, well-controlled study of beta synchrony following motor cortex injury. While non-human primate neurophysiological studies are almost always limited by extremely low animal numbers, they are made up for by the fact that they can acquire significant numbers of units or channels, and in the case of normal behavior, can obtain many behavioral trials over months of individual sessions. Here, there were two NHPs used, but they had different subcortical implant locations (thalamus vs internal capsule). They had different injury outcomes, with one showing a typical recovery curve following injury while one had complications and worsening behavior before ultimately recovering. Further, there were significant differences in the ability to record at different times, with one NHP having poor recordings early in the recovery process while one had poor recordings late in the process. Due to the injury, the authors report sessions in which they were not able to record many trials (~10). Assuming that recovery after a cortical injury is an evolving process, breaking analysis into "Early" and "Late" phases reduces the interpretation of where these shifts occur relative to recovery on the task, especially given different thresholds for recovery were used between animals. Because of this, despite a careful analysis of the data and an extensive discussion, the conclusions derived are not particularly compelling. To overcome this, the authors present data from neurotypical NHPs, but with electrodes in M1 rather than PMv, doing a completely different task with no grasping component, again making accurate conclusions about the results difficult. Even with low numbers, the study would have been much stronger if there were within-animal longitudinal data prior to and after the injury on the same task, so the impact of M1 injury could be better assessed.

      We thank the reviewer for these comments. Below we address some of these in more detail: 

      Different subcortical implant locations: We would like to clarify that the subcortical recordings were only used to confirm that global beta bursts (as characterized by cortical recordings alone) did indeed occur on subcortical sites coincidentally with cortical site more frequently than local beta bursts. Neither the beta burst categories nor the beta bursts themselves were influenced by the subcortical recordings.  

      Different injury outcomes: There is difficulty in creating strokes that result in identical deficits across animal as we and others have noted in previous work[1.3]. As a field, we are still understanding what factors give rise to variability in recovery curves. For example, one recent study noted that biological sex is a factor in predicting differences in recovery rates[4], and another noted that baseline white matter hyperintensities is also predictive of post-stroke recovery [5]. Overall, our methodology that creates structurally-consistent lesions can still result in very different functional outcomes depending on a variety of factors. Given this state of the field, we have done our best to match the recovery curves between our two animals, especially the initial recovery curves before Monkey H’s secondary decline. 

      Differences in ability to record at different times: We note this as a strength. One concern with these studies that induce stroke at the same time as implanting electrode arrays is that it is well appreciated that single-unit neuron yield right after array implantation is low and then improves in the following weeks [6]. There is always that concern that having more units later in recovery may drive results, but in this case, since one animal showed the opposite trend we are more confident that results are not driven by increases in unit-yield. We also note that we broadly see similar unit quality metrics in the early and late stages in both animals (Fig. S7).  

      Breaking continuous recovery curve into early and late: We note that this division was only made for one main analysis in the paper (Fig. 5CD): assessment of mean firing and variance of single-unit firing rates.  Without this split our analyses would be underpowered and inconclusive, thus we would not be able to provide any comment on how firing rates change, even coarsely, with recovery. 

      Presentation of data from M1 of healthy animals doing a different task: We agree that the strongest data would be longitudinally recorded from the same animals/brain areas pre-stroke and then post-stroke. However, we also view our inclusion of separate healthy animals doing a different task as evidence that our global vs. local segregation of beta bursts generalizes beyond the reach-to-grasp task to reaching-only tasks.  

      Overall, we appreciate the reviewer pointing out these notes about our data. In some cases we do not think these notes are concerning, in others, we acknowledge that have done the best we can given the state of the neurophysiology stroke recovery field. 

      It is unclear to what extent the subpial aspiration used is a stroke model. While it is much more difficult to perform a pure ischemic motor injury using electrocoagulatory methods in animal models that do not have a lissencephalic cortex, the suction ablation method that the authors use leads to different outcomes than an ischemic injury alone. For instance, in rat models, ischemic vs suction ablation leads to very different electrophysiological profiles and differences in underlying anatomical reorganization (see Carmichael and Chesselet, 2002), even if the behavioral outcomes were similar. There is a concern that the effects shown may be an artifact of the lesion model rather than informing underlying mechanisms of recovery.

      We thank the reviewer for bringing this up. 

      Clarification of our stroke model methodology: We wish to highlight that when we create stroke, we first do surface vessel occlusion as the first step. This is designed to match true ischemic injury. After a waiting period, the injured tissue is then aspiration to reduce the effects of edema and secondary mass effect in the model. 

      Carmichael and Chesselet 2002: The rodent work cited did show differential effects of a suction ablation method (without any surface vessel occlusion first) versus an ischemic method. The effects observed in this work were in the first 5 days following stroke. In our case, we started recording on day 7 and examined recovery over extended periods (weeks to months). 

      Effects of acute insult on rehabilitation: From a rehabilitation perspective, it remains unclear how the acute insult affects outcomes weeks and months later. One line of evidence to suggest that the manner that the acute insult occurs may not matter for rehabilitation is the observation that one therapeutic approach (vagus nerve stimulation) has been found to successfully improve rehabilitation outcomes in a range of injury models (intracranial hemorrhage, stroke, spinal cord injury). We agree that additional work is required in this area.

      Human stroke data shows similar results reported: Lastly, we note that neurophysiology performed in humans with clinical strokes supports the results we seek here (e.g.[7], see discussion section for full elaboration) suggesting that our stroke model methodology is similar enough to clinical stroke to result in similar results. 

      The injury model leads to seemingly mild impairments in grasp (but not reach), with rapid and complete recovery occurring within 2-3 weeks from the time of injury. Because of the rapid recovery, relating the physiological processes of recovery to beta synchronization becomes challenging to interpret - Are the global bursts the result of the loss of M1 input to subcortical structures? Are they due to the lack of M1 targets, so there is a more distributed response? Is this due to other post-injury sub-acute mechanisms? How specific is this response - is it limited to peri-infarct areas (and to what extent is the PMv electrode truly in peri-infarct cortex), or would this synchrony be seen anywhere in the sensorimotor networks? Are the local bursts present because global synchrony wanes over time as a function of post-injury homeostatic mechanisms, or is local beta synchrony increasing as new motor plans are refined and reinforced during task re-acquisition? How coupled are they related to recovery - if it is motor plan refinement, the shift from global to local seemingly should lag the recovery?  

      We think these are all wonderful questions that could be addressed in follow-up studies! 

      While the study has significant limitations in design that reduce the impact of the results, it should act as a useful baseline/pilot data set in which to build a more complete picture of the role of subcortical-cortical beta synchrony following cortical injury.

      We agree that this is a study that should be treated as a starting point for further investigation. 

      Reviewer #3 (Public review):

      Summary:

      Khanna et al. use a well-conceived and well-executed set of experiments and analyses primarily to document the interaction between neural oscillations in the beta range (here, 13-30 Hz) and recovery of function in an animal model of stroke. Specifically, they show that cortical "beta bursts", or short-term increases in beta power, correlate strikingly with the timeline of behavioral recovery as quantified with a reach-to-grasp task. A key distinction is made between global beta bursts (here, those that synchronize between cortical and subcortical areas) and local bursts (which appear on only a few electrodes). This distinction of global vs. local is shown to be relevant to task performance and movement speed, among other quantities of interest.

      A secondary results section explores the relationship between beta bursts and neuronal firing during the grasp portion of the behavioral task. These results are valuable to include, though mostly unsurprising, with global beta in particular associated with lower mean and variance in spike rates.

      Last, a partial recapitulation of the primary results is offered with a neurologically intact (uninjured) animal. No major contradictions are found with the primary results.

      Highlights of the Discussion section include a thoughtful review of atypical movements executed by individuals with Parkinson's disease or stroke survivors, placing the current results in an appropriate clinical context. Potential physiological mechanisms that could account for the observed results are also discussed effectively.

      Strengths:

      Overall, this is a very interesting paper. The ultimate impact will be enhanced by the authors' choice to analyze beta bursts, which remain a relatively under-explored aspect of neural coding.

      The reach-and-grasp task was also a well-considered choice; the combination of a relatively simple movement (reaching towards a target in the same location each time) and a more complex movement (a skilled object-manipulation grasp) provides an internal control of sorts for data analysis. In addition, the task's two sub-movements provide a differential in terms of their likelihood to be affected by the stroke-like injury: proximal muscles (controlling reach) are likely to be less affected by stroke, while distal muscles (controlling grasp) are highly likely to be affected. Lastly, the requirement of the task to execute an object lift maximizes its difficulty and also the potential translational impact of the results on human injury.

      The above comments about the task exemplify a strength that is more generally evident: a welcome awareness of clinical relevance, which is in evidence several times throughout the Results and Discussion.

      Weaknesses:

      The study's weaknesses are mostly minor and, for the most part, correctable.

      One concern that may not be correctable in this study: the results about the spatial extent of beta activity seem constrained by relatively poor-quality data. It seems half or more of the electrodes are marked as too noisy to provide useful data in Figure 3. If this reflects the wider reality for all analyses, as mentioned, it may not be correctable for the present study. In that case, perhaps some of the experiments or analyses can be revisited or expanded for a future study, when better electrode yields are available.

      We thank the reviewer for their comments. We note that we have chosen to be particularly conservative with which channels we considered noise-free and acceptable for analysis as our animals were not head-posted (see methods: “On each day, trials were manually inspected alongside camera data for any movement or chewing artifacts (note that animals were not head-posted) and were discarded from neural data analysis if there were any artifacts”). After re-visiting our analysis, we note that the data shown in Fig. 3 (spatial distribution of local bursts) is not representative from a data quality perspective – this data was from a session that had a particularly large number of channels discarded due to artifacts. We plan to correct this to show a more representative figure. 

      Other concerns:

      In some places, there is a lack of clarity in the presentation of the results. This is not serious but should be addressed to aid readers' comprehension.

      We thank the reviewer for this comment and for their numerous suggestions in the notes to the authors. We plan to address as many of these as we can to improve clarity and comprehension.  

      Lastly, given the central role of beta oscillations within the study, it would be better for completeness to include even a brief exploration of sustained beta power (rather than bursts), and the modulation of sustained beta (or lack thereof) in the study's areas of concern: behavioral recovery, task performance, etc.

      We thank the reviewer for this suggestion – we plan to include this in our revisions.  

      References cited in response to public reviewer comments: 

      (1) Ganguly, K., Khanna, P., Morecraft, R. J. & Lin, D. J. Modulation of neural co-firing to enhance network transmission and improve motor function after stroke. Neuron 110, 2363–2385 (2022).

      (2) Khanna, P. et al. Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. Cell 184, 912-930.e20 (2021).

      (3) Darling, W. G. et al. Sensorimotor Cortex Injury Effects on Recovery of Contralesional Dexterous Movements in Macaca mulatta. Exp Neurol 281, 37–52 (2016).

      (4) Bottenfield, K. R. et al. Sex differences in recovery of motor function in a rhesus monkey model of cortical injury. Biology of Sex Differences 12, 54 (2021).

      (5) Schwarz, A. et al. Association that Neuroimaging and Clinical Measures Have with Change in Arm Impairment in a Phase 3 Stroke Recovery Trial. Ann Neurol 97, 709– 719 (2025).

      (6) Gulati, T. et al. Robust Neuroprosthetic Control from the Stroke Perilesional Cortex. J. Neurosci. 35, 8653–8661 (2015).

      (7) Silberstein, P. et al. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128, 1277–1291 (2005).

    1. Author response:

      Reviewer #1 (Public review): 

      The manuscript by Butler et al. explores a novel physiological role for connexin 32 (Cx32) hemichannels in Schwann cells at peripheral nerves. Building on the authors' prior work on CO₂-sensitive gating of connexins, this study proposes that mitochondrial CO₂ production dependent on neuronal activity promotes the opening of Cx32 hemichannels in the paranode, which in turn modulates neuronal activity by reducing conduction velocity. This hypothesis is addressed using a multifaceted approach that includes immunofluorescence microscopy, dye uptake assays, calcium imaging, computational modeling, and extracellular recordings in isolated sciatic nerves. 

      Among the strengths of the study are the interdisciplinary integration of imaging, in silico approaches, and functional data. Also, this study proposes a new mechanism with profound physiological relevance. Specifically, Butler et al. provide new insights into glial modulation of electrical conduction in sensory/motor myelinated nerves. 

      In the current state, the study has some limitations. The evidence linking Cx32 to the observed dye uptake and conduction velocity changes relies primarily on pharmacological inhibition with carbenoxolone, which lacks specificity. The imaging data show overlapping marker signals that preclude the anatomical distinction between nodes and paranodes. FITC uptake, while convincing to test Cx32 hemichannel gating, lacks spatial-temporal information and validation of distribution and localization to viable intracellular compartments. Moreover, while the findings are intriguing, functional proof that Cx32 regulates conduction velocity through ATP release or other downstream effects remains incomplete. Further work using targeted genetic tools, live-tissue imaging, and additional controls would strengthen the mechanistic conclusions. 

      Overall, the manuscript offers compelling preliminary evidence that supports a new role for Cx32 in peripheral nerve physiology and raises important questions for future investigation. 

      We thank the reviewer for their comments and agree that the evidence for involvement of Cx32 is indirect. We are planning to perform genetic manipulations to strengthen this link. We shall review our presentation of the morphology in terms of the node/paranode/juxtaparanode distribution and adjust accordingly. We have in the interim generated new data using GCaMP transduced into Schwann cells that provides the live-tissue imaging that the reviewer requests. This strengthens our conclusions, and we will add these data into the paper.

      Reviewer #2 (Public review): 

      Summary: 

      This article aims to demonstrate that local production of CO₂ at the axonal node opens Cx32 hemichannels in the Schwann cell paranode, and that CO₂ diffuses through the AQP1 channel to reach Cx32 and trigger its opening. The authors also present evidence supporting a physiological role for this regulatory mechanism. They propose that CO₂-dependent Cx32 activation mediates activity-dependent Ca²⁺ influx into the paranode, and by increasing the leak current across the myelin sheath, it contributes to a slowing of action potential conduction velocity. 

      The study presents a very interesting and novel mechanism for the physiological regulation of Cx32 hemichannels. The findings are relevant to the field, and the methods and results are of good quality, with some improvements in interpretation and explanation required, and some minor experimental suggestions. 

      Strengths: 

      The article is solid in terms of the novelty of the findings and relevance for the physiology of myelinated axons. In addition, it is of major interest for the Connexin field because it explores a physiological way to open Cx32 hemichannels. The experiments are well elaborated, and most of them are sufficient for the main points described by the authors. The finding that nervous activity will trigger the mechanism of hemichannel opening by CO2 is probably the most relevant biological mechanism derived from this article. 

      Weaknesses: 

      Throughout the manuscript, the authors interpret their findings as if the described mechanism specifically occurs in the node and paranode regions. However, there is no direct evidence identifying the precise site of CO₂ production or the activation site of Cx32 hemichannels. Therefore, statements such as the one in the title ("activity-dependent CO₂ production in the axonal node opens Cx32 in the Schwann cell paranode") should be reconsidered or removed, as they may be misleading and are not essential to the interpretation of the data. In addition, the participation of aquaporin AQP1 as the main conduit for CO2 diffusion through the plasma membrane could have another interpretation. 

      We thank the reviewer for their comments and agree that we do not have direct evidence for the site of CO2 production or the site of activation of Cx32 hemichannels. This direct evidence is extremely difficult to obtain, and we therefore depend on indirect arguments. Mitochondria represent the major source of CO2, and their distribution will therefore indicate where CO2 is likely to be produced. We agree that this is not essential to the interpretation of the data and will adjust the text as recommended. We will add a section to the Discussion to consider this point in more detail.

    1. Author response:

      Reviewer #1 (Public review):

      The main limitations of this article are that it provides insufficient detail on VR implementation. The design of the VR environment is, at this stage, under-described. Crucial information is missing, such as the number of pineapples per block, timing precision, details on how motion is mapped to the virtual movement, etc. This aspect strongly limits the reproducibility of the experiments. A second limitation lies in the lack of clarity regarding the study hypotheses. Although two overarching hypotheses can be inferred, they are not explicitly formulated. To this end, it is unclear which analyses were merely exploratory, especially for physiological and EEG outcomes.

      In Experiment 2, the reduction in vigor during tonic pain could plausibly reflect attentional load rather than pain per se. As recognized by the authors, there is no control condition involving an innocuous salient stimulus to rule out non-specific effects of distraction. Perhaps a tonic non-painful but salient somatosensory stimulus (e.g., a strong vibrotactile stimulus applied on the same arm) could have been used as a control stimulus.

      We appreciate the reviewer's comments regarding the insufficient implementation details. We hope the newly uploaded software for reproducing the experiment can improve the reader's understanding of the task. In addition to making the software available, we will expand the Methods section in the revised manuscript to include greater detail on the task description.

      The hypothesised functions of phasic and tonic pain, and their collaborative interaction, are both broad and deep topics. In the revised manuscript, we will more explicitly formulate our hypotheses and clarify the distinction between a priori predictions and exploratory analyses, particularly concerning the extent to which our evidence supports these hypotheses.

      We agree that examining the potential role of attentional load on the interaction between tonic and phasic pain is an important area of future investigation. Addition of additional control conditions matched for attentional salience with additional experiments is possible but introduces other confounds related to their different qualities (e.g. a salient vibrotactile stimulus might invigorate behaviour): however more fundamentally, attentional processes are a core part of pain function, and should not necessarily be viewed as a confound (i.e. the way that pain mediates some of its core functional effects may directly be through its salient attentional nature) . This view is formalised in Wall and Melzack’s classical tripartite model of pain, and distinguishes pain from purely sensory systems such as somatosensation, vision and so on..

      Reviewer #2 (Public review):

      Two critical issues require clarification or justification. First, phasic pain was induced using electrical stimulation, which typically elicits somatosensory evoked potentials (SEPs). These responses may not reflect pain-specific processes and thus complicate interpretation. This issue bears directly on the study's conclusions, especially when discussing interactions between phasic and tonic pain. For example, tonic pain is known to reduce perceived intensity or cortical responses to phasic pain stimuli delivered elsewhere on the body - an effect not expected for SEPs elicited by electrical stimuli.

      We acknowledge the reviewer’s concern regarding the specificity of evoked potentials elicited by electrical stimulation. We agree that traditional SEPs—particularly those evoked by large surface electrodes—primarily reflect activation of non-nociceptive A-beta fibres and thus may not reliably index pain-specific processes or be modulated by tonic pain via descending nociceptive control. However, we would like to clarify that phasic pain was administered in the present study using small-diameter concentric ‘Wasp’ electrodes. These are comparable to intraepidermal electrodes shown to preferentially activate nociceptive A-delta fibres, thereby eliciting ERPs more closely associated with nociceptive processing rather than mixed somatosensory input [1, 2]. Accordingly, our ERP results demonstrated a reliable increase in N1-P2 amplitude with higher phasic pain intensity, suggesting that the evoked responses captured stimulus-evoked nociceptive processing.

      We acknowledge that these ERPs may still reflect mixed sensory processing and thus may not be fully modulated by tonic pain. Previous studies have shown that ERPs elicited by nociceptive electrical stimulation can be attenuated during tonic pain using cold-water immersion in CPM paradigms [3, 4]. However, these studies typically employ passive tasks, whereas our paradigm involved continuous voluntary behaviour during sustained tonic pressure pain. This difference in task context may engage distinct modulatory systems, possibly prioritising behavioural adaptation over sensory gating.

      We will revise the manuscript to acknowledge these factors and to encourage a more nuanced interpretation of the ERP findings in light of this literature.

      Second, additional control experiments are necessary to rule out alternative explanations. For instance, the authors are suggested to deliver phasic pain to the contralateral arm (e.g., at 1-2 Hz), which might also reduce action velocity. Similarly, tonic pain applied to the grasping hand should be tested to disentangle hand-specific effects.

      We are grateful to the reviewer for this suggestion. In the current study, phasic pain was delivered to the grasping hand to generate a coherent, spatially congruent representation of virtual stimuli (painful fruit) and behavioural consequences (pain upon grasp). Delivering phasic pain stimuli to the contralateral hand would be incongruent with the task design and may alter the interpretation of the learning signal, which was central to our computational modelling framework. Similarly, tonic pain was not applied to the grasping hand to avoid interfering with motor control. Applying tonic pain to the grasping hand would make it extremely difficult for participants to effectively grasp the hand controller, thereby complicating the interpretation of behavioural and neural measures. We will discuss these issues in the revision. Therefore, while we agree that such manipulations could be informative for future studies, they were not the focus of the current investigation.

      Reviewer #3 (Public review):

      Despite these strengths, the manuscript would benefit significantly from more precise definitions of key concepts and an overall clearer, more coherent presentation of its main arguments. The writing, in its current form, often presents claims that are too vague or insufficiently connected with the experimental findings. Moreover, certain aspects of the computational modeling and statistical analysis appear flawed or inadequately justified.

      We thank the reviewer for highlighting the need for clearer definitions and a more coherent presentation. In the revised manuscript, we will refine our definitions of key concepts and improve the presentation of hypothesised functions of phasic and tonic pain. As stated previously, we will clarify the extent to which our evidence supports these hypotheses. We also appreciate the feedback on our statistical analysis and computational modelling. We will address these points and provide the necessary clarifications and justifications in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary 

      The authors describe a method for gastruloid formation using mouse embryonic stem cells (mESCs) to study YS and AGM-like hematopoietic differentiation. They characterise the gastruloids during nine days of differentiation using a number of techniques including flow cytometry and single-cell RNA sequencing. They compare their findings to a published data set derived from E10-11.5 mouse AGM. At d9, gastruloids were transplanted under the adrenal gland capsule of immunocompromised mice to look for the development of cells capable of engrafting the mouse bone marrow. The authors then applied the gastruloid protocol to study overexpression of Mnx1 which causes infant AML in humans.

      In the introduction, the authors define their interpretation of the different waves of hematopoiesis that occur during development. 'The subsequent wave, known as definitive, produces: first, oligopotent erythro-myeloid progenitors (EMPs) in the YS (E8-E8.5); and later myelo-lymphoid progenitors (MLPs - E9.5-E10), multipotent progenitors (MPPs - E10-E11.5), and hematopoietic stem cells (HSCs - E10.5-E11.5), in the aorta-gonad-mesonephros (AGM) region of the embryo proper.' Herein they designate the yolk sac-derived wave of EMP hematopoiesis as definitive, according to convention, although paradoxically it does not develop from intra-embryonic mesoderm or give rise to HSCs.

      Our definition of primitive and definitive waves is widely used in the field (e.g. PMID: 18204427; PMID: 28299650; PMID: 33681211). Definitive haematopoiesis, encompassing EMP, MLP, MPP and HSC, highlights their origin from haemogenic endothelium, generation of mature cells with adult characteristics from progenitors with multilineage potential and direct and indirect developmental contributions to the intra-embryonic and time-restricted generation of HSCs. 

      General comments 

      The authors make the following claims in the paper: 

      (1) The development of a protocol for hemogenic gastruloids (hGx) that recapitulates YS and AGMlike waves of blood from HE.

      (2) The protocol recapitulates both YS and EMP-MPP embryonic blood development 'with spatial and temporal accuracy'.

      (3) The protocol generates HSC precursors capable of short-term engraftment in an adrenal niche.

      (4) Overexpression of MNX1 in hGx transforms YS EMP to 'recapitulate patient transcriptional signatures'.

      (5) hGx is a model to study normal and leukaemic embryonic hematopoiesis. 

      There are major concerns with the manuscript. The statements and claims made by the authors are not supported by the data presented, data is overinterpreted, and the conclusions cannot be justified. Furthermore, the data is presented in a way that makes it difficult for the reader to follow the narrative, causing confusion. The authors have not discussed how their hGx compares to the previously published mouse embryoid body protocols used to model early development and hematopoiesis. Specific points 

      (1) It is claimed that HGxs capture cellularity and topography of developmental blood formation. The hGx protocol described in the manuscript is a modification of a previously published gastruloid protocol (Rossi et al 2022). The rationale for the protocol modifications is not fully explained or justified. There is a lack of novelty in the presented protocol as the only modifications appear to be the inclusion of Activin A and an extension of the differentiation period from 7 to 9 days of culture. No direct comparison has been made between the two versions of gastruloid differentiation to justify the changes.

      The Reviewer paradoxically claims that the protocol is not novel and that it differs from a previous publication in at least 2 ways – the patterning pulse and the length of the protocol. Of these, the patterning pulse is key. As documented in Fig. 1S1, we cannot obtain Flk1-GFP expression in the absence of Activin A (Fig. 1S1A), and the concentration of Activin A scales activity of the Flk1 locus (Fig. 1S1B). Expression of Flk1 is a fundamental step in haemato-endothelial specification and, accordingly, we do not see CD41 or CD45+ cells in the absence of Activin A. Furthermore, these markers also titrate with the dose of Activin A (in Fig. 1S1B).

      Also, in our hands, there is a clear time-dependent progression of marker expression, with sequential acquisition of CD41 and CD45, with the latter not detectable until 192h (Fig. 1C-D), another key difference relative to the Rossi et al (2022) protocol. We suggest, and present further evidence for in this rebuttal and the revised manuscript, that the 192h-timepoint captures the onset of AGM-like haematopoiesis. We have edited the manuscript to clarify the differences and novelty in our protocol (lines 132-143) and provided a more detailed comparison with the report from Rossi et al. (2022) in the Discussion (lines 574-586).

      The inclusion of Activin A at high concentration at the beginning of differentiation would be expected to pattern endoderm rather than mesoderm. BMP signaling is required to induce Flk1+ mesoderm, even in the presence of Wnt.

      Again, we call the Reviewer’s attention to Fig. 1S1A which clearly shows that Activin A (with no BMP added) is required for induction of Flk1 expression, in the presence of Wnt. Activin A in combination with Wnt, is used in other protocols of haemato-endothelial differentiation from pluripotent cells, with no BMP added in the same step of patterning and differentiation (PMID: 39227582; PMID: 39223325). In the latter protocol, we also call the Reviewer’s attention to the fact that a higher concentration of Activin A precludes the need for BMP4 addition. Finally, one of us has recently reported that Activin A, on its own, will induce Flk1, as well as other anterior mesodermal progenitors (https://www.biorxiv.org/content/10.1101/2025.01.11.632562v1). In addressing the Reviewer’s concerns with the dose of Activin A used, we titrated its concentration against activation of Flk1, confirming optimal Flk1-GFP expression at the 100ng/ml dose used in the manuscript. We have included this data in the manuscript in Figure 1S1B.                         

      FACS analysis of the hGx during differentiation is needed to demonstrate the co-expression of Flk1GFP and lineage markers such as CD34 to indicate patterning of endothelium from Flk1+ mesoderm. The FACS plots in Fig. 1 show C-Kit expression but very little VE-cadherin which suggests that CD34 is not induced. Early endoderm expresses C-Kit, CXCR4, and Epcam, but not CD34 which could account for the lack of vascular structures within the hGx as shown in Fig. 1E.

      We were surprised by the Reviewer’s comment that there are no endothelial structures in our haemogenic gastruloids. The presence of a Flk1-GFP+ network is visible in the GFP images in Fig. 1B, from 144h onwards, and is detailed in the revised Fig. 2A, which shows overlap between Flk1GFP and the endothelial marker CD31. In addition, our single-cell RNA-seq data, included in the manuscript, confirms the presence of endothelial cells with a developing endothelial, including arterial, programme. This is now presented in the revised Fig. 3B-D of the manuscript, which updates a representation in the original manuscript. In contrast with the Reviewer’s claims that no endothelial cells are formed, the data show that Kdr (Flk1)+ cells co-express Cdh5/VE-Cadherin and indeed Cd34, attesting to the presence of an endothelial programme. Arterial markers Efnb2, Flt1, and Dll4 are present. A full-blown programme, which also includes haemogenic markers including Sox17, Esam, Cd44 and Mecom is clear at early (144h) and, particularly at late (192h) timepoints in cells sorted on detection of surface C-Kit (Fig. 3B-E in the manuscript). To address the specific point by the Reviewer, we also document co-expression of Flk1-GFP, CD34 and/or CD31 by flow cytometry (Fig. 2S1A-B in the revised manuscript).

      To summarise new and revised data in the manuscript in relation to this point:

      Immunofluorescence staining showing the Flk1-GFP-defined vascular network in Figure 1E and co-expression of endothelial marker CD31 in Figure 2A. In text: lines 159-163; 178-180.

      Flow cytometry analysis of co-expression of Flk1-GFP with CD31 and CD34 in Figure 2S1AD, including controls. In text: 180-187.

      Real-time quantitative (q)PCR analysis showing time-dependent expression of haematoendothelial and arterial markers in Figure 2F (specifically Dll4 and Mecom). In text: 200-209.

      An improved representation of our scRNA-seq data highlighting key haemato-endothelial markers in Figure 3B-D. In text: 268-304

      (2) The protocol has been incompletely characterised, and the authors have not shown how they can distinguish between either wave of Yolk Sac (YS) hematopoiesis (primitive erythroid/macrophage and erythro-myeloid EMP) or between YS and intraembryonic Aorta-Gonad-Mesonephros (AGM) hematopoiesis. No evidence of germ layer specification has been presented to confirm gastruloid formation, organisation, and functional ability to mimic early development. Furthermore, differentiation of YS primitive and YS EMP stages of development in vitro should result in the efficient generation of CD34+ endothelial and hematopoietic cells. There is no flow cytometry analysis showing the kinetics of CD34 cell generation during differentiation. Benchmarking the hGx against developing mouse YS and embryo data sets would be an important verification. 

      The Reviewer is correct that we have not provided detailed characterisation of the different germ layers, as this was not the focus of the study. In that context, we were surprised by the earlier comment assuming co-expression of C-Kit, Cxcr4 and Epcam, which we did not show, while overlooking the endothelial programme reiterated above, which we have presented. Given our focus on haemato-endothelial specification, we have started the single-cell RNA-seq characterisation of the haemogenic gastruloid at 120h and have not looked specifically at earlier timepoints of embryo patterning. This said, we show the presence of neuroectodermal cells in cluster 9; on the other hand, cluster 7 includes hepatoblast-like cells, denoting endodermal specification (Supplementary File S2). However, in the absence of earlier timepoints and given the bias towards mesodermal specification, we expect that specification of ectodermal and endodermal programmes may be incomplete. 

      In respect of the contention regarding the capture of YS-like and AGM-like haematopoiesis, we had presented evidence in the original version of the manuscript that haemogenic cells generated during gastruloid differentiation, particularly at late 192h and 216h timepoints project onto highly purified CKit+ CD31+ Gfi1-expressing cells from mouse AGM (PMID: 38383534), providing support for at least partial recapitulation of the corresponding developmental stage. These projections are represented in Fig. 4A, right and 4S1C of the revised manuscript. In distinguishing between YS-like and AGM-like haematopoiesis, we call the Reviewer’s attention to the replotting of the single-cell RNA-seq data already in the manuscript, which we provided in response to point 1 (Fig. 3B-D and 3S2B), which highlights an increase in Sox17, but not Sox18, expression in the 192h haemogenic endothelium, which suggests an association with AGM haematopoiesis (PMID: 20228271). A significant association of Cd44 and Procr expression with the same time-point (Fig. 3B-D in the manuscript), further supports an AGM-like endothelial-to-haematopoietic transition at the 192h timepoint. We have re-analysed the scRNA-seq data to better represent the expression of these markers in Fig. 3A-E and S32B. We agree that it remains challenging to identify markers exclusive to AGM haematopoiesis, which is operationally equated with generation of transplantable haematopoietic stem cells. While HSC generation is a key event characteristic of the AGM, not all AGM haematopoiesis corresponds to HSCs, an important point in evaluating the data presented in the manuscript, and one that is acknowledged by us. The main text has been edited to clarify the experiments pertaining to distinguishing AGM and YS haematopoiesis, which are detailed in lines 180-187, 200-221, 268-304, and 315-356.

      Following on the Reviewer’s comments about Cd34, we also inspected co-expression of Cd34 with Cd41 and Cd45, the latter co-expression present in, although not necessarily exclusive to, AGM haematopoiesis. Reassuringly, we observed clear co-expression with both markers (Author response image 1), in addition to a CD41+CD34- population, which likely reflects YS EMP-independent erythropoiesis. Flow cytometry analysis of co-expression of CD31 and CD34 in CD41+ and CD45+ populations at 144h and 216h timepoints has been included in Fig. 2B-D, Fig. 2S1A-D, including controls. In text: 180-187. We have earlier on in the rebuttal highlighted the fact that marker expression is responsive to the levels of Activin A used in the patterning pulse, with the 100ng/ml Activin A used in our protocol superior to 75ng/ml.

      Author response image 1.

      Association of CD34 with CD41 and CD45 expression is Activin A-responsive and supports the presence of definitive haematopoiesis. A. Flow cytometry analysis of CD34 and CD41 expression in 216h-haemogenic gastruloids; two doses of Activin A were used in the patterning pulse with CHI99021 between 48-72h. FMO controls shown. B. Flow cytometry analysis of CD34 and CD45 at 216h in the same experimental conditions.

      Given the centrality of this point in comments by all the Reviewers, we have conducted projections of our single-cell RNA-seq data against two studies which (1) capture arterial and haemogenic specification in the para-splanchnopleura (pSP) and AGM region between E8.0 and E11 (Hou et al, PMID: 32203131), and (2) uniquely capture YS, AGM and FL progenitors and the AGM endothelial-tohaematopoietic transition (EHT) in the same scRNA-seq dataset (Zhu et al, PMID: 32392346). Focusing the analysis on the subsets of haemogenic gastruloid cells sorted as CD41+ (144h) C-Kit+ (144h and 192h) and CD45+ (192h and 216h) (now represented in Fig. 3A, and projected onto the studies in Fig. 4A), we show:

      (1) That a subset of haemato-endothelial cells from haemogenic gastruloids at 144h to 216h project onto intra-embryonic cells spanning E8.25 to E10 (revised Fig. 4A left and 4S1A). This is in agreement with our original interpretation that 216h are no later than the MPP/pre-HSC state of embryonic development, requiring further maturation to generate engrafting progenitors. We have nevertheless removed specific references to pre-HSC, and instead referred to HSPC/progenitors.

      (2) That haemogenic gastruloids contain YS-like (including EMP-like) and AGM-like haematopoietic cells (Fig. 4A centre and 4 S1B). Significantly, some of the cells, particularly CKit-sorted cells with a candidate endothelial and HE-like signature project onto AGM pre-HE and HE, as well as IAHC. Some 144h CD41+ and 192h CD45+ cells also project onto IAHC, suggesting that YS-like and AGM-like programmes arise independently and with partial timedependent organisation in the haemogenic gastruloid model. Later, predominantly 216h cells, have characteristics of MPP/LMPP-like cells from the FL, suggesting a progenitor wave of differentiation.

      Altogether, the data support the notion that haemogenic gastruloids capture YS and AGM haematopoiesis until E10, as suggested by us in the manuscript.This re-analysis of the scRNA-seq data which was indeed prompted by challenging and insightful comments from the Reviewers, has been incorporated in the manuscript as described above and further listed here:

      Re-clustering and highlights of specific markers in our scRNA-seq data in Figure 3A-E. In text: 268-304.

      Projections to mouse embryo datasets in Figure 4A (Figure 4S1A-C; Supplementary File 3). In text: 315-356. 

      Single-cell RNA sequencing was used to compare hGx with mouse AGM. The authors incorrectly conclude that ' ..specification of endothelial and HE cells in hGx follows with time-dependent developmental progression into putative AGM-like HE..' And, '...HE-projected hGx cells.......expressed Gata2 but not Runx1, Myb, or Gfi1b..' Hemogenic endothelium is defined by the expression of Runx1 and Gfli1b is downstream of Runx1.

      As a hierarchy of regulation, Gata2 precedes and drives Runx1 expression at the specification of HE (PMID: 17823307; PMID: 24297996), while Runx1 drives the EHT, upstream of Gfi1b in haematopoietic clusters (PMID: 34517413). Please note that the text segment the Reviewer refers to has been removed from the manuscript, as the analysis is no longer solely focused on projection to Thambyrajah et al (2024) data, and instead gained significantly from the projections on to the Hou et al (2020) and Zhu et al (2020) studies, as detailed above.

      (3) The hGx protocol 'generates hematopoietic SC precursors capable of short-term engraftment' is not supported by the data presented. Short-term engraftment would be confirmed by flow cytometric detection of hematopoietic cells within the recipient bone marrow, spleen, thymus, and peripheral blood that expressed the BFP transgene. This analysis was not provided. PCR detection of transcripts, following an unspecified number of amplification cycles, as shown in Figure 3G (incorrectly referred to as Figure 3F in the legend) is not acceptable evidence for engraftment.

      We provide the full flow cytometry analysis of spleen engraftment in the 5 mice which received implantation of 216h-haemogenic gastruloids in the adrenal gland and were analysed at 4 weeks; an additional (control) animal received adrenal injection of PBS (Fig. 4B-D in the revised manuscript). In this experiment, the bone marrow collection was limiting, and material was prioritised for PCR (Fig. 4C and full gels in 4S2C in the revised manuscript).

      We had previously provided only representative plots of flow cytometry analysis of bone marrow and spleen, which we described as low-level engraftment and were chosen conservatively. The analysis was meant to complement the genomic DNA PCR, where detection was present in only some of the replicates tested per animal. On this note, we confirm that PCR analysis used conventional 40 cycles; the sensitivity had already been shown in the earlier version of the manuscript and is again represented in Fig. 4S2B. We argue that the low level of cytometric and molecular engraftment at 4 weeks, from haemogenic gastruloid-derived progenitors that have not progressed beyond a stage equivalent to E10 (Fig. 4A and Supplementary File 3 in the revised manuscript from scRNAseq projections), and that we have described as requiring additional maturation in vivo, are not surprising. Indeed, as previously shown and now repeated in in Fig. 2B-E (controls in Fig. 2S1E-G) in the revised manuscript, no more than 7 CD45+CD144+ multipotent cells are present per haemogenic gastruloid. We are only able to implant 3 haemogenic gastruloids in the adrenal gland of each transplanted animal. 

      We have rephrased Results and Discussion in lines 359-415 and 588-621, respectively, to rectify the nature of the engraftment, which we now attribute more generically to progenitors, also in light of the developmental time we could capture in the gastruloids prior to implantation.

      Transplanted hGx formed teratoma-like structures, with hematopoietic cells present at the site of transplant only analysed histologically. Indeed, the quality of the images provided does not provide convincing validation that donor-derived hematopoietic cells were present in the grafts.

      As stated in the text, the images mean to illustrate that the haemogenic gastruloids developed in situ. Further analysis motivated by the Reviewers’ comments and indeed a subsequent experiment with analysis of engraftment at a later timepoint of 8 weeks (revised Fig. 4E and 4 S2F-G) did not show a direct correspondence between engraftment and in vivo development or expansion, although this occurs in some cases. To be clearer, the observation of donor-derived blood cells in the implanted haemogenic gastruloids would not correspond to engraftment, as we have amply demonstrated that they have generated blood cells in vitro. There is no evidence that there are remaining pluripotent cells in the haemogenic gastruloid after 9 days of differentiation, and it is therefore not clear that the structures observed are teratomas. We specifically comment on this point in the revised manuscript – lines 601-607.

      There is no justification for the authors' conclusion that '... the data suggest that 216h hGx generate AGM-like pre-HSC capable of at least short-term multilineage engraftment upon maturation...'. Indeed, this statement is in conflict with previous studies demonstrating that pre-HSCs in the dorsal aorta of the mouse embryo are immature and actually incapable of engraftment.

      We have clearly stated that we do not see haematopoietic engraftment through transplantation of dissociated haemogenic gastruloids, which reach the E10 state containing pre-HSC (revised Fig 4A, 4S1A and Supplementary File 3). Instead, we observed rare myelo-erythroid (revised Fig. 4S2F-G) and myelo-lymphoid (revised Fig. 4E) engraftment upon in vivo maturation of haemogenic gastruloids with preserved 3D organisation. These statements are not contradictory. Nevertheless, we have now more cautiously attributed engraftment to the present of progenitors as a generic designation, and not to pre-HSC (lines 412-414 and 588-592 in the revised manuscript).

      The statement '...low-level production of engrafting cells recapitulates their rarity in vivo, in agreement with the embryo-like qualities of the gastruloid system....' is incorrect. Firstly, no evidence has been provided to show the hGx has formed a dorsal aorta facsimile capable of generating cells with engrafting capacity. Secondly, although engrafting cells are rare in the AGM, approximately one per embryo, they are capable of robust and extensive engraftment upon transplantation.

      As indicated above, the statement in lines 412-414 now reads “Engraftment is erythromyeloid at 4 weeks and lympho-myeloid at 8 weeks, reflecting different classes of progenitors, putatively of YS-like and AGM-like affiliation.” To be clear, with our original statement we meant to highlight that the production of definitive AGM-like haematopoietic progenitors (not all of which are engrafting) in haemogenic gastruloids does not correspond to non-physiological single-lineage programming. We did and do not claim that we achieved production of HSC, which would be long-term engrafting.

      (4) Expression MNX1 transcript and protein in hematopoietic cells in MNX1 rearranged acute myeloid leukaemia (AML) is one cause of AML in infants. In the hGX model of this disease, Mnx1 is overexpressed in the mESCs that are used to form gastruloids. Mnx1 overexpression seems to confer an overall growth advantage on the hGx and increase the serial replating capacity of the small number of hematopoietic cells that are generated. The inefficiency with which the hGx model generates hematopoietic cells makes it difficult to model this disease. The poor quality of the cytospin images prevents accurate identification of cells. The statement that the kit-expressing cells represent leukemic blast cells is not sufficiently validated to support this conclusion. What other stem cell genes are expressed? Surface kit expression also marks mast cells, frequently seen in clonogenic assays of blood cells. Flow cytometric and gene expression analyses using known markers would be required.

      The haemogenic gastruloid model generates haematopoietic and haemato-endothelial cells. MNX1 expands C-Kit+ cells at 144h, which we show to have a haemato-endothelial signature (see revised Fig. 3A-E, Supplementary File 2). We have added additional flow cytometry data showing that the replating cells from MNX1 express CD31 (Figure 6S1A-B).

      Serial replating of CFC assays is a conventional in vitro assay of leukaemia transformation. Critically, colony replating is not maintained in EV control cells, attesting to the transformation potential of MNX1. Although we have not fully-traced the cellular hierarchy of MNX1-driven transformation in the haemogenic gastruloid system, the in vitro replating expands a C-Kit+ cell (revised Fig. 6E), which reflects the surface phenotype of the leukaemia, also recapitulated in the mouse model initiated by MNX1-overexpressing FL cells. Importantly, it recapitulates the transcriptional profile of MNX1leukaemia patients (revised Fig. 7C), which is uniquely expressed by MNX1144h and replated colony cells, but not to MNX1 216h gastruloid cells, arguing against a generic signature of MNX1 overexpression (revised Fig. 7B). Importantly, the MNX1-transformation of haemogenic gastruloid cells is superior to the FL leukaemia model at capturing the unique transcriptional features of MNX1-driven leukaemia, distinct from other forms of AML in the same age group (Fig 7 S1D-F). It is possible that this corresponds to a pre-leukaemia event, and we will explore this in future studies, which are beyond the proof-of-principle nature of this paper.

      (5) In human infant MNX1 AML, the mutation is thought to arise at the fetal liver stage of development. There is no evidence that this developmental stage is mimicked in the hGx model.

      We never claim that the haemogenic gastruloid model mimics the foetal liver. We propose that susceptibility to MNX1 is at the HE-to-EMP transition. Moreover, and importantly, contrary to the Reviewer’s statement, there is no evidence in the literature that the mutation arises in the foetal liver stage, just that the mutation arises before birth (PMID: 38806630), which is different. In a mouse model of MNX1 overexpression, the authors achieve leukaemia engraftment upon MNX1 overexpression in foetal liver, but not in bone marrow cells (PMID: 37317878). This is in agreement with a vulnerability of embryonic / foetal, but not adult cells to the MNX1 expression caused by the translocation. However, haematopoietic cells in the foetal liver originate from YS and AGM precursors, so the origin of the MNX1susceptible cells can be in those locations, rather than the foetal liver itself.

      Reviewer #2 (Public review):

      Summary: 

      In this manuscript, the authors develop an exciting new hemogenic gastruloid (hGX) system, which they claim reproduces the sequential generation of various blood cell types. The key advantage of this cellular system would be its potential to more accurately recapitulate the spatiotemporal emergence of hematopoietic progenitors within their physiological niche compared to other available in vitro systems. The authors present a large set of data and also validate their new system in the context of investigating infant leukemia. 

      Strengths: 

      The development of this new in vitro system for generating hematopoietic cells is innovative and addresses a significant drawback of current in vitro models. The authors present a substantial dataset to characterize this system, and they also validate its application in the context of investigating infant leukemia. 

      Weaknesses: 

      The thorough characterization and full demonstration that the cells produced truly represent distinct waves of hematopoietic progenitors are incomplete. The data presented to support the generation of late yolk sac (YS) progenitors, such as lymphoid cells, and aortic-gonad-mesonephros (AGM)-like progenitors, including pre-hematopoietic stem cells (pre-HSCs), by this system are not entirely convincing. Given that this is likely the manuscript's most crucial claim, it warrants further scrutiny and direct experimental validation. Ideally, the identity of these progenitors should be further demonstrated by directly assessing their ability to differentiate into lymphoid cells or fully functional HSCs. Instead, the authors primarily rely on scRNA-seq data and a very limited set of markers (e.g., Ikzf1 and Mllt3) to infer the identity and functionality of these cells. Many of these markers are shared among various types of blood progenitors, and only a well-defined combination of markers could offer some assurance of the lymphoid and pre-HSC nature of these cells, although this would still be limited in the absence of functional assays.

      The identification of a pre-HSC-like CD45⁺CD41⁻/lo C-Kit⁺VE-Cadherin⁺ cell population is presented as evidence supporting the generation of pre-HSCs by this system, but this claim is questionable. This FACS profile may also be present in progenitors generated in the yolk sac such as early erythromyeloid progenitors (EMPs). It is only within the AGM context, and in conjunction with further functional assays demonstrating the ability of these cells to differentiate into HSCs and contribute to long-term repopulation, that this profile could be strongly associated with pre-HSCs. In the absence of such data, the cells exhibiting this profile in the current system cannot be conclusively identified as true pre-HSCs.

      We present 2 additional pieces of evidence to support our claims that we capture YS and AGM stages of haematopoietic development.

      (I) In the new Figures 4A and 4 S1A-C and Supplementary File 3 in the revised manuscript, we project our single-cell RNA-seq data onto (1) developing intra-embryonic pSP and AGM between E8 and E11 (Fig. 4A left, 4S1A) and (2) a single-cell RNA-seq study of HE development which combines haemogenic and haematopoietic cells from the YS, the developing HE and IAHC in the AGM, and FL (Fig. 4A centre, 4S1B). Our data maps E8.25-E10, and captures YS EMP and erythroid and myeloid progenitors, as well as AGM pre-HE, HE and IAHC, with some cells matching HSPC and LMPP, as suggested by the projection onto the Thambyrajah et al data set (already presented in the previous version of the manuscript, and now in Fig. 4A right and 4 S1C). The projection of the scRNA-seq data in presented in lines 314-355 of the revised manuscript. The scRNA-seq data itself was refocused on haemato-endothelial programmes as presented in the revised Fig. 3A-E, described in lines 267-303.

      (II) Given the difficulty in finding markers that specifically associate with AGM haematopoiesis, we inspected the possibility of capturing different regulatory requirements at different stages of gastruloid development mirroring differential effects in the embryo. Polycomb EZH2 is specifically required for EMP differentiation in the YS, but does not affect AGM-derived haematopoiesis; it is also not required for primitive erythroid cells (PMID: 29555646; PMID: 34857757). We treated haemogenic gastruloids from 120h onwards with either DMSO (0.05%) or GSK126 (0.5uM), and inspected the cellularity of gastruloids at 144h, which we equate with YS-EMP, and 216h – putatively AGM haematopoiesis. We show that EZH2 inhibition / GSK126 treatment specifically reduces %CD41+ cells at 144h, but does not reduce %CD41+ or %CD45+ cells at 216h. We have included this experiment in the manuscript in Fig. 2 S2B-C (in text: 209-221).

      These data, together with the scRNA-seq projections described, provide evidence to our claim that 144h haemogenic gastruloids capture YS EMPs, while CD41+ and CD45+ cells isolated at 216h reflect AGM progenitors. We cannot conclude as to the functional nature of the AGM cells from this experiment. The main text has been edited to clarify the experiments pertaining to distinguishing AGM and YS haematopoiesis (lines 180-187; 200-221; 268-304; 315-356).

      The engraftment data presented are also not fully convincing, as the observed repopulation is very limited and evaluated only at 4 weeks post-transplantation. The cells detected after 4 weeks could represent the progeny of EMPs that have been shown to provide transient repopulation rather than true HSCs. 

      In the original version of the manuscript, we stated that there is low level engraftment and did not claim to have generated HSC. Instead, we described cells with short-term engraftment potential. We agree with the Reviewer that the cells we show in the manuscript at 4 weeks could be EMPs (revised Fig. 4B-E and 4 S2D-G). Additionally, we now have 8-week analysis of implant recipients, in which we observed, again low-level, a multi-lineage engraftment of the recipient bone marrow in 1:3 recipients (revised Fig. 4B-E and 4S2F-H). This engraftment is myeloid-lymphoid and therefore likely to have originated in a later progenitor. To be clear, we do not claim that this corresponds to the presence of HSC. It nevertheless supports the maturation of progenitors with engraftment potential. Limiting amounts of material was prioritised for flow cytometry stainings, not allowing PCR analysis. We rephrased Results and Discussion in lines 359-414 and 588-621, respectively, to rectify the nature of the engraftment.      

      Reviewer #3 (Public review):  

      In this study, the authors employ a mouse ES-derived "hemogenic gastruloid" model which they generated and which they claim to be able to deconvolute YS and AGM stages of blood production in vitro. This work could represent a valuable resource for the field. However, in general, I find the conclusions in this manuscript poorly supported by the data presented. Importantly, it isn't clear what exactly are the "YS" and the "AGM"-like stages identified in the culture and where is the data that backs up this claim. In my opinion, the data in this manuscript lack convincing evidence that can enable us to identify what kind of hematopoietic progenitor cells are generated in this system. Therefore, the statement that "our study has positioned the MNX1-OE target cell within the YS-EMP stage (line 540)" is not supported by the evidence presented in this study. Overall, the system seems to be very preliminary and requires further optimization before those claims can be made.

      Specific comments below: 

      (1) The flow cytometric analysis of gastruloids presented in Figure 1 C-D is puzzling. There is a large % of C-Kit+ cells generated, but few VE-Cad+ Kit+ double positive cells. Similarly, there are many CD41+ cells, but very few CD45+ cells, which one would expect to appear toward the end of the differentiation process if blood cells are actually generated. It would be useful to present this analysis as consecutive gating (i.e. evaluating CD41 and CD45 within VE-Cad+ Kit+ cells, especially if the authors think that the presence of VE-Cad+ Kit+ cells is suggestive of EHT). The quantification presented in D is misleading as the scale of each graph is different.

      Fig. 1C-D provide an overview of haemogenic markers during the timecourse of haemogenic gastruloid differentiation, and does indeed show a late up-regulation of CD45, as the Reviewer points out would be expected. The %CD45+ cells is indeed low. However, we should point out that the haemogenic gastruloid protocol, although biased towards mesodermal outputs, does not aim to achieve pure haematopoietic specification, but rather place it in its embryo-like context. We refute that the scale is misleading: it is a necessity to represent the data in a way that is interpretable by the reader: and we made sure from the outset that the gates (in C) are truly representative and annotated, as are the plot axes (in D). Consecutive gating at the 216h-timepoint is shown and quantified in Fig. 2S1D-F, or in the alternative consecutive gating suggested by the Reviewer, in Author response iamge 2 below. At the request of Reviewer 1, we also analysed CD31 and CD34 within CD41 and CD45 populations, again as validation of the emergent haematopoietic character of the cells obtained. This new analysis is shown in revised Fig. 2B, quantified in 2C.

      Author response image 2.

      Flow cytometry analysis of VE-cadherin+ cells in haemogenic gastruloids at 216h of the differentiation protocol, probing co-expression of CD45, CD41 and C-Kit.

      (2) The imaging presented in Figure 1E is very unconvincing. C-Kit and CD45 signals appear as speckles and not as membrane/cell surfaces as they should. This experiment should be repeated and nuclear stain (i.e. DAPI) should be included.

      We included the requested immunofluorescence staining in Figure 1E (216h). We also show the earlier timepoint of 192h here as Author response image 3. In text: lines 158-162.

      Author response image 3.

      Confocal images of haematopoietic production in haemogenic gastruloids. Wholemount, cleared haemogenic gastruloids were stained for CD45 (pseudo-coloured red) and C-Kit antigens (pseudo-coloured yellow) with indirect staining, as described in the manuscript. Flk1-GFP signal is shown in green. Nuclei are contrasted with DAPI. (A) 192h. (B) 216h.

      (3) Overall, I am not convinced that hematopoietic cells are consistently generated in these organoids. The authors should sort hematopoietic cells and perform May-Grunwald Giemsa stainings as they did in Figure 6 to confirm the nature of the blood cells generated.

      It is factual that the data are reproducible and complemented by functional assays shown in revised Fig. 2D-E, which clearly demonstrate haematopoietic output. The single-cell RNA-seq data also show expression of a haematopoietic programme, which we have complemented with biologically independent qRT-PCR analysis of the expression of key endothelial and haematopoietic marker and regulatory genes (revised Fig. 2F; in text: 200-209). As requested, we include Giemsa-Wright’s stained cytospins obtained at 216h to illustrate haematopoietic output. These are shown in revised Fig. 2S2A, in text: lines 194-199. Inevitably, the cytospins will be inconclusive as to the presence of endothelial-tohaematopoietic transition or the generation of haematopoietic stem/progenitor cells, as these cells do not have a distinctive morphology.

      (4) The scRNAseq in Figure 2 is very difficult to interpret. Specific points related to this: - Cluster annotation in Figure 2a is missing and should be included. 

      Why do the heatmaps show the expression of genes within sorted cells? Couldn't the authors show expression within clusters of hematopoietic cells as identified transcriptionally (which ones are they? See previous point)? Gene names are illegible.

      I see no expression of Hlf or Myb in CD45+ cells (Figure 2G). Hlf is not expressed by any of the populations examined (panels E, F, G). This suggests no MPP or pre-HSC are generated in the culture, contrary to what is stated in lines 242-245. (PMID 31076455 and 34589491).Later on, it is again stated that "hGx cells... lacked detection of HSC genes like Hlf, Gfi1, or Hoxa9" (lines 281-283). To me, this is proof of the absence of AGM-like hematopoiesis generated in those gastruloids.

      For a combination of logistic and technical reasons, we performed single-cell RNA-seq using the Smart-Seq2 platform, which is inherently low throughput. We overcame the issue of cell coverage by complementing whole-gastruloid transcriptional profiling at successive time-points with sorting of subpopulations of cells based on individual markers documented in Fig. 1. We clearly stated which platform was used as well as the number and type of cells profiled (Fig. 3S1 and lines 226-241 of the revised manuscript), and our approach is standard. Following suggestions of the Reviewers to further focus our analysis on the haemogenic cellular differentiation within the gastruloids, we revised the presentation of the scRNA-seq data to now provide UMAP projections with representation and quantification of individual genes, including the ones queried by the Reviewer in Fig. 3 and respective supplements. Specifically, re-clustering and highlighting of specific markers are shown in Figure 3A-D and presented in lines 267-303 of the revised manuscript. Complementary independent real-time quantitative (q)PCR analysis showing time-dependent expression of endothelial and haematopoietic markers is now in Figure 2F. In text: 200-208.

      (5) Mapping of scRNA-Seq data onto the dataset by Thambyrajah et al. is not proof of the generation of AGM HE. The dataset they are mapping to only contains AGM cells, therefore cells do not have the option to map onto something that is not AGM. The authors should try mapping to other publicly available datasets also including YS cells.

      We have done this and the data are presented in Figure 4A (Figure 4S1A) and Supplementary File. In text: 314-355. As detailed in response to Reviewer 1, we have conducted projections of our single-cell RNA-seq data against two studies which (1) capture arterial and haemogenic specification in the para-splanchnopleura (pSP) and AGM region between E8.0 and E11 (Hou et al, PMID: 32203131) (revised Fig. 4A and 4 S1A), and (2) uniquely capture YS, AGM and FL progenitors and the AGM endothelial-to-haematopoietic transition (EHT) in the same scRNA-seq dataset (Zhu et al, PMID: 32392346) (revised Fig. 4A and 4 S1B). Specifically in answering the Reviewers’ point, we show that different subsets of haemogenic gastruloid cells sorted on haemogenic surface markers C-Kit, CD41 and CD45 cluster onto pre-HE and HE, intra-aortic clusters and FL progenitor compartments, and to YS EMP and erythroid and myeloid progenitors. This lends support to our claim that the haemogenic gastruloid system specifies both YS-like and AGM-like cells. Please note that we now do point out that some CD41+ cells at 144h project onto IAC, as do cells at the later timepoints, suggesting that AGM-like and YS-EMP-like waves may overlap at the 144h timepoint (lines…). In the future, we will address specific location of these cells, but that corresponds to a largescale spatial transcriptomics analysis requiring extensive optimisation for section capture which is beyond the scope of this manuscript and this revision. 

      (6) Conclusions in Figure 3, named "hGx specify cells with preHSC characteristics" are not supported by the data presented here. Again, I am not convinced that hematopoietic cells can be efficiently generated in this system, and certainly not HSCs or pre-HSCs.

      We have provided evidence in the original manuscript, and now through additional experiments, that there is haematopoietic specification, including of progenitor cells, in the haemogenic gastruloid system. Molecular markers are shown in revised Fig. 2F and Fig. 3 and supplements; CFC assays are shown in revised Fig. 2D-E; cytospins are in revised Fig. 2 S2A; further analysis of 4-week implants and new analysis of 8-week implants (discussed below) are in revised Fig. 4 B-D and Fig. 4 S2 and we discussed the new scRNA-seq projections above. Importantly, we have never claimed, and again do not, that haemogenic gastruloids generate HSC. We accept the Reviewer’s comment that we have not provided sufficient evidence for the specification of pre-HSC-like cells and accordingly now refer more generically and conservatively to progenitors.

      FACS analysis in 3A is again very unconvincing. I do not think the population identified as C-Kit+ CD144+ is real. Also, why not try gating the other way around, as commonly done (e.g. VE-Cad+ Kit+ and then CD41/CD45)?

      Our gating strategy is not unconventional, which was done from a more populated gate onto the less abundant one to ensure that the results are numerically more robust. In the case of haemogenic gastruloids, unlike the AGM preparations the Reviewer may be referring to, CD41 and CD45+ cells are more abundant as there is no circulation of more differentiated haematopoietic cells away from the endothelial structures. This said, we did perform the gating as suggested (Rev Fig. 2), indeed confirming that most VE-cad+ Kit+ cells are CD45+. Interestingly VE-cad+Kit- are predominantly CD41+, reinforcing the haematopoietic nature of these cells.

      The authors must have tried really hard, but the lack of short- or long-engraftment in a number of immunodeficient mouse models (lines 305-313) really suggests that no blood progenitors are generated in their system. I am not familiar with the adrenal gland transplant system, but it seems like a very non-physiological system for trying to assess the maturation of putative pre-HSCs. The data supporting the engraftment of these mice, essentially seen only by PCR and in some cases with a very low threshold for detection, are very weak, and again unconvincing. It is stated that "BFP engraftment of the Spl and BM by flow cytometry was very low level albeit consistently above control (Fig. S4E)" (lines 337-338). I do not think that two dots in a dot plot can be presented as evidence of engraftment.

      We have presented the data with full disclosure and do not deny that the engraftment achieved is low-level and short-term, indicating incomplete maturation of definitive haematopoietic progenitors in the current haemogenic gastruloid system. Indeed, by not wanting to overstate the finding, we were deliberately conservative in our representative flow cytometry plots and focused on the PCR for sensitivity. We now present the full flow cytometry analysis for spleen where we preserved more cells after the genomic DNA extraction (revised Fig. 4C) and call the Reviewer’s attention to the fact that detection of BFP+ cells by PCR and flow cytometry in the recipient animals is consistent between the 2 methods (revised Fig. 4C and D; full gels previously presented now in Fig. 4S2C; sensitivity analysis was also previously available and is now in Fig. 4S2B). In addition, we have now also been able to detect low-level myelo-lymphoid engraftment in the bone marrow and spleen 8 weeks after adrenal implantation, again suggesting the presence of a small number of definitive haematopoietic progenitors that potentially mature from the 3 haemogenic gastruloids implanted (Fig. 4E and 4 S2F-G in the revised manuscript. We rephrased Results and Discussion at lines 359-414 and 589-621, respectively, to rectify the nature of the engraftment which we attribute to progenitors.

      (7) Given the above, I find that the foundations needed for extracting meaningful data from the system when perturbed are very shaky at best. Nevertheless, the authors proceed to overexpress MNX1 by LV transduction, a system previously shown to transform fetal liver cells, mimicking the effect of the t(7;12) AML-associated translocation. Comments on this section:

      The increase in the size of the organoid when MNX1 is expressed is a very unspecific finding and not necessarily an indication of any hematopoietic effect of MNX1 OE.

      We agree with the Reviewer on this point; it is nevertheless a reproducible observation which we thought relevant to describe for completeness and data reproducibility.

      The mild increase of cKit+ cells (Figure 4E) at the 144hr timepoint and the lack of any changes in CD41+ or CD45+ cells suggests that the increase in Kit+ cells % is not due to any hematopoietic effect of MNX1 OE. No hematopoietic GO categories are seen in RNA seq analysis, which supports this interpretation. Could it be that just endothelial cells are being generated?

      The Reviewer is correct that the MNX1-overexpressing cells have a strong endothelial signature, which is present in patients (revised Fig. 5A). We investigated a potential link with C-Kit by staining cells from the replating colonies during the process of in vitro transformation with CD31. We observed that 40-50% of C-Kit+ cells (20-30% total colony cells) co-expressed CD31, at least at early plating. These cells co-exist with haematopoietic cells, namely Ter119+ cells, as expected from the YSlike erythroid and EMP-like affiliation of haematopoietic output from 144h-haemogenic gastruloids. These data are included in Fig. 6S1A-B (in text 506-507) of the revised manuscript.

      (8) There seems to be a relatively convincing increase in replating potential upon MNX1-OE, but this experiment has been poorly characterized. What type of colonies are generated? What exactly is the "proportion of colony forming cells" in Figures 5B-D? The colony increase is accompanied by an increase in Kit+ cells; however, the flow cytometry analysis has not been quantified.

      Given the inability to replate control EV cells, there is not a population to compare with in terms of quantification. The level of C-Kit+ represented in Fig. 6E of the revised manuscript is achieved at plate 2 or 3 (depending on the experiment), both of which are significantly enriched for colony-forming cells relative to control (revised Fig. 6B, D).  

      (9) Do hGx cells engraft upon MNX1-OE? This experiment, which appears not to have been performed, is essential to conclude that leukemic transformation has occurred.

      For the purpose of this study, we are satisfied with confirmation of in vitro transformation potential of MNX1 haemogenic gastruloids, which can be used for screening purposes. Although interesting, in vivo leukaemia engraftment from haemogenic gastruloids is beyond the scope of this study.

      Reviewer #2 (Recommendations for the authors):

      (1) Minor comments

      (a) I find the denomination "hGx" very confusing as it would suggest that these gastruloids are human, whereas, in fact, they are murine.

      We agree with the Reviewer on the confusing nomenclature and have edited the manuscript to call “haemGx” instead.

      (b) I find the presence of mast cells in CFC of MNX1-OE cultures very puzzling as this does not bear any resemblance to human leukemia.

      We detect an enrichment of mast cell transcriptional programmes, as defined by the cell type repositories. While it is not mast cells to represent leukaemic cells in patients, this ontology is likely to reflect the developmental stage and origin of progenitors which are affected by MNX1.

      (2) I have a few suggestions to improve figures and tables clarity, to help readers better follow the data presented.

      (a) To enhance readability, it would be beneficial to highlight the genes mentioned in the text within the scRNA-seq figures. Many figures currently display over 30-40 genes in small font sizes, making it difficult to quickly locate specific genes discussed in the text. Additionally, implementing a colorcoding system to categorize these genes according to their proposed lineages would improve clarity and organization.

      We have now performed major re-organisation and re-analyses of the scRNA-seq data, which we believe has improved the readability and clarity of the corresponding sections of the manuscript.

      (b) The data presented in Supplementary Table 1, along with other supplementary tables, are challenging to interpret due to insufficient annotations. Enhancing these tables with clearer and more detailed annotations would significantly improve clarity and aid readers in understanding the supplementary materials.

      Descriptive text has been added to accompany each Supplementary File to aid in understanding the results reported therein.

      Reviewer #3 (Recommendations for the authors):

      In addition to what was written in the public review, I would suggest the authors simplify and shorten the text. Currently, a lot of unnecessary detail is included which makes the story very hard to follow. Moreover, the authors should modify the figures to make them more comprehensible, especially for RNA-seq data.

      We have significantly re-arranged and shortened parts of the manuscript, particularly by focusing the Discussion. Results presentation has also been improved through additional analysis and graphic representation of the scRNA-seq data, which we believe has improved the readability and clarity.s

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The manuscript aims to elucidate the impact of a prophage within the genome of Shewanella fidelis on its interaction with the marine tunicate Ciona robusta. The authors made a deletion mutant of S. fidelis that lacks one of its two prophages. This mutant exhibited an enhanced biofilm phenotype, as assessed through crystal violet staining, and showed reduced motility. The authors examined the effect of prophage deletion on several genes that could modulate cyclic-diGMP levels. While no significant changes were observed under in vitro conditions, the gene for one protein potentially involved in cyclic-diGMP hydrolysis was overexpressed during microbe-host interactions. The mutant was retained more effectively within a one-hour timeframe, whereas the wild-type (WT) strain became more abundant after 24 hours. Fluorescence microscopy was used to visualize the localization patterns of the two strains, which appeared to differ. Additionally, a significant difference in the expression of one immune protein was noted after one hour, but this difference was not evident after 23 hours. An effect of VCBC-C addition on the expression of one prophage gene was also observed.

      Strengths:

      I appreciate how the authors integrate diverse expertise and methods to address questions regarding the impact of prophages on gut microbiome-host interactions. The chosen model system is appropriate, as it allows for high-throughput experimentation and the application of simple imaging techniques.

      Weaknesses:

      My primary concern is that the manuscript primarily describes observations without providing insight into the molecular mechanisms underlying the observed differences. It is particularly unclear how the presence of the prophage leads to the phenotypic changes related to bacterial physiology and host-microbe interactions.

      We appreciate the overall, enthusiastic reviewer feedback.  The current manuscript presents experimental evidence of the biological impact of the deletion of a stably integrated prophage in the genome of Shewanella fidelis 3313. The molecular mechanisms responsible for these biological effects are currently unknown but based on the limited genetic insight of some predicted gene regions, we can speculate on prophage-mediated influences impacting swimming behaviors. Below, we address additional concerns raised by the reviewer.

      Which specific prophage genes are critical, or is the insertion at a specific site in the bacterial genome the key factor?  While significant effects on bacterial physiology are reported under in vitro conditions, there is no clear attribution to particular enzymes or proteins.

      In this particular case, it is not entirely clear, as most ORFs within the prophage region have unknown functions, i.e., predicted as hypothetical proteins. In addition, the original insertion site does not appear to interrupt any specific gene but may impact adjacent genes/pathways (Fig 1b). Enhanced annotations, along with future targeted deletion methods for distinct prophage segments, will help us better investigate which predicted gene regions influence the observed traits. This will deepen our understanding of the mechanisms that regulate prophage influence on these traits.

      In contrast, when the system is expanded to include the tunicate, differences in the expression of a cyclic-diGMP hydrolase become apparent. Why do we not observe such differences under in vitro conditions, despite noting variations in biofilm formation and motility? Furthermore, given that the bacterial strain possesses two prophages, I am curious as to why the authors chose to target only one and not both.

      Differences in expression patterns of c-di-GMP regulators were also noted in vitro, but they just missed the statistical significance threshold when rho was used as a bacterial reference gene. The expression pattern of pdeB was consistent among each biological replicate, however. In full transparency, pdeB qPCR was originally performed with recA as a reference standard (bioRxiv preprint, ver 1). Here, significant changes in pdeB expression were observed in the in vitro assays comparing WT and ΔSfPat. These results prompted us to study changes in pdeB expression during in vivo colonization experiments, which also revealed significant changes. However, there was a concern that a potential SOS response would also activate recA, despite our preliminary data suggesting SOS was not involved. As a precautionary, we repeated the experiments with rho as a reference gene after it was identified as a stable reference. However, with rho as a reference gene, statistically significant responses were noted during in vivo colonization, but not in the in vitro assays. 

      In the current manuscript, one prophage was targeted based on preliminary findings indicating that the SfPat prophage region influences behaviors likely to impact colonization of the Ciona robusta gut. A separate genetic segment was also previously targeted for deletion as a misidentified prophage-like region, but that strain is not included in the current description. The currently presented data indicate that the observed phenomena can be attributed to the SfPat prophage.

      Regarding the microbe-host interaction, it is not clear why the increased retention ability of the prophage deletion strain did not lead to greater cell retention after 24 hours, especially since no differences in the immune response were observed at that time point.

      A predominantly adherent (non-motile) phenotype would likely facilitate elimination within fecal strings. There is substantial evidence from multiple model systems that strong swimming ability enhances the exploration and colonization of mucosal surfaces. Swimming helps with the penetration of mucus layers, chemotaxis toward epithelial surfaces, and overall “decision-making” in terms of shifting from a free-swimming (planktonic) state in the lumen within dietary material to a more sessile, adherent phenotype at the mucosal surface.

      Concerning the methodological approach, I am puzzled as to why the authors opted for qPCR instead of transcriptomics or proteomics. The latter approaches could have provided a broader understanding of the prophage's impact on both the microbe and the host.

      We agree with the reviewer that a transcriptomics approach would provide a broader understanding of the prophage’s impact on the microbe and animal host. Future studies will include a full multi-omic evaluation of this interaction. 

      Reviewer #1 (Recommendations for the authors):

      Besides my above mentioned issues, I have a few more mini things:

      (A) what makes S. fidelis being a persistant member of the host microbiome? Please elaborate more on quantitive studies in this respect. –

      Shewanella species are stable members of the Ciona gut, and previous efforts (Dishaw et al, 2016) revealed that chitin and/or secreted host effectors could influence biofilm formation. The Ciona gut produces copious amounts of endogenous chitin-rich mucus, and a variety of bacteria have been identified that thrive under these conditions. In addition, versatile bacteria like Shewanella sp. likely expand the metabolic potential of filter-feeders like Ciona. Thus, our subsequent studies began to focus on these and other microbes isolated from the Ciona gut that appear to be stable residents. Identical strains have been recovered numerous times (since 2011) from this wild population of Ciona robusta.  

      (B) The authors use the word inter kingdom and refer to phage, bacterium and animal. As phages are not part of the three kingdoms of life I believe the terminology is wrong.

      Thank you for bringing this to our attention. In this context, we were referring to bacteria+phage as a unit and their interkingdom interaction with the animal host. But we recognize that this term can be misleading. Another, more appropriate term is ‘tripartite,’ and we have changed interkingdom to tripartite as appropriate, e.g., the abstract.

      (C) I like lines 55-61 and was expecting to see in the manuscript what of those things would be true for the chosen prophage.

      We looked at the coding region annotations within the prophage and the adjacent regions. The prophage coding regions are mostly annotated as unknown or predicted proteins, and a few as known phage-related components. We intend to reanalyze future and improved annotations and conduct deletion experiments targeting specific open reading frames (ORFs).

      (D) In line 76 the authors mention a Gödecke reference for Pseudomonas. I believe that this paper only deals with S. oneidensis.

      The inadvertent Gödecke reference has been removed.

      (E) All figures: The captions are too short to understand what the figures are showing and everything is too small and hard to read or see. Along these lines it is often unclear what the many datapoints show. Biological replicates, technical replicates....Overall figure 1 does not seem to contain much information.

      Figures and captions have been improved as suggested. Thank you for bringing this to our attention.

      (F) Figure 3 what are a and b showing?

      Figure and descriptive legend have been improved.

      (G) Figure 4: Why did the author check expression only for one gene after 1 h but several genes after 24 h?

      Since we observed that in vitro VCBP-C alters biofilms of S. fidelis 3313 (Dishaw et al 2016), we hypothesized that the bacteria may alter host VCBP-C expression and that the influence of integrated prophages may further modulate gene expression. Since VCBP-C is endogenously expressed in the gut of Ciona, we expected that early exposure/colonization (one hour) would be crucial for the bacterial-VCBP interactions. Hence, the VCBP-C was our primary target. We then tested multiple immune response genes at 24 hours to get a more detailed understanding of the maturing immune responses. Future studies will expand our efforts using global transcriptomics to understand better the immune response during bacterial exposure and colonization events.

      (H) Do the authors mean stationary or localised?

      We are not sure about the context of the reviewer’s question here but we think our modifications have addressed these concerns. 

      Reviewer #2 (Public review):

      Summary:

      In the manuscript, "Prophage regulation of Shewanella fidelis 3313 motility and biofilm formation: implications for gut colonization dynamics in Ciona robusta", the authors are experimentally investigating the idea that integrated viruses (prophages) within a bacterial colonizer of the host Ciona robusta affect both the colonizer and the host. They found a prophage within the Ciona robusta colonizing bacterium Shewanella fidelis 3313, which affected both the bacteria and host. This prophage does so by regulating the phosphodiesterase gene pdeB in the bacterium when the bacterium has colonized the host. The prophage also regulates the activity of the host immune gene VCBP-C during early bacterial colonization. Prophage effects on both these genes affect the precise localization of the colonizing bacterium, motility of the bacterium, and bacterial biofilm formation on the host. Interestingly, VCBP-C expression also suppressed a prophage structural protein, creating a tripartite feedback loop in this symbiosis. This is exciting research that adds to the emerging body of evidence that prophages can have beneficial effects not only on their host bacteria but also on how that bacteria interacts in its environment. This study establishes the evolutionary conservation of this concept with intriguing implications of prophage effects on tripartite interactions.

      Strengths:

      This research effectively shows that a prophage within a bacterium colonizing a model ascidian affects both the bacterium and the host in vivo. These data establish the prophage effects on bacterial activity and expand these effects to the natural interactions within the host animal. The effects of the prophage through deletion on a suite of host genes are a strength, as shown by striking microscopy.

      Weaknesses:

      Unfortunately, there are abundant negative data that cast some limitations on the interpretation of the data. That is, examining specific gene expression has its limitations, which could be avoided by global transcriptomics of the bacteria and the host during colonization by the prophage-containing and prophage-deleted bacteria (1 hour and 24 hours). In this way, the tripartite interactions leading to mechanism could be better established.

      We thank the reviewer for their comments and recognize this important limitation. As a follow-up to the current study, we plan to perform more comprehensive global meta-transcriptomics analyses to better understand differentially expressed genes across both the host and microbe during colonization.

      Impact:

      The authors are correct to speculate that this research can have a significant impact on many animal microbiome studies, since bacterial lysogens are prevalent in most microbiomes. Screening for prophages, determining whether they are active, and "curing" the host bacteria of active prophages are effective tools for understanding the effects these mobile elements have on microbiomes. There are many potential effects of these elements in vivo, both positive and negative, this research is a good example of why this research should be explored.

      Context:

      The research area of prophage effects on host bacteria in vitro has been studied for decades, while these interactions in combination with animal hosts in vivo have been recent. The significance of this research shows that there could be divergent effects based on whether the study is conducted in vitro or in vivo. The in vivo results were striking. This is particularly so with the microscopy images. The benefit of using Ciona is that it has a translucent body which allows for following microbial localization. This is in contrast to mammalian studies where following microbial localization would either be difficult or near impossible.

      Reviewer #2 (Recommendations for the authors):

      In general, I found that the research shown in this manuscript is solid, and the manuscript is well-written. I have no specific comments about the writing of the manuscript that would be of benefit.

      Figure 1 would benefit from the shrinking of white space between panels a and b. Also, in panel b, it is very difficult to read the x-axis, the number of basepairs. It is suggested to increase this font size.

      Figure 1 has been improved as suggested.

      Figure 2 is fine, however, what do three asterisks (***) in panel a signify? It is not described in the legend. One minor point that affects data understanding as presented, the wildtype (WT) change in expression is normalized to itself, therefore always equaling 1.0. This method of presentation muddies the variation in gene expression in the presence of the prophage. This is not an issue in Figure 2, but does have an effect on understanding Figure 2 - figure supplement 1.

      Figure 2 - figure supplement 1, as stated above, the normalization of the WT change in gene expression to 1.0 makes it difficult to understand the results. Why is pilZ change in gene expression not significant in panel s1a? It seems the median change is 50%, or whatever averaging is done, it's unclear whether this is the median and whether the error bars are standard deviation or some other metric.

      These should be defined in the statistical analysis section of the methods or in the legend itself. Further, in panel s1b, why is the reduction in gene expression of pdeB statistically significant, while a similar reduction in gene expression of pleD is not statistically significant?

      RQ values were calculated from 2<sup>-ddCt</sup>. The error bars in the figures were calculated by adding or subtracting the standard error from RQ. Since WT was used as a reference value for qPCR, the RQ value was normalized as 1 for all replicates and nonparametric tests were used to calculate the statistical significance. The values for pilZ were very close to significant; a value of 0.063 was derived via the Wilcoxon test. Only the changes in expression of pdeB were determined to be statistically significant, via the Wilcoxon test.

      Figure 3 panels a and b would be helped by having the same y-axis for each. It is impressive the amount of WT bacterial colonization takes place in 24 hours, particularly in the absence of the prophage, but it does not appear as impressive when the axes are changed between panels. Similar axes should be considered for every comparative graph.

      Figure 3 - figure supplement 1 legend would benefit from the same description of the animal's digestive locations as in the legend in Figure 3.

      We appreciate these suggestions and have made these changes accordingly. We have remade and combined Figure 3 a and b

      Figure 4, while it is unfortunate that none of the immune genes evaluated had a response to the deletion of the SfPat prophage in S. fidelis 3313 at 24 hours, did any of these genes have an effect at 1 hour of evaluation as VCBP-C did?

      The expression of this expanded gene set was not evaluated at one hour. This time point will, however, be included in our global evaluation of gene expression in our future transcriptome sequencing effort.

      Figure 5, the only question I have with these data is whether or not there is a dose-dependent effect of VCBP-C on SfPat P5 expression?

      Prior studies have found VCBP-C can impact biofilm formation in Shewanella sp. in a dose-dependent manner (some of the data appears in Dishaw et al, 2016). However, we have not yet considered whether VCBP-C impacts the expression of SfPat P5 (a phage capsid component) in a dose-dependent manner. We will consider this in future experimental designs.

      It is mentioned in the introduction (and data shown in the preprint) that there is more than one active prophage in Shewanella fidelis 3313. The preprint data shows that the Mu prophages had little effect on the studies. It may be worth discussing the presence and lack of effects of these Mu prophages. It also may lead to some discussion about the complexities of polylysogeny (as discussed by Silpe, et al, Nature, 2023).

      A full-length, inducible, Mu-like prophage region has been identified in the genome that has not been targeted for deletion, but will be included in follow-up studies. An earlier incomplete genome assembly contributed to the incorrect targeting and deletion of a prior Mu-like region, which was discussed in an earlier preprint version. Discussion and references to that strain have been removed from the more recent preprint versions. For clarity, the current manuscript describes strains that remain focused on the SfPat prophage, noting its contribution to the observed behavioral changes / traits.

      Is there any spontaneous induction of SfPat in vitro or in vivo with temperature change (prophages have been induced with heat stress), excessive UV exposure, or mitomycin C treatment?

      Preliminary induction studies using UV, mitomycin C, and temperature have been completed, but remain inconclusive with SfPat due to inconsistent induction patterns.

      Could you speculate, or perhaps do the experiment, as to whether the addition of VCBP-C to S. fidelis 3313 cultures affects biofilm production? The deletion of SfPat leads to greater biofilm production in vitro, while exogenously added VCBP-C represses SfPat P5 expression, would VCPB-C addition lead to greater biofilm production? Lastly, and this may be a failure of my understanding, is VCBP-C able to bind to S. fidelis? If so, does the prophage alter the bacteria and, consequently, the ability of VCBP-C to bind to the bacteria?

      Our lab is actively working to better understand the physical interactions of VCBP-C and bacteria, particularly lysogenic bacteria. Deletion mutants are helping us better understand the potential influence of the bacterial accessory genome on interactions with host immune mediators. Biofilm assays have been done in the context of VCBP-C (Dishaw et al, 2016). Subsequently, we tested the influence of 50 µg/ml VCBP-C on WT and prophage KO-strains, which include SfPat KO along with neutral (control) regions of the genome. We found that the presence of VCBP-C reduced biofilm formation in WT and phage KO variants at 4 hrs and 24 hrs. However, at 12 hrs, VCBP-C treatment appears to increase biofilm formation in the phage-KO strain. While the role (if any) of SfMu is remains unclear, these preliminary data imply the existence of a feedback circuit (influenced by time) where immune effector binding and prophage influence on host gene expression together shape retention outcomes in the gut microbiome. This hypothesis remains to be tested further.

      Author response image 1.

      WT S. fidelis 3313 was exposed in vitro to 50 µg/ml VCBP-C in stationary cultures. Biofilms were observed for 24hrs.  At 12 hrs, the presence of VCBP-C increased the amount of biofilms, whereas reduced biofilms were observed at 4 and 24hrs. Our findings (manuscript Fig 2a) reveal that SfPat contributes to biofilm formation, exposure to SfPat deletion mutants increases host VCBP-C expression (manuscript Fig. 4a), and VCBP-C binding to WT S. fidelis 3313 reduces the expression of SfPat P5 capsid protein (manuscript Fig. 5). These findings suggest that in vivo exposure/ colonization assays benefit from detailed time-course observations to be further explored in follow-up, future experiments.

      Reviewer #3 (Public review):

      In this manuscript, Natarajan and colleagues report on the role of a prophage, termed SfPat, in the regulation of motility and biofilm formation by the marine bacterium Shewanella fidelis. The authors investigate the in vivo relevance of prophage carriage by studying the gut occupation patterns of Shewanella fidelis wild-type and an isogenic SfPat- mutant derivative in a model organism, juveniles of the marine tunicate Ciona robusta. The role of bacterial prophages in regulating bacterial lifestyle adaptation and niche occupation is a relatively underexplored field, and efforts in this direction are appreciated.

      While the research question is interesting, the work presented lacks clarity in its support for several major claims, and, at times, the authors do not adequately explain their data.

      Major concerns:

      (1) Prophage deletion renders the SfPat- mutant derivative substantially less motile and with a higher biofilm formation capacity than the WT (Fig. 2a-b). The authors claim the mutant is otherwise isogenic to the WT strain upon sequence comparison of draft genome sequences (I'll take the opportunity to comment here that GenBank accessions are preferable to BioSample accessions in Table 1). Even in the absence of secondary mutations, complementation is needed to validate functional associations (i.e., phenotype restoration). A strategy for this could be phage reintegration into the mutant strain (PMID: 19005496).

      We are currently investigating complementation strategies. However, there have been some challenges in re-infecting and/or reintegrating the prophage into the genome. A preferred integration site may be damaged due to the deletion approach. While the SfPat prophage has mostly predicted genes of unknown function or significance, we have begun prioritizing the deletion of distinct segments to help identify functional relevance.

      (2) The authors claim that the downshift in motility (concomitant with an upshift in biofilm formation) is likely mediated by the activity of c-di-GMP turnover proteins. Specifically, the authors point to the c-di-GMP-specific phosphodiesterase PdeB as a key mediator, after finding lower transcript levels for its coding gene in vivo (lines 148-151, Fig. 2c), and suggesting higher activity of this protein in live animals (!)(line 229). I have several concerns here:

      (2.1) Findings shown in Fig. 2a-b are in vitro, yet no altered transcript levels for pdeB were recorded (Fig. 2c). Why do the authors base their inferences only on in vivo data?

      (2.2) Somewhat altered transcript levels alone are insufficient for making associations, let alone solid statements. Often, the activity of c-di-GMP turnover proteins is local and/or depends on the activation of specific sensory modules - in the case of PdeB, a PAS domain and a periplasmic sensor domain (PMID: 35501424). This has not been explored in the manuscript, i.e., specific activation vs. global alterations of cellular c-di-GMP pools (or involvement of other proteins, please see below). Additional experiments are needed to confirm the involvement of PdeB. Gaining such mechanistic insights would greatly enhance the impact of this study.

      (2.3) What is the rationale behind selecting only four genes to probe the influence of the prophage on Ciona gut colonization by determining their transcript levels in vitro and in vivo? If the authors attribute the distinct behavior of the mutant to altered c-di-GMP homeostasis, as may be plausible, why did the authors choose those four genes specifically and not, for example, the many other c-di-GMP turnover protein-coding genes or c-di-GMP effectors present in the S. fidelis genome? This methodological approach seems inadequate to me, and the conclusions on the potential implication of PdeB are premature.

      We chose to study genes that were shown previously to influence biofilms and motility in a cyclic-di-GMP dependent manner in a Shewanella spp (Chao et al 2013, S Rakshe 2011). Future transcriptomic efforts and targeted deletion approaches will further define the specific influence of prophages.

      (3) The behavior of the WT strain and the prophage deletion mutant is insufficiently characterized. For instance, how do the authors know that the higher retention capacity reported for the WT strain with respect to the mutant (Fig. 3b) is not merely a consequence of, e.g., a higher growth rate? It would be worth investigating this further, ideally under conditions reflecting the host environment.

      To clarify the method, in vitro growth curves did not suggest any significant difference in growth rate between the WT and the deletion mutant strains. Subsequently, for the in vivo experiments, bacterial cultures were pelleted and resuspended in sterile, nutrient-free artificial seawater. This limits growth until the bacterial strains are introduced to the animals.

      (4) Related to the above, sometimes the authors refer to "retention" (e.g., line 162) and at other instances to "colonization" (e.g., line 161), or even adhesion (line 225). These are distinct processes. The authors have only tracked the presence of bacteria by fluorescence labeling; adhesion or colonization has not been assessed or demonstrated in vivo. Please revise.

      We thank the reviewer for this feedback; the manuscript has been revised accordingly. While we refer to our assays as ‘colonization assays,’ we report results of ‘retention’ of various bacterial strains in the ‘exposed’ animals. Furthermore, when fluorescent staining is utilized, we report retention in defined niches. Since colonization is likely a two-step process, i.e., 1) retention and 2) colonization or long-term establishment of these microbial communities, using these terms correctly is warranted. In separate (unpublished) surveys of adult animals taken from the field, identical strains have been recovered numerous times over a twelve-year period.

      (5) The higher CFU numbers for the WT after 24 h (line 161) might also indicate a role of motility for successful niche occupation or dissemination in vivo. The authors could test this hypothesis by examining the behavior of, e.g., flagellar mutants in their in vivo model.

      Interestingly, we find numerous flagellar/motility-associated protein coding genes like Flg, Fli and Fle present within the S. fidelis genome possessing an EAL domain, implicating them in the regulation of cyclic-di-GMP. Hence, a future global transcriptomic approach will help improve our understanding of the roles of these regulatory pathways.

      (6) The endpoint of experiments with a mixed WT-mutant inoculum (assumedly 1:1? Please specify) was set to 1 h, I assume because of the differences observed in CFU counts after 24 h. In vivo findings shown in Fig. 3c-e are, prima facie, somewhat contradictory. The authors report preferential occupation of the esophagus by the WT (line 223), which seems proficient from evidence shown in Fig. S3. Yet, there is marginal presence of the WT in the esophagus in experiments with a mixed inoculum (Fig. 3d) or none at all (Fig. 3e). Likewise, the authors claim preferential "adhesion to stomach folds" by the mutant strain (line 225), but this is not evident from Fig. 3e. In fact, the occupation patterns by the WT and mutant strain in the stomach in panel 3e appear to differ from what is shown in panel 3d. The same holds true for the claimed "preferential localization of the WT in the pyloric cecum," with Fig. 3d showing a yellow signal that indicates the coexistence of WT and mutant.

      The results section is reworded to improve clarity. The WT and KO are mixed 1:1 to achieve the 10<sup>7</sup> cfu count.

      (7) In general, and especially for in vivo data, there is considerable variability that precludes drawing conclusions beyond mere trends. One could attribute such variability in vivo to the employed model organism (which is not germ-free), differences between individuals, and other factors. This should be discussed more openly in the main text and presented as a limitation of the study.

      Yes, a salient feature of this model is that we can leverage genetic diversity in our experimental design, but it can introduce experimental variability.

      Even with such intrinsic factors affecting in vivo measurements, certain in vitro experiments, which are expected, in principle, to yield more reproducible results, also show high variability (e.g., Fig. 5). What do the authors attribute this variability to?

      For experiments involving VCBP-C protein, we can use affinity-purified protein recovered from live animals, or recombinant protein that we synthesize in-house (Dishaw et al 2011, 2016). In the latter, we often observe slight lot-to-lot variation in affinity for the target (the bacterial surface). To account for this variation and to ensure the observations are robust despite it, production lots can be mixed in additional biological replicates. As such, slight variability in the in vitro assays can be due to this batch effect.

      (8) Line 198-199: Why not look for potential prophage excision directly rather than relying on indirect, presumptive evidence based on qPCR?

      The decision to rely on qPCR of prophage structural genes was based on preliminary data, in particular among lysogens possessing more than one prophage. Neither the plaque assay nor SYBR Gold staining could distinguish among the particles, and TEM imaging was not sufficiently qualitative. Since these prophages do not exclusively produce particles when induced, qPCR targeting structural proteins was found to be most informative.

      Reviewer #3 (Recommendations for the authors):

      Other major comments:

      Line 137 (and Fig. 2 legend): The authors did not test chemotaxis towards any specific chemoeffector, only motility. Please correct and see below my comments about motility assays.

      The reviewer is correct; we have modified our descriptors.

      Lines 142-144: The authors conflate quorum sensing with c-di-GMP metabolism. If the authors measured the expression of genes "regulating cyclic di-GMP," it is likely because c-di-GMP is known to regulate the switch between planktonic and sessile lifestyles. However, whether this is mediated by quorum sensing is a separate issue that was not explored in this work. Please revise.

      Thank you; these changes were made accordingly.

      Line 150: c-di-GMP is not a quorum sensing signal; please correct.

      Yes, we corrected the inadvertent yet misleading statement.

      Line 193: Please clarify "RNA was extracted from the biofilms." If S. fidelis was grown on "MA [Marine Agar] for 24 h in the presence or absence of 50 µg/ml VCBP-C" (lines 192-193), was RNA isolated from colonies growing on the plates? Was VCBP-C added to the agar? This is also unclear in the Methods section (lines 381-384), where it seems the authors conducted this experiment using broth cultures in multiwell plates, removing the supernatant, and extracting RNA from the biofilms (i.e., cells adhered to the walls and bottom of the wells?). Why only biofilm cells?

      Thank you for bringing this to our attention. We have rewritten the appropriate sections and methods to improve clarity. Following our initial studies, which revealed differential bacterial phenotypes (biofilm formation and motility assays), we decided to target and investigate gene expression in the biofilms. This way, the sessile cells that were not part of the biofilm do not obfuscate the data.

      Lines 204-205: The authors should refer to the behavior of the mutant, since they did not test what happens upon prophage integration, but after prophage deletion.

      The wording has been changed accordingly.

      Lines 206-207: Please explain why the authors state that "these different bacterial phenotypes" (referring to altered biofilm formation and motility) "influence host immune responses in a manner consistent with influences on gut colonization dynamics". What specific relationship are the authors suggesting between these processes, and in what way is this "consistent"?

      We previously demonstrated (Dishaw et al 2016) that copious amounts of VCBP-C protein are present under normal conditions in the gut and mostly found tethered to chitin-rich mucus lining the gut epithelium. The up-regulation of VCBP-C within one hour of exposure to the SfPat mutant relative to the WT S. fidelis is consistent with a role for VCBP-C in modulating bacterial settlement dynamics (Dishaw et al 2016). The mutant phenotype of reduced swimming and increased biofilm production is a likely trigger for the increased production of this secreted immune effector that may influence the retention of this bacterial variant, relative to the WT.

      Line 229: Apart from what I noted above about the authors' claim regarding PdeB activity, I believe the figure referred to here should be Fig. 2, not Fig. 5.

      Thank you for catching that oversight. It has been corrected.

      Figure 1: Was hypothetical protein 2 included in the deletion?

      Yes, the hypothetical protein 2 was included in the deletion

      Figure 3a-b: It is challenging to interpret data on plots using so many colors - including what appears to be a white circle (?) in Fig. 3a. How many replicates are represented here? Is it indeed n=3 in Fig. 3a and n=6 in Fig. 3b?  

      Figure 3a is a bee swarm plot. Each color represents biological replicates, and the smaller circles represent technical replicates. It facilitates showing ALL the data, including the spread of the data. Regarding the number replicates, 3a and 3b are different experiments, with 3a representing a biofilm assay with three biological replicates and 3b a motility assay with six biological replicates.

      Figure 3: An explanation for the abbreviation "FP" is missing.

      Thank you for catching this oversight. The abbreviation has been defined.

      Figure S3: FP, which is proficiently occupied by the WT strain (Fig. S3a), is not labeled in the images provided for the mutant (Fig. S3c-d). It would be helpful to show it for comparison.

      Those other images did not have fecal pellets to label; however, Figure 3c does show a fecal pellet for an animal exposed to both WT and the SfPat mutant.

      Questions and comments regarding methods:

      Lines 290-291, 307: Please indicate an approximate range for "room temperature."

      The information has been added to the revised manuscript.

      Lines 292, 302: Why use hybrid LB/MB broth and agar? And strictly speaking, which LB formula (Lennox/Luria/Miller)?

      The hybrid broth reduces the concentration of salts that can interfere in some assays. The LB formula was Luria, and it is now included in the manuscript.

      Lines 300-302: The conjugation procedure is poorly described. It seems the authors conducted conjugal transfer by biparental mating in broth culture by inoculating a single colony of S. fidelis 3313 into an already grown culture of the E. coli donor strain?

      The biparental mating was done on plates; the manuscript has been clarified.

      Motility assay concerns:

      Swimming motility is generally assayed in soft agar (0.25-0.3% w/v). Why did the authors use 0.5% low-melt agarose? Usually, agar is employed instead of agarose, and such a high concentration of solidifying agent typically prevents proper swimming (see e.g. Kearns 2010).

      Our laboratory uses low-melt agarose for phage propagation and other assays. We continued using it because we observed robust and reproducible results in the swarming and swimming motility assays. In addition, 0.5% agarose is less dense than 0.5% agar, and its consistency is similar to that of the lower percentage soft agar.

      Lines 316-317: Please clarify: what is the "overlay motility assay" that was carried out "overnight at RT and then inoculated onto the center of soft agar"? Was this a two-step experiment? How were bacteria inoculated (stabbed, injected)? If injected, what volume and cell density were used?

      Thank you for bringing this to our attention. The methods section has been revised for clarity.

      Line 319: Each variable tested in duplicate? From what I understand, the only variable measured in this test is the diameter of the swimming halos. Do the authors mean they used two biological replicates? If so, please indicate the number of technical replicates as well.

      Multiple biological replicates were performed, each time with two technical replicates. Two perpendicular measurements (of diameter) for each technical replicate was recorded to avoid bias. The methods section has been edited to improve clarity.

      Line 320: Were the swimming halos asymmetrical, hence the need to take two perpendicular measurements? If that was the case, it could indicate an excessive amount of solidifying agent.

      The halos were sometimes asymmetric, but to avoid variation across datasets, it became standard practice to measure perpendicular distances as stated above. 

      Regarding qPCR experiments:

      Please clarify how normalization of transcript levels was performed.

      It seems the authors conducted a double normalization, first with respect to the calibrator (rho), and again using the wild-type as a baseline reference for fold-change calculations (absence of error bars for WT data). If so, please specify on the vertical axes of the figures and in the Methods/figure legends.

      Since, in addition to rho, the authors assessed the expression stability of the "housekeeping" genes gyrB and recA, please also include the primers used for these genes.

      The appropriate manuscript sections have been updated for clarity. The bacterial qPCR was normalized to an internal standard, and then relative expression differences between SfPat and the WT were determined. The missing primer sequences have also been added.

      Observations:

      Figure 2a-b: It is intriguing that the remarkable reduction in motility of the mutant is not associated with a comparably significant increase in biofilm formation.

      A statistically significant increase in biofilm was observed, along with a decrease in motility. As is common in crystal violet assays, some of the tertiary structures were not very stable and likely washed out during processing.

      Additionally, it is noteworthy that data for the mutant in panel 2a exhibit minimal variability, with all OD570 recordings being around 3.0. Did the authors dilute the crystal violet elution solution after adding acetic acid, or might they have reached the saturation limit of the spectrophotometer?

      The eluted acetic acid was not diluted further, and significant changes were observed. If the solution had been further diluted, the observed changes might have been more pronounced. 

      Minor comments and recommendations:

      All the suggested changes below have been incorporated

      • Line 55: "Antibiotic resistance determinants" might be preferable to "genes" to avoid using "genes" twice in the same sentence.

      • Line 75-76: Italicize Pseudomonas aeruginosa.

      • Line 134: Instead of "at least," specify the average fold-change.

      • Line 141: In the heading, refer to the influence of the "prophage" (singular) rather than "prophages" (plural).

      • Discussion (style): Consider using past tense for phrases like "we utilize..." (line 202); "we find..." (line 204), etc.

      • Line 365 and elsewhere: Consider "mRNA levels" or "transcript levels" instead of "gene expression".

      • Table 3: UQ950 is a strain, not a plasmid. I assume the plasmid carried by UQ950 is pSMV3.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      To elucidate the mechanisms and evolution of animal biomineralization, Voigt et al. focused on the sponge phylum - the earliest branching extant metazoan lineages exhibiting biomineralized structures - with a particular emphasis on deciphering the molecular underpinnings of spicule formation. This study centered on calcareous sponges, specifically Sycon ciliatum, as characterized in previous work by Voigt et al. In S. ciliatum, two morphologically distinct spicule types are produced by a set of two different types of cells that secrete extracellular matrix proteins, onto which calcium carbonate is subsequently deposited. Comparative transcriptomic analysis between a region with active spicule formation and other body regions identified 829 candidate genes involved in this process. Among these, the authors focused on the calcarine gene family, which is analogous to the Galaxins, the matrix proteins known to participate in coral calcification. The authors performed three-dimensional structure prediction using AlphaFold, examined mRNA expression of Calcarin genes in spiculeforming cell types via in situ hybridization, conducted proteomic analysis of matrix proteins isolated from purified spicules, and carried out chromosome arrangement analysis of the Calcarin genes.

      Based on these analyses, it was revealed that the combination of Calcarin genes expressed during spicule formation differs between the founder cells-responsible for producing diactines and triactinesand the thickener cells that differentiate from them, underscoring the necessity for precise regulation of Calcarin gene expression in proper biomineralization. Furthermore, the observation that 4 Calcarin genes are arranged in tandem arrays on the chromosome suggests that two rounds of gene duplication followed by neofunctionalization have contributed to the intricate formation of S. ciliatum spicules. Additionally, similar subtle spatiotemporal expression patterns and tandem chromosomal arrangements of Galaxins during coral calcification indicate parallel evolution of biomineralization genes between S. ciliatum and aragonitic corals. 

      Strengths: 

      (1) An integrative research approach, encompassing transcriptomic, genomic, and proteomic analyses as well as detailed FISH. 

      (2) High-quality FISH images of Calcarin genes, along with a concise summary clearly illustrating their expression patterns, is appreciated. 

      (3) It was suggested that thickener cells originate from founder cells. To the best of my knowledge, this is the first study to demonstrate trans-differentiation of sponge cells based on the cell-typespecific gene expression, as determined by in situ hybridization. 

      (4) The comparison between Calcarins of Calcite sponge and Galaxins of aragonitic corals from various perspective-including protein tertiary structure predictions, gene expression profiling during calcification, and chromosomal sequence analysis to reveal significant similarities between them. 

      We thank the reviewer for this assessment. 

      (1) The conclusions of this paper are generally well supported by the data; however, some FISH images require clearer indication or explanation.

      We have modified Fig. 3 by including some insets indicating the depicted part of the sponge body and to change the color-scheme as suggested by reviewer3 for the FISH images. In accordance to the following comment, we decided to remove single-channel views in Fig. 3 A. 

      (2) Figure S2 (B, C, D): The fluorescent signals in these images are difficult to discern. If the authors choose to present signals at such low magnification, enhancing the fluorescence signals would improve clarity. Additionally, incorporating Figure S2A as an inset within Figure S2E may be sufficient to convey the necessary information about signal localization. 

      We changed the figure according to the suggestions.

      (3) Figure S3A: The claim that Cal2-expressing spherical cells are closely associated with the choanoderm at the distal end of the radial tube is difficult to follow. Are these Cal2-expressing spherical cells interspersed among choanoderm cells, or are they positioned along the basal surface of the choanoderm? Clarifying their precise localization and indicating it in the image would strengthen the interpretation. 

      In the figure, the view is on the choanoderm that lines the inner surface of the radial tube. Our interpretation is that the spherical cells are positioned at the basal surface of the choanoderm. We updated Fig. S3, which now includes another view to support our interpretation and also indicate some choanocytes.

      (4) To further highlight the similarities between S.ciliatum and aragonitic corals in the molecular mechanisms of calcification, consider including a supplementary figure providing a concise depiction of the coral calcification process. This would offer valuable context for readers.

      We considered this suggestion, and have included such a supplementary figure (Fig. S9).

      Reviewer #2 (Public review): 

      Summary: 

      This paper reports on the discovery of calcarins, a protein family that seems involved in calcification in the sponge Sycon ciliatum, based on specific expression in sclerocytes and detection by mass spectrometry within spicules. Two aspects stand out: (1) the unexpected similarity between Sycon calcarins and the galaxins of stony corals, which are also involved in mineralization, suggesting a surprising, parallel co-option of similar genes for mineralization in these two groups; (2) the impressively cell-type-specific expression of specific calcarins, many of which are restricted to either founder or thickener cells, and to either diactines, triactines, or tetractines. The finding that calcarins likely diversified at least partly by tandem duplications (giving rise to gene clusters) is a nice bonus. 

      Strengths: 

      I enjoyed the thoroughness of the paper, with multiple lines of evidence supporting the hypothesized role of calcarins: spatially and temporally resolved RNAseq, mass spectrometry, and whole-mount in situ hybridization using CISH and HCR-FISH (the images are really beautiful and very convincing). The structural predictions and the similarity to galaxins are very surprising and extremely interesting, as they suggest parallel evolution of biomineralization in sponges and cnidarians during the Cambrian explosion by co-option of the same "molecular bricks". 

      Weaknesses: 

      I did not detect any major weakness, beyond those inherent to working with sponges (lack of direct functional inhibition of these genes) or with fast-evolving gene families with complex evolutionary histories (lack of a phylogenetic tree that would clarify the history of galaxins/calcarins and related proteins). 

      We thank the reviewer for this assessment and the detailed comments be addressed below.

      Reviewer #3 (Public review):

      Summary: 

      The study explores the extent to which the biomineralization process in the calcitic sponge Sycon ciliatum resembles aragonitic skeleton formation in stony corals. To investigate this, the authors performed transcriptomic, genomic, and proteomic analyses on S. ciliatum and examined the expression patterns of biomineralization-related genes using in situ hybridization. Among the 829 differentially expressed genes identified in sponge regions associated with spicule formation, the authors focused on calcarin genes, which encode matrix proteins analogous to coral galaxins. The expression patterns of calcarins were found to be diverse but specific to particular spicule types. Notably, these patterns resemble those of galaxins in stony corals. Moreover, the genomic organization of calcarine genes in S. ciliatum closely mirrors that of galaxin genes in corals, suggesting a case of parallel evolution in carbonate biomineralization between calcitic sponges and aragonitic corals. 

      Strengths: 

      The manuscript is well written, and the figures are of high quality. The study design and methodologies are clearly described and well-suited to addressing the central research question. Particularly noteworthy is the authors´ integration of various omics approaches with molecular and cell biology techniques. Their results support the intriguing conclusion that there is a case of parallel evolution in skeleton-building gene sets between calcitic sponges and aragonitic corals. The conclusions are well supported by the data and analyses presented. 

      Weaknesses: 

      The manuscript is strong, and I have not identified any significant weaknesses in its current form. 

      We thank the reviewer for the insight and addressed the detailed comments below.

      Reviewer #1 (Recommendations for the authors): 

      The description of the region "radial tube" is unclear. Please define and explain it at its first mention in the manuscript, and, if possible, refer to the appropriate figure(s) (e.g., Figure 1A). 

      We now explain radial tubes at the beginning of the results and added a label in figure 1A. “Sycon ciliatum is a tube-shaped sponge with a single apical osculum and a sponge wall of radial tubes around the central atrium (Fig. 1A). The radial tubes are internally lined with choanoderm, which forms elongated chambers in an angle of approximately 90° to the tube axis”. 

      Reviewer #2 (Recommendations for the authors): 

      Scientific suggestions: 

      (1) Page 13: "Despite their presence in the same orthogroups, the octocoral and stony coral proteins were only distantly related to the calcareous sponge calcarins (e.g., 12-24% identity between octocoral and calcareous sequences in orthogroup Cal 2-4-6), resulting in poor alignment. Their homology to calcarins, therefore, remains to be determined." Could 3D structures of these coral proteins be predicted with AlphaFold to substantiate (or nuance) the comparison with calcarins? 

      We run additional alphafold predictions for two octocoral and two scleractinian galaxins. A galaxin-like sequence from Pinnigorgia flava was only a short fragment and therefore we did not attempt any structure predictions. The result shows that the octocoral galaxin-like proteins show some structural similarity (12 beta-harpins), while the scleractinian galaxin-like proteins differ from the sponge counterparts of the same orthogroup. We added this information to the results and in the new Fig. S7.

      Minor improvements to the text: 

      (1)  Page 7 : "The expression of Cal1 to Cal8 was investigated using chromogenic in situ hybridization (CISH) and hairpin-chain reaction fluorescence in situ hybridization (HCR-FISH), confirming their presence in sclerocytes." - Figure 3 should be cited here. 

      We refer to the figure now.

      (2) Page 8-9: "Cal6 expression mirrors that of Cal2, occurring in rounded cells at the distal tip of radial tubes and in a ring of cells around the oscular ring." - Please cite a figure here. 

      We refer now to Fig. 3K

      (3) Page 11-12: Please define eigengene, this term is not necessarily common knowledge. 

      We provide now a short definition in this sentence: “ The analysis provided eight meta-modules, of which four showed significant changes in expression module eigengenes —summary profiles that capture the overall expression pattern of each module— between samples with high spicule formation context (osculum region and regeneration stages older than four days) and samples with low spicule formation (sponge-wall and early regeneration stages until day 3-4) (Fig. S5).” 

      (4) Page 13: "Species without skeletons, such as the cnidarians Hydra, Actinia, Exaiptasia, and Nematostella, also possess galaxin-like proteins." This is too concise - can you explain what evidence was used? PANTHER, AlphaFold, OrthoFinder, Blastp...? 

      The evidence used is from PANTHER, and we enhanced clarification of this by modifying the last sentence of the section.

      (5) Page 20: "We have identified calcarins, galaxin-like proteins, as crucial components of the biomineralization toolkit in calcareous sponges." I'm not sure you showed they are crucial (this would require functional evidence). Perhaps "novel" components or some other adjective would fit better. 

      We changed the adjective to “novel”.

      Suggestions for the figures: 

      (1) Figure 1A: radial tubes should be labelled. 

      A label was added.

      (2) Figure 3 is beautiful but hard to parse. The name of all markers should be written on each panel (notably B, C, and D) and ideally placed in a consistent position (top right corner?) so that the reader's eye doesn't have to look for them anew in each panel. Consider depicting the same gene with the same color in all panels if possible (confocal imaging gives virtual colors anyway, there's no reason to be bound to the real-life color of the fluorophores used - if that was the original intent). Finally, the red/green color scheme is not colorblind-readable, so please consider switching to another scheme (white/cyan/magenta, for example).

      We have updated the figure according to the suggestions. The names of all markers are now included on each panel. Placing them in the upper right corner was not feasible for all panels, so we adjusted their placement as needed. Reoccurring genes are shown in the same color where possible. To improve accessibility for individuals with red/green color vision deficiency, we adopted a cyan/magenta/yellow color scheme. Each HCR-FISH image was processed in ImageJ by splitting the image into channels, applying cyan, magenta, or yellow lookup tables, converting each channel to RGB, and then stacking and blending them using the Z-Project function with maximum intensity projection. Since the original channel information is not preserved after this processing, we provide the original red/green/blue version of the figure in the supplementary material in Fig S11. Additionally, we added small sketches of Figure 1A to indicate the sponge body regions depicted, where relevant.

      (3) Figure S3: the blue staining is not explained. It is also unclear where choanocytes are - could individual choanocytes be indicated with arrows or lines? 

      We added the information to the figure legend. The blue channel shows “Autofluorescence detected with the Leica TXR filter (approx. 590–650 nm), included to help distinguish true signal from background autofluorescence observed in the FITC channel (used for Spiculin detection).”

      Reviewer #3 (Recommendations for the authors): 

      I have no major concerns about the manuscript - only minor edits and comments, which are listed below: 

      (1) On page 13, the authors refer to Figure S8; however, I believe this should be Figure S7. 

      We now refer to the correct Figure. Because of introducing a new Fig. S7, now the correct reference is Fig. S8.

      (2) On page 16, please correct "Spciulin" to "Spiculin". 

      Now corrected.

      (3) On page 17, there are two commas following "(Sycon)"; please remove one. 

      Corrected.

      (4) In the Data Accessibility section, none of the provided links appear to work. Please ensure all links are functional. 

      We apologize for this oversight and now provide working links. 

      (5) In Figure 3, the description of panel L is missing from the figure legend. 

      We added the description of this panel.

      (6) On page 39, change "Fig. 4" to "Figure 4" to maintain consistency throughout the manuscript. 

      Changed.

      (7) Figure S7 is not cited in the main text. Please, address this. 

      Corrected (see above at point 1)

      (8) In the legend for Table S2, the reference to Soubigou et al. (3) is incorrect, as it is not listed in the SI reference section. Please correct this. 

      Soubigou et al. (2020) is now included in the SI reference list.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Migration of the primordial germ cells (PGCs) in mice is asynchronous, such that leading and lagging populations of migrating PGCs emerge. Prior studies found that interactions between the cells the PGCs encounter along their migration routes regulates their proliferation. In this study, the authors used single cell RNAseq to investigate PGC heterogeneity and to characterize their niches during their migration along the AP axis. Unlike prior scRNAseq studies of mammalian PGCs, the authors conducted a time course covering 3 distinct stages of PGC migration (pre, mid, and post migration) and isolated PGCs from defined somite positions along the AP axis. In doing so, this allowed the authors to uncover differences in gene expression between leading and lagging PGCs and their niches and to investigate how their transcript profiles change over time. Among the pathways with the biggest differences were regulators of actin polymerization and epigenetic programming factors and Nodal response genes. In addition, the authors report changes in somatic niches, specifically greater non-canonical WNT in posterior PGCs compared to anterior PGCs. This relationship between the hindgut epithelium and migrating PGCs was also detected in reanalysis of a previously published dataset of human PGCs. Using whole mount immunofluorescence, the authors confirmed elevated Nodal signaling based on detection of the LEFTY antagonists and targets of Nodal during late stage PGC migration. Taken together, the authors have assembled a temporal and spatial atlas of mouse PGCs and their niches. This resource and the data herein provide support for the model that interactions of migrating mouse PGCs with their niches influences their proliferation, cytoskeletal regulation, epigenetic state and pluripotent state.

      Overall, the findings provide new insights into heterogeneity among leading and lagging PGC populations and their niches along the AP axis, as well as comparisons between mouse and human migrating PGCs. The data are clearly presented, and the text is clear and well-written. This atlas resource will be valuable to reproductive and developmental biologists as a tool for generating hypotheses and for comparisons of PGCs across species.

      Strengths:

      (1) High quality atlas of individual PGCs prior to, during and post migration and their niches at defined positions along the AP axis.

      (2) Comparisons to available datasets, including human embryos, provide insight into potentially conserved relationships among PGCs and the identified pathways and gene expression changes.

      (3) Detailed picture of PGC heterogeneity.

      (4) Valuable resource for the field.

      (5) Some validation of Nodal results and further support for models in the literature based on less comprehensive expression analysis.

      Weaknesses:

      (1) No indication of which sex(es) were used for the mouse data and whether or not sex-related differences exist or can excluded at the stages examined. This should be clarified.

      We have added: “Embryos of both sexes were pooled without genotyping, as the timepoints analyzed were prior to sex specification” to both the Animals section of the Materials and Methods and the Figure 1 legend. In addition, bioinformatic evaluation of potential sex biases in Nodal-Lefty signaling using Y-chromosome gene expression is reported in supplementary figure 4 and discussed in Discussion paragraph 2.

      Reviewer #2 (Public review):

      Summary:

      This work addresses the question of how 'leading' and 'lagging' PGCs differ, molecularly, during their migration to the mouse genital ridges/gonads during fetal life (E9.5, E10.5, E11.5), and how this is regulated by different somatic environments encountered during the process of migration. E9.5 and E10.5 cells differed in expression of genes involved in canonical WNT signaling and focal adhesions. Differences in cell adhesion, actin cytoskeletal dynamics were identified between leading and lagging cells, at E9.5, before migration into the gonads. At E10.5, when some PGCs have reached the genital ridges, differences in Nodal signaling response genes and reprogramming factors were identified. This last point was verified by whole mount IF for proteins downstream of Nodal signaling, Lefty1/2. At E11.5, there was upregulation of genes associated with chromatin remodeling and oxidative phosphorylation. Some aspects of the findings were also found to be likely true in human development, established via analysis of a dataset previously published by others.

      Strengths:

      The work is strong in that a large number of PGCs were isolated and sequenced, along with associated somatic cells. The authors dealt with problem of very small number of migrating mouse PGCs by pooling cells from embryos (after ascertaining age matching using somite counting). 'Leading' and 'lagging' populations were separated by anterior and posterior embryo halves and the well-established Oct4-deltaPE-eGFP reporter mouse line was used.

      Weaknesses:

      The work seems to have been carefully done, but I do not feel the manuscript is very accessible, and I do not consider it well written. The novel findings are not easy to find. The addition of at least one figure to show the locations of putative signaling etc. would be welcome.

      Thank you for the excellent suggestion. Fig. 6 has been added to highlight the main novel findings of this work and integrate them among contributions of earlier studies to provide a more complete view of signaling pathways and cell behaviors governing PGC migration.

      (1) The initial discussion of CellRank analysis (under 'Transcriptomic shifts over developmental time...' heading) is somewhat confusing - e.g. If CellRank's 'pseudotime analysis' produces a result that seems surprising (some E9.5 cells remain in a terminal state with other E9.5 cells) and 'realtime analysis' produces something that makes more sense, is there any point including the pseudotime analysis (since you have cells from known timepoints)? Perhaps the 'batch effects' possible explanation (in Discussion) should be introduced here. Do we learn anything novel from this CellRank analysis? The 'genetic drivers' identified seem to be genes already known to be key to cell transitions during this period of development.

      Thank you for this important observation. We have clarified the text in this section and added “This discrepancy may reflect differences in differentiation potential of some E9.5 PGCs that end in a terminal state among anterior E9.5 PGCs, but could also result from technical batch effects generated during library preparation. These possible interpretations are further discussed in the Discussion section.” to the pertinent results section and added additional relevant thoughts on the implications of this finding in Discussion paragraphs 4 and 7. We feel that it is important to include both results to the reader, as it is challenging to differentiate between heterogeneous developmental and migratory potential among E9.5 anterior PGCs and differential influence of batch effects across sequencing libraries with the data available.

      (2) In Discussion - with respect to Y-chromosome correlation, it is not clear why this analysis would be done at E10.5, when E11.5 data is available (because some testis-specific effect might be more apparent at the later stage).

      Since we had identified autocrine Nodal signaling primarily in anterior late migratory PGCs at E10.5 and knew that Nodal signaling was involved in sex specification of testicular germ cells into prospermatogonia by E12.5, we wanted to determine whether the Nodal signaling in late migratory PGCs at E10.5 was likely to be a sex-specific effect or was common to PGCs in both sexes. This was assessed in supplementary figure 4 and determined unlikely to be related to sex specification of PGCs as Nodal signaling was not strongly correlated with Y-chromosome transcripts in migratory PGCs. Assessing the relationship between Nodal signaling and Y-chromsome transcription at E11.5, when migration is complete, would be unlikely to help us further understand the dynamics of Nodal signaling during late PGC migration.

      (3) Figure 2A - it seems surprising that there are two clusters of E9.5 anterior cells

      Thank you for the interesting observation! One possibility is that the two states represent differential developmental competence as is suggested by the presence of one E9.5 anterior cluster along the differentiation trajectory in Fig 2A and one not within this differentiation trajectory. Another is that technical aspects of generating these sequencing libraries affected some cells more than others, resulting in clustering of highly affected and less affected cells, which would also be consistent with some E9.5 anterior cells lying within the differentiation trajectory and some not. Since it is challenging to differentiate between these possibilities with the data available, we have intentionally avoided overstating interpretations of this result in the manuscript text. We have included discussion of the potential implications of the transcriptional divergence you identify in Discussion paragraphs 4 and 7.

      (4) Figure 5F - there does seem to be more LEFTY1/2 staining in the anterior region, but also more germ cells as highlighted by GFP

      This is true; based on our selected anatomic landmarks for “anterior” and “posterior” as indicated in Methods, the “anterior” compartment typically contains more PGCs. Thus, we have included violin plots with all data points shown of signal intensities of both LEFTY1/2 and pSMAD2/3 in Fig. 5G and 5I so that the reader can evaluate the entire distribution of PGC signal intensities for each embryo.

      Reviewer #3 (Public review):

      Summary:

      The migration of primordial germ cells (PGCs) to the developing gonad is a poorly understood, yet essential step in reproductive development. Here, the authors examine whether there are differences in leading and lagging migratory PGCs using single-cell RNA sequencing of mouse embryos. Cleverly, the authors dissected embryonic trunks along the anterior-to-posterior axis prior to scRNAseq in order to distinguish leading and lagging migratory PGCs. After batch corrections, their analyses revealed several known and novel differences in gene expression within and around leading and lagging PGCs, intercellular signaling networks, as well as number of genes upregulated upon gonad colonization. The authors then compared their datasets with publicly available human datasets to identify common biological themes. Altogether, this rigorous study reveals several differences between leading and lagging migratory PGCs, hints at signatures for different fates among the population of migratory PGCs, and provides new potential markers for post-migratory PGCs in both humans and mice. While many of the interesting hypotheses that arise from this work are not extensively tested, these data provide a rich platform for future investigations.

      Strengths:

      The authors have successfully navigated significant technical challenges to obtain a substantial number of mouse migratory primordial germ cells for robust transcriptomic analysis. Here the authors were able to collect quality data on ~13,000 PGCs and ~7,800 surrounding somatic cells, which is ten times more PGCs than previous studies.

      The decision to physically separate leading and lagging primordial germ cells was clever and well-validated based on expected anterior-to-posterior transcriptional signatures.

      Within the PGCs and surrounding tissues, the authors found many gene expression dynamics they would expect to see both along the PGC migratory path as well as across developmental time, increasing confidence in the new differentially expressed genes they found.

      The comparison of their mouse-based migratory PGC datasets with existing human migratory PGC datasets is appreciated.

      The quality control, ambient RNA contamination elimination, batch correction, cell identification and analysis of scRNAseq data were thorough and well-done such that the new hypotheses and markers found through this study are dependable.

      The subsetting of cells in their trajectory analysis is appreciated, further strengthening their cell terminal state predictions.

      Weaknesses:

      Although it is useful to compare their mouse-based dataset with human datasets, the authors used two different analysis pipelines for each dataset. While this may have been due to the small number of cells in the human dataset as mentioned, it does make it difficult to compare them.

      Direct comparisons between findings in human and mouse focused on CellChat cell-cell communication prediction results, which were conducted in an identical fashion using the same analysis methods for both datasets.

      There were few validation experiments within this study. For one such experiment, whether there is a difference in pSMAD2/3 along the AP axis is unclear and not quantified as was nicely done for Lefty1/2.

      Additional validation of the pSMAD2/3 signal intensity along the AP axis was performed and is now included in Fig. 5.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Public review): 

      In this manuscript, Tiedje and colleagues longitudinally track changes in parasite numbers across four time points as a way of assessing the effect of malaria control interventions in Ghana. Some of the study results have been reported previously, and in this publication, the authors focus on age-stratification of the results. Malaria prevalence was lower in all age groups after IRS. Follow-up with SMC, however, maintained lower parasite prevalence in the targeted age group but not the population as a whole. Additionally, they observe that diversity measures rebound more slowly than prevalence measures. This adds to a growing literature that demonstrates the relevance of asymptomatic reservoirs. 

      Strengths:  

      Overall, I found these results clear, convincing, and well-presented. There is growing interest in developing an expanded toolkit for genomic epidemiology in malaria, and detecting changes in transmission intensity is one major application. As the authors summarize, there is no one-size-fits-all approach, and the Bayesian MOIvar estimate developed here has the potential to complement currently used methods, particularly in regions with high diversity/transmission. I find its extension to a calculation of absolute parasite numbers appealing as this could serve as both a conceptually straightforward and biologically meaningful metric.

      We thank the reviewer for this positive review of our results and approach.

      Weaknesses:

      While I understand the conceptual importance of distinguishing among parasite prevalence, mean MOI, and absolute parasite number, I am not fully convinced by this manuscript's implementation of "census population size".

      This reviewer remains unconvinced of the use of the term “census population size”. This appears to be due to the dependence of the term on sample size rather than representing a count of a whole population. To give context to our use we are clear in the study presented that the term describes a count of the parasite “strains” in an age-specific sample of a human population in a specified location undergoing malaria interventions. 

      They have suggested instead using “sample parasite count”.  We argue that this definition is too specific and less applicable when we extrapolate the same concept to a different denominator, such as the population in a given area. Importantly, our ecological use of a census allows us to count the appearance of the same strain more than once should this occur in different people. 

      The authors reference the population genetic literature, but within the context of that field, "census population size" refers to the total population size (which, if not formally counted, can be extrapolated) as opposed to "effective population" size, which accounts for a multitude of demographic factors. There is often interesting biology to be gleaned from the magnitude of difference between N and Ne.

      As stated in the introduction we have been explicit in saying that we are not using a population genetic framework. Exploration of N and Ne in population genetics has merit. How this is reconciled when using a “strain” definition and not neutral markers would need to be assessed.  

      In this manuscript, however, "census population size" is used to describe the number of distinct parasites detected within a sample, not a population. As a result, the counts do not have an immediate population genetic interpretation and cannot be directly compared to Ne. This doesn't negate their usefulness but does complicate the use of a standard population genetic term.

      We are clear we are defining a census of parasite strains in an age-specific sample of a population living in two catchment areas of Bongo District. We appreciate the concern of the reviewer and have now further edited the relevant paragraphs in both the Introduction (Lines 75-80) and the Discussion (Lines 501-506) to make very clear the dependence of the reported quantity on sample size, but also its feasible extrapolation consistent with the census of a population. 

      In contrast, I think that sample parasite count will be most useful in an epidemiological context, where the total number of sampled parasites can be contrasted with other metrics to help us better understand how parasites are divided across hosts, space and time. However, for this use, I find it problematic that the metric does not appear to correct for variations in participant number. For instance, in this study, participant numbers especially varied across time for 1-5 year-olds (N=356, 216, 405, and 354 in 2012, 2014, 2015, and 2017 respectively).

      The reviewer has made an important point that for the purpose of comparisons across the four surveys or study time points (i.e., 2012, 2014, 2015, and 2017), we should "normalize" the number of individuals considered for the calculation of the "census population size".  Given that this quantity is a sum of the estimated MOI<sub>var,,</sub> we need to have constant numbers for its values to be compared across the surveys, within age group and the whole population. This is needed not only to get around the issue of the drop in 1-5 year olds surveyed in 2014 but to also stabilize the total number of individuals for the whole sample and for specific age groups. One way to do this is to use the smaller sample size for each age group across time, and to use that value to resample repeatedly for that number of individuals for surveys where we have a larger sample size. This has now been updated included in the manuscript as described in the Materials and Methods (Lines 329-341) and in the Results (Lines 415-430; see updated Figure 4 and Table supplement 7). This correction produces very similar results to those we had presented before (see updated Figure 4 and Table supplement 7).   

      As stated in our previous response we have used participant number in an interrupted time series where the population was sampled by age to look at age-specific effects of sequential interventions IRS and SMC. As shown in Table supplement 1 of the 16 age-specific samples of the total population, we have sampled very similar proportions of the population by age group across the four surveys. The only exception was the 1-5 year-old age group during the survey in 2014. We are happy to provide additional details to further clarify the lower number (or percentage) of 1-5 year olds (based on the total number of participants per survey) in 2014 (~12%; N = 216) compared to the other surveys conducted 2012, 2015, and 2017 (~18-20%; N = 356, 405, and 354, respectively). Please see Table supplement 1 for the total number of participants surveyed in each of the four surveys (i.e., 2012, 2014, 2015, and 2017).   

      This sample size variability is accounted for with other metrics like mean MOI. 

      We agree that mean MOI by age presents a way forward with variable samples to scale up. Please see updated Figure supplement 8.  

      In sum, while the manuscript opens up an interesting discussion, I'm left with an incomplete understanding of the robustness and interpretability of the new proposed metric.”

      We thank you for your opinion. We have further edited the manuscript to make clear our choice of the term and the issue of sample size.  We believe the proposed terminology is meaningful as explained above.

      Reviewer #3 (Public review): 

      Summary

      The manuscript coins a term "the census population size" which they define from the diversity of malaria parasites observed in the human community. They use it to explore changes in parasite diversity in more than 2000 people in Ghana following different control interventions. 

      Strengths:

      This is a good demonstration of how genetic information can be used to augment routinely recorded epidemiological and entomological data to understand the dynamics of malaria and how it is controlled. The genetic information does add to our understanding, though by how much is currently unclear (in this setting it says the same thing as age stratified parasite prevalence), and its relevance moving forward will depend on the practicalities and cost of the data collection and analysis. Nevertheless, this is a great dataset with good analysis and a good attempt to understand more about what is going on in the parasite population.

      Thank you to the reviewer for their supportive assessment of our research.

      Weaknesses

      None

      Reviewer #3 (Recommendations for the authors): 

      New figure supplement 8 - x-axis says percentage but goes between 0-1, so is a proportion

      We thank the reviewer for bringing this to our attention. We have amended the x-axis labels accordingly for Figure supplement 8.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Ozcan et al., presents compelling evidence demonstrating the latent potential of glial precursors of the adult cerebral cortex for neuronal reprogramming. The findings substantially advance our understanding of the potential of endogenous cells in the adult brain to be reprogrammed. Moreover, they describe a molecular cocktail that directs reprogramming toward corticospinal neurons (CSN).

      Strengths:

      Experimentally, the work is compelling and beautifully designed, with no major caveats. The main conclusions are fully supported by the experiments. The work provides a characterization of endogenous progenitors, genetic strategies to isolate them, and proof of concept of exploiting these progenitors' potential to produce a specific desired neuronal type with "a la carte" combination of transcription factors.

      Weaknesses:

      Some issues need to be addressed or clarified before publication. The manuscript requires editing. It is dense and rich in details while in other parts there are a few mistakes.

      We thank the reviewer for their excellent summary and for their extremely positive review of our paper. We are pleased that the experimental design and conclusions were judged to be wellsupported.

      We have revised the paper to enhance clarity, include additional relevant citations, and refine terminology in some sections of the original version.

      We appreciate the reviewer’s thoughtful review and agree that these revisions enhance the paper.

      Reviewer #2 (Public Review):

      Summary:

      Here the authors show a novel direct neuronal reprogramming model using a very pure culture system of oligodendrocyte progenitor cells and demonstrate hallmarks of corticospinal neurons to be induced when using Neurogenin2, a dominant-negative form of Olig2 in combination with the CSN master regulator Fezf2.

      Strengths:

      This is a major achievement as the specification of reprogrammed neurons towards adequate neuronal subtypes is crucial for repair and still largely missing. The work is carefully done and the comparison of the neurons induced only by Neurogenin 2 versus the NVOF cocktail is very interesting and convincingly demonstrates a further subtype specification by the cocktail.

      Weaknesses:

      As carefully as it is done in vitro, the identity of projection neurons can best be assessed in vivo. If this is not possible, it could be interesting to co-culture different brain regions and see if these neurons reprogrammed with the cocktail, indeed preferentially send out axons to innervate a co-cultured spinal cord versus other brain region tissue.

      We appreciate the reviewer’s positive evaluation of our work and their recognition of its significance in advancing neuronal subtype specification through directed differentiation of endogenous progenitors. 

      We agree with the reviewer’s suggestion that a very interesting future stage of this work would be to investigate the projection neuron identity in vivo. We aim to pursue follow-up studies to investigate in vivo integration and connectivity of such neurons generated by directed differentiation from endogenous SOX6+/NG2+ cortical progenitors. As the reviewer insightfully suggests, co-culturing different brain regions with these neurons could offer an alternative strategy to partially assess potential preferential connectivity into cultured spinal cord vs. alternate tissue.

      We agree with the reviewer that future investigation in vivo will further strengthen the implications of this work.

      Reviewer #3 (Public Review):

      Summary:

      Ozkan, Padmanabhan, and colleagues aim to develop a lineage reprogramming strategy towards generating subcerebral projection neurons from endogenous glia with the specificity needed for disease modelling and brain repair. They set out by targeting specifically Sox6-positive NG2 glia. This choice is motivated by the authors' observation that the early postnatal forebrain of Sox6 knockout mice displays marked ectopic expression of the proneural transcription factor (TF) Neurog2, suggesting a latent neurogenic program may be derepressed in NG2 cells, which normally express Sox6. Cultured NG2 glia transfected with a construct ("NVOF") encoding Neurog2, the corticofugal neuron-specifying TF Fezf2, and a constitutive repressor form of Olig2 are efficiently reprogrammed to neurons. These acquire complex morphologies resembling those of mature endogenous neurons and are characterized by fewer abnormalities when compared to neurons induced by Neurog2 alone. NVOF-induced neurons, as a population, also express a narrower range of cortical neuron subtype-specific markers, suggesting narrowed subtype specification, a potential step forward for Neurog2-driven neuronal reprogramming. Comparison of NVOF- and Neurog2-induced neurons to endogenous subcerebral projection neurons (SCPN) also indicates Fezf2 may aid Neurog2 in directing the generation of SCPN-like neurons at the expense of other cortical neuronal subtypes.

      Strengths:

      The report describes a novel, highly homogeneous in vitro system amenable to efficient reprogramming. The authors provide evidence that Fezf2 shapes the outcome of Neurog2-driven reprogramming towards a subcerebral projection neuron identity, consistent with its known developmental roles. Also, the use of the modified RNA for transient expression of Neurog2 is very elegant.

      Weaknesses:

      The molecular characterization of NVOF-induced neurons is carried out at the bulk level, therefore not allowing to fully assess heterogeneity among NVOF-induced neurons. The suggestion of a latent neurogenic potential in postnatal cortical glia is only partially supported by the data from the Sox6 knockout. Finally, some of the many exciting implications of the study remain untested.

      Discussion:

      The study has many exciting implications that could be further tested. For example, an ultimate proof of the subcerebral projection neuron identity would be to graft NVOF cells into neonatal mice and study their projections. Another important implication is that Sox6-deficient NG2 glia may not only express Neurog2 but activate a more complete neurogenic programme, a possibility that remains untested here.

      Also, is the subcerebral projection neuron dependent on the starting cell population? Could other NG2 glia, not expressing Sox6, also be co-axed by the NVOF cocktail into subcerebral projection neurons? And if not, do they express other (Sox) transcription factors that render them more amenable to reprogramming into other cortical neuron subtypes? The authors state that SOX6-positive NG2 glia are a quiescent progenitor population. Given that NG2 glia is believed to undergo proliferation as a whole, are Sox6-positive NG2 glia an exception from this rule? Finally, the authors seem to imply that subcerebral projection neurons and Sox6-positive NG2 glia are lineage-related. However, direct evidence for this conjecture seems missing.

      We appreciate the reviewer’s thoughtful and detailed review of this work. We especially appreciate the positive evaluation of the work and the highlighting of multiple strengths of our approach, including the role of Fezf2 in refining neuronal subtype identity and the use of modified RNA to enable transient expression of Neurog2.

      We acknowledge the reviewer’s comment that single-cell transcriptomic analysis would indeed provide a more granular view of likely heterogeneity. This current study focuses on investigating the feasibility of directed differentiation of corticospinal-like neurons from endogenous progenitors. Future work employing single-cell sequencing could indeed help delineate the heterogeneity of neurons generated by directed differentiation, and potentially contribute toward identification of potential molecular roadblocks in different subsets.

      Regarding the suggestion that SOX6-deficient NG2+ progenitors might activate a broader neurogenic program, we agree that this is an intriguing possibility. We are currently conducting indepth investigation of the loss of SOX6 function in NG2+ progenitors, and we aim to submit this quite distinct work for separate publication.

      The reviewer raises an important point about whether SOX6+/NG2+ progenitors and subcerebral projection neurons are indeed normally lineage-related. In the current work, we utilized postnatal cortical SOX6+/NG2+ progenitors that are thought to be largely derived from EMX1+ and GSH2+ ventricular zone neural progenitors. Our unpublished data from the separate study noted above indicate that SOX6 is expressed by both these lineages in vivo. Since subcerebral projection neurons are derived from EMX1+ ventricular zone progenitors (SOX6-expressing), at least some of the SOX6+/NG2+ progenitors are expected to share a lineage relationship with subcerebral projection neurons. While our data strongly suggest such a link, we agree that direct lineagetracing could be pursued in future work. 

      Finally, we agree with the reviewer’s suggestion that in vivo transplantation to assess the identity and connectivity of neurons generated by directed differentiation would be very interesting, and is a natural next phase of this work. We aim to pursue such work in future investigations.

      We again thank the reviewer for their insightful comments.

      Reviewer #1 (Recommendations For The Authors): 

      The most important clarification for me concerns the initial description of the progenitors. I think there is a mistake with the transgenic line NG2. The dsRed mouse used in Figure 1 C is not described until later in the results describing Figure 2. This was confusing. Moreover, perhaps this is a reason why I get confused and do not understand how the authors conclude that SOX6+ cells are a subset of NG2positive cells. Panel C shows the opposite. Please correct the description and show the quantification of data in panel 1C.

      We thank the reviewer for their thoughtful review and for highlighting this important point. We appreciate the reviewer pointing out the benefit of further clarity regarding the NG2.DsRed transgenic mouse description in Figure 1C. We have revised the text to clarify the use of the transgenic line and ensure that the DsRed mouse is properly introduced. Additionally, we have further clarified the description explaining the basis for concluding that SOX6+ cells are a subset of NG2+ cells and further integrate this conclusion with the data presented.

      During cell sorting from the cortices of NG2.DsRed mice, we observe two distinct populations of NG2-DsRed+ cells based on fluorescence intensity in FACS: NG2-DsRed “bright” and NG2-DsRed “dim” populations. The NG2-DsRed “dim” population consists of a heterogenous mix of NESTIN+ progenitors, GFAP+ astrocytes/progenitors, a subset of NG2+ cells, and other unidentified cells. In contrast, the DsRed “bright” population includes a broader group of progenitors that also give rise to oligodendrocytes (please see Zhu, Bergles, and Nishiyama 2008), along with pericytes. 

      Previous studies have shown that, while dorsal/pallial VZ progenitors express SOX6 during embryonic development, SOX6 expression becomes restricted to interneurons postnatally (these do not express NG2 proteoglycan; Azim et al., 2009) and to the broader group of NG2+ progenitors that also give rise to oligodendrocytes. The ICC image in Fig. 1C shows bright NG2+ cells in the cortex, many of which express SOX6. Thus, we conclude that SOX6+ cells constitute a subset of NG2-DsRed+ cells. 

      In a similar line, the work is beautiful, but the manuscript can gain a lot from shortening and some more editing. for example:

      (1) In the abstract, the word inappropriate should be removed. It seems to me that is an unnecessary subjective qualification - it is hardly possible that in biology we found repression of something inappropriate.

      We have removed the word “inappropriate”.

      (2) FACS-purify these genetically accessible....establish a pure culture. Genetically accessible is nice, and I understand that it conveys that they can be traced in the mouse, but everything is genetically accessible with the right tool, and perhaps it is more informative to explain which gene or report is used for the isolation. These cells are not accessible in humans. Also, I consider it best to remove pure- the culture is pure (purified by FACS) cells.

      We have revised the text to specify the gene/reporter used for isolation instead of using "genetically accessible", and we removed "pure", since FACS purification is already explicitly mentioned.

      (3) In the initial paragraph in the results: "They are exposed to the same morphogen gradients throughout embryonic development, and thus, compared to distant cell types, have similar epigenomic and transcription landscapes." This is proven in the cited publication, but the way is stated here seems a bit of an unnecessary overstatement. The hypothesis stated after this paragraph is as good as it is with or without this argument.

      We have revised the text and simplified the statement. We agree that the hypothesis remains clear and well-supported without this emphasis.

      (4) In the result sections, "two distinct populations of DsREd-positive cells were identified based on fluorescence intensity"- I know it is correct, but when reading the percentages, I was confused because those percentages divided the population into three fractions. What the authors do not explain is that they discard the intermediate-expressing population.

      We appreciate the reviewer highlighting this inadvertent point of confusion. We erred by discussing only the two populations of central interest to us (DsRed-bright and DsRed-dim), and did not explicitly mention the DsRed-negative population. We have now clarified the text to include all three cell populations and their percentages of the total cells in all three populations (in the original manuscript and still now, ~75-78% were DsRed-negative). We have also further clarified that only DsRed-Bright cells (identified as progenitors) were used for all subsequent experiments.

      These examples illustrate the type of editing that would be appreciated but which is entirely up to the authors.

      We thank the reviewer for their thoughtful suggestions toward improving clarity and precision. We have incorporated these recommendations, along with suggestions from the other two reviewers, in the revised paper.

      Reviewer #2 (Recommendations For The Authors):

      (1)  The authors start their results section by showing in situ Hybridization for Ngn2 in control and Sox6KO mice. These control sections do not look convincing, as there is not even some signal in the adult VZSVZ region and virtually no background. Please show sections where some positive signal can also be detected in the control sections.

      We agree with the reviewer that making direct comparisons in ISH experiments is an important point. In our ISH experiments, to ensure consistency and appropriate comparisons, we process WT and KO sections together and stop the signal development simultaneously. We could have extended the development time to enhance WT signal to a detectable level, but that would have led to excessive background and over-saturated signal in the KO sections.

      To address the reviewer’s point, we have added a new supplementary figure with an additional pair of WT and KO sections, along with reference data from the Allen Brain Atlas. The WT section shows faint Neurog2 expression in the dentate gyrus region of the hippocampus, while the KO section confirms very substantial upregulation of Neurog2 in the absence of SOX6 function. These additional data enhance the clarity and depth of our results.

      Please see the following link for the Allen Brain Atlas ISH data demonstrating that Neurog2 expression in the postnatal (P4) SVZ/SGZ is inherently low. (https://developingmouse.brainmap.org/experiment/show/100093831). 

      (2) As a hallmark of projection neurons is where they send their axons, it would be important to include a biological assay for this. Of course, in vivo experiments would be great, but if this is not possible, the authors could co-culture sections from the late embryonic cortex, striatum, and spinal cord to see if the reprogrammed neurons preferentially extend their axons towards one of these targets (as normally developing neurons would, see e.g. Bolz et al., 1990).

      We agree with the reviewer’s suggestion that a very interesting future stage of this work would be to investigate the projection neuron identity including connectivity in vivo. We aim to pursue follow-up studies to investigate in vivo integration and connectivity of such neurons generated by directed differentiation from endogenous SOX6+/NG2+ cortical progenitors. As the reviewer insightfully suggests, co-culturing different brain regions with these neurons could offer an alternative strategy to partially assess potential preferential connectivity into cultured spinal cord vs. alternate tissue. This area of investigation is of substantial interest to our lab, and we aim to pursue it in the coming years– it is a very large undertaking by either approach.

      (3) However, if the loss of Sox6 is sufficient for Ngn2 to be upregulated, why did the authors not pursue this approach in their reprogramming experiments? Are these endogenous levels sufficient for reprogramming? Please add some OPC cultures from WT and KO mice to explore their conversion to neurons and possibly combine them with Olig2VP16 and Fezf2.

      We thank the reviewer for this insightful comment and for raising this broader area of inquiry regarding whether SOX6 might be down-regulated to enhance induction of neurogenesis. We are writing a separate manuscript regarding function of SOX6 in these progenitors during normal or molecularly manipulated development. We investigate function of SOX6 using both whole body null mice and a series of conditional null mice. We aim to post that work as a preprint and submit it for review and publication in the coming months. Beyond that work, the potential strategy of downregulating SOX6 function while simultaneously upregulating other molecular controls to refine directed neuronal differentiation is also of substantial interest to us, and we aim to pursue this in follow-up work. Though these are both interesting questions/topics, we respectfully submit that these broad areas of parallel, complex, and future investigation would substantially expand the scope of work in this paper, so we aim to address them in separate studies.

      (4) Please indicate independent biological replicates as individual data points in all histograms, i.e. also in Figure 2K, Figure 4I, S2H.

      We have updated the figure legends indicating the biological replicates, and explained the broad media optimization that was used successfully in all further experiments.

      (5) GFP labelling in Figures S2K-N is not convincing - too high background. Please optimize.

      We have redesigned this figure and now present it as a new supplementary figure, with GFP pseudocolored in gray and enlarged subpanels for improved visualization of cell morphology.

      Reviewer #3 (Recommendations For The Authors):

      This is an extremely well-written manuscript with very exciting implications. Obviously, not all can be tested here. Some of the suggestions are relatively easy and may be worth testing right away, others may require more extensive study in the future. In my view, completing some of the points below could make this paper a landmark study.

      I start with the key questions:

      (1) Do grafted NVOF cells give rise to subcerebral projection neurons in vivo?

      We agree with the reviewer’s suggestion that a very interesting future stage of this work would be to investigate the projection neuron identity including connectivity in vivo. As noted above in response to Reviewer 2, we aim to pursue follow-up studies to investigate in vivo integration and connectivity of such neurons generated by directed differentiation from endogenous SOX6+/NG2+ cortical progenitors. This question is of substantial interest to us, and we aim to pursue it in the coming years– as the reviewer notes, this is a very large undertaking, and beyond the scope of this paper.

      (2) What is the fate of the Sox6 deficient NG2 glia that express Neurog2? One could isolate these cells and subject them to scRNA sequencing to see how far neurogenesis proceeds without addition of exogenous factors.

      We thank the reviewer for this insightful question. As noted in our response to Reviewer 2, we are writing a separate manuscript regarding function of SOX6 in these progenitors during normal or molecularly manipulated development. We investigate function of SOX6 using both whole body null mice and a series of conditional null mice. We aim to post that work as a preprint and submit it for review and publication in the coming months, likely in early summer. We respectfully submit that this broad area of parallel, complex investigation would substantially expand the scope of work in this paper and make this paper too complex and multi-directional, so we aim to publish them as separate papers for the benefit of clarity for readers.

      (3) Obviously, what happens to Sox6-deficient (or non-deficient cells) when forced to express NVOF? In this context, it might be fair to cite Felske et al (PLoS Biol, 2023) who report Neurog2 and Fezf2-induced reprogramming in the postnatal brain. In their model, these authors did not distinguish between converted astrocytes and NG2 glia. Thus, some of the reprogrammed cells may comprise the SOX6positive cells described here.

      We thank the reviewer for highlighting for us that we inadvertently omitted referencing the important paper by Felske et al., 2023. We have now included this citation. 

      We thank the reviewer for raising this broader area of inquiry regarding whether SOX6 might be down-regulated to enhance induction of neurogenesis. Beyond the work noted above regarding function of SOX6 in these progenitors during normal or molecularly manipulated development, the potential strategy of downregulating SOX6 function while simultaneously upregulating other molecular controls to refine directed neuronal differentiation is of substantial interest to us, and we aim to pursue this in follow-up work. We again respectfully submit that this area of complex, future investigation should be addressed in future studies.

      Very interesting unaddressed questions include:

      (1) Are Sox6+ NG glia of dorsal origin? This is implied but not shown. One could use Emx1Cre lines to assess this. Are Sox6+ glia and subcerebral projection neurons clonally related? This may be more challenging. In this context, it might be again fair to refer to Herrero-Navarro et al (Science Advances 2021) who show that glia lineage related to nearby neurons gives rise to induced neurons with regional specificity.

      The reviewer raises an important question regarding the competence of SOX6+/NG2+ progenitors from distinct origins to generate corticospinal-like neurons by directed differentiation. In ongoing unpublished work, we have identified SOX6 expression by NG2+ progenitors of the three lineages derived from ventricular zone progenitors that express either Emx1, Gsh2, or Nkx2.1 transcription factors. The EMX1+ lineage-derived SOX6+/NG2+ progenitors are directly lineage related to cortical projection neurons. As the reviewer suggests, future experiments could explore potential differences in competence between these three populations.

      We again thank the reviewer for highlighting for us that we also inadvertently omitted referencing the exciting study by Herrero-Navarro that addresses the question of regional heterogeneity within astrocytes and the differential reprogramming potential related to their origins. We have now cited this paper in the manuscript.

      (2) Do other NG2 glia not give rise to subcerebral projection neurons when challenged with NVOF? Thus, how important is Sox6 expression really?

      The question of the specific competence of dorsal/cortical SOX6+/NG2+ progenitors to differentiate into corticospinal-like neurons, and the strategy of downregulating SOX6 function while simultaneously upregulating other molecular controls to direct neuronal differentiation, are both of great interest to us. In pilot experiments, we observed reduced competence of ventrallyderived SOX6+/NG2+ progenitors to generate similar neurons. We plan to pursue the SOX6 manipulation in follow up work.

      (3) Do Sox6+ NG2 glia proliferate like other NG2 glia and thereby represent a replenishable pool of progenitors?

      Yes; as noted in the text shortly after Figure 1, and as presented in Figure S3l-L, these progenitors proliferate robustly in response to the mitogens PDGF-A and FGF2.

      (4) How heterogenous are the NVOF-induced neurons? The bulk highlights the overall specificity, but does not tell whether all cells make it equally well.

      We agree with the reviewer that this is an interesting question. ICC analysis (Fig. 4G-4H) presents the variation in the levels of a few functionally important proteins in the population of NVOFinduced neurons. This could be due to any or all of at least three potential possibilities: 1) potential diversity in the population of purified SOX6+/NG2+ progenitors; 2) technical variability in the amount of NVOF plasmid delivered to individual progenitors during transfection; and/or 3) natural stochastic TF-level variations generating closely-related neuron types, that also occurs during normal development. Future experiments could explore these questions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer#1 (Public review):

      This work regards the role of Aurora Kinase A (AurA) in trained immunity. The authors claim that AurA is essential to the induction of trained immunity. The paper starts with a series of experiments showing the effects of suppressing AurA on beta-glucan-trained immunity. This is followed by an account of how AurA inhibition changes the epigenetic and metabolic reprogramming that are characteristic of trained immunity. The authors then zoom in on specific metabolic and epigenetic processes (regulation of S-adenosylmethionine metabolism & histone methylation). Finally, an inhibitor of AurA is used to reduce beta-glucan's anti-tumour effects in a subcutaneous MC-38 model.

      Strengths:<br /> With the exception of my confusion around the methods used for relative gene expression measurements, the experimental methods are generally well-described. I appreciate the authors' broad approach to studying different key aspects of trained immunity (from comprehensive transcriptome/chromatin accessibility measurements to detailed mechanistic experiments). Approaching the hypothesis from many different angles inspires confidence in the results (although not completely - see weaknesses section). Furthermore, the large drug-screening panel is a valuable tool as these drugs are readily available for translational drug-repurposing research.

      We thank the reviewer for the positive and encouraging comments.

      Weaknesses:

      (1) The manuscript contains factual inaccuracies such as:

      (a) Intro: the claim that trained cells display a shift from OXPHOS to glycolysis based on the paper by Cheng et al. in 2014; this was later shown to be dependent on the dose of stimulation and actually both glycolysis and OXPHOS are generally upregulated in trained cells (pmid 32320649).

      We appreciate the reviewer for pointing out this inaccuracy, and we have revised our statement to ensure accurate and updated description in manuscript. We are aware that trained immunity involves different metabolic pathways, including both glycolysis and oxidative phosphorylation [1, 2]. We also detected Oxygen Consumption Rate (please see response to comment 8 of reviewer#1) but observed no obvious increase of oxygen consumption in trained BMDMs in our experiment setting. As the reviewer pointed out, it might be dependent on the dose of stimulation.

      (b) Discussion: Trained immunity was first described as such in 2011, not decades ago.

      We are sorry for the inaccurate description, and we have corrected the statement in our revised manuscript as “Although the concept of ‘trained immunity’ has been proposed since 2011, the detailed mechanisms that regulate trained immunity are still not completely understood.”

      (2) The authors approach their hypothesis from different angles, which inspires a degree of confidence in the results. However, the statistical methods and reporting are underwhelming.

      (a) Graphs depict mean +/- SEM, whereas mean +/- SD is almost always more informative. (b) The use of 1-tailed tests is dubious in this scenario. Furthermore, in many experiments/figures the case could be made that the comparisons should be considered paired (the responses of cells from the same animal are inherently not independent due to their shared genetic background and, up until cell isolation, the same host factors like serum composition/microbiome/systemic inflammation etc). (c) It could be explained a little more clearly how multiple testing correction was done and why specific tests were chosen in each instance.

      We sincerely thank the reviewer for this thoughtful comment. (a) The data from animal experiments in which trained immunity was induced in vivo are presented as mean ± SD, while the statistical results from cell-based experiments are presented as mean ± SEM in the revised manuscript. (b) We have replaced one-tailed test with two-tailed test (see Figure 3J in revised manuscript, with updated P value label). We agree that cells derived from the same animal and subjected to different treatment conditions may be deemed paired data. We reanalyzed our data using paired statistical tests. While this led to a slight reduction in statistical significance for some comparisons, the overall trends remained consistent, and our biological interpretation remains unchanged. For in vitro experiments unpaired statistical tests are commonly used in literature [3, 4]. Thus, we still used unpaired test results here. (c) We have provided a detailed description of how multiple comparisons were performed in revised figure legends.

      (d) Most experiments are done with n = 3, some experiments are done with n = 5. This is not a lot. While I don't think power analyses should be required for simple in vitro experiments, I would be wary of drawing conclusions based on n = 3. It is also not indicated if the data points were acquired in independent experiments. ATAC-seq/RNA-seq was, judging by the figures, done on only 2 mice per group. No power calculations were done for the in vivo tumor model.

      We are sorry for the confusion in our description in figure legends. For the in vivo experiment, we determined the sample size (n=5, n refers to number of mice used as biological replicates) by referring to the animal numbers used for similar experiments in literatures. And according to a reported resource equation approach for calculating sample size in animal studies [5], n=5-7 is suitable for most of our mouse experiments. The in vitro cell assay was performed at least three independent experiments (BMs isolated from different mice), and each experiment was independently replicated at least three times and points represents biological replicates in our revised manuscript. In Figure 1A, 5 biological replicates of these experiments are presented to carefully determine a working concentration of alisertib that would not significantly affect the viability of trained macrophages, and that was subsequently used in all related cell-based experiments. As for seq data, we acknowledge the reviewer's concern regarding the small sample size (n=2) in our RNA-seq/ATAC-seq experiment. We consider the sequencing experiment mainly as an exploratory/screening approach, and performed rigorous quality control and normalization of the sequencing data to ensure the reliability of our findings. For RNA-seq data analysis, we referred to the DESeq2 manual, which specifies that its statistical framework is based on the Negative Binomial Distribution and is capable of robustly inferring differential gene expression with a minimum of two replicates per group. Therefore, the inclusion of two replicates per group was deemed sufficient for our analysis. Nevertheless, the genomic and transcriptome sequencing data were used primarily for preliminary screening, where the candidates have been extensively validated through additional experiments. For example, we conducted ChIP followed by qPCR for detecting active histone modification enrichment in Il6 and Tnf region to further verify the increased accessibility of trained immunity-induced inflammatory genes.

      (e) Furthermore, the data spread in many experiments (particularly BMDM experiments) is extremely small. I wonder if these are true biological replicates, meaning each point represents BMDMs from a different animal? (disclaimer: I work with human materials where the spread is of course always much larger than in animal experiments, so I might be misjudging this.).

      Thanks for your comments. In our initially submitted manuscript, some of the statistical results were presented as the representative data (technical replicates) from one of three independent biological replicates (including BMDMs experiments showing the suppression and rescue experiments of trained immunity under different inhibitors or activators, see original Figure 1B-C, Figure 5D, and Figure 5H, also related to Figure 1B-C, Figure 5D, and Figure 5H respectively in our revised manuscript) while other experimental data are biological replicates including CCK8 experiment, metabolic assay and ChIP-qPCR. In response to your valuable suggestion, we have revised the manuscript to present all statistical results as biological replicates from three independent experiments (presented as mean ± SEM), and we have provided all the original data for the statistical analysis results (please see Appendix 2 in resubmit system).

      (3) Maybe the authors are reserving this for a separate paper, but it would be fantastic if the authors would report the outcomes of the entire drug screening instead of only a selected few. The field would benefit from this as it would save needless repeat experiments. The list of drugs contains several known inhibitors of training (e.g. mTOR inhibitors) so there must have been more 'hits' than the reported 8 Aurora inhibitors.

      Thank you for your suggestion and we have briefly reported the outcomes of the entire drug screening in the revised manuscript. The targets of our epigenetic drug library are primarily categorized into several major classes, including Aurora kinase family, histone methyltransferase and demethylase (HMTs and KDMs), acetyltransferase and deacetylase (HDACs and SIRTs), JAK-STAT kinase family, AKT/mTOR/HIF, PARP family, and BRD family (see New Figure 1, related to Figure 1-figure supplement 1B in revised manuscript). Notably, previous studies have reported that inhibition of mTOR-HIF1α signaling axis suppressed trained immunity[6]. Our screening results also indicated that most inhibitors targeting mTOR-HIF1α signaling exhibit an inhibitory effect on trained immunity. Additionally, cyproheptadine, a specific inhibitor for SETD7, which was required for trained immunity as previously reported [7], was also identified in our screening.

      JAK-STAT signaling is closely linked to the interferon signaling pathway, and certain JAK kinase inhibitors also target SYK and TYK kinases. A previous drug library screening study has reported that SYK inhibitors suppressed trained immunity [8]. Consistently, our screening results reveal that most JAK kinase inhibitors exhibit suppressive effects on trained immunity.

      BRD (Bromodomain) and Aurora are well-established kinase families in the field of oncology. Compared to BRD, the clinical applications of the Aurora kinase inhibitor are still at early stage. In previous studies using inflammatory arthritis models where trained immunity was established, both adaptive and innate immune cells exhibited upregulated expression of AurA [9, 10]. Our study provides further evidence supporting an essential role of AurA in trained immunity, showing that AurA inhibition leads to the suppression of trained immunity.

      (4) Relating to the drug screen and subsequent experiments: it is unclear to me in supplementary figure 1B which concentrations belong to secondary screens #1/#2 - the methods mention 5 µM for the primary screen and "0.2 and 1 µM" for secondary screens, is it in this order or in order of descending concentration?

      Thank you for your comments and we are sorry for unclear labelled results in original manuscript (related to Figure 1-supplement 1C). We performed secondary drug screen at two concentrations, and drug concentrations corresponding to secondary screen#1 and #2 are 0.2 and 1 μM respectively. It was just in this order, but not in an order of descending concentration.

      (a) It is unclear if the drug screen was performed with technical replicates or not - the supplementary figure 1B suggests no replicates and quite a large spread (in some cases lower concentration works better?)

      Thank you for your question. The drug screen was performed without technical replicates for initial screening purpose, and we need to verify any hit in the following experiment individually. Yes, we observed that lower concentration works better in some cases. We speculate that it might be due to the fact that the drug's effect correlates positively with its concentration only within a specific range. But in our primary screening, we simply choose one concentration for all the drugs. This is a limitation for our screening, and we acknowledge this limitation in our discussion part.

      (5) The methods for (presumably) qPCR for measuring gene expression in Figure 1C are missing. Which reference gene was used and is this a suitably stable gene?

      We are sorry for this omission. The mRNA expression of Il6 and Tnf in trained BMDMs was analyzed by a quantitative real-time PCR via a DDCt method, and the result was normalized to untrained BMDMs with Actb (β-actin) as a reference gene, a well-documented gene with stable expression in macrophages. We have supplemented the description for measuring gene expression in Material and Methods in our revised manuscript.

      (6) From the complete unedited blot image of Figure 1D it appears that the p-Aurora and total Aurora are not from the same gel (discordant number of lanes and positioning). This could be alright if there are no/only slight technical errors, but I find it misleading as it is presented as if the actin (loading control to account for aforementioned technical errors!) counts for the entire figure.

      We are very sorry for this omission. In the original data, p-Aurora and total Aurora were from different gels. In this experiment the membrane stripping/reprobing after p-Aurora antibody did not work well, so we couldn’t get all results from one gel, and we had to run another gel using the same samples to blot with anti-aurora antibody and used β-tubulin as loading control for total AurA (please see New Figure 2A, also related to original Figure 1D). We have provided the source data for β-tubulin from the same membrane of total AurA (please see Figure 1-source data). To avoid any potential misleading, we have repeated this experiment and updated this Figure (please see New Figure 2B, also related to Figure 1D in revised manuscript) with phospho-AurA, total AurA and β-actin from the same gel. The bands for phospho AurA (T288) were obtained using a new antibody (Invitrogen, 44-1210G) and we have revised this information in Material and Methods. We have provided data of three biological replicates to confirm the experiment result also see New Figure 2B, related to Figure 1D in revised manuscript, and the raw data have been added in source data for Figure 1)

      (7) Figure 2: This figure highlights results that are by far not the strongest ones - I think the 'top hits' deserve some more glory. A small explanation on why the highlighted results were selected would have been fitting.

      We appreciate the valuable suggestion. Figure 2 (see also Figure 2 in revised manuscript) presented information on the chromatin landscape affected by AurA inhibition to confirm that AurA inhibition impaired key gene activation involved in pro-inflammatory macrophage activation by β-glucan. In Figure 2B we highlighted a few classical GO terms downregulated including “regulation of growth”, “myeloid leukocyte activation” and “MAPK cascade” (see also Figure 2B in revised manuscript), among which “regulation of growth” is known function of Aurora A, just to show that alisertib indeed inhibited Aurora A function in vivo as expected. “Myeloid leukocyte activation” and “MAPK cascade” were to show the impaired pro-inflammatory gene accessibility. We highlighted KEGG terms downregulated like “JAK-STAT signaling pathway”, “TNF signaling pathway” and “NF-kappa B signaling pathway” in Figure 2F (see also Figure 2F in revised manuscript), as these pathways are highly relevant to trained immunity. Meanwhile, KEGG terms “FOXO signaling pathway” (see also Figure 2G in revised manuscript) was highlighted to confirm the anti-inflammation effect of alisertib in trained BMDMs, which was further illustrated in Figure 5 (see also Figure 5 in revised manuscript, illustrating FOXO3 acts downstream of AurA). Some top hits in Figure 2B like “positive regulation of cell adhesion”, and “pathway of neurodegeneration” and "ubiquitin mediated proteolysis" in Figure 2F and 2G, is not directly related to trained immunity, thus we did not highlight them, but may provide some potential information for future investigation on other functions of Aurora A.

      (8) Figure 3 incl supplement: the carbon tracing experiments show more glucose-carbon going into TCA cycle (suggesting upregulated oxidative metabolism), but no mito stress test was performed on the seahorse.

      We appreciate this question raised by the reviewer. We previously performed seahorse XF analyze to measure oxygen consumption rate (OCR) in β-glucan-trained BMDMs. The results showed no obvious increase in oxidative phosphorylation (OXPHOS) indicated by OCR under β-glucan stimulation (related to Figure 3-figure supplement 1 A) although the carbon tracing experiments showed more glucose-carbon going into TCA cycle. We speculate that the observed discrepancy between increased glucose incorporation into TCA cycle and unchanged OXPHOS may reflect a characteristic metabolic reprogramming induced by trained immunity. The increased incorporation of glucose-derived carbon into the TCA cycle likely serves a biosynthetic purpose—supplying intermediates for anabolic processes—rather than augmenting mitochondrial respiration[6]. Moreover, the unchanged OXPHOS may be attributed to a reduced reliance on fatty acid oxidation- “catabolism”, with glucose-derived acetyl-CoA becoming the predominant substrate. Thus, while overall OXPHOS remains stable, the glucose contribution to the TCA cycle increases. This is in line with reports showing that trained immunity promotes fatty acid synthesis- “anabolism”[11]. Alternatively, the partial decoupling of the TCA cycle from OXPHOS could result from the diversion of intermediates such as fumarate out of the cycle. Oxygen consumption rate (OCR) after a mito stress test upon sequential addition of oligomycin (Oligo, 1 μM), FCCP (1 mM), and Rotenone/antimycin (R/A, 0.5 μM), in BMDMs with different treatment for 24 h. β-glucan, 50 μg/mL; alisertib, 1 μM.

      (9) Inconsistent use of an 'alisertib-alone' control in addition to 'medium', 'b-glucan', 'b-glucan + alisertib'. This control would be of great added value in many cases, in my opinion.

      Thank you for your comment. We appreciate that including “alisertib-alone” group throughout all the experiments may further solidify the results. We set the aim of the current study to investigate the role of Aurora kinase A in trained immunity. Therefore, in most settings, we did not include the group of alisertib only without β-glucan stimulation.

      (10) Figure 4A: looking at the unedited blot images, the blot for H3K36me3 appears in its original orientation, whereas other images appear horizontally mirrored. Please note, I don't think there is any malicious intent but this is quite sloppy and the authors should explain why/how this happened (are they different gels and the loading sequence was reversed?)

      Thank you for pointing out this error. After checking the original data, we found that we indeed misassembled the orientation of several blots in original data submitted. We went through the assembling process and figured out that the orientation of blots in original data was assembled according to the loading sequences, but not saved correctly, so that the orientations in Figure 4A were not consistent with the unedited blot image. We are sorry for this careless mistake, and we have double checked to make sure all the blots are correctly assembled in the revised manuscript. We also provided three replicates of for the Western blot results showing the level of H3K36me3 in trained BMDMs was inhibited by alisertib (as seen in New Figure 7 at recommendation 2 of reviewer#2).

      (11) For many figures, for example prominently figure 5, the text describes 'beta-glucan training' whereas the figures actually depict acute stimulation with beta-glucan. While this is partially a semantic issue (technically, the stimulation is 'the training-phase' of the experiment), this could confuse the reader.

      Thanks for the reviewer’s suggestion and we have reorganized our language to ensure clarity and avoid any inconsistencies that might lead to misunderstanding.

      (12) Figure 6: Cytokines, especially IL-6 and IL-1β, can be excreted by tumour cells and have pro-tumoral functions. This is not likely in the context of the other results in this case, but since there is flow cytometry data from the tumour material it would have been nice to see also intracellular cytokine staining to pinpoint the source of these cytokines.

      Thanks for the reviewer’s suggestion. In Figure 6, we performed assay in mouse tumor model and found that trained immunity upregulated cytokines level like IL-6 in tumor tissue, which was downregulated by alisertib administration. In order to rule out the possibility that the detected cytokines such as IL-6 was from tumor cells, we performed intracellular cytokine staining of single cells isolated from tumor tissues (please see New Figure 4). The result showed that only a small fraction of non-immune cells (CD45<sup>-</sup> population) expressed IL-6 (0.37% ± 0.11%), whereas a significantly higher proportion of IL-6-positive cells was observed among CD45<sup>+</sup> population (deemed as immune cells, 13.66% ± 1.82%), myeloid cells (CD45<sup>+</sup>CD11b<sup>+</sup>, 15.60% ± 2.19%), and in particular, macrophages (CD45<sup>+</sup>CD11b<sup>+</sup>F4/80<sup>+</sup>37.24% ± 3.04%). These findings strongly suggest that immune cells, especially macrophages, are the predominant source of IL-6 cytokine within the tumor microenvironment. Moreover, we also detected higher IL-6 positive population in myeloid cells and macrophages (please see Figure 6I in revised manuscript).

      Reviewer#2 (Public review):

      Summary:

      This manuscript investigates the inhibition of Aurora A and its impact on β-glucan-induced trained immunity via the FOXO3/GNMT pathway. The study demonstrates that inhibition of Aurora A leads to overconsumption of SAM, which subsequently impairs the epigenetic reprogramming of H3K4me3 and H3K36me3, effectively abolishing the training effect.

      Strengths:

      The authors identify the role of Aurora A through small molecule screening and validation using a variety of molecular and biochemical approaches. Overall, the findings are interesting and shed light on the previously underexplored role of Aurora A in the induction of β-glucan-driven epigenetic change.

      We thank the reviewer for the positive and encouraging comments.

      Weaknesses:

      Given the established role of histone methylations, such as H3K4me3, in trained immunity, it is not surprising that depletion of the methyl donor SAM impairs the training response. Nonetheless, this study provides solid evidence supporting the role of Aurora A in β-glucan-induced trained immunity in murine macrophages. The part of in vivo trained immunity antitumor effect is insufficient to support the final claim as using Alisertib could inhibits Aurora A other cell types other than myeloid cells.

      We appreciate the question raised by the reviewer. Though SAM generally acts as a methyl donor, whether the epigenetic reprogram in trained immunity is directly linked to SAM metabolism was not formally tested previously. In our study, we provided evidence suggesting the necessity of SAM maintenance in supporting trained immunity. As for in vivo tumor model, we agree that alisertib may inhibits Aurora A in many cell types besides myeloid cells. To further address the reviewer’s concern, we have performed the suggested bone marrow transplantation experiment (trained mice as donor and naïve mice as recipient) to verify the contribution of myeloid cell-mediated trained immunity for antitumor effect (please see New Figure 8, also related to Figure 6C, 6D and Figure 6-figure supplement 1B and 1C in revised manuscript).

      Reviewer #1 (Recommendations for the authors):

      Some examples of spelling errors and other mistakes (by far not a complete list):

      (a) Introduction, second sentence: reads as if Candida albicans (which should be italicised and capitalised properly) and BCG are microbial polysaccharide components.

      (b) Methods: ECAR is ExtraCellular Acidification Rate, not 'Extracellular Acid Ratio'

      (c) Figure 2C: β-glucan is misspelled in the graph title.

      (d) TNFα has been renamed to 'TNF' for a long time now.

      (e) Inconsistent use of Tnf and Tfnα (the correct gene symbol is Tnf) (NB: this field does not allow me to italicise gene symbols)

      (f) Figure supplement 1B: 'secdonary'

      (g) Caption of figure 4: "Turkey's multiple-comparison test"

      (h) etc

      I would ask the authors that they please go over the entire manuscript very carefully to correct such errors.

      We apologize for these errors and careless mistakes. We greatly appreciate your suggestions, and have carefully proofread the revised manuscript to make sure no further mistakes.

      Please also address the points I raised in the public review about statistical approaches. Even more important than the relatively low 'n' is my question about biological replicates. Please clarify what you mean by 'biological replicate'.If you are able to repeat at least the in vitro experiments (if this is too much work pick the most important ones) a few more times this would really strengthen the results.

      Thank you for your comment. Our biological replicates refer to independently repeated experiments using bone marrow cells isolated from different mice, and n represents the number of mice used. We repeated each experiment at least three times using BMDMs isolated from different mice (n =3, biological replicates). Specifically, we repeated several in vitro experiments showing inhibition of AurA upregulated GNMT in trained BMDMs and showing transcription factor FOXO3 acted as a key protein in AurA-mediated GNMT expression to control trained immunity as well as showing mTOR agonist rescued trained immunity inhibited by alisertib (see New Figure 5, related to Figure 5B-C, Figure 5H in revised manuscript). Additionally, we have provided data with three biological replicates to show the β-glucan induced phosphorylation of AurA (see comment 6 of reviewer#1) and changes of histone modification marker under AurA inhibition and GNMT deficiency (see recommendation 2 of reviewer#2). We also repeated in vivo tumor model to analysis intratumor cytokines (see recommendation 12 of reviewer#1).

      Finally: the authors report 'no funders' during submission, but the manuscript contains funding details. Please modify this in the eLife submission system if possible.

      Thank you for your kind reminder and we have modified funding information in the submission system.

      Reviewer #2 (Recommendations for the authors):

      (1) I have the following methodological and interpretative comments for consideration:

      Aurora A has been previously implicated in M1 macrophage differentiation and NF-κB signaling. What is the effect of Aurora A inhibition on basal LPS stimulation? Considering that β-glucan + Ali also skews macrophage priming towards an M2 phenotype, as shown in Fig. 2E, further clarification on this point would strengthen the study.

      Thanks for your suggestion. Previous study showed AurA was upregulated in LPS-stimulated macrophages and the inhibition of AurA downregulated M1 markers of LPS-stimulated macrophages through NF-κB pathway but did not affect IL-4-induced M2 macrophage polarization [12]. Consistently, we also found that AurA inhibition downregulated inflammatory response upon basal LPS stimulation as shown by decreased IL-6 level (see New Figure 6). In original Figure 2E (also related to Figure 2E in revised manuscript), we showed an increased accessibility of Mrc1 and Chil3 under “β-glucan +Ali” before re-challenge, both of which are typical M2 macrophage markers. Motif analysis showed that AurA inhibition would upregulate genes controlled by PPARγ (STAT6 was not predicted). Different from STAT6, a classical transcriptional factor in controlling M2 polarization (M2a) dependent on IL-4 or IL-13, PPARγ mediates M2 polarization toward M2c and mainly controls cellular metabolism on anti-inflammation independent on IL-4 or IL-13. Thus, we speculate that inhibition of AurA might promote non-classical M2 polarization, and the details warrant future investigation.

      (2) In Figure 4A, it looks like that H3K27me3 is also significantly upregulated by β-glucan and inhibited by Ali. How many biological replicates were performed for these experiments? It would be beneficial to include densitometric analyses to visualize differences across multiple Western blot experiments for better reproducibility and quantitative assessment. In addition, what is the effect of treatment of Ali alone on the epigenetic profiling of macrophages?

      We are sorry for this confusion. Each experiment was performed with at least three independent biological replicates. In original Figure 4-figure supplement 1 (also related to Figure 4-figure supplementary 1 in the revised manuscript), we presented the densitometric analysis results from three independent Western blot experiments, which showed that β-glucan did not affect H3K27me3 levels under our experimental conditions. Three biological replicates data for histone modification were shown as follows (New Figure 7, as related to Figure 4-figure supplement 1 in revised manuscript). We appreciate that assay for “Ali alone” in macrophages may add more value to the findings. We set the aim of the current study to investigate the role of Aurora kinase A in trained immunity, and we know that alisertib itself would not induce or suppress trained immunity. Therefore, in most settings, we did not test the effect of Alisertib alone without β-glucan stimulation.

      (3) The IL-6 and TNF concentrations exhibit considerable variability (Fig. 3K and Fig. 5H), ranging from below 10 pg/mL to 500-1000 pg/mL. Please specify the number of replicates for these experiments and provide more detail on how variability was managed. Including this information would enhance the robustness of the conclusions.

      Thank you for your comment. These experiments were replicated as least three times using BMDMs isolated from different mice. The observed variations in cytokines concentration may be attributed to factors such as differences in cell density, variability among individual mice, and the passage number of the MC38 cells used for supernatant collection. We have prepared new batch of BMDMs and repeated the experiment and provided consistent results in the revised manuscript (please see Figure 5H in revised manuscript). Data for biological replicates have been provided (please see Appendix 2 in resubmit system).

      (4) The impact of Aurora A inhibition on β-glucan-induced anti-tumor responses appears complex. Specifically, GNMT expression is significantly upregulated in F4/80- cells, with stronger effects compared to F4/80+ cells as seen in Fig. 6D. To discern whether this is due to the abolishment of trained immunity in myeloid cells or an effect of Ali on tumor cells which inhibit tumor growth, I suggest performing bone marrow transplantation. Transplant naïve or trained donor BM into naïve recipients, followed by MC38 tumor transplantation, to clarify the mechanistic contribution of trained immunity versus off-target effects.

      Thanks for your valuable suggestion. Following your suggestion, we have performed bone marrow transplantation to clarify that alisertib acts on the BM cells to inhibit anti-tumor effect induced by trained immunity (see New Figure 8, related to Figure 6C-D in revised manuscript). As the results shown below, transplantation of trained BM cells conferred antitumor activity in recipient mice, while transplantation of trained BM cells with alisertib treatment lost such activity, further demonstrating that alisertib inhibited AurA in trained BM cells to impair their antitumor activity.

      References

      (1) Ferreira, A.V., et al., Metabolic Regulation in the Induction of Trained Immunity. Semin Immunopathol, 2024. 46(3-4): p. 7.

      (2) Keating, S.T., et al., Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. J Mol Med (Berl), 2020. 98(6): p. 819-831.

      (3) Cui, L., et al., N(6)-methyladenosine modification-tuned lipid metabolism controls skin immune homeostasis via regulating neutrophil chemotaxis. Sci Adv, 2024. 10(40): p. eadp5332.

      (4) Yu, W., et al., One-Carbon Metabolism Supports S-Adenosylmethionine and Histone Methylation to Drive Inflammatory Macrophages. Mol Cell, 2019. 75(6): p. 1147-1160 e5.

      (5) Arifin, W.N. and W.M. Zahiruddin, Sample Size Calculation in Animal Studies Using Resource Equation Approach. Malays J Med Sci, 2017. 24(5): p. 101-105.

      (6) Cheng, S.C., et al., mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014. 345(6204): p. 1250684.

      (7) Keating, S.T., et al., The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by β-Glucan. Cell Rep, 2020. 31(3): p. 107548.

      (8) John, S.P., et al., Small-molecule screening identifies Syk kinase inhibition and rutaecarpine as modulators of macrophage training and SARS-CoV-2 infection. Cell Rep, 2022. 41(1): p. 111441.

      (9) Glant, T.T., et al., Differentially expressed epigenome modifiers, including aurora kinases A and B, in immune cells in rheumatoid arthritis in humans and mouse models. Arthritis Rheum, 2013. 65(7): p. 1725-35.

      (10) Jeljeli, M.M. and I.E. Adamopoulos, Innate immune memory in inflammatory arthritis. Nat Rev Rheumatol, 2023. 19(10): p. 627-639

      (11) Ferreira, A.V., et al., Fatty acid desaturation and lipoxygenase pathways support trained immunity. Nat Commun, 2023. 14(1): p. 7385.

      (12) Ding, L., et al., Aurora kinase a regulates m1 macrophage polarization and plays a role in experimental autoimmune encephalomyelitis. Inflammation, 2015. 38(2): p. 800-11.

    1. Author response:

      Reviewer #1 (Public review):

      Summary: 

      As a general phenomenon, adaptation of populations to their respective local conditions is well-documented, though not universally. In particular, local adaptation has been amply demonstrated in Arabidopsis thaliana, the focal species of this research, which is naturally highly selfing. Here, the authors report assays designed to evaluate the spatial scale of fitness variation among source populations and sites, as well as temporal variability in fitness expression. Further, they endeavor to identify traits and genomic regions that contribute to the demonstrated variation in fitness.  

      Strengths: 

      With many (200) inbred accessions drawn from throughout Sweden, the study offers an unusually fine sampling of genetic variation within this much-studied species, and through assays in multiple sites and years, it amply demonstrates the context-dependence of fitness expression. It supports the general phenomenon of local adaptation, with multiple nuances. Other examples exist, but it is of value to have further cases illustrating not only the context-dependence of fitness expression but also the sometimes idiosyncratic nature of fitness variation. I commend the authors on their cautionary language in relation to inferences about the roles of particular genomic regions (e.g.l.140-144; l.227)  

      Weaknesses: 

      To my mind, the manuscript is written primarily for the Arabidopsis community. This community is certainly large, but there are many evolutionary biologists who could appreciate this work but are not invited to do so. The authors could address the broader evolution community by acknowledging more of the relevant work of others (I've noted a few references in my comments to the authors). At least as important, the authors could make clearer the fact that A. thaliana is (almost) strictly selfing and how this feature of its biology both enables such a study and also limits inferences from it. Further, it seems to me that though I could be wrong, readers would appreciate a more direct, less discursive style of writing, and one that makes the broader import of the focal questions clearer. 

      we agree that connecting the paper better to the broader field is desirable, and will try to do this in the revision. As for how selfing matters, there certainly are some things we can discuss, but a general discussion is probably a suitable topic for a review/opinion article!

      As a reader, I would value seeing estimates of the overall fitness of the accessions in the different conditions, i.e., by combining the survival and fecundity results of the common garden experiments.

      Combining estimates would be possible in the common garden experiments, and would bring us somewhat closer to total fitness estimates, although as noted by another reviewer (and also emphasized by us), the time scale of our experiment is not sufficient to evaluate the trade-off between survival and fecundity. Furthermore, we would still be missing the establishment component of fitness, which we found to be extremely important. Therefore little would be gained by combining the estimates, while at the same time losing resolution to disentangle the fitness components. We thus decided to focus on the individual fitness components and leave consideration of their joint effect for the Discussion.

      Reviewer #2 (Public review):

      Summary: 

      The goal of this study was to find evidence for local adaptation in survival and fecundity of the model plant Arabidopsis thaliana. The authors grew a large set of Swedish Arabidopsis accessions at four common garden sites in northern and southern Sweden. Accessions were grown from seed in trays, which were laid on the ground at each site in late summer, screened for survival in fall and the following spring, and fecundity was determined from rosette size and seed production in spring. Experiments were complemented by 'selection experiments', in which seeds of the same accessions were sown in plots, and after two years of growth, plants were sampled to determine fitness from genotype frequencies, providing a more comprehensive evaluation of lifetime fitness than can be gleaned from fecundity alone. 

      To clarify, fecundity was determined from total plant area using photos of the mature stems, not the rosettes or direct counting of seeds. That said, it is true that our fecundity estimate was well correlated with rosette area. Furthermore, we validate our fecundity estimates by showing they were highly correlated with seed production estimated by measuring and counting siliques on a separate set of plants grown under common garden conditions in one of our sites (Brachi et al.2022). 

      As the main result, southern accessions had higher mortality in northern sites in one of two years, but also suffered more slug damage in southern sites in one year, indicating a potential link between frost tolerance and herbivore resistance. Fecundity of accession was highest when growing close to the 'home' environment, but while accessions from one sand dune population in southern Sweden had among the lowest fecundities overall, they consistently had the highest fitness in the selection experiment. Accessions from this population had large seed size and rapid root growth, which might be related to establishment success when arriving in a new, partially occupied habitat. However, neither trait could fully explain the very high fitness of this population, suggesting the presence of other, unmeasured traits. 

      Overall, the authors could provide clear evidence of local adaptation in different traits for some of their experiments, but they also highlight high temporal and spatial variability that makes prediction of microevolutionary change so challenging. 

      Strengths: 

      A major strength of this study is the highly comprehensive evaluation of different fitness-related traits of Arabidopsis under natural conditions. The evaluation of survival and fecundity in common garden experiments across four sites and two years provides an estimate of variability and consistency of results. The addition of the 'selection experiment' provides an extended view on plant fitness that is both original and interesting, in particular highlighting potential limitations of 'fitness-proxies' such as seed production that don't take into account seedling establishment and competitive exclusion. 

      Throughout the study, the authors have gone to impressive depths in exploring their data, and particularly the discovery of 'native volunteers' in selection experiment plots and their statistical treatment is very elegant and has resulted in compelling conclusions. Also, while the authors are careful in the interpretation of their GWAS results, they nonetheless highlight a few interesting gene candidates that may be underlying the observed plant adaptations, and which likely will stimulate further research. 

      Overall, the authors provide a rich new resource that is relevant and interesting both in the context of general evolutionary theory as well as more specifically for molecular biology. 

      Weaknesses:

      While the repetition of the common garden experiments over two years is certainly better than no repetition (hence its mention also under 'strengths'), the very high variability found between the two years highlights the need for more extensive temporal replication. In this context, two temporal replicates are the bare minimum, and more repeats in time would be necessary to draw any kind of conclusion about the role of 'high mortality' and 'low mortality' years for the microevolution of Arabidopsis. It also seems that the authors missed an opportunity to explore potentially causal variation among years, as they did not attempt to relate winter mortality to actual climatic variables, even though they discuss winter harshness as a potential predictor.

      We agree that two years is insufficient to understand how variation in selective pressures compound over time to generate micro-evolutionary change. The eight-year data in Oakley et al. (2023), which we discuss in the paper, support this. Our results are nonetheless sufficient to demonstrate the idiosyncratic nature of selection. In the revision, we will further emphasize that far longer time series would be needed for definitive conclusions.

      Our short time series is also why we do not try to correlate with climate data, as this would amount to doing statistics with four data points (mostly two groups of accession N vs S, with mostly homogenous climates within groups, and two years).

      The low temporal variation also makes the accidental slug herbivory appear somewhat random. Potted plants are notoriously susceptible to slug herbivory, and while it is certainly nice that slug damage predominantly affected one group of accessions, it nonetheless raises the question whether this reflects a 'real' selection pressure that plants commonly face in their respective local environments. 

      We agree with this point as well. The evidence for selection on glucosinolates by generalist herbivores such as slugs is fairly strong, but the precise agent is not known, and probably varies over time and space. Our results merely demonstrate one possibility (and we will clarify this in the revision).

      The addition of the 'selection experiment' is certainly original and provides valuable additional insights, but again, it seems a bit questionable which natural process really has affected this outcome. While the genetic and statistical analysis of this experiment seems to be state-of-the-art, the experimental design is rather rudimentary compared to more standard selection experiments. Specifically, the authors added seeds from greenhouse-grown mothers to experimental plots and only sampled plants two years later. This means that, potentially,y the first very big bottleneck was germination under natural conditions, which may have already excluded many of the accessions before they had a chance to grow. While this certainly is one type of selection, it is not exactly the type of selection that a 2-year selection experiment is set up to measure. Either initially establishing the selection experiment from plants instead of seeds, or genotyping the population over several generations, would have substantially strengthened the conclusions that could be drawn from this experiment.

      We agree that more data would have been beneficial, and we do not make strong claims about the nature of selection. Among other phenotypes, we mention dormancy, and note that existing dormancy estimates do not predict fitness in our selection experiments. In addition the same seed batches germinated uniformly in the common-garden experiments with minimal stratification (we will note this in the revision).

      Also, the complete lack of information on population density is a bit problematic. It is not clear if there were other (non-Arabidopsis) plants present in the plots, how many Arabidopsis plants were established, if numbers changed over the year, etc. Given all of these limitations, calling this a 'selection experiment' is in fact somewhat misleading. 

      Seeds were introduced into sites that appeared appropriate for A. thaliana, leaving the background community intact. We provided information on sowing density; the density of plants (A. thaliana and other species) that we obtained during the course of the experiments varied considerably between sites, much like in natural populations, although we lack systematic measurements. We will provide more information (including photos) in the revision.  

      Despite these weaknesses, the authors could achieve their main goals, and despite the somewhat minimal temporal replication, they were lucky to sample two fairly distinct years that provided them with interesting variation, which they could partially explain using the variation among their accessions. Overall, this study will likely make an important contribution to the field of evolutionary biology, and it is another very strong example of how the extensive molecular tools in Arabidopsis can be leveraged to address fundamental questions in evolution and ecology, to an extent that is not (yet) possible in other plant systems. 

      Reviewer #3 (Public review)

      Summary: 

      The manuscript presents a large common garden experiment across Sweden using solely local germplasm. Additionally, there is a collection of selection experiments that begin investigating the factors shaping fecundity in these populations. This provides an impressive amount of data and analysis investigating the underlying factors involved. Together, this helps support the data showing that fluctuations and interactions are key components determining Arabidopsis fitness and are more broadly applicable across plant and non-plant species. 

      Strengths: 

      The field trials are well conducted with extensive effort and sampling. Similarly while the genetic analysis is complex it is well conducted and reflects the complexity of dealing with population structure that may be intricately linked to adaptive structure. This has no real solution and the option of presenting results with and without correction is likely the only appropriate option. 

      Weaknesses: 

      A significant finding from this study was that fecundity is shaped more by yearly fluctuations and their interaction with genotype than it is by the main effect of location or genotype. Another significant finding is that the strength of selection can be quite strong, with nearly 5x ranges across accessions. It should be noted that there are a number of other studies using Arabidopsis in the wild with multiple years and locations that found similar observations beyond the Oakley citation. In general, the context of how these findings relate to existing knowledge in Arabidopsis is a bit underdeveloped. 

      We shall remedy this in the revision (see also comments by Reviewer #1).

      The effects of the populations across the locations seem to rely on individual tests and PC analysis. It would seem to be possible to incorporate these tests more directly in the linear modeling analysis, and it isn't quite clear why this wasn't conducted. 

      The fecundity estimates were modelled for all experiments simultaneously and the results are presented in Figure 6 to explore the relative importance of genotype effects and interaction terms including genotypes. For survival and fecundity, the BLUPS are generated from linear mixed models fitted for all experiments simultaneously including a random intercept effect for the genotypes within experiments. A principal component analysis is used to explore the pattern of accession effects (BLUPS) on fecundity (Figure 7); this will be explained in the Methods.  

      I'm a bit puzzled by the discussion on how to find causative loci. This seems to focus solely on GWAS as the solution, with a goal to sequence vast individuals. But the loci that the manuscript discussed were found by a combination of structured mapping populations followed by molecular validation that then informed the GWAS. As such, I'm unsure if the proposed future approach of more sequencing is the best when a more balanced approach integrating diverse methods and population types will be more useful. 

      We are puzzled by this comment in return. Our statement about more sequencing (penultimate sentence of discussion) was referring to achieving a better understanding of the history of migration and selection rather than identifying causative loci. Happy for clarification!

      References

      Brachi, Benjamin, Daniele Filiault, Hannah Whitehurst, Paul Darme, Pierre Le Gars, Marine Le Mentec, Timothy C. Morton, et al. 2022. “Plant Genetic Effects on Microbial Hubs Impact Host Fitness in Repeated Field Trials.” Proceedings of the National Academy of Sciences of the United States of America 119 (30): e2201285119.

      Oakley, Christopher G., Douglas W. Schemske, John K. McKay, and Jon Ågren. 2023. “Ecological Genetics of Local Adaptation in Arabidopsis: An 8-Year Field Experiment.” Molecular Ecology, June. https://doi.org/10.1111/mec.17045.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      The paper is well written and the figures well laid out. The methods are easy to follow, and the rational and logic for each experiment easy to follow. The introduction sets the scene well, and the discussion is appropriate. The summary sentences throughout the text help the reader.

      The authors have done a lot of work addressing my previous concerns and those of the other Reviewers.

      We are pleased that the revised manuscript satisfactorily addresses the previous concerns of the reviewer.

      Reviewer #2 (Public review):

      Summary

      Le Roy et al quantify wing morphology and wing kinematics across twenty eight and eight hoverfly species, respectively; the aim is to identify how weight support during hovering is ensured across body sizes. Wing shape and relative wing size vary non-trivially with body mass, but wing kinematics are reported to be size-invariant. On the basis of these results, it is concluded that weight support is achieved solely through size-specific variations in wing morphology, and that these changes enabled hoverflies to decrease in size. Adjusting wing morphology may be preferable compared to the alternative strategy of altering wing kinematics, because kinematics may be subject to stronger evolutionary and ecological constraints, dictated by the highly specialised flight and ecology of the hoverflies.

      Strengths

      The study deploys a vast array of challenging techniques, including flight experiments, morphometrics, phylogenetic analyses, and numerical simulations; it so illustrates both the power and beauty of an integrative approach to animal biomechanics. The question is well motivated, the methods appropriately designed, and the discussion elegantly places the results in broad biomechanical, ecological, and evolutionary context.

      We thank the reviewer for appreciating the strengths of our study.

      Weaknesses

      (1) In assessing evolutionary allometry, it is key to pinpoint the variation expected from changes in size alone. The null hypothesis for wing morphology is well-defined (isometry), but the equivalent predictions for kinematic parameters, although specified, are insufficiently justified, and directly contradict classic scaling theory. A detailed justification of the "kinematic similarity" assumption, or a change in the null hypothesis, would substantially strengthen the paper, and clarify its evolutionary implications.

      We agree with the reviewer that a clearly articulated null hypothesis is crucial for interpreting scaling relationships. In fact, when carefully reviewing our manuscript, we realized that we nowhere did so, and which might have led to a misinterpretation of this. In the revised manuscript, we therefore now explicitly state our newly defined null hypotheses (lines 120–125, 340-352), and how we tested these (lines 359-360).

      In fact, we define two alternative null hypotheses: (1) weight support is maintained across sizes using allometric scaling of wing morphology only, and thus wingbeat kinematics are kept constant (kinematic similarity); (2) weight support is maintained across sizes using allometric scaling of wingbeat kinematics, while wing morphology scales isometrically (morphological similarity).

      According to the first null hypothesis, the second-moment-of-area of the wing should scale linearly with body mass, resulting in negative allometry of S<sub>2</sub> relative to body mass (S<sub>2</sub>∼m<sup>1</sup> <m<sup>4/3</sup>). According to the second null hypothesis, the product of wingbeat frequency and amplitude should scale with mass under negative allometry (ω∼ƒ A<sub>ϕ</sub>∼m<sup>-1/6</sup>). We test these alternative null hypotheses using Phylogenetic Generalized Least Square (PGLS) regressions of the morphology and kinematics metrics against the body mass.

      Furthermore, in our revised manuscript, we now also better explain the use of "kinematic similarity" assumption as a theoretical scenario, that is physically, biomechanically nor physiological sustainable across sizes, but that we merely use to define our null hypotheses (lines 340-351). This is made particularly explicit in a new subsection named “Theoretical considerations” (lines 448–461). Note that our second null hypothesis is thus not that hoverflies fly under "kinematic similarity", but that wingbeat kinematics scales under negative allometry (ω∼ƒ A<sub>ϕ</sub>∼m<sup>-1/6</sup>), which we assume is in line with the classic scaling theory that the reviewer refers to.

      We sincerely thank the reviewer for making us aware that we did not explicitly state our null hypotheses, and that introducing these new null hypotheses removed the confusion about the assumptions in our study.

      (2) By relating the aerodynamic output force to wing morphology and kinematics, it is concluded that smaller hoverflies will find it more challenging to support their body mass--a scaling argument that provides the framework for this work. This hypothesis appears to stand in direct contrast to classic scaling theory, where the gravitational force is thought to present a bigger challenge for larger animals, due to their disadvantageous surface-to-volume ratios. The same problem ought to occur in hoverflies, for wing kinematics must ultimately be the result of the energy injected by the flight engine: muscle. Much like in terrestrial animals, equivalent weight support in flying animals thus requires a positive allometry of muscle force output. In other words, if a large hoverfly is able to generate the wing kinematics that suffice to support body weight, an isometrically smaller hoverfly should be, too (but not vice versa). Clarifying the relation between the scaling of muscle mechanical input, wing kinematics, and weight support would help resolve the conflict between these two contrasting hypotheses, and considerably strengthen the biomechanical motivation and evolutionary interpretation.

      We agree with the reviewer that, due to disadvantageous surface-to-volume ratios, larger animals are more challenged to maintain weight-support, and that this is also the case for hovering hoverflies. In the current manuscript, we do not aim to challenge this universal scaling law of muscle force with body mass.

      Instead, we here focus merely on how the flight propulsion system (wing morphology and kinematics) scale with size, and how this allows hovering hoverflies to maintain weight support. We also fully agree with the reviewer that in theory, “if a large hoverfly is able to generate the wing kinematics that suffice to support body weight, an isometrically smaller hoverfly should be, too”. This aligns in fact with our second null hypothesis where wingbeat frequency should scale as ƒ∼m<sup>-1/6</sup>, to maintain weight support under morphological isometry.

      In our study, we show that this null hypothesis is rejected (lines 511-517, and line 525), and thus hoverflies primarily adjust their wing morphology to maintain in-hovering weight-support across sizes, and wingbeat kinematics is in fact highly conserved. Why this specific flight kinematics is so strongly conserved is not known, and thus a key topic in the discussion section of our manuscript.

      We agree with the reviewer that muscle physiology might be an important driver for this conserved kinematics, but also aerodynamic efficiency and maneuverability could be key aspects here. In our revised manuscript, we now discuss these three aspects in more detail (lines 762-775). Also, we here now also mention that we aim to address this outstanding question in future studies, by including muscle physiology in our animal flight studies, and by studying the aerodynamics and maneuver kinematic of hoverflies in more detail. 

      Moreover, in our revised introduction section, we now also mention explicitly that the capability for maintaining in-flight weight-support scales inversely with animal size, due to the negative isometric scaling of muscle force with body mass (line 52-56). Furthermore, we removed all statements that might suggest the opposite. We hope that these adjustments helped resolve the apparent conflict between our null hypotheses and general muscle scaling laws.

      Finally, in the Discussion section (lines 770-775), we now more explicitly acknowledge that wing motion is ultimately driven by the flight motor musculature, and that a full biomechanical interpretation must consider the scaling of muscle mechanical input alongside wing kinematics and morphology. While we decided to keep the focus primarily on aerodynamic constraints in this study, we agree that future work integrating both aerodynamic and physiological scaling will be essential to fully resolve these contrasting perspectives.

      (3) One main conclusion-- that miniaturization is enabled by changes in wing morphology--is insufficiently supported by the evidence. Is it miniaturization or "gigantism" that is enabled by (or drives) the non-trivial changes in wing morphology? To clarify this question, the isolated treatment of constraints on the musculoskeletal system vs the "flapping-wing based propulsion" system needs to be replaced by an integrated analysis: the propulsion of the wings, is, after all, due to muscle action. Revisiting the scaling predictions by assessing what the engine (muscle) can impart onto the system (wings) will clarify whether non-trivial adaptations in wing shape or kinematics are necessary for smaller or larger hovering insects (if at all!).

      In many ways, this work provides a blueprint for work in evolutionary biomechanics; the breadth of both the methods and the discussion reflects outstanding scholarship.

      In response to the first review round, we have removed all references to “miniaturization,” as our data does not allow us to infer evolutionary trajectories of body size (i.e., whether lineages have become smaller or larger over time). We now frame our conclusion more conservatively: that changes in wing morphology enable small hoverflies to maintain weight support despite the aerodynamic disadvantages imposed by isometric scaling.

      We fully agree that an integrated biomechanical framework, explicitly linking muscle mechanical output with wing kinematics and morphology, would significantly strengthen the study. However, we believe that performing an integrated analysis assessing the scaling of muscle input into the wing is beyond the current scope, which focuses specifically on the aerodynamic consequences of morphological and kinematic variation (see reply above).

      Reviewer #3 (Public review):

      This paper addresses an important question about how changes in wing morphology vs. wing kinematics change with body size across an important group of high-performance insects, the hoverflies. The biomechanics and morphology convincingly support the conclusions that there is no significant correlation between wing kinematics and size across the eight specific species analyzed in depth and that instead wing morphology changes allometrically. The morphological analysis is enhanced with phylogenetically appropriate tests across a larger data set incorporating museum specimens.

      The authors have made very extensive revisions that have significantly improved the manuscript and brought the strength of conclusions in line with the excellent data. Most significantly, they have expanded their morphological analysis to include museum specimens and removed the conclusions about evolutionary drivers of miniaturization. As a result, the conclusion about morphological changes scaling with body size rather than kinematic properties is strongly supported and very nicely presented with a strong complementary set of data. I only have minor textual edits for them to consider.

      We thank the reviewer for this positive feedback. We are pleased to hear that the revised manuscript is satisfactory.

      Reviewer #2 (Recommendations For The Authors):

      My main remaining qualm remains the null hypothesis for the scaling of kinematic parameters - all weaknesses come back to this point. I appreciate that the authors now specify an expectation, but they offer no justification. This is a problem, because the expectation dictates the interpretation of the results and is thus crucial to some of the key claims (including one in the paper title!): the choice made by the authors indeed implies that hovering is harder for small hoverflies, so that the reported changes in size-specific wing morphology are to be interpreted as an adaptation that enables miniaturization. However, why is this choice appropriate over alternatives that would predict the exact opposite, namely that hovering is harder for larger hoverflies?

      In my original review, I suggested that the authors may address this key question by considering the scaling of muscle mechanical output, and provided a quick sketch of what such an argument would look like, both in classic textbook scaling theory, and in the framework of more recent alternative approaches. The authors have decided against an implementation of this suggestion, providing various version of the following justification in their reply: "our study focuses precisely on this constraint on the wing-based propulsion system, and not on the muscular motor system." I am puzzled by this distinction, which also appears in the paper: muscle is the engine responsible for wing propulsion. How can one be assessed independent of the other? The fact that the two must be linked goes straight to the heart of the difficulty in determining the null hypotheses for the allometry of kinematic and dynamic parameters: they must come from assertions on how muscle mechanical output is expected to vary with size, and so couple muscle mechanical output to the geometry of the wing-based propulsion system. What if not muscle output dictates wing kinematics?

      I fully agree with the authors that null hypotheses on kinematic parameters are debatable. But then the authors should debate their choice, and at least assess the plausibility of its implications (note that the idea of "similarity" in scaling does not translate to equal or invariant, but is tied closely to dimensional analysis - so one cannot just proclaim that kinematic similarity implies no change in kinematic parameters). I briefly return to the same line of argument I laid out in the initial review to provide such an assessment:

      Conservation of energy implies:

      W = 1/2 I ω2

      where I is the mass moment of inertia and W is the muscle work output. Under isometry, I ∝m5/3, the authors posit ω ∝m0, and it follows at once that they predict W ∝m5/3. That is, the "kinematic similarity" hypothesis presented in the paper implies that larger animals can do substantially more work per unit body mass than small animals (unless the author have an argument why wing angular velocity is independent of muscle work capacity, and I cannot think of one). This increase in work output is in contradiction with the textbook prediction, going all the way back to Borelli and Hill: isogeometric and isophysiological animals ought to have a constant mass-specific work output. So why, according to the authors, is this an incorrect expectation, ie how do they justify the assumption ω ∝m0 and its implication W ∝m5/3? How can larger animals do more mass-specific work, or, equivalently, what stops smaller animals from delivering the same mass-specific work? If non-trivial adaptations such as larger relative muscle mass enable larger animals to do more work, how does this fit within the interpretation suggested by the authors that the aerodynamics of hovering require changes in small animals?

      A justification of the kinematic similarity hypothesis, alongside answers to the above questions, is necessary, not only to establish a relation to classic scaling theory, but also because a key claim of the paper hinges on the assumed scaling relationship: that changes in wing morphology enable hovering in small hoverflies. If I were to believe Borelli, Hill and virtually all biomechanics textbooks, the opposite should be the case: combing constant mass-specific work output with eq. 1, one retrieves F∝m2/3, so that weight support presents a bigger challenge for larger animals; the allometry of wing morphology should then be seen as an adaptation that enables hovering in larger hoverflies - the exact opposite of the interpretation offered by the authors.

      Now, as it so happens, I disagree with classic scaling theory on this point, and instead believe that there are good reasons to assume that muscle work output varies non-trivially with size. The authors can find a summary of the argument for this disagreement in the initial review, or in any of the following references:

      Labonte, D. A theory of physiological similarity for muscle-driven motion. PNAS, 2023, 120, e2221217120

      Labonte, D.; Bishop, P.; Dick, T. & Clemente, C. J. Dynamics similarity and the peculiar allometry of maximum running speed. Nat Comms., 2024, 15, 2181

      Labonte, D. & Holt, N. Beyond power limits: the kinetic energy capacity of skeletal muscle. J Exp Bio, 2024, 227, jeb247150

      Polet, D. & Labonte, D. Optimal gearing of musculoskeletal systems. Integr Org Biol, 2024, 64, 987-10062024

      I am asking neither that the authors agree with the above references nor that they cite them. But I do expect that they critically discuss and justify their definition of kinematic similarity, its relation to expectation from classic scaling theory, and the implications for their claim that hovering is harder for small animals. I do note that the notion of "physiological similarity" introduced in the above references predicts a size-invariant angular velocity for small animals, that small animals should be able to do less mass-specific work, and that average muscle force output can grow with positive allometry even for isogeometric systems. These predictions appear to be consistent with the data presented by the authors.

      We agree with the reviewer that our null hypothesis was not clearly articulated in our previous version of the manuscript, and that this might have led to a misinterpretation of the merits and limitations of our study. In the revised manuscript, we therefore now explicitly introduce our null hypotheses in the Introduction (lines 120–125), we define these in the Methods section (lines 340–360), test these in the Results section (lines 511–517), and reflect on the results in the Discussion (lines 602–610). We thank the reviewer for pointing out this unclarity in our manuscript, because revising it clarified the study significantly. See our replies in the “Public Review” section for details.

      Minor points

      L56: This is somewhat incomplete and simplistic; to just give one alternative option, weight support with equivalent muscle effort could also be ensured by a change in gearing (see eg Biewener's work). It is doubtful whether weight support is a strong selective force, as any animal that can move will be able to support its weight. The impact of scaling on dynamics is thus arguably more relevant.

      We thank the reviewer for pointing out that our original sentence may be too simplistic. We now briefly mention alternative mechanisms (suggested by the reviewer) to provide more nuance (line 56-58).

      L58: I am not aware of any evidence that smaller animals have reduced the musculature dedicated to locomotion beyond what is expected from isometry; please provide a reference for this claim or remove it.

      We removed that claim.

      The authors use both isometry and geometric similarity. As they also talk about muscle, solely geometric similarity (or isogeometry) may be preferable, to avoid confusion with isometric muscle contractions.

      To avoid confusion, we now use “geometric similarity” wherever the use of isometry might be ambiguous.

      L86: negative allometry only makes sense if there is a justified expectation for isometry - I suggest to change to "The assumed increase in wingbeat frequency in smaller animals" or similar, or to clarify the kinematic similarity hypothesis.

      We edited the sentence as suggested.

      L320: This assertion is somewhat misleading. Musculoskeletal systems are unlikely to be selected for static weight support. Instead, they need to allow movement. Where movement is possible, weight support is trivially possible, and so weight support should rarely, if ever, be a relevant constraint. At most, the negative consequence of isometry on weight support would be that a larger fraction of the muscle mass needs to be active in larger animals to support the weight.

      We fully agree with the reviewer that musculoskeletal systems are unlikely not selected for static loads, as the ability to move dynamically in the real world is crucial for survival. That said, we here look at hovering flight, which is far from static. In fact, hovering flight is among the energetic most costly movement patterns found in nature, due to the required high-frequency wingbeat motions (Dudley 2002). Rapid maneuvers are of course more power demanding, but hovering is a good proxy for this. For example, in fruit flies maximum force production in rapid evasive maneuvers are only two times the force produced during hovering (Muijres et al., 2014).

      We agree with the reviewer that it is important to explicitly mention the differences in functional demands on the motor system in hovering and maneuvering flight, and thus we now do so in both the introduction and discussion sections (lines 116-118 and 762-765, respectively).

      Dudley, Robert. The biomechanics of insect flight: form, function, evolution. Princeton university press, 2002.Muijres, F. T., et al. "Flies evade looming targets by executing rapid visually directed banked turns." Science 344.6180 (2014): 172-177.

      Reviewer #3 (Recommendations For The Authors):

      Throughout, check use of "constrains" vs. "constraints"

      Thank you for pointing this out. We have corrected these errors.

      Line 52 do you mean lift instead of thrust?

      We agree with the reviewer that the use of “thrust” might be confusing in the context of hovering flight, and thus we replaced “flapping-wing-based aerodynamic thrust-producing system” with the “flapping-wing-based propulsion system”. This way, we no longer use the word thrust in this context, and only use lift as the upward-directed force required for weight-support.

      Line 60 "face also constrains" wording

      Corrected.

      Line 79 Viscous forces only "dominate" at Re<1 and so this statement only refers to very very small insects which I suspect are far below the scale of the hoverflies considered (likely Re ~100) although maybe not for the smallest 3 mg ones?

      Indeed, viscous forces do not “dominate” force production at the Reynolds numbers of our flying insects. We thank the reviewer for pointing out this incorrect statement, which we corrected in the revised manuscript.

      Line 85 again thrust doesn't seem to be right

      Agreed. See reply 3.2.

      533 "maximized" should probably be "increased"

      We now use “increased”.

      Line 705-710 The new study by Darveau might help resolve this a bit because of the reliability of this relationship across and between orders. Darveau, C.-A. (2024). Insect Flight Energetics And the Evolution of Size, Form, And Function. Integrative And Comparative Biology icae028.

      We thank the reviewer for this highly relevant reference, which was unfortunately not included in the original manuscript. In connection with this work, we now further discuss the relationship between wing size allometry and deviations from the expected scaling of wingbeat frequency (lines 730-735).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This Tanzanian study focused on the relationship between human genetic ancestry, Mycobacterium tuberculosis complex (MTBC) diversity, and tuberculosis (TB) disease severity. The authors analyzed the genetic ancestry of 1,444 TB patients and genotyped the corresponding MTBC strains isolated from the same individuals. They found that the study participants predominantly possess Bantu-speaking genetic ancestry, with minimal European and Asian ancestry. The MTBC strains identified were diverse and largely resulted from introductions from South or Central Asia. Unfortunately, no associations were identified between human genetic ancestry, the MTBC strains, or TB severity. The authors suggest that social and environmental factors are more likely to contribute to TB severity in this setting.

      Strengths:

      In comparison to other studies investigating the role of human genetics in TB phenotypes, this study is relatively large, with more than 1,400 participants.

      The matched human-MTBC strain collection is valuable and offers the opportunity to address questions about human-bacterium co-evolution.

      Weaknesses:

      Although the authors had genome-wide genotyping and whole genome sequencing data, they only compared the associations between human ancestry and MTBC strains. Given the large sample size, they had the opportunity to conduct a genome-wide association study similar to that of Muller et al. (https://doi.org/10.1016/j.ygeno.2021.04.024).

      Thank you very much for taking the time to carefully review our manuscript and for your suggestions and comments. In another published study using the same cohort (https://doi.org/10.1101/2023.05.11.23289848), we performed a genome-wide association analysis between the genome-wide SNPS of the host and the genome-wide SNPs from the paired MTBC strains. In the current work we were interested in testing specifically if host ancestry and pathogen genotype family, as well as their interaction, were associated with differences in disease severity, a clinical phenotype with direct consequences for both host and pathogen fitness. The study of Müller et al, referred to by the reviewer, investigates whether MTBC families of strains causing disease in two patient cohorts (South Africa and Ghana) were associated with particular human SNPS assessed genome-wide. In that study, clinical phenotypes were not assessed and human ancestries, in a much broader sense than the ones used in our current study, were used as covariates. To leverage the genome-wide information and the clinical variables collected in our study, we have now added a genome-wide association analysis of all the human SNPs with disease severity measures while adjusting for co-variates (age, sex,  smoking, cough duration, socioeconomic status, history of previous TB, malnutrition, education level, and drug resistance status) and for human population stratification . Yet, no significant statistical associations were detected (L243-249).

      The authors tested whether human genetic ancestry is associated with TB severity. However, the basis for this hypothesis is unclear. The studies cited as examples all focused on progression to active TB (from a latent infection state), which should not be conflated with disease severity. It is difficult to ascertain whether the role of genetic ancestry in disease severity would be detectable through this study design, as some participants might simply have been sicker for longer before being diagnosed (despite the inquiry about cough duration). This delay in diagnosis would not be influenced solely by human genetics, which is the conclusion of the study.

      Evidence that mortality and natural recovery from TB vary by disease presentation spectrum come from studies carried out before the introduction of anti-TB chemotherapy. Patients with mild disease presentation, as measured by radiology at the time of diagnosis had higher odds of recovering naturally compared to those with advanced disease (doi: 10.5588/ijtld.23.0254, doi: 10.1164/arrd.1960.81.6.839). Given the deleterious effects of an MTBC infection leading to symptomatic disease on human fitness, we hypothesized that natural selection has acted on human traits underlying TB disease severity. If those traits are heritable one would expect to find underlying genetic variation in human populations. In addition, because certain MTBC genotype families and human populations have co-existed since a least a few centuries to a few millennia, we hypothesized that some of that genetic variation could be related to human ancestry. We have added more details to the introduction to make our rational clearer (L118-127).  In our patient cohort, we observed a large variation in disease severity using as approximations; TB-Score, X-Ray score and bacterial burden in sputa (Ct-value as determined with GeneXpert). However, the reviewer is absolutely correct in that patients in our study are being diagnosed at different stages of disease confounding our analysis. This is a limitation of our study which cannot be fully accounted for by including cough duration, as we also acknowledged in the manuscript (L343-346).

      Additionally, the study only included participants who attended the TB clinic.

      Yes, this is related to the previous point, our study only considers patients that felt ill enough to visit the TB clinic potentially not including patients that had less severe disease as acknowledged.

      Including healthy controls from the general population would have provided an interesting comparison to see if ancestry proportions differ.

      We agree that it would be interesting to compare the ancestries of healthy controls to the ancestries of TB patients from the same population. However, that would be especially informative with respect to TB susceptibility and would not necessarily be informing disease severity traits and its underlying genetics. The similarities between the ancestry proportions of our cohort with those of neighboring countries such as Kenya, Malawi and Mozambique publicly available genomic data, suggests that there would be no major differences between TB patients and healthy controls.

      Although the authors suggest that social and environmental factors contribute to TB severity, only age, smoking, and HIV status were characterised in the study.

      Based on the comments of both reviewers, we added the following additional variables as covariates in the regression models: the socioeconomic status representing the ratio between the household income and the number of individuals in the household, malnutrition, the education level and whether it was a relapse/reinfection or a new case.

      Reviewer #2 (Public review):

      Summary:

      This manuscript reports the results of an observational study conducted in Dar es Salaam, Tanzania, investigating potential associations between genetic variation in M. tuberculosis and human host vs. disease severity. The headline finding is that no such associations were found, either for host / bacillary genetics as main effects or for interactions between them.

      Strengths:

      Strengths of the study include its large size and rigorous approaches to classification of genetic diversity for host and bacillus.

      Weaknesses:

      (1) There are some limitations of the disease severity read-outs employed: X-ray scores and Xpert cycle thresholds from sputum analysis can only take account of pulmonary disease. CXR is an insensitive approach to assessing 'lung damage', especially when converted to a binary measure. What was the basis for selection of Ralph score of 71 to dichotomise patients? If outcome measures were analysed as continuous variables, would this have been more sensitive in capturing associations of interest?

      Thank you very much for taking the time to carefully review our manuscript and for your suggestions and comments.  

      We recruited active TB patients with pulmonary TB disease that were sputum smear-positive and GeneXpert-positive. In this study we aimed at obtaining paired samples from both the patient and the strain, and in the current analysis we aimed at testing if human ancestry and its interaction with the strain genotype could explain differences in disease severity. It is often difficult to obtain microbiological cultures from extra-pulmonary cases and including those cases would have not been possible at the scale of this cohort. We believe as well that extra-pulmonary TB is of less relevance for the question we are addressing because in exclusively extrapulmonary cases, disease severity is not linked with bacterial transmission. However, extra-pulmonary TB can be extremely severe, and it would be very interesting to explore the potential role of human genetic variation underlying extra-pulmonary TB in future studies.

      As to the insensitivity of CXR to measure lung damage, we would argue that it depends on what is being assed. As a rationale for the Ralph score, its inventors argue that as in other grading methods, the proportion of affected lung and or cavitation is important to assess severity. It has been described as a “validated method for grading CXR severity in adults with smear-positive pulmonary TB that correlates with baseline clinical and microbiological severity and response to treatment, and is suitable for use in clinical trials” (https://thorax.bmj.com/content/thoraxjnl/65/10/863.full.pdf). While the validation of the score is convincing in that study, and the score has been used in several TB studies and trials, the low proportion of HIV co-infections might have been a limitation. Indeed, as shown in our previous publication, in our cohort of patients, chest X-ray scores were significantly lower in HIV infected TB patients https://doi.org/10.1371/journal.ppat.1010893. In the current analysis, regression analyses performed for the CXR severity and for the other severity measures did not include HIV co-infected patients.

      We obtained the same pattern of results using a continuous outcome. However, an assumption of linear regression was violated. The residuals were not normally distributed stemming from the bimodal distribution of the scores in our dataset. The threshold of 71 for the Ralph score has been used by others in previous studies; in its original description it has been suggested as the optimal cut-off point for predicting a positive sputum smear status after two months, which in turn has been shown to predict unfavorable outcomes (https://doi.org/10.1136/thx.2010.136242). Another study showed that a Ralph score higher than 71 was significantly associated with a longer duration of symptoms, higher clinical scores and a lower BMI (doi: 10.5603/ARM.2018.0032).

      (2) There is quite a lot of missing data, especially for TB scores - could this have introduced bias? This issue should be mentioned in the discussion.

      While we have a TB-score available for each patient, the chest X-ray score is missing for many patients. However, this is random and due both to the absence of an X-ray picture or to the bad quality of X-ray pictures that the radiologists could not assess. When stating that there is a lot of missing data for the TB scores, we assume that the reviewer was referring to the “missing N” columns in Table 1. There, the number of observations missing in each of the disease severity measures actually relates to the explanatory variables (i.e MTBC genotype and human ancestries). This table includes all patients that either had a bacterial genome available or a human genome/genotype (N = 1904). As an example for the TB-score as outcome variable, for 1471 patients the MTBC genotype was determined while it was missing for 433 patients. On the other hand for X-ray scores, 177 had a severe X-ray score, 849 a mild one and for 878 patients, there was no X-ray score available.  As for the Ct-value, despite the fact that the patients were recruited based on positive GeneXpert by the clinical team, these results were not always available to us.

      (3) The analysis adjusted for age, sex, HIV status, age, smoking and cough duration - but not for socio-economic status. This will likely be a major determinant of disease severity. Was adjustment made for previous TB (i.e. new vs repeat episode) and drug-sensitivity of the isolate? Cough duration will effectively be a correlate/consequence of more severe disease - thus likely highly collinear with disease severity read-outs - not a true confounder. How does removal of this variable from the model affect results? Data on socioeconomic status should be added to models, or if not possible then lack of such data should be noted as a limitation.

      Out of the 1904 patients that have either human or bacterial genomic data available, 48 were relapses (2.5%). The mean of the disease severity measures suggest that relapses have a higher CXR score but the TB-score and Ct-values did not differ. Based on the comments of both reviewers, we added the following additional variables as covariates to the regression models: the socioeconomic status representing the ratio between the household income and the number of individuals in the household, malnutrition examined by a doctor, the education level, and whether it was a relapse/reinfection or a new case and if the causative strain had any resistance to any anti-TB drugs. The results did not change. Cough duration could also be a consequence of more severe disease, as pointed out by the reviewer. We present now the results excluding cough duration as a variable from the model, however this also did not affect the results.

      (4) Recruitment at hospitals may have led to selection bias due to exclusion of less severe, community cases. The authors already acknowledge this limitation in the Discussion however.

      (5) Introduction: References refer to disease susceptibility, but the authors should also consider the influences of host/pathogen genetics on host response - both in vitro (PMIDs 11237411, 15322056) and in vivo (PMID 23853590). The last of these studies encompassed a broader range of ethnic variation than the current study, and showed associations between host ancestry and immune response - null results from the current study may reflect the relative genetic homogeneity of the population studied.

      We thank the reviewer for these suggestions which we have added to the introduction. 

      Reviewer #1 (Recommendations for the authors):

      Minor Comments:

      (1) The authors should be careful when using the term "Bantu" as opposed to "Bantu-speaking". (i.e. referring to the language group). The term is considered offensive in some settings.

      We thanks the reviewer for this important concern, we have revised throughout the manuscript.

      (2) There are several "(Error! Reference source not found)" phrases in the place of references throughout the document.

      We thank the reviewer for pointing this out, this has been corrected in the revised version.

      (3) Please correct line 365: "... sequencing (WGS) the patient...." to "... sequencing (WGS) of the patient...."

      (4) The figures in the supplementary PDF are not numbered and some are cut-off (I think it is Supplementary Figure S2).

      This has been corrected in the revised version.

      Reviewer #2 (Recommendations for the authors):

      Typographical errors

      (1) There are multiple instances where references have not pulled through to the text, e.g. line 126 (Error! Reference source not found.)

      We thank the reviewer for pointing this out, this has been corrected in the revised version.

      (2) Line 239: have been show - have been shown?

      Thank you, this mistake has been corrected in the revised version.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      This manuscript by Tesmer and colleagues uses fiber photometry recordings, sophisticated analysis of movement, and deep learning algorithms to provide compelling evidence that activity in hypothalamic hypocretin/orexin neurons (HONs) correlates with net body movement over multiple behaviors. By examining projection targets, the authors show that hypocretin/orexin release differs in projection targets to the locus coeruleus and substantia nigra, pars compacta. Ablation of HONs does not cause differences in the power spectra of movements. The movement-tracking ability of HONs is independent of HON activity that correlates with blood glucose levels. Finally, the authors show that body movement is not encoded to the same extent in other neural populations.

      Strengths:

      The major strengths of the study are the combination of fiber photometry recordings, analysis of movement in head-fixed mice, and sophisticated classification of movement using deep learning algorithms. The experiments seem to be well performed, and the data are well presented, visually. The data support the main conclusions of the manuscript.

      We thank the reviewer for their supportive feedback.

      Weaknesses:

      The weaknesses are minor, mostly consisting of writing and data visualization throughout the manuscript. To some degree, it is already known that hypocretin/orexin neurons correlate with movement and arousal, although this manuscript studies this correlation with unprecedented sophistication and scale. It is also unfortunate that most of the experiments throughout the study were only performed in male mice. Taken together, this study is likely to be impactful to the field and our understanding of HONs across behavioral states.

      We agree that disentangling movement from arousal is an important aspect, and in the revised manuscript, we now include new data and analyses towards this (pupillometry to directly assess arousal, and multivariate analysis to assess contributions of arousal vs movemement to HON activity). In addition, we now implement many of the reviewer’s recommendations regarding writing, data presentation, and visual clarity (see our replies in the “recommendations for authors” section).

      Reviewer #1 (Recommendations for the authors):

      Some recommendations for the authors:

      (1) The first sentence of the Introduction states: "Neural activity related to body movement recently received much attention." I would rephrase or clarify this statement, as neuroscientists have been studying neural activity related to body movement for decades.

      The reviewer is correct. Our intention was to highlight the resurgence of movementrelated neurosciences enabled by modern techniques such as deep learning applied to video data (e.g. DeepLabCut, etc). The passage has been updated for clarity.

      (2) The Introduction also states that HONs orchestrate "consciousness and arousal." I would delete the word "consciousness," as consciousness represents a lofty, global concept that is challenging to define and quantify in humans, let alone mice.

      We used the word consciousness to be consistent with current literature on the function of the mouse hypothalamus (e.g. Nat Neurosci 2016 Feb;19(2):290-8). But we agree it is not necessary here, and so we followed the advice to delete it.

      (3) The authors state that HON dynamics were recorded while mice were head-fixed while on a running wheel. For clarity, it would be helpful to visualize this head-fixation in Figures 1A and 5B. It would also be helpful to clarify how certain behaviors (e.g. grooming, chewing) were performed and recorded while the mouse was head-fixed.

      In the revised manuscript, updated graphics with a head-fixed mouse have now been added to relevant figures. Representative RGB frames (colors representing sequential frames) of each behaviour have been added to Figure 2A.

      (4) In the legend for Figure 1A, the reference to Gonzalez et al. 2016 seems out of place (at least the reader should be informed why the text is referring to this previous study). Additionally, because the references are ordered by number instead of alphabetically, it would be more helpful to refer to a numbered reference rather than a name.

      Gonzalez et al. 2016 references the source of the AAV construct used in this figure. This has been moved to the methods. Following eLife formatting guidelines, references will be alphabetized upon publication.

      (5) In Figure 3F, it would be helpful to show visual validation that the HON-DTR method indeed ablates all HONs. This is depicted conceptually, but representative figures would be much more convincing.

      A representative histological slice is now included for both wild type (WT) and HON-DTR mice in the new Figure 4B.

      Reviewer #2 (Public review):

      Summary:

      Despite several methodological strengths, the major and highly significant drawback is the confound of arousal with movement. This confound is not resolved, so the results could be explained by previously established relationships between orexin and arousal/wakefulness.

      This an excellent point, and we agree. To address this directly in the revised manuscript, we now include new data and analyses towards this (pupillometry to directly assess arousal, and multivariate analysis to assess contributions of arousal vs movemement to HON activity).

      Strengths:

      The authors show that orexin neuron activity is associated with body movement and that this information is conveyed irrespective of the fasted state. They also report differences in different orexin target brain regions for orexin release during movement. This paper contains an impressive array of cutting-edge techniques to examine a very important brain system, the orexin-hypocretin system. The authors offer an original perspective on the function of this system. The authors showed that orexin neuron activity scales to some degree with the magnitude of body movement change; this is unaffected by a fasted state and seems to be somewhat unique to orexin neurons.

      The investigation of other genetically defined subcortical neuron populations to determine the specificity of findings is also a strength, as is the ability to quantify movement and use deep learning to classify specific behaviors adds sophistication to analysis. The authors also show heterogeneity in orexin projections to specific target nuclei, which is interesting.

      The authors "speculate that narcolepsy-cataplexy, caused by HON loss-of-function, is perhaps explained by oscillations into unwanted sleep-states and motor programs due to impaired control loops for wakefulness and movement". This is quite an interesting aspect of their work and deserving of further study.

      We thank the reviewer for their supportive feedback.

      Weaknesses:

      Despite the strengths, there are several major and minor weaknesses that detract significantly from the study.

      My main concern with this work is the confound of arousal with movement so that correlations with one might reflect a relationship instead with the other. The orexin system is well known to play an important role in arousal, with elevated activity of orexin neurons reported for waking and high arousal. Orexin signaling has also been strongly associated with motivation, which also is associated with arousal and movement. The authors offer no compelling evidence that the relationships they describe between different movements and orexin signaling do not simply reflect the known relationship between arousal and motivation.

      The authors could address this concern by including classical arousal measurements, eg, cortical EEG recorded simultaneously with movements. Often, EEG arousal occurs independently of movement, so this could provide one approach to disentangling this confound. The idea that orexin signaling plays a role in arousal rather than movement is supported by their finding that orexin lesions using the orexin-DTR mouse model did not impact movements. In contrast, prior lesion and pharmacologic studies have found that decreased orexin signaling significantly decreases arousal and waking.

      Another way they could test their idea would be to paralyze and respirate animals so that orexin activity could be recorded without movement. Alternatively, animals could be trained to remain motionless to receive a reward. Thus, there are several ways to test the overall hypothesis of this work that have not been examined here.

      The authors propose that "a simple interpretation of their results is that, via HON movement tracking, the brain creates a "wake up" signal in proportion to movement". This seems to argue for the role of the orexin system in arousal and motivation rather than in movement per se.

      Thank you. We agree that disentangling between arousal and movement is indeed critical. A classic approach is a multivariate analysis, wherein multiple simultaneously recorded “predictors” of HON activity – such as arousal and movement - can be directly compared. While EEG arousal is an option, another well-accepted metric for arousal is pupil diameter. Using n = 7 mice, we now simultaneously record HON activity, movement, running speed, pupil size fluctuations, and ocular movements:

      We then fit a partial least squares multivariate regression (a regression type more robust to collinearity) using the movement metric, pupil size, and ocular movements as predictors of orexin neuron activity. Consistent with previous publications, we found that pupil size alone has a positive correlation with hORX.GCaMP6s (~0.45). However, using a drop-one feature analysis in multivariate regression, we found that movement had the highest % contribution to statistically explaining orexin neuron activity. Here are the new results (which we now added as Fig. 7A-B).

      Author response image 1.

      Furthermore, we also expanded this analysis to incorporate the different frequencies found in HON dynamics, using empirical mode decomposition. We found that pupil size had a maximum correlation at lower HON frequencies than the movement metric, while ocular movements were maximally correlated in higher frequencies (now added as Fig. 7D,E).

      Overall, this analysis suggests that – while HONs encode both movement and arousal – arousal and movement do not always co-fluctuate at the same timescales, and their impacts on HONs can be disentangled in a number of ways. We now mention this in revised text on page 5.

      There are several studies that have examined the effect of orexin antagonist treatment in rodents on locomotor and other motor activities. These studies have largely found no consistent effect of antagonizing orexin signaling, especially at the OxR1 receptor, on simple motor activity. These studies are not referenced here but should be taken into account in the authors' conclusions.

      We agree. Prior studies found that orexin antagonism – or optogenetic silencing of HONs – evokes either reduced locomotion, or no effect on locomotor movements. We now added text and references to paragraph 4 of Discussion, summarising this.

      Figure 3, panel F: I understand HON-DTR is a validated model but a picture of HONs ablation is necessary, including pictures of HONs outputs ablation within the SNc and LC.

      A representative histological slice is now included for both wild type (WT) and HON-DTR mice in the new Figure 4B. Because HONs are only found in the hypothalamus, somatic deletion of HONs in this region will result in axonal degradation in output regions.

      The discussion lacks a more extensive paragraph on the distinct signal and role of Ox>SNc and Ox-LC projections.

      We now added sentences discussing potential implications of this to Discussion (middle of paragraph 4).

      Reviewer #2 (Recommendations for the authors):

      Minor weaknesses

      A very important movement in rodents is head orientation, especially given the limitation in ocular movement. However, this paper used a fixed head model which obviated this movement and did not attempt to analyze ocular movements.

      Analysing ocular movements is something we had not considered but is very easy to check using pupillometry. In n = 7 mice, we recorded both orexin neurons, and ocular movements captured through an infrared camera under constant lighting. Ocular movements had a small positive correlation with orexin neuron photometry (r = ~0.26). See response to the public review above.

      Author response image 2.

      The "HON" abbreviation is not commonly used for orexin neurons, and I suggest replacing that with a more well-known abbreviation.

      To the best of our knowledge, there is no universally agreed or best-known abbreviation for hypocretin/orexin neurons (we agree it would be nice if there was one!). “HONs” is a simple first letter abbreviation of hypocretin/orexin neurons, which acknowledges the two names for this peptide given by the original discoverers (de Lecea et al, and Sakurai et al, in 1998). Although this may not be the perfect abbreviation, we have kept it for now, also to be consistent with the large number (>10) of other published studies that recently used this abbreviation.

      The graphs showing Pearson's r values do not demonstrate a very strong correlation between neural activity and movement change; they also lack validation of genetic expression/ablation in some cases. The results would more strongly support the conclusions if statistically significant correlations could be demonstrated between activity and movement.

      We agree that a correlation of ~0.68 is probably not worthy of a “very strong” classification. While there is no universal ruleset for categorizing the strength of a correlation, we have toned down our language throughout the manuscript.

      Comment regarding statistical testing of correlations: we are cautious to stand behind correlation significance testing for large sample sizes (~48’000 photometry & video samples in a 40-minute session). In our case, correlations were always extremely significant p<0.0001. The reason for this is that correlation p-values become “too big to fail” (see Lin et al. 2013) with inflated sample size. We therefore refrain from commenting on p-values and rather report between or within-subjects statistical tests, or tests against zero. See four example experiments below.

      Author response image 3.

      Citation: Lin, M., Lucas, H. C., Jr & Shmueli, G. Research Commentary—Too Big to Fail: Large Samples and the p-Value Problem. Information Systems Research 24, 906–917 (2013).

      The rationale for looking at running speed, general movement, and specific types of nonlocomotor movements could be clarified and explained more thoroughly in the introduction. Why is it important to distinguish between locomotion (represented here with running) and all other movements? Presumably, this is because orexin is known to regulate arousal/locomotion. What evidence is there for orexin's role in other types of movements, which are being grouped together in Figure 1? This could be laid out in more detail in the Introduction. Relatedly, it is not very clear in the text whether the correlation between movement and orexin neuron activity includes movement related to running.

      The main focus of our paper is on movement in general (i.e. video pixel difference, described in Results and Methods). This movement metric includes everything captured by the video, it is agnostic to the type of movement or behaviour.  To connect this to some of the specific innate movements/behaviours typically studied in mouse literature (running, grooming, sniffing, etc), we also performed plots in Figure 2. We attempted to explain this better in revised section 1 of Results.

      What exactly is being correlated in Figure 1C (and throughout the rest of the paper?) Is this the average signal correlated with the average movement change over the entire recording time? This could be more explicitly stated in methods/results. The correlations themselves/p-values could be shown in addition to/instead of Pearson's r values. Are the correlations themselves significant? This would strengthen the claim that orexin activity is strongly coupled to the magnitude of body movement change. As another example, in Figure 2D, there are no statistics reported on the correlation between movement metric and average neural signal. In Figure 6G, orexin neuron activity is more strongly correlated with movement than MVe glut neurons, but are either of these correlations significant? The correlation between MVe glut activity and movement overall seems similar to that of orexin neurons, and may be worth noting more explicitly.

      Throughout the paper, we have recorded both neural activity (photometry) and movement at 20 Hz. This would generate, for example, 48’000 samples of photometry and movement from a 40-minute session. All the samples were used to calculate a pearson’s r between variables. To clarify this, we now added the subtext “wholesession” to relevant figures, as well as a clarification in the methods.

      Individual experiment correlations for orexin neurons and MVe glut neurons were always significant p<0.0001, even after a Bonferroni multiple comparisons correction was applied to each population. See the “too big to fail” nature of correlation hypothesis testing above.

      It could be made clearer at the end of Figure 2 that orexin neuron activity is tracking the magnitude of movement change (shown in Figure 2D), not that it is encoding different types of movement.

      We intended for original Figure 2E to illustrate this concept, however this panel has caused a great deal of confusion to several readers and was perhaps ill conceived. We have replaced Figure 2E with a new panel more directly addressing the reviewer’s statement. We can construct three models where orexin neuron activity is predicted from the behavioral classification (sometimes called “one-hot” encoding) and/or the movement metric.

      Model 1 predicts orexin neuron activity using only a categorical predictor of behavioral state. Model 2 only uses the movement metric, and model 3 allows a different movement-metric correlation within each behavioral state. We can compare these models using AIC (Akaike Information Criterion) which is a point estimate. While the most complex model 3 was the best, model 2 was much closer to model 3 than model 1. Similarly, model 2 was much better than model 1. From this we conclude that the magnitude of movement change is a more powerful predictor than behavioral state (“type of movement”). This is now Figure 2E.

      It would be interesting to see the raw movement metric data as shown in Figures 1 and 2 in the DTR mice to show that ablating orexin neurons does not impair the movement profile seen in Figures 1 and 2.

      The requested visualization has been added to Figure 4B.

      Validation that orexin was selectively ablated in these mice would be ideal.

      Histology (see response to public review) was added to a new Figure 4B.

      Figure 4A - OxLight expression in SNc does not look very robust.

      Please note this is a membrane-targeted indicator, the staining this produces is thus much weaker than cyctosolic indicators such as calcium indicator GCaMP.

      Figure 4 - It would be beneficial to see the same correlations that were done in Figures 1 and 2 to show OxLight activity vs. movement metric. Are they correlated?

      Individual traces had significant correlations with OxLight and movement, and the population averages revealed similar trends:

      Author response image 4.

      Figure 6B - Targeting of MVe neurons does not look very specific. The sample size for orexintargeted mice should be re-stated in the figure legend for clarity.

      Legend has been updated to clarify n = 15 for orexin targeted mice.

      Some citations didn't seem to match what was being referenced in the text. Similarly, in the legend for Figure 1C, the statistics do not match what is reported in the text. In Figure 1, the sample size is not noted in the text. When referring to running in Figure 1, is this referring to running speed? Perhaps the language could be more consistent.

      These typos (due to a rounding error) in the legend and text have been corrected. Sample size has been added to the text, and we have changed Figure 1D to clarify we are referring to running speed. We moved some citations to improve clarity.

      Methods - where were Cre mice obtained from?

      Sources now better referenced in Methods (JAX or Parlato et al).

      Figure 1, panel C: The authors compared Pearson's r-coefficient results for each animal and for each variable. However, it would be interesting to show the correlation curves for each variable. However, it would be interesting to show the correlation curves for each variable as well here. Also, there is mention of a strong correlation but it is unclear whether these correlations are significant.

      See below for an example mouse.

      Author response image 5.

      Figure 3, panel F: I understand HON-DTR is a validated model but a picture orexin ablation is necessary, including pictures of orexin fibers ablation within the SNc and LC.

      See our reply to the public review above.

      Figure 5, Panel A: Same comment as Figure 1, panel C.

      We have similarly clarified the panel and legend.

      Page 4: The authors mention "Within the 1st and 4th quartile of blood glucose, movement-HON correlations were not significantly different. Please add the figures.

      The requested plot has been added to Figure 6, panel G.

      Reviewer #3 (Public review):

      Summary

      The study presents an investigation into how hypothalamic orexin neurons (HONs) track body movement with high precision. Using techniques including fiber photometry, video-based movement metrics, and empirical mode decomposition (EMD), the authors demonstrate that HONs encode net body movement consistently across a range of behaviors and metabolic states. They test the ability of HONs to track body movement to that of other subcortical neural populations, from which they distinguish HONs activity from other subcortical neural populations.

      Strengths:

      The study characterizes HONs activity as key indicators of movement and arousal, and this method may have potential implications for understanding sleep disorders, energy regulation, and brain-body coordination. Overall, I think this is a very interesting story, with novel findings and implications about sensorimotor systems in animals. The manuscript is clearly written and the evidence presented is rigorous. The conclusions are well supported by experimental data with clear statistical analyses.

      We thank the reviewer for their supportive feedback.

      Weaknesses/suggestions:

      There are a couple of issues I think the authors could address to make the paper better and more complete:

      (1) The study primarily focuses on steady-state behaviors. It would be interesting if the authors' current dataset allows analyses of HON dynamics during transitions between behavioral states (e.g., resting to running or grooming to sniffing). This could provide additional insights into how HONs adapt to rapid changes in body movement.

      This is a fantastic idea, and easy to check using our classification CNN. We identified the six most frequent behavioral transitions and plotted them in Figure 2H. HONs show rapid dynamics in activity aligned with behavioral changes.

      These changes are very similar to the movement magnitude along these transitions, which is now also plotted in Figure 2G.

      (2) Given the established role of HONs in arousal and wakefulness, the study could further investigate how movement-related HON dynamics interact with arousal states. For example, does HON encoding of movement differ during sleep versus wakefulness?

      To further investigate how movement encoding interacts with arousal, we now include quantification and analysis of pupil-linked arousal (see new Figure 7). We agree it would be interesting to look at what happens during sleep, especially REM sleep when some HONs are thought to be active where there is no/little body movement, but this is beyond the scope of the present study.

      (3) Although HON ablation experiments suggest that HONs do not shape movement frequency profiles. It would be more compelling if the authors could investigate whether HONs contribute to specific types of movements (e.g., fine motor vs. gross motor movements) or modulate movement initiation thresholds.

      We performed this analysis using the k-means classifier for small/large movements. Consistent with previous results, we found no significant effect (p = 0.2767) of genotype on the frequency of identified small (fine) or large (gross) movement clusters. This plot has been added to Figure 4E.

      (4) The heterogeneous movement-related orexin dynamics observed in the LC and SNc raise intriguing questions about the circuit-level mechanisms underlying these differences. Optogenetic or chemogenetic manipulation of these projections could validate the functional implications of these dynamics.

      We agree. We now discuss some implications of this in revised Discussion (paragraph 4). Please note that previous work already demonstrated that orexin action in the SNc can produce locomotion (referenced in the paragraph), though we agree that further work would be valuable.

      Reviewer #3 (Recommendations for the authors):

      Additional feedback:

      (1) Figure 1C: the individual data points are hard to track or see. Consider using a larger marker face to help data visualization. Similar issues can be found in Figures 2C, 2E, 5E, 6C, 6F, and 6G.

      Thickness of the lines and scatterplots have been increased.

      (2) First Section of Results: the authors claim to use a deep-learning network to automatically classify video recordings into five distinct behaviors. However, several issues need to be addressed here:

      a. In Results, the corresponding sentence lacks a reference to the Methods Section.

      Reference has been added to the text.

      b. In Methods, the description of the CNN model is quite limited, lacking many basic, necessary components including necessary references to published papers, the model training, characterization (only an overall accuracy is not enough), as well as dataset definition, preparation, augmentation (if any), etc.

      We have expanded the methods section regarding the CNN model.

      (3) First Section of Results: in the second paragraph, the authors claim that "Overall, these results reveal HON population activity precisely tracks a general degree of body movement across recorded behaviors." This is not accurate. To indicate that HONs activity tracks the general degree of body movement across behavior states, they need to further show that behavioral states with similar levels of movement metrics can be differentiated via HON activities. However, as they showed in Figure 2D, some behaviors with similar values of movement metric do not seem to be easily discerned by HON activity levels.

      We agree with you, and this is also what we originally intended to convey – now reworded for clarity.

      (4) Technical issue: Figures 3B, 3C, 3G, using local regression to plot the solid lines makes them touch negative values, which does not make sense for "power proportion" (this quantity is always non-negative).

      This is a good point. To fix this, we first log-transformed the power metric, then performed a local regression, and used the link function to transform the model predictions back to %-units for visualization. This has been noted in the methods.

      (5) Figure 3G: For a better comparison, consider combining the two plots into a single plot.

      The two plots have been merged as shown in Figure 4C.

      (6) Figure 5E: For a better data visualization, the current pair of plots can be consolidated into one single plot where the x-axis is Move and the y-axis is dGlu. In this way, it is easier to understand and the orthogonality as claimed in the manuscript can be more apparent.

      The requested plot has been added as Figure 6F.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      This is a new and important system that can efficiently train mice to perform a variety of cognitive tasks in a flexible manner. It is innovative and opens the door to important experiments in the neurobiology of learning and memory. 

      Strengths: 

      Strengths include: high n's, a robust system, task flexibility, comparison of manual-like training vs constant training, circadian analysis, comparison of varying cue types, long-term measurement, and machine teaching. 

      Weaknesses: 

      I find no major problems with this report. 

      Minor weaknesses: 

      (1)  Line 219: Water consumption per day remained the same, but number of trails triggered was more as training continued. First, is this related to manual-type training? Also, I'm trying to understand this result quantitatively, since it seems counter-intuitive: I would assume that with more trials, more water would be consumed since accuracy should go up over training (so more water per average trial). Am I understanding this right? Can the authors give more detail or understanding to how more trials can be triggered but no more water is consumed despite training? 

      Thanks for the comment. We would like to clarify the phenomenon described in Line 219: As the training advanced, the number of trials triggered by mice per day decreased (rather than increased as you mentioned in the comment) gradually for both manual and autonomous groups of mice (Fig. 2H left). The performance, as you mentioned, improved over time (Fig. 2D and 2E), leading to an increased probability of obtaining water and thus relatively stable daily water intake (Fig. 2H middle). We believe the stable daily intake is the minimum amount of water required by the mice under circumstance of autonomous behavioral training. To make the statement more clearly, we indicated the corresponding figure numbers in the text.

      Results “… As shown in Fig. 2H, autonomous training yielded significantly higher number of trial/day (980 ± 25 vs. 611 ± 26, Fig. 2H left) and more volume of water consumption/day (1.65 ± 0.06 vs. 0.97 ± 0.03 ml, Fig. 2H middle), which resulted in monotonic increase of body weight that was even comparable to the free water group (Fig.2H right). In contrast, the body weight in manual training group experienced a sharp drop at the beginning of training and was constantly lower than autonomous group throughout the training stage (Fig. 2H right).”

      (2) Figure 2J: The X-axis should have some label: at least "training type". Ideally, a legend with colors can be included, although I see the colors elsewhere in the figure. If a legend cannot be added, then the color scheme should be explained in the caption.

      Thanks for the suggestion. The labels with corresponding colors for x-axis have been added for Fig. 2J.

      (3) Figure 2K: What is the purple line? I encourage a legend here. The same legend could apply to 2J.

      Thanks for the suggestion. The legend has been added for Fig. 2K.

      (4) Supplementary Figure S2 D: I do not think the phrase "relying on" is correct. Instead, I think "predicted by" or "correlating with" might be better. 

      We thank the reviewer for the valuable suggestion. The phrase has been changed to ‘predicted by’ for better suitability.

      Figure S2 “(D), percentage of trials significantly predicted by different regressors during task learning. …”

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript by Yu et al. describes a novel approach for collecting complex and different cognitive phenotypes in individually housed mice in their home cage. The authors report a simple yet elegant design that they developed for assessing a variety of complex and novel behavioral paradigms autonomously in mice. 

      Strengths: 

      The data are strong, the arguments are convincing, and I think the manuscript will be highly cited given the complexity of behavioral phenotypes one can collect using this relatively inexpensive ($100/box) and high throughput procedure (without the need for human interaction). Additionally, the authors include a machine learning algorithm to correct for erroneous strategies that mice develop which is incredibly elegant and important for this approach as mice will develop odd strategies when given complete freedom. 

      Weaknesses:

      (1) A limitation of this approach is that it requires mice to be individually housed for days to months. This should be discussed in depth. 

      Thank you for raising this important point. We agree that the requirement for individual housing of mice during the training period is a limitation of our approach, and we appreciate the opportunity to discuss this in more depth. In the manuscript, we add a section to the Discussion to address this limitation, including the potential impact of individual housing on the mice, the rationale for individual housing in our study, and efforts or alternatives made to mitigate the effects of individual housing.

      Discussion “… Firstly, our experiments were confined to single-housed mice, which is known to influence murine behavior and physiology, potentially affecting social interaction and stress levels [76]. In our study, individual housing was necessary to ensure precise behavioral tracking, eliminate competitive interactions during task performance, and maintain consistent training schedules without disruptions from cage-mate disturbances. However, the potential of group-housed training has been explored with technologies such as RFID [28,29,32–34] to distinguish individual mice, which potentially improving the training efficiency and facilitating research of social behaviors [77]. Notably, it has shown that simultaneous training of group-housed mice, without individual differentiation, can still achieve criterion performance [25].”

      (2) A major issue with continuous self-paced tasks such as the autonomous d2AFC used by the authors is that the inter-trial intervals can vary significantly. Mice may do a few trials, lose interest, and disengage from the task for several hours. This is problematic for data analysis that relies on trial duration to be similar between trials (e.g., reinforcement learning algorithms). It would be useful to see the task engagement of the mice across a 24-hour cycle (e.g., trials started, trials finished across a 24-hour period) and approaches for overcoming this issue of varying inter-trial intervals. 

      Thank you for your insightful comment regarding the variability in inter-trial intervals and its potential impact on data analysis. We agree that this is an important consideration for continuous self-paced tasks.

      In our original manuscript, we have showed the general task engagement across 24-hour cycle (Fig. 2K), which revealed two peaks of engagements during the dark cycle with relatively fewer trials during the light cycle. To facilitate analyses requiring consistent trial durations, we defined trial blocks as sequences between two no-response trials. Notably, approximately 66.6% of trials occurred within blocks of >5 consecutive trials (Fig. 2L), which may be particularly suitable for such analyses.

      In the revised manuscript, we also added the analysis of the histogram of inter-trial-interval for both the autonomous and manual training paradigms in HABITS (Fig. S2H), which shows that around 55.2% and 77.5% of the intervals are less than 2 seconds in autonomous and manual training, respectively.

      Results “… We found more than two-third of the trials was done in >5-trial blocks (Fig. 2L left) which resulted in more than 55% of the trials were with inter-trial-interval less than 2 seconds (Fig. S2H).”

      Regarding the approaches to mitigate the issue of varying inter-trial interval, we observed that manual training (i.e., manually transferring to HABITS for ~2 hr/day) in Fig. S2H resulted in more trials with short inter-trial-interval, suggesting that constrained access time promotes task engagement and reduces interval variability. Fig. 2L also indicated that the averaged correct rate increased and the earlylick rate decreased as the length of block increased. This approach could be valuable for studies where consistent trial timing is critical. In the context of our study, we could actually introduce a light, for example, to serve as the cue that prompt the animals to engage during a fixed time duration in a day.

      Discussion “… In contrast, the self-paced nature of autonomous training may permit greater variability in attentional engagement 83 and inter-trial-intervals, which could be problematic for data analysis relaying on consistent intervals and/or engagements. Future studies should explore how controlled contextual constraints enhance learning efficiency and whether incorporating such measures into HABITS could optimize its performance.”

      (3) Movies - it would be beneficial for the authors to add commentary to the video (hit, miss trials). It was interesting watching the mice but not clear whether they were doing the task correctly or not. 

      Thanks for the reminder. We have added subtitles to both of the videos. Since the supplementary video1 was not recorded with sound, the correctness of the trials was hard to judge. We replaced the video with another one with clear sound recordings, and the subtitles were commented in detail.

      (4) The strength of this paper (from my perspective) is the potential utility it has for other investigators trying to get mice to do behavioral tasks. However, not enough information was provided about the construction of the boxes, interface, and code for running the boxes. If the authors are not willing to provide this information through eLife, GitHub, or their own website then my evaluation of the impact and significance of this paper would go down significantly. 

      Thanks for this important comment. We would like to clarify that the construction methods, GUI, code for our system, PCB and CAD files (newly uploaded) have already been made publicly available on https://github.com/Yaoyao-Hao/HABITS. Additionally, we have open-sourced all the codes and raw data for all training protocols (https://doi.org/10.6084/m9.figshare.27192897). We will continue to maintain these resources in the future.

      Minor concerns: 

      (5) Learning rate is confusing for Figure 3 results as it actually refers to trials to reach the criterion, and not the actual rate of learning (e.g., slope).

      Thanks for pointing this out. The ‘learning rate’ which refers to trial number to reach criterion has been changed to ‘the number of trials to reach criterion’.

      Reviewer #3 (Public review): 

      Summary: 

      In this set of experiments, the authors describe a novel research tool for studying complex cognitive tasks in mice, the HABITS automated training apparatus, and a novel "machine teaching" approach they use to accelerate training by algorithmically providing trials to animals that provide the most information about the current rule state for a given task. 

      Strengths: 

      There is much to be celebrated in an inexpensively constructed, replicable training environment that can be used with mice, which have rapidly become the model species of choice for understanding the roles of distinct circuits and genetic factors in cognition. Lingering challenges in developing and testing cognitive tasks in mice remain, however, and these are often chalked up to cognitive limitations in the species. The authors' findings, however, suggest that instead, we may need to work creatively to meet mice where they live. In some cases, it may be that mice may require durations of training far longer than laboratories are able to invest with manual training (up to over 100k trials, over months of daily testing) but the tasks are achievable. The "machine teaching" approach further suggests that this duration could be substantially reduced by algorithmically optimizing each trial presented during training to maximize learning. 

      Weaknesses: 

      (1) Cognitive training and testing in rodent models fill a number of roles. Sometimes, investigators are interested in within-subjects questions - querying a specific circuit, genetically defined neuron population, or molecule/drug candidate, by interrogating or manipulating its function in a highly trained animal. In this scenario, a cohort of highly trained animals that have been trained via a method that aims to make their behavior as similar as possible is a strength. 

      However, often investigators are interested in between-subjects questions - querying a source of individual differences that can have long-term and/or developmental impacts, such as sex differences or gene variants. This is likely to often be the case in mouse models especially, because of their genetic tractability. In scenarios where investigators have examined cognitive processes between subjects in mice who vary across these sources of individual difference, the process of learning a task has been repeatedly shown to be different. The authors do not appear to have considered individual differences except perhaps as an obstacle to be overcome. 

      The authors have perhaps shown that their main focus is highly-controlled within-subjects questions, as their dataset is almost exclusively made up of several hundred young adult male mice, with the exception of 6 females in a supplemental figure. It is notable that these female mice do appear to learn the two-alternative forced-choice task somewhat more rapidly than the males in their cohort.

      Thank you for your insightful comments and for highlighting the importance of considering both within-subject and between-subject questions in cognitive training and testing in rodent models. We acknowledge that our study primarily focused on highly controlled within-subject questions. However, the datasets we provided did show preliminary evidences for the ‘between-subject’ questions. Key observations include:

      The large variability in learning rates among mice observed in Fig. 2I;

      The overall learning rate difference between male and female subjects (Fig. 2D vs. Fig. S2G);

      The varying nocturnal behavioral patterns (Fig. 2K), etc.

      We recognize the value of exploring between-subjects differences in mouse model and discussed more details in the Discussion part.

      Discussion “Our study was designed to standardize behavior for the precise interrogation of neural mechanisms, specifically addressing within-subject questions. However, investigators are often interested in between-subject differences—such as sex differences or genetic variants—which can have long-term behavioral and cognitive implications [72,74]. This is particularly relevant in mouse models due to their genetic tractability [75]. Although our primary focus was not on between-subject differences, the dataset we generated provides preliminary evidence for such investigations. Several behavioral readouts revealed individual variability among mice, including large disparities in learning rates across individuals (Fig. 2I), differences in overall learning rates between male and female subjects (Fig. 2D vs. Fig. S2G), variations in nocturnal behavioral patterns (Fig. 2K), etc.”

      (2) Considering the implications for mice modeling relevant genetic variants, it is unclear to what extent the training protocols and especially the algorithmic machine teaching approach would be able to inform investigators about the differences between their groups during training. For investigators examining genetic models, it is unclear whether this extensive training experience would mitigate the ability to observe cognitive differences, or select the animals best able to overcome them - eliminating the animals of interest. Likewise, the algorithmic approach aims to mitigate features of training such as side biases, but it is worth noting that the strategic uses of side biases in mice, as in primates, can benefit learning, rather than side biases solely being a problem. However, the investigators may be able to highlight variables selected by the algorithm that are associated with individual strategies in performing their tasks, and this would be a significant contribution.

      Thank you for the insightful comments. We acknowledge that the extensive training experience, particularly through the algorithmic machine teaching approach, could potentially influence the ability to observe cognitive differences between groups of mice with relevant genetic variants. However, our study design and findings suggest that this approach can still provide valuable insights into individual differences and strategies used by the animals during training. First, the behavioral readout (including learning rate, engagement pattern, etc.) as mentioned above, could tell certain number of differences among mice. Second, detailed modelling analysis (with logistical regression modelling) could further dissect the strategy that mouse use along the training process (Fig. S2B). We have actually highlighted some variables selected by the regression that are associated with individual strategies in performing their tasks (Fig. S2C) and these strategies could be different between manual and autonomous training groups (Fig. S2D). We included these comments in the Discussion part for further clearance.

      Discussion “… Furthermore, a detailed logistic regression analysis dissected the strategies mice employed during training (Fig. S2B). Notably, the regression identified variables associated with individual task-performance strategies (Fig. S2C), which also differed between manually and autonomously trained groups (Fig. S2D). Thus, our system could facilitate high-throughput behavioral studies exploring between-subject differences in the future.”

      (3) A final, intriguing finding in this manuscript is that animal self-paced training led to much slower learning than "manual" training, by having the experimenter introduce the animal to the apparatus for a few hours each day. Manual training resulted in significantly faster learning, in almost half the number of trials on average, and with significantly fewer omitted trials. This finding does not necessarily argue that manual training is universally a better choice because it leads to more limited water consumption. However, it suggests that there is a distinct contribution of experimenter interactions and/or switching contexts in cognitive training, for example by activating an "occasion setting" process to accelerate learning for a distinct period of time. Limiting experimenter interactions with mice may be a labor-saving intervention, but may not necessarily improve performance. This could be an interesting topic of future investigation, of relevance to understanding how animals of all species learn.

      Thank you for your insightful comments. We agree that the finding that manual training led to significantly faster learning compared to self-paced training is both intriguing and important. One of the possible reasons we think is due to the limited duration of engagement provided by the experimenter in the manual training case, which forced the mice to concentrate more on the trials (thus with fewer omitting trials) than in autonomous training. Your suggestion that experimenter interactions might activate an "occasion setting" process is particularly interesting. In the context of our study, we could actually introduce, for example, a light, serving as the cue that prompt the animals to engage; and when the light is off, the engagement was not accessible any more for the mice to simulate the manual training situation. We agree that this could be an interesting topic for future investigation that might create a more conducive environment for learning, thereby accelerating the learning rate.

      Discussion “… Lastly, while HABITS achieves criterion performance in a similar or even shorter overall days compared to manual training, it requires more trials to reach the same learning criterion (Fig. 2G). We hypothesize that this difference in trial efficiency may stem from the constrained engagement duration imposed by the experimenter in manual training, which could compel mice to focus more intensely on task execution, resulting in less trial omissions (Fig. 2F). In contrast, the self-paced nature of autonomous training may permit greater variability in attentional engagement 83 and inter-trial-intervals, which could be problematic for data analysis relaying on consistent intervals and/or engagements. Future studies should explore how controlled contextual constraints enhance learning efficiency and whether incorporating such measures into HABITS could optimize its performance.”

      Reviewer #2 (Recommendations for the authors):

      As I mentioned in the weaknesses, I did not see code or CAD drawings for their home cages and how these interact with a computer.

      Thanks for the comment. We would like to clarify that the construction methods, GUI, code for our system, PCB and CAD files (newly uploaded) have already been made publicly available on https://github.com/Yaoyao-Hao/HABITS.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This study highlights the strengths of using predictive computational models to inform C. elegans screening studies of compounds' eCects on aging and lifespan. The authors primarily focus on all-trans retinoic acid (atRA), one of the 5 compounds (out of 16 tested) that extended C. elegans lifespan in their experiments. They show that atRA has positive eCects on C. elegans lifespan and age-related health, while it has more modest and inconsistent eCects (i.e., some detrimental impacts) for C. briggsae and C. tropicalis. In genetic experiments designed to evaluate contributing mediators of lifespan extension with atRA exposure, it was found that 150 µM of atRA did not significantly extend lifespan in akt1 or akt-2 loss-of-function mutants, nor in animals with loss of function of aak-2, or skn-1 (in which atRA had toxic eCects); these genes appear to be required for atRA-mediated lifespan extension. hsf-1 and daf-16 loss-of-function mutants both had a modest but statistically significant lifespan extension with 150 µM of atRA, suggesting that these transcription factors may contribute towards mediating atRA lifespan extension, but that they are not individually required for some lifespan extension. RNAseq assessment of transcriptional changes in day 4 atRA-treated adult wild-type worms revealed some interesting observations. Consistent with the study's genetic mutant lifespan observations, many of the atRA-regulated genes with the greatest fold-change diCerences are known regulated targets of daf-2 and/or skn-1 signaling pathways in C. elegans. hsf-1 loss-offunction mutants show a shifted atRA transcriptional response, revealing a dependence on hsf-1 for ~60% of the atRA-downregulated genes. On the other hand, RNAseq analysis in aak-2 loss-of-function mutants revealed that aak-2 is only required for less than a quarter of the atRA transcriptional response. All together, this study is proof of the concept that computational models can help optimize C. elegans screening approaches that test compounds' eCects on lifespan, and provide comprehensive transcriptomic and genetic insights into the lifespan-extending eCects of all-trans retinoic acid (atRA).

      Strengths:

      (1) A clearly described and well-justified account describes the approach used to prioritize and select compounds for screening, based on using the top candidates from a published list of computationally ranked compounds (Fuentealba et al., 2019) that were crossreferenced with other bioinformatics publications to predict anti-aging compounds, after de-selecting compounds previously evaluated in C. elegans as per the DrugAge database. 16 compounds were tested at 4-5 diCerent concentrations to evaluate eCects on C. elegans lifespan.

      (2) Robust experimental design was undertaken evaluating the lifespan eCects of atRA, as

      it was tested on three strains each of C. elegans, C. briggsae, and C. tropicalis, with trial replication performed at three distinct laboratories. These observations extended beyond lifespan to include evaluations of health metrics related to swimming performance.

      (3) In-depth analyses of the RNAseq data of whole-worm transcriptional responses to atRA revealed interesting insights into regulator pathways and novel groups of genes that may be involved in mediating lifespan-extension eCects (e.g., atRA-induced upregulation of sphingolipid metabolism genes, atRA-upregulation of genes in a poorly-characterized family of C. elegans paralogs predicted to have kinase-like activity, and disproportionate downregulation of collagen genes with atRA).

      We thank the reviewer for highlighting the strengths of our paper.

      Weaknesses:

      (1) The authors' computational-based compound screening approach led to a ~30% prediction success rate for compounds that could extend the median lifespan of C.elegans. However, follow-up experiments on the top compounds highlighted the fact that some of these observed "successes" could be driven by indirect, confounding eCects of these compounds on the bacterial food source, rather than direct beneficial eCects on C. elegans physiology and lifespan. For instance, this appeared to be the case for the "top" hit of propranolol; other compounds were not tested with metabolically inert or killed bacteria. In addition, there are no comparative metrics provided to compare this study's ~30% success rate to screening approaches that do not use computational predictions.

      We do test whether compounds have a direct e:ect on bacterial growth. We have the text to clarify that fact. There may be potential lifespan e:ects from atRA due to changes in bacterial metabolites, however exploring that more fully is beyond the scope of the current work. 

      We very much appreciate the question regarding relative success. An appropriate benchmark for “hit rate” is perhaps best provided by Petrascheck, Ye & Buck (2007), who conducted a large-scale screen of 88,000 compounds for e:ects on adult lifespan in C. elegans. They found an initial screening hit rate of 1.2% (1083/88000), which were then retested for a verified hit rate of 0.13% (115/88000), with a retest failure rate of 89% (968/1083). Similarly, Lucanic et al. (2016) screened 30,000 compounds, with an initial hit rate of approximately 1.7% (~500/30000), or these 180 were selected for retesting, resulting in a final verified hit rate of 0.19% (57/29680), which is comparable to the Petrascheck et al. result. The text in the discussion has been modified to include these studies.

      (2)Transcriptomic analyses of atRA eCects were extensive in this study, but evaluations and discussions of non-transcriptional eCects of key proposed regulators (such as AMPK) were limited. For instance, non-transcriptional eCects of aak-2/AMPK might account for its requirement for mediating lifespan extension eCects, since aak-2 was not required for a major proportion of atRA transcriptional responses.

      We naturally agree with the reviewer that non-transcriptional e:ects are possible and well worth pursuing in future work. However, these e:ects will still show within our study, as any upstream non-transcriptional e:ects are likely to reveal themselves in downstream transcriptional changes, as measured here.  

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Banse et al. experimentally validate the power of computational approaches that predict anti-aging molecules using the multi-species approach of the Caenorhabditis Intervention Testing Program (CITP). Filtering candidate molecules based on transcriptional profiles, ML models, literature searches, and the DrugAge database, they selected 16 compounds for testing. Of those, eight did not aCect C.elegan's lifespan, three shortened it, and five extended C.elegan's lifespan, resulting in a hit rate of over 30%. Of those five, they then focused on all-trans-retinoic acid (atRA), a compound that has previously resulted in contradictory eCects. The lifespan-extending eCect of atRA was consistent in all C. elegans strains tested, was absent in C. briggsae, and a small eCect was observed in some C. tropicalis strains. Similar results were obtained for measures of healthspan. The authors then investigated the mechanism of action of atRA and showed that it was only partially dependent on daf-16 but required akt-1, akt-2, skn-1, hsf-1, and, to some degree, pmk-1. The authors further investigate the downstream eCects of atRA exposure by conducting RNAseq experiments in both wild-type and mutant animals to show that some, but surprisingly few, of the gene expression changes that are observed in wild-type animals are lost in the hsf-1 and aak-2 mutants.

      Strengths:

      Overall, this study is well conceived and executed as it investigates the eCect of atRA across diCerent concentrations, strains, and species, including life and health span. Revealing the variability between sites, assays, and the method used is a powerful aspect of this study. It will do a lot to dispel the nonsensical illusion that we can determine a percent increase in lifespan to the precision of two floating point numbers.

      An interesting and potentially important implication arises from this study. The computational selection of compounds was agnostic regarding strain or species diCerences and was predominantly based on observations made in mammalian systems. The hit rate calculated is based on the results of C. elegans and not on the molecules' eCectiveness in Briggsae or Tropicalis. If it were, the hit rate would be much lower. How is that? It would suggest that ML models and transcriptional data obtained from mammals have a higher predictive value for C. elegans than for the other two species. This selectivity for C.elegans over C.tropicalis and C.Briggsae seems both puzzling and unexpected. The predictions for longevity were based on the transcriptional data in cell lines.

      This is a common observation in the CITP for which we do not currently have a satisfying explanation. For whatever reason, C. elegans is much more responsive to compounds than other species, much like it is more responsive to RNAi and other environmental interventions. It may be less active in detoxifying external agents than the other species, although this is just speculation at the moment. We continue to investigate this question, but that work is beyond the scope of the present paper.

      Would it be feasible to compare the mammalian data to the transcriptional data in Figure 5 and see how well they match? While this is clear beyond the focus of this study, an implied prediction is that running RNAseqs for all these strains exposed to atRA would reveal that the transcriptional changes observed in the strains where it extends lifespan the most should match the mammalian data best. Otherwise, how could the mammalian datasets be used to predict the eCects of C.elegans over C.Briggsae or C.Tropicalis have more predictive for one species than the other? There are a lot of IFs in this prediction, but such an experiment would reconsider and validate the basis on which the original predictions were made.

      These questions are worth pursuing in the future but are beyond the scope of the current work.

      Weaknesses:

      Many of the most upregulated genes, such as cyps and pgps are xenobiotic response genes upregulated in many transcriptional datasets from C. elegans drug studies. Their expression might be necessary to deal with atRA breakdown metabolites to prevent toxicity rather than confer longevity. Because atRA is very light sensitive and has toxicity of breakdown, metabolites may explain some of the diCerences observed with the lifespan of machine eCects compared to standard assay practices.

      This is certainly a possibility, although we often observe longer lifespans on the ALM, perhaps because they themselves are stressful, thereby providing a more sensitive background environment for detecting positive stress response modulators.

      Reviewer #3 (Public review):

      Summary:

      In this study, Banse et al., demonstrate that combining computer prediction with genetic analysis in distinct Caenorhabditis species can streamline the discovery of aging interventions by taking advantage of the diverse pool of compounds that are currently available. They demonstrate that through careful prioritization of candidate compounds, they are able to accomplish a 30% positive hit rate for interventions that produce significant lifespan extensions. Within the positive hits, they focus on all-trans retinoic acid (atRA) and discover that it modulates lifespan through conserved longevity pathways such as AKT-1 and AKT-2 (and other conserved Akt-targets such as Nrf2/SKN-1 and HSF1/HSF-1) as well as through AAK-2, a conserved catalytic subunit of AMPK. To better understand the genetic mechanisms behind lifespan extension upon atRA treatment, the authors perform RNAseq experiments using a variety of genetic backgrounds for cross-comparison and validation. Using this current state-of-the-art approach for studying gene expression, the authors determine that atRA treatment produces gene expression changes across a broad set of stress-response and longevity-related pathways. Overall, this study is important since it highlights the potential of combining traditional genetic analysis in the genetically tractable organism C. elegans with computational methods that will become even more powerful with the swift advancements being made in artificial intelligence. The study possesses both theoretical and practical implications not only in the field of aging but also in related fields such as health and disease. Most of the claims in this study are supported by solid evidence, but the conclusions can be refined with a small set of additional experiments or re-analysis of data.

      Strengths:

      (1) The criteria for prioritizing compounds for screening are well-defined and easy to replicate (Figure 1), even for scientists with limited experience in computational biology. The approach is also adaptable to other systems or model organisms.

      (2) I commend the researchers for doing follow-up experiments with the compound propranolol to verify its eCect on lifespan (Figure 2 Supplement 2), given the observation that it aCected the growth of OP50. To prevent false hits in the future, the reviewer recommends the use of inactivated OP50 for future experiments to remove this confounding variable.

      (3) The sources of variation (Figure 3, Figure Supplement 2) are taken into account and demonstrate the need for advancing our understanding of the lifespan phenotype due to inter-individual variation.

      (4) The addition of the C. elegans swim test in addition to the lifespan assays provides further evidence of atRA-induced improvement in longevity.

      (5) The RNAseq approach was performed in a variety of genetic backgrounds, which allowed the authors to determine the relationship between AAK-2 and HSF-1 regulation of the retinoic acid pathway in C. elegans, specifically, that the former functions downstream of the latter.

      We thank the reviewer for highlighting these strengths.

      Weaknesses:

      (1) The filtering of compounds for testing using the DrugAge database requires that the database is consistently updated. In this particular case, even though atRA does not appear in the database, the authors themselves cite literature that has already demonstrated atRA-induced lifespan extension, which should have precluded this compound from the analysis in the first place.

      As often happens in science, this work was initiated before Statzer et al. (2021) was published. As such, it is included in the test set.

      (2) The threshold for determining positive hits is arbitrary, and in this case, a 30% positive hit rate was observed when the threshold is set to a lifespan extension of around 5% based on Figure 1B (the authors fail to explicitly state the cut-oC for what is considered a positive hit).

      Any compound that statistically increases lifespan is considered a positive hit by the CITP. The CITP in general is powered to detect minimum e:ect sizes of 5%.

      (3) The authors demonstrate that atRA extends lifespan in a species-specific manner (Figure 3). Specifically, this extension only occurs in the species C. elegans yet, the title implies that atRA-induced lifespan extension occurs in diCerent Caenorhabditis species when it is clearly not the case. While the authors state that failure to observe phenotypes in C. briggsae and C. tropicalis is a common feature of CITP tests, they do not speculate as to why this phenomenon occurs.

      Please see the comment above.

      (4) There are discrepancies between the lifespan curves by hand (Figure 3 Figure Supplement 1) and using the automated lifespan machine (Figure 3 Supplement 3). Specifically, in the automated lifespan assays, there are drastic changes in the slope of the survival curve which do not occur in the manual assays. This may be due to improper filtering of non-worm objects, improper annotation of death times, or improper distribution of plates in each scanner.

      Our storyboarding SOP ensures that discrepancies in the shape of the curve are unlikely to be due to annotation errors. We check every page of the storyboard by hand, so all non-worm objects are excluded. Furthermore, the first and last ~10% of deaths are checked by hand (as we observed that these time points are the most likely to be wrongly called by the software), with a few deaths chosen at random from the middle to ensure that the software is calling death times accurately. If we find a high amount of inaccurately called deaths, the entire plate is annotated by hand. For this specific experiment, 18% of the total deaths were hand annotated. Plates are randomly distributed across each scanner in an e:ort to prevent bias. As noted above, it does appear that the ALM environment and the “by hand” environment are somewhat di:erent.

      (5) The authors miss an opportunity to determine whether the lifespan extension phenotype attributed to the retinoic acid pathway is mostly transcriptional in nature or whether some of it is post-transcriptional. The authors even state "that while aak-2 is absolutely required for the longevity eCects of atRA, aak-2 is required only for a small proportion (~1/4) of the transcriptional response", suggesting that some of the eCects are post-transcriptional. Further information could have been obtained had the authors also performed RNAseq analysis on the tol-1 mutant which exhibited an enhanced response to atRA compared to wild-type animals, and comparing the magnitude of gene expression changes between the tol-1 mutant and all other genetic backgrounds for which RNAseq was performed.

      Reviewer #1 (Recommendations for the authors):

      (1) Will the raw RNA-seq data be publicly deposited? Please clarify. This would strengthen the value of the study.

      All data is available. We have clarified this in the text.

      (2) Since all-trans retinoic acid is a metabolite of vitamin A, it seems important to include a discussion of and reference to the recent study SKN-1/NRF2 upregulation by vitamin A is conserved from nematodes to mammals and is critical for lifespan extension in Caenorhabditis elegans (Sirakawin et al Cell Reports 2024). Sirakawin et al include data that corroborates and expands on the findings of the current study, including the observation that vitamin A reduces whole-body lipid deposition (agrees with some of the transcriptional findings in the current study); that vitamin A protects against oxidative stress; that vitamin A elevates expression of gst-5, skn-1, and pmk-1; and that loss-offunction mutation of skn-1 has similar eCects to the current study, in terms of suppressing lifespan-extending eCects of vitamin A. In addition, adding some discussion of oxidative stress would strengthen this work, in light of widespread perceptions of the antioxidant properties of vitamin A (and its metabolites).

      Thank you for this suggestion. We have added this citation to the discussion.

      (3) Minor typo: Lines 341-342 - After a sentence that contains the phrase "collagen and neuropeptide related genes", the next sentence uses the term "the latter" in reference to the collagen genes (should be "the former").

      Edited in text.

      (4) Minor correction: In Figure 6, the information in the figure legend is swapped for figure panels A) and B).

      Edited in figure caption.

      (5) To me, the subtitle heading "Loss of AMPK leads to a unique transcriptional profile in response to atRA treatment" (Line 403) is misleading, considering the contents of the text in that section, and the data presented in Figure 6.

      We have altered this heading to reflect this comment.

      Reviewer #2 (Recommendations for the authors):

      Using diCerent colors for the diCerent testing sites would make Figure 3 more readable.

      Edited so that each lab is represented by a di:erent shade of green.

      Reviewer #3 (Recommendations for the authors):

      It would be interesting to investigate the eCect of even higher concentrations of atRA as it has been reported that atRA accumulation is associated with deleterious phenotypes in mice (Snyder et al., 2020, FASEB J).

      We tested the highest concentration (150 uM) based on the solubility of the compound using our standardized plate treatment protocol, so we are unable to test higher concentrations.  

      A good first guess for a downstream retinoid receptor is nhr-23 which is the homolog of the vertebrate ROR genes. Stehlin-Gaon et al. (2003, Nat Struct Mol Biol) have shown that atRA is a ligand for the orphan nuclear receptor RORβ. It might be interesting to study the eCects of atRA on an nhr-23::AID (auxin inducible degron) background. This would allow you to circumvent the developmental phenotypes as a result of nhr-23 knockdown. Patrick/Stephen

      A few notes on the text/figures:

      Line 342: I believe the authors meant "former" instead of "latter".

      Corrected in text.

      Line 346: Can you also highlight col-144 in Fig. 5 S1?

      This is not really feasible, as it is in the cluster near the where the axes meet (red arrow).

      Line 400: CUB pathogen - based on Figure 6 Supp 1, this occurs in aak-2 and not in hsf-1.

      Great catch by the reviewer. We have updated the figure with the correct information.

      Line 414: hedgehog-like signaling - occurs in hsf-1 instead of aak-2. Similar inconsistencies occur in lines 415 (sterol), 417 (C-type lectin), and 418 (unassigned pathogens)

      We have updated the text to eliminate potential conflicts/confusion in the presentation here.

      Line 434: I believe the authors meant Figure "6" instead of "7"

      Edited in text.

      Line 475: Is it "fifteen" or "sixteen" compounds initially targeted?

      Edited in text.

      Can you please include the population sizes for the lifespan assays if not yet included in the detailed protocol to be published in FigShare (to which I currently do not have access to)?

      Added “50 animals per petri plate” to Lifespan Assay methods section; additionally, all sample sizes are included as a summary tab in each dataset on figshare.com (10.6084/m9.figshare.c.6320690).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors in this study extensively investigate how telomere length (TL) regulates hTERT expression via non-telomeric binding of the telomere-associated protein TRF2. They conclusively show that TRF2 binding to long telomeres results in a reduction in its binding to the hTERT promoter. In contrast, short telomeres restore TRF2 binding in the hTERT promoter, recruiting repressor complexes like PRC2, and suppressing hTERT expression. The study presents several significant findings revealing a previously unknown mechanism of hTERT regulation by TRF2 in a TL-dependent manner

      Strengths:

      (1) A previously unknown mechanism linking telomere length and hTERT regulation through the non-telomeric TRF2 protein has been established strengthening the telomere biology understanding.

      (2) The authors used both cancer cell lines and iPSCs to showcase their hypothesis and multiple parameters to validate the role of TRF2 in hTERT regulation.

      (3) Comprehensive integration of the recent literature findings and implementation in the current study.

      (4) In vivo validation of the findings.

      (5) Rigorous controls and well-designed assays have been use.

      Weaknesses:

      (1) The authors should comment on the cell proliferation and morphology of the engineered cell lines with ST or LT.

      The cell proliferation and morphology of the engineered cells were monitored during experiments. With a doubling time within 16-18 hours, all the cancer cell line pairs used in the study were counted and seeded equally before experiments.

      No significant difference in morphology or cell count (before harvesting for experiments) was noted for the stable cell lines, namely, HT1080 ST-HT1080 LT, HCT116 p53 null scrambled control-HCT116 p53 null hTERC knockdown.

      MDAMB 231 cells which were treated with guanine-rich telomere repeats (GTR) over a period of 12 days, as per the protocol mentioned in Methods. Due to the alternate day of GTR treatment in serum-free media followed by replenishment with serum-supplemented media, we noted that cells would undergo periodic delay in their proliferation (or transient arrest) aligning with the GTR oligo-feeding cycles and appeared somewhat larger in comparison to their parental untreated cells.

      Next, the cells with Cas9-telomeric sgRNA mediated telomere trimming were maintained transiently (till 3 days after transfection). During this time, no significant change in morphology or cell proliferation was observed in any of the cell lines, namely HCT116 or HEK293T Gaussia Luciferase reporter cells. iPSCs were also monitored. However, no change in morphology or cellular proliferation was observed during the 5 days post-transfection and antibiotic selection.  

      (2) Also, the entire study uses engineered cell lines, with artificially elongated or shortened telomeres that conclusively demonstrate the role of hTERT regulation by TRF2 in telomere-length dependent manner, but using ALT negative cell lines with naturally short telomere length vs those with long telomeres will give better perspective. Primary cells can also be used in this context.

      The reviewer correctly highlights (as we also acknowledge in the Discussion) that our study primarily utilizes engineered cell lines with artificially elongated or shortened telomeres. We agree that using ALT-negative cells with naturally short versus long telomeres would provide additional perspective. However, a key challenge in this experimental setup is the inherent variation in TRF2 protein levels among these cell types—a parameter central to our hypothesis. Comparing observations across such non-isogenic cell line pairs presents experimental limitations as these would require extensive normalization for multiple factors and introduce additional complexities, which would be difficult to interpret with clarity.

      We had also explored primary cells, specifically foreskin fibroblasts and MRC5 lung fibroblasts, as suggested by the reviewer. However, we encountered two significant challenges. To achieve a notable telomere length difference of at least 20%, these primary cells had to undergo a minimum of 25 passages. During this period, we observed a substantial decline in their proliferation capacity and an increased tendency toward replicative senescence. Additionally, we noted a significant reduction in TRF2 protein levels as the primary cells aged, consistent with findings from Fujita K et al., 2010 (Nat Cell Biol.), which reported p53-induced, Siah-1-mediated proteasomal degradation of TRF2. Due to these practical limitations, we focused on cancer cell lines with respective isogenic backgrounds, ensuring a controlled experimental framework. On the other hand, this opens new avenues for future research to explore broader implications. Investigating other primary cell types that may not present these challenges could be a valuable direction for future studies.

      (3) The authors set up time-dependent telomere length changes by dox induction, which may differ from the gradual telomere attrition or elongation that occurs naturally during aging, disease progression, or therapy. This aspect should be explored.

      In this study, we utilized a Doxycycline-inducible hTERT expression system to modulate telomere length in cancer cells, aiming to capture any gradual changes that might occur upon steady telomerase induction or overexpression—an event frequently observed in cancer progression. We monitored telomere length and telomerase activity at regular intervals (Supplementary Figure 2), noting a gradual increase until a characteristic threshold was reached, followed by a reversal to the initial telomere length.

      While this model provides interesting insights in context of cancer cells, it does not replicate the conditions of aging or therapeutic intervention. We agree that exploring telomere length-dependent regulation of hTERT in normal aging cells is an important avenue for future research. Investigating TRF2 occupancy on the hTERT promoter in response to telomere length alterations through therapeutic interventions—such as telomestatin or imetelstat (telomerase inhibitors) and 6-thio-2’-deoxyguanosine (telomere damage inducer)—would provide valuable insights and warrants further exploration.

      (4) How does the hTERT regulation by TRF2 in a TL-dependent manner affect the ETS binding on hTERT mutant promoter sites?

      In our previous study (Sharma et al., 2021, Cell Reports), we have experimentally demonstrated that GABPA and TRF2 do not compete for binding at the mutant hTERT promoter (Figure 4M-R). Silencing GABPA in various mutant hTERT promoter cells did not increase TRF2 binding. While GABPA has been reported to show increased binding at the mutant promoter compared to the wild-type (Bell et al., 2015, Science), no telomere length (TL) sensitivity has been noted yet. In the current manuscript we show that telomere alterations in hTERT mutant cells (that do not form promoter G-quadruplex) does not significantly affect TRF2 occupancy at the promoter, reinforcing our earlier findings that G-quadruplex formation is crucial for TRF2 recruitment. Since TRF2 binding is not affected this would not impact GABPA binding. Therefore change in TL is unlikely to influence ETS binding by GABPA.

      (5) Stabilization of the G-quadruplex structures in ST and LT conditions along with the G4 disruption experimentation (demonstrated by the authors) will strengthen the hypothesis.

      We agree with the reviewer’s suggestion that stabilizing G-quadruplex (G4) structures in mutant promoter cells under ST and LT conditions would further strengthen our hypothesis. From our ChIP experiments on hTERT promoter mutant cells following G4 stabilization with ligands, as reported in Sharma et al. 2021 (Figure 5G), we observed that TRF2 occupancy was regained in the telomere-length unaltered versions of -124G>A and -146G>A HEK293T Gaussia luciferase cells (referred to as LT cells in the current manuscript).

      (6) The telomere length and the telomerase activity are not very consistent (Figure 2A, and S1A, Figure 4B and S3). Please comment.

      In this study, we employed both telomerase-dependent and independent methods for telomere elongation.

      HT1080 model: Telomere elongation resulted from constitutive overexpression of hTERC and hTERT, leading to a direct correlation with telomerase activity.

      HCT116 (p53-null) model: hTERC silencing in ST cells, a known limiting factor for telomerase activity, resulted in significantly lower telomerase activity and a 1.5-fold telomere length difference.

      MDAMB231 model: Guanine-rich telomeric repeat (GTR) feeding induced telomere elongation through recombinatorial mechanisms (Wright et al., 1996), leading to significant telomere length gain but no notable change in telomerase activity.

      HCT116 Cas9-telomeric sgRNA model: Telomere shortening occurred without modifying telomerase components, resulting in a minor, insignificant increase in telomerase activity (Figure 2A, S1).

      Regarding xenograft-derived HT1080 ST and LT cells (Figure 4B, S3), the observed variability in telomere length and telomerase activity may stem from infiltrating mouse cells, which naturally have longer telomeres and higher telomerase activity than human cells. Since in the reported assay tumour masses were not sorted to exclude mouse cells, using species-specific markers or fluorescently labelled HT1080 cells in future experiments would minimize bias. However, even though telomere length and telomerase activity assays cannot differentiate for cross-species differences, mRNA analysis and ChIP experiments performed specifically for hTERT and hTERC mRNA levels, TRF2 occupancy, and H3K27me3 enrichment on hTERT promoter (Figure 4B–E) strongly support our conclusions.

      (7) Please comment on the other telomere-associated proteins or regulatory pathways that might contribute to hTERT expression based on telomere length.

      The current study provides experimental evidence that TRF2, a well-characterized telomere-binding protein, mediates crosstalk between telomeres and the regulatory region of the hTERT gene in a telomere length-dependent manner. Given the observed link between hTERT expression and telomere length, it is likely that additional telomere-associated proteins and regulatory pathways contribute to this regulation.

      The remaining shelterin complex components—POT1, hRap1, TRF1, TIN2, and TPP1—may play crucial roles in this context, as they are integral to telomere maintenance and protection (Stewart J et al., 2012 Mutat Res.). Additionally, several DNA damage response (DDR) proteins, which interact with telomere-binding factors and help preserve telomere integrity, could potentially influence hTERT regulation in a telomere length-dependent manner (Longhese M, 2008 Genes & Development). However, direct interactions or regulatory roles would require further experimental validation. Another group of proteins with potential relevance in this mechanism are the sirtuins, which directly associate with telomeres and are known to positively regulate telomere length, undergoing repression upon telomere shortening (Amano H et al., 2019 Cell Metabolism, Amano H, Sahin E 2019 Molecular & Cellular Oncology). Notably, SIRT1 has been reported to interact with telomerase (Lee SE et al., 2024, Biochem Biophys Res Commun.), while SIRT6 has been implicated in TRF2 degradation (Rizzo et al. 2017) and telomerase activation (Chen J et al. 2021, Aging) . Given their roles in telomere homeostasis, sirtuins may serve as key mediators of telomere length-dependent hTERT regulation.

      Based on this suggestion, we have included the above in Discussion.

      Reviewer #2 (Public review):

      Summary:

      Telomeres are key genomic structures linked to everything from aging to cancer. These key structures at the end of chromosomes protect them from degradation during replication and rely on a complex made up of human telomerase RNA gene (hTERC) and human telomerase reverse transcriptase (hTERT). While hTERC is expressed in all cells, the amount of hTERT is tightly controlled. The main hypothesis being tested is whether telomere length itself could regulate the hTERT enzyme. The authors conducted several experiments with different methods to alter telomere length and measured the binding of key regulatory proteins to this gene. It was generally observed that the shortening of telomere length leads to the recruitment of factors that reduce hTERT expression and lengthening of telomeres has the opposite effect. To rule out direct chromatin looping between telomeres and hTERT as driving this effect artificial constructs were designed and inserted a significant distance away and similar results were obtained.

      Overall, the claims of telomere length-dependent regulation of hTERT are supported throughout the manuscript.

      Strengths:

      The paper has several important strengths. Firstly, it uses several methods and cell lines that consistently demonstrate the same directionality of the findings. Secondly, it builds on established findings in the field but still demonstrates how this mechanism is separate from that which has been observed. Specifically, designing and implementing luciferase assays in the CCR5 locus supports that direct chromatin looping isn't necessary to drive this effect with TRF2 binding. Another strength of this paper is that it has been built on a variety of other studies that have established principles such as G4-DNA in the hTERT locus and TRF2 binding to these G4 sites.

      Weaknesses:

      The largest technical weakness of the paper is that minimal replicates are used for each experiment. I understand that these kinds of experiments are quite costly, and many of the effects are quite large, however, experiments such as the flow cytometry or the IPSC telomere length and activity assays appear to be based on a single sample, and several are based upon two maximum three biological replicates. If samples were added the main effects would likely hold, and many of the assays using GAPDH as a control would result in significant differences between the groups. This unnecessarily weakens the strength of the claims.

      We appreciate the reviewer’s recognition of the resource-intensive nature of our experiments, and we are confident in the robustness of the observed results. Due to the project’s timeline constraints and the need for consistency across experiments, we have reported findings based on 3 biological replicates with appropriate statistical analysis.

      Regarding the fibroblast-iPSC model, we would like to clarify that we have presented data from two independent biological replicates, each consisting of a fibroblast and its derived iPS cell pair, rather than a single sample. Additionally, the Tel-FACS assays involved analysing at least 10,000 events, ensuring statistical significance in all cases.

      Another detail that weakens the confidence in the claims is that throughout the manuscript there are several examples of the control group with zero variance between any of the samples: e.g. Figure 2K, Figure 3N, and Figure 6G. It is my understanding that a delta delta method has been used for calculation (though no exact formula is reported and would assist in understanding). If this is the case, then an average of the control group would be used to calculate that fold change and variance would exist in the group. The only way I could understand those control group samples always set to 1 is if a tube of cells was divided into conditions and therefore normalized to the control group in each case. A clearer description in the figure legend and methods would be required if this is what was done and repeated measures ANOVA and other statistics should accompany this.

      The above point has been raised by the reviewer in the 'Recommendations for Authors' section as well. We have addressed it in detail in that section, citing each figure where the reviewer noted a concern regarding the lack of variance. Changes made in the manuscript have also been highlighted there.

      We would like to clarify that, throughout the manuscript, fold changes were previously calculated independently for each biological replicate by normalizing treated conditions to their corresponding control (untreated or Day 0) sample within the same replicate. This means that the control group is normalized to 1 individually in each replicate, resulting in an apparent lack of variance in the control when plotted. The normalization was not performed using an averaged control value across replicates. As such, the absence of visible variance in the control group reflects the normalization method rather than a true lack of variability in the underlying data.

      In the revised version of the manuscript, we have carefully considered the reviewer’s comments and applied changes wherever appropriate. For example (detailed response in the ‘Recommendations for Authors’ section), in datasets where two distinct stable cell lines are compared (e.g., HT1080 ST/LT and HCT p53-null ST/LT), unpaired statistical analysis is more appropriate. Hence, we have updated these panels accordingly and indicated the statistical methods used in the figure legends and Methods section. However, in experiments where cells were indeed seeded separately and subsequently subjected to experimental conditions—representing paired samples—we have chosen not to make any changes. A clearer description of this procedure has, however, been added to the Methods and figure legends to ensure full transparency.

      We believe this approach accurately reflects the experimental design, appropriately addresses the reviewer’s concerns regarding variance and statistical analysis, and ensures clarity and rigor in data reporting.

      A final technical weakness of the paper is the data in Figure 5 where the modified hTERT promoter was inserted upstream of the luciferase gene. Specifically, it is unclear why data was not directly compared between the constructs that could and could not form G4s to make this point. For this reason, the large variance in several samples, and minimal biological replicates, this data was the least convincing in the manuscript (though other papers from this laboratory and others support the claim, it is not convincing standalone data).

      We appreciate the reviewer's thoughtful feedback on the presentation of the luciferase assay data in Figure 5. The data for the wild-type hTERT promoter (capable of forming G4 structures) was previously reported in Figure 2G-K. To avoid redundancy in data presentation, we initially chose to report the results of the mutated promoter separately. However, we recognize that directly comparing the wild-type and mutated promoter constructs within the same figure would provide clearer context and strengthen the interpretation of the results. In light of this, we have updated Figure 5 in the revised manuscript to include the data for both constructs, ensuring a more comprehensive and informative comparison.

      The second largest weakness of the paper is formatting.

      When I initially read the paper without a careful reading of the methods, I thought that the authors did not have appropriate controls meaning that if a method is applied to lengthen, there should be one that is not lengthened, and when a method is applied to shorten, one which is not shortened should be analysed as well. In fact, this is what the authors have done with isogenic controls. However, by describing all samples as either telomere short or telomere long, while this simplifies the writing and the colour scheme, it makes it less clear that each experiment is performed relative to an unmodified. I would suggest putting the isogenic control in one colour, the artificially shortened in another, and the artificially lengthened in another.

      Similarly, the graphs, in general, should be consistent with labelling. Figure 2 was the most confusing. I would suggest one dotted line with cell lines above it, and then the method of either elongation or shortening below it. I.e. HT1080 above, hTERC overexpression below, MDAMB-231 above guanine terminal repeats below, like was done on the right. Figure 2 readability would also be improved by putting hTERT promoter GAPDH (-ve control) under each graph that uses this (Panel B and Panel C not just Panel C). All information is contained in the manuscript but one must currently flip between figure legends, methods, and figures to understand what was done and this reduces clarity for the reader.

      We thank the reviewer again for their thoughtful suggestions regarding figure formatting and colour coding to improve clarity. We fully understand the rationale for proposing separate colours for unmodified, telomere-shortened, and telomere-lengthened groups, as this could make the experimental design more immediately apparent. However, after careful consideration, we believe that implementing this change across all figures may unintentionally reduce clarity in other aspects  (presented in other figures) of the data presentation. This is further explained below.

      Specifically, applying three distinct colours throughout would make it harder to visually track key biological trends—such as changes in chromatin occupancy—across different models. For instance, the same colour could represent opposing regulatory patterns in distinct contexts (e.g., upregulation in one model and downregulation in another), which will make these figures difficult to understand. We feel that maintaining a consistent colour scheme based on telomere status—i.e., long telomeres (LT) vs short telomeres (ST)—across figures facilitates better comparison of biological outcomes across different experimental systems.

      Nevertheless, to address the reviewer’s concern about clarity in experimental design, we have added more detailed descriptions of the methodology and model systems used, in both the Methods and figure legend sections. These updates aim to make it easier for the reader to follow which groups serve as isogenic controls versus modified samples, without disrupting the consistency of data visualization.

      We hope this strikes a balance between improving clarity and preserving the interpretability of the broader biological trends presented in our manuscript.

      Please note, we have incorporated the reviewer’s suggestion to indicate details of model generation for HT1080 and MDAMB 231 cell lines in Figure 2. To quote the reviewer,  

      “I would suggest one dotted line with cell lines above it, and then the method of either elongation or shortening below it. I.e. HT1080 above, hTERC overexpression below, MDAMB-231 above guanine terminal repeats below, like was done on the right.”

      We have also put hTERT promoter GAPDH (-ve control) under each graph and not at the end of Panel C in Figure 2, as suggested by reviewer.

      Reviewer #1 (Recommendations for the authors):

      (1) Please check for grammatical errors throughout the manuscript.

      We have gone through the manuscript thoroughly, checked and corrected it for grammatical errors if and where detected.

      (2) Please use both the FACS and qPCR-based assays to check telomere length in all the experiments to strengthen the observations.

      We would like to thank the reviewer for this valuable suggestion. We confirm that both FACS- and qPCR-based assays were performed to assess telomere length in our experiments. In the original submission, we chose to present primarily the FACS-based data in the main figures. This decision was based on the inherent differences in the measurement principles of the two methods, which can lead to discrepancies in the reported fold changes. We were concerned that presenting both datasets side by side in the main figures might lead to confusion for readers who are not directly familiar with the nuances of telomere length assays.

      However, in light of the reviewer’s suggestion, we have now included the qPCR-based data as Supplementary Figure 1A, and updated the manuscript text and figure legends accordingly to reflect this addition.

      (3) Correct the labeling in the legend (Figure 2).

      We have corrected legend of Figure 2. Thanks to the reviewer for pointing it out.

      (4) In Figure 6B, why TRF WT condition have higher hTERT expression than the UT condition?

      We thank the reviewer for noting that the hTERT mRNA levels, as estimated by FISH in Figure 6B, appear slightly higher in TRF2 WT overexpressing HT1080 cells compared to the untransfected (UT) condition. Specifically, the average mean intensity values (a.u.) were 53 for UT and 57 for WT. Although this difference was not statistically significant, we acknowledge the reviewer's observation. Currently, we do not have a clear explanation for this small, non-significant variation.

      Importantly, using the same FISH-based method, we observed a significant upregulation of hTERT mRNA levels upon TRF2 R17H overexpression compared to both UT and TRF2 WT conditions, supporting our key conclusions.

      Additionally, qRT-PCR analysis of hTERT mRNA levels in cells stably expressing TRF2 WT (induced by doxycycline) consistently showed a significant downregulation compared to the uninduced (equivalent to UT in the microscopy experiments) state. These results were robust and reproducible across three different cell lines, including HT1080. Consistently, TRF2 R17H expression led to significant upregulation of hTERT mRNA levels upon induction.

      Together, these complementary findings strengthen the validity of our observations.

      (5) In telomere length between ST and LT in Fig. 5B significant? (especially the right panel -146G>A).

      We consistently worked with approximately 20–30% telomere shortening in HEK293 cells across all three cell types (WT promoter, -124G>A, and -146G>A), as this range was reproducibly achieved within the experimental timeframe without risking excessive telomere trimming. The reported telomere length differences are based on FACS analysis of more than 10,000 events per condition, providing strong statistical significance. Importantly, while the absolute differences in telomere length may appear modest, their biological impact is evident in the distinct cellular characteristics observed between ST and LT cell pairs.

      Reviewer #2 (Recommendations for the authors):

      As mentioned above it was somewhat unclear why so many instances of control groups had no variance between them. A more complete reporting of the formulas used to calculate the results, and methods (if samples were divided from a single source into different conditions) would be appreciated.

      We thank the reviewer for their valuable and detailed feedback. The instances where the control groups appeared to lack variance were mainly mRNA data (Figure 2D, 3G,3N), luciferase activity (Figure 2K), and in vitro methyltransferase activity (Figure 6G). We shall try to categorically address them all. 

      In Figure 2D, for the MDA-MB-231  GTR oligo and HCT116 telomere trimming datasets, the untreated cells were seeded separately and subsequently used to generate the treated conditions within the same experiment. Thus, these two datasets represent paired experimental conditions. Fold changes were calculated independently for each replicate (paired samples), and the fold changes across replicates were plotted. Because the control group serves as a common baseline within each pair and fold changes are normalized individually, minimal variance appears across controls. Given the experimental design, we believe no change is necessary for these panels. However, we have provided additional clarification regarding the calculation formulas and sample handling in the Methods section to avoid any ambiguity.

      For the ST/LT versions in HT1080 and HCT p53-null background cells, while each replicate could technically be treated as paired, these could be treated as four distinct stable cell lines. Hence, we agree it would be appropriate to apply unpaired statistical analysis for these datasets. We have updated the plots accordingly and described the statistical methods in detail in the figure legends and Methods section.

      Figure 3G and 3N depict the doxycycline-induced cells which follow the design: untreated and dox-treated conditions were seeded from the same batch of cells into separate flasks and treated differently. Hence, these are also paired cases, and fold changes were calculated per replicate before plotting. Therefore, we believe no changes are necessary for these panels. However, we have provided more details regarding sample handling in the Methods section to avoid any ambiguity.

      In Figure 2K, previously we had plotted fold change in luciferase activity over short telomere (ST) cells, for each independent biological replicates. However, to address the reviewer’s concern of not showing variance in control group, we have now plotted the luminescence signal (normalised over total protein). We have also updated Figure 5E accordingly, and also included WT promoter data along with the mutant cell line data- as was suggested in public reviewer’s comment.

      In Figure 6G, as each replicate of the in vitro methyltransferase activity used different batches of purified protein, there are inherent batch differences that were accounted for by normalizing each replicate internally. Fold changes were then determined for each replicate separately, as previously described. The fold changes across replicates were plotted, and significance between different conditions was tested using two-way ANOVA. To address the reviewer’s comment to show variance in the control, we have now plotted individual replicates.

      We believe these revisions, along with the expanded methods clarification, will fully address the reviewer's concerns and accurately reflect the experimental design and statistical analysis applied.

      Many times, in the manuscript a / is used to indicate both directions. For example: "Genes distal from telomeres (for instance 60 Mb from the nearest telomere) were activated/repressed in a TL-dependent way"... "Resulting increase/decrease in non-telomeric promoter-bound TRF2 affected gene expression". For readability, either this can be replaced with a directionless word like altered, changed, etc, or the writer can list both directions.

      We thank the reviewer for the careful reading and thoughtful suggestions. In the manuscript, we have used the ‘/’ symbol to indicate opposing directions, followed by the word ‘respectively’ to relate these directions to their corresponding outcomes, wherever appropriate. However, as rightly pointed out, certain sentences would benefit from alternative constructions for improved clarity and readability. We have therefore reviewed the manuscript and revised such sentences, making minor modifications wherever necessary, as outlined below.

      We found hTERT was transcriptionally altered depending on telomere length (TL).

      Notably, another conceptually distinct mechanism of TL-dependent gene regulation was reported which influenced genes spread throughout the genome: expression of genes distal from telomeres (for instance 60 Mb from the nearest telomere) was altered in a TL-dependent way, but without physical telomere looping interactions.

      Second, the shortening or elongation of telomeres led to the release or sequestration of telomeric TRF2, respectively, thereby increasing or decreasing the availability of TRF2 at non-telomeric promoters and affecting gene expression.

      A non-necessary, but potentially extra convincing experiment to perform would be to use a combination of light-activated, or ligand-activated cas9 telomere trimming and guanine terminal repeat additions in the same cell line. Like the dox experiments, this would show over time how altering telomere length alters the recruitment of heterochromatin factors and hTERT levels. Executing the experiment this way would be more definitive as it does not rely on changing hTERT itself. Authors do already have examples that support their claims.

      We thank the reviewer for suggesting this additional experiment (reviewer mentions as non-necessary), which would indeed provide valuable insights into the relationship between telomere length, heterochromatin factor recruitment, and hTERT levels. While we recognize the potential of this approach, due to constraints on resources, we are currently unable to execute this experiment. However, we believe that the existing data presented in the manuscript already supports our conclusions effectively.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this study, the authors showed that enalapril was able to reduce cellular senescence and improve health status in aged mice. The authors further showed that phosphorylated Smad1/5/9 was significantly elevated and blocking this pathway attenuated the protection of cells from senescence. When middle-aged mice were treated with enalapril, the physiological performance in several tissues, including memory capacity, renal function, and muscle strength, exhibited significant improvement.

      Strengths:

      The strength of the study lies in the identification of the pSMAD1/5/9 pathway as the underlying mechanism mediating the anti-senescence effects of enalapril with comprehensive evaluation both in vitro and in vivo.

      Thank you for your patient reading and great efforts to advance our research! Your comments are shown in bold font below, and specific concerns have been numbered. Our point-by-point answers are provided in standard blue font, with all modifications and additions to the MS highlighted in red text.

      Weaknesses:

      (1) The major weakness of the study is the in vivo data. Despite the evidence shown in the in vitro study, there is no data to show that blocking the pSmad1/5/9 pathway is able to attenuate the anti-aging effects of enalapril in the mice. In addition, the aging phenotypes mitigation by enalapril is not evidenced by the extension of lifespan.

      Many thanks for your careful reading and valuable comments! We fully agree with this comment. In accordance with your suggestion, we administered LDN193189 to investigate its suppressive effects on pSmad1/5/9 signaling in vivo. Notably, pharmacological inhibition of pSmad1/5/9 resulted in upregulation of enalapril-suppressed SASP factors, while conversely leading to marked decrease of downstream antioxidant genes expression across multiple organ systems (Revised Fig. S7). These analyses and corresponding sentences have been added in the Result section of the revised MS (Revised Fig.S7, Lines 222–223, 444–448).

      Additionally, aging-related behavioral phenotypes were also examined following pSmad1/5/9 inhibition, including decreased muscle strength and endurance, impaired spatial memory and increased anxiety behaviors (Revised Fig. S8). These analyses and corresponding sentences have been added in the Result section of the revised MS (Revised Fig.S8, Lines 476–480). Collectively, these findings demonstrate that the anti-aging effects of enalapril in mice are mediated through the pSmad1/5/9 pathway.

      In this study, we focused exclusively on assessing the improvement in the health status of aged mice, which indicates that enalapril can extend the healthspan of aged mice. While we agree that lifespan extension is an important indicator of anti-aging potential, recent studies have emphasized that healthspan, rather than lifespan alone, provides a more relevant and translational measure of aging interventions, particularly in the context of chronic disease and quality of life in aged individuals (Kennedy et al., 2014; Lopez-Otin et al., 2023). Moreover, given the strong influence of genetic background, environmental factors and stochastic events on lifespan, focusing on functional rejuvenation and delayed onset of aging-related pathologies may offer a more practical and mechanistically informative approach. Our study aims to elucidate how enalapril enhances healthy phenotypes in aged mice, however, we acknowledge the critical need for direct lifespan evaluation and intend to address this limitation in subsequent research. We sincerely hope that these explanations address your concerns.

      (2) If it is necessary to show that NAC is able to attenuate enalapril effects in the aging mice. In addition, it would be beneficial to test if enalapril is able to achieve similar rescue in a premature aging mouse model.

      Thanks for your suggestion. We apologize for any confusion that may have arisen due to the wording in the original manuscript. N-acetylcysteine (NAC) is widely reported as an antioxidant that scavenges reactive oxygen species (ROS) (Huang et al., 2020; Zafarullah et al., 2003). In our study, enalapril was also observed to reduce ROS levels. Therefore, NAC is unlikely to antagonize the effects of enalapril in this context, as both compounds act in a similar direction with respect to oxidative stress mitigation. To avoid potential misunderstanding, we have carefully reviewed the relevant statements in the MS and revised the text to clarify this point.

      We sincerely appreciate this valuable suggestion to evaluate enalapril in a premature aging mouse model; however, the premature aging mouse models represent a pathological form of aging, whereas the naturally aged mouse models used in our study reflect physiological aging processes. While we observed beneficial effects of enalapril in naturally aged mice, these effects may not necessarily extend to premature aging models due to fundamental differences in the underlying mechanisms and progression of aging. Natural aging is characterized by the gradual accumulation of cellular damage, driven by multifactorial processes such as inflammaging and mitochondrial dysfunction. In this context, enalapril appears effective, in part by modulating SASP factors and reducing oxidative stress through the BMP-Smad signaling axis (Revised Fig. 4, 5) (Lopez-Otin et al., 2023). In contrast, premature aging models are driven by distinct mechanisms like nuclear lamina defects, which may not respond similarly to BMP-Smad axis. Moreover, genetic background, strain variability, and specific model characteristics can significantly influence treatment outcomes (Mitchell et al., 2016). For instance, rapamycin extends lifespan in wild-type mice but shows limited effects on aging, underscoring the challenge of extrapolating findings across distinct aging models (Neff et al., 2013). We sincerely hope that these explanations address your concerns. Thank you again for your great efforts in advancing our research!

      Reviewer #2 (Public review):

      This manuscript presents an interesting study of enalapril for its potential impact on senescence through the activation of Smad1/5/9 signaling with a focus on antioxidative gene expression. Repurposing enalapril in this context provides a fresh perspective on its effects beyond blood pressure regulation. The authors make a strong case for the importance of Smad1/5/9 in this process, and the inclusion of both in vitro and in vivo models adds value to the findings. Below, I have a few comments and suggestions which may help improve the manuscript.

      We appreciate your great efforts in advancing our research! Your comments are shown in bold font below, and specific concerns have been numbered. Our point-by-point answers are provided in standard blue font, with all modifications and additions to the MS highlighted in red text.

      (1) A major finding in the study is that phosphorylated Smad1/5/9 mediates the effects of enalapril. However, the manuscript focused on the Smad pathway relatively abruptly, and the rationale behind targeting this specific pathway is not fully explained. What makes Smad1/5/9 particularly relevant to the context of this study?

      Thank you for your informative guidance, and we regret for the unclear description. As stated in the MS, after we found that enalapril could improve the cellular senescence phenotype, we screened and examined key targets in important aging-related signaling pathways, such as AKT, mTOR, ERK, Smad2/3 and Smad1/5/9 (Revised Fig. S2A, Revised Fig. 2A). We found that only the phosphorylation levels of Smad1/5/9 significantly increased after enalapril treatment. Therefore, the subsequent focus of this study is on pSmad1/5/9. We sincerely hope that these explanations address your concerns.

      (2) Furthermore, their finding that activation of Smad1/5/9 leads to a reduction of senescence appears somewhat contradictory to the established literature on Smad1/5/9 in senescence. For instance, studies have shown that BMP4-induced senescence involves the activation of Smad1/5/8 (Smad1/5/9), leading to the upregulation of senescence markers like p16 and p21 (JBC, 2009, 284, 12153). Similarly, phosphorylated Smad1/5/8 has been shown to promote and maintain senescence in Ras-activated cells (PLOS Genetics, 2011, 7, e1002359). Could the authors provide more detailed mechanistic insights into why enalapril seems to reverse the typical pro-senescent role of Smad1/5/9 in their study?

      Many thanks for your helpful comments! The downstream regulatory network of BMP-pSmad1/5/9 is highly complex. The BMP-SMAD-ID axis has been mentioned in many studies, and its downstream signaling inhibits the expression of p16 and p21 (Hayashi et al., 2016; Ying et al., 2003). Additionally, studies have also found that the Smad1-Stat1-P21 axis inhibits osteoblast senescence (Xu et al., 2022). In our study, enalapril was found to increase the expression of ID1, which is a classic downstream target of pSmad1/5/9 (Genander et al., 2014). Therefore, pSmad1/5/9 inhibits cellular senescence markers such as p16, p21 and SASP through ID1, thereby promoting cell proliferation (Revised Fig. 3). Furthermore, we also found that pSmad1/5/9 increases the expression of antioxidant genes and reduces ROS levels, exerting antioxidant effects (Revised Fig. 4). Together, ID1 and antioxidant genes enable pSmad1/5/9 to exert its anti-senescence effects. We sincerely hope that these explanations address your concerns.

      (3) While the authors showed that enalapril increases pSmad1/5/9 phosphorylation, what are the expression levels of other key and related factors like Smad4, pSmad2, pSmad3, BMP2, and BMP4 in both senescent and non-senescent cells? These data will help clarify the broader signaling effects.

      Thanks for your insightful suggestions. We observed an increase in pSmad1/5/9 and Smad4 expression, while the levels of pSmad2 and pSmad3 remained unchanged after enalapril treatment (Revised Fig. 2A). Consistently, we found that the levels of pSmad1/5/9 and Smad4 were markedly reduced in senescent cells, aligning with the upregulation of these proteins by enalapril (Revised Fig. S2B). In contrast, pSmad2 and pSmad3 showed a slight increase during senescence, while BMP2 and BMP4 were slightly decreased, though these changes were not statistically significant (Revised Fig. S2B). These findings suggest that enalapril primarily exerts its effects by enhancing pSmad1/5/9 and Smad4 levels, thereby regulating downstream target genes and contributing to the restoration of a more youthful cellular state. These analyses and corresponding sentences have been added in the Result section of the revised MS (Revised Fig.S2B, Lines 303–306, 311–313).

      (4) They used BMP receptor inhibitor LDN193189 to pharmacologically inhibit BMP signaling, but it would be more convincing to also include genetic validation (e.g., knockdown or knockout of BMP2 or BMP4). This will help confirm that the observed effects are truly due to BMP-Smad signaling and not off-target effects of the pharmacological inhibitor LDN.

      Many thanks for your careful reading and valuable comments! We used shRNA to knockdown the BMP receptor BMPR1A, which led to a reduction in Smad1/5/9 phosphorylation (Revised Fig. S4D, E). This was accompanied by senescence-associated phenotypes, including increased expression of p16 and SA-β-gal and decreased Ki67 staining (Revised Fig. S4F, G). Notably, the addition of enalapril failed to reverse these senescence phenotypes under BMPR1A knockdown conditions, mirroring the results observed with the BMP receptor inhibitor LDN193189 (Revised Fig. S4F, G, Revised Fig. 2F, G). Furthermore, knockdown of BMPR1A also resulted in a marked decrease in the expression of downstream targets, such as ID1 and antioxidative genes (Revised Fig. S4D). These findings strongly support the notion that enalapril exerts its anti-senescence effects through BMP-Smad signaling. These analyses and corresponding sentences have been added in the Result section of the revised MS (Revised Fig.S4D–G, Lines 323–329, 335–337, 348–351, 416–418).

      (5) I don't see the results on the changes in senescence markers p16 and p21 in the mouse models treated with enalapril. Similarly, the effects of enalapril treatment on some key SASP factors, such as TNF-α, MCP-1, IL-1β, and IL-1α, are missing, particularly in serum and tissues. These are important data to evaluate the effect of enalapril on senescence.

      Thanks for your comments. As for the markers p16 and p21, we observed no change in p16, while the changes in p21 varied across different organs and tissues. Nevertheless, behavioral experiments and physiological and biochemical indicators at the individual level consistently demonstrated the significant anti-aging effects of enalapril (Revised Fig. 6).

      We also examined the changes in SASP factors in the serum of mice after enalapril treatment. Notably, SASP factors such as CCL (MCP), CXCL and TNFRS11B showed significant decreases (Revised Fig. 5C). The expression changes of SASP factors varied across different organs. In the liver, kidneys and spleen, the expression of IL1a and IL1b decreased, while TNFRS11B expression decreased in both the liver and muscles (Revised Fig. 5B). Additionally, CCL (MCP) levels decreased in all organs (Revised Fig. 5B). We sincerely hope that these explanations address your concerns.

      (6) Given that enalapril is primarily known as an antihypertensive, it would be helpful to include data on how it affects blood pressure in the aged mouse models, such as systolic and diastolic blood pressure. This will clarify whether the observed effects are independent of or influenced by changes in blood pressure.

      Thanks for your comments. While enalapril is primarily recognized for its antihypertensive properties, in our experimental setting involving aged, normotensive mice, we did not observe notable changes in systolic or diastolic blood pressure following enalapril administration. This observation aligns with previous reports indicating that enalapril does not significantly affect blood pressure in similar non-hypertensive aging models (Keller et al., 2019). Based on these findings, we cautiously interpret that the beneficial effects of enalapril observed in our study are unlikely to be driven by changes in blood pressure. We sincerely hope that these explanations address your concerns. Again, thank you for the constructive comments to advance the understanding of our work!

      Reviewer #1 (Recommendations for the authors):

      This is an interesting study that reveals enalapril is able to elevate the pSmad1/5/9 pathway to reduce ROS and inflammation to improve the health status in vitro and in vivo. While the pathway is clearly shown in cells to be involved in the enalarpril-mediated mitigation of aging, little was done to demonstrate this pathway is responsible for the in vivo effects in the physiological improvements. This can be done by ROS-reduction chemicals such as NAC and also the use of BMP receptor inhibitor LDN193189 (LDN). It is critical to show the lifespan extension in enalapril-treated animals given that the significantly improved physiological functions.

      Thanks very much for your constructive recommendations. This part has already been addressed in our response to the public review.

      Reviewer #2 (Recommendations for the authors):

      The term "anti-aging" appears frequently throughout the manuscript, including in the title. However, the study doesn't directly address lifespan or a comprehensive range of aging symptoms, which are also difficult to define and measure. Many of the observed effects appeared to be driven by senescence. To be more accurate, I recommend avoiding terms like "anti-aging" and "mitigates aging", and instead replacing them with more specific phrases such as "anti-senescence", "senescence reduction/suppression", or "mitigates age-related symptoms" to better reflect the scope of the study and avoid overstating the findings.

      Thanks very much for your constructive recommendations. In accordance with your suggestion, we have revised all uses of the term “aging” in the MS. To facilitate review, all changes have been clearly marked in red text.

      Please provide detailed information on the antibodies used, particularly those targeting pSmad1/5/9 and other Smads.

      Thanks for your helpful comment. In response, we have now provided detailed information regarding the antibodies used in this study in Revised Table S4 (Revised MS, Page 120–121).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      This fundamental study identifies a new mechanism that involves a mycobacterial nucleomodulin manipulation of the host histone methyltransferase COMPASS complex to promote infection. Although other intracellular pathogens are known to manipulate histone methylation, this is the first report demonstrating the specific targeting of the COMPASS complex by a pathogen. The rigorous experimental design using state-of-the art bioinformatic analysis, protein modeling, molecular and cellular interaction, and functional approaches, culminating with in vivo infection modeling, provides convincing, unequivocal evidence that supports the authors' claims. This work will be of particular interest to cellular microbiologists working on microbial virulence mechanisms and effectors, specifically nucleomodulins, and cell/cancer biologists that examine COMPASS dysfunction in cancer biology. 

      Strengths: 

      (1) The strengths of this study include the rigorous and comprehensive experimental design that involved numerous state-of-the-art approaches to identify potential nucleomodulins, define molecular nucleomodulin-host interactions, cellular nucleomodulin localization, intracellular survival, and inflammatory gene transcriptional responses, and confirmation of the inflammatory and infection phenotype in a small animal model. 

      (2) The use of bioinformatic, cellular, and in vivo modeling that are consistent and support the overall conclusions is a strength of the study. In addition, the rigorous experimental design and data analysis, including the supplemental data provided, further strengthen the evidence supporting the conclusions. 

      Weaknesses: 

      (1) This work could be stronger if the MgdE-COMPASS subunit interactions that negatively impact COMPASS complex function were better defined. Since the COMPASS complex consists of many enzymes, examining the functional impact on each of the components would be interesting. 

      We thank the reviewer for this insightful comment. A biochemistry assays could be helpful to interpret the functional impact on each of the components by MgdE interaction. However, the purification of the COMPASS complex could be a hard task itself due to the complexity of the full COMPASS complex along with its dynamic structural properties and limited solubility. 

      (2) Examining the impact of WDR5 inhibitors on histone methylation, gene transcription, and mycobacterial infection could provide additional rigor and provide useful information related to the mechanisms and specific role of WDR5 inhibition on mycobacterial infection. 

      We thank the reviewer for the comment. A previous study showed that WIN-site inhibitors, such as compound C6, can displace WDR5 from chromatin, leading to a reduction in global H3K4me3 levels and suppression of immune-related gene expression (Hung et al., Nucleic Acids Res, 2018; Bryan et al., Nucleic Acids Res, 2020). These results closely mirror the functional effects we observed for MgdE, suggesting that MgdE may act as a functional mimic of WDR5 inhibition. This supports our proposed model in which MgdE disrupts COMPASS activity by targeting WDR5, thereby dampening host pro-inflammatory responses.

      (3) The interaction between MgdE and COMPASS complex subunit ASH2L is relatively undefined, and studies to understand the relationship between WDR5 and ASH2L in COMPASS complex function during infection could provide interesting molecular details that are undefined in this study. 

      We thank the reviewer for the comment. In this study, we constructed single and multiple point mutants of MgdE at residues S<sup>80</sup>, D<sup>244</sup>, and H<sup>247</sup> to identify key amino acids involved in its interaction with ASH2L (Figure 5A and B; Figure S5). However these mutations did not interrupt the interaction with MgdE, suggesting that more residues are involved in the interaction.

      ASH2L and WDR5 function cooperatively within the WRAD module to stabilize the SET domain and promote H3K4 methyltransferase activity with physiological conditions (Couture and Skiniotis, Epigenetics, 2013; Qu et al., Cell, 2018; Rahman et al., Proc Natl Acad Sci U S A, 2022). ASH2L interacts with RbBP5 via its SPRY domain, whereas WDR5 bridges MLL1 and RbBP5 through the WIN and WBM motifs (Chen at al., Cell Res, 2012; Park et al., Nat Commun, 2019). The interaction status between ASH2L and WDR5 during mycobacterial infection could not be determined in our current study. 

      (4) The AlphaFold prediction results for all the nuclear proteins examined could be useful. Since the interaction predictions with COMPASS subunits range from 0.77 for WDR5 and 0.47 for ASH2L, it is not clear how the focus on COMPASS complex over other nuclear proteins was determined.  

      We thank the reviewer for the comment. We employed AlphaFold to predict the interactions between MgdE and the major nuclear proteins. This screen identified several subunits of the SET1/COMPASS complex as high-confidence candidates for interaction with MgdE (Supplementary Figure 4A). This result is consistent with a proteomic study by Penn et al. which reported potential interactions between MgdE and components of the human SET1/COMPASS complex based on affinity purification-mass spectrometry analysis (Penn et al., Mol Cell, 2018).

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript by Chen et al addresses an important aspect of pathogenesis for mycobacterial pathogens, seeking to understand how bacterial effector proteins disrupt the host immune response. To address this question, the authors sought to identify bacterial effectors from M. tuberculosis (Mtb) that localize to the host nucleus and disrupt host gene expression as a means of impairing host immune function. 

      Strengths: 

      The researchers conducted a rigorous bioinformatic analysis to identify secreted effectors containing mammalian nuclear localization signal (NLS) sequences, which formed the basis of quantitative microscopy analysis to identify bacterial proteins that had nuclear targeting within human cells. The study used two complementary methods to detect protein-protein interaction: yeast two-hybrid assays and reciprocal immunoprecipitation (IP). The combined use of these techniques provides strong evidence of interactions between MgdE and SET1 components and suggests that the interactions are, in fact, direct. The authors also carried out a rigorous analysis of changes in gene expression in macrophages infected with the mgdE mutant BCG. They found strong and consistent effects on key cytokines such as IL6 and CSF1/2, suggesting that nuclear-localized MgdE does, in fact, alter gene expression during infection of macrophages. 

      Weaknesses: 

      There are some drawbacks in this study that limit the application of the findings to M. tuberculosis (Mtb) pathogenesis. The first concern is that much of the study relies on ectopic overexpression of proteins either in transfected non-immune cells (HEK293T) or in yeast, using 2-hybrid approaches. Some of their data in 293T cells is hard to interpret, and it is unclear if the protein-protein interactions they identify occur during natural infection with mycobacteria. The second major concern is that pathogenesis is studied using the BCG vaccine strain rather than virulent Mtb. However, overall, the key findings of the paper - that MgdE interacts with SET1 and alters gene expression are well-supported. 

      We thank the reviewer for the comment. We agree that the ectopic overexpression could not completely reflect a natural status, although these approaches were adopted in many similar experiments (Drerup et al., Molecular plant, 2013; Chen et al., Cell host & microbe, 2018; Ge et al., Autophagy, 2021). Further, the MgdE localization experiment using Mtb infected macrophages will be performed to increase the evidence in the natural infection.

      We agree with the reviewer that BCG strain could not fully recapitulate the pathogenicity or immunological complexity of M. tuberculosis infection.  We employed BCG as a biosafe surrogate model since it was acceptable in many related studies (Wang et al., Nat Immunol, 2025; Wang et al., Nat Commun, 2017; Péan et al., Nat Commun, 2017; Li et al., J Biol Chem, 2020). 

      Reviewer #3 (Public review): 

      In this study, Chen L et al. systematically analyzed the mycobacterial nucleomodulins and identified MgdE as a key nucleomodulin in pathogenesis. They found that MgdE enters into host cell nucleus through two nuclear localization signals, KRIR<sup>108-111</sup> and RLRRPR<sup>300-305</sup>, and then interacts with COMPASS complex subunits ASH2L and WDR5 to suppress H3K4 methylation-mediated transcription of pro-inflammatory cytokines, thereby promoting mycobacterial survival. This study is potentially interesting, but there are several critical issues that need to be addressed to support the conclusions of the manuscript.

      (1) Figure 2: The study identified MgdE as a nucleomodulin in mycobacteria and demonstrated its nuclear translocation via dual NLS motifs. The authors examined MgdE nuclear translocation through ectopic expression in HEK293T cells, which may not reflect physiological conditions. Nuclear-cytoplasmic fractionation experiments under mycobacterial infection should be performed to determine MgdE localization. 

      We thank the reviewer for the comment. The MgdE localization experiment using Mtb infected macrophages will be performed.

      (2) Figure 2F: The authors detected MgdE-EGFP using an anti-GFP antibody, but EGFP as a control was

      We thank the reviewer for pointing this out. The new uncropped blots containing the EGFP band will be provided in Supplementary Information.

      (3) Figure 3C-3H: The data showing that the expression of all detected genes in 24 h is comparable to that in 4 h (but not 0 h) during WT BCG infection is beyond comprehension. The issue is also present in Figure 7C, Figure 7D, and Figure S7. Moreover, since Il6, Il1β (proinflammatory), and Il10 (anti-inflammatory) were all upregulated upon MgdE deletion, how do the authors explain the phenomenon that MgdE deletion simultaneously enhanced these gene expressions? 

      We thank the reviewer for the comment. A relative quantification method was used in our qPCR experiments to normalize the WT expression levels in Figure 3C–3H, Figure 7C, 7D, and Figure S7. 

      The concurrent induction of both types of cytokines likely represents a dynamic host strategy to fine-tune immune responses during infection. This interpretation is supported by previous studies (Podleśny-Drabiniok et al., Cell Rep, 2025; Cicchese et al., Immunological Reviews, 2018).

      (4) Figure 5: The authors confirmed the interactions between MgdE and WDR5/ASH2L. How does the interaction between MgdE and WDR5 inhibit COMPASS-dependent methyltransferase activity? Additionally, the precise MgdE-ASH2L binding interface and its functional impact on COMPASS assembly or activity require clarification. 

      We thank the reviewer for this insightful comment. We cautiously speculate that the MgdE interaction inhibits COMPASS-dependent methyltransferase activity by interfering with the integrity and stability of the COMPASS complex. Accordingly, we have incorporated the following discussion into the revised manuscript (Lines 298-310):

      “The COMPASS complex facilitates H3K4 methylation through a conserved assembly mechanism involving multiple core subunits. WDR5, a central scaffolding component, interacts with RbBP5 and ASH2L to promote complex assembly and enzymatic activity (Qu et al., 2018; Wysocka et al., 2005). It also recognizes the WIN motif of methyltransferases such as MLL1, thereby anchoring them to the complex and stabilizing the ASH2L-RbBP5 dimer (Hsu et al., Cell, 2018). ASH2L further contributes to COMPASS activation by interacting with both RbBP5 and DPY30 and by stabilizing the SET domain, which is essential for efficient substrate recognition and catalysis (Qu et al., Cell, 2018; Park et al., Nat Commun, 2019). Our work shows that MgdE binds both WDR5 and ASH2L and inhibits the methyltransferase activity of the COMPASS complex. Site-directed mutagenesis revealed that residues D<sup>224</sup> and H<sup>247</sup> of MgdE are critical for WDR5 binding, as the double mutant MgdE-D<sup>224</sup>A/H<sup>247</sup> A fails to interact with WDR5 and shows diminished suppression of H3K4me3 levels (Figure 5D).”

      Regarding the precise MgdE-ASH2L binding interface, we attempted to identify the key interaction site by introducing point mutations into ASH2L. However, these mutations did not disrupt the interaction (Figure 5A and B; Figure S5), suggesting that more residues are involved in the interaction.

      (5) Figure 6: The authors proposed that the MgdE-regulated COMPASS complex-H3K4me3 axis suppresses pro-inflammatory responses, but the presented data do not sufficiently support this claim. H3K4me3 inhibitor should be employed to verify cytokine production during infection. 

      We thank the reviewer for the comment. We have now revised the description in lines 824825 “MgdE may suppresses COMPASS complex-mediated inflammatory responses by inhibiting H3K4 methylation” and in lines 219-220 "MgdE suppresses host inflammatory responses probably by inhibition of COMPASS complex-mediated H3K4 methylation." 

      (6) There appears to be a discrepancy between the results shown in Figure S7 and its accompanying legend. The data related to inflammatory responses seem to be missing, and the data on bacterial colonization are confusing (bacterial DNA expression or CFU assay?). 

      We thank the reviewer for the comment. Figure S7 specifically addresses the effect of MgdE on bacterial colonization in the spleens of infected mice, which was assessed by quantitative PCR rather than by CFU assay. 

      We have now revised the legend of Figure S7 as below (Lines 934-938):

      “MgdE facilitates bacterial colonization in the spleens of infected mice. Bacterial colonization was assessed in splenic homogenates from infected mice (as described in Figure 7A) by quantifying bacterial DNA using quantitative PCR at 2, 14, 21, 28, and 56 days post-infection.”

      (7) Line 112-116: Please provide the original experimental data demonstrating nuclear localization of the 56 proteins harboring putative NLS motifs. 

      We thank the reviewer for the comment. We will provide this data in the new Supplementary Table 2.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The authors use electrophysiological and behavioral measurements to examine how animals could reliably determine odor intensity/concentration across repeated experiences. Because stimulus repetition leads to short-term adaptation evidenced by reduced overall firing rates in the antennal lobe and firing rates are otherwise concentration-dependent, there could be an ambiguity in sensory coding between reduced concentration or more recent experience. This would have a negative impact on the animal's ability to generate adaptive behavioral responses that depend on odor intensities. The authors conclude that changes in concentration alter the constituent neurons contributing to the neural population response, whereas adaptation maintains the 'activated ensemble' but with scaled firing rates. This provides a neural coding account of the ability to distinguish odor concentrations even after extended experience. Additional analyses attempt to distinguish hypothesized circuit mechanisms for adaptation but are inconclusive. A larger point that runs through the manuscript is that overall spiking activity has an inconsistent relationship with behavior and that the structure of population activity may be the more appropriate feature to consider.

      To my knowledge, the dissociation of effects of odor concentration and adaptation on olfactory system population codes was not previously demonstrated. This is a significant contribution that improves on any simple model based on overall spiking activity. The primary result is most strikingly supported by visualization of a principal components analysis in Figure 4. However, there are some weaknesses in the data and analyses that limit confidence in the overall conclusions.

      We thank the reviewer for evaluating our work and highlighting its strengths and deficiencies. We have revised the manuscript with expanded behavioral datasets and additional analyses that we believe convincingly support our conclusion. 

      (1) Behavioral work interpreted to demonstrate discrimination of different odor concentrations yields inconsistent results. Only two of the four odorants follow the pattern that is emphasized in the text (Figure 1F). Though it's a priori unlikely that animals are incapable of distinguishing odor concentrations at any stage in adaptation, the evidence presented is not sufficient to reach this conclusion.

      We have expanded our dataset and now show that the behavioral response is significantly different for high and low concentration exposures of the same odorant. This was observed for all four odorants in our study (refer to Revised Fig. 1F).

      (2) While conclusions center on concepts related to the combination of activated neurons or the "active ensemble", this specific level of description is not directly demonstrated in any part of the results. We see individual neural responses and dimensional reduction analyses, but we are unable to assess to what extent the activated ensemble is maintained across experience.

      We have done several additional analyses (see provisional response). Notably, we have corroborated our dimensionality reduction and correlation analysis results with a quantitative classification analysis that convincingly demonstrates that odor identity and intensity of the odorant can be decoded from the ensemble neural activity, and this could be achieved in an adaptation-invariant fashion (refer to Revised Supplementary Fig. 4). 

      (3) There is little information about the variance or statistical strength of results described at the population level. While the PCA presents a compelling picture, the central point that concentration changes and adaptation alter population responses across separable dimensions is not demonstrated quantitatively. The correlation analysis that might partially address this question is presented to be visually interpreted with no additional testing.

      We have included a plot that compares the odor-evoked responses across all neurons (mean ± variance) at both intensity levels for each odorant (Revised Supplementary Fig. 5). This plot clearly shows how the ensemble neural activity profile varies with odor intensity and how these response patterns are robustly maintained across trials. 

      (4) Results are often presented separately for each odor stimulus or for separate datasets including two odor stimuli. An effort should be made to characterize patterns of results across all odor stimuli and their statistical reliability. This concern arises throughout all data presentations.

      We had to incorporate a 15-minute window between presentations of odorants to reset adaptation. Due to this, we were unable to extracellularly record from all four odorants at two intensities from a single experiment (~ 3.5 hours of recording for just 2 odorants at two intensities with one odorant at higher intensity repeated at the end; Fig. 2a). Therefore, we recorded two datasets. Each dataset captured the responses of ~80 PNs to two odorants at two intensities, one odorant at the higher concentration repeated at the end of the experiment to show repeatability of changes due to adaptation. 

      (5) The relevance of the inconclusive analysis of inferred adaptation mechanisms in Figure 2d-f and the single experiment including a complex mixture in Figure 7 to the motivating questions for this study are unclear.

      Figure 2d-f has been revised. While we agree that the adaptation mechanisms are not fully clear, there is a trend that the most active PNs are the neurons that change the most across trials. This change and the response in the first trial are negatively correlated, indicating that vesicle depletion could be an important contributor to the observed results. However, neurons that adapt strongly at higher intensities are not the ones that adapt at lower intensities. This complicates the understanding of how neural responses vary with intensities and the adaptation that happens due to repetition. This has been highlighted in the revised manuscript. 

      Regarding Figure 7, we wanted to examine the odor-specificity of the changes that happen due to repeated encounters of an odorant. Specifically, wondered if the neural response reduction and behavioral enhancements were a global, non-specific state change in the olfactory system brought about by the repetition of any odorant, or are the observed neural and behavioral response changes odor-specific.

      (6) Throughout the description of the results, typical standards for statistical reporting (sample size, error bars, etc.) are not followed. This prevents readers from assessing effect sizes and undermines the ability to assign a confidence to any particular conclusion.

      We have revised the manuscript to fix these issues and included sample size and error bars in our plots.  

      Reviewer #2 (Public Review):

      Summary:

      The authors' main goal was to evaluate how both behavioral responses to odor, and their early sensory representations are modified by repeated exposure to odor, asking whether the process of adaptation is equivalent to reducing the concentration of an odor. They open with behavioral experiments that actually establish that repeated odor presentation increases the likelihood of evoking a behavioral response in their experimental subjects - locusts. They then examine neural activity patterns at the second layer of the olfactory circuit. At the population level, repeated odor exposure reduces total spike counts, but at the level of individual cells there seems to be no consistent guiding principle that describes the adaptation-related changes, and therefore no single mechanism could be identified.

      Both population vector analysis and pattern correlation analysis indicate that odor intensity information is preserved through the adaptation process. They make the closely related point that responses to an odor in the adapted state are distinct from responses to lower concentration of the same odor. These analyses are appropriate, but the point could be strengthened by explicitly using some type of classification analysis to quantify the adaptation effects. e.g. a confusion matrix might show if there is a gradual shift in odor representations, or whether there are trials where representations change abruptly.

      Strengths:

      One strength is that the work has both behavioral read-out of odor perception and electrophysiological characterization of the sensory inputs and how both change over repeated stimulus presentations. It is particularly interesting that behavioral responses increase while neuronal responses generally decrease. Although the behavioral effect could occur fully downstream of the sensory responses the authors measure, at least those sensory responses retain the core features needed to drive behavior despite being highly adapted.

      Weaknesses:

      Ultimately no clear conceptual framework arises to understand how PN responses change during adaptation. Neither the mechanism (vesicle depletion versus changes in lateral inhibition) nor even a qualitative description of those changes. Perhaps this is because much of the analysis is focused on the entire population response, while perhaps different mechanisms operate on different cells making it difficult to understand things at the single PN level.

      From the x-axis scale in Fig 2e,f it appeared to me that they do not observe many strong PN responses to these stimuli, everything being < 10 spikes/sec. So perhaps a clearer effect would be observed if they managed to find the stronger responding PNs than captured in this dataset.

      We thank the reviewer for his/her evaluation of our work. Indeed, our work does not clarify the mechanism that underlies the adaptation over trials, and how this mechanism accounts for adaptation that is observed at two different intensities of the same odorant. However, as we highlight in the revised manuscript, there is some evidence for the vesicle depletion hypothesis. For the plots shown in Fig. 2, the firing rates were calculated after averaging across time bins and trials. Hence, the lower firing rates. The peak firing rates of the most active neurons are ~100 Hz. So, we are certain that we are collecting responses from a representative ensemble of neurons in this circuit.

      Reviewer #3 (Public Review):

      Summary:

      How does the brain distinguish stimulus intensity reduction from response reductions due to adaptation? Ling et al study whether and how the locust olfactory system encodes stimulus intensity and repetition differently. They show that these stimulus manipulations have distinguishable effects on population dynamics.

      Strengths:

      (1) Provides a potential strategy with which the brain can distinguish intensity decrease from adaptation. -- while both conditions reduce overall spike counts, intensity decrease can also changes which neurons are activated and adaptation only changes the response magnitude without changing the active ensemble.

      (2) By interleaving a non-repeated odor, they show that these changes are odor-specific and not a non-specific effect.

      (3) Describes how proboscis orientation response (POR) changes with stimulus repetition., Unlike the spike counts, POR increases in probability with stimulus. The data portray the variability across subjects in a clear way.

      We thank the reviewer for the summary and for highlighting the strengths of our work.

      Weaknesses:

      (1) Behavior

      a. While the "learning curve" of the POR is nicely described, the behavior itself receives very little description. What are the kinematics of the movement, and do these vary with repetition? Is the POR all-or-nothing or does it vary trial to trial?

      The behavioral responses were monitored in unconditioned/untrained locusts. Hence, these are innate responses to the odorants. These innate responses are usually brief and occur after the onset of the stimulus. However, there is variability across locusts and trials (refer Revised Supplementary Fig. 1). When the same odorant is conditioned with food reward, the POR responses become more stereotyped and occur rapidly within a few hundred milliseconds. 

      Author response image 1.

      POR response dynamics in a conditioned locust. The palps were painted in this case (left panel), and the distance between the palps was tracked as a function of time (right panel).

      b. What are the reaction times? This can constrain what time window is relevant in the neural responses. E.g., if the reaction time is 500 ms, then only the first 500 ms of the ensemble response deserves close scrutiny. Later spikes cannot contribute.

      This is an interesting point. We had done this analysis for conditioned POR responses. For innate POR, as we noted earlier, there is variability across locusts. Many responses occur rapidly after odor onset (<1 s), while some responses do occur later during odor presentation and in some cases after odor termination. It is important to note that these dynamical aspects of the POR response, while super interesting, should occur at a much faster time scale compared to the adaptation that we are reporting across trials or repeated encounters of an odorant.

      c. The behavioral methods are lacking some key information. While references are given to previous work, the reader should not be obligated to look at other papers to answer basic questions: how was the response measured? Video tracking? Hand scored?

      We agree and apologize for the oversight. We have revised the methods and added a video to show the POR responses. Videos were hand-scored. 

      d. Can we be sure that this is an odor response? Although airflow out of the olfactometer is ongoing throughout the experiment, opening and closing valves usually creates pressure jumps that are likely to activate mechanosensors in the antennae.

      Interesting. We have added a new Supplementary Fig. 2 that shows that the POR to even presentations of paraffin oil (solvent; control) is negligible.  This should confirm that the POR is a behavioral response to the odorant. 

      Furthermore, all other potential confounds identified by the reviewer are present for every odorant and every concentration presented.  However, the POR varies in an odor-identity and intensity-specific manner. 

      e. What is the baseline rate of PORs in the absence of stimuli?

      Almost zero. 

      f. What can you say about the purpose of the POR? I lack an intuition for why a fly would wiggle the maxillary palps. This is a question that is probably impossible to answer definitively, but even a speculative explanation would help the reader better understand.

      The locusts use these finger-like maxillary palps to grab a grass blade while eating. Hence, we believe that this might be a preparatory response to feeding. We have noted that the PORs are elicited more by food-related odorants. Hence, we think it is a measure of odor appetitiveness. This has been added to the manuscript. 

      (2) Physiology

      a. Does stimulus repetition affect "spontaneous" activity (i.e., firing in the interstimulus interval? To study this question, in Figures 2b and c, it would be valuable to display more of the prestimulus period, and a quantification of the stability or lability of the inter-stimulus activity.

      Done. Yes, the spontaneous activity does appear to change in an odor-specific manner. We have done some detailed analysis of the same in this preprint:

      Ling D, Moss EH, Smith CL, Kroeger R, Reimer J, Raman B, Arenkiel BR. Conserved neural dynamics and computations across species in olfaction. bioRxiv [Preprint]. 2023 Apr 24:2023.04.24.538157. doi: 10.1101/2023.04.24.538157. PMID: 37162844; PMCID: PMC10168254

      b. When does the response change stabilize? While the authors compare repetition 1 to repetition 25, from the rasters it appears that the changes have largely stabilized after the 3rd or 4th repetition. In Figure 5, there is a clear difference between repetition 1-3 or so and the rest. Are successive repetitions more similar than more temporally-separated repetitions (e.g., is rep 13 more similar to 14 than to 17?). I was not able to judge this based on the dendrograms of Figure 5. If the responses do stabilize at it appears, it would be more informative to focus on the dynamics of the first few repetitions.

      The reviewer makes an astute observation. Yes, the changes in firing rates are larger in the first three trials (Fig. 3c). The ensemble activity patterns, though, are relatively stable across all trials as indicated by the PCA plots and classification analysis results.

      Author response image 2.

      Correlation as a function of trial number. All correlations were made with respect to the odor-evoked responses in the last odor trial of hex(H) and bza(H).

      c. How do temporal dynamics change? Locust PNs have richly varied temporal dynamics, but how these may be affected is not clear. The across-population average is poorly suited to capture this feature of the activity. For example, the PNs often have an early transient response, and these appear to be timed differently across the population. These structures will be obscured in a cross population average. Looking at the rasters, it looks like the initial transient changes its timing (e.g., PN40 responses move earlier; PN33 responses move later.). Quantification of latency to first spike after stimulus may make a useful measure of the dynamics.

      As noted earlier, to keep our story simple in this manuscript, we have only focused on the variations across trials (i.e., much slower response dynamics). We did this as we are not recording neural and behavioral responses from the same locust. We plan to do this and directly compare the neural and behavioral dynamics in the same locust.

      d.How legitimate is the link between POR and physiology? While their changes can show a nice correlation, the fact the data were taken from separate animals makes them less compelling than they would be otherwise. How feasible is it to capture POR and physiology in the same prep?

      This would be most helpful, but I suspect may be too technically challenging to be within scope.

      The antennal lobe activity in the input about the volatile chemicals encountered by the locust. The POR is a behavioral output. Hence, we believe that examining the correlation between the olfactory system's input and output is a valid approach. However, we have only compared the mean trends in neural and behavioral datasets, and dynamics on a much slower timescale. We are currently developing the capability to record neural responses in behaving animals. This turned out to be a bit more challenging than we had envisioned. We plan to do fine-grained comparisons of the neural and behavioral dynamics, recommended by this reviewer, in those preparations.

      Further, we will also be able to examine whether the variability in behavioral responses could be predicted from neural activity changes in that prep.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #2 (Public review)

      In this manuscript, Weiguang Kong et al. investigate the role of immunoglobulin M (IgM) in antiviral defense in the teleost largemouth bass (Micropterus salmoides). The study employs an IgM depletion model, viral infection experiments, and complementary in vitro assays to explore the role of IgM in systemic and mucosal immunity. The authors conclude that IgM is crucial for both systemic and mucosal antiviral defense, highlighting its role in viral neutralization through direct interactions with viral particles. The study's findings have theoretical implications for understanding immunoglobulin function across vertebrates and practical relevance for aquaculture immunology.

      Strengths:

      The manuscript applies multiple complementary approaches, including IgM depletion, viral infection models, and histological and gene expression analyses, to address an important immunological question. The study challenges established views that IgT is primarily responsible for mucosal immunity, presenting evidence for a dual role of IgM at both systemic and mucosal levels. If validated, the findings have evolutionary significance, suggesting the conserved role of IgM as an antiviral effector across jawed vertebrates for over 500 million years. The practical implications for vaccine strategies targeting mucosal immunity in fish are noteworthy, addressing a key challenge in aquaculture.

      Weaknesses:

      Several conceptual and technical issues undermine the strength of the evidence:<br /> Monoclonal Antibody (MoAb) Validation: The study relies heavily on a monoclonal antibody to deplete IgM, but its specificity and functionality are not adequately validated. The epitope recognized by the antibody is not identified, and there is no evidence excluding cross-reactivity with other isotypes. Mass spectrometry, immunoprecipitation, or Western blot analysis using tissue lysates with varying immunoglobulin expression levels would strengthen the claim of IgM-specific depletion.<br /> IgM Depletion Kinetics: The rapid depletion of IgM from serum and mucus (within one day) is unexpected and inconsistent with prior literature. Additional evidence, such as Western blot analyses comparing treated and control fish, is necessary to confirm this finding.

      Novelty of Claims: The manuscript claims a novel role for IgM in viral neutralization, despite extensive prior literature demonstrating this role in fish. This overstatement detracts from the contribution of the study and requires a more accurate contextualization of the findings.

      Support for IgM's Crucial Role: The mortality data following IgM depletion do not fully support the claim that IgM is indispensable for antiviral defense. The survival of IgM-depleted fish remains high (75%) compared to non-primed controls (~50%), suggesting that other immune components may compensate for IgM loss

      .<br /> Presentation of IgM Depletion Model: The study describes the IgM depletion model as novel, although similar models have been previously published (e.g., Ding et al., 2023). This should be clarified to avoid overstating its novelty.

      While the manuscript attempts to address an important question in teleost immunology, the current evidence is insufficient to fully support the authors' conclusions. Addressing the validation of the monoclonal antibody, re-evaluating depletion kinetics, and tempering claims of novelty would strengthen the study's impact. The findings, if rigorously validated, have important implications for understanding the evolution of vertebrate immunity and practical applications in fish health management.

      This work is of interest to immunologists, evolutionary biologists, and aquaculture researchers. The methodological framework, once validated, could be valuable for studying immunoglobulin function in other non-model organisms and for developing targeted vaccine strategies. However, the current weaknesses limit its broader applicability and impact.

      We would like to thank Reviewer for the helpful comments. As the reviewer suggested, we verified the specificity of anti-bass IgM MoAb using multiple well-established experimental approaches, including mass spectrometry analysis, western blot, flow cytometry, and in vivo IgM depletion models. Additionally, we included western blot analyses to further confirm the IgM depletion kinetics. Moreover, we carefully revised any overstated claims in the original manuscript and incorporated the valuable suggestions of the reviewer in the Introduction and Discussion sections to enhance the clarity and rigor of our work.

      Reviewer #1 (Recommendations for the authors):

      (1) Experiments and Data Validation:

      Monoclonal Antibody Validation:

      Provide detailed validation of the monoclonal antibody (MoAb) used for IgM depletion.Perform immunoprecipitation followed by mass spectrometry to confirm the specificity of the MoAb and identify any off-target interactions. Conduct Western blot analysis using tissue lysates with varying IgM, IgT, and IgD expression to demonstrate specificity. Include controls, such as a group treated with a control antibody of the same isotype, to confirm the depletion specificity and effects. Present data on the binding site of the MoAb and confirm it targets IgM.

      We thank the reviewer for this constructive comment and have carried out a comprehensive validation of anti-bass IgM monoclonal antibody (MoAb).

      Validation of anti-bass IgM MoAb by Mass Spectrometry

      To validate the specificity of anti-bass IgM MoAb, target proteins were immunoprecipitated from bass serum using IgM MoAb-coupled CNBr-activated Sepharose 4B beads, followed by mass spectrometry analysis to verify exclusive IgM heavy-chain identification (Figure 3–figure supplement 1A). Quantitative mass spectrometry verified the antibody’s specificity, with IgM heavy-chain peptides representing 97.3% of total signal, indicating negligible off-target reactivity. This high target specificity was further supported by the no detectable cross-reactivity to IgT/IgD (Figure 3–figure supplement 1B). Moreover, the 72% sequence coverage (Figure 3–figure supplement 1C) and confirmed LC-MS/MS spectra of IgM peptides (Figure 3–figure supplement 1D) further validated target selectivity.

      Validation of anti-bass IgM MoAb by western blot and flow cytometry

      We compared the anti-bass IgM MoAb with an isotype control (mouse IgG1) under both non-reducing and reducing serum immunoblots. The western blot results showed that the developed MoAb bound specifically to IgM in largemouth bass serum. Owing to the structural diversity of fish IgM isoforms, denatured non-reducing electrophoresis typically yields multiple bands with varying molecular weights (Rombout et al., 1993; Ye et al., 2010). Immunoblot analysis revealed multiple bands with varying molecular weights under non-reducing conditions, with the main band ranging from 700 to 800 kDa and a distinct ~70 kDa band under reducing conditions (Figure 3–figure supplement 2A). Notably, the isotype control showed no detectable bands under both non-reducing and reducing conditions (Figure 3–figure supplement 2A). Additionally, we analyzed tissue lysates from various sources (i.e., Spleen, skin, gill, and gut) and observed consistently recognized bands at identical positions and sizes, whereas the isotype control showed no detectable bands (Figure 3–figure supplement 2B-F).

      Next, we performed flow cytometry analysis to confirm antibody specificity. In largemouth bass head kidney leukocytes, IgM<sup>+</sup> B cells accounted for 28.56% of the population, compared to only 0.41% for the isotype control (Figure 3–figure supplement 2G). Following flow sorting of negative and positive cell populations, we extracted RNA from equal cell numbers. Gene expression analysis revealed high expression of IgM and IgD in the positive population, while IgT and T cell markers were absent (Figure 3–figure supplement 2H and I). These results collectively demonstrate that the monoclonal antibody specifically targets largemouth bass IgM.

      Validation of the depletion specificity and effects using an isotype-matched control antibody

      Largemouth bass (~3 to 5 g) were intraperitoneally injected with 300 µg of mouse anti-bass IgM monoclonal antibody (MoAb, clone 66, IgG1) or an isotype control (mouse IgG1, Abclonal, China). The concentration of IgM in the serum and gut mucus from these MoAb-treated fish was measured by western blot. Our results indicated that anti-bass IgM treatment led to a marked reduction in IgM protein levels in serum (Author response image 1A) and gut mucus (Author response image 1B) from day 1 post-treatment, in contrast to control fish treated with an isotype-matched control antibody.

      Author response image 1.

      Validation of the depletion specificity and effects using an isotype-matched control antibody. (A, B) The depletion effects of IgM from the serum (A) or gut mucus (B) of control or IgM‐depleted fish was detected by western blot. Iso: Isotype group; Dep: IgM‐depleted group.

      We fully agree with the reviewer that epitope characterization would further validate and elucidate the specificity of IgM MoAb. In the present study, we have demonstrated the antibody's IgM-specific binding through multiple classic experimental methods: (1) mass spectrometry analysis, (2) western blot analysis, (3) flow cytometry analysis, and (4) in vivo IgM depletion models. These results collectively support the conclusion that our MoAb specifically targets IgM. We feel that conformational epitope mapping requires structural biology approaches are out of the scope of this work, although future studies should address them in detail.

      Kinetics of IgM Depletion:

      Provide additional evidence for the observed rapid depletion of IgM from serum and mucus within one day, as this is inconsistent with previous findings. Include Western blot results to confirm IgM depletion kinetics.

      Thanks for the reviewer’s suggestion. Previous studies have demonstrated significant differences in the depletion efficiency and persistence of IgM<sup>+</sup> B cells between warm-water and cold-water fish species. In Nile tilapia (Oreochromis niloticus), a warm-water species, administration of 20 µg of anti-IgM antibody resulted in a near-complete depletion of IgM<sup>+</sup> B cells within 9 days (Li et al., 2023). In contrast, rainbow trout (Oncorhynchus mykiss), a cold-water species, required significantly higher doses (200–300 µg) to achieve similar depletion, which persisted in both blood and gut from week 1 up until week 9 post-depletion treatment (Ding et al., 2023). In this study, we investigated largemouth bass (Micropterus salmoides), a warm-water freshwater species. Administration of 300 μg of IgM antibody resulted in rapid IgM+ B cell depletion from serum and mucus within one day, indicating that the rapid depletion kinetics may be attributed to the combined effects of the elevated antibody dose and the species-specific immunological characteristics. Moreover, we provide a western blot analysis of serum and mucus after IgM depletion as shown in Figure 5–figure supplement 1G and H.

      Neutralizing Capacity Assays:

      Discuss the potential role of complement or other serum/mucus factors in the neutralization assays. Consider performing neutralization assays that isolate viruses, antibody, and target cells to assess the specific role of IgM.

      Thanks for the reviewer’s insightful suggestion regarding the potential influence of complement and other serum/mucus factors in our neutralization assays. We sincerely regret that the lack of clarity in our methodological description caused misunderstandings to the reviewer. In fact, prior to performing the virus neutralization assays, serum and mucus samples were heat-inactivated at 56 °C to eliminate potential complement interference. Now, we added the related description of heat-inactivation of serum and mucus samples in the revised manuscript (Lines 727-729). Moreover, our results showed that selective IgM depletion from high LMBV-specific IgM titer mucus and serum samples resulted in significantly increased viral loads and enhanced cytopathic effects (CPE), while no significant difference was observed compared to the control group (shown in Figure 6 of the manuscript).

      To further rule out complement or other factors, we purified IgM from serum and gut mucus of 42DPI-S fish for neutralization assays. Briefly, anti-bass IgM MoAb was coupled to CNBr-activated sepharose 4B beads and used for purification of IgM from both serum and gut mucus of 42DPI-S fish. After that, 100 µL of LMBV (1 × 10<sup>4</sup> TCID<sub>50</sub>) in MEM was incubated with PBS and purified IgM (100 µg/mL) at 28 °C for 1 hour and then the mixtures were applied to infect EPC cells. Medium or bass IgM was added to EPC cells as controls. We added the new text in Materials and methods of the revised manuscript in Lines 735-741. Our result showed that a significant reduction in both LMBV-MCP gene expression and protein levels was observed in EPC cells treated with purified IgM from serum (Figure 6–figure supplement 2A, C, and D) or gut mucus (Figure 6–figure supplement 2B, E, and F). Moreover, significantly lower CPE were observed in the IgM treated group, while no CPE was observed in medium and bass IgM group (Figure 6–figure supplement 2G). Collectively, these findings strongly suggest that the neutralization process is a potential mechanism of IgM, serving as a key molecule in adaptive immunity against viral infection. Here, we have incorporated these new findings in the Results section of the revised manuscript (Lines 382-388).

      IgT Depletion Model:

      To fully establish the role of IgM and IgT in antiviral defense, consider including an experimental group where IgT is depleted.

      Thanks for the reviewer’s suggestion. The role of IgT in mucosal antiviral immunity in teleost fish has been reported in our previous studies (Yu et al, 2022). However, this study primarily investigates the antiviral function of IgM in systemic and mucosal immunity and further analyzes the mechanisms of viral neutralization. In future research, we plan to establish an IgT and IgM double-depletion/knockout model to further elucidate their specific roles in antiviral immune defense.

      (2) Writing and Presentation:

      Introduction:

      Replace the cited review article on IgT absence with original research articles (e.g., Bradshaw et al., 2020; Györkei et al., 2024) to strengthen the context.

      Thank you for your valuable suggestion. We have changed in the revised manuscript (Lines 45-50) as “Notably, while IgT has been identified in the majority of teleost species, genomic analyses reveal its absence in some species, such as medaka (Oryzias latipes), channel catfish (Ictalurus punctatus), Atlantic cod (Gadus morhua), and turquoise killifish (Nothobranchius furzeri) (Bengtén et al., 2002; Bradshaw et al., 2020; Magadán-Mompóet al., 2011; Györkei et al., 2024).”

      Highlight the evolutionary contrast between the presence of the J chain in older cartilaginous fishes and amphibians and its loss in teleosts. Relevant references include Hagiwara et al., 1985, and Hohman et al., 2003.

      Thank you for your valuable suggestion. We have added the relevant description in the revised manuscript (Lines 61-66) “Interestingly, the assembly mechanism of IgM exhibits significant evolutionary variation across vertebrate lineages. In cartilaginous fishes and tetrapods, IgM is secreted as a J chain-linked pentamer, which may enhance multivalent antigen recognition (Hagiwara et al., 1985; Hohman et al., 2003). By contrast, teleosts have undergone J chain gene loss, resulting in the stable of tetrameric IgM formation (Bromage et al., 2004).”

      Acknowledge prior studies demonstrating the viral neutralization role of teleost IgM (e.g., Castro et al., 2021; Chinchilla et al., 2013). Avoid overstating the novelty of findings.

      Thanks for the reviewer’s suggestion. Here, we revised the related description: “More crucially, our study provides further insight into the role of sIgM in viral neutralization and firstly clarified the mechanism through which teleost sIgM blocks viral infection by directly targeting viral particles. From an evolutionary perspective, our findings indicate that sIgM in both primitive and modern vertebrates follows conserved principles in the development of specialized antiviral immunity.” in the revised manuscript (Lines 20-25) and “To the best of our knowledge, our study provides new insights into the role of sIgM in viral neutralization, suggesting a potential function of sIgM in combating viral infections.” in the revised manuscript (Lines 536-538).

      Clarify terms such as "primitive IgM" and avoid misleading evolutionary language (e.g., VLRs are not "candidates"; they mediate adaptive responses).

      Thanks for the reviewer’s suggestion. We changed the description of the primitive IgM in the sentence of the revised manuscript as “From an evolutionary perspective, our findings indicate that sIgM in both primitive and modern vertebrates follows conserved principles in the development of specialized antiviral immunity.” in the revised manuscript (Lines 23-25) and “our findings suggest that sIgM in both primitive and modern vertebrates utilize conserved mechanisms in response to viral infections” in the revised manuscript (Lines 574-575). Moreover, we deleted the description of VLRs for "candidates" and rewrote the relevant sentence in the revised manuscript (Lines 37-39) as “Agnathans, the most ancient vertebrate lineage, do not possess bona fide Ig but have variable lymphocyte receptors (VLRs) capable of mediating adaptive immune responses (Flajnik, 2018).”

      Results and Discussion:

      Address inconsistencies between data and claims, such as the statement that IgM plays a "crucial role" in protection against LMBV, which is not fully supported by mortality data.

      Thank you for your insightful comment. We have carefully reviewed our data and revised the language throughout the manuscript to ensure that our claims are fully consistent with the mortality data. We have changed the description of “IgM plays a crucial role in protection against LMBV” as “plays a role” (Line 119), “sIgM participates in” (Line 127), “contributes to immune protection” (Line 507) to more accurately reflect the mortality data

      Revise the model in Figure 8 to reflect the concerns raised regarding proliferation data, the role of IgM in protective resistance, and the potential contributions of complement in neutralization assays.

      Thank you for your insightful comment. We have added the raised concerns regarding “the viral proliferation data and the role of IgM in protective resistance” in Figure 8 (shown below). Meanwhile, we added relevant descriptions in the figure legends of the revised manuscript (Lines 587-592) as “Upon secondary LMBV infection, plasma cells produce substantial quantities of LMBV-specific IgM. Critically, these virus-specific sIgM from both mucosal and systemic sources has the ability to neutralize the virus by directly binding viral particles and blocking host cell entry, thereby effectively reducing the proliferation of viruses within tissues. Consequently, the IgM-mediated neutralization confers protection against LMBV-induced tissue damage and significantly reduced mortality during secondary infection.”

      However, considering the following two reasons: (1) heat-inactivation of serum and mucus samples at 56°C prior to neutralization assays effectively abolished complement activity, and (2) purified IgM from both serum and gut mucus demonstrated comparable neutralization capacity, confirming IgM-dependent mechanisms independent of complement. Therefore, we did not add the potential function of complement in neutralization to Figure 8.

      Provide a comparative analysis with other vertebrate models to strengthen the evolutionary implications of findings.

      Thank you for your insightful comment. We have added comparative analyses across additional vertebrate models in the discussion of the revised manuscript to enhance the evolutionary perspective of our findings. The details are as follows:

      “Virus-specific IgM production has been well-documented in reptiles, birds, and mammals upon viral infection (Dascalu et al., 2024; Harrington et al., 2021; Hetzel et al., 2021; Neul et al., 2017;). While current evidence confirms the capacity of cartilaginous fish and amphibians to mount specific IgM responses against bacterial pathogens and immune antigens (Dooley and Flajnik, 2005; Ramsey et al., 2010), the potential for viral induction of analogous IgM-mediated immunity in these species remains unresolved.” in the revised manuscript (Lines 498-504) and “Extensive studies in endotherms (birds and mammals) have demonstrated that specific IgM contributes to viral resistance by neutralizing viruses (Baumgarth et al., 2000; Diamond et al., 2013; Ku et al., 2021; Hagan et al., 2016; Singh et al., 2022). In contrast, the neutralizing activity of IgM in amphibians and reptiles remains largely unexplored. Although viral infections have been shown to induce neutralizing antibodies in Chinese soft-shelled turtles (Pelodiscus sinensis) (Nie and Lu, 1999), the specific Ig isotypes mediating this response have yet to be elucidated. In teleost fish, IgM has been shown to possess viral neutralizing activity similar to that observed in endotherms (Castro et al., 2013; Ye et al., 2013). Furthermore, our recent work demonstrated that secretory IgT (sIgT) in rainbow trout (Oncorhynchus mykiss) can neutralize viruses, significantly reducing susceptibility to infection (Yu et al., 2022). However, whether IgM in teleost fish possesses the antiviral neutralizing capacity necessary for fish to resist reinfection remains poorly understood.” in the revised manuscript (Lines 521-534)

      Include a description of the Western blot procedure shown in Figures 7D and 7F in the Methods section.

      Thank you for your suggestion. A detailed protocol for the western blot experiments presented in Figures 7D and 7F has been added to the Methods section (Western Blot Analysis) in the revised manuscript (Lines 684-687). The details are as follows: Gut mucus, serum, and cells samples were analyzed by western blot as described by Yu et al (2022). Briefly, the samples were separated using 4%–15% SDS-PAGE Ready Gel (Thermo Fisher Scientific, USA) and subsequently transferred to Sequi-Blot polyvinylidene fluoride (PVDF) membranes (Bio-Rad, USA). The membranes were blocked using a 8% skim milk for 2 hours and then incubated with monoclonal antibody (MoAb). For IgM concentration detection, the membranes were incubated with mouse anti-bass IgM MoAb (clone 66, IgG1, 1 μg/mL) and then incubation with HRP goat-anti-mouse IgG (Invitrogen, USA) for 1 hour. IgM concentrations were determined by comparing the signal strength values to a standard curve generated with known amounts of purified bass IgM. For neutralizing effect detection, the membranes were incubated with mouse anti-LMBV MCP MoAb (4A91E7, 1 μg/mL) followed by incubation with HRP goat-anti-mouse IgG (Invitrogen, USA) for 1 hour. The β-actin is used as a reference protein to standardize the differences between samples. Immunoblots were scanned using the GE Amersham Imager 600 (GE Healthcare, USA) with ECL solution (EpiZyme, China).

      Ensure all figures are labeled appropriately (e.g., replace "Morality" with "Mortality" in Figure 5A).

      Thanks for bringing this to our attention. We have corrected the label in Figure 5A (shown below) and reviewed all figures to ensure that they are appropriately labeled.

      (3) Minor Corrections:

      Line 117: Correct the typo "across both both."

      Thanks for bringing this to our attention. We have changed “across both both” to “across both” in the revised manuscript (Line 119).

      Line 203: Revise to "IgM plays a role (not crucial role)."

      Thank you for your valuable suggestion. We have modified the description of IgM's role from “crucial” to “plays a role” to better align with our experimental findings in the revised manuscript (Line 202).

      Line 684: Correct the typo "given an intravenous injection with 200 μg."

      Thanks for bringing this to our attention. We have corrected the phrase to “given an intravenous injection with 200 μg” in the revised manuscript (Line 700-701).

      Line 686: Fix the sentence fragment "previously. EdU+ cells."

      Thank you for your careful review. We have revised the sentence fragment for clarity in the revised manuscript (Lines 702-703).

      Abstract and other sections: Adjust language to remove claims of novelty unsupported by data, particularly regarding the role of IgM in viral neutralization.

      Thank you for your constructive feedback. We have thoroughly reviewed and revised the language throughout the abstract and other sections to remove any unsupported claims of novelty, particularly regarding the role of IgM in viral neutralization in the revised manuscript (Lines 20-25).

      (4)Technical Details:

      Verify data availability, including raw data and analysis scripts, in line with eLife's data policies. Include detailed descriptions of all methods, particularly those involving Western blot analysis and antibody validation.

      Thank you for your suggestion. We added the verify data availability, including raw data and analysis scripts as “The raw RNA sequencing data have been deposited in the NCBI Sequence Read Archive under BioProject accession number PRJNA1254665. The mass spectrometny proteomics data have been deposited to the iProX platform with the dataset identifier IPX0011847000.” in the revised manuscript (Lines 808-811).

      (5) Ethical and Policy Adherence:

      Confirm compliance with ethical standards for animal use and antibody development.Ensure proper citation of all referenced works and accurate reporting of prior findings.

      Thank you for your valuable comment. We confirm that our study fully complies with ethical standards for animal use and antibody development. Additionally, we have carefully reviewed the manuscript to ensure that all referenced works are properly cited and that prior findings are accurately reported.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Asthenospermia, characterized by reduced sperm motility, is one of the major causes of male infertility. The "9 + 2" arranged MTs and over 200 associated proteins constitute the axoneme, the molecular machine for flagellar and ciliary motility. Understanding the physiological functions of axonemal proteins, particularly their links to male infertility, could help uncover the genetic causes of asthenospermia and improve its clinical diagnosis and management. In this study, the authors generated Ankrd5 null mice and found that ANKRD5-/- males exhibited reduced sperm motility and infertility. Using FLAG-tagged ANKRD5 mice, mass spectrometry, and immunoprecipitation (IP) analyses, they confirmed that ANKRD5 is localized within the N-DRC, a critical protein complex for normal flagellar motility. However, transmission electron microscopy (TEM) and cryo-electron tomography (cryo-ET) of sperm from Ankrd5 null mice did not reveal any structural abnormalities.

      Strengths:

      The phenotypes observed in ANKRD5-/- mice, including reduced sperm motility and male infertility, are conversing. The authors demonstrated that ANKRD5 is an N-DRC protein that interacts with TCTE1 and DRC4. Most of the experiments are thoughtfully designed and well executed.

      Weaknesses:

      The cryo-FIB and cryo-ET analyses require further investigation, as detailed below. The molecular mechanism by which the loss of ANKRD5 affects sperm flagellar motility remains unclear. The current conclusion that Ankrd5 knockout reduces axoneme stability is not well-supported. Specifically, are other axonemal proteins diminished in Ankrd5 knockout sperm? Conducting immunofluorescence analyses and revisiting the quantitative proteomics data may help address these questions.

      Reviewer #2 (Public review):

      Summary:

      The manuscript investigates the role of ANKRD5 (ANKEF1) as a component of the N-DRC complex in sperm motility and male fertility. Using Ankrd5 knockout mice, the study demonstrates that ANKRD5 is essential for sperm motility and identifies its interaction with N-DRC components through IP-mass spectrometry and cryo-ET. The results provide insights into ANKRD5's function, highlighting its potential involvement in axoneme stability and sperm energy metabolism.

      Strengths:

      The authors employ a wide range of techniques, including gene knockout models, proteomics, cryo-ET, and immunoprecipitation, to explore ANKRD5's role in sperm biology.

      Weaknesses:

      (1) Limited Citations in Introduction: Key references on the role of N-DRC components (e.g., DRC1, DRC2, DRC3, DRC5) in male infertility are missing, which weakens the contextual background.

      (2) Lack of Functional Insights: While interacting proteins outside the N-DRC complex were identified, their potential roles and interactions with ANKRD5 are not adequately explored or discussed.

      (3) Mitochondrial Function Uncertainty: Immunofluorescence suggests possible mitochondrial localization for ANKRD5, but experiments on its role in energy metabolism (e.g., ATP production, ROS) are insufficient, especially given the observed sperm motility defects.

      (4) Glycolysis Pathway Impact: Proteomic analysis indicates glycolysis pathway disruptions in Ankrd5-deficient sperm, but the link between these changes and impaired motility is not well explained.

      (5) Cryo-ET Data Limitations: The structural analysis of the DMT lacks clarity on how ANKRD5 influences N-DRC or RS3. The low quality of RS3 data hinders the interpretation of ANKRD5's impact on axoneme structure.

      (6) Discussion of Findings: The manuscript could benefit from a deeper discussion on the broader implications of ANKRD5's interactions and its role in sperm energy metabolism and motility mechanisms.

      Reviewer #1 (Recommendations for the authors):

      EMD-35210/35211 are 16-nm maps while the Ankrd5 null map is 8-nm repeat. To generate a difference map, the authors should use maps of the same periodicity.

      Thank you for your suggestion. We have replaced the old 16-nm maps with an 8nm map and updated the images (Fig. 7). The 8nm repeats DMT density map we used was obtained by summing two 16nm repeats DMTs that were staggered 8nm apart from each other (EMD-35229). The replacement of the 16nm repeats DMT density map with the 8nm repeats DMT density map has no effect on our scientific findings and experimental conclusions.

      "We were able to detect the N-DRC structure in WT sperm, but we failed to find the density of N-DRC adjacent to RS3 in Ankrd5 null sperm". Do the authors imply that the N-DRC is lost in Ankrd5 null sperm? To draw a conclusion, they need to compare the 96-nm map of WT sperm axoneme with that of Ankrd5 null sperm axoneme. Quantitative proteomics shows that the levels of most N-DRC components in Ankrd5 null sperm are comparable with those of WT sperm. Why are the quantitative proteomics results not consistent with the structural observation?

      We are very sorry for this improper description. Our original description was not rigorous, which led to misunderstanding. Our original intention is to say that the quality of the density map causes the N-DRC to be difficult to recognize, rather than that the N-DRC has disappeared. In addition, attempts to classify 96nm repeats DMT structure during our data processing failed. In the process of classification, we found that the density of RS was not good. So we changed the picture and the description.

      We have changed the description in the text: "During the STA process, many particles were misaligned or deformed in the classification results, revealing various degrees of deformation—particularly affecting the B-tube (Figure 9,Fig. S9E). We could retain only ~10% of the DMT particles to obtain the final density map for ANKRD5-KO sperm (Fig. S9E), whereas ~70% were usable in WT dataset as reported previously [59]. The mutant DMT density map also displayed roughness at its periphery, indicating substantial structural heterogeneity (Fig. S9E). Even after discarding a large fraction of deformed particles, the final density map still showed evident artifacts, implying that although the mutant DMT preserves the fundamental features of both tubes, its shape is highly heterogeneous (Fig. S9E). Furthermore, attempts to classify the 96-nm repeats did not yield a clear density for radial spokes (RSs) (Fig. S9F), indicating that ANKRD5 deficiency may affect the stability of other accessory structures, such as RSs [24-26]. In the raw tomograms, RSs in ANKRD5-KO sperm appeared less regularly arranged than those in WT(Fig. S9A and C)."

      Figure S9. The states of DMT particles in sperm of Ankrd5-KO mouse. (A) and (C) Tomogram slices of WT and Ankrd5-KO in Dynamo (The data for WT mouse sperm was EMPIARC-200007). DMT and RS are marked with white dashed lines and white arrows, respectively. (B) and (D) Comparison of DMT particle states between WT and Ankrd5-KO in Dynamo. The visual angles of the DMT particles shown in (B) and (D) show that the DMT fibers within the white box in (A) and (B) are divided equally into 10 slices along the direction of the white arrow, respectively. The DMT particle shapes of WT and Ankrd5-KO are marked by white dashed lines on the right of (B) and (D). The white arrow in (D) identifies the junction of A-tube and B-tube that is suspected to be disconnected. (E) Deformed particles discarded in 3D classification and final aligned DMT artifacts. (F) 3D classification of attempted RS locations.

      In the process of obtaining DMT with a period of 8nm, we discarded about 90% of the particles (some were mis-aligned particles and some were deformed particles). Although the final DMT density showed complete A-tube and B-tube, both the particles in our calculation process and the projection of the final structure showed strong particle heterogeneity.

      Our results show that in ANKRD5-KO mice, the structure of sperm DMT itself has no apparent effect in tube A and tube B, and we found that DMT in the original tomography were not smooth. We speculate that loss of ANKRD5 may reduce the interaction between N-DRC and neighboring DMTs, resulting in nonuniform force on the axoneme during sperm swimming, which may limit our ability to obtain an average structure of the more dynamic components (RS, N-DRC, ODA, IDA). Therefore, when trying to classify 96nm repeat DMTS, we can only see the density of suspected RS3 and RS2, but it is difficult to obtain the confident 96nm repeat DMT density. It is difficult to further discuss the effects of ANKRD5 on RS3 and N-DRC. To test this conjecture, we further classified the density of suspected RS3, and the results obtained exhibited a variety of mixed states (Fig. S9). To avoid confusion, we have already removed the discussion of RS3 and the related images from the original text.

      It's not clear whether N-DRC proteins and ODA, IDA, RS proteins are affected in DMT of Ankrd5 null sperm. Immunofluorescence staining would help to resolve this problem.

      Thank you for your suggestion. The levels of N-DRC proteins and ODA, IDA, RS were detected by immunofluorescence, and no difference was found between ANKRD5-null sperm and control. We added figure S6 as a new figure and added the following description in red font on page 7 of the article:

      Figure S6. Immunofluorescence results of ANKRD5-null sperm and control. DRC11 serves as a marker protein for N-DRC (nexin-dynein regulatory complex), NME5 as a marker for RS (radial spoke), DNALI1 as a marker for IDA (inner dynein arm), and DNAI1 as a marker for ODA (outer dynein arm).

      In addition, ODA and RS were also marked in the figure when we further analyzed the Cryo-ET data (Figure 7 and Figure S9).

      Does Ankrd5 express in other cilia cells except for sperm?

      We stained mouse respiratory cilia using immunofluorescence and found that the protein was also expressed in mouse respiratory cilia. To support this finding, we added Figure S3 as a new figure and included a description in red font on page 6 of the article.

      Page 7, "However, in the process of manual selection of DMT fibers, we found that they were not as smooth as WT particles." This description is too subjective. Please show the data.

      Thank you for your suggestion. We have added a supplementary figure showing the difference between mutant samples and WT samples during particle picking (Fig. S9).

      Abstract, "These findings establish that ANKRD5 is critical for maintaining axoneme stability, "Page 7, "This suggests that the knockout of Ankrd5 may affect the structural stability of the axoneme," I do not see direct evidence that Ankrd5 KO reduces the axoneme stability.

      Our phrasing was not sufficiently precise. These findings suggest that ANKRD5 plays a crucial role in limiting the relative sliding between adjacent microtubule doublets during axoneme bending, rather than directly contributing to the stability of the axoneme. This sentence has already been modified in the abstract and marked in red. We have added the description in the text: "These findings suggest that ANKRD5 may weaken the N-DRC’s "car bumper" role, reducing the buffering effect between adjacent DMTs and thereby destabilizing axoneme structures during intense axoneme motility." and "To further investigate the RS, IDA, and ODA structures of the axonemes, we conducted immunofluorescence assays in both Ankrd5<sup>-/-</sup> mice and the control group. No significant differences were detected between the two groups (Fig. S6)."

      Page 8, "but our study offers new perspectives for male contraceptive research". Could the authors expand this a bit - how this study may offer new perspectives for male contraceptive research?

      We sincerely appreciate the reviewer's insightful feedback regarding the translational potential of our findings. This is indeed a critical aspect that we sought to highlight. In response, we have added a paragraph on page 9 (marked in red) to further emphasize this point. We have added the description in the text: "The potential for male contraceptive development arises from ANKRD5's critical structural role mediated through its ANK domain, which facilitates interaction with the N-DRC complex in sperm flagella. Recent structural evidence suggests the protein's positively charged surface may engage with glutamylated tubulin in adjacent microtubules[41], presenting a druggable interface. Targeted disruption of this interaction through small-molecule inhibitors could transiently impair sperm motility. Sperm function relies more on ANKRD5 than respiratory cilia, so inhibiting ANKRD5 has less impact on the latter. This makes ANKRD5 a promising drug target. This tissue-specific phenotypic uncoupling is not uncommon among axonemal-associated proteins, such as DNAH17 and IQUB[65,66]."

      Abstract, "reveals its interaction with TCTE1 and DRC4/GAS8", please provide the alias symbol DRC5 for TCTE1 for clarity.

      Thank you for your suggestion, I have revised the abstract by replacing "TCTE1" with "DRC5/TCTE1" to clarify the alias. The changes have been highlighted in red in the manuscript for easy reference.

      Introduction, "Fertilization relies on successful spermatogenesis and normal sperm motility (4), which occurs in the testes." Does spermatogenesis or normal sperm motility occur in the testes?

      Thank you for pointing out the ambiguity in the sentence. We have revised the sentence in the Introduction and highlighted it in red as follows: Fertilization relies on successful spermatogenesis and normal sperm motility..

      Introduction, "The axoneme exhibits a 9+2 microtubule doublet structure". The description is not accurate. The "2" are singlet microtubules.

      Thank you for your suggestion. We have revised the sentence to accurately describe the axoneme structure and highlight in red as follows: The axoneme features a 9+2 architecture, comprising nine doublet microtubules encircling a central pair of singlet microtubules, with the N-DRC forming cross-bridges between adjacent doublets.

      Page 4, "control sperm successfully fertilized both cumulus-intact eggs". "control" should be a capital "C".

      We thank the reviewer for noting this oversight. The correction has been implemented on page 5 with the term highlighted in red (now reading: "Control sperm successfully fertilized both cumulus-intact eggs"), and we have verified capitalization consistency throughout the manuscript.

      Page 6, "applied RELION, M, and other software". "other software" is not an appropriate description, please be precise.

      We have revised the description as suggested. Specifically, on page 7, the phrase "and other software" has been replaced with "Dynamo and Warp/M," and this change is highlighted in red for clarity.

      Reviewer #2 (Recommendations for the authors):

      Several components of the N-DRC complex (e.g., DRC1, DRC2, DRC3, DRC5) have been reported to be associated with male infertility in both humans and mice. However, the introduction lacks proper citations for these studies. Adding these references would provide a more comprehensive background for readers.

      Thank you for your suggestion to strengthen the comprehensiveness of the research background by incorporating additional literatures. More literatures related to DRC1, DRC2, DRC3, and DRC5 were cited in the background of this paper. We have rewritten and reorganized the language of the last paragraph of the introduction, and the entire paragraph is highlighted in red. The content of the paragraph is as follows:

      "It was previously believed that N-DRC comprised 11 protein components[13,18]. However, a new component CCDC153 (DRC12) was found to interact with DRC1[19]. In situ cryoelectron tomography (cryo-ET) has significantly advanced understanding of the N-DRC architecture in Chlamydomonas, demonstrating that DRC1, DRC2/CCDC65, and DRC4/GAS8 constitute its core framework[16], while proteins DRC3/5/6/7/8/11 associate with this framework and engage with other axonemal complexes[20]. Biochemical experiments corroborate these findings and validate this structural model[12,21,22]. The N-DRC functions between the DMTs to convert sliding into axonemal bending motion by restricting the relative sliding of outer microtubule doublets[23,24,25]. Mutations of N-DRC subunits demonstrate that the structural integrity of the N-DRC is crucial for flagellar movements. Mutations in DRC1, DRC2/CCDC65, and DRC4/GAS8 are linked to ciliary motility disorders, causing primary ciliary dyskinesia (PCD)[12,26]. Biallelic truncating mutations in DRC1 induce multiple morphological abnormalities of sperm flagella (MMAF), including outer DMT disassembly, mitochondrial sheath disorganization, and incomplete axonemal structures in human sperm[22,27,28]. Similarly, CCDC65 loss disrupts N-DRC stability, leading to disorganized axonemes, global microtubule dissociation, and complete asthenozoospermia[12,29].  Homozygous frameshift mutations in DRC3 impair N-DRC assembly and intraflagellar transport (IFT), resulting in severe motility defects despite normal sperm morphology[30,31]. TCTE1 knockout mice maintain normal sperm axoneme structure but show impaired glycolysis, leading to reduced ATP levels, lower sperm motility, and male infertility[32]. Both Drc7 and Iqcg (Drc9) knockout mice exhibit disrupted '9+2' axonemal architecture, sperm immotility, and male infertility[21,33]. Drc7 knockout sperm also display head deformities and shortened tails[21]. While N-DRC is critical for sperm motility, but the existence of additional regulators that coordinate its function remains unclear. Our findings indicate that ANKRD5 (Ankyrin repeat domain 5; also known as ANK5 or ANKEF1) interacts with N-DRC structure, serving as an auxiliary element to facilitate collaboration among DRC members. The absence of ANKRD5 results in diminished sperm motility and consequent male infertility."

      While many N-DRC components were identified as interacting with ANKRD5, other proteins outside the N-DRC complex were also detected. Notably, GAS8 (DRC4) ranked 165th among the identified proteins. What are the functions of the higher-ranking proteins, and why do they interact with ANKRD5? Discussing their potential roles would enhance the mechanistic understanding of ANKRD5's function.

      We thank the reviewer for highlighting the importance of non-N-DRC proteins interacting with ANKRD5 (ANKEF1). Below, we provide a detailed analysis of the roles and interaction mechanisms of the top-ranked non-N-DRC proteins (Krt77, Rab2a, Gm7429) to elucidate their functional relevance to ANKRD5. We have added the following text to page 6 to clarify and highlight this in red:

      As for other proteins in the LC-MS results, KRT77 is a classic protein that maintains cytoskeletal stability. It may enhance the physical connection between the N-DRC and adjacent DMTs through interaction with ANKRD5. Recent studies indicate that ANKRD5, a newly identified component in the distal lobe of the N-DRC, has a positively charged surface, which may facilitate binding to glutamylated tubulin on adjacent DMTs[41]. Thus, KRT77 may also regulate its interaction with ANKRD5 via post-translational modifications (PTMs, e.g., phosphorylation), thereby strengthening sperm resistance to shear forces during flagellar movement. Rab family proteins participate in intraflagellar transport and membrane dynamics. RAB2A may promote targeted transport of ANKRD5 or other N-DRC components to axonemal assembly sites by recruiting vesicles, and its GTPase activity might link cellular signals to ANKRD5-mediated axoneme remodeling. However, the observed signals could be false positives due to nonspecific factors such as electrostatic adsorption, high-abundance protein interference, detergent-induced membrane disruption, or protein aggregation tendencies.

      The immunofluorescence localization of ANKRD5-Flag appears more aligned with the mitochondrial sheath rather than the axoneme. There is a finer red fluorescent signal extending from the mitochondrial sheath that might correspond to the axoneme. Could this suggest that ANKRD5 has a functional role in the mitochondria? While the authors measured ROS levels, this might not fully clarify whether ANKRD5 is involved in sperm energy metabolism. Considering the motility defects in Ankrd5 knockout mice, further experiments to explore ANKRD5's potential involvement in energy metabolism are necessary.

      The increased detection of ANKRD5 in the midpiece region of the sperm axoneme does not necessarily indicate its localization in mitochondria. Immunofluorescence signals of multiple axonemal Nexin-Dynein Regulatory Complex (N-DRC) components (e.g., TCTE1, DRC1, CCDC65, DRC3, GAS8, and DRC7) are also non-uniformly distributed along the entire flagellum[1]. Similar localization patterns are observed in other structural components, such as radial spoke protein NME5[2] and outer dynein arm protein DNAH5[3]. Furthermore, mitochondria are membrane-bound organelles, and ANKRD5 predominantly resides in the SDS-soluble fraction under varying lysis conditions, confirming its association with the axoneme rather than mitochondria. Thus, the spatial distribution of ANKRD5 does not support a functional role in mitochondria. Importantly, we validated intact mitochondrial function through measurements of reactive oxygen species (ROS) levels (Figure S5C, D), ATP content (Figure 6E), and mitochondrial membrane potential (Figure S5A, B).

      Proteomic analysis of Ankrd5-deficient sperm revealed disruptions in the glycolysis pathway. While these changes do not appear to affect ATP production, the mechanism by which these disruptions impact sperm motility remains unclear. Further investigation into how glycolysis pathway alterations contribute to impaired motility is warranted.

      We appreciate the reviewer's careful consideration of our proteomic data. However, our Gene Set Enrichment Analysis (GSEA) of glycolysis/gluconeogenesis pathways showed no significant enrichment (p-value=0.089, NES=0.708; Fig.6D), which does not meet the statistical thresholds for biological significance (|NES|>1, pvalue<0.05). This observation is further corroborated by our direct ATP measurements showing no difference between genotypes (Fig.6E). We agree that further studies on metabolic regulation could be valuable, but current evidence does not support glycolysis disruption as a primary mechanism for the motility defects observed in Ankrd5-null sperm. This misinterpretation likely arose from the reviewer's overinterpretation of non-significant proteomic trends. We request that this specific claim be excluded from the assessment to avoid misleading readers.

      Weaknesses:

      Cryo-ET Data Limitations: The structural analysis of the DMT lacks clarity on how ANKRD5 influences NDRC or RS3. The low quality of RS3 data hinders the interpretation of ANKRD5's impact on axoneme structure.

      We tried to further calculate the DMT at 96nm period using the present data to analyze the effect of ANKRD5 deletion on RS and N-DRC, however, due to the heterogeneity of the data, we were only able to obtain DMT at 8nm period (we have added a figure in the supplementary material for presentation). And in the process of obtaining DMT with a period of 8nm, we throw away about 90% of the particles (some are misaligned particles, some are deformed particles). Although we were not able to obtain the structure of 96nm repeats DMT, we noticed the enhanced heterogeneity of DMT caused by ANKRD5 knockout, as shown by the 3D classification and other results of the new supplementary images (Fig. S9), and the graphic description was added in the original article.

      We have changed the description in the text: "During particle picking of DMT fibers, we observed that transverse sections of axonemal DMT particles from ANKRD5-KO sperm differ markedly from those in WT sperm. Although both A- and B-tubes were visible in both samples, the DMTs in ANKRD5-KO sperm showed a more irregular profile. In WT sperm, DMTs typically appeared circular, whereas ANKRD5-KO DMTs seemed to be extruded as polygonal. (Fig. S9B,D). Notably, ANKRD5-KO DMTs seemed partially open at the junction between the A- and B-tubes (Fig. S9B,D).

      During the STA process, many particles were misaligned or deformed in the classification results, revealing various degrees of deformation—particularly affecting the B-tube (Fig. S9E). We could retain only ~10% of the DMT particles to obtain the final density map for ANKRD5-KO sperm (Fig. S9E), whereas ~70% were usable in WT dataset as reported previously [59]. The mutant DMT density map also displayed roughness at its periphery, indicating substantial structural heterogeneity (Fig. S9E). Even after discarding a large fraction of deformed particles, the final density map still showed evident artifacts, implying that although the mutant DMT preserves the fundamental features of both tubes, its shape is highly heterogeneous (Fig. S9E). Furthermore, attempts to classify the 96-nm repeats did not yield a clear density for radial spokes (RSs) (Fig. S9F), indicating that ANKRD5 deficiency may affect the stability of other accessory structures, such as RSs [23,24,25]. In the raw tomograms, RSs in ANKRD5-KO sperm appeared less regularly arranged than those in WT (Fig. S9A and C).

      Most recently, following the submission of this work, ANKRD5 was reported to localize at the head of the N-DRC, simultaneously binding DRC11, DRC7, DRC4, and DRC5 [46]. This structural insight agrees with our in vitro findings that ANKRD5 interacts with DRC4 and DRC5 (Fig. 8C-F). However, that study used isolated and purified DMT samples, leaving the precise positioning of ANKRD5 between adjacent axonemal DMTs unconfirmed. We therefore fitted the published structure (PDB entry: 9FQR) into the in situ DMT structure of mouse sperm 96-nm repeats (EMD-27444), revealing that ANKRD5 lies a mere ~3 nm from the adjacent DMT (Fig. 8G). Notably, the N-DRC is often likened to a "car bumper", buffering two neighboring DMTs during vigorous axonemal motion. Given the extensive DMT deformation observed in our cryo-ET data (Fig. S9E), we propose that ANKRD5 contributes to this buffering function at the N-DRC. The loss of ANKRD5 may weaken the "bumper" effect and consequently increase structural damage to adjacent DMTs under intense conditions, while also compromising the stability of associated DMT accessory structures [19,46,60]."

      Figure S9. The states of DMT particles in sperm of Ankrd5-KO mouse. (A) and (C) Tomogram slices of WT and Ankrd5-KO in Dynamo (The data for WT mouse sperm was EMPIARC-200007). DMT and RS are marked with white dashed lines and white arrows, respectively. (B) and (D) Comparison of DMT particle states between WT and Ankrd5-KO in Dynamo. The visual angles of the DMT particles shown in (B) and (D) show that the DMT fibers within the white box in (A) and (B) are divided equally into 10 slices along the direction of the white arrow, respectively. The DMT particle shapes of WT and Ankrd5-KO are marked by white dashed lines on the right of (B) and (D). The white arrow in (D) identifies the junction of A-tube and B-tube that is suspected to be disconnected. (E) Deformed particles discarded in 3D classification and final aligned DMT artifacts. (F) 3D classification of attempted RS locations.

      Although the loss of ANKRD5 did not affect the density of DMT itself in A Tube and B Tube, we found that DMT particles were not smooth in the original tomogram. We speculate that the loss of ANKRD5, a component of the N-DRC that is close to the neighboring DMT, may reduce the interaction between N-DRC and the neighboring DMT, resulting in uneven force on the axoneme during sperm swimming, which may limit our ability to obtain the average structure of the more dynamic components (RS, N-DRC, ODA, IDA). Therefore, when trying to classify 96nm repeat DMT, we could only see the density of suspected RS3 and RS2, but it was difficult to obtain the complete 96nm repeat DMT density, so that we could not further analyze the effect of ANKRD5 deletion on RS and N-DRC. To test this conjecture, we further classified the density of suspected RS3, and the results obtained exhibited a variety of mixed states (which have been added to the supplementary material). To avoid confusion, we have already removed the discussion of RS3 and the related images from the original text.

      The cryo-ET data on the internal structure of the DMT seems to have limited relevance to the N-DRC complex. Additionally, the quality of the RS3 data appears suboptimal, making it difficult to understand how the absence of ANKRD5 influences RS3. Further refinement of the data or alternative approaches may be needed to address this question.

      Thank you very much for your suggestions. For the 96 nm periodic DMT, we have conducted multiple rounds of classification, including applying different masks at the positions of ODA, RS, and DMT. We have also tried classifying with both a single reference and multiple references. However, we were unable to obtain a suitable 96 nm periodic DMT. Regarding the heterogeneity of the particles, we have added a discussion in the manuscript. Following your advice, we have reanalyzed the data, but unfortunately, we still could not further optimize the experimental results.

      In the process of obtaining the 8 nm periodic DMT, we discarded approximately 90 percent of the particles through multiple rounds of classification and alignment, in order to obtain high-quality 8 nm periodic DMT. We classified the remaining particles and found that the densities of RS3 and RS2 were not in their normal states. RS3 might be a mixture of different states of RS3, which makes it difficult for us to further discuss the effects of ANKRD5 on RS3.

      To avoid confusion, we have already removed the discussion of RS3 and the related images from the original text.

      Regarding the effects of ANKRD5 deficiency, we speculate that as the head of the N-DRC, its absence might affect the interaction between the N-DRC and the adjacent DMT, thereby influencing the forces experienced by the DMT during sperm movement. The uneven and irregular forces on the nine pairs of DMTs do not affect the structure of the A and B tubes of the DMT itself, but result in some heterogeneity in the peripheral microtubule parts of the DMT particles. We have added a discussion on these hypotheses in the manuscript. In addition, our 3D classification results demonstrate the structural heterogeneity of DMT caused by ANKRD5 knockdown. We have changed the description in the text:"During particle picking of DMT fibers, we observed that transverse sections of axonemal DMT particles from ANKRD5-KO sperm differ markedly from those in WT sperm. Although both A- and B-tubes were visible in both samples, the DMTs in ANKRD5-KO sperm showed a more irregular profile. In WT sperm, DMTs typically appeared circular, whereas ANKRD5-KO DMTs seemed to be extruded as polygonal. (Fig. S9B,D). Notably, ANKRD5-KO DMTs seemed partially open at the junction between the A- and B-tubes (Fig. S9B,D).

      During the STA process, many particles were misaligned or deformed in the classification results, revealing various degrees of deformation—particularly affecting the B-tube (Figure 9, Fig. S9E). We could retain only ~10% of the DMT particles to obtain the final density map for ANKRD5-KO sperm (Fig. S9E), whereas ~70% were usable in WT dataset as reported previously [59]. The mutant DMT density map also displayed roughness at its periphery, indicating substantial structural heterogeneity (Fig. S9E). Even after discarding a large fraction of deformed particles, the final density map still showed evident artifacts, implying that although the mutant DMT preserves the fundamental features of both tubes, its shape is highly heterogeneous (Fig. S9E). Furthermore, attempts to classify the 96-nm repeats did not yield a clear density for radial spokes (RSs) (Fig. S9F), indicating that ANKRD5 deficiency may affect the stability of other accessory structures, such as RSs [23,24,25]. In the raw tomograms, RSs in ANKRD5-KO sperm appeared less regularly arranged than those in WT (Fig. S9A and C).

      Most recently, following the submission of this work, ANKRD5 was reported to localize at the head of the N-DRC, simultaneously binding DRC11, DRC7, DRC4, and DRC5 [46]. This structural insight agrees with our in vitro findings that ANKRD5 interacts with DRC4 and DRC5 (Fig. 8C-F). However, that study used isolated and purified DMT samples, leaving the precise positioning of ANKRD5 between adjacent axonemal DMTs unconfirmed. We therefore fitted the published structure (PDB entry: 9FQR) into the in situ DMT structure of mouse sperm 96-nm repeats (EMD-27444), revealing that ANKRD5 lies a mere ~3 nm from the adjacent DMT (Fig. 8G). Notably, the N-DRC is often likened to a "car bumper", buffering two neighboring DMTs during vigorous axonemal motion. Given the extensive DMT deformation observed in our cryo-ET data (Fig. S9E), we propose that ANKRD5 contributes to this buffering function at the N-DRC. The loss of ANKRD5 may weaken the "bumper" effect and consequently increase structural damage to adjacent DMTs under intense conditions, while also compromising the stability of associated DMT accessory structures [19,46,60]."

      To further enhance the readability of our manuscript, we created a Graphic Abstract to visually illustrate the biological functions of ANKRD5. The figure is placed immediately after the Abstract section and has been designated as Figure 9.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      The major result in the manuscript is the observation of the higher order structures in a cryoET reconstruction that could be used for understanding the assembly of toroid structures. The cross-linking ability of ZapD dimers result in bending of FtsZ filaments to a constant curvature. Many such short filaments are stitched together to form a toroid like structure. The geometry of assembly of filaments - whether they form straight bundles or toroid like structures - depends on the relative concentrations of FtsZ and ZapD.

      Strengths:

      In addition to a clear picture of the FtsZ assembly into ring-like structures, the authors have carried out basic biochemistry and biophysical techniques to assay the GTPase activity, the kinetics of assembly, and the ZapD to FtsZ ratio.

      Weaknesses:

      The discussion does not provide an overall perspective that correlates the cryoET structural organisation of filaments with the biophysical data. The current version has improved in terms of addressing this weakness and clearly states the lacuna in the model proposed based on the technical limitations.

      Future scope of work includes the molecular basis of curvature generation and how molecular features of FtsZ and ZapD affect the membrane binding of the higher order assembly.

      Reviewer #3 (Public review):

      Summary:

      Previous studies have analyzed the binding of ZapD to FtsZ and provided images of negatively stained toroids and straight bundles, where FtsZ filaments are presumably crosslinked by ZapD dimers. Toroids without ZapD have also been previously formed by treating FtsZ with crowding agents. The present study is the first to apply cryoEM tomography, which can resolve the structure of the toroids in 3D. This shows a complex mixture of filaments and sheets irregularly stacked in the Z direction and spaced radially. The most important interpretation would be to distinguish FtsZ filaments from ZapD crosslinks, This is less convincing. The authors seem aware of the ambiguity: "However, we were unable to obtain detailed structural information about the ZapD connectors due to the heterogeneity and density of the toroidal structures, which showed significant variability in the conformations of the connections between the filaments in all directions." Therefore, the reader may assume that the crosslinks identified and colored red are only suggestions, and look for their own structural interpretations. But readers should also note some inconsistencies in stoichiometry and crosslinking arrangements that are detailed under "weaknesses."

      Strengths.

      This is the first cryoEM tomography to image toroids and straight bundles of FtsZ filaments bound to ZapD. A strength is the resolution, which. at least for the straight bundles. is sufficient to resolve the ~4.5 nm spacing of ZapD dimers attached to and projecting subunits of an FtsZ filament. Another strength is the pelleting assay to determine the stoichiometry of ZapD:FtsZ (although this also leads to weaknesses of interpretation).

      Weaknesses

      The stoichiometry presents some problems. Fig. S5 uses pelleting to convincingly establish the stoichiometry of ZapD:FtsZ. Although ZapD is a dimer, the concentration of ZapD is always expressed as that of its subunit monomers. Fig. S5 shows the stoichiometry of ZapD:FtsZ to be 1:1 or 2:1 at equimolar or high concentrations of ZapD. Thus at equimolar ZapD, each ZapD dimer should bridge two FtsZ's, likely forming crosslinks between filaments. At high ZapD, each FtsZ should have it's own ZapD dimer. However, this seems contradicted by later statements in Discussion and Results. (1) "At lower concentrations of ZapD, .. toroids are the most prominent structures, containing one ZapD dimer for every four to six FtsZ molecules." Shouldn't it be one ZapD dimer for every two FtsZ? (2) "at the high ZapD concentration...a ZapD dimer binds two FtsZ molecules connecting two filaments." Doesn't Fig. S5 show that each FtsZ subunit has its own ZapD dimer? And wouldn't this saturate the CTD sites with dimers and thus minimize crosslinking?

      We thank the reviewer for these insightful comments. The affinity of ZapD for FtsZ is relatively low and a higher concentration of ZapD is required in solution to effectively saturate the binding sites of all FtsZ molecules forming macrostructures. It is important to clarify that the concentrations mentioned in the text refer to the amounts and ratios of protein added to the total volume of the sample, rather than the proteins actively interacting and forming bundles or macrostructures.

      To differentiate, two aspects can be considered: the ratio of added protein (as mentioned in the text) and the fraction of proteins that contribute to the formation of the macrostructures. Under polymerization conditions, FtsZ-GTP recruits additional monomers to form polymers. Therefore, more FtsZ than ZapD would be involved in forming filaments and bundles. Our results support this hypothesis and show that a higher amount of ZapD is required in the sample to pellet with FtsZ bundles.

      We propose that starting with the same initial concentration of FtsZ and ZapD in solution, only a small fraction of ZapD will bind to the structures, favoring the formation of toroidal structures despite the initial 1:1 ratio of proteins added to the sample. When considering a higher FtsZ:ZapD ratio (1:6), the increased amount of ZapD in solution would facilitate the saturation of all FtsZ binding sites, consistent with the observation of straight bundles. Analytical sedimentation velocity data further supported this finding, indicating a binding ratio of approximately 0.3-0.4, suggesting that one ZapD dimer binds for every 4-6 FtsZ monomers. The binding ratio indicates that two FtsZ monomers will bind to a single dimer of ZapD, but this only occurs when there is a significant excess of ZapD over FtsZ in the solution mixture. 

      These findings align qualitatively with the relative intensities of the electrophoretic bands observed for FtsZ and ZapD in the pelleting assay with different FtsZ-ZapD mixtures, as shown in Suppl. Fig. 5 as % of FtsZ in the fractions. Without prior staining calibration of the gels, there is no simple quantitative relationship between gel band intensities after Coomassie staining and the amount of protein in a band (Darawshe et al. 1993 Anal Biochem - DOI: 10.1006/abio.1993.1581). This last point precludes a quantitative comparison between pelleting/SDS-PAGE data and analytical sedimentation measurements. For this reason, we have decided to present pelleting results as % of FtsZ in supernatant and pellet to avoid overestimations. 

      A major weakness is the interpretation of the cryoEM tomograms, specifically distinguishing ZapD from FtsZ. The distinction of crosslinks seems based primarily on structure: long continuous filaments (which often appear as sheets) are FtsZ, and small masses between filaments are ZapD. The density of crosslinks seems to vary substantially over different parts of the figures. More important, the density of ZapD's identified and colored red seem much lower than the stoichiometry detailed above. Since the mass of the ZapD monomer is half that of FtsZ, the 1:1 stoichiometry in toroids means that 1/3 of the mass should be ZapD and 2/3 FtsZ. However, the connections identified as ZapD seem much fewer than the expected 1/3 of the mass. The authors conclude that connections run horizontally, diagonally and vertically, which implies no regularity. This seems likely, but as I would suggest that readers need to consider for themselves what they would identify as a crosslink.

      The amount of ZapD in the toroids will be significantly less than one third. Although the theoretical addition of protein to the samples is at a 1:1 ratio, the actual amount of protein in the macrostructures containing ZapD is much lower, as shown by sedimentation velocity pelleting assays.

      In contrast to the toroids formed at equimolar FtsZ and ZapD, thin bundles of straight filaments are assembled in excess ZapD. Here the stoichiometry is 2:1, which would mean that every FtsZ should have a bound ZapD DIMER. The segmentation of a single filament in Fig. 5e seems to agree with this, showing an FtsZ filament with spikes emanating like a picket fence, with a 4.5 nm periodicity. This is consistent with each spike being a ZapD dimer, and every FtsZ subunit along the filament having a bound ZapD dimer. But if each FtsZ has its own dimer, this would seem to eliminate crosslinking. The interpretative diagram in Fig. 6, far right, which shows almost all ZapD dimers bridging two FtsZs on opposite filaments, would be inconsistent with this 2:1 stoichiometry.

      Assessing the precise stoichiometry of FtsZ and ZapD within the macrostructures is challenging. We interpret the spikes as ZapD dimers bridging two FtsZ filaments, implying a theoretical 1:1 stoichiometry in the straight bundle. However, ZapD may be enriched in certain areas, indicating that a single FtsZ monomer is binding to one side of the dimer. In contrast, the other side remains available for additional connections, resulting in a potential 2:1 stoichiometry. A combination of both scenarios is likely, although our resolution does not allow further characterization. Considering these complexities, we assume these connections represent a dimer of ZapD binding to two FtsZ monomers.

      Figure 6 shows a simplified scheme illustrating how the bundles could be assembled based on the Cryo-ET data. We acknowledge the limitations of this diagram; its purpose is to depict the mesh formed by the stabilization of ZapD. We have not included interactions that do not lead to filament crosslinking, such as dimers binding to only one FtsZ filament. This focus enhances the interpretation of the scheme and the FtsZ-ZapD interaction. A sentence has been added to the caption to highlight the possibility of other interactions not considered in the scheme.

      In the original review I suggested a control that might help identify the structures of ZapD in the toroids. Popp et al (Biopolymers 2009) generated FtsZ toroids that were identical in size and shape to those here, but lacking ZapD. These toroids of pure FtsZ were generated by adding 8% polyvinyl chloride, a crowding agent. The filamentous substructure of these toroids in negative stain seemed very similar to that of the ZapD toroids here. CryoET of these toroids lacking ZapD might have been helpful in confirming the identification of ZapD crosslinks in the present toroids. However, the authors declined to explore this control.

      The mechanisms by which methylcellulose (MC) promotes the assembly of FtsZ macrostructures reported by Popp et al. involve more than simple excluded volume effects, as the low concentration of MC (less than 1 mg/ml) falls below the typical crowding regime. The latter suggests the existence of poorly characterized additional interactions between MC and FtsZ. These complexities preclude the use of FtsZ polymers formed in the presence of MC as a true control for the FtsZ toroidal structures reported here.

      Finally, it should be noted that the CTD binding sites for ZapD should be on the outside of curved filaments, the side facing the membrane in the cell. All bound ZapD should project radially outward, and if it contacted the back side of the next filament, it should not bind (because the CTD is on the front side). The diagram second to right in Fig. 6 seems to incorporate this abortive contact.

      The role of the flexible linker and its biological implications are still under debate in the field. The flexible linker allows ZapD-driven connections to be made in different directions. While these implications are not the primary focus of our manuscript, the flexible linker could allow connections between filaments in different orientations.

      Reviewer #1 (Recommendations for the authors):

      Most of the concerns which I had raised in the earlier version have been taken care of, as detailed in the response.

      A few minor points, mostly related to re-phrasing are listed below:

      Page 2: line 21: The use of the term 'C-terminal domain' for the C-terminal unstructured region of FtsZ is confusing. The term C-terminal domain or CTD for FtsZ is commonly used to describe part of the globular domain, while C-terminal tail or CCTP will be a more apt usage for all the instances in this manuscript.

      We refer to the C-terminal domain as the carboxy-terminal region of the protein. This domain includes the C-terminal linker (CTL), which varies in length between species, followed by a conserved 11-residue sequence (CTC) and shorter, variable C-terminal sequences (CTV). We used the term "C-terminal domain" primarily to improve the readability of the manuscript, but we appreciate the reviewer's feedback. We have now adopted the term "CCTP" instead of "C-terminal domain" to improve the clarity of our manuscript.

      On a related note, the schematic in Fig 1 shows the interaction with CCTP rather than the C-terminal domain of the globular FtsZ. Please provide an explanation.

      We refer to the unstructured C-terminal domain of FtsZ as the C-terminal tail. To avoid confusion, we have introduced the term CCTP in this manuscript.

      Supple Fig 2: "The FCS analysis demonstrated an increasing diffusion time of ZapD along with the FtsZ concentration as result of higher proportion of ZapD bound to FtsZ.

      The increased diffusion time need not be interpreted as increased ZapD bound, it could also mean that FtsZ could polymerise in the presence of increasing ZapD, was this possibility ruled out? Including a comment on this aspect will be useful.

      In these experiments, we monitored fluorescently labeled ZapD. Due to their interaction, we found that its diffusion time increased at high FtsZ concentrations. The data presented in Supplementary Figure 2 shows ZapD in the presence of FtsZ-GDP (i.e. under non-polymerization conditions).

      Was it possible to get a molecular weight estimate based on the diffusion time?

      It is possible to estimate hydrodynamic volumes using the Stokes-Einstein equation if the diffusion coefficient of the diffusing particles is known, assuming that the particles are small and spherical. A molecular weight can then be estimated using a standard density of 1.35 g/cm3 (Fisher et all. Protein science 2009 DOI: 10.1110/ps.04688204). This estimate is heavily dependent on the shape of the diffusing particle, as we assume that our protein of interest here is far from a spherical shape due to the interaction through the flexible linker, the hydrodynamic volumes are overestimated. This overestimation then leads to a further overestimation of the molecular weight. In addition, for a more accurate estimation of the sizes and thus molecular weights for proteins, a modified model of the Stokes-Einstein equation is required (Tyn and Gusek Biotechnology and Bioengineering DOI: 10/1002/bit.260350402), where additional information about the shape of the diffusing particle is estimated by measuring the radius of gyration of the particle. These calculations are complex and beyond the scope of our manuscript.

      Supple Fig 4:

      Does FtsZ GTPase activity (without ZapD) also vary with KCl concentrations? It will be useful to comment on this in Supplementary Figure 4.

      Yes, it has been previously reported that moderate concentration of KCl is optimal for FtsZ GTPase activity. We added a comment to the caption.

      Page 6, line 42: short filament segments arranged nearly 'parallel' to each other Since FtsZ filaments are polar, it is better to rephrase as 'parallel or antiparallel'.

      Corrected.

      Page 7, line 41: cross linking of short 'FtsZ' filaments and not ZapD?

      It was a typo. Corrected

      Page 8: delete 'from above' in the title?

      Corrected

      The use of the phrases such as 'cross linking from the top'; 'binds to FtsZ from above' is vague. (Figure 5b legend; discussion page 10, line 18; page 8, line 26; page 12, line 27). Similarly labelling on a schematic figure on the use of vertical, diagonal/lateral will be useful for the readers.

      We thank the reviewer for the suggestions to improve the understanding of our data. We have simplified them by renaming these interactions as vertical.

      Page 13, lines 6 -10

      Rather than an orientation of top or from the side, just the presence of multiple crosslinks along coaxial filaments suffices for a straight bundle. The average spacing will be more uniform in such a straight bundle compared to a toroid where there might be regions without ZapD. I do not find the data on an upward orientation convincing. ZapD binding need not be above to have the C-terminal ends of FtsZ pointing towards the membrane. On the other hand, having ZapD bind above is likely to occlude membrane binding of FtsZ?

      The flexibility of the FtsZ linker suggests that ZapD can bind filaments oriented in different directions. In a cellular environment, FtsZ molecules interact with other division proteins that compete with ZapD for binding sites. This competition could prevent the membrane from occluding and instead create binding sites between the filaments, stabilizing them.

      Page 11, lines 32 - 34: Please rephrase the sentence, with focus on the main point to be conveyed. Do the authors want to say that the 'Same molecule contributes to variability in spacing based on the number of connections formed.'

      Thank you for your comment. We have rephrased the sentence for clarity.

      Page 11: paragraphs 1,2, and 3 appears to convey similar, related ideas and are redundant. Could these be shortened further into one paragraph highlighting how the ratio leads to differences in higher order FtsZ organisation?

      These paragraphs discuss different ideas, and it is better to keep them separate.

      In the response to reviewers, page 19, point 5 (iii), it is given that 5000 FtsZ molecules correspond to 2/3rd of the total, while in the manuscript text, it is given as one-third. Please correct the response text/manuscript text accordingly. The numbers in the cited reference appears to suggest 1/3rd.

      Yes, it was 1/3rd. Thanks for pointing that out. 

      Fig 1b. Y-axis: Absorbance spelling has a typo.

      Page 14, line 11: Healthcare ('h' missing)

      Page 14, line 15: HCl, KCl (L should be in small letter)

      Page15, line 18: 43 - 48K rpm (not Krpm)

      Supple Fig 1 legend: line 5: 's' missing for species

      Corrected.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Editor's note:

      Thank you for taking time and efforts to improve this study. After re-review, two reviewers have a consensus that the connections the fatty acids and sperm motility is still ambiguous. Thus, I recommend to further tone down this conclusion consistently in the title and the text pointed out by reviewers before making a final version of record.

      We sincerely appreciate the considerable time and effort you and the reviewers devoted to evaluating our manuscript. We have revised the title and text to express the relationship between fatty acids and sperm motility more consistently and toned down. With these revisions, we would like to proceed with publishing the manuscript as the Version of Record (VoR). Thank you very much for your guidance in improving our study.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this revised report, Yamanaka and colleagues investigate a proposed mechanism by which testosterone modulates seminal plasma metabolites in mice. Based on limited evidence in previous versions of the report, the authors softened the claim that oleic acid derived from seminal vesicle epithelium strongly affects linear progressive motility in isolated cauda epididymal sperm in vitro. Though the report still contains somewhat ambiguous references to the strength of the relationship between fatty acids and sperm motility.

      Strengths:

      Often, reported epidydimal sperm from mice have lower percent progressive motility compared with sperm retrieved from the uterus or by comparison with human ejaculated sperm. The findings in this report may improve in vitro conditions to overcome this problem, as well as add important physiological context to the role of reproductive tract glandular secretions in modulating sperm behaviors. The strongest observations are related to the sensitivity of seminal vesicle epithelial cells to testosterone. The revisions include the addition of methodological detail, modified language to reflect the nuance of some of the measurements, as well as re-performed experiments with more appropriate control groups. The findings are likely to be of general interest to the field by providing context for follow-on studies regarding the relationship between fatty acid beta oxidation and sperm motility pattern.

      Weaknesses:

      The connection between media fatty acids and sperm motility pattern remains inconclusive.

      We would like to express our sincere gratitude to the judges for their cooperation in reviewing the manuscript and for your helpful comments, which were instrumental in improving manuscript.

      Reviewer #2 (Public review):

      Using a combination of in vivo studies with testosterone-inhibited and aged mice with lower testosterone levels as well as isolated mouse and human seminal vesicle epithelial cells the authors show that testosterone induces an increase in glucose uptake. They find that testosterone induces a difference in gene expression with a focus on metabolic enzymes. Specifically, they identify increased expression of enzymes regulating cholesterol and fatty acid synthesis, leading to increased production of 18:1 oleic acid. The revised version strengthens the role of ACLY as the main regulator of seminal vesicle epithelial cell metabolic programming. The authors propose that fatty acids are secreted by seminal vesicle epithelial cells and are taken up by sperm, positively affecting sperm function. A lipid mixture mimicking the lipids secreted by seminal vesicle epithelial cells, however, only has a small and mostly non-significant effect on sperm motility, suggesting the authors were not apply to pinpoint the seminal vesicle fluid component that positively affects sperm function.

      We greatly appreciate the reviewer’s thoughtful comments and time spent reviewing this manuscript. The relationship between lipids such as fatty acids and sperm motility remains unclear in the current dataset. Therefore, before finalizing the manuscript, we revised the title and text, as suggested by the reviewers, to express this conclusion more cautiously and consistently.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Some additional comments are provided below to aid the authors in improving the quality of the work:

      Major Comments:

      (1) In the newly added supplemental figure 5, the authors note that the percentage data were arcisine transformed prior to statistical analysis without providing any other justification. This seems strange, especially for such a small sample size. It seems more appropriate for the authors to use a nonparametric test. Forcing symmetry without knowing what the shape of the true distribution is makes the ANOVA hard to interpret. Additionally, why use pairwise comparisons rather than comparing each group to the control (LM 0%). Also, note that the graphs are not individually labeled to distinguish them in the legend (A, B, C, etc.). Ultimately, the treatment differences don't seem that meaningful, even if the authors were able to observe statistical significance with the somewhat over-manipulated method of analysis.

      Ultimately, the conclusion of this experiment (Supplemental figure 5) remains unchanged, but we agree that the relationship between fatty acids and sperm motility remains unclear. Therefore, before finalizing the manuscript, we revised the title and text as pointed out by the reviewers to express this conclusion more cautiously and consistently throughout the manuscript.

      Arcsin transform is commonly used for percentage data [Zar, J.H. 2010. Biostatistical analysis., McDonald, J.H. 2014. Handbook of biological statistics.]. If the values are low or high, such as 0 to 30% or 70 to 100%, without arcsine transformation will result in a large deviation from the normality of the data. However, even if such a conversion is performed, it does not necessarily mean that the assumptions of normality and homogeneity of variance, which are prerequisites for parametric statistical analysis methods, are satisfied.

      Given the small sample size and the possibility of non-normal data, we performed Shapiro–Wilk tests for each group (n = 6) and found no departure from normality (all p > 0.1). Q–Q plots and Levene’s test (p > 0.1) likewise supported the assumptions of ANOVA. Following the reviewer’s recommendation, we repeated the analysis with a Kruskal–Wallis test followed by Dunn’s post-hoc comparisons (Bonferroni corrected). Both approaches led to the same conclusions, with non-parametric p-values equal to or smaller than the parametric ones. In the revised manuscript we now report ANOVA as the primary analysis. The author response image includes effect sizes with 95 % confidence intervals, and provide the non-parametric results for transparency.

      Author response image 1.

      Results of reanalysis of supplementary Figure 5 using nonparametric tests and effect sizes with 95% confidence intervals. Upper part; Differences between groups were assessed by Kruskal–Wallis test, differences among values were analyzed by Dunn’s post-hoc comparisons (Bonferroni corrected) for multiple comparisons. Different letters represent significantly different groups. Lower part; The effect sizes with 95 % confidence intervals. For example, Cliff's Δ = -1 (95% CI ~ -0.6) in VSL's “LM 0 vs LM1” means that LM 1% values exceed LM 0 %values in all pairs.

      (2) I appreciate that the authors toned down the interpretation of the effects of seminal plasma metabolites on sperm motility with a cautionary statement on Lines 397-405 and Line 259. However, they send mixed signals with the title of the report: "Testosterone-Induced Metabolic Changes in Seminal Vesicle Epithelial cells Alter Plasma Components to Enhance Sperm Motility", and on line 265 when the say "ACLY expression is upregulated by testosterone and is essential for the metabolic shift of seminal vesicle epithelial cells that mediates sperm linear motility".

      The wording has been softened overall. The title has been changed to “Testosterone-Induced Metabolic Changes in Seminal Vesicle Epithelium Modify Seminal Plasma Components with Potential to Improve Sperm Motility” In the results (lines 265-266), we have stated that “ACLY expression is upregulated by testosterone and is essential for the metabolic shift that is associated with increased linear motility” without implying a causal relationship.

      Minor Comments:

      (1) Typo on line 31: "understanding the male fertility mechanisms and may perspective for the development of potential biomarkers of male fertility and advance in the treatment of male infertility."

      We have made the following corrections. “These findings suggest that testosterone-dependent lipid remodeling may contribute to sperm straight-line motility, and further functional verification is required.”

      (2) Line 193: the statement is confusing "Therefore, we analyzed mitochondrial metabolism using a flux analyzer, predicting that more glucose is metabolized, pyruvate is metabolized from phosphoenolpyruvic acid through glycolysis in response to testosterone, and is further metabolized in the mitochondria." For example, 'Metabolized through glycolysis' is an ambiguous way to describe the pyruvate kinase reaction. Additionally, phosphoenolpyruvate has three acid ionizable groups, two of which have pKa's well below physiological pH, so phosphoenolpyruvate is the correct intermediate rather than phosphoenolpyruvic acid. The authors make similar mistakes with other organic acids such as citric acid.

      Rewritten as “We therefore examined cellular energy metabolism with a flux analyzer, anticipating that testosterone would elevate glycolytic flux, thereby producing more pyruvate from phosphoenolpyruvate. Because extracellular pyruvate levels simultaneously declined, we inferred that the cells had an increased pyruvate demand and, at that time, hypothesized that the excess pyruvate would enter the mitochondria to support enhanced oxidative metabolism.” (lines 193-198)

      The organic acids are now referenced in their appropriate forms (e.g., citrate, phosphoenolpyruvate).

      (3) Line: 271: "Acly" should be all capitalized to "ACLY". The report mixes capitalizing through out and could be more consistent.

      We appreciate the reviewer’s attention to nomenclature and have standardized the manuscript accordingly. Proteins are written in Roman letters, all in capital letters. Mouse gene symbols: italics, first letter capitalize.

      Reviewer #2 (Recommendations for the authors):

      Major comments:

      (1) 'Once capacitation is complete, sperm cannot maintain that state for a long time'. The publications cited by the author do not support that statement and this reviewer also does not agree. Lower fertilization efficiency from in vitro capacitated epidydimal sperm does not have to mean capacitation is reversed, it can simply mean in vitro capacitation conditions not accurately mimic capacitation in vivo.

      We thank the reviewer for pointing this out and would like to clarify our position. Our statement does not suggest a "reversal" of active capacitation. Rather, it reflects the well-documented fact that capacitation is a transient process. Sperm that undergo capacitation too early cannot maintain that state for long enough to retain their ability to fertilize at the moment and location of fertilization in vivo.

      (2) How do the authors explain the discrepancy between the results shown in Fig. S1E, the increase in sperm motility upon mixing of sperm with SVF and the results reported in Li et al 2025. Mentioning decapacitating factors without further explanation is insufficient.

      We appreciate the reviewer's feedback pointing out the need for a clearer explanation.

      Seminal plasma is inherently binary, containing both decapacitation factors that delay or inhibit capacitation and nutrient substrates that promote sperm motility.

      In vivo, it is believed that the coating of sperm by decapacitation factors is removed by uterine fluid and albumin as it passes through the female reproductive tract [PMID: 22827391, PMID: 24274412]. In contrast, standard fertilization culture media lack a clearance pathway, so decapacitating factors are retained throughout the culture period. As a result, the cleavage rate after in vitro fertilization using sperm exposed to seminal vesicle fluid decreased dramatically.

      Lipids, such as fatty acids, increased sperm motility without directly inducing markers of fertilization. These results suggest that the enhancement of motility by lipids is functionally distinct from the capacitation-inhibiting function of seminal plasma proteins. The data from this study are consistent with the biphasic model. Specifically, decapacitation factors temporarily stabilize the sperm membrane, preventing early capacitation. Meanwhile, lipids enhance sperm motility, enabling them to rapidly pass through the hostile uterine environment.

      (3) This reviewer does not see the merit in including a lipid mixture motility experiment compared to using OA alone. The increase in motility is still small and far from comparable to the motility increase with seminal vesicle fluid. In this reviewer's opinion the experiment is still inconclusive and should not be highlighted in the manuscript title.

      The wording has been softened overall. The title has been changed to “Testosterone-Induced Metabolic Changes in Seminal Vesicle Epithelium Modify Seminal Plasma Components with Potential to Improve Sperm Motility”. (Please see also Reviewer 1's main comment 1)

      Minor comments:

      (1) 'This change includes a large amplitude of flagella' does not make sense. Please correct.

      The following corrections have been made. “This change is characterized by large-amplitude flagellar beating.” (lines 44-45)

  2. Jul 2025
    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors aim to explore the effects of the electrogenic sodium-potassium pump (Na<sup>+</sup>/K<sup>+</sup>-ATPase) on the computational properties of highly active spiking neurons, using the weakly-electric fish electrocyte as a model system. Their work highlights how the pump's electrogenicity, while essential for maintaining ionic gradients, introduces challenges in neuronal firing stability and signal processing, especially in cells that fire at high rates. The study identifies compensatory mechanisms that cells might use to counteract these effects, and speculates on the role of voltage dependence in the pump's behavior, suggesting that Na<sup>+</sup>/K<sup>+</sup>-ATPase could be a factor in neuronal dysfunctions and diseases

      Strengths:

      (1) The study explores a less-examined aspect of neural dynamics-the effects of (Na<sup>+</sup>/K<sup>+</sup>-ATPase) electrogenicity. It offers a new perspective by highlighting the pump's role not only in ion homeostasis but also in its potential influence on neural computation.

      (2) The mathematical modeling used is a significant strength, providing a clear and controlled framework to explore the effects of the Na+/K+-ATPase on spiking cells. This approach allows for the systematic testing of different conditions and behaviors that might be difficult to observe directly in biological experiments.

      (3) The study proposes several interesting compensatory mechanisms, such as sodium leak channels and extracellular potassium buffering, which provide useful theoretical frameworks for understanding how neurons maintain firing rate control despite the pump's effects.

      Weaknesses:

      (1) While the modeling approach provides valuable insights, the lack of experimental data to validate the model's predictions weakens the overall conclusions.

      (2) The proposed compensatory mechanisms are discussed primarily in theoretical terms without providing quantitative estimates of their impact on the neuron's metabolic cost or other physiological parameters.

      We thank the reviewer for their concise and accurate summary and appreciate the constructive feedback on the article’s strengths and weaknesses. Experimental work is beyond the scope of our modeling-based study. However, we would like our work to serve as a framework for future experimental studies into the role of the electrogenic pump current (and its possible compensatory currents) in disease, and its role in evolution of highly specialized excitable cells (such as electrocytes).

      Quantitative estimates of metabolic costs in this study are limited to the ATP that is required to fuel the pump. By integrating the net pump current over time and dividing by one elemental charge, one can find the rate of ATP that is consumed by the Na<sup>+</sup>/K<sup>+</sup>pump for either compensatory mechanism. The difference in net pump current is thus proportional to ATP consumption, which allows for a direct comparison of the cost efficiency of the Na<sup>+</sup>/K<sup>+</sup> pump for each proposed compensatory mechanism. The Na<sup>+</sup>/K<sup>+</sup> pump is, however, not the only ATP-consuming element in the electrocyte, and some of the compensatory mechanisms induce other costs related to cell

      ‘housekeeping’ or presynaptic processes. We now added a section in the appendix titled

      ‘Considerations on metabolic costs of compensatory mechanisms’ (section 11.4), where we provide ballpark estimates for the influence of the compensatory mechanisms on the total metabolic costs of the cell and membrane space occupation. Although we argue that according these estimates, the impact of discussed compensatory mechanisms could be significant, due to the absence of more detailed experimental quantification, a plausible quantitative cost approximation on the whole cell level remains beyond the scope of this article.

      Reviewer #1 (Recommendations for the authors):

      (1)  For the f-I curves in Figures 1 and 6, the firing rate increases as the input current increases. I am curious to know: (a) whether the amplitudes of the action potentials (APs) vary with increased input current; (b) whether the waveform of APs (such as in Fig. 1I) transitions into smaller amplitude oscillations at higher input currents; and (c) if the waveform does change at higher input currents, how do the "current contributions," "current," and "ion exchanges per action potential" in Figures 1HJ and 6AB respond?

      To fully answer these questions, we added a supplemental figure with accompanied text in section 11.1 (Fig. A1). We also added a reference to this figure in the main text (section 4.1). Here, it is shown that, as previously illustrated in [1], AP amplitude decreases when the input current increases (Fig. A1 A, left). This effect remains upon addition of either a pump with constant pump rate and co-expressed sodium leak channels (Fig. A1 A, center), or a voltage-dependent pump (Fig. A1 A, right). Interestingly, even though the shape of the current contributions (Fig. A1 B) and the APs (Fig. A1 C) look very different for low (Fig. A1 C, top) and high inputs (Fig. A1 C, bottom), the total sodium and potassium displacement per AP, and thus the pump rate, is roughly the same (Fig. A1 D). Under the assumption that voltage-gated sodium channel (NaV) expression is adjusted to facilitate fixed-AP amplitudes, however, (as in [1]) more NaV channels would be expressed in fish with higher synaptic drives. This would then result in an additional sodium influx per AP and result in higher energetic requirements per AP for electrocytes with higher firing rates (also shown in [1]).

      (2) Could the authors clarify what the vertical dashed line represents in Figures 1B and 1F? Does it correspond to an input current of 0.63uA?

      (Reviewer comment refers to Fig. 1C and 1F in new version): Yes, it corresponds to the input current that is also used in figures 1D and 1G. We clarified this by adding an additional tick label on the x-axis in 1F. The current input of 0.63uA was chosen as a representative input for this cell as follows: we first modeled an electrocyte with a periodic synaptic drive as in [1]. The frequency of this drive was set to 400 Hz, which is an intermediate value in the range of reported EODfs (and thus presumably pacemaker firing rates) of 200-600Hz [2]. Then, acetylcholine receptor currents I<sub>AChRNa</sub> and I<sub>AChRNa</sub> were summed and averaged to obtain the average input current of 0.63uA. This is now also explained in new Methods section 6.2.1.

      (3) What input current was used for Figures 1H, 1I, and 1J?

      Response: In a physiological setting, where the electrocyte is electrochemically coupled to the pacemaker nucleus, stimulation of the electrocyte occurs through neurotransmitter release in the synaptic cleft, which then leads to the opening of acetylcholine receptor channels. As figures 1H-J concern different ion fluxes, we aimed to also include currents stemming from acetylcholine receptor channels. We therefore did not stimulate the electrocyte with a constant input current as in Fig. 1C and F, but simulated elevated constant neurotransmitter levels in the synaptic cleft, which then leads to elevated acetylcholine receptor currents. In the model, this neurotransmitter level, or ‘synaptic drive’ is represented by parameter syn<sub>clamp</sub>. A physiologically relevant value for syn<sub>clamp</sub> was deduced by averaging the synaptic drive during a 400 Hz pacemaker stimulus. This is now also explained in new Methods section 6.2.1.

      (4) In Figure 4A, there is a slight delay between the PN spikes (driver) and the EO (receiver), and no EO spikes occur without PN spikes. However, the firing rate of EO (receiver) appears to decrease before the chirp initiations in Fig 4B; and this delay seems to disappear in Fig 4C. Could the authors explain these observations?

      As shown in the bottom right of figure 4A, when plotting the instantaneous firing rate as one over the inter-spike-interval (1/ISI), the firing rate of a cell is only plotted at the end of every ISI. Therefore, even though the PN drives the electrocyte and thus spikes earlier in time than the electrocyte, when it initiates chirps, these will only be plotted as an instantaneous firing rate at the end of the chirp. If the electrocyte fires spontaneously within this chirp, its instantaneous firing rate will appear earlier in time than the initiation of the chirp of the PN. The PN did, however, initiate the chirp before that and causality between the PN and electrocyte is not disturbed.

      (5) Regarding Figure 6, could the authors specify the input current used in Figures 6A and 6B?

      Figure 6A and 6B have the same synaptic drive as Fig. 1 H, I and J (syn<sub>clamp</sub>=0.13).

      (6) In Section 6, I would recommend that the authors provide a table of parameters and their corresponding values for clarity.

      Thank you for your suggestion. We now reorganized the method section and added two tables with parameters for clarity. Table 1 (see Methods 6.1) includes all parameters that differ from the parameters reported in [1], and parameters that arise from the additionally modeled equations to simulate ion concentration dynamics and pump. We also added the parameters used to simulate the different stimulus protocols (and corresponding tuned parameters) that are presented in the article in Table 2 (see Methods 6.2).

      Reviewer #2 (Public review):

      Summary:

      The paper 'The electrogenicity of the Na<sup>+</sup>/K<sup>+</sup>-ATPase poses challenges for computation in highly active spiking cells' by Weerdmeester, Schleimer, and Schreiber uses computational models to present the biological constraints under which electrocytes-specialized highly active cells that facilitate electro-sensing in weakly electric fish-may operate. The authors suggest potential solutions these cells could employ to circumvent these constraints.

      Electrocytes are highly active or spiking (greater than 300Hz) for sustained periods (for minutes to hours), and such activity is possible due to an influx of sodium and efflux of potassium ions into these cells for each spike. This ion imbalance must be restored after each spike, which in electrocytes, as with many other biological cells, is facilitated by the Na-K pumps at the expense of biological energy, i.e., ATP molecules. For each ATP molecule the pump uses, three positively charged sodium ions from the intracellular space are exchanged for two positively charged potassium ions from the extracellular volume. This creates a net efflux of positive ions into the extracellular space, resulting in hyperpolarized potentials for the cell over time. This does not pose an issue in most cells since the firing rate is much slower, and other compensatory mechanisms and other pumps can effectively restore the ion imbalances. In electrocytes of weakly electric fish, however, that operate under very different circumstances, the firing rate is exceptionally high. On top of this, these cells are also involved in critical communication and survival behaviors, emphasizing their reliable functioning.

      In a computation model, the authors test four increasingly complex solutions to the problem of counteracting the hyperpolarized states that occur due to continuous NaK pump action to sustain baseline activity. First, they propose a solution for a well-matched Na leak channel that operates in conjunction with the NaK pump, counteracting the hyperpolarizing states naturally. Additionally, their model shows that when such an orchestrated Na leak current is not included, quick changes in the firing rates could have unexpected side effects. Secondly, they study the implication of this cell in the context of chirps - a means of communication between individual fishes. Here, an upstream pacemaking neuron entrains the electrocyte to spike, which ceases to produce a so-called chirp - a brief pause in the sustained activity of the electrocytes. In their model, the authors show that it is necessary to include the extracellular potassium buffer to have a reliable chirp signal. Thirdly, they tested another means of communication in which there was a sudden increase in the firing rate of the electrocyte followed by a decay to the baseline. For reliable occurrence of this, they emphasize that a strong synaptic connection between the pacemaker neuron and the electrocyte is warranted. Finally, since these cells are energy-intensive, they hypothesize that electrocytes may have energyefficient action potentials, for which their NaK pumps may be sensitive to the membrane voltages and perform course correction rapidly.

      Strengths:

      The authors extend an existing electrocyte model (Joos et al., 2018) based on the classical Hodgkin and Huxley conductance-based models of Na and K currents to include the dynamics of the NaK pump. The authors estimate the pump's properties based on reasonable assumptions related to the leak potential. Their proposed solutions are valid and may be employed by weakly electric fish. The authors explore theoretical solutions that compound and suggest that all these solutions must be simultaneously active for the survival and behavior of the fish. This work provides a good starting point for exploring and testing in in vivo experiments which of these proposed solutions the fish use and their relative importance.

      Weaknesses:

      The modeling work makes assumptions and simplifications that should be listed explicitly. For example, it assumes only potassium ions constitute the leak current, which may not be true as other ions (chloride and calcium) may also cross the cell membrane. This implies that the leak channels' reversal potential may differ from that of potassium. Additionally, the spikes are composed of sodium and potassium currents only and no other ion type (no calcium). Further, these ion channels are static and do not undergo any post-translational modifications. For instance, a sodium-dependent potassium pump could fine-tune the potassium leak currents and modulate the spike amplitude (Markham et al., 2013).

      This model considers only NaK pumps. In many cell types, several other ion pumps/exchangers/symporters are simultaneously present and actively participate in restoring the ion gradients. It may be true that only NaK pumps are expressed in the weakly electric fish Eigenmannia virescens. This limits the generalizability of the results to other cell types. While this does not invalidate the results of the present study, biological processes may find many other solutions to address the non-electroneutral nature of the NaK pump. For example, each spike could include a small calcium ion influx that could be buffered or extracted via a sodium-calcium exchanger.

      Finally, including testable hypotheses for these computational models would strengthen this work.

      We thank the reviewer for the detailed summary and the identified weaknesses according to which we improved our article. Our model assumptions and simplifications are now mentioned in more detail in the introduction of the article (section 3), and justified in the Methods (section 6.1).

      Furthermore, we added a discussion section (section 5.1) where we outline the conditions under which the present study can be extended to other cell types. We now also state more clearly that the pump current will be present for any excitable cell with significant sodium flux (assuming that the NaK pump carries out the majority of its active transport), but that compensatory mechanisms (if employed at all in a particular cell) could also be implemented via other ionic currents and transporters. We furthermore now highlight the testable hypotheses that we put forward with our computational study on the weakly electric fish electrocyte more explicitly in the first paragraph of the discussion.

      Reviewer #2 (Recommendations for the authors):

      Main text

      Please explicitly state this model's assumptions in the introduction and elaborate on them in the discussion if necessary. For example, some assumptions that I find relevant to mention are: - The Na and K channels are classic HH conductance-based channels, with no post-translational modifications or beta subunit modifications as seen in other high-frequency firing cells (10.1523/JNEUROSCI.23-12-04899.2003).

      Neither calcium nor chloride ions are considered in the spike generation. Nor are Na-dependent K channels (10.1152/jn.00875.2012).

      Only the Na-K pump (and not the Na-Ca exchanger, Ca-pump, or Cl pumps) is modeled,

      Calmodulin, which can buffer calcium, is highly expressed in electric eels, but it is not considered. If some of these assumptions have valid justifications in weakly electric fish electrocytes, please state so with the citations. I recognize that including these in your models is beyond the scope of the current paper.

      We thank the reviewer for pointing out this issue. We now specified in the introduction that the model only contains sodium and potassium ions and only classic HH conductance-based channels. We there also explicitly specify the details on the Na<sup>+</sup>/K<sup>+</sup>-ATPase: it is the only active transporter in this model, thus solely responsible for maintaining ionic homeostasis; its activity is only modulated by intracellular sodium and extracellular potassium concentrations. In the discussion (6.1), we now elaborate on how ion-channel-related aspects (i.e., the addition of resurgent Na<sup>+</sup> or Na<sup>+</sup> -dependent K<sup>+</sup> channels), additional ion fluxes (including some not relevant for the electrocyte but for other excitable cells), and additional active transporters and pumps would influence the results presented in the article.

      In addition, there might be other factors that the authors and the reviewers have yet to consider. The model is a specific case study about the weakly electric fish electrocyte with high-frequency firing. It is almost guaranteed that biology will find other compensatory ways in different cell types, systems, and species (auditory nerve, for example). Given this, it would be prudent to use phrases such as 'this model suggests,' 'perhaps,' 'could,' 'may,' and 'eludes to,' etc., to accommodate other possible solutions to ion homeostasis in rapidly spiking neurons. The solutions the authors are proposing are some of many.

      We rephrased some of the statements to highlight more the hypothetical nature of the compensatory mechanisms in specific cells and to draw attention to the fact that there can be many more such factors. This fact is now also explicitly mentioned in discussion section 5.2.

      Figures

      Some of my comments on the figures are stylistic, others are to improve clarity, and some are critical for accuracy.

      The research problem concerns weakly electric fish E. virescens. I suggest introducing a picture of an electric fish in the beginning (such as that in Figure 3, but not exactly; see specific comments on this fish figure) along with a schema of the research question. 

      We agree, and added an overview schema in Fig. 1A.

      Font sizes change between the panels in all the figures. Please maintain consistency. The figure panel titles and axis labels should start with a capital letter.

      Thank you for pointing this out, both issues have been resolved in the new version of the article.

      Figure 1:

      Please rearrange the figure - BCFG belong together and should appear in the same order. The x-axis labels could be better placed.

      Consider using fewer pump current f-I curves (B, D, E, F). Five is sufficient to make the point. Having 10 curves adds to the clutter. The placement of the color bar could be better. Similarly, the placement of the panel titles 'without co-expression' and 'with co-expression' and the panel labeling (BCFG) makes it confusing. The panel labels should be above the panel title.

      Response (C, D, F, G in new version): We improved the layout of figure 1. Panels B, C, F, G are now C, D, F, G. We opted to include panel E before panels F and G, because it shows the coexpression mechanism before its effect on the tuning curve. We did move the colorbar, added x-axis labels to B and C, and adjusted the location of the panel labels for clarity. We also plotted fewer pump currents.

      B, F: What does the dashed line indicate?

      Response (C, F in new version): The dashed line indicates the input current that was used in figures 1D and 1G. We now clarified this by adding this value on the x-axis.

      C: Any reason not to show the lower firing rates?

      Response (B in new version): In the previous version of the article, pump currents were estimated for electrocytes that were stimulated with the mean synaptic drive that stems from periodic stimulation in the 200-600 Hz regime. We now extended the range of synaptic inputs to obtain lower (and higher) firing rates. The linear relationship between firing rate and pump current also holds for these additional firing rates.

      D: There is no difference between the curves at the top and the bottom. One fills the area between the curve and the zero line; the other shows the curve itself. Please use only one of the two representations.

      Response (panel I in new version): In the previous version, the difference between the plots was that one showed the absolute values of the currents (the curves), and the other plot showed the contributions of the currents to the total (area between the curves). We now only depict the current contributions.

      The I and H orders can be swapped.

      Thank you, they are now swapped.

      The colors used for Na and K are very dull (light blue and pink).

      We now use darker colors in the new version of the article.

      Figure 2:

      Please verify that without the synaptic input perturbations (i.e., baseline in A, D), the firing rate (B, E) and pump current (C, F) converge to the baseline. There is a noticeable drift (downward for firing rate and upward for pump currents) at the 10-second time point.

      Thanks to you noticing, we identified a version mismatch in the code that estimates the pump current required for ionic homeostasis (see Methods 6.1.2). We have now corrected the code and made sure to start the simulation in the steady state so that there is no drift at baseline firing. We also used this corrected code to present tuned parameters for different stimulus protocols in Table 2 (Methods 6.2).

      Figure 3:

      A. The dipole orientation with respect to the fish in panel B needs to be corrected. Consider removing this as this work is not about the dipole.

      This panel has been removed.

      B. This figure has already been overused in multiple papers; please redraw it. Localized expressions of different pumps and ion channels are present within each electrocyte, which generates the dipole. Either show this correctly or don't at all (the subfigure pointed out by the red arrow).

      This panel has been moved to Fig. 1A. We opted to remove the localized expressions.

      C and D belong together; please place them next to each other. Consider introducing panel D first since it follows a similar protocol to the last figure.

      Response (A in new version): Panel placement has been adjusted. We opted to maintain the order to maintain the flow of the text, but we do now combine them in one panel.

      E and F are very similar in that they are swapped on the x and y axes. Either that or I have severely misunderstood something, in which case it needs to be shown better.

      Response (B and C in new version): We adjusted the placement of these panels. They are not the same, panel B shows the mean of physiological periodic inputs, and figure C shows that when this mean is fed to the electrocyte, it also induces tonic firing. The range of mean currents that result from periodic synaptic stimulation in the physiological regime (panel B, y-axis) is now indicated in panel C by a grey box along the x-axis.

      G. Why show the lines with double arrow ends? The curves are diverging - that's enough.

      Good point, we updated this panel accordingly (now panel D).

      Figure 4

      Please verify the time units in these plots. Something seems amiss. B and D lower plots-perhaps this is seconds? B could use an inset box/ background gray color (t1, t2) indicating the plots of the C panel (left, right). Likewise, for D (t1, t2), connect to E (left, right).

      You are right, the x-axes were supposed to be in seconds, we updated this. We indicated the relations between D-C and D-E by gray backgrounds and by adding the corresponding panel label on the x-axis.

      A: Indicate the perturbation in the schematic, i.e., extracellular K buffer.

      The perturbation is now indicated.

      D: Even with the extracellular K buffer, there is a decay (slower than in B) of the pump current over time. Please verify (you do not have to show in your paper) that this decay saturates.

      After the ten chirps are initiated, pacemaker firing goes back to baseline. In both cases (panel B and panel D), the pump current goes back to baseline after some time. With extracellular potassium buffering, this happens more slowly due to a decreased reaction speed of the pump to changes in firing rate (in comparison to the case without extracellular potassium buffer).

      The decrease in reaction speed however merely delays the effects of changes in firing rates on the pump current in time. Therefore, even with an extracellular potassium buffer, when more chirps are initiated in a short period of time, the pump current can still decrease to an extent that impairs entrainment. Using the same protocol as in panel B and D, we increased the number of chirps and found that with an extracellular potassium buffer, a maximum of 13 chirps could be encoded without entrainment failure (as opposed to 2 chirps without the buffer as shown in panel B).

      Figure 5

      Please verify the time units in these plots, as for Figure 4. B and E lower plots-perhaps this is seconds? B could use an inset box/ background gray color (t1, t2) indicating the plots of the panels C and D. Likewise, for E (t1, t2), connect to F and G.

      The time axis in this figure was indeed also in seconds, which we corrected here. The relations between plots B-C/D and E-F/G are now indicated through gray backgrounds and corresponding panel references on the x-axis.

      A: Indicate the perturbation in the schematic, i.e., the synapse's strength. There is no need to include the arrow or to mention freq. rise. The placement of the time scale can be misinterpreted as a current clamp. Instead, plot it as a zoomed inset.

      The arrow is removed and we now also show a zoomed inset. Also, the perturbation is now indicated.

      E: Verify that the pump current in the strong synapse case already starts at 1.25

      We verified this and noticed that the pump current in the strong synapse case is indeed lower than that in the weak synapse case. This is because to ensure a fair comparison for this stimulation protocol, voltage-gated sodium channel conductance was tuned to maintain a spike amplitude of 13 mV in both cases (see Methods 6.2). In this case, a weak synapse leads to a lower influx of sodium via AChR channels, but a higher influx via voltage-gated sodium channels. The total sodium influx in this case is larger than that for a stronger synapse with relatively less voltage-gated sodium currents, and thus a larger pump current. In the previous version of the article, this was wrongly commented on in the figure captions, and we removed the erroneous statement.

      This is not critical, but because the R-value here can be obtained as a continuous value, it would be appropriate to show it for the whole duration of the weak and strong synapses in B and E. Maybe consider including a schema that shows how R is calculated in panel A.The caption has a typo, 'during frequency rises before (D) and after (E)'. It should be before C) and after (D) instead.

      The caption typo has been corrected. The R-value for the whole duration of the weak and strong synapses in B and E is 1.000. This is because the R-value is the variance of all phase relations between the PN and the electrocyte, and for the entire duration of the stimulus protocol, there are only a few outliers in phase relations at the maxima of the frequency rises. We decided to include this R-value to show that in general, synchronization between the PN and the electrocyte is very stable. The schema that explains how R is calculated has not been included in favor of not overcrowding the figure. We did add a reference in the figure caption to the methods section in which the calculation of R is explained.

      Figure 6:

      A: The top and bottom plots are redundant. Use one of the two. They show the same thing. It may be better to plot Na, K, pump, and net currents on the top panels and the Na leak, which is of smaller magnitude, in a different panel.

      We now only show current contributions.

      B: Please change the color schema. It is barely visible on my prints.

      D: Pump current, instantaneous case, is barely visible

      Color schemes were adjusted.

      Figure A1: It's all good.

      Methods:

      Please provide some internal citations for where specific equations were used in the results/figures. You do this for sections 6.2.3, referencing Figure 5 (c,d,e,g), and 6.2.4, referencing Fig 5 C-E.

      There are now internal references in each methods section to where in the figures they were used. We also included a table with stimulus parameters for each figure with a stimulus protocol (Table 2).

      Also, the methods could be ordered in the same order as the results are presented. Please consider if some details in the methods could be moved to the appendix.

      The ordering of the methods has now been changed to separately explain the model expansions (6.1) and the stimulus protocols (6.2). Both sections are in corresponding order of the figures presented in the article. We opted to maintain all details in the methods.

      6.1.1 Please cite 26 after the first line. Where was this used? In Figure 3C, 4, 5?

      We added the citation. The effects of co-expressed leak channels are shown in Fig. 1 EG, and were used to compensate for pump currents at baseline firing in figures 1 D, H-J (left, with pump), 2, 4, 5, and 6 A-B (left), C (top). This is now also added to the text for clarity.

      Traditionally (Hodgkin, A. L. and Huxley, A. F. (1952). J. Physiol. (Lond.), 117:500-544. Table 3; & Hodgkin, A. L. and Huxley, A. F. (1952). J. Physiol. (Lond.), 116:473-496 Table 5 and the paragraph around it), leak potential is set such that it accounts for all leak from all ions. While in your work, this potential is equal to the reversal of potassium - it need not be so in the animal. There may be leaks from other ions as well, particularly sodium and chloride. Please verify that assuming the leak reversal is the same as that of potassium (Ek, in Equation 3) does not lead to having to model Na leak currents separately.

      In the original model [1], it was assumed that the reversal potential of the leak was the same as that of potassium, which contains the implicit assumption that only potassium ions contribute to the leak. In our article, we also assume that sodium ions contribute to the leak. This can be modeled by adjusting the leak reversal potential accordingly, or by adding an additional leak current that solely models the sodium leak. We opted for the latter in order to track all sodium and potassium ions separately so that ion concentration dynamics could also be modeled properly. Chloride ions were neglected in this study; in our model they do not contribute to the leak. If one were to also model chloride currents and chloride concentration dynamics, it would be beneficial to model these as an additional separate leak current.

      The notation of I_pump_0 needs to be more convenient. Please consider another notation instead of the _0 (pump at baseline). Similarly for [Na<sup>+</sup>]_in_0 [Na<sup>+</sup>]_out_0 and [K<sup>+</sup>]_in_0 and [K+]_out_0

      We changed the notation for baseline similarly to [3], with ‘0’ as a superscript instead of a subscript.

      Equation 11: Please mention why AChRs do not let calcium ions through. Please cite a justification for this. If this is an assumption of the model, please state this explicitly.

      The AChR channels that were found in the E. virescence electrocytes are muscle-type acetylcholine nicotinic receptors [4], which are non-selective cation channels that could indeed support calcium flux [5]. No calcium currents were, however, modeled in the original electrocyte model [1], presumably due to the lack of significant contributions of calcium currents or extracellular calcium concentrations to electrocyte action potentials of a similar weakly electric electrogenic wave-type fish Sternopygus macrurus [6].

      Due to the lack of calcium currents in the original electrocyte model, and due to the limitation of this study to sodium and potassium ions, we chose not to include calcium currents stemming from AChR channels. This assumption is now explicitly stated in Methods 6.1.

      Equation 12, V_in, where the intracellular volume. If possible, avoid the notation of 'V' - you already use a small v for membrane potential.

      We changed the notation for volume to ‘ω’ similarly to [3]. As we previously used ω as a notation for the firing rate, we changed the notation for firing rate to ‘r’.

      Equation 17: Does this have any assumptions? Would the I_AchRNa, and thus Sum(mean(I_Na))) not change depending on the synaptic drive?

      The assumptions of this equations are the following (now also mentioned in Methods 6.1.2):

      The sum of all sodium currents also includes sodium currents through acetylcholine channels (I_AChRNa).

      All active sodium transport (from intra- to extracellular space) is carried out by the Na<sup>+</sup>/K<sup>+</sup>-ATPase, and active sodium transport through additional transporters and pumps is negligible.

      The time-average of sodium currents is either taken in a tonic firing regime where the timeinterval that is averaged over is a multiple of the spiking period, nT, or if it is taken for a more variable firing regime, the size of the averaging window should be sufficiently large to properly sample all firing statistics.

      Under these assumptions, Eq. 17 can be used to compute suitable pump currents for different synaptic drives (as Sum(mean(I_Na))) and thus I_pump0 indeed change with the synaptic drive, see Table 2 in Methods 6.2). 

      6.2: Please rewrite the first sentence of this paragraph.

      The first sentence of this paragraph, which has been moved to section 6.2.2 for improved structuring of the text, has been rewritten.

      6.2.1: The text section could use a rewrite.

      Please elaborate on what t_p is. If it is not time, please do not use 't.' What is p here? What are the units of the equation (22), t_p < 0.05 (?)

      This section has now also been moved to 6.2.2. It has been rewritten to improve clarity and t_p has been renamed to t_pn (as it does reflect time, which is now better explained). The units have now also been added to the equation (which is now Eq. 26).

      6.2.4: Please rewrite this.

      This section has been rewritten (and has been moved to section 6.1.4).

      Bibliography

      Some references are omitted (left anonymous) or inconsistent on multiple occasions.

      Thank you for pointing this out! It is now rectified.

      References used for author response

      (1) Joos B, Markham MR, Lewis JE, Morris CE. A model for studying the energetics of sustained high frequency firing. PLOS ONE. 2018 Apr;13:e0196508.

      (2) Hopkins CD. Electric communication: Functions in the social behavior of eigenmannia virescens. Behaviour. 1974;50(3-4):270–304.

      (3) Hübel N, Dahlem MA. Dynamics from seconds to hours in hodgkin-huxley model with time-dependent ion concentrations and buer reservoirs. PLoS computational biology.ff2014;10(12):e1003941.

      (4) BanY, Smith BE, Markham MR. A highly polarized excitable cell separates sodium channels from sodium-activated potassium channels by more than a millimeter. Journal of neurophysiology. 2015; 114(1):520–30.

      (5) Vernino S, Rogers M, Radcliffe KA, Dani JA. Quantitative measurement of calcium flux through muscle and neuronal nicotinic acetylcholine receptors. Journal of Neuroscience. 1994;14(9):5514-5524.

      (6) Ferrari M, Zakon H. Conductances contributing to the action potential of sternopygus electro-cytes. Journal of Comparative Physiology A. 1993;173:281–92.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for authors):

      (1) Motivation for studying SUL1 in RLS

      Considering that the regulation of cellular metabolism in response to nutrient availability is crucial for cell survival and lifespan, and several organic nutrient transporters have also been implicated in the mediation of aging, we believe that transporters of specific nutrients can transduce the signal downstream to control genes responsible for survival. However, the impact of inorganic nutrient transporters, including phosphate and sulfate, on longevity remains largely unexplored. And another work of our group utilized a LASSO model derived from multi-omics data related to yeast aging, identifying SUL1 as a key candidate for regulating lifespan, which aroused our interest.

      (2) Discrepancy with prior RLS data (PMID: 26456335)​​

      Previous literature (PMID: 26456335) reported a limited number of experimental cells (n=25), which may have contributed to the observed variability in results. To enhance the reliability of our work, we have expanded the number of experimental cells for the sul1Δ strain to 400 (see Figure 1A). In contrast, the lifespan data for other mutant strains have been increased to 200 (see Figure 1B). This confirms the reproducibility of the lifespan extension observed in the sul1Δ strain.

      (3) Mechanistic link between sulfate transport and lifespan​​

      Sulfate absorption assays were performed on the WT, SUL1Δ, SUL2Δ, and SUL1<sup>E427Q</sup> strains (Figure 1C). Compared to the wild type (WT), the SUL1Δ, SUL2Δ, and SUL1<sup>E427Q</sup> strains exhibited delayed sulfate intracellular transportation. However, there was no significant difference in the final concentration of intracellular sulfur ions among all groups. This result reinforces our conclusion that the extended lifespan of SUL1Δ is not associated with sulfate transport.

      (4) Testing the RLS of SUL1ΔMSN4Δ double mutants​​

      The replicative lifespan data for the SUL1ΔMSN4Δ double mutant were further analyzed (shown in the following supplementary figure). It was observed that the extension of the SUL1Δ lifespan was not rescued by the knockout of MSN4, supporting the hypothesis that MSN2 may serve as the downstream transcription factor responsible for the increased lifespan of SUL1Δ.

      Author response image 1.

      Replicative life span of MSN4 deletion mutants in WT and SUL1Δ strains.

      Reviewer #2 (Recommendations for authors):

      (1) Inconsistent WT lifespan in Figure 1B

      All measurements of life expectancy were conducted under controlled conditions (30°C, 2% glucose). The revised Figure 1C illustrates that across three independent experiments (n=200 cells), the average lifespan of wild-type (WT) cells was 29.1 generations, which is comparable to the average lifespan of 25.6 generations reported in Figure 1A after data expansion (n=400 cells). This similarity may be attributed to experimental variability arising from multiple trials; however, it does not compromise the validity of our conclusions.

      (2) Sulfate level measurements​​

      Intracellular sulfate levels were measured by quantitatively assessing the sulfate concentrations in wild-type (WT), SUL1Δ, SUL2Δ, and SUL<sup>E427</sup> cells, as detailed in the methods section (Figure 1C). The results indicated that all mutant strains showed a delayed sulfur uptake process, but there was no significant difference in the final concentration of intracellular sulfur ions in all groups.

      (3) RNA-seq for non-lifespan-extending mutants​​

      RNA-seq data for the SUL2Δ and SULE427 mutants can be found in Supplementary Figure 1. These mutants do not exhibit a significant upregulation of stress-response genes, such as HSP12 and TPS1, which reinforces the specificity of the pathways induced by SUL1Δ.

      (4) Improved Msn2/4 imaging​​

      Figure 3C and supplementary Figure 4A present high-resolution confocal images (using a 63× objective lens) of cell nuclei labeled with MSN2-GFP and DAPI. The GFP intensity within the nucleus was normalized against the DAPI signal to account for differences in nuclear size.​​

      ​​Reviewer #3 (Recommendations for authors):

      (1) Nuclear size normalization​​

      The verification data for MSN2 and MSN4 were re-evaluated through DAPI signal normalization. The revised figures are presented in Figure 3C and Supplementary Figure 4A.

      (2) Strain nomenclature​​

      All strain names (e.g., SUL1Δ) were updated to follow SGD guidelines.

      (3) Grammar and formatting​​

      We have carefully revised the text to improve readability. And the manuscript was proofread by a native English speaker. Citations (e.g., "trehalose (Lillie and Pringle, 1980)") and spacing errors were corrected.

      (4) Microscopy resolution​​

      In the revised figures (Figures 3C, 3E, 4B, 4E, Supplementary Figure 3A, 4A, 4C), all fluorescence images are displayed as separate channels (EGFP, DAPI, BF). The scale and arrows have been added to the figure for clarity.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors):

      Thank you for your thorough review of our manuscript and your valuable suggestions. Here are our responses to each point you raised:

      (1) Novelty: Exploring the feasibility of extending the risk-scoring model to diverse cancer types could emphasize the broader impact of the research.

      Thank you so much for your thoughtful and insightful feedback. Your suggestion to explore extending the risk-scoring model to diverse cancer types is truly valuable and demonstrates your broad vision in this field. We deeply appreciate your interest in our research and the effort you put into providing such constructive input.

      After careful consideration, we have decided to focus our current study on the specific cancer type(s) we initially set out to explore. This decision was made to ensure that we can thoroughly address the research questions at hand, given our current resources, time constraints, and the complexity of the topic. By maintaining this focused approach, we aim to achieve more in-depth and reliable results that can contribute meaningfully to the understanding of this particular area.

      However, we fully recognize the potential significance of your proposed direction and firmly believe that it could be an excellent avenue for future research. We will definitely keep your suggestion in mind and may explore it in subsequent studies as our research progresses and evolves.

      (2) Improvement in Figure Presentation: The inconsistency in font formatting across figures, particularly in Figure 2 (A-D, E, F-H, I), Figure 3 (A-C, D-J, H, K), and the distinct style change in Figure 5, raises concerns about the professionalism of the visual presentation. It is recommended to standardize font sizes and styles for a more cohesive and visually appealing layout. This ensures that readers can easily follow and comprehend the graphical data presented in the article.

      The text in the picture has been revised as requested.

      (3) Enhancing Reliability of Immune Cell Infiltration Data: Address the potential limitations associated with relying solely on RNASeq data for immune cell infiltration analysis between ICD and ICD high groups in Figure 2. It is advisable to discuss the inherent challenges and potential biases in this methodology. To strengthen the evidence, consider incorporating bladder cancer single-cell sequencing data, which could provide a more comprehensive and reliable understanding of immune cell dynamics within the tumor microenvironment.

      Thank you very much for your meticulous review and the highly constructive suggestions. Your insight regarding the limitations of relying on RNASeq data for immune cell infiltration analysis and the proposal to incorporate bladder cancer single-cell sequencing data truly reflect your profound understanding of the field. We deeply appreciate your efforts in guiding our research and the valuable perspectives you've offered.

      After careful deliberation, given our current research scope, timeline, and available resources, we've decided to focus on further discussing and addressing the challenges and biases inherent in RNASeq-based immune cell infiltration analysis. By delving deeper into the methodological limitations and conducting more in-depth statistical validations, we aim to provide a comprehensive and reliable interpretation of the data within our study framework. This focused approach allows us to maintain the integrity of our original research design and deliver robust findings on the relationship between immune cell infiltration and ICD in the current context.

      However, we fully acknowledge the significant value of your proposed single-cell sequencing approach. It is indeed a powerful method that could offer more detailed insights into immune cell dynamics, and we believe it holds great promise for future research in this area. We will keep your suggestion in mind as an important direction for potential future studies, especially when we plan to expand and deepen our exploration of the tumor microenvironment.

      (4) Clarity in Data Sources and Interpretation of Figure 5: In the results section, provide a detailed and transparent explanation of the sources of data used in Figure 5. This includes specifying the databases or platforms from which the chemotherapy, targeted therapy, and immunotherapy data were obtained. Additionally, elucidate the rationale behind the chosen data sources and how they contribute to the overall interpretation of the study's findings. And, strangely, these immune-related genes are associated with cancer sensitivities to different targeted therapies.

      Thank you very much for your detailed and valuable feedback on Figure 5. We sincerely appreciate your careful review and insightful suggestions, which have provided us with important directions for improvement.

      Regarding the data sources in Figure 5, we used the pRRophetic algorithm to conduct a drug sensitivity analysis on the TCGA database. The reason for choosing these data sources is multi - faceted. Firstly, these databases and platforms are well - established and widely recognized in the field. They have strict data collection and verification processes, ensuring the accuracy and reliability of the data. For example, TCGA has a large - scale, long - term - accumulated chemotherapy case database, which can comprehensively reflect the clinical application and treatment effects of various chemotherapeutic drugs.

      Secondly, these data sources cover a wide range of cancer types and patient information, which can meet the requirements of our study's diverse sample size and variety. This comprehensiveness enables us to conduct a more in - depth and representative analysis of the relationships between different therapies and immune - related genes.

      In terms of the overall interpretation of the study's findings, the use of these data sources provides a solid foundation. The accurate chemotherapy, targeted therapy, and immunotherapy data help us clearly demonstrate the associations between immune - related genes and cancer sensitivities to different treatments. This allows us to draw more reliable conclusions and provides a scientific basis for understanding the complex mechanisms of cancer treatment from the perspective of immune - gene - therapy interactions.

      As for the unexpected association between immune - related genes and cancer sensitivities to different targeted therapies, this is indeed a fascinating discovery. In our analysis, we hypothesized that immune - related genes may affect the tumor microenvironment, thereby influencing the response of cancer cells to targeted therapies. Although this finding is currently beyond our initial expectations, it has opened up a new research direction for us. We will further explore and verify the underlying mechanisms in future research.

      Once again, thank you for your guidance. We will make corresponding revisions and improvements according to your suggestions to make our research more rigorous and complete.

      (5) Legends and Methods: Address the brevity and lack of crucial details in the figure legends and methods section. Expand the figure legends to include essential information, such as the number of samples represented in each figure. In the methods section, provide comprehensive details, including the release dates of databases used, versions of coding packages, and any other pertinent information that is crucial for the reproducibility and reliability of the study.

      We would like to express our sincere gratitude for your valuable feedback on the figure legends and methods section of our study. We highly appreciate your sharp observation of the issues regarding the brevity and lack of key details, which are crucial for further improving our research.

      We have supplemented the methods section with data including the number of samples, the release dates of the databases used, and the versions of the coding packages, etc. For TCGA samples: 421 tumor samples and 19 normal samples.Database release date: March 29, 2022, v36 versions.Coding package version: R version 4.1.1.We will immediately proceed to supplement these key details, making the research process and methods transparent. This will allow other researchers to reproduce our study more accurately and enhance the persuasiveness of our research conclusions.

      (6) Evidence Supporting Immunotherapy Response Rates: The importance of providing a robust foundation for the conclusion regarding lower immunotherapy response rates. Strengthen this section by offering a more detailed description of sample parameters, specifying patient demographics, and presenting any statistical measures that validate the observed trends in Figure 5Q-T. More survival data are required to conclude. Avoid overinterpretation of the results and emphasize the need for further investigation to solidify this aspect of the study.

      Thank you very much for your professional and meticulous feedback on the content related to immunotherapy response rates in our study! Your suggestions, such as providing a solid foundation for the conclusions and supplementing key information, are of great value in enhancing the quality of our research, and we sincerely appreciate them.

      The data in Figures 5Q to T are from the TCGA database, which has already been provided. The statistical measure used for Figures 5Q to T is the P-value, which has been marked in the figures. The survival data have been provided in Figure 3D.

      Reviewer #2 (Recommendations for the authors):

      Thank you for your thorough review of our manuscript and your valuable suggestions. Here are our responses to each point you raised:

      (1) There is no information on the samples studied. Are all TCGA bladder cancer samples studied? Are these samples all treatment naïve? Were any excluded? Even simply, how many samples were studied?

      Thank you so much for pointing out the lack of sample - related information. Your attention to these details has been extremely helpful in identifying areas for improvement in our study.

      All the samples in our study were sourced from the TCGA (The Cancer Genome Atlas) and TCIA (The Cancer Immunome Atlas) databases. It should be noted that the patient data in the TCIA database are originally from the TCGA database. Regarding whether the patients received prior treatment, this information was not specifically mentioned in our current report. Instead, we mainly relied on the scores of the prediction model for evaluation. Since all samples were obtained from publicly available databases, we understand the importance of clarifying their origin and characteristics.

      We sincerely apologize for the omission of the sample size and other relevant details. We will promptly supplement this crucial information in the revised version, including a detailed description of the sample sources and any relevant characteristics. This will ensure greater transparency and help readers better understand the basis of our research.

      For TCGA samples: 421 tumor samples and 19 normal samples.Database release date: March 29, 2022, v36 versions.Coding package version: R version 4.1.1.

      (2) What clustering method was used to divide patients into ICD high/low? The authors selected two clusters from their "unsupervised" clustering of samples with respect to the 34 gene signatures. A Delta area curve showing the relative change in area under the cumulative distribution function (CDF) for k clusters is omitted, but looking at the heatmap one could argue there are more than k=2 groups in that data. Why was k=2 chosen? While "ICD-mid" may not fit the authors' narrative, how would k=3 affect their Figure1C KM curve and subsequent results?

      Thank you very much for raising these insightful and constructive questions, which have provided us with a clear direction for further improving our research.

      When dividing patients into ICD high and low groups, we used the unsupervised clustering method. This method was chosen because it has good adaptability and reliability in handling the gene signature data we have, and it can effectively classify the samples.

      Regarding the choice of k = 2, it is mainly based on the following considerations. Firstly, in the preliminary exploratory analysis, we found that when k = 2, the two groups showed significant and meaningful differences in key clinical characteristics and gene expression patterns. These differences are closely related to the core issues of our study and help to clearly illustrate the distinctions between the ICD high and low groups. At the same time, considering the simplicity and interpretability of the study, the division of k = 2 makes the results easier to understand and present. Although there may seem to be trends of more groups from the heatmap, after in-depth analysis, the biological significance and clinical associations of other possible groupings are not as clear and consistent as when k = 2.

      As for the impact of k = 3 on the KM curve in Figure 1C and subsequent results, we have conducted some preliminary simulation analyses. The results show that if the "ICD-mid" group is introduced, the KM curve in Figure 1C may become more complex, and the survival differences among the three groups may present different patterns. This may lead to a more detailed understanding of the response to immunotherapy and patient prognosis, but it will also increase the difficulty of interpreting the results. Since the biological characteristics and clinical significance of the "ICD-mid" group are relatively ambiguous, it may interfere with the presentation of our main conclusions to a certain extent. Therefore, in this study, we believe that the division of k = 2 is more conducive to highlighting the key research results and conclusions.

      Thank you again for your valuable comments. We will further improve the explanation and description of the relevant content in the paper to ensure the rigor and readability of the research.

      (3) The 'ICD' gene set contains a lot of immune response genes that code for pleiotropic proteins, as well as genes certainly involved in ICD. It is not convincing that the gene expression differences thus DEGs between the two groups, are not simply "immune-response high" vs "immune-response low". For the DEGS analysis, how many of the 34 ICD gene sets are DEGS between the two groups? Of those, which markers of ICD are DEGs vs. those that are related to immune activation?

      a. The pathway analysis then shows that the DEGs found are associated with the immune response.

      b. Are HMGB1, HSP, NLRP3, and other "ICD genes" and not just the immune activation ones, actually DEGs here?

      c. Figures D, I-J are not legible in the manus.

      We sincerely appreciate your profound insights and valuable questions regarding our research. These have provided us with an excellent opportunity to think more deeply and refine our study.

      We fully acknowledge and are grateful for your incisive observations on the "ICD" gene set and your valid concerns about the differential expression gene (DEG) analysis. During the research design phase, we were indeed aware of the complexity of gene functions within the "ICD" gene set and the potential confounding factors between immune responses and ICD. To distinguish the impacts of these two aspects as effectively as possible, we employed a variety of bioinformatics methods and validation strategies in our analysis.

      Regarding the DEG analysis, among the 34 ICD gene sets, 30 genes showed significant differential expression between the groups, excluding HMGB1, HSP90AA1, ATG5, and PIK3CA. We further conducted detailed classification and functional annotation analyses on these DEGs. The ICD gene set is from a previous article and is related to the process of ICD. Relevant literature is in the materials section. HMGB1: A damage-associated molecular pattern (DAMP) that activates immune cells (e.g., via TLR4) upon release, but its core function is to mediate the release of "danger signals" in ICD, with immune activation being a downstream effect.HSP90AA1: A heat shock protein involved in antigen presentation and immune cell function regulation, though its primary role is to assist in protein folding, with immune-related effects being auxiliary.NLRP3: A member of the NOD-like receptor family that forms an inflammasome, activating CASP1 and promoting the maturation and release of IL-1β and IL-18.Among the 34 DEGs, the majority are associated with immune activation, such as IL1B, IL6, IL17A/IL17RA, IFNG/IFNGR1, etc.

      (4) I may be missing something, but I cannot work out what was done in the paragraph reporting Figure 2I. Where is the ICB data from? How has this been analysed? What is the cohort? Where are the methods?

      The samples used in the analysis corresponding to Figure 2I were sourced from the TCGA (The Cancer Genome Atlas) and TCIA (The Cancer Immunome Atlas) databases. These databases are widely recognized in the field for their comprehensive and rigorously curated cancer - related data, ensuring the reliability and representativeness of our sample cohort.

      Regarding the data analysis, the specific methods employed are fully described in the "Methods" section of our manuscript.

      (5) How were the four genes for your risk model selected? It is not clear whether a multivariate model and perhaps LASSO regularisation was used to select these genes, or if they were selected arbitrarily.

      As you inquired about how the four genes for our risk model were selected, we'd like to elaborate based on the previous analysis steps. In the Cox univariate analysis, we systematically examined a series of ICD-related genes in relation to the overall survival (OS) of patients. Through this analysis, we successfully identified four ICD-related genes, namely CALR (with a p-value of 0.003), IFNB1 (p = 0.037), IFNG (p = 0.022), and IF1R1 (p = 0.047), that showed a significant association with OS, as illustrated in Figure 3A.

      Subsequently, to further refine and optimize the model for better prediction performance, we subjected these four genes to a LASSO regression analysis. In the LASSO regression analysis (as depicted in Figure 3B and C), we aimed to address potential multicollinearity issues among the genes and select the most relevant ones that could contribute effectively to the construction of a reliable predictive model. This process allowed us to confirm the significance of these four genes in predicting patient outcomes and incorporate them into our final predictive model.

      (6) How related are the high-risk and ICD-high groups? It is not clear. In the 'ICD-high' group in the 1A heatmap, patients typically have a z-score>0 for CALR, IL1R, IFNg, and some patients do also for IFNB1. However, in 3H, the 'high risk' group has a different expression pattern of these four genes.

      Patients were divided into ICD high-expression and low-expression groups based on gene expression levels. However, the relationship between these genes and patient prognosis is complex. As shown in Figure 3A, some genes such as IFNB1 and IFNG have an HR < 1, while CALR and IL1R1 have an HR > 1. Therefore, an algorithm was used to derive high-risk and low-risk groups based on their prognostic associations.

      (7) In the four-gene model, CALR is related to ICD, as outlined by the authors briefly in the discussion. IFNg, IL1R1, IFNB1 have a wide range of functions related to immune activity. The data is not convincing that this signature is related to ICD-adjuvancy. This is not discussed as a limitation, nor is it sufficiently argued, speculated, or referenced from the literature, why this is an ICD-signature, and why CALR-high status is related to poor prognosis.

      We acknowledge that the functions of these genes are indeed complex and extensive. In the current manuscript, we have included a preliminary discussion of their roles in the "Discussion" section. As demonstrated by the data presented earlier, these genes do exhibit associations with ICD, and we firmly believe in the validity of these findings.

      However, we are fully aware that our current discussion is not sufficient to fully elucidate the intricate relationships among these genes, ICD, and other biological processes. In response to your valuable feedback, we will conduct an in - depth review of the latest literature, aiming to gain a more comprehensive understanding of the underlying mechanisms.

      (8) Score is spelt incorrectly in Figures 3F-J.

      Figures 3F-J have been revised as requested.

      (9) The authors 'comprehensive analysis' in lines 165-173, is less convincing than the preceding survival curves associating their risk model with survival. Their 'correlations' have no statistics.

      We understand your concern regarding the persuasiveness of the content in this part, especially about the lack of statistical support for the correlations we presented. While we currently have our reasons for presenting the information in this way and are unable to make changes to the core data and descriptions at the moment, we deeply respect your perspective that it could be more convincing with proper statistical analysis.

      (10) The authors performed immunofluorescence imaging to "validate the reliability of the aforementioned results". There is no information on the imaging used, the panel (apart from four antibodies), the patient cohort, the number of images, where the 'normal' tissue is from, how the data were analysed etc. This data is not interpretable without this information.

      a. Is CD39 in the panel? CD8, LAG3? It's not clear what this analysis is.

      The color of each antibody has been marked in Fig 2B. The cohort information and its source have been supplemented. The staining experiment was carried out using a tissue microarray, and the analysis method can be found in the "Methods" section.Formalin-fixed, paraffin-embedded human tissue microarrays (HBlaU079Su01) were purchased from Shanghai Outdo Biotech Co., Ltd. (China), comprising a total of 63 cancer tissues and 16 adjacent normal tissues from bladder cancer patients. Detailed clinical information was downloaded from the company's website.The Remmele and Stegner’s semiquantitative immunoreactive score (IRS) scale was employed to assess the expression levels of each marker,as detailed inMethods2.5.CD39, CD8, and LAG3 were also stained, but the results were not presented.

      (11) The single-cell RNA sequencing analysis from their previous dataset is tagged at the end. CALR expression in most identified cells is interesting. Not clear what this adds to the work beyond 'we did scRNA-seq'. How were these data analysed? scRNA-seq analysis is complex and small nuances in pre-processing parameters can lead to divergent results. The details of such analysis are required!

      We understand your concern about the contribution of the single-cell RNA sequencing results. The main purpose of this analysis is to observe the expression changes of the four genes at the single-cell level. As you mentioned, single-cell RNA sequencing analysis is indeed complex, and we fully recognize the importance of detailed information. We performed the analysis using common analytical methods for single-cell sequencing.It has been supplemented in the Methods section.

    1. Author response:

      We therefore plan to make only a minor change to the manuscript to clarify a point raised by Reviewer 1: the DUB shown in the correlation plot in Fig 3B - whose knockdown enhances PROTAC sensitivity without significantly altering cell cycle progression - is BAP1. Since BAP1 subsequently showed no significant effect on endogenous AURKA levels (Fig 3E) it was excluded from further analysis.

      In considering how the mechanistic aspects of our study could be strengthened, we point out that an interaction of AURKA with OTUD6A has been demonstrated elsewhere (Kim et al. 2021). We also argue that an interaction of AURKA with UCHL5 would not be expected since UCHL5 is a proteasomal DUB shown to act on substrates recruited to the proteasome via capture of ubiquitin chains by the ubiquitin receptors of the proteasome lid. We agree that mechanistically we have not provided complete evidence for a direct deubiquitinating activity of UCHL5 on AURKA. We cannot explain why there is no change in AURKA ubiquitination upon UCHL5 knockdown in our ubiquitin pulldown experiment, but indeed there is considerable uncertainty in the scientific literature on the precise role of UCHL5 at the proteasome.

      In response to feedback on the size of effects we report, and whether they represent changes of functional relevance: We agree the differences are small. Nonetheless such changes may be functionally important and therefore relevant to design of future TPD strategies. Our previous characterization of PROTAC-D (Wang et al. 2021) provides evidence that differential degradation of subcellular pools can have functional relevance. We showed in our study that the lack of degradation of the centrosomal pool (even if this represents only a small fraction of the total pool) led to unexpected phenotypic consequences that were distinct from those observed upon treatment with ATP-competitive inhibitor or siRNA. Therefore we believe our specific finding of spatially restricted action of AURKA-selective OTUD6A to be of clear functional relevance to AURKA TPD strategies and of conceptual importance in establishing the paradigm of TPD modulation by DUBs.

      As Reviewer 1 notes, we do not directly test our hypothesis that combining PROTACs with DUB inhibition could enhance degradation. We would have done so had there been suitable small molecule inhibitors available for OTUD6A or UCHL5 at the time of our study. We plan a broader study of OTUD6A mechanisms and its role in PROTAC sensitivity in cancer cell lines, and appreciate Reviewer 3’s suggestion that the impact of our findings would be strengthened if key results were validated in one or more cancer cell lines. The scope of this new study means we plan to report it in a separate, future publication.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors):

      Line 122: There were a number of qualitative descriptors in the paper. For instance, if the authors want to say massive campaign, how massive? How rapid? These are relative terms in this context.

      We have revised the text to minimize qualitative descriptors and to provide concrete numbers where possible. The revised sentence (line 121) now reads “We began our structural investigation of nitrogenase evolutionary history by conducting on a large-scale structure prediction analysis of 5378 protein structures, a more than threefold increase compared to available nitrogenase structures in the PDB. We then analyzed our phylogenetic dataset to identify notable structural changes.”

      Line 179: "massively scale up" How massive?

      We agree with the reviewer’s observation, in response, we have removed the phrase “massively scale up” and revised the text.

      Line 182: "no compromise on alignment depth and negligible cost to prediction accuracy". How do you know this? Is this shown somewhere? Was there a comparison between known structures and the predicted structure for those nitrogenases that have structures?

      In response to this comment, we have made several clarifications and revisions in the manuscript:

      We modified Figure S1, which now shows the pLDDT (per-residue confidence metric from Alphafold) values of all our predictions. These scores are consistently high (over 90 for the D and K subunits, and approximetly 90 for the H subunits) regardless of whether the recycling protocol or the bona-fide protocol was used.

      The reviewer’s comment demonstrated to us that the Figure S1 needed to more clearly representing these values, we therefore updated it accordingly.

      To prevent any misinterpretation of our claims about the accuracy and cost of the method , we have revised the text at line 179, as follows:

      “In total, 2,689 unique extant and ancestral nitrogenase variants were targeted. All structures were generated in approximately 805 hours, including GPU computations and MMseqs2 alignments performed using two different protocols: one for extant or most likely ancestral sequences, and another for ancestral variants.”

      To support our analyses further, Figure S10A compares our model predictions with available PDB structures for nitrogenases.

      Additionally, Figure S10B compare our predicted structures with the experimental structures reported in this article. In all cases, we observe low RMSD values.

      Line 220: "fall within 2 angstroms" instead of "fall 2A"?

      We have updated it in the text.

      Line 315: It is not clear how the binding affinities and other measurements in Figure 4 and S6C were measured, and it is not discussed in the material and methods.

      We thank the reviewer for pointing out this lack of clarity. The binding affinity estimations were performed using Prodigy. We have updated the main text (see line 322) to explicitly state that binding affinities were estimated using Prodigy. In addition, we have expanded the Materials and Methods section to include additional information about the structure characterization methods (lines 745-749). Previously, these details were only noted in Supplementary Table S6.

      Line 510-511: "Subtle, modular structural adjustments away from the active site were key to the evolution and persistence of nitrogenases over geologic time". This seems like a bit of an overstatement. While the authors see structural differences in the ancestral nitrogenase and speculate these differences could be involved in oxygen protection, there is no evidence that the ancestral nitrogenase is more sensitive to oxygen than the extant nitrogenase.

      We appreciate the reviewer’s comment. Our intention was to emphasize that subtle, modular structural adjustments might have contributed to oxygen protection rather than to assert that ancestral nitrogenases are more oxygen-sensitive than their extant counterparts. We have revised the text to clarify.

      Reviewer #2 (Recommendations for the authors):

      What is the reference for the measured RMSDs in Fig 2A? What is the value on the y-axis? The range of 'Count' is unclear, given that there are 5000 structures predicted in the study.

      Figure 2A presents a histogram of RMSD values from all pairwise alignments among 769 structures (385 extant and 384 ancestral DDKK), totaling 591,361 comparisons. We excluded ancestral DDKK variants due to computational limitations.  

      Similarly, what is the sequence identity in Figure 2B calculated relative to?

      In Figure 2B, sequence identities are derived from pairwise comparisons across all structures in our dataset. Each value represents the identity between two specific structures, rather than being measured against a single reference.

      The claim that 'structural analysis could reproduce sequence-based phylogenetic variation' should probably be tempered or qualified, given that the RMSD differences calculated are so low.

      We hope to have addressed the concerns about the low RMSD values in the previous comments. We have revised the text (line 204), which now reads: “it still strongly correlates with sequence identity (Figure 2B), indicating that even minor structural variations can recapitulate sequence-based phylogenetic distinctions.”

      How are binding affinities (Figure 4) calculated?

      We have now clarified the binding affinity calculations in the main text. The model used is now detailed at line 322, with additional information provided in the Methods section.

      Presumably, crystallized proteins (Anc1A, Anc1B, Anc2) were also among those whose structures were predicted with AF. A comparison should be provided of the predicted and crystallized structures, as this is an excellent opportunity to further comment on the reliability of AlphaFold.

      In the revised manuscript, Figure S10 now present structural comparisons between the crystallized proteins and their AlphaFold-predicted counterparts.

      The labels in Figure 5B are not clear. Are the 3rd and 4th panels also comparative RMSD values? But only one complex name is provided.

      We appreciate this feedback and now revised the Figure 5B for clarity.

      Page 9 line 220, missing word: 'varaints fall within/under 2angstroms'

      We thank the reviewer for the correction, we have updated the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Weaknesses: 

      This study's weakness is that it requires the use of chloroplasts isolated from leaves and the need to freeze them on a grid for observation, so it is unclear to what extent the observations reflect physiological conditions. In particular, the mode of existence of the thylakoid membrane complexes seems to be strongly influenced by the physicochemical environment surrounding the membranes, as indicated by the different distribution of PSII between intact chloroplasts and those with ruptured envelope membranes. 

      We agree with the reviewer, as discussed in the “Limitations and Future Perspectives” section of our manuscript. The duration and conditions of the chloroplast isolation will very likely influence the state of the sample and hamper conclusions about physiological adaptations to environmental conditions, which are important for a dynamic process like photosynthesis. Isolated chloroplasts were the most feasible option for vitrification by plunge freezing, but we intend to improve our technological approaches to overcome this obstacle in the future (e.g., by using the more involved approach of cryo-lift out from high-pressure frozen tissue). Here, we hope that by using plants acclimated to a “standard state” (standard growth conditions under low light) and proceeding with fast isolation and grid preparation (chloroplast were used only once per isolation and deposited on the grids as fast as 10 min from leaf harvesting), we preserve some physiological relevance. This is supported by: 1) a PSII distribution pattern and concentration that is similar to previous observations by us and others in cryo-ET of FIB-milled algae cells and freeze-fracture of whole plant cells, 2) a thylakoid lumen width that is similar to previously reports from whole light-adapted algae and leaf cells, but wider that previous reports of isolated plant thylakoids.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      (1) Figure 1-3: It would be better if it was easier to see which part of the figure the explanation in the text refers to. For example, not only the figure number but also the color of the arrowheads could be indicated in the text. Also, it would be better to indicate which part of the figure the explanation in the text and in the figure legend refers to by adding arrows or circles on the figure images.

      Thank you for this idea. We have added color references to individual objects segmented in Figs. 1 and 2. They are now indicated in the figure references in the text to facilitate the reading. In Fig. 3, we have added additional arrows (and indication in the text) to point to examples of Rubisco densities (as also requested by Reviewer #2).

      (2) Figure 5: Without having read the authors' previous works on "menbranogram", the reader may have no idea why the distribution of PSI and ATPase in the non-stack region in G can be inferred from the data in Figure 5C-E. Is it possible to add an explanation, for example by adding a supplement figure? 

      Thank you for this suggestion. Instead of creating another methods figure and movie about membranograms, we refer readers to our earlier work (Wietrzynski et al. 2020, eLife). This fits with the Research Advance format, and eLife should clearly link to that previous paper that our current study builds upon.

      Reviewer #2 (Recommendations for the authors): 

      Minor points: 

      (1) Please add to Figures 2A or 3A arrowheads showing Rubisco complexes.

      Done; we added colored arrowheads pointing to Rubisco complexes and an indication in the figure legend.

      (2) "We measured a membrane thickness of 5.1 {plus minus} 0. 3 nm, a stromal gap of 3.2 {plus minus} 0. 3 nm, a luminal thickness of 10.8 {plus minus} 2.0 nm, and a total thylakoid thickness (including two membranes plus the enclosed lumen) of 21.1 {plus minus} 1.8 nm (Fig. 4) (for comparison see [1, 2, 30, 40])."

      Please add ref: Kirchhoff, H. et al. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl Acad. Sci. USA 108, 20248-20253 (2011).

      Thank you for this suggestion. The reference has been added.

      (3) Please add to the supplemental figures a raw data and a processed image with AI denoising.

      Denoising results differ between the tomograms. Below we provide an example of a significant improvement in signal to noise ratio in a denoised tomogram. On the left is a raw tomogram reconstructed using a standard approach: weighted back projection using etomo program from the IMOD package. On the right is the same tomogram denoised using cryoCARE, which performs a noise comparison between odd and even frames that were used to reconstruct the tomogram on the left. Below is a zoom in into the slices from the first row, highlighting the differences. The same approach was used for all the tomograms used in the figures. Please also see the Data deposition statement below (and the Data deposition section in the paper) that we hope fulfills the Reviewers request. All raw and denoised data, as well as segmentations and picked particle positions, are publicly available.

      “Data deposition statement

      The raw data consists of micrographs (frames) used to reconstruct each tomogram, acquisition parameters file (.mdoc) for each tomogram and reference images of the microscope camera: 273.7 GB in total. Following the current standard in the cryo-EM field, all images used to generate figures in the manuscript (AI-denoised tomograms and corresponding segmentations) have been deposited in the Electron Microscopy Data Base (EMDB) and are available under accession codes EMD-5243 through EMD-5248). They can be accessed here: https://www.ebi.ac.uk/emdb/EMD-52542. Additionally, all raw files (including tomograms used only for analysis), all used denoised tomographic volumes and unaltered membrane segmentations have been deposited onto the public EMPIAR server (www.ebi.ac.uk/empiar) and are available under the accession code EMPIAR-12612. Finally, positions of PSII particles used in the study, segmented single membrane instances and membrane meshes are available at: 10.5281/zenodo.15090119. All this data will be linked to (and is searchable by) the EMDB depositions and to manuscript DOI. Accession numbers to the data are added in the “Data availability” section of the manuscript.”

      Author response image 1.

      Results of tomogram denoising. An example tomogram from the dataset. Top row: on the left is a 5-slice average of the tomographic volume reconstructed using weighted back projection method. On the right is a single tomographic slice of the same tomographic volume denoised using cryoCARE program. Bottom row: zoom-ins into the corresponding tomographic slices from the top row. All images were recorded using 3dmod from the IMOD package.

      Additional modifications:

      Following other comments and suggestions, we have included following additions to the manuscript:

      Figure 4 – figure supplement 1. Its aim is to better explain the methodology behind thylakoid width measurements. The methods section concerning this figure has been slightly modify to match this addition.

      Figure 1 – video supplement 1. Overview of a chloroplast tomogram and segmentations the thylakoid and chloroplast envelope membranes.

      Figure 3 – video supplement 1. Chloroplast stroma and top views of the thylakoid network, with stromal lamellae connecting the grana.

      Figure 8 – video supplements 1 and 2. These tomographic views highlight the organization of PSII particles in thylakoids from intact and broken chloroplasts.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Munday, Rosello, and colleagues compared predictions from a group of experts in epidemiology with predictions from two mathematical models on the question of how many Ebola cases would be reported in different geographical zones over the next month. Their study ran from November 2019 to March 2020 during the Ebola virus outbreak in the Democratic Republic of the Congo. Their key result concerned predicted numbers of cases in a defined set of zones. They found that neither the ensemble of models nor the group of experts produced consistently better predictions. Similarly, neither model performed consistently better than the other, and no expert's predictions were consistently better than the others. Experts were also able to specify other zones in which they expected to see cases in the next month. For this part of the analysis, experts consistently outperformed the models. In March, the final month of the analysis, the models' accuracy was lower than in other months and consistently poorer than the experts' predictions. 

      A strength of the analysis is the use of consistent methodology to elicit predictions from experts during an outbreak that can be compared to observations, and that are comparable to predictions from the models. Results were elicited for a specified group of zones, and experts were also able to suggest other zones that were expected to have diagnosed cases. This likely replicates the type of advice being sought by policymakers during an outbreak. 

      A potential weakness is that the authors included only two models in their ensemble. Ensembles of greater numbers of models might tend to produce better predictions. The authors do not address whether a greater number of models could outperform the experts. 

      The elicitation was performed in four months near the end of the outbreak. The authors address some of the implications of this. A potential challenge to the transferability of this result is that the experts' understanding of local idiosyncrasies in transmission may have improved over the course of the outbreak. The model did not have this improvement over time. The comparison of models to experts may therefore not be applicable to the early stages of an outbreak when expert opinions may be less welltuned. 

      This research has important implications for both researchers and policy-makers. Mathematical models produce clearly-described predictions that will later be compared to observed outcomes. When model predictions differ greatly from observations, this harms trust in the models, but alternative forms of prediction are seldom so clearly articulated or accurately assessed. If models are discredited without proper assessment of alternatives then we risk losing a valuable source of information that can help guide public health responses. From an academic perspective, this research can help to guide methods for combining expert opinion with model outputs, such as considering how experts can inform models' prior distributions and how model outputs can inform experts' opinions. 

      Reviewer #2 (Public review):

      Summary: 

      The manuscript by Munday et al. presents real-time predictions of geographic spread during an Ebola epidemic in north-eastern DRC. Predictions were elicited from individual experts engaged in outbreak response and from two mathematical models. The authors found comparable performance between experts and models overall, although the models outperformed experts in a few dimensions. 

      Strengths: 

      Both individual experts and mathematical models are commonly used to support outbreak response but rarely used together. The manuscript presents an in-depth analysis of the accuracy and decision-relevance of the information provided by each source individually and in combination. 

      Weaknesses: 

      A few minor methodological details are currently missing.

      We thank the reviewers for taking the time to consider our paper and for their positive reflections and suggestions for our study. We recognise and endorse their characterisation of the study in the public reviews and are greatful for their interest and support for this work. 

      Reviewer #1 (Recommendations For The Authors): 

      I initially found Table 1 difficult to interpret. In the final two columns, the rows relate to each other but in the other columns, rows within months don't relate to each other. Could this be made clearer? 

      Thank you for your helpful suggestion. We agree that this is a little confusing and have now added vertical dividers to the table to indicate which parts of the table relate to each other.

      In Figure 1A, the colours are the same as in the colour-bar for Figure 1B but don't have the same meaning. Could different colours be used or could Figure 1A have its own colour-bar to aid clarity? 

      Thank you for your query. The colours are not the same pallette, but we appreciate that they look very similar. To help the reader we have changed the colour palette of panel A and added a legend to the left.  

      In Figure 3, can labels for each expert be aligned horizontally, rather than moving above and below the timeline each month? 

      Thank you for your perspective on this. We made the concious dicision to desplay the experts in this way as it allows the timeline to be presented in a shorter horizontal space. We appreciate that others may prefer a different design, but we are happy with this one. 

      On lines 292 and 293, the authors state that experts were less confident that case numbers would cross higher thresholds. It seems that this would be inevitable given the number of cases is cumulative. Could this be clarified, please? 

      Thank you for raising this point. We agree that this wording is confusing. We have now reworked the entire section in response to another reviewer. The equivalent section now reads: 

      Experts correctly identified Mabalako as the highest-risk HZ in December. They attributed an average 82% probability of exceeding 2 cases; Mabalako reported 38 cases that month, exceeding all thresholds, although the probability assigned to exceeding the higher thresholds was similar to that of Beni (3 cases)

      Reviewer #2 (Recommendations For The Authors): 

      (1) Some methodological details seem to be missing. Most importantly, the results present multiple ensembles (experts, models, and both), but I can't seem to find anywhere in the Methods that details how these ensembles are calculated. Also, I think it would be useful to define the variables in each equation. It would have been easier to connect the equations to the description if the variables were cited explicitly in the text. 

      Thank you for pointing out these omissions. We have included the following paragraph to detail how ensemble forecasts were calculated. 

      “Enslemble forecasts

      Ensemble forecasts were calculated as an average of the probabilities attributed by the members of the ensemble. For the expert ensemble the arithmetic mean was calculated across all experts with equal weighting. Similarly the model ensemble used the unweighted mean of the model forecasts. For the mixed (model and expert) ensemble, the mean was weighted such that the combined weight of the experts forecasts and the combined weight of the models forecasts were equal.”

      (2) Overall, I think the results provide a strong analysis of model vs. expert performance. However, some sections were highly detailed (e.g., the text usually discusses results for every month and all health zones), which clouded my ability to see the salient points. For example, I found it difficult to follow all the details about expert/model predictions vs. observations in the "Expert panel and health zones..." subsection; instead, the graphical illustration of predictions vs. observations in Figure 4 was much easier to interpret. Perhaps some of these details could be trimmed or moved to the supplementary material. 

      Thank you for your honest feedback on this point. We have shortened this section to highlight the key points that we feel are the most important. We have also simplified the text where we discuss the health zones nominated by experts. 

      (3) Figure 5C is a nice visualization of the fallibility of relying on a single individual expert (or model). I wonder if it would be useful to summarize these results into the probability that a randomly selected expert outperforms a single model. Is it the case that a single expert is more unreliable than a single model? The discussion emphasizes the importance of ensembles and compares a single model to an ensemble of experts, but eliciting predictions from multiple experts may not always be possible. 

      Thank you for raising this. We agree that this is an important point that eliciting expert opinions is not a trivial task and should not be taken for granted. We agree with the principle of your suggestion that it would be useful to understand how the models compare to indevidual experts. We don’t however believe that an additional analysis would add sufficiently more information than already shown in Figure 5, which already displays the full distribution of indevidual experts for each month and threshold. If you would like to try this analysis yourself, the relevant data (the indevidual score for each combination of expert, threshold, heal zone and month) is included in the github repo (https://github.com/epiforecasts/Ebola-Expert-Elicitation/blob/main/outputs/indevidual_results_with_scores.csv).

      Minor comments: 

      (1) Figure 2: the color scales in each panel are meant to represent different places, correct? The figure might be easier to interpret if the colors used were different.  

      Thank you for bringing this to our attention. We have now changed the palette of panel A to differ from panel B.  

      (2) Equation 7: is o(c>c_thresh) meant to be the indicator function (i.e. 1 if c>c_thresh) and 0 otherwise)? 

      Thanks for raising this. The function o is the same as in the previous equation – an observation count function. We appreciate that this is not immediately clear so have added a sentence to explain the notation after the equation.

      (3) Table 1: a brief description of the column headers would be useful.  

      Thank you for the suggestion. We have now extended the table caption to include more description of the columns. 

      “Table 1: Experts and health zones included in each round of the survey. The left part of the table details the experts interviewed (highlighted in green) the health zones included in the main survey in each month. In addition, the right part of the table details the health zones nominated by experts and the number of experts that nominated each one.”

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      The authors tried to identify the relationships between gut microbiota, lipid metabolites and the host in type 2 diabetes (T2DM) by using spontaneously developed T2DM in macaques, considered among the best human models.

      Strengths:

      The authors compared comprehensively the gut microbiota, plasma fatty acids between spontaneous T2DM and the control macaques, and tried verified the results with macaques in high-fat diet-fed mice model.

      Weaknesses:

      The observed multi-omics on macaques can be done on humans, which weakens the conclusion of the manuscript, unless the observation/data on macaques could cover during the onset of T2DM that would be difficult to obtain from humans.

      Regarding the metabolomic analysis on fatty acids, the authors did not include the results obtained form the macaque fecal samples which should be important considering the authors claimed the importance of gut microbiota in the pathogenesis of T2DM. Instead, the authors measured palmitic acid in the mouse model and tried to validate their conclusions with that.

      In murine experiments, palmitic acid-containing diet were fed to mice to induce diabetic condition, but this does not mimic spontaneous T2DM in macaques, since the authors did not measure in macaque feces (or at least did not show the data from macaque feces of) palmitic acid or other fatty acids; instead, they assumed from blood metabolome data that palmitic acid would be absorbed from the intestine to affect the host metabolism, and added palmitic acid in the diet in mouse experiments. Here involves the probable leap of logic to support their conclusions and title of the study.

      In addition, the authors measured omics data after, but not before, the onset of spontaneous T2DM of macaques. This can reveal microbiota dysbiosis driven purely by disease progression, but does not support the causative effect of gut microbiota on T2DM development that the authors claims.

      We are sorry for misunderstanding your point and failing to address your question regarding macaque fecal metabolomics in our previous response. Our study performed untargeted metabolomics on macaque feces and indeed detected the differential metabolite palmitic acid (PA) content, which showed an obvious decrease in T2DM macaques compared with the control (Table 1). However, the difference in PA level between the two groups was not significant (p = 0.17). It may be attributed to the limitation of untargeted metabolomics methodology in absolute quantitative analysis. In addition, we found many other long-chain fatty acids were down-regulated in the T2DM macaque feces (Table 1). Such results are consistent with our observation in murine experiments. We examined PA levels in the feces, ileum, and serum in mice and found that PA level was significantly decreased in fecal samples but increased in the ileum and serum. These findings demonstrated that without the transplantation of gut microbiota, the ileum could not absorb the PA effectively even at a high concentration of ingested PA. Only mice receiving fecal microbiota transplants from T2DM macaques and fed a high-PA diet showed a significant increase in the ileum and serum alongside a decrease in fecal PA concentration. Both the macaque metabolomics and mice experiment results suggest that gut microbiota mediated the absorption of excess PA in the ileum leading to the accumulation of PA in the serum. In the revised manuscript, we added the results of all differential metabolites in Table S2.

      Author response table 1.

      Table 1. Differential analysis of palmitic acid and other fatty acids from fecal untargeted metabolomics in macaques.

      Regarding the causative effect of gut microbiota on T2DM development, we agree with the reviewer that the omics data were obtained after, but not before, the onset of spontaneous T2DM macaques, the microbiota dysbiosis is probably driven by disease progression. For this reason, we have changed the title of our manuscript and some of our conclusions, which can be found in our response below.

      Reviewer #1 (Recommendations for the authors):

      As described above, the data presented does not support the notion that gut microbiota change in T2DM macaques promote the disease - rather it showed the outcome of the disease progression. In addition, the involvement of palmitic acid absorption was only shown in mice but not in macaques. Therefore, the authors should change their title and conclusions to more precisely reflect their observation.

      According to your suggestion, we changed the title and the conclusion to make them more precise and avoid emphasizing the causative effect of gut microbiota on T2DM. The new title is “Multi-omics investigation of spontaneous T2DM macaque emphasizes gut microbiota could up-regulate the absorption of excess palmitic acid in the T2DM progression”. We also revised the wording of the results and conclusions to acknowledge the limitation of our study, “We also revealed the specific structure of gut microbiota that promoted T2DM development by regulating the absorption of excess PA in mice, providing experimental evidence for the functional role of gut microbiota in T2DM pathogenesis.” (Lines 122-125), “In particular, concentrations of PA, palmitoleic acid, and oleic acid were significantly higher in the T2DM group than control group (p<0.05 and VIP>1). The concentration of PA in the plasma of T2DM macaques increased, while the concentration of palmitic acid in the feces decreased (Figures 3F and G, Table S2).” (Lines 228-233), and “Our study confirms the functional role of gut microbiota and PA in the T2DM progression. The microbiota composition, specifically higher abundance of R. gnavus (current name: M. gnavus) and Coprococcus sp., and lower abundance of Treponema, F. succinogenes, Christensenellaceae, and F16, promoted the absorption of excess PA which is important for the development of T2DM. However, in this study, such microbial alterations were detected in macaques after they had developed the disease of T2DM instead of before or onset of T2DM, the causative effect of gut microbiota and their action mechanism on the development of T2DM is worth further investigation.” (Lines 450-458).

    1. Author response:

      (1) We will clarify statements comparing regeneration and developmental processes. Additionally, we will include a new supplemental figure with published data showing that the pou4-2 clone dd_Smed_v6_30562_0_1 (cross-referenced as SMED30002016) is expressed during stages corresponding to organ development in Schmidtea mediterranea (https://planosphere.stowers.org/feature/Schmidtea/mediterranea-sexual/transcript/SMED30002016).

      (2) We will reorganize the figures by combining Figures 3 and 4 for improved clarity.

      (3) We will address experimental and interpretive concerns regarding the role of atonal in the pou4-2 gene regulatory network.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This study presents a new Bayesian approach to estimate importation probabilities of malaria, combining epidemiological data, travel history, and genetic data through pairwise IBD estimates. Importation is an important factor challenging malaria elimination, especially in low-transmission settings. This paper focuses on Magude and Matutuine, two districts in southern Mozambique with very low malaria transmission. The results show isolation-by-distance in Mozambique, with genetic relatedness decreasing with distances larger than 100 km, and no spatial correlation for distances between 10 and 100 km. But again, strong spatial correlation in distances smaller than 10 km. They report high genetic relatedness between Matutuine and Inhambane, higher than between Matutuine and Magude. Inhambane is the main source of importation in Matutuine, accounting for 63.5% of imported cases. Magude, on the other hand, shows smaller importation and travel rates than Matutuine, as it is a rural area with less mobility. Additionally, they report higher levels of importation and travel in the dry season, when transmission is lower. Also, no association with importation was found for occupation, sex, and other factors. These data have practical implications for public health strategies aiming for malaria elimination, for example, testing and treating travelers from Matutuine in the dry season.

      Strengths:

      The strength of this study lies in the combination of different sources of data - epidemiological, travel, and genetic data - to estimate importation probabilities, and the statistical analyses.

      Weaknesses:

      The authors recognize the limitations related to sample size and the biases of travel reports.

      Thank you for your review and consideration. As mentioned, we state in the manuscript the limitations related to sample sizes and travel reports. We aim to continue this study with new prospective data, aiming to address these limitations.

      Reviewer #2 (Public review):

      Summary:

      Based on a detailed dataset, the authors present a novel Bayesian approach to classify malaria cases as either imported or locally acquired.

      Strengths:

      The proposed Bayesian approach for case classification is simple, well justified, and allows the integration of parasite genomics, travel history, and epidemiological data. The work is well-written, very organized, and brings important contributions both to malaria control efforts in Mozambique and to the scientific community. Understanding the origin of cases is essential for designing more effective control measures and elimination strategies.

      Weakness:

      While the authors aim to classify cases as imported or locally acquired, the work lacks a quantification of the contribution of each case type to overall transmission.

      The Bayesian rationale is sound and well justified; however, the formulation appears to present an inconsistency that is replicated in both the main text and the Supplementary Material.

      In fact, one of the questions that remains unanswered is the overall contribution of importation events to transmission in the areas. While the Bayesian classifier does not quantify this, our future analysis will focus on combining outbreak detection, genetic clustering and importation classification to quantify the contribution of imported cases to outbreak resurgence and to the overall transmission.

      Thank you for pointing out the inconsistency in the final formula. In fact, the final formula corresponds to P(I<sub>A</sub> | G), instead to i>P(I<sub>A</sub>), so:

      instead of

      We will correct this error in a new version of the manuscript.

      Reviewer #3 (Public review):

      The authors present an important approach to identify imported P. falciparum malaria cases, combining genetic and epidemiological/travel data. This tool has the potential to be expanded to other contexts. The data was analyzed using convincing methods, including a novel statistical model; although some recognized limitations can be improved. This study will be of interest to researchers in public health and infectious diseases.

      Strengths:

      The study has several strengths, mainly the development of a novel Bayesian model that integrates genomic, epidemiological, and travel data to estimate importation probabilities. The results showed insights into malaria transmission dynamics, particularly identifying importation sources and differences in importation rates in Mozambique. Finally, the relevance of the findings is to suggest interventions focusing on the traveler population to help efforts for malaria elimination.

      Weaknesses:

      The study also has some limitations. The sample collection was not representative of some provinces, and not all samples had sufficient metadata for risk factor analysis, which can also be affected by travel recall bias. Additionally, the authors used a proxy for transmission intensity and assumed some conditions for the genetic variable when calculating the importation probability for specific scenarios. The weaknesses were assessed by the authors.

      We acknowledge the limitations commented by the reviewer. We have the following plans to address the limitations. We will repeat the study for our data collected in 2023, which this time contains a good representation of all the provinces of Mozambique, and completeness of the metadata collection was ensured by implementing a new protocol in January 2023. Regarding the proxy for transmission intensity, we will refine the model by integrating monthly estimates of malaria incidence (previously calibrated to address testing and reporting rates) from the DHIS2 data, taking also into account the date of the reported cases in the analysis.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This study investigates how ant group demographics influence nest structures and group behaviors of Camponotus fellah ants, a ground-dwelling carpenter ant species (found locally in Israel) that build subterranean nest structures. Using a quasi-2D cell filled with artificial sand, the authors perform two complementary sets of experiments to try to link group behavior and nest structure: first, the authors place a mated queen and several pupae into their cell and observe the structures that emerge both before and after the pupae eclose (i.e., "colony maturation" experiments); second, the authors create small groups (of 5,10, or 15 ants, each including a queen) within a narrow age range (i.e., "fixed demographic" experiments) to explore the dependence of age on construction. Some of the fixed demographic instantiations included a manually induced catastrophic collapse event; the authors then compared emergency repair behavior to natural nest creation. Finally, the authors introduce a modified logistic growth model to describe the time-dependent nest area. The modification introduces parameters that allow for age-dependent behavior, and the authors use their fixed demographic experiments to set these parameters, and then apply the model to interpret the behavior of the colony maturation experiments. The main results of this paper are that for natural nest construction, nest areas, and morphologies depend on the age demographics of ants in the experiments: younger ants create larger nests and angled tunnels, while older ants tend to dig less and build predominantly vertical tunnels; in contrast, emergency response seems to elicit digging in ants of all ages to repair the nest.

      We sincerely thank Reviewer #1 for the time and effort dedicated to our manuscript's detailed review and assessment. The revision suggestions were constructive, and we have provided a point-by-point response to address them.

      Reviewer #2 (Public review):

      I enjoyed this paper and the approach to examining an accepted wisdom of ants determining overall density by employing age polyethism that would reduce the computational complexity required to match nest size with population (although I have some questions about the requirement that growth is infinite in such a solution). Moreover, the realization that models of collective behaviour may be inappropriate in many systems in which agents (or individuals) differ in the behavioural rules they employ, according to age, location, or information state. This is especially important in a system like social insects, typically held as a classic example of individual-as-subservient to whole, and therefore most likely to employ universal rules of behaviour. The current paper demonstrates a potentially continuous age-related change in target behaviour (excavation), and suggests an elegant and minimal solution to the requirement for building according to need in ants, avoiding the invocation of potentially complex cognitive mechanisms, or information states that all individuals must have access to in order to have an adaptive excavation output.

      We sincerely thank reviewer #2 for the time and effort dedicated to our manuscript's detailed review and assessment. We have provided a point-by-point response to the reviewer's comments, which we have incorporated into the revised version of the manuscript.

      The only real reservation I have is in the question of how this relationship could hold in properly mature colonies in which there is (presumably) a balance between the birth and death of older workers. Would the prediction be that the young ants still dig, or would there be a cessation of digging by young ants because the area is already sufficient? Another way of asking this is to ask whether the innate amount of digging that young ants do is in any way affected by the overall spatial size of the colony. If it is, then we are back to a problem of perfect information - how do the young ants know how big the overall colony is? Perhaps using density as a proxy? Alternatively, if the young ants do not modify their digging, wouldn't the colony become continuously larger? As a non-expert in social insects, I may be misunderstanding and it may be already addressed in the citations used.

      We thank the reviewer for this interesting question. We find that the nest excavation is predominantly performed by the younger ants in the nest, and the nest area increase is followed by an increase in the population. However, if the young ants dig unrestricted, this could result in unnecessary nest growth as suggested by reviewer #2. Therefore, we believe that the innate digging behavior of ants could potentially be regulated by various cues such as;

      (a) Density-based: If the colony becomes less dense as its area expands, this could serve as a feedback signal for young ants to reduce or stop digging, as described in references (25, 29, 30).

      (b) Pheromone depositions: If the colony reaches a certain population density, pheromone signals could inhibit further digging by young ants, references (25, 29), or space usage as a proxy for the nest area. 

      Thus, rather than perfect information, decentralized control, and digging-based local cues probably regulate the level of age-dependent digging, without the ants needing to estimate the overall colony size or nest area.

      In any case, this is an excellent paper. The modelling approach is excellent and compelling, also allowing extrapolation to other group sizes and even other species. This to me is the main strength of the paper, as the answer to the question of whether it is younger or older ants that primarily excavate nests could have been answered by an individual tracking approach (albeit there are practical limitations to this, especially in the observation nest setup, as the authors point out). The analysis of the tunnel structure is also an important piece of the puzzle, and I really like the overall study.

      We thank the reviewer for the comments. We completely agree that individual tracking of ants within our experimental setup would have been the ideal approach, but we were limited by technical and practical limitations of the setup, as pointed out by the reviewer, such as; 

      (a) Continuous tracking of ants in our nests would have required a camera to be positioned at all times in front of the nest, which necessitates a light background. Since Camponotus fellah ants are subterranean, we aimed to allow them to perform nest excavation in conditions as close to their natural dark environment as possible. Additionally, implementing such a system in front of each nest would have reduced the sample sizes for our treatments.

      (b) The experimental duration of our colony maturation and fixed demographics experiments extended for up to six months (unprecedented durations in these kinds of measurements). These naturally limited our ability to conduct individual tracking while maintaining the identity of each ant based on the current design.

      These details are described in detail within the revised version of the manuscript.

      Reviewer #3 (Public review):

      Summary:

      In this study, Harikrishnan Rajendran, Roi Weinberger, Ehud Fonio, and Ofer Feinerman measured the digging behaviours of queens and workers for the first 6 months of colony development, as well as groups of young or old ants. They also provide a quantitative model describing the digging behaviours and allowing predictions. They found that young ants dig more slanted tunnels, while older ants dig more vertically (straight down). This finding is important, as it describes a new form of age polyethism (a division of labour based on age). Age polyethism is described as a "yes or no" mechanism, where individuals perform or not a task according to their age (usually young individuals perform in-nest tasks, and older ones foraging). Here, the way of performing the task is modified, not only the propensity to carry it or not. This data therefore adds in an interesting way to the field of collective behaviours and division of labour.

      The conclusions of the paper are well supported by the data. Measurements of the same individuals over time would have strengthened the claims.

      We sincerely thank reviewer #3 for the time and effort dedicated to our manuscript's detailed review and assessment. We completely agree with the reviewer’s comments on the measurements of the same individuals over time, however, we were limited by the technical and experimental limitations as described above and pointed out by reviewer #2.

      Strengths:

      I find that the measure of behaviour through development is of great value, as those studies are usually done at a specific time point with mature colonies. The description of a behaviour that is modified with age is a notable finding in the world of social insects. The sample sizes are adequate and all the information clearly provided either in the methods or supplementary.

      We thank reviewer #3  for this assessment.

      Weaknesses:

      I think the paper is failing to take into consideration or at least discuss the role of inter-individual variabilities. Tasks have been known to be undertaken by only a few hyper-active individuals for example. Comments on the choice to use averages and the potential roles of variations between individuals are in my opinion lacking. Throughout the paper wording should be modified to refer to the group and not the individuals, as it was the collective digging that was measured. Another issue I had was the use of "mature colony" for colonies with very few individuals and only 6 months of age. Comments on the low number of workers used compared to natural mature colonies would be welcome.

      Regarding the main comment 1

      We completely agree with the reviewer’s comment on considering inter-individual variability based on activity levels. We have discussed how individual morphological variability could influence digging behavior (references: 28, 31), and we will elaborate further on this aspect in future revisions.

      Regarding the main comment 2:

      The term ‘colony maturation’ in our study refers to the progressive development of colonies from a single queen, distinguishing it from experiments that begin with pre-established, demographically stable colonies. We provide a detailed explanation for this terminology in the revised version of the manuscript. We were practically limited by the continuation of the experiments for more than 6 months of age, predominantly due to the stability of nests, as they were made with a sand-soil mix. We also acknowledge that the colony sizes attained in our maturation experiments may be smaller than those of naturally matured colonies. This trend was observed generally in lab-reared colonies and could be attributed to differences in microclimatic conditions, foraging opportunities, space availability, and other factors. We have explicitly described these details in the revised version of the manuscript.

      Reviewer #1 (Recommendations for the authors):

      The experimental design is fantastic. The large quasi-2D should allow for the direct visualization of the movements of individuals and the creation of the nest, and the inclusion of non-workers (specifically, a mated queen and pupae) is new and important. However, I have some questions and concerns about the results, as outlined below. Also, I found the paper difficult to read, and the connections between the various experiments and the model were not always clear. 

      We thank the reviewer for the time and effort dedicated to reviewing our manuscript. We have modified the manuscript substantially to address the comments and readability. 

      The assumption that the digging rate is constant across ants may be a strong one. Previous work (see, for instance, Aguilar, et al, Science 2018) has demonstrated a very heterogeneous workload distribution among ants. I am not sure what implications that may have for the results here, but the authors should comment on this choice. Related to the point above, given a constant digging rate, the variation in digging is attributed to an age-dependent "desired target area". Can the authors comment on the implications of this, specifically in contrast to a variable digging rate? The distinction between digging rate differences and target area differences seems to be important for the authors. However, the way this is presented, it is difficult to fully understand or appreciate this importance and its implications. What is the consequence of this difference, and why is this important?

      We apologize to the reviewer for the confusion.

      Our model does not assume that the digging rate (da/dt, Equation 1) remains constant throughout the experiment. Instead, we only treat the basal digging rate (r) as a constant.

      The variable digging rate (da/dt, Equation 1) is derived by multiplying the basal rate constant (r) by the term (1 - a/a<sub>age</sub>), which accounts for deviations from the age-dependent target area that the ants aim to achieve. This makes the actual digging rate dynamic, as it responds to changes in excavated area (e.g., expansion or rapid collapse)

      For example, according to our model (Equation 1), two ants with the same basal digging rate (r) may exhibit markedly different actual digging rates at a given time if they differ in age. This occurs because the variable digging rate (da/dt) depends not only on ‘r’ but also on the age-dependent term (1 - a/a<sub>age</sub>). Also, we emphasize that the use of a basal digging rate constant aligns with prior studies (refs. 24, 29, 30).

      In our work, we demonstrate that after a collapse event, ants of all ages dig at rates comparable to those observed in the initial (pre-collapse) phase of the experiment. This occurs because the ants are far from their age-dependent target area, effectively resetting their digging behavior. By comparing maximum digging rates pre- and post-collapse, we provide strong empirical evidence that this rate is age-independent (SI Fig. 6A, 6B), supporting the conclusion that the basal digging rate constant (r) is a fundamental property of the ants' behavior, unaffected by age.

      We agree with the reviewer that individual tracking of ants within our experimental setup would have been the ideal approach. Then, we could have taken the inter-individual variability of the digging activity into account. However, we were limited to doing so by the technical and practical limitations of the setup, such as; 

      (a) Continuous tracking of ants in our nests would have required a camera to be positioned at all times in front of the nest, which necessitates a light background. Since Camponotus fellah ants are subterranean, we aimed to allow them to perform nest excavation in conditions as close to their natural dark environment as possible. Additionally, implementing such a system in front of each nest would have reduced the sample sizes for our treatments.

      (b) The experimental duration of our colony maturation experiments extended for up to six months (unprecedented durations in these kinds of measurements). These naturally limited our ability to conduct individual tracking while maintaining the identity of each ant based on the current design.

      In light of these points, the following lines are added to the discussion (line numbers: 283-295), signifying the above points:

      “Our age-dependent model demonstrates that the digging behavior in Camponotus fellah is governed by a basal digging rate constant (r) modulated by the age-dependent feedback (1 − a/aage). Crucially, we show that after a collapse, the maximum digging rates return to their pre-collapse levels, suggesting that this basal rate ’r’ represents an age-independent ceiling on how fast ants can dig, regardless of age or context (SI Fig. 6 A, B). Previous studies have demonstrated both homogeneous and heterogeneous workload distribution, with varying digging rates among ants (24, 29, 30, 35). Studies showing heterogeneous workload distribution relied on continuous individual tracking of ants to quantify digging rates (35). However, this approach was not feasible in our current design due to the experimental durations of both our colony maturation and fixed demographics experiments. Additionally, sample size requirements naturally limited our ability to conduct continuous individual tracking during nest construction in our study. Thus, based on empirical measurements from our fixed-demographics experiments and supported by the age-independent post-collapse digging rates, we adopted a constant basal digging rate for simulating our age-dependent model—an assumption aligned with both prior literature and the collective dynamics observed in our system (24,29,30)”.

      Model: as presented, the model seems to lack independent validation. The model seems to have built-in that there is an age-dependent target area, and this is what is recovered from the model. I am failing to see what is learned from the model that the experiments do not already show. Also, the model has no ant interactions, though ants are eusocial and group size is known to have a large effect on behavior (this is acknowledged by the authors at the beginning of the discussion). Can the authors comment on this?My recommendation would be to remove the model from this paper or improve the text to address the above comments.

      We did not draw the conclusion of the age-dependent target area from our model. We used the fixed demographics experiments to quantify the age-dependent area target as a function of the age of individuals. We then used this age-dependent area target in our model to quantify the excavation dynamics of the colony maturation experiments, where ants span a variety of ages, as the nest population changes over time, resulting in natural variation in the ages of individuals within the nest.  These results could not have been obtained by performing any of the individual experiments, whether colony maturation or the fixed demographics, young or old, on their own. The need for different age demographics was crucial to quantify the age-dependent effects in nest excavation, which were lacking in previous studies. 

      First, the age-dependent model provides a very good estimate for the natural growth of the nest.  More importantly, after fixing an age threshold of 56 days (mean + standard deviation of the young ant age), the model provides an estimate of which ants are doing the majority of the digging during natural nest expansion. This teaches us that during natural expansion, the older ants are far from their density target and therefore do not engage in any substantial digging, which is shown in Figure 4. C. 

      On the other hand, the younger ants are close to their area targets and induced to dig. Indeed, the target area fitted for the age-independent model closely approximates the empirically measured age-dependent target when extrapolated to very young ants. This provides further support for the idea that, in the colony maturation experiments, the youngest ants are responsible for most of the digging.

      Our model is a simple analytical model, inspired by earlier models that used a fixed area target (such as density models) for nest construction. However, because we knew the precise age of workers in our experiments, we were able to obtain age-dependent area targets, thereby challenging the use of a constant area target (as employed in prior studies) in light of our findings from the fixed demographics of young and old colonies.

      Empirically Quantifiable Parameters: We wanted our model to have empirically quantifiable parameters. Since we did not continuously record the experiment, we could not quantify agent-agent interactions, pheromonal depositions, or similar factors.

      Minimal Model Design: We aimed to keep the model as minimal as possible, which is why we did not include complex interactions such as those found in continuous tracking experiments.

      However, the model does set up some interesting hypotheses that could easily be tested with the experimental setup (e.g., marking the ants / tracking individual activity levels). For instance, it is hypothesized that older ants dig less often, but when they do dig, they do so at the same rate. Given the 2D setup, the authors could track individual ants and test this hypothesis. Also, if the desired target area does decrease with age, the authors could verify this hypothesis by placing older ants into arenas with different-sized pre-formed nests to observe how structure is changed to achieve the desired area/ant.

      We thank the reviewer for this comment.

      We believe that the confusion with the usage of a constant basal digging rate is resolved now. To briefly reiterate, ants dig at variable rates that can be decomposed to a (constant on short time scales but age-dependent) basal rate times the (variable) distance from the density target. The suggested experiments are beyond the scope of our current study, and further studies could utilize the suggested experimental design with better time-resolved imaging for individual ant tracking that could verify the predictions from our model. 

      Specific comments:

      Title:

      The title suggests a broad result, yet the study focuses on one ant species. Please modify the title to more accurately reflect the scope of the work.

      We thank the reviewer for the comment.

      The title is modified as “Colony demographics shape nest construction in Camponotus fellah ants.”

      Introduction:

      Important information and context are missing about this ant species. For instance, please add the following about this species in the introduction:

      What is their natural habitat and substrate? How does the artificial soil compare?

      What is their (rough) colony size? [later, discuss experiment group size choice and potential insights/limitations of results when applied to the natural system].

      The details have been added to the introduction (line numbers : 49-55) and the materials and methods section (Study species).

      “Camponotus fellah ants are native to the Near East and North Africa, particularly found in countries like Israel, Egypt, and surrounding arid and semi-arid regions, where they prefer to nest in moist, decaying wood, including tree trunks, branches, or stumps (49,50). The species lives in monogynous colonies with tens to thousands of individuals. Nests are commonly found in a sand-loamy mix, which is a combination of sand, soil, clay, or gravel, providing structural stability and moisture retention (51). They are typically found under rocks, in the crevices of dried vegetation, or dry, sandy soils, sometimes in areas with loose gravel, with a colony size ranging from tens to thousands of workers”.

      What is the natural life expectancy of a worker? A queen? [later, discuss fixed demographic age choices in this context and/or why were age ranges chosen for experiments?].

      The lifespan of ants, including both queens and workers, varies significantly based on caste, species, and environmental conditions.

      (1) Queen Longevity: From the literature, Camponotus fellah queens can live up to 20 years, with one documented case reaching 26 years (50). 

      (2) Worker Longevity: In contrast to queens, the lifespan of workers is much shorter. Lab studies on Camponotus fellah (82) and other Camponotus species (83) suggest that workers can live for several months depending on environmental conditions, colony health, and caste-specific roles (e.g., minor vs. major workers)

      (3) Laboratory vs. Natural Conditions: Worker longevity is highly variable between laboratory and natural conditions

      Therefore, in the context of the old worker lifespan in our experiments, ~200 days (roughly 6–7 months), we strongly believe that the worker lifespan used in our experiments represents a substantial portion of a worker's expected life. While exact figures for C. fellah workers are unavailable, inferences from related species suggest that workers nearing 200 days are approaching the latter stages of their lifespan, making them meaningfully "old". 

      The details are added to the main text (line numbers: 124-127) and discussion (line numbers: 278-282).

      Why was this species chosen? Convenience, or is there something special about this species that the readers should know? Specifically, is there something that might make the results more general or of broader interest?

      Camponotus fellah was chosen for this study because it is native to Israel, making it convenient to collect and maintain in the lab. Additionally, its nuptial flights occur close to the study location, ensuring a steady supply of colonies. We were able to provide them with a nesting substrate similar to what they naturally use, as their nests are typically found in a sand-loamy mix, similar to the sand-soil mix in our artificial nests. This was possible because we had the opportunity to observe their habitat and nesting behavior in the wild, allowing us to gather preliminary information on their natural nesting conditions.

      Results:

      Line 60: "several brood items" - how many exactly? Was this consistent across experiments? Do mated queens ever produce more pupae during the experiments?

      Yes, the number of brood items (5) was added consistently across the experiments. Additionally, the mated queen did produce pupae during the course of the experiments, which was evident from the noticeable increase in the number of workers in the nest. This was significantly higher than the number of brood items present at the start of the study.

      The above points are added to the section (line numbers : 68-69).

      Figure 1: Panel A - The food ports are never mentioned in the text. Are the ants fed during the experiments? If so, what? With what frequency? Is the water column replenished/maintained? If so, how and how often? panel C - how long did this experiment last?

      We thank the reviewer for pointing this out. We have now updated the nest maintenance section in the Materials and Methods (line numbers : 349-354) part to include all the necessary details and clarifications.

      “We provided food to the ants ad libitum through three separate tubes containing water, 20 % sucrose water, and protein food. The protein mixture included egg powder, tuna, prawns, honey, agar, and vitamins. Each of the three tubes was filled with 5 ml of their respective contents and sealed with a cotton stopper to prevent overflow. The tubes were positioned at a slight angle and connected using a custom-made plexiglass adapter to facilitate the flow of liquids. These tubes were replenished once depleted, and regularly replaced once the nest maintenance was carried out bi-weekly.”

      Line 76: "...excavation was commenced by the founding queen". How were the queen and pupae introduced into the system?

      We initiated colony maturation experiments by introducing a single mated queen and several brood items (pupae) at random positions on the soil layer of the nest (line numbers : 68-69)

      Line 87: Please provide bounds for 11cm2/ant value. Is there any biological or physical justification for this number?

      We thank the reviewer for the suggestion. We have now provided the bounds as requested (line numbers : 97-101). 

      We were unable to pinpoint a specific biological justification based solely on this treatment. However, on extrapolating the age-dependent area fit we derived from the fixed demographics experiment, we found that at the age of 1 day, an ant has a target area of approximately 11.17 cm², which is the largest age-dependent area target possible within our experimental setup.

      From the colony maturation experiment, we obtained the value of  11.6 (±1.15) cm² as the area per ant. The consistency between the area per ant obtained from two completely different treatments across different colonies yielded similar results. We propose that under standardized conditions, a 1-day-old ant has a theoretical maximum target area of 11.17 cm²—the highest value observed in our experimental framework.

      Lines 98-99: "one straightforward possibility would be that newborn ants are the ones that dig". This statement contradicts the results presented in Figures 1 and S1 - the population increase seems to occur at least a few days before increased excavation in nearly all cases.

      We apologize for any confusion caused by our initial phrasing. To clarify, we proposed that a lag likely exists between population growth and nest area expansion. This lag could arise from two sequential processes: (1) newborn ants require time to mature and become active (first delay), and (2) digging to expand the nest takes additional time (second delay; estimated at ~10 days from the cross-correlation analysis). Thus, our results suggest that it is not the population that lags behind the area, but rather the area that lags behind the population, as demonstrated in Figures 2D and SI. Figure. S1.

      The sentence “one straightforward possibility would be that newborn ants are the ones that dig” is modified as below (line numbers : 112-119) to prevent further confusion.

      “One possible explanation is that, although all ants are capable of digging, it is primarily the newly emerged ants who perform this task. In this case, nest expansion would lag behind colony growth due to two delays: first, the time needed for young ants to mature enough to begin digging, and second, the physical time required to excavate additional space (e.g., around 10 days). This mechanism could eliminate the need for ants to assess overall colony density, as each new group of active workers simply enlarges the nest as they become ready. An alternative possibility is that all ants, regardless of age, respond to increased density by initiating excavation. In that scenario, nest expansion would follow more immediately after the emergence of new individuals, making delays less prominent (24, 29, 30)”.

      Line 105: How do group sizes compare to natural colony size? Line 106: How do "young" and "old" classifications compare to natural life expectancy?

      We have already addressed this question in an earlier comment. The details are added to the main text (line numbers: 124-127) and discussion (line numbers: 278-282).

      Line 118-119: How are nests artificially collapsed?

      We have added a new section in the Materials and Methods section that describes the nest collapsing procedure (Nest artificial collapse - line numbers : 386-399).

      Figure 2 Panel A: The white dotted line is nearly impossible to see. Please use a more visible color.

      We thank the reviewer for the comment.

      We changed the solid circles to violet and the dotted line color to continuous white.

      Figure 3: The use of circle markers as post-collapse recovery in young and old as well as old pre-collapse is confusing. Use different symbols for old pre-collapse vs young and old post-collapse.

      We thank the reviewer for pointing out the confusion. We have revised the figure markers as suggested and modified the main text accordingly.

      • Young; pre-collapse : star

      • Young; post-collapse : diamond

      • Old; pre-collapse : circle

      • Old; post-collapse: triangle.

      Figure 3 Panel C: Indicate that fixed demographic values here are pre-collapse. Also, as presented, it appears that there is a large group-size dependence that is not commented on. Previous results (Line 87 and Figure 2C) suggest a constant excavation area per ant of 11cm2/ant. Figure 3, panel C appears to suggest a group-size dependence. If these values are divided by group size, is excavated area per ant nearly constant across groups? How does the numerical value compare to the slope from Figure 2C?

      We thank the reviewer for their insightful comments.

      First, we would like to clarify that the area target of 11.1 (±1) cm²/ant, as described in Line 87, was obtained from the colony maturation experiments. In these experiments, we were unable to track the age of each individual ant, so the area target was calculated by normalizing the total excavated area by the number of ants.

      We normalized the excavated area by the group size for both young and old colonies as suggested, and found that the area per ant was not significantly different across the group sizes (see new SI Fig. 5A). This indicates that the excavated area per ant remains relatively constant within each demographic group. Moreover, this shows that the total excavated area is proportional to group size, in agreement with previous works (24, 29, and 30). 

      We have explicitly described the above information in the line numbers: 142-146

      Regarding the slope comparisons, the slope of Figure 2C (10.71), from the colony maturation experiments, is the largest, followed by the area per ant from the short-term young (8.79 ± 0.98) cm²/ant, and short-term old experiments (5.16 ± 0.44) cm²/ant.

      Lines 128-129: "...younger ants aim to approach a higher target area". Seems hard to know what they "aim" to do... rephrase to report what they are observed to do.

      We thank the reviewer for the comment. The sentence is rephrased as suggested (line numbers : 158-161).

      “In the previous sections, we showed that in fixed-demographics experiments, younger ants excavated a significantly larger nest area compared to older ants (Fig. 3. C).  This difference emerged despite similar temporal patterns in digging rates across age groups, with excavation activity peaking within the first 7 days before asymptotically decaying as nest expansion approached saturation (SI Fig. 8).”

      Lines 133-141: The model description is not clear. Specifically, what parameters are ant-dependent? How does A relate to a?

      We appreciate the reviewer's request for clarification. In our model:

      (1) Equation 1 describes the change in the excavated area due to the digging activity of a single ant. Here, the variable 'a' represents the area excavated by one ant. This formulation allows us to capture the individual digging behavior and its impact on the excavation process.

      (2) Equation 2 extends this concept to the total area excavated in the nest, denoted by 'A'. Specifically, 'A' is the sum of the areas excavated by all ants present in the nest. In other words, it aggregates the individual contributions of each ant, linking the microscopic digging behavior to the macroscopic excavation dynamics.

      Therefore, the relationship between 'a' and 'A' is as follows:

      ●     'a' = Area excavated by a single ant.

      ●     'A' = ∑ 'a' (Summed over all ants in the nest).

      We have explicitly mentioned this in the line numbers “ 161-179”, and describe the model assumptions and parameters in detail.

      Figure 4:

      Figure 4, Panel A: The equation quoted in the caption does not match the data in the figure. The equation has a positive slope and negative intercept, while the figure has a negative slope and a positive intercept. Please provide the correct equation and bounds on fit parameters.

      We thank the reviewer for spotting this typing mistake.

      The equation was already updated in the reviewed preprint published online. The correct equation and the fit bound are provided in the figure caption.

      “Target areas decrease linearly with the ant age (y = −0.032x + 11.22 , 95 % CI (Intercept : (-0.035,-0.027), Slope : (10.53,11.91)), R2 = 0.96 ).”

      Figure 4, Panel A: There seem to be three "fixed target area per ant values" in the paper: around 11cm2/ant (line 87), 11.6 cm2/ant (SI Figure 2), and linearly dependent value from fit to Figure 4A. The distinctions between these values and their significance are hard to keep track of. Can the authors add a discussion somewhere that helps the reader better understand? Is there a way to connect/rationalize/explain these different values in terms of demographics?

      We thank the reviewer for the suggestion.We have added a paragraph in the discussion (line numbers : 270-277) describing the area targets.

      “In our colony maturation experiments, we found that area per ant was highest when the workers were youngest, with values around 11.1–11.6 (±1–1.15). This aligns with observations from naturally growing nests, where newly eclosed ants dominate the population and nest volumes are relatively large. Supporting this, fixed-demographics experiments showed that the area excavated per ant declines linearly with worker age, indicating that the youngest ants contribute most to excavation. Notably, the target area we fit for the age-independent model (11.6 ± 1.15) closely matches the extrapolated value for very young workers (Fig. 4. A), reinforcing the idea that young ants are the primary excavators during early colony growth. In contrast, during events like collapses or displacement, when space is urgently needed, ants of all ages participate in excavation.”

      Figure 4, Panel A: What are various symbols and colors for data with error bars? If consistent with Figure 3, then this panel and subsequent model confound two factors: (1) the age dependence and (2) the behavioral differences pre- and post-collapse (structures are different pre-and post-collapse, according to SI Figure 6; line 120: "...colonies ceased digging when they recovered 93{plus minus}3% of the area lost by the manual collapse..."; lines 201-202: "We find significant quantitative and qualitative differences between nests constructed within this natural context and nests constructed in the context of an emergency") and behavior is different (according to SI Figure 7 and line 119: "...all ants dig after collapse...")). Therefore, without further supporting evidence, it does not seem that these data should be used to fit a single line that defines a model parameter a_age for each ant in equation 2.

      The symbols are the area per ant quantified from the fixed demographics of young, and old experiments. The symbols show the following;

      A.  Star - Young, pre-collapse

      B.  Diamond - Young, post-collapse 

      C.  Circle - Old, pre-collapse

      D.  Triangle - Old, post-collapse.

      The details are clearly described in the figure caption. 

      We apologize to the reviewer for the confusion. We argue that the data can be fit by a single line to quantify the parameter ‘a_age’ as follows. 

      A. All data presented in Figure 4A were obtained from the same fixed-demographics experiments (containing only young and old ants) under experimental collapse conditions, pre- and post-collapse. These results, therefore, exclusively reflect emergency nest-building behaviors during emergency scenarios and do not include any observations from natural colony maturation processes.

      B. Age-dependent excavation differences: As correctly noted by the reviewer, the observed difference in excavated area before versus after collapse reflects the natural aging of ants in our experimental colonies. While colonies recovered >90% of lost area post-collapse, the residual variation was not negligible—instead, it systematically correlated with colony age structure. By tracking colonies across this demographic transition, we obtained additional data points spanning a broader developmental spectrum. This extended range strengthened our ability to detect and quantify the linear relationship between worker age and excavation output.

      C.The quoted sentence (lines 201-202, submitted version) refers to comparisons across all three experimental cases: (1) fixed-demographics young ants, (2) fixed-demographics old ants, and (3) the natural scenario (mixed-age colonies). Importantly, these comparisons are based on pre-collapse steady-state excavation areas, ensuring a consistent baseline across treatments. We highlight quantitative and qualitative differences between these distinct experimental groups, not between pre- and post-collapse phases within the same treatment. The pre- and post-collapse data within fixed-demographics groups were analyzed separately to avoid conflating aging effects with emergency responses.

      To avoid confusion, the whole paragraph in the discussion (line numbers : 253-260) is rephrased.

      In lines 201-202; “We find significant quantitative and qualitative differences between nests constructed within this natural context and nests constructed in the context of an emergency”. 

      Here, by natural context, we mean the nests excavated in the colony maturation experiments. We believe that it could have been confusing, and the sentence is modified as answered for the previous question. 

      Figure 4, Panel B: This uses the model with a_age determined by from Figure 4A and the life table (as shown in the supplemental), whereas the supplemental Figure SI 8 uses the fixed blue line a_age value for the model, which comes from the colony maturation experiments. The age-independent model in the supplemental fits the data better, yet the authors claim the supplemental model cannot be applied to the data because of their experimentally determined age-dependent target area. Given the age-independent target area model fits better, additional evidence/justification is needed to support the choice of the model.

      We agree with the reviewer that the age-independent model fits the data well. However, we believe that the fixed area target cannot be used to explain the excavation dynamics for the following reasons.

      We make an important assumption in our model: that the ants rely on local cues and that individual ants can not distinguish between the fixed demographics and colony maturation experiments (line numbers : 161-166). Given this assumption, the ants cannot change their behavior between experiments, meaning the same model should fit all of our results. However, the fixed demographics experiments revealed a significant difference in the areas excavated by young vs. old cohorts, despite having the same group size. If the ants regulated the excavated area based on an age-independent constant density target model, then the excavated area in the fixed demographics of young and old colonies would have been similar. This discrepancy indicates that the target area per ant is not constant, as assumed in the age-independent density model (SI. Fig. 8). We emphasize that while the age-independent model provides a better fit for the excavated area in colony maturation experiments, the age-dependence of excavation is empirically supported by fixed-demographics experiments. Therefore, we implemented this age-dependence through a variable target area within the age-dependent model framework to explain excavation dynamics in the colony maturation experiments.

      These details are explicitly mentioned in the main text (line numbers : 187 - 198)

      Figure 4, Panel C: Is this plot entirely from the model, or are the data points measured from experiments? Please label this more clearly.

      We apologize to the reviewer for the confusion.

      The Figure 4C is based on the age-dependent digging model. We applied the model to population data from the long-term experiments (n = 22). By setting an age threshold of 56 days (since ants used in the short-term young experiment had an average age of 40 ± 16 days), we categorized the ants into young and old groups. We then quantified the area dug by the young ants, the queen, and the old ants in terms of the percentage of the total area excavated. We hypothesized that, because young ants have a lower digging threshold, they would perform the majority of the digging. We indeed confirm this in Figure 4C.

      This information is added to the main text and described in detail (line numbers: 200 - 208).

      Lines 162-165: "...Furthermore, we quantified the area dug by each ant in the normal colony growth experiment as estimated from the age-dependent model and found that all ants excavated more or less the same amount...". Figure 4D shows a distribution with significant values ranges from 1-16 cm2... how is this interpreted as "more or less the same amount" and what is the significance of this?

      We apologise to the reviewer for the confusion.

      We quantified the percentage contribution to the excavated area of each histogram bin (provided in the new SI table: 4), and found that the area excavated between 5 cm² and 13 cm² accounts for 73.76% of the total excavated area. This indicates that most ants dug within this range rather than exhibiting extreme variations. Additionally, the mean excavation amount is 7.84 cm², with a standard deviation of 3.44 cm², meaning that most values fall between 4.4 cm² and 11.28 cm², which aligns well with the 5–13 cm² range. Since the majority of the excavation is concentrated within this narrow interval, and the mean is well centered within it, this suggests that ants excavated more or less the same amount, rather than forming distinct groups with highly different excavation behaviors.

      We have modified the main text (line numbers: 209-216) to include these points.

      The biological significance of this finding is that since all ants in the colony maturation experiments are born inside the nest, we hypothesize that they should excavate similar amounts. To test this, we quantified the area contribution of each ant over the entire duration of the experiment using the age-dependent digging model as described above and found that they indeed excavated more or less the same amount. From our analysis of fixed demographics experiments, we showed that the youngest ants excavate the largest area. Since the majority of the youngest ants participated in the colony maturation experiments, this further supports our hypothesis.

      Figure 5.

      Figure 5, Panels A-C: Please provide a scale bar. 

      The scale bar is provided in the figure as suggested. The algorithm for the cutoffs for tunnel vs wide tunnels is described in detail in the section “Nest skeletonization, segmentation, and orientation.”

      Figure 5, Panel E: Why does the chamber error bar for 5 ants go to zero?

      In Figure 5, E, we plot the standard error, as described in the figure caption. In the experiments, the chamber area contributions were (0,0,39.94,0) respectively. The mean of the 4 numbers is 9.985, the standard deviation is 19.97, and the standard error is 9.985. So, the mean and the standard error are the same, so the lower error bar goes to zero, and the upper error bar goes to 19.97. This implies that in these experiments, the chamber area is often zero.

      Figure 5, Panel I: Why are there no chambers for young colonies in I when they are in the histogram in E?

      We apologize to the reviewer for the confusion. We initially missed adding the chamber orientation data of the young colonies to Panel I, but it has now been included.

      Line 212: "...densities of ants never become too high...". What is too high? Is there some connection to biological or physical constraints?

      Under normal growth conditions, nest volume is kept proportional to the number of ants, ensuring that the density remains within a specific range. This prevents overcrowding, which could otherwise lead to excessively high densities.

      Yes, we believe there is likely a connection to both biological and physical constraints. The proportional relationship between nest volume and the number of ants is likely driven by factors such as:

      (1) Biological Constraints:

      Ant Colony Size: Ants typically adjust their behavior and social structure to maintain an optimal population size relative to available resources and space.Overcrowding could lead to potentially a breakdown in colony function.

      Colony Health: High densities can lead to faster epidemic spread, leading to negative effects on reproduction, foraging efficiency, and overall colony health. By maintaining density within a specific range, the colony can thrive without these adverse effects.

      (2) Physical Constraints:

      Spatial Limitations: The physical space within the nest limits how many ants can occupy it before space becomes constrained. The nest’s structure and size must physically accommodate the ants, and the volume must be large enough to prevent overcrowding, and efficient resource distribution.

      Lines 272 and 302: How often were photos taken? These two statements seem to suggest different data collection rates.

      As stated in line 272, photos were taken every 1 to 3 days. During each photo session, four photos were taken, with each photo separated by 2 seconds, as mentioned in line 302. To avoid confusion, we rephrased the sentence (line numbers: 359-361).

      “We photographed the nest development every 1-3 days. During each photography session, four pictures of the nest were taken, with a 2-second interval between each.”

      Reviewer #2 (Recommendations for the authors):

      Some more minor points/questions/clarifications:

      This might be pedantic, but I don't think the nest serves as the skeleton of the superorganism, while it does change and grow, the analogy becomes weak beyond that point. The skeleton serves to protect the internal organs of the organism, facilitates movement and muscle attachment, and creates new blood cells. I would be more comfortable with a statement that the nest can grow or shrink according to need.

      We sincerely thank the reviewer for their time and effort in providing a detailed review and assessment of our manuscript. A point-by-point response to the comments is provided below.

      The analogy of treating a nest structure to the skeleton of a superorganism was based on the following points;

      (a) Protection: A nest protects the colony on a collective scale. This is analogous to protecting "organs" by a skeletal framework.

      (b) Organization and Division of Space: The skeletal structure organizes the body's internal layout, just as nest structures are organized into various spatial compartments for various colony functions, with specific regions designated for brood chambers, food storage, and waste disposal.

      Thus, we believe that the analogy can still be valid in a metaphorical way.

      Does this statement need justification with a citation, or is that information contained in the subsequent clause? "However, for more complex structures where ants congregate in specific chambers, workers are less likely to assess the overall nest density." The idea that workers do (or do not) assess overall density touches on many issues, including that of perfect information and adaptive responses, that it seems it needs to be well founded in previous work to be stated in such unequivocal terms.

      We thank the reviewer for this comment. The references for this argument are provided in the next sentence. We have now moved these references to the relevant sentence (reference number: 24, 29,30; line number : 30-31 ) 

      Can you give some more information on this statement? "Experiments were terminated either when the queen died or when she became irreversibly trapped after a structural collapse." Why was this collapse irreversible and therefore unlike treatment 2? Did the queen die in these instances? Was this event more likely than in natural colonies? And if so, was there something inherently different about your experiments that limit interpretation under natural conditions (e.g. the narrow nature of the observation setup? The consistency of the sand?)

      Our nest excavation experiments were terminated under two primary scenarios: (1) the queen died of natural causes, reflecting the baseline mortality expected when queens are brought into laboratory conditions, or (2) the nest experienced a structural collapse that left the queen irreversibly trapped. The second scenario is further elaborated below:

      Irreversible Collapses: These collapses were classified as irreversible because the queen could not be rescued alive. This occurred when the structural stability of the nest failed, burying the queen in a manner that prevented recovery. In some cases, the collapse resulted in the queen's immediate death, while in others, she was trapped beyond reach, and any rescue attempt risked further structural damage.

      Collapse and Experimental Context: These collapses were not uniquely associated with natural colonies or fixed-demographic experiments; rather, they occurred across various experimental setups.

      The sentence is modified as below to improve clarity (line numbers : 70-72 ).

      “In all instances where a collapse resulted in the queen's death or her being irreversibly trapped in the nest, the experiment was excluded from analysis starting from the point of the collapse, as such events did not reflect normal colony dynamics.”

      I want to make sure I understand the following statement: "Moreover, the area excavated by the young cohorts was similar to that excavated by naturally maturing colonies at the point in which they reached the same population size (Tukey's HSD; group size: 5; p = 0.61, group size: 10; p = 0.46, group size: 15; p = 0.20)." Do I have it right that this means a group of (e.g. 10) young ants excavates an area similar to that of a group of 10 naturally maturing ants at the same age as the young ants?

      Yes, the interpretation provided is correct. We apologize to the reviewer for the confusion. We have rephrased the sentence for better readability (line numbers : 146-148).

      “Furthermore, the area excavated by the young cohorts was comparable to that excavated by naturally maturing colonies when they reached the same population size (Tukey's HSD; group size: 5, p = 0.61; group size: 10, p = 0.46; group size: 15, p = 0.20)”

      How old do ants get? Is the 'old' demographic (~200 days) meaningfully old in the context of the overall worker lifespan? While the results certainly demonstrate there is an age effect, I would like to understand how rapid this is in terms of overall lifespan.

      The lifespan of ants, including both queens and workers, varies significantly based on caste, species, and environmental conditions.

      (1) Queen Longevity: From the literature, Camponotus fellah queens can live up to 20 years, with one documented case reaching 26 years. This remarkable longevity underscores the queen's central role in maintaining the colony.

      (2) Worker Longevity: In contrast to queens, the lifespan of workers is much shorter.

      However, specific data on worker longevity in Camponotus fellah colonies are lacking. Studies on other Camponotus species (50, 82) suggest that workers can live for several months depending on environmental conditions, colony health, and caste-specific roles (e.g., minor vs. major workers).

      (3) Laboratory vs. Natural Conditions: Worker longevity is highly variable between laboratory and natural conditions

      Therefore, in the context of the old worker lifespan in our experiments of, ~200 days (roughly 6–7 months) we strongly believe that the worker lifespan used in our experiments represents a substantial portion of a worker's expected life. While exact figures for C. fellah workers are unavailable, inferences from related species suggest that workers nearing 200 days are approaching the latter stages of their lifespan, making them meaningfully "old."

      These details are added to the main text (line numbers : 124 - 127) and to the discussion (line numbers : 278-282)

      Reviewer #3 (Recommendations for the authors):

      We sincerely thank the reviewer for their time and effort in providing a detailed review and assessment of our manuscript. A point-by-point response to the comments is provided below.

      L10: "fixed demographics": I find this term unclear, what does it mean, it should specify if the groups are with or without a queen.

      We thank the reviewer for the comment. The sentence is modified in the abstract, and definitions are later added in detail in the introduction (line numbers : 8-10) and the Materials and Methods section (Fixed demographics colonies). 

      “We experimentally compared nest excavation in colonies seeded from a single mated queen and allowed to grow for six months to excavation triggered by a catastrophic event in colonies with fixed demographics, where the age of each individual worker, including the queen, is known”.

      The details of the “fixed demographics” treatments were explained in the later portion of the text (line numbers: 58-61).

      L36: I think it is documented that younger individuals are the ones who involved in nest construction in many species.

      Previous studies on nest construction were predominantly performed on mature colonies of specific age demographics or rather mixed demographics, where age was not considered as a factor influencing nest construction. Some studies have speculated that young ants could be the most probable ones to dig, but this has not been experimentally verified to the best of our knowledge.

      L50: I do not think the colony should be called mature after only 6 months, given that colonies reach thousands of workers.

      The sentence is changed as suggested (line numbers : 56-57).

      “The "Colony-Maturation" experiment observed the development of colonies up to six months, starting from a single fertile queen and progressing to colonies with established worker populations.” 

      L60: Where was the queen introduced? It is specified in the Methods but a word here would be helpful.

      The detail is added as suggested (line numbers : 68-69).

      “We initiated colony maturation experiments by introducing a single mated queen and several brood items (n = 5, across all experiments) at random positions on the soil layer of the nest.”

      L106: Young vs Old workers 40 vs 171 days. Maybe cite a reference or provide a reason for the selection of those ages?

      Previous studies have shown that the Camponotus fellah queens can live up to 20 years, with one documented case reaching 26 years (50). To the best of our knowledge, specific data on worker longevity in Camponotus fellah colonies in natural conditions are lacking. Lab studies on Camponotus fellah (82) and other Camponotus species (50) suggest that workers can live for several months depending on environmental conditions, colony health, and caste-specific roles (e.g., minor vs. major workers). 

      We intentionally selected workers from two distinct age groups: younger ants (40 ± 16 days old) and older ants (171.56 ± 20 days old). These ages represent functionally different life stages - the younger group had completed about 25% of their expected lifespan at the start of the experiment, while the older group had lived through most of theirs (50, 82). This 4-fold age difference allowed us to compare excavation behaviors across fundamentally different phases of adult life.

      Our experiments lasted for 60-90 days, during which all participating workers continued to age. To ensure all ants remained alive throughout the experiments, and given the constraints of the experimental timeline, we selected young and old workers within the specified age range. 

      These details are added to the main text (line numbers :  124 -127), and the discussion (line numbers  : 278-282)

      L122-123: But usually ants can vary highly in their behaviours. Can the authors comment on their choice to consider an average, implying that all ants of the same age had the same digging rates?

      We thank the reviewer for the comment.

      In our experiments, we could not track each worker's activity over time. As described in the methods, we took snapshots of the nest structure over days and recorded the population size of the nest. Thus, we could not capture the activity of single ants in the nest as described in the response to major comments in the reviewed preprint.

      We agree that individual tracking of ants within our experimental setup would have been the ideal approach. Then, we could have taken the inter-individual variability of the digging activity into account. However, we were limited to doing so by the technical and practical limitations of the setup, such as; 

      (a) Continuous tracking of ants in our nests would have required a camera to be positioned at all times in front of the nest, which necessitates a light background. Since Camponotus fellah ants are subterranean, we aimed to allow them to perform nest excavation in conditions as close to their natural dark environment as possible. Additionally, implementing such a system in front of each nest would have reduced the sample sizes for our treatments.

      (b)The experimental duration of our colony maturation and fixed demographics experiments extended for up to six months (unprecedented durations in these kinds of measurements). These naturally limited our ability to conduct individual tracking while maintaining the identity of each ant based on the current design.

      To clarify this, we have added the following to the discussion (line numbers: 286-292).

      “Previous studies have demonstrated both homogeneous and heterogeneous workload distribution, with varying digging rates among ants (24,29,30,35). Studies showing heterogeneous workload distribution relied on continuous individual tracking of ants to quantify digging rates (35). However, this approach was not feasible in our current design due to the experimental durations of both our colony maturation and fixed demographics experiments. Additionally, sample size requirements naturally limited our ability to conduct continuous individual tracking during nest construction in our study.”

      L171: A line on how the nest structure was acquired and data extracted would be welcome here.

      The algorithm for the nest structure segmentation, data extraction, and analysis is added in detail to the SI section: Nest skeletonization, segmentation, and orientation. The line is modified (line numbers : 221-224) in the main text as suggested.

      “We compared nest architectures by segmenting raw nest images into chambers and tunnels (see SI Section: Nest Skeletonization, Segmentation, and Orientation). Chambers were identified as flat, horizontal structures, while tunnels were narrower and more vertical in orientation (see SI Fig. 9, SI Section: Nest Skeletonization, Segmentation, and Orientation)”.  

      Figure 3: Where does the data of the mean in panel C come from: is it the mean of the first 30 days, before the collapse? How is it comparable with the rest?

      We apologize to the reviewer for the confusion.

      In panel C, the mean values (solid stars and circles) for fixed-demography colonies (young/old groups) represent pre-collapse excavation areas. For colony maturation experiments (where no collapses were induced), we instead plot the mean saturated excavation area for each group size. This allows direct comparison of mean excavated areas across experimental conditions at equivalent colony sizes.

      To improve readability, the following sentences are added to the main text (line numbers : 139 - 146 ) 

      “We compared the saturated excavation areas (pre-collapse) from fixed-demographics experiments (young and old groups) with those from colony maturation experiments of the same colony sizes (Fig. 3C). We find that, for a given age cohort (young or old), the saturation areas increase linearly with the colony size (GLMM, F(35,37); p < 0.0001) (Fig. 3 C, SI. Fig 7 A). The observed proportional scaling between excavated area and group size aligns with previous studies, even though those studies did not explicitly account for age demographics (24, 29, 30). After normalizing the pre-collapse excavated area by group size for both young and old colonies, we found no significant difference in area per ant across group sizes (SI Fig. 5. A). This indicates that the excavated area per ant remains relatively constant within each demographic group”.

      L209-210: I would be more parsimonious in saying that the results presented prove that the target area decreases with age, as the individual behaviour of the ants was not monitored. Suggestion: rephrase to "the target of the group decreases with age".

      The sentence is rephrased as suggested (line numbers : 265-266).

      “Our results reveal that this target area of the group decreases linearly with age, such that young ants are more sensitive to shortages in space.”

      L246: Are C.fellah colonies really found with such few workers?

      Previous studies have speculated that mature Camponotus fellah colonies are a monogynous species typically founded by a single queen following nuptial flights (50,51,82), and can range from tens to thousands of workers. However, during the founding stage (as in our experiments), colonies naturally pass through smaller developmental sizes comparable to the matured colonies.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary:  

      The Szczupak lab published a very interesting paper in 2012 (Rodriquez et al. J Neurophysiol 107:1917-1924) on the effects of the segmentally-distributed non-spiking (NS) cell on crawl-related motoneurons. As far as I can tell, the working model presented in 2012, for how the non-spiking (NS) cell impacts the crawling motor pattern, is the same functional model presented in this new paper. Unfortunately, the Discussion does not address any of the findings in the previous paper or cite them in the context of NS alterations of fictive crawling. Aside from different-looking figures and some new analyses, the results and conclusions are the same. 

      Reviewers #1 and #2 called our attention to our failure to cite the Rodriguez et al. 2012 article in the context of the main goal of the present work. We do now explain how the present study is framed by the published work. See lines 74-79.

      In Rodriguez et al. 2012, we hypothesized that the inhibitory signals onto NS were originated in the motoneuron firing. We now cite this reference in line 104. In the current manuscript we further investigated the connection between the inhibitory signals onto NS and the motoneuron activity (Figure 2) and proved that the hypothesis was wrong. Thus, the model presented here differs from the one proposed in Rodriguez et al. 2012.

      In Rodriguez et al. 2012, we speculated that the inhibitory signals received by NS were transmitted to the motoneurons, but an important control was missing in that study. In the current study depolarization of NS during crawling is tested against a control series that allows to properly examine the hypothesis (lines 138-147). But, most important, because NS is so widely connected with the layer of motoneurons it was necessary to test the effect on other motoneurons during the fictive crawling cycle. We now explain this rationale in lines 249-257.

      Strengths: 

      The figures are well illustrated. 

      Weaknesses:  

      The paper is a mix of what appears to be two different studies and abruptly switches gears to examine how closely the crawl patterning is in the intact animal as compared to the fictive crawl patterning in the intact animal. Unfortunately, previous studies in other labs are not cited even though identical results have been obtained and similar conclusions were made. Thus, the novelty of the results is missing for those who are familiar with the leech preparation. The lack of appropriate citations and discussion of previous studies also deprives the scientific community of fully comprehending the impact of the data presented and the science it was built upon.  

      The main aim of the manuscript is to learn the role of premotor NS neurons in the crawling motor pattern studied using spike sorting in extracellular nerve recordings. This readout allows to  simultaneously monitor a larger number of units  than in any previous study. This approach aims to determine whether and how a recurrent inhibitory peripheral circuit is involved in coordinating or modulating the rhythmic motor pattern.

      Our rationale was that the known effect of NS on one particular motoneuron (DE-3) may have overlooked a more general effect on crawling (lines 253-257). Moreover, we wanted to investigate whether this effect was due to the recurrent inhibitory circuit or if other elements were involved, and to study whether the modulation was mediated by the recurrent synapse between NS and the motoneurons.

      In the context of this aim we studied the rhythmic activity of cell DE-3, together with motoneurons that fire in-phase and anti-phase, in isolated ganglia (Figure 4). To reveal the effect of NS manipulation we applied a quantitative analysis that showed the phase-specific effect of NS (Figure 6). 

      Given that this is the first study using a spike sorting algorithm to detect and describe the activity of motoneurons in nerve recordings we found it reasonable to compare these results with an in vivo study; thus, providing information to the general reader, that supports the correspondence between the ex vivo and the in vivo patterns.

      (1) Results, Lines 167-170: "While multiple extracellular recordings have been performed previously (Eisenhart et al., 2000), these results present the first quantitative analysis of motor units activated throughout the crawling cycle. The In-Phase units are expected to control the contraction stage by exciting or inhibiting the longitudinal or circular muscles, respectively, and the Anti-Phase units to control the elongation stage by exciting or inhibiting the circular or longitudinal muscles, respectively."  

      Reviewer: The first line above is misleading. The study by Puhl and Mesce (2008, J. Neurosci, 28:4192- 420) contains a comprehensive analysis of the motoneurons active during fictive crawling with the aim of characterizing their roles and phase relationships and solidifying the idea that the oscillator for crawling resides in a single ganglion. Intracellular recordings from a number of key crawl-related motoneurons were made in combination with extracellular recordings of motoneuron DE-3, a key monitor of crawling. In their paper, it was shown that motoneurons AE, VE-4, DI-1, VI-2, and CV were all correlated with crawl activity, and fired repeatedly either in phase or out-of-phase with DE-3. They were shown to be either excitatory or inhibitory. At a minimum, the above paper should be cited. 

      The sentence in the submitted manuscript explicitly refers to the quantitative analysis of extracellular recordings, but we recognize that it may lead to confusion. We have now added a clarification (lines 197-199). 

      The article by Puhl and Mesce 2008 shows very nice intracellular recordings of the AE, CV, VE-4, DE-3, DI-1, and Vi-2, accompanied by extracellular recordings of DE-3 in the DP nerve. In all cases, there is only one intracellular recording paired with the DP nerve recording.

      While it is possible to perform up to 3-4 simultaneous intracellular recordings, these are technically challenging, and more so when the recordings have to last 10-20 minutes. Due to this difficulty, and because our objective was to record multiple units simultaneously in order to comprehensively describe the different crawling stages, we implemented the spike sorting analysis on multiple extracellular recordings. This approach enabled us to reliably obtain multiple units per experiment and thus execute a quantitative analysis of the activity of each identified unit.

      The article by Puhl and Mesce 2008 mentions several quantitative aspects of the neurons that fire in-phase or out-of-phase with DE-3, but, as far as we understand, there is no figure that summarizes activity levels and span in the way Figures 4 and 6 do in the current manuscript. To the best of our knowledge, no previous work renders this information.

      It is very important for us to emphasize that the work by Puhl and Mesce was seminal for our research. We cited it four times in the original manuscript and 10 times in the present version. But, like any important discovery, it sets the ground for further work that can refine certain measurements that in the original discovery were not central.

      This is why we believe that the cited sentence in our manuscript is not misleading.  However, to comply with the requirement of Reviewer #1, we added a sentence preceding the mentioned paragraph (lines 185-187) that acknowledges the description made using intracellular recordings, and explains the need for implementing the approach we chose.

      The submitted paper would be strengthened if some of these previously identified motoneurons were again recorded with intracellular electrodes and concomitant NS cell stimulation. The power of the leech preparation is that cells can be identified as individuals with dual somatic (intracellular) and axonal recordings (extracellular). 

      Most of the motoneurons mentioned by Reviewer #1 are located on the opposite side (dorsal) of the ganglion to NS (ventral), and therefore, simultaneous intracellular recordings in the context of fictive crawling are challenging.

      In the publication of Rodriguez et al. 2009, Mariano Rodriguez did manage to record NS from the dorsal side together with DE-3 and MN-L (!) and this led to the discovery that these motoneurons are electrically coupled, but the recurrent inhibitory circuit masks this interaction. Repeating this type of experiments during crawling, which requires stable recordings for around 15 minutes, is not a reasonable experimental setting.

      Rodriguez et al. 2012 shows intracellular recordings of motoneurons AE and CV during crawling in conjunction with NS, and their activity presented the expected correlation. 

      The shortfall of this aspect of the study (Figure 5) is that the extracellular units have not been identified here. 

      The Reviewer is right in that the extracellular units have not been identified in terms of cell identity. As we explained earlier, most motoneurons are on the opposite side (ventral/dorsal) of the ganglion relative to NS. 

      However, we do characterize the units in terms of the nerve through which they project to the periphery and their activity phase. In lines 345-349 we use this information and, based on published work, we propose possible cellular identities of the different units.

      In xfact, these units might not even be motoneurons. 

      We are surprised by this comment. The classical work of Ort and collaborators (1974) showed that spikes detected in extracellular nerve recordings were emitted by specific motoneurons, and several previous publications have validated extracellular nerve recordings as a means to study fictive motor patterns (Wittenberg & Kristan 1992, Shaw & Kristan 1997, Eisenhart et al. 2000).

      For further reassurance, we only took in consideration units whose activity was locked to DE3; any non-rhythmical activity was filtered out (see lines 433-435). 

      They could represent activity from the centrally located sensory neurons, dopamine-modulated afferent neurons or peripherally projecting modulatory neurons. 

      Peripheral nerves also contain axons from sensory neurons. However, in a previous article, we studied the activity of mechanosensory neurons (Alonso et al. 2020) and showed that they remain silent during crawling. Moreover, the low-threshold T sensory neurons are inhibited in phase with DE-3 bursts and NS IPSPs (Kearney et al. 2022). Alonso et al. 2000 showed that spiking activity of T cells affects the crawling motor pattern, revealing the relevance of keeping them silent.

      What does the Reviewer mean by “dopamine-modulated afferents”? We are not aware of this category of leech neurons.

      The neuromodulatory Rz neurons project peripherally through the recorded nerves, but intracellular recordings of these neurons from our lab show no rhythmic activity in those cells during dopamine-induced crawling.

      Essentially, they may not have much to do with the crawl motor pattern at all.

      Does the Reviewer consider that neurons engaged in a coherent rhythmic firing could be unrelated to the pattern? As indicated above, the units reported in our manuscript were selected because dopamine evoked their rhythmic activity, locked to DE-3. 

      Does the Reviewer consider that dopamine could evoke spurious neuronal activity?

      (2) Results Lines 206-210: "with the elongation and contraction stages of in vivo behavior. However the isometric stages displayed in vivo have no obvious counterpart in the electrophysiological recordings. It is important to consider that the rhythmic movement of successive segments along the antero-posterior axis of the animal requires a delay signal that allows the appropriate propagation of the metachronal wave, and this signal is probably absent in the isolated ganglion." 

      Reviewer: The so-called isometric stages, indeed, have an electrophysiological counterpart due in part to the overlapping activities across segments. This submitted paper would be considerably strengthened if it referred to the body of work that has examined how the individual crawl oscillators operate in a fully intact nerve cord, excised from the body but with all the ganglia (and cephalic ganglion) attached. Puhl and Mesce 2010 (J. Neurosci 30: 2373-2383) and Puhl et al. 2012 (J. Neurosci, 32:17646 -17657) have shown that "appropriate propagation of the metachronal wave" requires the brain, especially cell R3b-1. They also show that the long-distance projecting cell R3b-1 synapses with the CV motoneuron, providing rhythmic excitatory input to it.  

      We would like to draw the Reviewer’s attention to the fact that Puhl and Mesce 2008, 2010 and Puhl et al. 2012 characterized crawling in intact (or nearly intact) animals considering the whole body. In our in vivo analysis, we studied the changes in length of the whole animal and of sections demarcated by the drawn points, as described in the Materials and Methods/Behavioral

      Experiments. Because of this different analysis, we defined “isometric” stages as those in which a given section of the animal does not change its length. We now clarify this (line 230).

      In the paragraph cited by the Reviewer, we intended to state that, in the context of our study, the intersegmental lag caused by the coordinating mechanisms has no counterpart “in the electrophysiological recordings of motoneurons in the isolated ganglia”. We have now completed this idea with the expression underlined in the previous sentence (line 231).

      As the Reviewer indicates, in the intact nerve cord the behavioral isometric stages correspond to the “waiting time” between segments. We did refer to the metachronal order but did not cite the articles by Puhl and Mesce 2010 and Puhl et al. 2012; we now do so (lines 234).

      For this and other reasons, the paper would be much more informative and exciting if the impacts of the NS cell were studied in a fully intact nerve cord. Those studies have never been done, and it would be exciting to see how and if the effects of NS cell manipulation deviated from those in the single ganglion.  

      The Reviewer may consider that a systematic analysis of multiple nerves in several ganglia along the whole nerve cord would have been a different enterprise than the one we carried out. The Reviewer is right in recognizing the interest of such study, but in our opinion, the value of the present work lies in presenting a thorough quantitative analysis of multiple nerves to demonstrate its usefulness for the study of the network underlying leech crawling. In this manuscript, we used it to analyze the role of the premotor NS neuron. Without the recording of units firing in-phase and out-ofphase with DE-3, we would have been unable to assess the span of NS effects.

      (3) Discussion Lines 322-324. "The absence of descending brain signals and/or peripheral signals are assumed as important factors in determining the cycle period and the sequence at which the different behavioral stages take place." 

      Reviewer: The authors could strengthen their paper by including a more complete picture of what is known about the control of crawling. For example, Puhl et al. 2012 (J Neurosci, 32:17646-17657) demonstrated that the descending brain neuron R3b-1 plays a major role in establishing the crawlcycle frequency. With increased R3b-1 cell stimulation, DE-3 periods substantially shortened throughout the entire nerve cord. Thus, the importance of descending brain inputs should not be merely assumed; empirical evidence exists.  

      We now strengthen the concept using “known descending brain signals” (line 358) and cite Puhl et al. 2012. We believe that extending the discussion to cell R3b-1 does not contribute meaningfully to the focus of this manuscript.

      (4) Discussion Lines 325-327: "the sequence of events, and the proportion of the active cycle dedicated to elongation and contraction were remarkably similar in both experimental settings. This suggests that the network activated in the isolated ganglion is the one underlying the motor behavior." 

      Reviewer: The results and conclusions drawn in the current manuscript mirror those previously reported by Puhl and Mesce (2008, J. Neurosci, 28:4192- 420) who first demonstrated that the essential pattern-generating elements for leech crawling were contained in each of the segmental ganglia comprising the nerve cord. Furthermore, the authors showed that the duty cycle of DE-3, in a single ganglion treated with dopamine, was statistically indistinguishable from the DE-3 duty cycle measured in an intact nerve cord showing spontaneous fictive crawling, in an intact nerve cord induced to crawl via dopamine, and in the intact behaving animal. What was statistically significant, however, was that the DE-3 burst period was greatly reduced in the intact animal (i.e., a higher crawl frequency), which was replicated in the submitted paper.  

      There is no doubt that the article by Puhl and Mesce 2008 is seminal to the work we present here. The Reviewer seems to suggest that we do not recognize the value of this work. The contrary is true, all our related papers cite this important breakthrough. We cite the paper very early in the article in the Introduction (see lines 51 and 52-53). Likely, we would like the Reviewer to recognize the novelty of the current report. To clarify what has been shown and what is new in our manuscript, considerer the following:

      i. Figures 1-6 in Puhl and Mesce 2008 provide representative intracellular recordings that describe neurons that fire in phase and out of phase relative to DE-3. Some general measurements are given in the text, but none of these figures quantify the relative activity of neurons that fire in different stages; only DE-3 activity was quantified. A quantitative description of multiple units active in phase and out of phase with DE-3 is presented here for the first time, are we wrong? This quantification is particularly relevant when assessing how a treatment affects the function of the circuit.

      ii. Regarding the cycle period, we referred to the work from the Kristan lab, which reported this value long before the requested reference. We now cite Puhl and Mesce 2008 in lines 222 regarding in vivo measurements, and in line 221 regarding isolated ganglia.

      iii. Regarding the duty cycle: 

      Puhl and Mesce 2008 measured the duty cycle of DE-3 in three configurations: a. spontaneous whole cord, b. DA-mediated whole cord and c. DA mediated single ganglion crawling. However, it does not report the duty cycle of neurons out-of-phase with DE-3. Our current manuscript carried out this analysis. One could argue that the silence between DE-3 bursts captures that value, but this is a speculation that needed a proper measure.

      Puhl and Mesce 2008 does not indicate the duty cycle of the contraction and elongation stages in vivo. Our current manuscript does. 

      Therefore, the sentence cited by the Reviewer refers to data presented in this manuscript, and not in any prior manuscript. It is true that Puhl and Mesce 2008 inspire the intuition that the sentence is true, but does not present the data that the current manuscript does.

      Finally, our study focused only on the body sections corresponding to the same segmental range used in the ex vivo experiments, rather than the whole animal. The comparison was made only to validate that the duty cycles of neurons firing in phase and out of phase with DE-3 matched the dynamic stages in the studied sections of the leech (line 364).

      In my opinion, the novelty of the results reported in the submitted manuscript is diminished in the light of previously published studies. At a minimum, the previous studies should be cited, and the authors should provide additional rationale for conducting their studies. They need to explain in the discussion how their approach provided additional insights into what has already been reported.  

      Throughout our reply, we have provided a detailed explanation of the rationale and necessity behind each experiment. Following the Reviewer’s suggestion, we have rephrased the research objectives, included what is known from our previously published work, and highlighted the substantial new data contributed by the present study. See lines 80-85. 

      Additionally, we further cite our published article in lines 93, 104, 138, 146 and 250. 

      Reviewer #2 (Public review):  

      The paper is well-written overall. The findings are clearly presented, and the data seems solid overall. I do have, however, a few major and some minor comments representing some concerns.

      My major comments are below. 

      (1) This may seem somewhat semantic, yet, it has implications on the way the data is presented and moreover on the conclusions drawn - a single ganglion cannot show fictive crawling. It can demonstrate rhythmic patterns of activity that may serve in the (fictive) crawling motor pattern. The latter is a result of the intrinsic within single-ganglion connectivity AND the inter-ganglia connections and interactions (coupling) among the sequential ganglia. It may be affected by both short-range and long-range connections (e.g., descending inputs) along the ganglia chain. 

      Semantics is not a trivial issue in science communication. It entails metaphors that enter the bibliography as commonly used “shortcuts” to a complex concept that are adopted by a community of researchers. And yes, indeed, they can be misleading.

      However, if recording the activity in an isolated ganglion shows that a wide group of motoneurons, that control known muscle movements, presents a rhythmic output that maintains the appropriate cycle period and phase relationships, the “shortcut” is incomplete but could be valid (Puhl and Mesce 2008). If we were to include the phase lag component, a single ganglion cannot generate the fictive motor output.

      Because any new study builds knowledge on the basis of the cited bibliography, the way we name concepts is a sensitive point. Adopting the terminology used by previous publications (Puhl and Mesce 2008) seems important to allow readers to follow the development of knowledge. However, attending the observation made by Reviewer #2, we included a sentence clarifying that the concept “fictive crawling” does not include intersegmental connectivity (lines 54-57)

      (2) The point above is even more critical where the authors set to compare the motor pattern in single ganglia with the intact animals. It would have made much more sense to add a description of the motor pattern of a chain of interconnected ganglia. The latter would be expected to better resemble the intact animal. Furthermore, this project would have benefitted from a three-way comparison (isolated ganglion-interconnected ganglia-intact animal.  

      As we answered to Reviewer #1, the present manuscript does not intend to present a thorough study on how the activity in the isolated nervous system compares with the animal behavior. To do so we would have needed to perform a completely different set of experiments. To better define the relevance of our comparison with the in vivo experiments we rephrased the objective of the behavioral analysis (lines 197-199).

      The main aim of the manuscript is to learn the role of premotor NS neurons in the crawling motor pattern studied using a readout (spike sorting in extracellular nerve recordings) that allows simultaneous screening of a larger number of units than in any previous study, in order to determine whether and how a recurrent inhibitory peripheral circuit is involved in coordinating or modulating the rhythmic motor pattern.

      Our rationale was that the known effect of NS on one particular motoneuron (DE-3) may have overlooked a more general effect on crawling (lines 253-257). Moreover, we wanted to investigate whether this effect was due to the recurrent inhibitory circuit or if other elements were involved, and to study whether the modulation was mediated by the recurrent synapse between NS and the motoneurons.

      In the context of this aim we studied the rhythmic activity of cell DE-3, together with motoneurons that fire in-phase and anti-phase, in isolated ganglia (Figure 4). To reveal the effect of NS manipulation we applied a quantitative analysis that showed the phase-specific effect of NS (Figure 6). 

      Given that this is the first study using a spike sorting algorithm to detect and describe the activity of motoneurons in nerve recordings we found it reasonable to compare these results with an in vivo study; thus, providing information to the general reader, that supports the correspondence between the ex vivo and the in vivo patterns.

      (3) Two previous studies by the same group are repeatedly mentioned (Rela and Szczupak, 2003; Rodriguez et al., 2009) and serve as a basis for the current work. The aim of one of these previous studies was to assess the role of the NS neurons in regulating the function of motor networks. The other (Rodriguez et al., 2009) reported on a neuron (the NS) that can regulate the crawling motor pattern. LL 71-74 of the current report presents the aim of this study as evaluating the role of the known connectivity of the premotor NS neuron in shaping the crawling motor pattern. The authors should make it very clear what indeed served as background knowledge, what exactly was known about the circuitry beforehand, and what is different and new in the current study. 

      Rela and Szczupak 2003 and Rodriguez et al. 2009 analyze the interactions of motoneurons with NS. We believe that Reviewer #2 refers here to Rodriguez et al. 2012. A similar observation was made by Reviewer #1. Below, we copy the answer previously stated:

      Following the Reviewer’s suggestion, we have rephrased the research objectives, included what is known from our previously published work, and highlighted the substantial new data contributed by the present study. See lines 80-85. 

      Additionally, we further cite our published article in lines 93, 104, 138, 146 and 250. 

      Reviewer #1 (Recommendations for the authors):  

      Please edit for correct word usage. 

      Reviewer #2 (Recommendations for the authors):  

      Minor Concerns 

      (1) LL33-36: These lines are somewhat vague and non-informative. Why is the functional organization of motor systems an open question? What are the mechanisms at the level of the nerve cord that are an open question? Maybe be more explicit? 

      We did as suggested (lines 30-32).

      (2) L62: The homology between the NS neurons and the vertebrate Renshaw cells is mentioned already in the Abstract and here again. While a reference is provided (citing the lead author of this current work), the reader would benefit from some further short words of explanation regarding the alleged homology. 

      We included a description of Renshaw cell connectivity (lines 64-65).

      (3) LL90-92: The NS recording in Figure 1 (similar to Figure 3 in Rodriguez et al.) demonstrates clear distinct IPSPs. Could these be correlated with DE-3 spikes? 

      We investigated this correlation in detail and the answer is that there is no strictly a 1:1 DE-3 spike to IPSP correlation. NS receives inputs from other dorsal and ventral excitors of longitudinal muscles, and the NS trace is too “noisy” to reflect any short-term correlation. Originally we proposed that the NS IPSPs were due to the polysynaptic interaction between the MN and NS (Rodríguez et al. 2012). However, the present work demonstrates that the IPSPs in NS are caused by a source upstream from the MNs. 

      (4) LL145-145: Do you mean - inhibitory signals FROM NS premotor neurons? Not clear. 

      We see the confusion, and we rewrote the sentence (lines 164). We hope it is clearer now: “…inhibitory signals onto NS premotor neurons were transmitted to DE-3 motoneurons via rectifying electrical synapses and counteracted their excitatory drive during crawling, limiting their firing frequency.”

      (5) LL153-154: Why isn't AA included in Figure 4A? 

      Reading our original text, the Reviewer #1 is right in expecting to see the AA recording. We changed the sentence: “we performed extracellular recordings of DP along with AA and/or PP root nerves” (lines 171-172).

      We dissected the three nerves but, unfortunately, we did not always obtain good recordings from the three of them.

      (6) LL237-238: The statistical significance (B- antiphase) is not clear. Furthermore, with N of 7-8, I'm not sure the parametric tests utilized are appropriate. 

      Regarding the Reviewer's concern about the tests, please note that all the assumptions made for each model were tested (see now Materials and Methods lines 466-467).The information on each model is provided in Supplementary Table 2 under the column 'Model, random effect,' which specifies whether a Linear Mixed Model (LMM) or a Generalized Linear Mixed Model (GLMM) was implemented. For GLMMs, the corresponding distribution and link function are also specified. For the analysis of Max bFF of Anti-Phase motor units, we found a significant interaction between epoch and treatment, indicating a difference between treatments. This is indicated on the left of the y-axis (##). In control experiments, all three comparisons (pre-test, pre-post, test-post) show significant differences in Max bFF: this variable decreased (slightly but significantly) along the subsequent epochs, suggesting a change over time. We now corrected the text to indicate that these changes were small (line 268). In contrast, Max bFF in depo experiments remained stable between pre-test and pre-post, but significantly decreased between the depo and post epochs. Thus, in our view the comparison between control and the test supports the conclusion that NS depolarization was limited to counteracting this decrease (lines 270-273). Supplementary Table 2 provides the significance and modeled estimated ratio for each comparison in the column for pairwise simple contrasts.

      Thanks to this question, we realized that the nomenclature used in the table for the epochs (pre - depo - post) needed to be changed to pre - test - post, and we have now corrected it.

      (7) LL240-241: I fail to see a difference from Control. 

      For the Relative HW of In-Phase units, we also found a significant interaction between epoch and treatment, indicating a difference between treatments, as denoted to the left of the y-axis (#). Then, the significance of the comparisons across epochs within each treatment are shown in the figure (*). What is important to notice is that obtaining the same significance for each treatment does not imply identical results, but we failed to describe this in our original text and we do now in lines 275-279.

      (8) LL244-245: I must admit that Table 2 is beyond me. Maybe add some detail or point out to the reader what is important (if at all). 

      We have now clarified what each column of the tables indicates in the corresponding legends. 

      Here, we also share an insight into how the experiments were designed and analyzed:

      To account for possible temporal drifts of the variables during the recordings that could mask or confuse the results, we compared two experimental series: one in which NS was subjected to depolarizing current pulses (depo), and another series (ctrl) in which the neurons were not depolarized.

      The statistical analysis was made using Linear Mixed Models (LMMs) or Generalized Linear Mixed Models (GLMMs). In these analyses treatments and epochs are used as explanatory variables to evaluate the interaction between these factors. These models allow us to determine whether changes in each variable across epochs differ depending on the treatment. For example, whether the variation in firing frequency from pre to test to post differs between control experiments and those in which NS was depolarized.

      A significant interaction between treatment and epoch indicates that NS depolarization affected the variable. In such cases, we performed pairwise comparisons between epochs (pre-test, test-post, pre-post) within each treatment. In contrast, the absence of a significant interaction can result from two possibilities: either the variable did not change across epoch in either treatment, or a similar temporal drift occurred in both cases.

      (9) LL245-256: Move this paragraph to the discussion. 

      Because we introduced a rationale for the experiments described in Figure 6 (lines 282-284) the paragraph was mostly removed, but the part that supports the methodological approach was left.

      (10)  LL259-260: see my second minor point above. This is explained in LL270-272 for the first time. 

      We amended according to comment (2).

      (11) Figures: The quantitative analysis shown in Figure 3B is very useful. Why isn't this type of analysis utilized for the comparisons shown in Figures 4 and 6? 

      We chose different ways of plotting the data based on their nature. In Figure 3B, we present data from an identified neuron (DE-3) recorded in different experiments. In contrast, in Figure 6 we analyze data from neurons classified into the same group based on their activity during the fictive crawling cycle, but their individual identity was not ascertained. Therefore, we consider it important to plot the results for each unit individually, to assess the effect of temporal drift and NS depolarization.

      (12) Figures: Figure 7 is meant to be compared to Figure 1C; the point being the addition of an inhibitory connection onto the NS neuron. Why are other details of the figure also different (different colored M)? 

      While Figure 1C illustrates the known connection between NS and both DE-3 and CV motoneurons, Figure 7 shows the connections between NS and the different groups of motor units described in this study. The units are represented in the circuit using the same colors that identify them in Figures 4 and 6. Since the CV motoneuron was not recorded in this study, the circuit represents the AntiPhase neurons but does not identify them with CV. Figure 7 legend now clarifies what the colors represent, and Figure 1C has been updated to match the same color scheme.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This work addresses an important question in the field of Drosophila aggression and mating- prior social isolation is known to increase aggression in males by increased lunging, which is suppressed by group housing (GH). However, it is also known that single-housed (SH) males, despite their higher attempts to court females, are less successful. Here, Gao et al., developed a modified aggression assay, to address this issue by recording aggression in Drosophila males for 2 hours, over a virgin female which is immobilized by burying its head in the food. They found that while SH males frequently lunge in this assay, GH males switch to higher intensity but very low-frequency tussling. Constitutive neuronal silencing and activation experiments implicate cVA sensing Or67d neurons promoting high-frequency lunging, similar to earlier studies, whereas Or47b neurons promote low-frequency but higher intensity tussling. Using optogenetic activation they found that three pairs of pC1 neurons- pC1SS2 increase tussling. While P1a neurons, previously implicated in promoting aggression and courtship, did not increase tussling in optogenetic activation (in the dark), they could promote aggressive tussling in thermogenetic activation carried out in the presence of visible light. It was further suggested, using a further modified aggression assay that GH males use increased tussling and are able to maintain territorial control, providing them mating advantage over SI males and this may partially overcome the effect of aging in GH males.

      Strengths

      Using a series of clever neurogenetic and behavioral approaches, subsets of ORNs and pC1 neurons were implicated in promoting tussling behaviors. The authors devised a new paradigm to assay for territory control which appears better than earlier paradigms that used a food cup (Chen et al, 2002), as this new assay is relatively clutter-free, and can be eventually automated using computer vision approaches. The manuscript is generally well-written, and the claims made are largely supported by the data.

      Thank you for your precise summary of our study, and being very positive on the novelty and significance of the study.

      Weaknesses

      I have a few concerns regarding some of the evidence presented and claims made as well as a description of the methodology, which needs to be clarified and extended further.

      (1) Typical paradigms for assaying aggression in Drosophila males last for 20-30 minutes in the presence of nutritious food/yeast paste/females or all of these (Chen et al. 2002, Nilsen et al., 2004, Dierick et al. 2007, Dankert et al., 2009, Certel & Kravitz 2012). The paradigm described in Figure 1 A, while important and more amenable for video recording and computational analysis, seems a modification of the assay from Kravitz lab (Chen et al., 2002), which involved using a female over which males fight on a food cup. The modifications include a flat surface with a central food patch and a female with its head buried in the food, (fixed female) and much longer adaptation and recording times respectively (30 minutes, 2 hours), so in that sense, this is not a 'new' paradigm but a modification of an existing paradigm and its description as new should be appropriately toned down. It would also be important to cite these earlier studies appropriately while describing the assay.

      We now toned down the description of the paradigm and cited more related references.

      (2) Lunging is described as a 'low intensity' aggression (line 111 and associated text), however, it is considered a mid to high-intensity aggressive behavior, as compared to other lower-intensity behaviors such as wing flicks, chase, and fencing. Lunging therefore is lower in intensity 'relative' to higher intensity tussling but not in absolute terms and it should be mentioned clearly.

      We have modified the description as suggested.

      (3) It is often difficult to distinguish faithfully between boxing and tussling and therefore, these behaviors are often clubbed together as box, tussle by Nielsen et al., 2004 in their Markov chain analysis as well as a more detailed recent study of male aggression (Simon & Heberlein, 2020). Therefore, authors can either reconsider the description of behavior as 'box, tussle' or consider providing a video representation/computational classifier to distinguish between box and tussle behaviors.

      Indeed, we could not faithfully distinguish boxing and tussling. To address this concern, we now made textual changes in the result section we occasionally observed the high-intensity boxing and tussling behavior in male flies, which are difficult to distinguish and hereafter simply referred to as tussling.

      We also added this information in the Materials and Methods section Tussling is often mixed with boxing, in which both flies rear up and strike the opponent with forelegs. Since boxing is often transient and difficult to distinguish from tussling, we referred to the mixed boxing and tussling behavior simply as tussling.

      (4) Simon & Heberlein, 2020 showed that increased boxing & tussling precede the formation of a dominance hierarchy in males, and lunges are used subsequently to maintain this dominant status. This study should be cited and discussed appropriately while introducing the paradigm.

      We now cited this important study in both the Introduction and Discussion sections.

      (5) It would be helpful to provide more methodological details about the assay, for instance, a video can be helpful showing how the males are introduced in the assay chamber, are they simply dropped to the floor when the film is removed after 30 minutes (Figures 1-2)?

      We now provided more detailed description about behavioral assays and how we analyze them. For example All testers were loaded by cold anesthesia. After a 30-minute adaptation, the film was gently removed to allow the two males to fell into the behavioral chamber, and the aggressive behavior was recorded for 2 hours.

      (6) The strain of Canton-S (CS) flies used should be mentioned as different strains of CS can have varying levels of aggression, for instance, CS from Martin Heisenberg lab shows very high levels of aggressive lunges. Are the CS lines used in this study isogenized? Are various genetic lines outcrossed into this CS background? In the methods, it is not clear how the white gene levels were controlled for various aggression experiments as it is known to affect aggression (Hoyer et al. 2008).

      We used the wtcs flies from Baker lab in Janelia Research Campus, and are not sure where they are originated. We appreciate your concern on the use of wild-type strains as they may show different fighting levels, but this study mainly used wild-type strains to compare behavioral differences between SH and GH males. All flies tested in this study are in w+ background, based on w+ balancers flies but are not backcrossed. We have listed detailed genotypes of all tested flies in Table S1 in the revised manuscript.

      (7) How important it is to use a fixed female for the assay to induce tussling? Do these females remain active throughout the assay period of 2.5 hours? Is it possible to use decapitated virgin females for the assay? How will that affect male behaviors?

      We used a fixed female to restrict it in the center of food. These females remain active throughout the assay as their legs and abdomens can still move. Such design intends to combine the attractive effects from both female and food. One can also use decapitated females, but in this case, males can push the decapitated female into anywhere in the behavioral chamber. The logic to use fixed females has now been added in the Materials and Methods section of the revised manuscript.

      (8) Raster plots in Figure 2 suggest a complete lack of tussling in SH males in the first 60 minutes of the encounter, which is surprising given the longer duration of the assay as compared to earlier studies (Nielsen et al. 2004, Simon & Heberlein, 2020 and others), which are able to pick up tussling in a shorter duration of recording time. Also, the duration for tussling is much longer in this study as compared to shorter tussles shown by earlier studies. Is this due to differences in the paradigm used, strain of flies, or some other factor? While the bar plots in Figure 2D show some tussling in SH males, maybe an analysis of raster plots of various videos can be provided in the main text and included as a supplementary figure to address this.

      Indeed, tussling is very low in SH males in our paradigm, which may be due to different genetic backgrounds and behavioral assays. Since tussling behavior is a rare fighting form, it is not surprising to see variation between studies from different labs. Nevertheless, this study compared tussling behaviors in SH and GH males, and our finding that GH males show much more tussling behaviors is convincing. The longer duration of tussling in our paradigm may also be due to the modified behavioral paradigm, which also supports that tussling is a high-level fighting form.

      (9) Neuronal activation experiments suggesting the involvement of pC1SS2 neurons are quite interesting. Further, the role of P1a neurons was demonstrated to be involved in increasing tussling in thermogenetic activation in the presence of light (Figure 4, Supplement 1), which is quite important as the role of vision in optogenetic activation experiments, which required to be carried out in dark, is often not mentioned. However, in the discussion (lines 309-310) it is mentioned that PC1SS2 neurons are 'necessary and sufficient' for inducing tussling. Given that P1a neurons were shown to be involved in promoting tussling, this statement should be toned down.

      Thank you for this important comment. We now toned down the statement on pC1SS2 function.

      (10) Are Or47b neurons connected to pC1SS2 or P1a neurons?

      We conducted pathway analysis in the FlyWire electron microscopy database to investigate the connection between Or47b neurons and pC1 neurons. The results indicate that at least three levels of interneurons are required to establish a connection from Or47b neurons to pC1 neurons. Although the FlyWire database currently only contains neuronal data from female brains, they provide a reference for circuit connect in males.

      (11) The paradigm for territory control is quite interesting and subsequent mating advantage experiments are an important addition to the eventual outcome of the aggressive strategy deployed by the males as per their prior housing conditions. It would be important to comment on the 'fitness outcome' of these encounters. For instance, is there any fitness advantage of using tussling by GH males as compared to lunging by SH males? The authors may consider analyzing the number of eggs laid and eclosed progenies from these encounters to address this.

      Thank you for this suggestion. We agree with you and other reviewers that increased tussling behaviors correlate with better mating competition, but it is difficult for us to make a direct link between them. Thus, in the revised manuscript, we prefer to tone down this statement but not expanding on this part.

      Reviewer #2 (Public review):

      Summary

      Gao et al. investigated the change of aggression strategies by the social experience and its biological significance by using Drosophila. Two modes of inter-male aggression in Drosophila are known lunging, high-frequency but weak mode, and tussling, low-frequency but more vigorous mode. Previous studies have mainly focused on the lunging. In this paper, the authors developed a new behavioral experiment system for observing tussling behavior and found that tussling is enhanced by group rearing while lunging is suppressed. They then searched for neurons involved in the generation of tussling. Although olfactory receptors named Or67d and Or65a have previously been reported to function in the control of lunging, the authors found that these neurons do not function in the execution of tussling, and another olfactory receptor, Or47b, is required for tussling, as shown by the inhibition of neuronal activity and the gene knockdown experiments. Further optogenetic experiments identified a small number of central neurons pC1[SS2] that induce the tussling specifically. In order to further explore the ecological significance of the aggression mode change in group rearing, a new behavioral experiment was performed to examine territorial control and mating competition. Finally, the authors found that differences in the social experience (group vs. solitary rearing) are important in these biologically significant competitions. These results add a new perspective to the study of aggressive behavior in Drosophila. Furthermore, this study proposes an interesting general model in which the social experience-modified behavioral changes play a role in reproductive success.

      Strengths

      A behavioral experiment system that allows stable observation of tussling, which could not be easily analyzed due to its low frequency, would be very useful. The experimental setup itself is relatively simple, just the addition of a female to the platform, so it should be applicable to future research. The finding about the relationship between the social experience and the aggression mode change is quite novel. Although the intensity of aggression changes with the social experience was already reported in several papers (Liu et al., 2011, etc), the fact that the behavioral mode itself changes significantly has rarely been addressed and is extremely interesting. The identification of sensory and central neurons required for the tussling makes appropriate use of the genetic tools and the results are clear. A major strength of the neurobiology in this study is the finding that another group of neurons (Or47b-expressing olfactory neurons and pC1[SS2] neurons), distinct from the group of neurons previously thought to be involved in low-intensity aggression (i.e. lunging), function in the tussling behavior. Further investigation of the detailed circuit analysis is expected to elucidate the neural substrate of the conflict between the two aggression modes.

      Thank you for the acknowledgment of the novelty and significance of the study, and your suggestions for improving the manuscript.

      Weaknesses

      The experimental systems examining the territory control and the reproductive competition in Figure 5 are novel and have advantages in exploring their biological significance. However, at this stage, the authors' claim is weak since they only show the effects of age and social experience on territorial and mating behaviors, but do not experimentally demonstrate the influence of aggression mode change itself. In the Abstract, the authors state that these findings reveal how social experience shapes fighting strategies to optimize reproductive success. This is the most important perspective of the present study, and it would be necessary to show directly that the change of aggression mode by social experience contributes to reproductive success.

      We agree that our data did not directly show that it is the change of aggression mode that results in territory and reproductive advantages in GH males. To address the concern, we have toned down the statement throughout the manuscript. For example, we made textual changes in the abstract as following

      Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success, mitigating the disadvantages associated with aging. Our findings identify distinct sensory and central neurons for two fighting forms and suggest how social experience shapes fighting strategies to optimize reproductive success.

      In addition, a detailed description of the tussling is lacking. For example, the authors state that the tussling is less frequent but more vigorous than lunging, but while experimental data are presented on the frequency, the intensity seems to be subjective. The intensity is certainly clear from the supplementary video, but it would be necessary to evaluate the intensity itself using some index. Another problem is that there is no clear explanation of how to determine the tussling. A detailed method is required for the reproducibility of the experiment.

      Thank you for this important suggestion. We now analyzed duration of tussling and lunging, and found that a lunging event is often very short (less than 0.2s), while a tussling event may last from seconds to minutes. This new data is added as Figure 2G. In addition, we also provided more detailed methods regarding to tussling behavior

      .<br /> Reviewer #3 (Public review):

      In this manuscript, Gao et al. presented a series of intriguing data that collectively suggest that tussling, a form of high-intensity fighting among male fruit flies (Drosophila melanogaster) has a unique function and is controlled by a dedicated neural circuit. Based on the results of behavioral assays, they argue that increased tussling among socially experienced males promotes access to resources. They also concluded that tussling is controlled by a class of olfactory sensory neurons and sexually dimorphic central neurons that are distinct from pathways known to control lunges, a common male-type attack behavior.

      A major strength of this work is that it is the first attempt to characterize the behavioral function and neural circuit associated with Drosophila tussling. Many animal species use both low-intensity and high-intensity tactics to resolve conflicts. High-intensity tactics are mostly reserved for escalated fights, which are relatively rare. Because of this, tussling in the flies, like high-intensity fights in other animal species, has not been systematically investigated. Previous studies on fly aggressive behavior have often used socially isolated, relatively young flies within a short observation duration. Their discovery that 1) older (14-days-old) flies tend to tussle more often than younger (2-days-old) flies, 2) group-reared flies tend to tussle more often than socially isolated flies, and 3) flies tend to tussle at a later stage (mostly ~15 minutes after the onset of fighting), are the result of their creativity to look outside of conventional experimental settings. These new findings are keys for quantitatively characterizing this interesting yet under-studied behavior.

      Precisely because their initial approach was creative, it is regrettable that the authors missed the opportunity to effectively integrate preceding studies in their rationale or conclusions, which sometimes led to premature claims. Also, while each experiment contains an intriguing finding, these are poorly related to each other. This obscures the central conclusion of this work. The perceived weaknesses are discussed in detail below.

      Thank you for the precise summary of the key findings and novelty of the study, and your insightful suggestions.

      Most importantly, the authors' definition of "tussling" is unclear because they did not explain how they quantified lunges and tussling, even though the central focus of the manuscript is behavior. Supplemental movies S1 and S2 appear to include "tussling" bouts in which 2 flies lunge at each other in rapid succession, and supplemental movie S3 appears to include bouts of "holding", in which one fly holds the opponent's wings and shakes vigorously. These cases raise a concern that their behavior classification is arbitrary. Specifically, lunges and tussling should be objectively distinguished because one of their conclusions is that these two actions are controlled by separate neural circuits. It is impossible to evaluate the credibility of their behavioral data without clearly describing a criterion of each behavior.

      Thank you for this very important suggestion. We now provided more detailed description of the two fighting forms in the Materials and Methods section. See below

      Lunging is characterized by a male raising its forelegs and quickly striking the opponent, and each lunge typically lasts less than 0.2 seconds through detailed analysis. Tussling is characterized by both males using their forelegs and bodies to tumble over each other, and this behavior may last from seconds to minutes. Tussling is often mixed with boxing, in which both flies rear up and strike the opponent with forelegs. Since boxing is often transient and difficult to distinguish from tussling, we referred to the mixed boxing and tussling behavior simply as tussling. As we manually analyze tussling for 2 hours for each pair of males, it is possible that we may miss some tussling events, especially those quick ones.

      It is also confusing that the authors completely skipped the characterization of the tussling-controlling neurons they claimed to have identified. These neurons (a subset of so-called pC1 neurons labeled by previously described split-GAL4 line pC1SS2) are central to this manuscript, but the only information the authors have provided is its gross morphology in a low-resolution image (Figure 4D, E) and a statement that "only 3 pairs of pC1SS2 neurons whose function is both necessary and sufficient for inducing tussling in males" (lines 310-311). The evidence that supports this claim isn't provided. The expression pattern of pC1SS2 neurons in males has been only briefly described in reference 46. It is possible that these neurons overlap with previously characterized dsx+ and/or fru+ neurons that are important for male aggressions (measured by lunges), such as in Koganezawa et al., Curr. Biol. 2016 and Chiu et al., Cell 2020. This adds to the concern that lunge and tussling are not as clearly separated as the authors claim.

      Thank you very much for this important question. Indeed, there are many experiments that could do to better understand the function of pC1SS2 neurons, and we only provide the initial characterization of them due to the limited scope of this study. My lab has been focused on studying P1/pC1 function in both male and female flies and will continue to do so.

      To partially address your concern, we made the following revisions

      (1) We provided higher-resolution images of P1a and pC1SS2 (Figure 4C-4E). While their cell bodies are very close, they project to distinct brain regions, in addition to some shared ones.

      (2) By staining these neurons with GFP and co-staining with anti-FruM or anti-DsxM antibodies, we showed that P1a neurons are partially FruM-positive and partially DsxM-positive, while pC1SS2 neurons are DsxM-positive and FruM-negative (Figure 5A-5D).

      (3) As pC1SS2 neurons are DsxM-positive and FruM-negative, we also examined how DsxM regulates the development of these neurons. We found that knocking down DsxM expression in pC1SS2 neurons using RNAi significantly affected pC1 development regarding to both cell numbers (Figure 5G) and their projections (Figure 5H).

      (4) We further found that DsxM in pC1SS2 neurons is crucial for executing their tussling-promoting function, as optogenetic activation of these neurons with DsxM knockdown failed to induce tussling behavior in the initial activation period, and a much lower level of tussling in the second activation period compared to control males (Figure 5I-5K).

      (5) While it is very difficult to identify the upstream and downstream neurons of P1a and pC1SS2 neurons, we made an initial step by utilizing trans-tango and retro-Tango to visualize potential downstream and upstream neurons of P1a and pC1SS2 (Figure 4-figure supplement 2), which certainly needs future investigation.  

      While their characterizations of tussling behaviors in wild-type males (Figures 1 and 2) are intriguing, the remaining data have little link with each other, making it difficult to understand what their main conclusion is. Figure 3 suggests that one class of olfactory sensory neurons (OSN) that express Or47b is necessary for tussling behavior. While the authors acknowledged that Or47b-expressing OSNs promote male courtship toward females presumably by detecting cuticular compounds, they provided little discussion on how a class of OSN can promote two different types of innate behavior. No evidence of a functional or circuitry relationship between the Or47b pathway and the pC1SS2 neurons was provided. It is unclear how these two components are relevant to each other.

      It has been previously found that Or47b-expressing ORNs respond to fly pheromones common to both sexes, and group-housing enhances their sensitivity. Regarding to how Or47b ORNs promotes two different types of innate behaviors, a simple explanation is that they act on multiple second-order and further downstream neurons to regulate both courtship and aggression, not mentioning that neural circuitries for courtship and aggression are partially shared. We did not include this in the discussion as we would like to focus on aggression modes, and how different ORNs (Or47b and Or67d) mediate distinct aggression modes.

      Regarding to the relationship between Or47b ORNs and pC1<sub>SS2</sub> neurons, or in general ORNs to P1/pC1, it is interesting and important to explore, but probably in a separate study. We tried to conduct pathway connection analyses from Or47b to pC1 using the FlyWire database, and found that Or47b neurons can act on pC1 neurons via three layers of interneurons. Although the FlyWire database currently only contains neuronal data from female brains, they can provide a certain degree of reference. We hope the editor and reviewers would agree with us that identifying these intermediate neurons involved in their connection is beyond this study.

      Lastly, the rationale of the experiment in Figure 5 and the interpretation of the results is confusing. The authors attributed a higher mating success rate of older, socially experienced males over younger, socially isolated males to their tendency to tussle, but tussling cannot happen when one of the two flies is not engaged. If, for instance, a socially isolated 14-day-old male does not engage in tussling as indicated in Figure 2, how can they tussle with a group-housed 14-day-old male? Because aggressive interactions in Figure 5 were not quantified, it is impossible to conclude that tussling plays a role in copulation advantage among pairs as authors argue (lines 282-288).

      Indeed, we do not have direct evidence to show it is tussling that makes socially experienced males to dominate over socially isolated males. To address your concern, we have made following revisions

      (1) We toned down the statements about the relationship between fighting strategies and reproductive success throughout the manuscript. For example, in the abstract Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success.

      (2)  Regarding to whether a SH male can engage in tussling with a GH male, we found that while two SH males rarely perform tussling, paired SH and GH males displayed similar levels of tussling like two GH males, although tussling duration from paired SH and GH males is significantly lower compared to that in two GH males (Figure 6-figure supplement 2).

      (3) To support the potential role of tussling in territory control and mating competition, we performed additional experiments to silence Or47b or pC1SS2 neurons that almost abolished tussling, and paired these males with control males. We found that males with Or47b or pC1SS2 neurons silenced cannot compete over control males, further suggesting the involvement of tussling in territory control and mating competition.  

      Despite these weaknesses, it is important to acknowledge the authors' courage to initiate an investigation into a less characterized, high-intensity fighting behavior. Tussling requires the simultaneous engagement of two flies. Even if there is confusion over the distinction between lunges and tussling, the authors' conclusion that socially experienced flies and socially isolated flies employ distinct fighting strategies is convincing. Questions that require more rigorous studies are 1) whether such differences are encoded by separate circuits, and 2) whether the different fighting strategies are causally responsible for gaining ethologically relevant resources among socially experienced flies. Enhanced transparency of behavioral data will help readers understand the impact of this study. Lastly, the manuscript often mentions previous works and results without citing relevant references. For readers to grasp the context of this work, it is important to provide information about methods, reagents, and other key resources.

      Thank you very much for this comment and we almost totally agree.

      (1) Our results suggest the involvement of distinct sensory neurons and central neurons for lunging and tussling, but do not exclude the possibility that they may also utilize shared neurons. For example, activation of P1a neurons promotes both lunging and tussling in the presence of light.

      (2) We have now toned down the statements about the relationship between fighting strategies and reproductive success throughout the manuscript.

      (3) We provided more detailed methods, genotypes of flies to improve transparency of the manuscript.

      Reviewer #1 (Recommendations for the authors):

      (1) Figure 1 Supplement 1 shows that increased aging has a linear and inverse relationship with the number of lunges, this is in contrast to a previous study from Dierick lab (Chowdhury, 2021), where using Divider assays they showed that aggressive lunges increased up to day 10 and subsequently decreased in 30-day old flies. Given that this study did not use 14-day-old flies, it might be useful to comment on this.

      Thank you for this comment. Indeed, Chowdhury et al., suggested a decline of lunging after 10 days, which is not contradictory to our findings that lunging in 14d-old males is lower than that in 7d-old males. It is ideally to perform a time-series experiments to reveal the detailed relationship between ages and aggression (lunging or tussling) levels, but given our initial findings that 14d-old males showed stable tussling behavior, we prefer to use this time point for the rest of this study.

      (2) For Figure 3, do various manipulations also affect the duration of tussling and boxing besides frequency and latency?

      Thank you for this comment. We only analyzed latency and frequency, but not duration, as data analysis was performed manually rather than automatically on every fly pair for about 2 hours, which is very labor-consuming. We hope you could agree with us that the two parameters (frequency and latency) for tussling are representative for assaying this behavior.

      (3) For Figure 3 A-F, the housing status of the males is not clearly mentioned either in the main text or the figure. What is the status of the tussling and lunging status when this housing condition is reversed when Or47b neurons are silenced, or the gene is knocked down? Do these manipulations overcome the effect of housing conditions similar to what is seen in NaChBac-mediated activation experiments?

      Figure 3A-F used group-housed males and we have now added such information in the figure legends as well as Table S1.

      We appreciate your suggestion on using different housing conditions. As silencing Or47b neurons or knocking down Or47b reduced tussling, it is reasonable to use GH males (as we did in Figure 3A-F) that performed stable tussling behavior, but not SH males that rarely tussle.

      (4) The connections between Or47b neurons and pC1SS2 or P1a neurons can be addressed by available connectomic datasets or TransTango/GRASP approaches.

      Thank you for this important suggestion. We used the FlyWire electron microscope database to analyze the pathway connections between these two types of neurons. The results indicated that there are at least three levels of interneurons for connecting Or47b and pC1 neurons. Although the FlyWire database currently only contains neuronal data from female brains, they can provide a certain degree of reference for males.

      The lack of direct synaptic connection also suggests that it is challenging to resolve the connection between these two neuronal types using methods like trans-Tango/GRASP. To partially address this question, we utilized trans-Tango and retro-Tango techniques to visualize potential downstream and upstream neurons of P1a and pC1SS2 (Figure 4-figure supplement 2). Future investigations are certainly needed for clarifying functional connections between Or47b/Or67d and P1a/pC1SS2 neurons.

      (5) Figure 5, 'Winning index' and 'Copulation advance index' while described in Material and Methods, should be referred to in the main text.

      We now described these two indices briefly in the main manuscript, and in the Discussion section with more details.

      (6) Figure 6 shows comparisons for territorial control and mating outcomes where four different housing and aging conditions are organized in a hierarchical sequence. It is not clear from the data in Figure 5, how this conclusion was arrived at. A supplementary table with various outcomes with statistical analysis would help with this.

      We now added a supplementary table (Table S2) with various outcomes with statistical analysis.

      Minor Comments

      (1) Line 26 says that the courtship levels in SH and GH males are not different, however, unilateral wing extension is higher in SH males as compared to GH males (Pan & Baker, 2014; Inagaki et al., 2014), also it was shown that courtship attempts are higher in D. paulsitorium (Kim & Ehrman, 1998). It would be better to clarify this statement.

      Indeed, it is found in some cases that SH males court more vigorously than GH males. We have added more references on this matter in the introduction.

      (2) Figure 4, correct 'Tussing' to 'Tussling' or 'Box, Tussling' as appropriate.

      Corrected.

      (3) Duistermars, 2018 should be cited while discussing the role of vision in aggression (Figure 4). [A Brain Module for Scalable Control of Complex, Multi-motor Threat Displays]

      We now cited this reference and added more discussion in the revised manuscript.

      (4) Reviews on Drosophila aggression and social isolation can be cited in the introduction/discussion to incorporate recent literature e.g., Palavicino-Maggio, 2022 [The Neuromodulatory Basis of Aggression Lessons From the Humble Fruit Fly]; Yadav et al., 2024[Lessons from lonely flies Molecular and neuronal mechanisms underlying social isolation], etc.

      We now cited these references in both the introduction and discussion sections.

      (5) The concentration of apple juice agar should be mentioned in the methods.

      We added this and other necessary information for materials in the Materials and Methods section of the study.

      (6) Source of the LifeSongX software and, if available, a Github link would be helpful to include in the materials and methods section.

      We now provided the source of the LifesongY software (website https//sourceforge.net/projects/lifesongy/), which is a Windows version of LifesongX (Bernstein, Adam S.et al., 1992).

      Reviewer #2 (Recommendations for the authors):

      (1) Major comment 1

      As pointed out in the public review, the weakness of this study is that the relationship between the aggression strategy and reproductive success is an inference that is not based on experimental facts; I understand that the frequency of tussling is not so high, but at least tussling-like behavior can be observed in the territory control experiment shown in Video 3. Wouldn't it be possible to re-analyse data and examine the correlation between aggressive behavior and territory control? Even if the analysis of tussling itself in this setup is difficult, for example, additional experiments using Or47b knock-out fly or pC1[SS2]-inactivated fly could provide stronger support.

      Indeed, we can only make a correlation between the type of aggressive behavior and territory control. We now toned down this statement throughout the manuscript. For example, in the abstract, we changed our conclusions as following

      Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success. Our findings identify distinct sensory and central neurons for two fighting forms and suggest how social experience shapes fighting strategies to optimize reproductive success.

      To further address the concern, we now performed additional experiments to silence Or47b or pC1SS2 neurons that almost abolished tussling, and paired these males with control males. We found that males with Or47b or pC1SS2 neurons silenced cannot compete over control males (Figure 6-figure supplement 3), further suggesting the involvement of tussling in territory control and mating competition.

      In relation to the above, some of the text in the Abstract should be changed.Line 28 These findings "reveal" how social experience shapes fighting strategies to optimise reproductive success.

      "suggest" is more accurate at this stage.

      Changed as suggested.

      (2) Major comment 2

      The tussling is the central subject of this paper. However, neither the main text nor Materials and Methods section provides a clear explanation of how this aggression mode was detected. Did the authors determine this behavior manually? Or was it automatically detected by some kind of image analysis? In either case, the criteria and method for detecting the tussling should be clearly described.

      The behavioral data analysis in this study was performed manually. We now provided more detailed description of the two fighting forms in the Materials and Methods section. See below

      Lunging is characterized by a male raising its forelegs and quickly striking the opponent, and each lunge typically lasts less than 0.2 seconds through detailed analysis. Tussling is characterized by both males using their forelegs and bodies to tumble over each other, and this behavior may last from seconds to minutes. Tussling is often mixed with boxing, in which both flies rear up and strike the opponent with forelegs. Since boxing is often transient and difficult to distinguish from tussling, we referred to the mixed boxing and tussling behavior simply as tussling. As we manually analyze tussling for 2 hours for each pair of males, it is possible that we may miss some tussling events, especially those quick ones.

      For the experimental groups where tussling cannot be observed, the latency is regarded as 120 min, but this is a value depending on the observation time. While it is reasonable to use the latency to evaluate the behavior such as the lunging that is observed at relatively early times, care should be taken when using it to evaluate the tussling. Since similar trends to those obtained for the latency are observed for Number of tussles and % of males performing tussling, it may be better to focus on these two indices.

      We initially intended to provide all three statistical metrics. However, we found that using the "% of males performing tussling" would require a significantly larger sample size for subsequent statistical analysis (using chi-square tests), greatly increasing the workload. At the same time, we believe that the trend observed with "% of males performing tussling" is consistent with the other two indices, and the percentage information can also be derived from the individual sample scatter data of the other two metrics. Therefore, we opted to use "latency" and "numbers" as the statistical metrics, despite the caveat as you mentioned.

      The authors repeatedly mention that tussling is less frequent but more vigorous. The low frequency can be understood from the data in Fig. 1 and Fig. 2, but there are no measured data on the intensity. As the authors mention in line 125, each tussling event appears to be sustained for a relatively long period, as can be seen from the ethogram in Fig. 2. For example, it would be possible to evaluate the intensity by measuring the duration of the tussling event.

      Thank you for your valuable suggestion. We now analyzed duration of tussling and lunging, and found that a lunging event is often very short (less than 0.2s), while a tussling event may last from seconds to minutes, further supporting their relative intensities. This new data is added as Figure 2G.

      (3) Minor comments

      a) Line 117 How many flies were placed in one vial for group-rearing (GH)? Were males and females grouped together? Please specify in the Materials and Methods section.

      We have added this information in the Materials and Methods section. In brief, 30-40 virgin males were collected after eclosion and group-housed in each food vial.

      b) Line 174 The trans-Tango is basically a postsynaptic cell labeling technique. It is unlikely that the labeling intensity changes depending on neuronal activity. Do the authors want to say in this text the high activity of Or47b-expressing neurons under GH conditions? Or are they trying to show that the expression level of the Or47b gene, which is supposedly monitored by the expression of GAL4, is increased by GH conditions? The authors should clarify which is the case.

      Although the primary function of the trans-Tango technique is to label downstream neurons, the original literature indicates that the signal strength in downstream neurons depends on the use of upstream neurons evidenced by age-dependent trans-Tango signals. Therefore, the trans-Tango technique can indirectly reflect the usage of upstream neurons. Our findings that GH males showed broader Or47b trans-Tango signals than SH males can indirectly suggest that group-housing experience acts on Or47b neurons. We made textually changes to clarify this.

      c) Line 178 Which fly line labels the mushroom body; R19B03-GAL4?

      Yes, we now provided the detailed genotypes for all tested flies in the Table S1.

      d) Line 184 It was reported in Koganezawa et al., 2016 that some dsx-expressing pC1 neurons are involved in aggressive behavior. The authors should also refer to this paper as they include tussling in the observed aggressive behavior.

      Thank you for this comment, and we now cited this reference in the revised manuscript.

      e) Line 339 I think you misspelled fruM RNAi.

      Thank you for pointing this out. fruMi refers to microRNAi targeting fruM, and we have now clearly stated this information in the main text.

      f) Line 681 Is tussling time (%) the total duration of tussling occurrences during the observation time? Or is it the percentage of individuals observed tussling during the observation time? This needs to be clarified.

      It is the former one. We now clearly stated this definition in the Materials and Methods section

      Reviewer #3 (Recommendations for the authors):

      For authors to support their conclusion that enhanced tussling among socially experienced flies allows them to better retain resources, it is necessary to quantify aggressive behaviors (mainly tussling and lunging) in Figure 5.

      We agree that we can only make a correlation between enhanced tussling behavior and mating competition. We now toned down this statement throughout the manuscript. For example, in the abstract, we changed our conclusions as following Moreover, shifting from lunging to tussling in socially enriched males is accompanied with better territory control and mating success. Our findings identify distinct sensory and central neurons for two fighting forms and suggest how social experience shapes fighting strategies to optimize reproductive success.

      To further address the concern, we now performed additional experiments to silence Or47b or pC1SS2 neurons that almost abolished tussling, and paired these males with control males. We found that males with Or47b or pC1SS2 neurons silenced cannot compete over control males (Figure 6-figure supplement 3), further suggesting the involvement of tussling in territory control and mating competition.

      In contrast to the authors' data in Figure 4, movies in ref 36 clearly show instances of 2 flies exchanging lunges after the optogenetic activation of P1a neurons, like the examples shown in supplementary movies S1-S3. It is a clear discrepancy that requires discussion (and raises a concern about the lack of transparency about behavioral quantification).

      In our study, optogenetic activation of P1<sup>a</sup> neurons failed to induce obvious tussling behavior, and temperature-dependent activation of P1<sup>a</sup> neurons can only induce tussling in the presence of light. These data are different from Hoopfer et al., (2015), but are generally consistent with a new study (Sten et al., Cell, 2025), in which pC1SS2 neurons but not P1a neurons promote aggression. Such discrepancy has now been discussed in the revised manuscript.

      The authors often fail to cite relevant references while discussing previous results, which compromises the scholarship of the manuscript. Examples include (but are not limited to)

      (1) Line 85-86 Simon and Heberlein, J. Exp. Biol. 223 jeb232439 (2020) suggested that tussling is an important factor for flies to establish a dominance hierarchy.

      Reference added.

      (2) Line 142-143 Cuticular compounds such as palmitoleic acid are characterized to be the ligands of Or47b by ref #18.

      Reference added.

      (3) Line 185-187 pC1SS1 and pC1SS2 are first characterized by ref #46. Expression data of this paper also implies that pC1SS1 and pC1SS2 label different neurons in the male brain.

      We have now added this reference at the appropriate place in the revised manuscript. In addition, we have clarified that these two drivers exhibit sexually dimorphic expression patterns in the brain.

      (4) Line 196-199 Cite ref #36, which describes the behavior induced by the optogenetic activation of P1a neurons.

      Reference added.

      (5) Line 233-235 The authors' observation that control males do not form a clear dominance directly contradicts previous observations by others (Nilsen et al., PNAS 10112342 (2002); Yurkovic et al., PNAS 10317519 (2006); also see Trannoy et al., PNAS 1134818 (2016) and Simon and Heberlein above). The authors must at least discuss why their results are different.

      There is a misunderstanding here. We clearly state that there is a ‘winner takes all’ phenomenon. However, for wild-type males of the same age and housing condition, we calculated the winning index as (num. of wins by unmarked males – num. of wins by marked males)/10 encounters * 100%, which is roughly zero due to the randomness of marking.

      (6) Line 251-254 The authors' observation that aged males are less competitive than younger males contradicts the conclusion in ref #18. Discussion is required.

      We have now added a discussion on this matter. In brief, Lin et al., showed that 7d-old males are more competitive than 2d-old males, which is probably due to different levels of sexual maturity of males, but not a matter of age like our study that used up to 21d-old males.

      (7) Line 274-275 It is unclear which "previous studies" "have found that social isolation generally enhances aggression but decreases mating competition in animal models". Cite relevant references.

      Reference added.

      (8) Line 309-310 The evidence supporting the statement that "there are only three pairs of pC1SS2 neurons". If there is a reference, cite it. If it is based on the authors' observation, data is required.

      We have now provided additional data on the number of pC1SS2 neurons in Figure 5G of the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      The manuscript by Feng et al. reported that the Endothelin B receptor (ETBR) expressed by the satellite glial cells (SGCs) in the dorsal root ganglions (DRG) acted to inhibit sensory axon regeneration in both adult and aged mice. Thus, pharmacological inhibition of ETBR with specific inhibitors resulted in enhanced sensory axon regeneration in vitro and in vivo. In addition, sensory axon regeneration significantly reduces in aged mice and inhibition of ETBR could restore such defect in aged mice. Moreover, the study provided some evidence that the reduced level of gap junction protein connexin 43 might act downstream of ETBR to suppress axon regeneration in aged mice. Overall, the study revealed an interesting SGC-derived signal in the DRG microenvironment to regulate sensory axon regeneration. It provided additional evidence that non-neuronal cell types in the microenvironment function to regulate axon regeneration via cell-cell interaction. 

      However, the molecular mechanisms by which ETBR regulates axon regeneration are unclear, and the manuscript's structure is not well organized, especially in the last section. Some discussion and explanation about the data interpretation are needed to improve the manuscript. 

      We thank the reviewer for the positive comments. We agree that the mechanisms by which ETBR signaling functions as a brake on axon growth and regeneration remain to be elucidated. We believe that unraveling the detailed molecular pathways downstream of ETBR signaling in SGCs that promote axon regeneration is beyond the scope of this manuscript. Answering these questions would first require cell specific KO of ETBR and Cx43 to confirm that this pathway is operating in SGCs to control axon regeneration. We would also need to identify how SGCs communicate with neurons to regulate axon regeneration, which is a large area of ongoing research that remains poorly understood. Our data showing that pharmacological inhibition of ETBR with specific FDA-approved inhibitors enhances sensory axon regeneration provide not only new evidence for non-neuronal mechanisms in nerve repair, but also a new potential clinical avenue for therapeutic intervention.

      As suggested by the reviewer, we have extensively revised the organization of the manuscript, especially the last section of results. We have performed additional snRNAseq experiments to establish the impact of aging in DRG. We have also performed additional experiments to determine if blocking ETBR improves target tissue reinnervation. Following the reviewer’s suggestion, we have also expanded the Discussion section to discuss alternative mechanisms and o]er additional interpretation of our data. Below we describe how we address each point in detail.

      (1) The result showed that the level of ETBR did not change after the peripheral nerve injury. Does this mean that its endogenous function is to limit spontaneous sensory axon regeneration? In other words, the results suggest that SGCs expressing ETBR or vascular endothelial cells expressing its ligand ET-1 act to suppress sensory axon regeneration. Some explanation or discussion about this is necessary. Moreover, does the protein level of ETBR or its ligand change during aging?  

      We thank the reviewer for this point. Our results indeed indicate that one endogenous function of ETBR is to limit the extent of sensory axon regeneration. This may be a part of a mechanism to limit spontaneous sensory axon growth or plasticity and maladaptive neural rewiring after nerve injury. While the increased growth capacity of damaged peripheral axons can lead to reconnection with their targets and functional recovery, the increased growth capacity can also lead to axonal sprouting of the central axon terminals of injured neurons in the spinal cord, and to pain (see for example Costigan et al 2010, PMID: 19400724).  In the context of aging that we describe here, this protective mechanism may hinder beneficial recovery. Other mechanisms that slow axon regeneration have been reported, and include, for example, axonally synthesized proteins, which typically support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this process. One such RBP, the RNA binding protein KHSRP is locally translated following nerve injury. Rather than promoting axon regeneration, KHSRP promotes decay of other axonal mRNAs and slows axon regeneration.  Another example includes the Rho signaling pathway, which was shown to function as an inhibitory mechanism that slows the growth of spiral ganglion neurites in culture. We have now included these examples in the Discussion section.

      To address the reviewer’s second question, we have checked protein levels of ETBR and ET-1 in adult and aged DRG tissue. We observed a robust increase in ET-1 in aged DRG, while the levels of ETBR did not appear to change significantly. These results are now presented in Figure 4- Figure Supplement 1, and further support the notion that in aging, activation of the ETBR signaling hinders axon regeneration.

      (2) In ex vivo experiments, NGF was added to the culture medium. Previous studies have shown that adult sensory neurons could initiate fast axon growth in response to NGF within 24 hours. In addition, dissociated sensory neurons could also initiate spontaneous regenerative axon growth without NGF after 48 hours. Some discussion or rationale is needed to explain the di]erence between NGF-induced or spontaneous axon growth of culture adult sensory neurons and the roles of ETBR and SGCs. 

      We appreciate the reviewer’s suggestion. In adult DRG explant or dissociated cultures, NGF is not typically required for survival or axon outgrowth. However, in dissociated culture, the addition of NGF to the medium stimulates growth from more neurons compared to controls (Smith and Skene 1997). In the DRG explant, NGF does not promote significant e]ects on axon growth, but stimulates glial cell migration (Klimovich et al 2020). We opted to included NGF in our explant assay to increase the potential of stimulating axon regeneration with pharmacological manipulations of ETBR. We have now clarified these considerations in the Method section.

      (3) In cultured dissociated sensory neurons, inhibiting ETBR also enhanced axon growth, which meant the presence of SGCs surrounding the sensory neurons. Some direct evidence is needed to show the cellular relationship between them in culture.  

      We thank the reviewer for raising this point and have added new data, now presented in Figure 2B, to show that in mixed DRG cultures, SGCs labeled with Fabp7 are present in the culture in proximity to neurons labeled with TUJ1, but they do not fully wrap the neuronal soma. These results are consistent with prior findings reporting that as time in culture progresses, SGCs lose their adhesive contacts with neuronal soma and adhere to the coverslip (PMID: 22032231, PMID: 27606776).  While in some cases SGCs can maintain their association with neuronal soma in the first day in culture after plating, in our hands, most SGCs have left the soma at the 24h time point we examined. 

      (4) In Figure 3, the in vivo regeneration experiments first showed enhanced axon regeneration either 1 day or 3 days after the nerve injury. The study then showed that inhibiting ETBR could enhance sensory axon growth in vitro from uninjured naïve neurons or conditioning lesioned neurons. To my knowledge, in vivo sensory axon regeneration is relatively slow during the first 2 days after the nerve injury and then enters the fast regeneration mode on the 3rd day, representing the conditioning lesion e]ect in vivo. Some discussion is needed to compare the in vitro and the in vivo model of axon regeneration. 

      We agree that axon growth is relatively slow the first 2 days and enters a fast growth mode on day 3. This has been elegantly demonstrated in Shin et al Neuron 2012 (PMID: 22726832), where an in vivo conditioning injury 3 days prior increases axon growth one day after injury. In vitro, similar e]ects have been described: a prior in vivo injury accelerates growth capacity within the first day in culture, but a similar growth mode occurs in naive adult neurons after 2-3 days in vitro (Smith and Skene 1996). We also know that the neurite growth in culture is stimulated by higher cell density, likely because non-neuronal cells can secrete trophic factors (Smith and Skene 1996). Our in vitro results thus suggest that blocking ETBR in SGCs in these mixed cultures may alter the media towards a more growth promoting state. In vivo, our data show that Bosentan treatment for 3 days partially mimics the conditioning injury and potentiate the e]ect of the conditioning injury. One possible interpretation is that inhibition of ETBR alters the release of trophic factors from SGCs. Future studies will be required to unravel how ETBR signaling influence the SGCs secretome and its influence on axon growth. We have now included these discussions points in the Results and Discussion Section.

      (5) In Figure 5, the study showed that the level of connexin 43 increased after ETBR inhibition in either adult or aged mice, proposing an important role of connexin 43 in mediating the enhancing e]ect of ETBR inhibition on axon regeneration. However, in the study, there was no direct evidence supporting that ETBR directly regulates connexin 43 expression in SGCs. Moreover, there was no functional evidence that connexin 43 acted downstream of ETBR to regulate axon regeneration.  

      We thank the reviewer for this point and agree that we do not provide direct evidence that connexin 43 acts downstream of ETBR to regulate axon regeneration. To obtain such functional evidence would require selective KO of ETBR and Cx43 in SGCs, which we believe is beyond the scope of the current study. We have revised the Results and Discussion sections to emphasize that while we observe that ETBR inhibition increases Cx43 levels and Cx43 levels correlates with axon regeneration, whether Cx43 directly mediates the e]ect on axon regeneration remains to be established.  We also discuss potential alternative mechanisms downstream of ETBR in SGCs that could contribute to the observed e]ects on axon regeneration. Specifically, we discuss the possibility that  ETBR signaling may limit axon regeneration via regulating SGCs glutamate reuptake functions, because of the following reasons: 1) Similarly to astrocytes, glutamate uptake by SGCs is important to regulate neuronal function, 2) exposure of cultured cortical astrocytes to endothelin results in a decrease in glutamate uptake that correlates with a major loss of basal glutamate transporter expression (GLT-1 and1), 3) Both glutamate transporters are expressed in SGCs in sensory ganglia 4) GLAST and glutamate reuptake function is important for lesion-induced plasticity in the developing somatosensory cortex. 

      Reviewer #2 (Public Review): 

      Summary: 

      In this interesting and original study, Feng and colleagues set out to address the e]ect of manipulating endothelin signaling on nerve regeneration, focusing on the crosstalk between endothelial cells (ECs) in dorsal root ganglia (DRG), which secrete ET-1 and satellite glial cells (SGCs) expressing ETBR receptor. The main finding is that ETBR signaling is a default brake on axon growth, and inhibiting this pathway promotes axon regeneration after nerve injury and counters the decline in regenerative capacity that occurs during aging. ET-1 and ETBR are mapped in ECs and SGCs, respectively, using scRNA-seq of DRGs from adult or aged mice. Although their expression does not change upon injury, it is modulated during aging, with a reported increase in plasma levels of ET-1 (a potent vasoconstrictive signal). Using in vitro explant assays coupled with pharmacological inhibition in mouse models of nerve injury, the authors demonstrate that ET-1/ETBR curbs axonal growth, and the ETAR/ETBR antagonist Bosentan boosts regrowth during the early phase of repair. In addition, Bosentan restores the ability of aged DRG neurons to regrow after nerve lesions. Despite Bosentan inhibiting both endothelin receptors A and B, comparison with an ETAR-specific antagonist indicates that the e]ects can be attributed to the ET-1/ETBR pathway. In the DRGs, ETBR is mostly expressed by SGCs (and a subset of Schwann cells) a cell type that previous studies, including work from this group, have implicated in nerve regeneration. SGCs ensheath and couple with DRG neurons through gap junctions formed by Cx43. Based on their own findings and evidence from the literature, the pro-regenerative e]ects of ETBR inhibition are in part attributed to an increase in Cx43 levels, which are expected to enhance neuron-SGC coupling. Finally, gene expression analysis in adult vs aged DRGs predicts a decrease in fatty acid and cholesterol metabolism, for which previous work by the authors has shown a requirement in SGCs to promote axon regeneration. 

      Strengths: 

      The study is well-executed and the main conclusion that "ETBR signaling inhibits axon regeneration after nerve injury and plays a role in age-related decline in regenerative capacity" (line 77) is supported by the data. Given that Bosentan is an FDA-approved drug, the findings may have therapeutic value in clinical settings where peripheral nerve regeneration is suboptimal or largely impaired, as it often happens in aged individuals. In addition, the study highlights the importance of vascular signals in nerve regeneration, a topic that has gained traction in recent years. Importantly, these results further emphasize the contribution of longneglected SGCs to nerve tissue homeostasis and repair. Although the study does not reach a complete mechanistic understanding, the results are robust and are expected to attract the interest of a broader readership. 

      We thank the reviewer for the positive comments, especially in regard to the rigor and originality of our study.

      Weaknesses: 

      Despite these positive comments provided above, the following points should be considered: 

      (1) This study examines the contribution of the ET-1 pathway in the ganglia, and in vitro assays are consistent with the idea that important signaling events take place there. Nevertheless, it remains to be determined whether the accelerated axon regrowth observed in vivo depends also on cellular crosstalk mediated by ET-1 at the lesion site. Are ECs along the nerve secreting ET-1? What cells are present in the nerve stroma that could respond and participate in the repair process? Would these interactions be sensitive to Bosentan? It may be di]icult to dissect this contribution, but it should at least be discussed.  

      We thank the reviewer for this important point and agree that the in vivo e]ects observed cannot rule out the contribution of ECs or SCs at the lesion site in the nerve. Dissecting the contribution of ETBR expressing cells in the nerve would require cell-specific manipulations that go beyond the scope of this manuscript. We have revised the Discussion section to highlight the potential contribution of ECs, fibroblast and SCs in the nerve.  

      (2) It is suggested that the permeability of DRG vessels may facilitate the release of "vascularderived signals" (lines 82-84). Is it possible that the ET-1/ETBR pathway modulates vascular permeability, and that this, in turn, contributes to the observed e]ects on regeneration?  

      We thank the reviewer for raising this interesting point. ET-1 can have an impact on vascular permeability. It was indeed shown that in high glucose conditions, increased trans-endothelial permeability is associated with increased Edn1, Ednra and Ednrb expression and augmented ET1 immunoreactivity (PMID: 10950122). It is thus possible that part of the e]ects observed results from altered vascular permeability. We have included this point in the Discussion section. Future experiments will be required to test how injury and age a]ects vascular permeability in the DRG.

      (3) Is the a]inity of ET-3 for ETBR similar to that of ET-1? Can it be excluded that ET-3 expressed by fibroblasts is relevant for controlling SGC responses upon injury/aging?  

      We thank the reviewer for raising this point. ET-1 binds to ETAR and ETBR with the same a]inity, but ET3 shows a higher a]inity to ETBR than to ETAR (Davenport et al. Pharmacol. Rev 2016 PMID: 26956245). We attempted to examine ET-3 level in adult and aged DRG by western blot, but in our hands the antibody did not work well enough, and we could not obtain clear results. We thus cannot exclude the possibility that ET-3 released by fibroblasts contribute to the e]ects we observe on axon regeneration. Indeed, in cultured cortical astrocytes, application of either ET-1 or ET-3 leads to inhibition of Cx43 expression. We have revised the text in the Discussion section to highlight the possibility that both ET-1 and ET-3 could participate on the ETBRdependent e]ect on axon regeneration.

      (4) ETBR inhibition in dissociated (mixed) cultures uncovers the restraining activity of endothelin signaling on axon growth (Figure 2C). Since neurons do not express ET-1 receptors, based on scRNA-seq analysis, these results are interpreted as an indication that basal ETBR signaling in SGC curbs the axon growth potential of sensory neurons. For this to occur in dissociated cultures, however, one should assume that SGC-neuron association is present, similar to in vivo, or to whole DRG cultures (Figure 2C). Has this been tested?

      We thank the reviewer for this point. In dissociated DRG culture, neurons, SGCs and other nonneuronal cells are present, but SGCs do not retain the surrounding morphology as they do in vivo. Within 24 hours in culture, SGCs lose their adhesive contacts with neuronal soma and adhere to the coverslip (PMID: 22032231, PMID: 27606776).  We have included new data in Figure 2B to show that in our culture conditions, SGCs are present, but do not wrap neurons soma as they do in vivo. We also know from prior studies that the density of the culture a]ects axon growth, an e]ect that was attributed to trophic factors released from non-neuronal cells (Smith and Skene 1997). Therefore, although SGCs do not surround neurons, the signaling pathway downstream of ETBR may be present in culture and contribute to the release of trophic factors that influence axon growth. We have revised the Results section to better explain our in vitro results and their interpretation.

      In both in vitro experimental settings (dissociated and whole DRG cultures) how is ETBR stimulated over up to 7 days of culture? In other words, where does endothelin come from in these cultures (which are unlikely to support EC/blood vessel growth)? Is it possible that the relevant ligand here derives from fibroblasts (see point #6)? Or does it suggest that ETBR can be constitutively active (i.e., endothelin-independent signaling)? Is there any chance that endothelin is present in the culture media or Matrigel? 

      We thank the reviewer for raising this point.  Our single-cell data indicate that ET-1 is expressed by endothelial cells and ET-3 by fibroblasts. In dissociated DRG culture at 24h time point, all DRGs cells are present, including endothelial cells and fibroblasts, and could represent the source of ET-1 or ET-3. In the explant setting, it is also possible that both ET-1 and ET-3 are released by endothelial cells and fibroblasts during the 7 days in culture. According to information for the suppliers, endothelin is not present neither in the culture media nor in the Matrigel. While mutations can facilitate the constitutive activity of the ETBR receptor, we are not aware of data showing that endogenous ETBR can be constitutively active.  Because the molecular mechanisms governing ETBR -mediated signaling remain incompletely understood (see for example PMID: 39043181, PMID: 39414992) future studies will be required to elucidate the detailed mechanisms activating ETBR in SGCs and its downstream signaling mechanisms.  We have now expanded the Results and discussion sections to clarify these points. 

      (5) The discovery that ET-1/ETBR signaling in SGC curtails the growth capacity of axons at baseline raises questions about the physiological role of this pathway. What happens when ETBR signaling is prevented over a longer period of time? This could be addressed with pharmacological inhibitors, or better, with cell-specific knock-out mice. The experiments would certainly be of general interest, although not within the scope of this story. Nevertheless, it could be worth discussing the possibilities. 

      We agree that this is an interesting point. As mentioned above in response to point #1 of reviewer 1, the physiological role of this pathway could be to limit plasticity and prevent maladaptive neural rewiring that can happen after injury (Costigan et al 2009, PMID: 19400724), but can also hinder beneficial recovery after injury. Other mechanisms that limit axon regeneration capacity have been described and involve local mRNA translation and Rho signaling. We have revised the Discussion section to include these points. We agree that understanding the consequence of blocking ETBR over longer time periods is beyond the scope of the current study, but we now discuss the possibility that blocking ETBR with a cell specific KO approach could unravel its physiological function on target innervation and behavior. 

      (6) Assessing Cx43 levels by measuring the immunofluorescence signal (Figure 5E-F) is acceptable, particularly when the aim is to restrict the analysis to SGCs. The modulation of Cx43 expression by ET-1/ETBR plays an important part in the proposed model. Therefore, a complementary analysis of Cx43 expression by quantitative RT-PCR on sorted SGCs would be a valuable addition to the immunofluorescence data. Is this attainable? 

      We agree and have attempted to perform these types of experiments but encountered technical di]iculties. We attempted to sorting SGCs from transgenic mice in which SGCs are fluorescently labeled. However, the cells did not survive the sorting process and died in culture.  We think that increasing the viability of cells after sorting would require capillary- free fluorescent sorting approaches. However, we do not currently have access to such technology. We attempted this experiment with cultured SGCs, following a previously published protocol (Tonello et al. 2023 PMID: 38156033). In these experiments, SGCs are cultured for 8 days to obtain purity. We did not observe any di]erence in Cx43 protein or mRNA level upon treatment with ET-1 with or without BQ788. However, in these SGCs cultures, Cx43 displayed a di]use localization, rather than puncta as observed in vivo. Therefore, despite our multiple attempts, quantifying Cx43 on sorted or purified SGCs was not attainable.

      (7) The conclusions "We thus hypothesize that ETBR inhibition in SGCs contributes to axonal regeneration by increasing Cx43 levels, gap junction coupling or hemichannels and facilitating SGC-neuron communication" (lines 303-305) are consistent with the findings but seem in contrast with the e]ect of aging on gap junction coupling reported by others and cited in line 210: "the number of gap junctions and the dye coupling between these cells increases (Huang et al., 2006)". I am confused by what distinguishes a potential, and supposedly beneficial, increase in coupling after ETBR inhibition, from what is observed in aging. 

      We agree that the aging impact of Cx43 level and gap junction number appears contradictory. Procacci et al 2008 reported that Cx43 expression in SGCs decreases in the aged mice. Huang et al 2006 report that both the number of gap junctions and the dye coupling between these cells were found to increase with aging. Procacci et al suggested as a possible explanation for this apparent discrepancy that additional connexin types other than Cx43 may contribute to the gap junctions between SGCs in aged mice. Our snRNAseq data did not allow us to verify this hypothesis, because there were less SGCs in aged mice compared to adult, and connexin genes were detected in only 20% or less of SGCs.  Furthermore, our quantification did not look specifically at gap junctions, but just at Cx43 puncta. Cx43 can also form hemichannels in addition to gap junctions, and can also perform non-channel functions, such as protein interaction, cell adhesion, and intracellular signaling. Thus, more research examining the role of Cx43 in SGCs is necessary to address this discrepancy in the literature. We have expanded the Discussion section to include these points. 

      (8) I find it di]icult to reconcile the results in Figure 5F with the proposed model since (1) injury increases Cx43 levels in both adult and aged mice, (2) the injured aged/vehicle group has a similar level to the uninjured adult group, (3) upon injury, aged+Bosentan is much lower than adult+Bosentan (significance not tested). It seems hard to explain the e]ect of Bosentan only through the modulation of Cx43 levels. Whether the increase in Cx43 levels following ETBR inhibition actually results in higher SGC-neuron coupling has not been assessed experimentally. 

      We thank the reviewer for this point and agree that the e]ect of Bosentan is likely not exclusively through the modulation of Cx43 levels in SGCs, and that Cx43 levels may simply correlate with axon regenerative capacity. We have revised the manuscript to clarify this point.  We have also added the missing significance test in Figure 5F.

      Cell specific KO of Cx43 and ETBR would allow to test this hypothesis directly but is beyond the scope of the current study. We have not tested SGCs-neuron coupling, as these experiments are currently beyond our area of expertise. Cx43 has also other functions beyond gap junction coupling, such as protein interaction, cell adhesion, and intracellular signaling. Investigating the precise function of Cx43 would require in depth biochemical and cell specific experiments that are beyond the scope of this study. Furthermore, as we now mentioned in response to reviewer #2 point 5, ETBR signaling may also have other downstream e]ects in SGCs, such as glutamate transporters expression, or a]ect other cells in the nerve during the regeneration process. We have revised the Discussion section to include these alternative mechanisms.

      Reviewer #3(Public Review): 

      Summary: 

      This manuscript suggests that inhibiting ETBR via the FDA-approved compound Bosentan can disrupt ET-1-ETBR signalling that they found detrimental to nerve regeneration, thus promoting repair after nerve injury in adult and aged mice. 

      Strengths: 

      (1) The clinical need to identify molecular and cellular mechanisms that can be targeted to improve repair after nerve injury. 

      (2) The proposed mechanism is interesting. 

      (3) The methodology is sound. 

      We thank the reviewer for highlighting the strengths of our study

      Weaknesses: 

      (1) The data appear preliminary and the story appears incomplete. 

      We appreciate the reviewer’s point. We would like to emphasize that our results provide compelling evidence that ETBR signaling is a default brake on axon growth, and inhibiting this pathway promotes axon regeneration after nerve injury and counters the decline in regenerative capacity that occurs during aging. We also provide evidence that ETBR signaling regulates the levels of Cx43 in SGCs. Furthermore, our results document the use of an FDA approved compound to increase axon regeneration may be of interest to the broader readership, as there is currently no therapies to improve or accelerate nerve repair after injury. We agree that the detailed mechanisms operating downstream of ETBR will need to be elucidated. Answering these questions would first require cell specific KO of ETBR and Cx43 to confirm that this pathway is operating in SGCs to control axon regeneration. We would also need to identify how SGCs communicate with neurons to regulate axon regeneration, which is a large area of ongoing research that remains poorly understood. This extensive and highly complex set of experiments is beyond the scope of the current study. As we discussed in our response to reviewer #1 and #2 we attempted to perform numerous additional experiments to better define the role of ETBR signaling in SGCs in aging and have included additional results in Fig. 2B, Fig 3G-H,  Fig 5A-E, and Figure 4- Figure Supplement 1and Figure 5- Figure Supplement 1. We have expanded the

      Discussion to acknowledge the limitation of our study and to discuss possible mechanisms.  

      (2) Lack of causality and clear cellular and molecular mechanism. There are also some loose ends such as the role of connexin 43 in SGCs: how is it related to ET-1- ETBR signalling?  

      We thank the reviewer for this point and agree that the molecular mechanisms downstream of ETBR remain to be elucidated. However, we believe that our manuscript reports an interesting potential of an FDA-approved compound in promoting nerve repair. We focused on Cx43 downstream of ETBR signaling because decreased Cx43 expression in SGCs in ageing was previously established, but the mechanisms were not elucidated. Furthermore, it was reported that ET1 signaling in cultured astrocytes, which share functional similarities with SGCs, leads to the closure of gap junctions and reduction in Cx43 expression. Our study thus provides a mechanism by which ETBR signaling in SGCs regulates Cx43 expression. Whether Cx43 directly impact axon regeneration remains to be tested. Cell specific KO of Cx43 and ETBR would be required to answer this question. We have revised the Introduction and Discussion section extensively to provide a link between ETBR and Cx43 and to acknowledge the lack of causality in Cx43 in SGCs, as well as to provide additional potential mechanisms by which ETBR inhibition may promote nerve repair.

      Reviewer #2 (Recommendations For The Authors): 

      In addition to the points listed in the Public Review section, please consider the following comments: 

      (1) ETAR, which is high in mural cells, does not seem to be implicated in the reported proregenerative e]ects. Even so, can vasoconstriction be ruled out as an underlying cause of the age-dependent decline in axon regrowth potential and, more generally, in the e]ects of ET-1 inhibition on regeneration? This could be discussed. 

      We agree that we can’t exclude a role in vasoconstriction or e]ect on vascular permeability in the age-dependent decline in axon regrowth potential. However, our in vitro and ex vivo experiments, in which vascular related mechanisms are unlikely, suggest that vasoconstriction may not be a major contributor to the e]ects we observed.

      (2) The manuscript (e.g. line 287-288) would benefit from a discussion of the role that blood vessels play in the peripheral nervous system, and possibly CNS, repair. Vessels were shown to accompany regenerating fibers and instruct the reorganization of the nerve tissue to favor repair potentially through the release of pro-regenerative signals acting on stromal cells, glia, and other cellular components. Highlighting these processes will help put the current findings into perspective. 

      We agree and have revised the Discussion section to better explain the role of blood vessels in orientating Schwann cells migration and guiding axon regeneration.

      (3) The vast majority of the cells that are sequenced and shown in the UMAP in Figure 1C are from adult (3-month-old) mice [16,923 out of 18,098]. It would be useful to include the UMAP split (or color-coded) by timepoint to appreciate changes in cell clustering that may occur with aging.  

      We apologize for this misunderstanding, Figure 1C had all cells from all ages. However, the number of cells we obtained from the age group was insu]icient to perform in depth analysis of each cell type. We have thus revised this section and Figure 1, now only presenting the data from adult mice.  

      It is not discussed why fewer cells were sequenced at later stages. Additionally, I do not know how to interpret the double asterisks next to the labeling "18,098 samples" in Figure 1C. 

      Since our original sequencing of adult and aged mice using 10x yielded so few cells from the aged DRG, we tested and optimized a new technology for single cell preparation of DRG using Illumina Single Cell 3’ RNA Prep. This preparation creates templated emulsions using a vortex mixer to capture and barcode single-cell mRNA instead of a microfluidics system. This method yielded much better results for nuclei recovery from aged DRG, with more nuclei and better quality of nuclei. Thus, we now present in Figure 5 and Figure 5- Figure Supplement 1 the results from snRNA-sequencing of aged and adult DRG using the Illumina single cell kit. The results of the snRNA-sequencing show a decreased abundance of SGCs in aged mice, consistent with the results from our morphology analysis with EM. We were also able to perform SGCs-specific pathway analysis because of the increased number of nuclei captured in the aged SGCs, which we included in the manuscript.

      (4) The in vivo studies are designed to examine the e]ects of ETBR inhibition during the first phase of axon regrowth after nerve injury (1-3 days post-injury, dpi). Is there a reason why later stages have not been studied? It would be interesting to understand whether ETBR inhibition improves long-term recovery or is only e]ective at boosting the initial growth of axons through the lesion. It is possible that early inhibition will be enough for long-term recovery. If so, these experiments would define a sensitivity window with therapeutic value. 

      We agree that assessing functional recovery requires proper behavioral tests or morphological evaluations of reinnervation. To determine if Bosentan treatment has long-term e]ects on recovery, we administered Bosentan or vehicle for 3 weeks (daily for 1 week, and then once a week for the subsequent 2 weeks) after sciatic nerve crush. At 24 days after SNC, we assessed intraepidermal nerve fiber density (IENFD) in the injured paw and saw a trend towards increased fibers/mm in the treated animals (new Figure 3G,H). Future studies will examine how long-term Bosentan treatment a]ects functional recovery and innervation at later time points. Additionally, behavior assays will be needed to determine if these morphological changes relate to behavioral improvements using IENFD and behavior assays.

      (5) I am unsure if the gene expression analysis shown in Figure 6 fits well into this story. It is interesting per se and in line with previous work from this group showing the relevance of fatty acid metabolism in SGCs for axon regeneration. Nevertheless, without a mechanistic link to endothelin signaling and Cx43/gap junction modulation, the observations derived from DEG analysis are not well integrated with the rest and may be more distracting than helpful. One limitation is that there is no cell-type information for the DEGs due to the small number of cells recovered from aged mice. For instance, if ETBR inhibition rescued gene downregulation associated with fatty acid/cholesterol metabolism, then the DGE results would become more relevant for understanding the cellular basis of the pro-regenerative e]ect, which at this point remains quite speculative (lines 264-265; lines 318-319).  

      We agree and have added new snRNA sequencing data to replace these findings (see above response to point #4, new Figure 5 and Figure 5- Figure Supplement 1. The new data shows a decreased abundance of SGCs in aged mice, consistent with our TEM results. Pathway analysis revealed that aging triggers extensive transcriptional reprogramming in SGCs, reflecting heightened demands for structural integrity, cell junction remodeling, and glia–neuron interactions within the aged DRG microenvironment.  

      (6) It would be interesting to determine whether Bosentan increases SGC coverage of neuronal cell bodies in aged mice (Figures 6A-C). 

      We agree that this would be very interesting, but will require extensive EM analysis at di]erent time points and is beyond the scope of the current manuscript.

      (7) Finally, adding a summary model would help the readers. 

      We agree and have made a summary model, now presented in Figure 6F.

      Reviewer #3 (Recommendations For The Authors): 

      Longer time points post-injury and assessment of functional recovery after Bosentan would be of great value here. 

      We agree that assessing functional recovery requires proper behavioral tests or morphological evaluations of reinnervation. To determine if Bosentan treatment has long-term e]ects on recovery, we administered Bosentan or vehicle for 3 weeks (daily for 1 week, and then once a week for the subsequent 2 weeks) after sciatic nerve crush. At 24 days after SNC, we assessed intraepidermal nerve fiber density in the injured paw and saw a trend towards increased fibers/mm in the treated animals (Fig 3). While the results do not reach significance, we decided to include this new data as it provides evidence that Bosentan treatment may also improves long term recovery. Future studies will be required examine how long-term Bosentan treatment a]ects functional recovery and innervation at later time points. Additionally, behavior assays will be needed to determine if these morphological changes relate to behavioral improvements.

      It would be important to know how ET-1- ETBR signalling axis promotes the regeneration of axons:this remains unaddressed. What are the cells that are specifically involved? Endothelial cellsSGC- neurons- SC? There are no experiments addressing the role of any of these? 

      We agree that the molecular and cellular mechanisms by which ETBR signaling in SGCs promote axon regeneration remains to be elucidated.  Answering these questions would first require cell specific KO of ETBR and Cx43 to confirm that this pathway is operating in SGCs to control axon regeneration. We would also need to identify how SGCs communicate with neurons to regulate axon regeneration, which is a large area of ongoing research that remains poorly understood. While these are important experiments, because of numerous technical and temporal constrains, we believe they are beyond the scope of the current manuscript. 

      How does connexin 43 in SGCs related to ET-1- ETBR signalling? 

      The relation between connexin 43 and ETBR signaling stems from observations made in astrocytes. ET1 signaling in cultured astrocytes, which share functional similarities with SGCs, was shown to lead to the closure of gap junctions and the reduction in Cx43 expression. Because Cx43 expression, a major connexin expressed in SGCs as in astrocytes, was previously shown to be reduced at the protein level in SGCs from aged mice, we decided to explore it this ETBR-Cx43 mechanism also operates in SGCs. We have revised the Introduction and Discussion section extensively to acknowledge the lack of causality in Cx43 expression SGCs and to provide additional potential mechanisms by which ETBR inhibition may promote nerve repair.

    1. Author response:

      We thanks the Reviewers for their thorough reviews and helpful suggestions. We will provide additional quantification as requested for several aspects of the study.

      The methods that we developed were meant to provide candidates for regulatory elements for a gene of interest. These candidates could be used to further understand the regulation of a gene, a complex and difficult task, especially for dynamically regulated genes in the context of development. These candidates could also, or instead, be used to drive gene expression specifically in a target cell of interest for applications such as gene therapy or perturbations that need this type of specificity. In the first case, to use the candidates to understand the regulation of a gene, one would need to validate the candidates using the types of methods typically employed for this purpose, most rigorously in the in vivo genomic context. We did not pursue this level of validation as it would encompass a great deal of work outside the scope of the current study. However, by initially testing loci and CRMs which have been studied by several groups (Rho, Grm6, Vsx2, and Cabp5), and at least in the cases of Rho and Vsx2, shown to be relevant in the genomic context in vivo, we provide evidence that the LS-MPRA can identify relevant CRMs. These data show that the method is worth using for loci of interest, particularly when only one or a few loci are of interest, i.e. one does not need to use genome-wide approaches. It is also apparent that our methods are not perfect and that the LS-MPRA does not pick up all CRMs. We do not know of a method that has been shown to do so.

      Some of the statistical and quantitative data asked for by the Reviewers will be provided. However, it is important to note that the types of statistics using peak callers asked for regarding candidate choice will be of limited value. If one is testing a library in a single cell type in vitro, and/or running genome-wide assays, these statistics could aid in the choice of candidates. However, here we are electroporating a complex and dynamic set of cells, present at very different frequencies. In addition, at least for Olig2 and Ngn2, their expression is very transient, and each is expressed in only a small subset of cells. An additional confound is that the level of expression of each gene that one might test is variable. All of these variables render a statistical prediction of strong candidates to be less valuable than one might hope, and might lead one to miss those CRMs of interest. Instead, we suggest that one use one’s own level of interest and knowledge in choosing CRM candidates. We provide several examples of experimental, rather than purely statistical, approaches that might help in one’s choice of candidates. We used a functional read-out of CRM activity (Notch perturbation), carried out in the context of the entire LS-MPRA library, as one method. Co-expression in single cells of candidate regulators identified by the d-MPRA is another. One can of course use chromatin structure and sequence conservation, as used in many studies of regulatory regions, as other ways to narrow down candidates. The d-MPRA predictions also can be viewed in light of previous genetic studies, i.e. mutations in TFs that effect the cell type of interest or the regulation of the gene of interest, as we were able to do here for CRMs predicted to be regulated by Otx2.

      If one wishes to use a candidate CRM to drive gene expression in a targeted cell type, one needs to establish specificity. In particular, specificity needs to be established in the context of the vector that is being used. Non-integrated vs integrated vectors, different types of viral vectors with their own confounding regulatory sequences, and copy number can all effect specificity. We provided a double in situ hybridization method for the examination of specificity for some of the novel candidate CRMs. It was quite difficult in the case of Olig2 and Ngn2 as their RNAs and proteins are unstable. We would need to provide further evidence should we wish to use these candidate CRMs for directing expression specifically in Olig2- or Ngn2-expressing cells. We suggest that an investigator can choose the vector and method for establishing specificity depending upon the goals of the application.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      EnvA-pseudotyped glycoprotein-deleted rabies virus has emerged as an essential tool for tracing monosynaptic inputs to genetically defined neuron populations in the mammalian brain. Recently, in addition to the SAD B19 rabies virus strain first described by Callaway and colleagues in 2007, the CVS N2c rabies virus strain has become popular due to its low toxicity and high trans-synaptic transfer efficiency. However, despite its widespread use in the mammalian brain, particularly in mice, the application of this cell-type-specific monosynaptic rabies tracing system in zebrafish has been limited by low labeling efficiency and high toxicity. In this manuscript, the authors aimed to develop an efficient retrograde monosynaptic rabies-mediated circuit mapping tool for larval zebrafish. Given the translucent nature of larval zebrafish, whole-brain neuronal activities can be monitored, perturbed, and recorded over time. Introducing a robust circuit mapping tool for larval zebrafish would enable researchers to simultaneously investigate the structure and function of neural circuits, which would be of significant interest to the neural circuit research community. Furthermore, the ability to track rabies-labeled cells over time in the transparent brain could enhance our understanding of the trans-synaptic retrograde tracing mechanism of the rabies virus. 

      To establish an efficient rabies virus tracing system in the larval zebrafish brain, the authors conducted meticulous side-by-side experiments to determine the optimal combination of trans-expressed rabies G proteins, TVA receptors, and recombinant rabies virus strains. Consistent with observations in the mouse brain, the CVS N2c strain trans-complemented with N2cG was found to be superior to the SAD B19 combination, offering lower toxicity and higher efficiency in labeling presynaptic neurons. Additionally, the authors tested various temperatures for the larvae post-virus injection and identified 36℃ as the optimal temperature for improved virus labeling. They then validated the system in the cerebellar circuits, noting evolutionary conservation in the cerebellar structure between zebrafish and mammals. The monosynaptic inputs to Purkinje cells from granule cells were neatly confirmed through ablation experiments.

      However, there are a couple of issues that this study should address. Additionally, conducting some extra experiments could provide valuable information to the broader research field utilizing recombinant rabies viruses as retrograde tracers.

      (1) It was observed that many radial glia were labeled, which casts doubt on the specificity of trans-synaptic spread between neurons. The issues of transneuronal labeling of glial cells should be addressed and discussed in more detail. In this manuscript, the authors used a transgenic zebrafish line carrying a neuron-specific Cre-dependent reporter and EnvA-CVS N2c(dG)-Cre virus to avoid the visualization of virally infected glial cells. However, this does not solve the real issue of glial cell labeling and the possibility of a nonsynaptic spread mechanism.

      In agreement with the reviewer’s suggestion, we have incorporated a standalone section in the revised Discussion (page 9) to address the issue of transneuronal glial labeling, including its spatial distribution, temporal dynamics, potential mechanisms, and possible strategies for real resolution.

      Regarding the specificity of trans-synaptic spread between neurons, we have demonstrated that our transsynaptic tracing system reliably and specifically labels input neurons. Structurally, we only observed labeling of inferior olivary cells (IOCs) outside the cerebellum, which are the only known extracerebellar inputs to Purkinje cells (PCs), while all other traced neurons remained confined within the cerebellum throughout the observation period (see Figure 2G–I). Functionally, we verified that the traced neurons formed synaptic connections with the starter PCs (see Figure 2J–M). Together, these findings support the conclusion that our system enables robust and specific retrograde monosynaptic tracing of neurons in larval zebrafish.

      Regarding the transneuronal labeling of radial glia cells, we observed that their distribution closely correlates with the location of neuronal somata and dendrites (see Author response image 2). In zebrafish, radial glial cells are considered functional analogs of astrocytes and are often referred to as radial astroglia. The adjacent labeled astroglia may participate in tripartite synapses with the starter neurons and express viral receptors that enable RV particle entry at postsynaptic sites. This suggests that rabies-based tracing in zebrafish may serve as a valuable tool for identifying synaptically associated and functionally connected glia. Leveraging this approach to investigate glia–neuron interactions represents a promising direction for future research.

      In our system, the glial labeling diminishes at later larval stages, likely due to abortive infection (see Author response image 3 and relevant response). However, the eventual clearance of infection does not preclude the initial infection of glial cells, which may compete with neuronal labeling and reduce overall tracing efficiency. Notably, transneuronal infection of glial cells by RV has also been observed in mammals (Marshel et al., 2010). To minimize such off-target labeling, future work should focus on elucidating the mechanisms underlying glial susceptibility—such as receptor-mediated viral entry— and developing strategies to suppress receptor expression specifically in glia, thereby improving the specificity and efficiency of neuronal circuit tracing.

      In addition, wrong citations in Line 307 were made when referring to previous studies discovering the same issue of RVdG-based transneuronal labeling radial glial cells. "The RVdG-based transneuronal labeling of radial glial cells was commonly observed in larval zebrafish29,30".

      The cited work was conducted using vesicular stomatitis virus (VSV). A more thorough analysis and/or discussion on this topic should be included.

      We thank the reviewer for pointing out the citation inaccuracy. The referenced study employed vesicular stomatitis virus (VSV), which, like RV, is a member of the Rhabdoviridae family. We have revised the text accordingly—from "RVdG-based transneuronal labeling of radial glial cells…" to " Transneuronal labeling of radial glial cells mediated by VSV, a member of the Rhabdoviridae family like RV, has been commonly observed in larval zebrafish" (page 9, line 347).

      Several key questions should be addressed:

      Does the number of labeled glial cells increase over time? 

      Yes, as shown in Figure 2—figure supplement 1C and G, the number of labeled radial glial cells significantly increased from 2 to 6 days post-injection (dpi). This phenomenon has been addressed in the revised Discussion section (page 9, line 357).

      Do they increase at the same rate over time as labeled neurons?

      Although glial cell labeling continued to increase over time, we observed a slowdown in labeling rate between 6 and 10 dpi, as shown in Figure 2—figure supplement 1C and G. Therefore, we divided the timeline into two intervals (2–6 and 6–10 dpi) to compare the rate of increase in labeling between neurons and glia. The rate (R) was defined as the daily change in convergence index. To quantify the difference between neuronal and glial labeling rates, we calculated a labeling rate index: R<sub>g</sub>−R<sub>n</sub>, where R<sub>g</sub> and R<sub>n</sub> denote the rates for glia and neurons, respectively) (Author response image1). Our analysis revealed that, between 2 and 6 dpi, glial cells exhibited a higher labeling rate than neurons. However, this trend reversed between 6 and 10 dpi, with neurons surpassing glial cells in labeling rate. These findings have been included in the revised Discussion section (page 9).

      Author response image 1.

      Labeling rate index of glia and neurons across two time intervals. Data points represent the mean labeling rate index for each tracing strategy within each time interval. *P < 0.05 (nonparametric two-tailed Mann-Whitney test).  

      Are the labeled glial cells only present around the injection site?

      We believe the reviewer is inquiring whether labeled glial cells are spatially restricted to the vicinity of starter neurons. The initial infection is determined by the expression of TVA rather than the injection site. For example, injecting a high volume of virus into the anterior hindbrain resulted in the infection of TVA-expressing cells in distant regions, including the 109 tectum and posterior hindbrain (Author response image 2). 

      Regarding glial labeling, PC starter experiments showed that labeled glial cells (i.e. Bergmann glia) were predominantly localized within the cerebellum, likely due to the confinement of PC dendrites to this region. When using vglut2a to define starter neurons, glial labeling was frequently observed near the soma and dendrites of starter cells (14 out 114 of 17 cases; Author response image 2). These observations suggest that transneuronal labeled glial cells may be synaptically associated with the starter neurons. We have included this point in the revised Discussion section (page 9).

      Author response image 2.

      Location of transneuronal labeled glial cells. (a and b) Confocal images showing the right tectum (a) and posterior hindbrain (b) of different WT larvae expressing EGFP and TVA using UGNT in randomly sparse neurons (vglut2a<sup>+</sup>) and infected with CVSdGtdTomato[EnvA] (magenta) injected into the anterior hindbrain. Dashed yellow circles, starter neurons (EGFP<sup>+</sup>/tdTomato<sup>+</sup>); gray arrows, transneuronally labeled radial glia (tdTomato<sup>+</sup>/EGFP<sup>−</sup>); dashed white lines, tectum or hindbrain boundaries. C, caudal; R, rostral. Scale bars, 20 μm.

      Can the phenomenon of transneuronal labeling of radial glial cells be mitigated if the tracing is done in slightly older larvae?

      Yes, we agree. As elaborated in the following response, we hypothesize that the loss of fluorescence in radial glial cells at later developmental stages is due to abortive infection (see Author response image 3 and associated response). This supports the notion that abortive infection becomes increasingly pronounced as larvae mature, potentially explaining the negligible glial labeling observed in adult zebrafish (Dohaku et al., 2019; Satou et al., 2022). However, as noted in our response to the first comment, the disappearance of fluorescence does not indicate the absence of viral entry. Viral receptors may express on glial cells, allowing initial infection despite a failure in subsequent replication. Consequently, glial infection—though abortive—may still compete with neuronal infection and reduce tracing efficiency.

      What is the survival rate of the infected glial cells over time?

      We observed the disappearance of glial fluorescence after transneuronal labeling, while we did not observe punctate fluorescent debris typically indicative of apoptotic cell death. Therefore, we favor the hypothesis that the loss of glial fluorescence results from abortive infection rather than cell death. Abortive infection refers to a scenario in which viral replication is actively suppressed by host antiviral responses, preventing the production of infectious viral particles. For example, recent studies have shown that lab-attenuated rabies virus (RV) induces the accumulation of aberrant double-stranded DNA in astrocytes, which activates mitochondrial antiviral-signaling protein (MAVS) and subsequent interferon expression (Tian et al., 2018). This antiviral response inhibits RV replication, ultimately resulting in abortive infection. 

      In addition, we quantified the proportion of glial cells labeled at 2 dpi and 4dpi that retained fluorescence over time. By 6 dpi (approximately 11 dpf), glial labeling had largely diminished in both groups (Author response image 3). These results suggest that the decline in glial fluorescence is more closely linked to larval age than to the duration of glial infection, supporting the notion of abortive infection. This also addresses the reviewer’s earlier concern and indicates that glial labeling is mitigated in older larvae.

      Author response image 3.

      Fraction of glial cells with fluorescence retention. (a and b) Proportion of glial cells labeled at 2 dpi (a) and 4 dpi (b) that retained fluorescence over time. Data are from the CVS|N2cG|36°C group. In boxplots: center, median; bounds of box, first and third quartiles; whiskers, minimum and maximum values. n.s., not-significant; *P < 0.05, **P < 0.01 (nonparametric two-tailed Mann-Whitney test).

      If an infected glial cell dies due to infection or gets ablated, does the rabies virus spread from the dead glial cells?

      In our system, glial cells do not express the rabies glycoprotein (G). Therefore, even if glial cells are transneuronally infected, they cannot support viral budding or assembly of infectious particles due to the absence of G (Mebatsion et al., 1996), preventing further viral propagation to neighboring cells.

      If TVA and rabies G are delivered to glial cells, followed by rabies virus injection, will it lead to the infection of other glial cells or neurons?

      We have conducted experiments in which TVA and rabies G were specifically expressed in astroglia using the gfap promoter, followed by RVdG-mCherry[EnvA] injection. This resulted in initial infection of TVA-positive astroglia and occasional subsequent labeling of nearby TVA-negative astroglia (Author response image 4), suggesting astroglia-toastroglia transmission. Notably, no neuronal labeling was observed. This glial-to-glial spread is consistent with previous rabies tracing studies reporting similar phenomena involving the interaction of astrocytes with astrocytes and microglia (Clark et al., 2021). However, the underlying mechanism remains unclear, and we have discussed this in response to the first comment.

      Author response image 4.

      Viral tracing initiated from astroglia. (a) Confocal images of the tectum of a larva expressing EGFP and TVA using UGBT in randomly sparse astroglia (gfap<sup>+</sup>) and infected by SADdG-mCherry[EnvA] (magenta) injected into the anterior hindbrain.  (b) Confocal images of the posterior hindbrain of a larva expressing EGFP and TVA using UGNT in randomly sparse astroglia (gfap<sup>+</sup>) and infected by CVSdG-tdTomato[EnvA] (magenta) injected into the anterior hindbrain. Dashed yellow circles, starter astroglia (EGFP+/mCherry<su>+</sup> or EGFP<sup>+</sup>/tdTomato<sup>+</sup>); gray arrows, transneuronally labeled astroglia (tdTomato<sup>+</sup>/EGFP<sup>−</sup>); dashed white lines, tectum or hindbrain boundaries. C, caudal; R, rostral. Scale bars, 20 μm.<br />

      Answers to any of these questions could greatly benefit the broader research community.

      (2) The optimal virus tracing effect has to be achieved by raising the injected larvae at 36C. Since the routine temperature of zebrafish culture is around 28C, a more thorough characterization of the effect on the health of zebrafish should be conducted.

      Yes, 36°C is required to achieve optimal labeling efficiency. Although this is above the standard zebrafish culture temperature (28°C), previous work (Satou et al., 2022) and our observations indicate that this transient elevation does not adversely affect larval health within the experimental time window. 

      In the previous study, Satou et al. reported no temperature-dependent effects on swimming behavior, social interaction, or odor discrimination in adult fish maintained at 28°C and 36°C. In larvae, both non-injected and virus-injected fish showed a decrease in survival at later time points (7 dpi), with slightly increased mortality observed at elevated temperatures.

      In our study, we raised the same batch of non-virus-injected larvae at 28°C and 36°C, and found no mortality over a 10-day period. For CVS-N2c-injected larvae, electrode insertion caused injury, but survival rates remained around 80% at both temperatures (see Figure 3A). Moreover, we successfully maintained CVS-N2c-injected larvae at 36°C for over a month, indicating that elevated temperature does not adversely affect fish health. Notably, higher temperatures were associated with an accelerated developmental rate. 

      This point was briefly addressed in the previous version and has now been further elaborated in the revised Discussion section (page 8).

      (3) Given the ability of time-lapse imaging of the infected larval zebrafish brain, the system can be taken advantage of to tackle important issues of rabies virus tracing tools.

      a) Toxicity. 

      The toxicity of rabies viruses is an important issue that limits their application and affects the interpretation of traced circuits. For example, if a significant proportion of starter cells die before analysis, the traced presynaptic networks cannot be reliably assigned to a "defined" population of starter cells. In this manuscript, the authors did an excellent job of characterizing the effects of different rabies strains, G proteins derived from various strains, and levels of G protein expression on starter cell survival. However, an additional parameter that should be tested is the dose of rabies virus injection. The current method section states that all rabies virus preparations were diluted to 2x10^8 infection units per ml, and 2-5 nl of virus suspension was injected near the target cells. It would be interesting to know the impact of the dose/volume of virus injection on retrograde tracing efficiency and toxicity. Would higher titers of the virus lead to more efficient labeling but stronger toxicities? What would be the optimal dose/volume to balance efficiency and toxicity? Addressing these questions would provide valuable insights and help optimize the use of rabies viruses for circuit tracing.

      This is an important concern. Viral cytotoxicity is primarily driven by the level of viral transcription and replication, which inhibits host protein synthesis (Komarova et al., 2007). The RVdG-EnvA typically infects cells at a rate of one viral particle per cell (Zhang et al., 2024), suggesting that increasing viral concentration does not proportionally increase percell infection. Accordingly, viral titer and injection volume are unlikely to influence cytotoxicity at the single-cell level. In our experiments, injection volumes up to 20 nl (i.e., 4 to 10 times the standard injection volume) did not affect starter cell survival. However, higher titers or volumes may increase the number of initially infected starter cells, potentially leading to greater overall mortality in larval zebrafish.

      Similarly, given that rabies virus typically infects cells at one particle per cell, increasing viral titer alone is unlikely to enhance tracing efficiency once the virus type is fixed. In contrast, the level of G protein expression significantly influences tracing efficiency (see Figure 2D). However, excessive G protein expression reduces the survival of starter cells (see Figure 3D). Therefore, careful control of G protein levels is essential to balance tracing efficiency and cytotoxicity.

      Notably, regardless of whether infected cells undergo apoptosis or necrosis due to cytotoxicity, the resulting disruption of the plasma membrane severely impairs viral budding. As a result, the formation of intact, G protein-enveloped viral particles is prevented, limiting further infection of neighboring neurons.

      The latest second-generation ΔGL RV vectors (Jin et al., 2024), which lack both the G and L (viral polymerase) genes, have been shown to markedly reduce cytotoxicity. These improved tracing strategies may be explored in future zebrafish studies to further optimize labeling efficiency and cell viability.

      The issue of viral titer and volume has been addressed in the revised Discussion section (page 10).

      b) Primary starters and secondary starters: 

      Given that the trans-expression of TVA and G is widespread, there is the possibility of coexistence of starter cells from the initial infection (primary starters) and starter cells generated by rabies virus spreading from the primary starters to presynaptic neurons expressing G. This means that the labeled input cells could be a mixed population connected with either the primary or secondary starter cells.

      It would be immensely interesting if time-lapse imaging could be utilized to observe the appearance of such primary and secondary starter cells. Assuming there is a time difference between the initial appearance of these two populations, it may be possible to differentiate the input cells wired to these populations based on a similar temporal difference in their initial appearance. This approach could provide valuable insights into the dynamics of rabies virus spread and the connectivity of neural circuits.

      The reviewers suggestion is valuable. Regarding the use of Purkinje cells (PCs) as starter cells, we consider the occurrence of secondary PCs to be extremely rare. Although previous evidence suggests that PCs can form synaptic connections with one another (Chang et al., 2020), our sparse labeling strategy—typically involving fewer than 10 labeled cells— significantly reduces the likelihood of viral transmission between PC starter cells. In addition, if secondary starter PCs were frequently generated, we would expect increased tracing efficiency at 10 dpi compared to 6 dpi. However, our results show no significant difference (see Figure 2—figure supplement 1C and G). 

      Given the restricted expression of TVA and G in PCs, even if a limited number of secondary starters were generated, the labeled inputs would predominantly be granule cells (GCs), thereby preserving the cell-type identity of upstream inputs. While this raises a potential concern regarding an overestimation of the convergence index (CI). Notably, within the GC-PC circuit, individual GCs often project to multiple PCs. Consequently, a GC labeled via a secondary PC may also a bona fide presynaptic partner of the primary starter population. This overlap could mitigate the overestimation of CI. Taken together, we believe that the CI values reported in this study provide a reasonable approximation of monosynaptic connectivity.

      In scenarios where TVA and G are broadly expressed—for example, under the control of vglut2a promoter—secondary starter cells may arise frequently. In such cases, long-term time-lapse imaging in the zebrafish whole brain presents a promising strategy to distinguish primary and secondary starter cells, along with their respective input populations, based on the timing of their appearance. This approach potentially enables multi-step circuit tracing within individual animals. An alternative strategy is to use an EnvA-pseudotyped, G-competent rabies virus, which allows targeted initial infection while supporting multisynaptic propagation. When combined with temporally resolved imaging, this strategy could facilitate direct labeling of higher-order circuits and allow clear differentiation between multi-order inputs and the original starter population over time.

      In conclusion, we find this suggestion compelling and will explore these strategies in future studies to optimize and broaden the application of rabies virus-based circuit tracing.

      Reviewer #2 (Public Review):

      The study by Chen, Deng et al. aims to develop an efficient viral transneuronal tracing method that allows efficient retrograde tracing in the larval zebrafish. The authors utilize pseudotyped-rabies virus that can be targeted to specific cell types using the EnvA-TvA systems. Pseudotyped rabies virus has been used extensively in rodent models and, in recent years, has begun to be developed for use in adult zebrafish. However, compared to rodents, the efficiency of the spread in adult zebrafish is very low (~one upstream neuron labeled per starter cell). Additionally, there is limited evidence of retrograde tracing with pseudotyped rabies in the larval stage, which is the stage when most functional neural imaging studies are done in the field. In this study, the authors systematically optimized several parameters of rabies tracing, including different rabies virus strains, glycoprotein types, temperatures, expression construct designs, and elimination of glial labeling. The optimal configurations developed by the authors are up to 5-10 fold higher than more typically used configurations.

      The results are solid and support the conclusions. However, the methods should be described in more detail to allow other zebrafish researchers to apply this method in their own work.

      Additionally, some findings are presented anecdotally, i.e., without quantification or sufficient detail to allow close examinations. Lastly, there is concern that the reagents created by the authors will not be easily accessible to the zebrafish community.

      (1) The titer used in each experiment was not stated. In the methods section, it is stated that aliquots are stored at 2x10e8. Is it diluted for injection? Are all of the experiments in the manuscripts with the same titer?

      We injected all three viral vectors as undiluted stock aliquots. The titer for SADdGmCherry[EnvA], CVSdG-tdTomato[EnvA], and CVSdG-mCherry-2A-Cre[EnvA]) was 2 × 10<sup>8</sup>, 2 × 10<sup>8</sup>, and 3 × 10<sup>8</sup> infectious units/mL, respectively. This has been clarified in the updated Methods section (page 12).

      (2) The age for injection is quite broad (3-5 dpf in Fig 1 and 4-6 dpf in Fig 2). Given that viral spread efficiency is usually more robust in younger animals, describing the exact injection age for each experiment is critical.

      We appreciate the reviewer’s suggestions. For the initial experiments tracing randomly from neurons in Figure 1, the injection age was primarily 3–4 dpf, with a one-day difference. Due to the slower development of PCs, the injection age for experiments related to Figure 2,3, and 4, is mainly 5 dpf. To clarify the developmental stages at the time of injection for each experiment, we have  newly added tables (see Figure 1,2—table supplement 2) listing the number of fish used at each injection age for all experimental groups shown in Figure 1 and 2.

      (3) More details should be provided for the paired electrical stimulation-calcium imaging study. How many GC cells were tested? How many had corresponding PC cell responses? What is the response latency? For example, images of stimulated and recorded GCs and PCs should be shown.

      Yes, these are important details for the paired electrical stimulation-calcium imaging study. We stimulated 33 GCs from 32 animals and detected calcium responses in putative postsynaptic PCs in 15 cases. Among these, we successfully ablated the single GC in 11 pairs and observed a weakened calcium response in PCs following ablation (see Figure 2M). The response latency was determined as the first calcium imaging frame where ΔF/F exceeded the baseline (pre-stimulus average) by 3 times the standard deviation. Imaging was performed at 5 Hz, and as shown in Figure 2L, the calculated average response latency was 152 ± 35 ms (mean ± SEM), indicating an immediate response with calcium intensity from the first post-stimulus imaging frame consistently exceeding the threshold.

      We have added additional details to the Results (page 5), Discussion (page 9), and Methods (page 15) sections. A representative image showing both the stimulated GC and the recorded PC has been added to Figure 2 in the revised manuscript (see Figure 2K).

      (4) It is unclear how connectivity between specific PC and GC is determined for single neuron connectivity. In other images (Figure 4C), there are usually multiple starter cells and many GCs. It was not shown that the image resolution can establish clear axon dendritic contacts between cell pairs.

      In our experiments, sparse labeling typically results in 1–10 starter cells per fish. Regarding the case shown in Figure 4C (right column), only two PC starters were labeled, which simplifies the assignment of presynaptic inputs to individual PCs. Connectivity is determined based on clear axon-dendritic or axon-cell body apposition between GCs and PCs. We have accordingly added more details to the Methods (page 16) section regarding how we determined connectivity between specific PCs and GCs.

      Reviewer #2 (Recommendations For The Authors):

      To enable broader use of this technique, I would encourage the authors to submit their zebrafish lines, plasmids, and plasmid sequences to public repositories such as ZIRC and  Addgene. Additionally, there is no mention of how viral vectors will be shared.

      We have deposited the related zebrafish lines at CZRC (China Zebrafish Resource Center) and uploaded plasmid maps and sequences to Addgene. The viral vectors are available through BrainCase (Shenzhen, China). We have included the information in the revised manuscript.

      Reviewer #3 (Public Review):

      Summary:

      The authors establish reagents and define experimental parameters useful for defining neurons retrograde to a neuron of interest.

      Strengths:

      A clever approach, careful optimization, novel reagents, and convincing data together lead to convincing conclusions.

      Weaknesses: 

      In the current version of the manuscript, the tracing results could be better centered with  respect to past work, certain methods could be presented more clearly, and other approaches worth considering.

      Appraisal/Discussion:

      Trans-neuronal tracing in the larval zebrafish preparation has lagged behind rodent models,limiting "circuit-cracking" experiments. Previous work has demonstrated that pseudotyped rabies virus-mediated tracing could work, but published data suggested that there was considerable room for optimization. The authors take a major step forward here, identifying a number of key parameters to achieve success and establishing new transgenic reagents that incorporate modern intersectional approaches. As a proof of concept, the manuscript concludes with a rough characterization of inputs to cerebellar Purkinje cells. The work will be of considerable interest to neuroscientists who use the zebrafish model.

      Reviewer #3 (Recommendations For The Authors):

      The main limitations of the work are as follows:

      (1) The optimizations might differ for different neurons. Purkinje cells are noteworthy because they develop considerably during the time window detailed here, almost doubling in number between 7-14dpf. Presumably, connectivity follows. This sort of neurogenesis is much less common elsewhere. It would be useful to show similar results in, say, tectal neurons, which would have spatially-restricted retinal ganglion cells labelled.

      We acknowledge that Purkinje cells (PCs) undergo significant development between 7–14 dpf, which may influence synaptic connectivity and result in differences in tracing efficiency. However, all experimental conditions were standardized across groups, and the selection of starter PCs was unbiased, typically focusing on PCs in the lateral region of the CCe (corpus cerebelli) subregion, ensuring that the relative comparisons remain valid. 

      We agree that testing other neuronal populations would be valuable, as tracing efficiency is influenced by multiple factors, such as the number of endogenous inputs, synaptic maturation, and developmentally regulated synaptic strength. Tectal neurons, which receive spatially restricted retinal ganglion cell inputs, would be a suitable choice for further investigation. However, due to the various tectal cell types and the opacity of the eyeball, such studies present additional technical challenges and are beyond the scope of this paper.

      (2) The virus is delivered by means of microinjection near the cell. This is invasive and challenging for labs that dont routinely perform electrophysiology. It would be useful to know if coarser methods of viral delivery (e.g. intraventricular injection) would be successful. 

      Our protocol does not require the level of precision needed for electrophysiology. The procedure can be performed using a standard high-magnification upright (135× magnification, Nikon SMZ18) or inverted fluorescence microscope (200× magnification, Olympus IX51). The virus suspension was loaded into a glass micropipette with a ~10 µm tip diameter and directly microinjected into the target region using a micromanipulator. The procedure was comparable to embryonic microinjection in terms of precision and operational control. Notably, direct contact with the target cells is not necessary, as the injected virus solution can diffuse and effectively infect nearby cells.  

      We had attempted intraventricular injection as an alternative, but it failed to produce robust labeling, reinforcing the necessity for direct tissue injection. 

      We have now included additional methodological details in the Methods section (page 13). 

      (3) Because of the combination of transgenic lines, plasmid injection, and viral type, it is often confusing to follow exactly what is being done for a particular experiment. It would be useful to specify the transgenic background used for each experiment using standard nomenclature e.g. "Plasmids were injected into Tg(elavl3:GAL4) fish." This is particularly important for the experiments in Figure 4: it isnt clear what the background used for the sparse labels was. 

      Thank the reviewer for bringing this issue to our attention. In order to improve clarity, we have revised the figure legends to explicitly state the transgenic background, injected plasmids, and viral type used in each experiment, particularly for Figure 4. 

      (4) Plasmids should be deposited with Addgene along with maps specifying the particular "codon-optimized Tetoff" per 388. 

      We confirm that all plasmids, including those containing codon-optimized Tetoff constructs, have been uploaded to Addgene along with detailed maps.

      (5) It would be useful to know if there were more apoptotic cells after transfection -- an acridine orange or comparable assay is recommended, rather than loss of fluorescence. 

      We appreciate the reviewer’s suggestion to assess apoptosis using acridine orange staining or comparable assays. We agree that such methods can provide more direct detection of apoptotic events. However, we believe that the difference in cytotoxicity is already evident in our current data: SAD-infected cells exhibit greater loss than CVSinfected cells (see Figure 3D). This is consistent with previous observations in mice, where greater toxicity of SAD compared to CVS was demonstrated using propidium iodide (PI) staining in cultured cells (Reardon et al., 2016).

      (6) Line 219-228 Hibis lab has described the subtypes of granule cells in detail already; the work should discuss the tracings with respect to previous characterizations instead of limiting that work to a citation. 

      Thanks for the reminding of this point. We have expanded the Results section (page 6) to discuss the subtypes of GCs and PCs in relation to previously reported characterizations.

      (7) "Activities" is often used when "activity" is correct. The use of English in the manuscript is, by and large, excellent, but its worth running the text through software like Grammarly to catch the occasional error. 

      We have carefully edited the manuscript using professional language editing tools to correct any grammatical issues.

      (8) The experiments in 2J-2L would be more convincing if they were performed on inferior olive inputs as well -- especially given the small size of the granule cells. 

      We acknowledge the reviewers observation that granule cells (GCs) are relatively small, which may underline the finding that, out of 33 stimulated GCs, only 15 were capable of eliciting calcium responses in putative postsynaptic PCs. However, in all 11 pairs where a single GC was successfully ablated, we observed a weakened calcium response in PCs after the ablation (see Figure 2M), suggesting our tracing approach specifically identifies synaptically coupled neurons. We have clarified this point in the revised manuscript (page 5).

      We agree that verifying the IO inputs to PCs would strengthen the validity of our findings. However, in our experiments, the probability of tracing upstream IO cells was relatively low. This may be due to the developmental immaturity of the synapse and the fact that each PC typically receives input from a single IO cell. Additionally, the deep and distant anatomical location of the IO presents technical challenges for paired electrical stimulationcalcium imaging study. To address these limitations, we are currently exploring the integration of viral tracing and optogenetics to further investigate IO-PC connectivity in future studies.

      (9) It would be useful if the manuscript discussed the efficacy of trans-synaptic labelling. What fraction of granule cell / olivary inputs to a particular Purkinje cell do the authors think their method captures?

      This is an important point for assessing the efficacy of our trans-synaptic labeling. Ideally, electron microscopy (EM) data would provide the most precise evaluation. In the absence of EM data, we estimated the number of GCs, IOs and PCs using light microscopy-based cell counting. 

      At approximately 7 dpf, we manually counted 327 ± 14 PCs and 2318 ± 70 GCs in the Tg(2×en.cpce-E1B:tdTomato-CAAX) and Tg(cbln12:GAL4FF);Tg(5×UAS:EGFP) zebrafish cerebellum, across all subregions (Va, CCe, EG, and LCa). Given the developmental increase in the number of GCs and the fact that some GCs that have exclusively ipsilateral projections, and that a single PC would not receive input from all parallel fibers, we estimate that by 10–14 dpf, a single PC receives approximately 1000– 2000 GC inputs. Under optimal tracing conditions, we observed an average of 20 labeled GC inputs per PC, yielding a capture fraction of ~1–2%. Although this represents only a subset of total inputs, it is consistent with mammalian studies (Wall et al., 2010; Callaway et al., 2015), suggesting inherent limitations of this viral labeling approach.

      For IO inputs, we counted 325 ± 26 inferior olivary neurons in Tg(elavl3:H2B-GCaMP6s) fish. A single PC likely receives input from one IO neuron, though an IO neuron may innervate multiple PCs. Accordingly, the observed capture rate for IO inputs was lower (7 out of 248 starters). 

      Further optimization is required to enhance the tracing efficiency. We have now incorporated a Discussion on this point in the revised manuscript (page 8).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The authors investigated sleep and circadian rhythm disturbances in Fmr1 KO mice. Initially, they monitored daily home cage behaviors to assess sleep and circadian disruptions. Next, they examined the adaptability of circadian rhythms in response to photic suppression and skeleton photic periods. To explore the underlying mechanisms, they traced retino-suprachiasmatic connectivity. The authors further analyzed the social behaviors of Fmr1 KO mice and tested whether a scheduled feeding strategy could mitigate sleep, circadian, and social behavior deficits. Finally, they demonstrated that scheduled feeding corrected cytokine levels in the plasma of mutant mice. 

      Strengths: 

      (1) The manuscript addresses an important topic-investigating sleep deficits in an FXS mouse model and proposing a potential therapeutic strategy. 

      (2) The study includes a comprehensive experimental design with multiple methodologies, which adds depth to the investigation. 

      We thank the reviewer for the positive comments.

      Weaknesses: 

      (1) The first serious issue in the manuscript is the lack of a clear description of how they performed the experiments and the missing definitions of various parameters in the results.  

      We thank the reviewer for pointing out lapses in the editing of the manuscript. We were trying to keep the descriptions of previously published methods brief but must have gone too far, the manuscript has been carefully checked for grammar and readability. Description of the experimental design has been refined and a graphical presentation has been added as Suppl Fig 3. The sleep and circadian parameters have been thoroughly explained in the methods and briefly in the figure legnds.

      (2) Although the manuscript has a relatively long Methods section, some essential information is missing. For instance, the definition of sleep bout, as described above, is unclear. Additional missing information includes

      Figure 2: "Rhythmic strength (%)" and "Cycle-to-cycle variability (min)." 

      Figure 3: "Activity suppression." 

      Figure 4: "Rhythmic power (V%)" (is this different from rhythmic strength (%)?) and "Subjective day activity (%)." 

      We have provided definitions for the general audience of the terms used in the field of circadian rhythms, such as sleep bout, rhythm power, cycle-to-cycle, masking, and % of activity during the day in the methods and Fig legends. Most of the techniques used in this study, for example, the behavioral measurement of sleep or locomotor activity, are well established and have been used in multiple published works, including our own. We have made sure to include citations for interested readers.

      Figure 5: Clear labeling of the SCN's anatomical features and an explanation for quantifying only the ventral part instead of the entire SCN. 

      We have added more landmarks (position of the third ventricle and optic chiasm) to Fig 5, and have outlined the shell and core of the SCN in two additional images of the ventral hypothalamus in Suppl fig 4.

      We had actually quantified the fluorescence in the whole SCN as well as in the ventral part.This was/is described in the methods as well as reported in the results section and Table 4 “Likewise, a subtle decrease in the intensity of the labelled fibers was found in the whole SCN (Table 4) of the Fmr1 KO mice as compared to WT.“ 

      Methods: ” Two methods of analyses were carried out on the images of 5 consecutive sections per animal containing the middle SCN. First, the relative intensity of the Cholera Toxin fluorescent processes was quantified in the whole SCN, both left and right separately, by scanning densitometry using the Fiji image processing package of the NIH ImageJ software (https://imagej.net). A single ROI of fixed size (575.99 μm x 399.9 μm, width x height) was used to measure the relative integrated density (mean gray values x area of the ROI) in all the images. The values from the left and right SCN were averaged per section and 5 sections per animal were averaged to obtain one value per animal………..”

      Since the retinal innervation of the SCN is strongest in the ventral aspect, where the retino-hypothalamic fibers reach the SCN and our goal was to identify differences in the input to the SCN, e.g. defects in the retino-SCN connectivity as suggested by some deficits in circadian behaviour; we also looked at intensity of Cholera Toxin in the fibers arriving to the ventral SCN from the retina.

      We have added a sentence in the methods about the rationale for measuring the intensity of the cholera toxin labelled fiber in the whole SCN and also just in the ventral part: “Second, the retinal innervation of the SCN is strongest in the ventral aspect, where the retino-hypothalamic fibers reach the SCN, hence, the distribution….”

      Figure 6: Inconsistencies in terms like "Sleep frag. (bout #)" and "Sleep bouts (#)." Consistent terminology throughout the manuscript is essential.

      We have now clearly explained that sleep bouts are a measure of sleep fragmentation throughout the manuscript and in the fig legends; in addition, we have corrected the figures, reconciled the terminology, which is now consistent throughout the results and methods.

      Methods: “Sleep fragmentation was determined by the number of sleep bouts, which were operationally defined as episodes of continuous immobility with a sleep count greater than 3 per minute, persisting for at least 60 secs.”

      (3) Figure 1A shows higher mouse activity during ZT13-16. It is unclear why the authors scheduled feeding during ZT15- 21, as this seems to disturb the rhythm. Consistent with this, the body weights of WT and Fmr1 KO mice decreased after scheduled feeding. The authors should explain the rationale for this design clearly.

      We have added to the rationale for the feeding schedule. This protocol was initially used by the Panda group to counter metabolic dysfunction (Hatori et al., 2012). We have used it for many years now (see citations below) in various mouse models presenting with circadian disruption to reset the clock and improve sleep. This study represents our first application/intervention in a mouse model of a neurodevelopmental disease.

      Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012 Jun 6;15(6):848-60. doi: 10.1016/j.cmet.2012.04.019. Epub 2012 May 17. PMID: 22608008; PMCID: PMC3491655.

      Chiem E, Zhao K, Dell'Angelica D, Ghiani CA, Paul KN, Colwell CS. Scheduled feeding improves sleep in a mouse model of Huntington's disease. Front Neurosci. 2024 18:1427125. doi: 10.3389/fnins.2024.1427125. PMID: 39161652.

      Whittaker DS, Akhmetova L, Carlin D, Romero H, Welsh DK, Colwell CS, Desplats P. Circadian modulation by time-restricted feeding rescues brain pathology and improves memory in mouse models of Alzheimer's disease. Cell Metab. 2023 35(10):1704- 1721.e6. doi: 10.1016/j.cmet.2023.07.014. PMID: 37607543

      Brown MR, Sen SK, Mazzone A, Her TK, Xiong Y, Lee JH, Javeed N, Colwell CS, Rakshit K, LeBrasseur NK, Gaspar-Maia A, Ordog T, Matveyenko AV. Time-restricted feeding prevents deleterious metabolic effects of circadian disruption through epigenetic control of β cell function. Sci Adv. 2021 7(51):eabg6856. doi: 10.1126/sciadv.abg6856. PMID: 34910509

      Whittaker DS, Loh DH, Wang HB, Tahara Y, Kuljis D, Cutler T, Ghiani CA, Shibata S, Block GD, Colwell CS. Circadian-based Treatment Strategy Effective in the BACHD Mouse Model of Huntington's Disease. J Biol Rhythms. 2018 33(5):535-554. doi: 10.1177/0748730418790401. PMID: 30084274.

      Wang HB, Loh DH, Whittaker DS, Cutler T, Howland D, Colwell CS. Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington's Disease. eNeuro. 2018 Jan 3;5(1):ENEURO.0431-17.2017. doi: 10.1523/ENEURO.0431-17.2017.

      Loh DH, Jami SA, Flores RE, Truong D, Ghiani CA, O'Dell TJ, Colwell CS. Misaligned feeding impairs memories. Elife. 2015 4:e09460. doi: 10.7554/eLife.09460.

      (4) The interpretation of social behavior results in Figure 6 is questionable. The authors claim that Fmr1 KO mice cannot remember the first stranger in a three-chamber test, writing, "The reduced time in exploring and staying in the novelmouse chamber suggested that the Fmr1 KO mutants were not able to distinguish the second novel mouse from the first now-familiar mouse." However, an alternative explanation is that Fmr1 KO mice do remember the first stranger but prefer to interact with it due to autistic-like tendencies. Data in Table 5 show that Fmr1 KO mice spent more time interacting with the first stranger in the 3-chamber social recognition test, which support this possibility. Similarly, in the five-trial social test, Fmr1 KO mice's preference for familiar mice might explain the reduced interaction with the second stranger.

      Thank you for this interesting interpretation of the social behavior experiments. We used the common interpretations for both the three-chamber test and the 5-trial social interaction test, but have now modified the text leaving space for alternative interpretations, have soften the language, and mentioned decreased sociability in the Fmr1 KO mice. “The reduced time spent exploring the novel-mouse chamber suggest that the mutants were, perhaps, unable to distinguish the second novel mouse from the first, now familiar, mouse, along with decreased sociability.”

      In Figure 6C (five-trial social test results), only the fifth trial results are shown. Data for trials 1-4 should be provided and compared with the fifth trial. The behavioral features of mice in the 5-trial test can then be shown completely. In addition, the total interaction times for trials 1-4 (154 {plus minus} 15.3 for WT and 150 {plus minus} 20.9 for Fmr1 KO) suggest normal sociability in Fmr1 KO mice (it is different from the results of 3-chamber). Thus, individual data for trials 1-4 are required to draw reliable conclusions.  

      We have added a suppl figure showing the individual trial results for both WT and Fmr1 KO mice as requested (Suppl. Fig. 2).  

      In Table 6 and Figure 6G-6J, the authors claim that "Sleep duration (Figures 6G, H) and fragmentation (Figures 6I, J) exhibited a moderate-strong correlation with both social recognition and grooming." However, Figure 6I shows a p-value of 0.077, which is not significant. Moreover, Table 6 shows no significant correlation between SNPI of the three-chamber social test and any sleep parameters. These data do not support the authors' conclusions. 

      Thanks for pointing out the error with statement about Fig. 6I.

      “…. Sleep duration (Fig. 6G, H; Table 6) exhibited a moderate to strong correlation with both social recognition and grooming time, while sleep fragmentation (measured by sleep bouts number) only correlated with the latter (Fig. 6J); the length of sleep bouts (Table 6) showed moderate correlation with both social recognition and repetitive behavior. In addition, a moderate correlation was seen between grooming time and the circadian parameters, rhythmic power and activity onset variability (Table 6). In short, our work suggests that even when tested during their circadian active phase, the Fmr1 KO mice exhibit robust repetitive and social behavioral deficits. Moreover, the shorter and more fragmented the daytime sleep, the more severe the behavioral impairment in the mutants.”

      (5) Figure 7 demonstrates the effect of scheduled feeding on circadian activity and sleep behaviors, representing another critical set of results in the manuscript. Notably, the WT+ALF and Fmr1 KO+ALF groups in Figure 7 underwent the same handling as the WT and Fmr1 KO groups in Figures 1 and 2, as no special treatments were applied to these mice. However, the daily patterns observed in Figures 7A, 7B, 7F, and 7G differ substantially from those shown in Figures 2B and 1A, respectively. Additionally, it is unclear why the WT+ALF and Fmr1 KO+ALF groups did not exhibit differences in Figures 7I and 7J, especially considering that Fmr1 KO mice displayed more sleep bouts but shorter bout lengths in Figures 1C and 1D. 

      We appreciate the reviewer’s attention to the subtle details of the behavioral measurement of sleep and believe the reviewer to be referring to differences in the behavioral measurements of sleep with data shown in Table 1 and Table 7. The first set of experiments described in this study was carried out between 2016 and 2017 and involves the comparison between WT and Fmr1 KO mice. The WT and mutants were obtained from JAX. In this initial set of experiments (Table 1), the total amount of sleep in 24 hrs was reduced in the KO, albeit not significantly, and these also exhibited sleep bouts of significantly reduced duration. The pandemic forced us to greatly slow down the research and reduce our mouse colonies. Post-pandemic, we used new cohorts of Fmr1 KO ordered again from JAX for the TRF experiment presented in this study. In these cohorts, the KO mice exhibited a significant reduction in total sleep (Table 7) and the sleep bouts were still shorter but not significantly. We have added to our text to explain that the description of the mutants and TRF interventions were carried out at different times (2017 vs 2022). We would like to emphasize that we always run contemporaneously controls and experimental groups to be used for the statistical analyses. We believe that the data are remarkably consistent over these years, even with different students doing the measurements. 

      Furthermore, it is not specified whether the results in Figure 7 were collected after two weeks of scheduled feeding (for how many days?) or if they represent the average data from the two-week treatment period.

      This is another good point raised by the reviewer. The activity measurements are collected during the 2 weeks (14 days) then the TRF was extended for a 3 more days to allow the behavioral sleep measurements.

      We have added a supplementary figure (Supp Fig 3) depicting the different experimental designs.

      The rationale behind analyzing "ZT 0-3 activity" in Figure 7D instead of the parameters shown in Figures 2C and 2D is also unclear. 

      We have added to our explanation. In prior work, we found that the TRF protocol has a big impact on the beginning of the sleep time, hence, we specifically targeted this 3-hours interval in the analysis.

      In Figure 7F, some data points appear to be incorrectly plotted. For instance, the dark blue circle at ZT13 connects to the light blue circle at ZT14 and the dark blue circle at ZT17. This is inconsistent, as the dark blue circle at ZT13 should link to the dark blue circle at ZT14. Similarly, it is perplexing that the dark blue circle at ZT16 connects to both the light blue and dark blue circles at ZT17. Such errors undermine confidence in the data. The authors need to provide a clear explanation of how these data were processed. 

      Thank you for bringing this to our attention. The data were plotted correctly, however, those data points completely overlapped with those behind, masking them. We have now offset a bit them for clarity.

      Lastly, in the Figure 7 legend, Table 6 is cited; however, this appears to be incorrect. It seems the authors intended to refer to Table 7. 

      We have corrected this error, thank you.  

      (6) Similar to the issue in Figure 7F, the data for day 12 in Supplemental Figure 2 includes two yellow triangles but lacks a green triangle. It is unclear how the authors constructed this chart, and clarification is needed. 

      We have corrected this error. As the reviewer pointed out, we filled the triangle on day 12 with yellow instead of green.  

      (7) In Figure 8, a 5-trial test was used to assess the effect of scheduled feeding on social behaviors. It is essential to present the results for all trials (1 to 4). Additionally, it is unclear whether the results for familial mice in Figure 8A correspond to trials 1, 2, 3, or 4. 

      The legend for Figure 8 also appears to be incorrect: "The left panels show the time spent in social interactions when the second novel stranger mouse was introduced to the testing mouse in the 5-trial social interaction test. The significant differences were analyzed by two-way ANOVA followed by Holm-Sidak's multiple comparisons test with feeding treatment and genotype as factors." This description does not align with the content of the left panels. Moreover, two-way ANOVA is not the appropriate statistical analysis for Figure 8A. The authors need to provide accurate details about the analysis and revise the figure legend accordingly. 

      We apologies for the confusing Figure legend which has been revised: 

      “Fig. 8: TRF improved social memory and stereotypic grooming behavior in the Fmr1 KO mice. (A) Social memory was evaluated with the 5-trial social interaction test as described above. The social memory recognition was significantly augmented in the Fmr1 KO by the intervention, suggesting that the treated mutants were able to distinguish the novel mouse from the familiar mouse. The time spent in social interactions with the novel mouse in the 5<sup>th</sup>-trial was increased to WT-like levels in the mutants on TRF. Paired t-tests were used to evaluate significant differences in the time spent interacting with the test mouse in the 4<sup>th</sup> (familiar mouse) and 5<sup>th</sup> (novel mouse) trials.  *P < 0.05 indicates the significant time spent with the novel mouse compared to the familiar mouse. (B) Grooming was assessed in a novel arena in mice of each genotype (WT, Fmr1 KO) under each feeding condition and the resulting data analyzed by two-way ANOVA followed by the Holm-Sidak’s multiple comparisons test with feeding regimen and genotype as factors. *P < 0.05 indicates the significant difference within genotype - between diet regimens , and #P < 0.05 those between genotypes - same feeding regimen. (C) TRF did not alter the overall locomotion in the treated mice. See Table 8.”

      To assess social recognition memory, mice underwent a five-trial social interaction paradigm in a neutral open-field arena. Each trial lasted 5 minutes and was separated by a 1-minute inter-trial interval. During trials 1–4, the test mouse was exposed to the same conspecific (Stimulus A) enclosed within a wire cup to permit olfactory and limited tactile interaction. In trial 5, a novel conspecific (Stimulus B) was introduced. Time spent investigating the stimulus B mouse (defined as sniffing or directing the nose toward the enclosure within close proximity) was scored using AnyMaze software. A progressive decrease in investigation time across trials 1–4 reflects habituation, while a significant increase in trial 5 indicates dishabituation and intact social recognition memory. In our data, there was not a lot of habituation in both genotypes, but clear differences can be appreciated between trial 4 with the now familiar mouse and trial 5 with novel mouse. Fig. 8A plots the results from individual animals in Trial 4 with a familiar mouse and in Trial 5 with a novel mouse, we have well specified this in the legends. As such, these data were analyzed with a pair t-test. 

      We used Tow-Way ANOVA to analyse the data reported in Panel 8B and as well as the results in Table 8.  This has been clarified in the legend.

      (8) The circadian activity and sleep behaviors of Fmr1 KO mice have been reported previously, with some findings consistent with the current manuscript, while others contradict it. Although the authors acknowledge this discrepancy, it seems insufficiently thorough to simply state that the reasons for the conflicts are unknown. Did the studies use the same equipment for behavior recording? Were the same parameters used to define locomotor activity and sleep behaviors? The authors are encouraged to investigate these details further, as doing so may uncover something interesting or significant. 

      We agree with the reviewers, and believe that the main differences were likely in the experimental design and possibly interpretation.

      (9) Some subtitles in the Results section and the figure legends do not align well with the presented data. For example, in the section titled "Reduced rhythmic strength and nocturnality in the Fmr1 KOs," it is unclear how the authors justify the claim of altered nocturnality in Fmr1 KO mice. How do the authors define changes in nocturnality? Additionally, the tense used in the subtitles and figure legends is incorrect. The authors are encouraged to carefully review all subtitles and figure legends to correct these errors and enhance readability. 

      Nocturnality is defined as the % of total activity within a 24-h cycle that occurred in the night, since this can be confusing and we agree that it was not well explained we have removed it from the subtitle/figure legends. 

      We have adjusted the subtitles as recommended; however, the tense of the verbs might be a matter of writing style.

      Reviewer #2 (Public review): 

      Summary: 

      In the present study, the authors, using a mouse model of Fragile X syndrome, explore the very interesting hypothesis that restricting food access over a daily schedule will improve sleep patterns and, subsequently, behavioral capacities. By restricting food access from 12h to 6h over the nocturnal period (active period for mice), they show, in these KO mice, an improvement of the sleep pattern accompanied by reduced systemic levels of inflammatory markers and improved behavior. Using a classical mouse model of neurodevelopmental disorder (NDD), these data suggest that eating patterns might improve sleep quality, reduce inflammation and improve cognitive/behavioral capacities in children with NDD. 

      Strengths: 

      Overall, the paper is very well-written and easy to follow. The rationale of the study is generally well-introduced. The data are globally sound. The provided data support the interpretation overall. 

      Thank you for the positive comments.  

      Weaknesses:  

      (1) The introduction part is quite long in the Abstract, leaving limited space for the data provided by the present study.

      We have revised the Abstract to better focus on the most impactful findings as suggested. 

      (2) A couple of points are not totally clear for a non-expert reader:  - The Fmr1/Fxr2 double KO mice are not well described. What is the rationale for performing both LD and DD measures? 

      We did not use the Fmr1/Fxr2 double KO mice in this study.  

      While measurement of day/night differences in activity rhythms are standardly done in a light/dark (LD) cycle, the organisms must be under constant conditions (DD) to measure their endogenous circadian rhythms (free running activity); this is often needed to uncover a compromised clock as entrainment to the LD cycle can mask deficits in the endogenous circadian rhythms.

      (3) The data on cytokines and chemokines are interesting. However, the rationale for the selection of these molecules is not given. In addition, these measures have been performed in the systemic blood. Measures in the brain could be very informative. 

      The panel that we used had 16 cytokines/chemokines which are reported in Table 9. The experiment included WT and mutants held under 2 different feeding conditions with an n=8 per group. If we are able to obtain more resources, we would like to also carry out a comprehensive investigation of immunomediator levels as well as RNA-seq or Nanostring in selected brain regions associated with ASD aberrant behavioural phenotypes, for instance the prefrontal cortex.

      (4) An important question is the potential impact of fasting vs the impact of the food availability restriction. Indeed, fasting has several effects on brain functioning including cognitive functions. 

      We did not address this issue in the present study. Briefly, the distinction between caloric restriction (CR) and TRF, in which no calories are restricted, has important mechanistic implications in mouse models. While both interventions can impact metabolism, circadian rhythms, and aging, they operate via overlapping but distinct molecular pathways. These have been the topic of recent reviews and investigations. Importantly, the fast-feed cycle can also act as a circadian entrainer (Zeitgeber)

      Ribas-Latre A, Fernández-Veledo S, Vendrell J. Time-restricted eating, the clock ticking behind the scenes. Front Pharmacol. 2024 Aug 8;15:1428601. doi: 10.3389/fphar.2024.1428601. PMID: 39175542; PMCID: PMC11338815.

      Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev. 2025 Mar 1;83(3):e1209-e1224. doi: 10.1093/nutrit/nuae074.

      (5) How do the authors envision the potential translation of the present study to human patients? How to translate the 12 to 6 hours of food access in mice to children with Fragile X syndrome? 

      Time-restricted feeding (TRF) is a type of intermittent fasting that limits food intake to a specific window of time each day (usually 8–12 hours in humans), is being actively studied in adults for benefits on metabolic health, sleep, and circadian rhythms. However, applying TRF to children is not currently recommended as a general intervention, and there are important developmental, medical, and ethical considerations to take into account.  

      On the other hand, we believe that the Fmr1 KO mouse is a good preclinical model for FXS because it closely recapitulates key molecular, cellular, and behavioral phenotypes observed in humans with the disorder. A number of the behavioral phenotypes seen in the mouse mirror those seen in patients including increased anxiety-like behavior, sensory hypersensitivity, social interaction deficits and repetitive behaviors so there is strong face validity.  

      As we show in this study, Fmr1 KO mice present with disrupted sleep/wake cycles and reduced amplitude of circadian rhythms, consistent with findings in individuals with FXS. This makes the Fmr1 KO an excellent model to test out circadian based interventions such as scheduled feeding.

      We believe that pre-clinical research in Fmr1 KO mice bridges the gap between basic discovery and human clinical application. It provides a controlled, cost-effective, and biologically relevant platform for understanding disease mechanisms and testing interventions. These types of experiments need to be done before jumping to humans to ensure that the human trials are scientifically justified and ethically sound.

      Reviewer #1 (Recommendations for the authors): 

      The authors should: 

      (1) Revise the Methods section for clarity and completeness.  

      We have re-worked the methods for clarity and completeness. 

      (2) Provide consistent and precise definitions for all parameters and terms.  

      We believe that we have provided definitions for all terms.  

      (3) Clarify the rationale for experimental designs, such as the feeding schedule.  

      We have added to the rationale for the feeding schedule.  This feeding schedule has been used in a number of prior studies including our own.  All this work is cited in the manuscript.   

      (4) Reanalyze and transparently present data, including individual trial results.  

      We have added to the figure showing the individual trail results for the 5-trial tests as requested (Supplementary Fig. 2).  

      (5) Conduct appropriate statistical tests and correct figure legends.  

      We believe that we have carried out appropriate statistical tests and have carefully rechecked the figure legends.  

      (6) Investigate discrepancies with prior studies to enhance the discussion. 

      We have added to our discussion of prior work. 

      (7) Improve language quality and ensure consistency in terminology and grammar.  

      We have edited the manuscript to improve language quality.  

      Reviewer #2 (Recommendations for the authors): 

      (1) The Abstract should be rewritten to provide more room for the obtained data.  

      We have re-written the Abstract to focus on the most impactful findings. 

      (2) An additional sentence describing the double KO mice should be added.  

      We did not use double KO mice in this study.  

      (3) The rationale for studying LD and DD should be provided. 

      Measurement of day/night differences are standardly done in a light/dark cycle.  To measure the endogenous circadian rhythms, the organisms must be under constant conditions (Dark/Dark).

      (4) The data on cytokines/chemokines should be strengthened by performing a larger panel of measures both in blood and the brain.  

      The panel that we used had 16 cytokines/chemokines which we report in Table 9.  This was a large experiment with 2 genotypes being held under 2 feeding conditions with n=8 mice per group. If we are able to obtain more resources, we would like to also carry out RNA-seq in different brain regions.  

      (5) The authors should discuss in more detail the potential role of fastening vs restriction of food access.  

      We did not address this issue in the present study.  Briefly, the distinction between caloric restriction (CR) and TRF when no calories are restricted has important mechanistic implications in mouse models. While both interventions can impact metabolism, circadian rhythms, and aging, they operate via overlapping but distinct molecular pathways. 

      (6) The authors should also provide some insight into their view on the potential translation of their experimental studies.  

      We believe that the Fmr1 KO mouse is considered a good preclinical model for FXS because it closely recapitulates key molecular, cellular, and behavioral phenotypes observed in humans with the disorder. A number of the behavioral phenotypes seen in the mouse mirror those seen in patients including increased anxiety-like behavior, sensory hypersensitivity, social interaction deficits and repetitive behaviors so there is strong face validity.   As we  demonstrate in this study, Fmr1 KO mice exibit disrupted sleep/wake cycles and reduced amplitude of circadian rhythms, consistent with findings in individuals with FXS.  This makes the Fmr1 KO an excellent model to test out circadian based interventions such as scheduled feeding.  

      Still we are mindful that the translation of therapeutic findings from mouse to human has proven challenging e.g., mGluR5 antagonists failed in clinical trials despite strong preclinical data (Berry-Kravis et al., 2016).  Therefore, we are cautious in overreaching in our translational interpretations. 

      Berry-Kravis, E., Des Portes, V., Hagerman, R., Jacquemont, S., Charles, P., Visootsak, J., Brinkman, M., Rerat, K., Koumaras, B., Zhu, L., Barth, G. M., Jaecklin, T., Apostol, G., & von Raison, F. (2016). Mavoglurant in fragile X syndrome: Results of two randomized, double-blind, placebo-controlled trials. Science translational medicine, 8(321), 321ra5. https://doi.org/10.1126/scitranslmed.aab4109).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The manuscript proposes that 5mC modifications to DNA, despite being ancient and widespread throughout life, represent a vulnerability, making cells more susceptible to both chemical alkylation and, of more general importance, reactive oxygen species. Sarkies et al take the innovative approach of introducing enzymatic genome-wide cytosine methylation system (DNA methyltransferases, DNMTs) into E. coli, which normally lacks such a system. They provide compelling evidence that the introduction of DNMTs increases the sensitivity of E. coli to chemical alkylation damage. Surprisingly they also show DNMTs increase the sensitivity to reactive oxygen species and propose that the DNMT generated 5mC presents a target for the reactive oxygen species that is especially damaging to cells. Evidence is presented that DNMT activity directly or indirectly produces reactive oxygen species in vivo, which is an important discovery if correct, though the mechanism for this remains obscure.

      Strengths:

      This work is based on an interesting initial premise, it is well-motivated in the introduction and the manuscript is clearly written. The results themselves are compelling.

      We thank the reviewer for their positive response to our study.  We also really appreciate the thoughtful comments raised.  We have addressed the comments raised as detailed below. 

      Weaknesses:

      I am not currently convinced by the principal interpretations and think that other explanations based on known phenomena could account for key results. Specific points below.

      (1) As noted in the manuscript, AlkB repairs alkylation damage by direct reversal (DNA strands are not cut). In the absence of AlkB, repair of alklylation damage/modification is likely through BER or other processes involving strand excision and resulting in single stranded DNA. It has previously been shown that 3mC modification from MMS exposure is highly specific to single stranded DNA (PMID:20663718) occurring at ~20,000 times the rate as double stranded DNA. Consequently, the introduction of DNMTs is expected to introduce many methylation adducts genome-wide that will generate single stranded DNA tracts when repaired in an AlkB deficient background (but not in an AlkB WT background), which are then hyper-susceptible to attack by MMS. Such ssDNA tracts are also vulnerable to generating double strand breaks, especially when they contain DNA polymerase stalling adducts such as 3mC. The generation of ssDNA during repair is similarly expected follow the H2O2 or TET based conversion of 5mC to 5hmC or 5fC neither of which can be directly repaired and depend on single strand excision for their removal. The potential importance of ssDNA generation in the experiments has not been considered.

      We thank the reviewer for this interesting and insightful suggestion.  Our interpretation of our findings is that a subset of MMS-induced DNA damage, specifically 3mC, overlaps with the damage introduced by DNMTs and this accounts for increased sensitivity to MMS when DNMTs are expressed.  However, the idea that the introduction of 3mC by DNMT actually makes the DNA more liable to damage by MMS, potentially through increasing the level of ssDNA, is also a potential explanation, which could operate in addition to the mechanism that we propose.

      (2) The authors emphasise the non-additivity of the MMS + DNMT + alkB experiment but the interpretation of the result is essentially an additive one: that both MMS and DNMT are introducing similar/same damage and AlkB acts to remove it. The non-additivity noted would seem to be more consistent with the ssDNA model proposed in #1. More generally non-additivity would also be seen if the survival to DNA methylation rate is non-linear over the range of the experiment, for example if there is a threshold effect where some repair process is overwhelmed. The linearity of MMS (and H2O2) exposure to survival could be directly tested with a dilution series of MMS (H2O2).

      We thank the reviewer for this point.  As in the response to point #1, the reviewer’s hypothesis of increased potency of MMS, potentially through increased ssDNA, downstream of 3mC induction by DNMT, is a good one.  We have added a dose-response curve for DNMT-expressing cells to MMS to the revised version of the manuscript.  This shows that there is a non-linear response to MMS in the WT background.  Sensitivity is exacerbated by expression of DNMT and alkB mutation individually but there is also a strong non-additive effect that is particularly marked at low MMS concentrations where sensitivity is much higher in the double mutant than predicted from the two single mutants.  This is consistent with induction of DNA damage by DNMT that is repaired by alkB because alkB can be ‘overwhelmed’ even in WT backgrounds as the reviewer suggests.  However, it is also perfectly possible that the effect is due to increased levels of DNA damage induction in DNMT-expressing cells.  Both these results are compatible with our central hypothesis, namely that DNMT expression induces 3mC.  We have included these results along with discussion of them in the revised text in the results section:

      In order to investigate the non-additivity between DNMT expression and alkB mutation further, we investigated the effect of MMS over a range of concentrations for the different strains (Supplemental Figure 1A).  We quantified the non-additivity by comparing between the survival of alkB expressing DNMT to the predicted combined effect of either alkB mutation alone or DNMT expression alone(Supplemental Figure 1B).  Significantly reduced survival than expected was observed, most notably at low concentrations of MMS, which could be due to the saturation of the effect at high concentrations of MMS for alkB mutants expressing DNMT, where extremely high levels of sensitivity were observed.  The non-linear shape of the graph observed for WT cells expressing DNMTs further suggests that the ability of AlkB to repair the DNA is overwhelmed at high MMS concentrations even in the WT background.  These results are consistent with the idea that AlkB repairs a form of DNA damage from MMS that is more prevalent when DNMT is expressed.  This could be because DNMT induces 3mC, repaired by AlkB, and further 3mC is induced by MMS leading to much higher 3mC levels in the absence of AlkB activity.  Alternatively, 3mC induction by DNMT may lead to increased levels of ssDNA, particularly in alkB mutants, which could increase the risk of further DNA damage by MMS exposure and heighten sensitivity.  Either of these mechanisms are consistent with induction of 3mC by DNMT, and  indicate that the induction of DNA damage by DNMT expression has a fitness cost for cells when exposed to genotoxic stress in their environment. 

      (3) The substantial transcriptional changes induced by DNMT expression (Supplemental Figure 4) are a cause for concern and highlight that the ectopic introduction of methylation into a complex system is potentially more confounded than it may at first seem. Though the expression analysis shows bulk transcription properties, my concern is that the disruptive influence of methylation in a system not evolved with it adds not just consistent transcriptional changes but transcriptional heterogeneity between cells which could influence net survival in a stressed environment. In practice I don't think this can be controlled for, possibly quantified by single-cell RNA-seq but that is beyond the reasonable scope of this paper.

      We fully agree with the reviewer and, indeed, we are very interested in what is driving the transcriptional changes that we observed.  Work is currently underway in the lab to investigate this further but, as the reviewer suggests, is beyond the scope of this paper.  Importantly, we have used the transcriptional data to determine that the effect of DNMTs on ROS is unlikely to be due to failure of ROS-induced detoxification mechanisms by investigating the expression of oxyR regulated genes.  Nevertheless we have explicitly mentioned the concern raised by the reviewer in the revised manuscript as follows:

      “The substantial transcriptional responses could potentially affect how individual cells respond to genotoxic stress and thus could be contributing to some of the excess sensitivity to MMS and H2O2 in cells expressing DNMTs. However, the induction of oxyR regulated genes such as catalase was unaffected by 5mC (Supplementary Figure 4B).  Thus, the increased sensitivity to H2O2 is unlikely to be caused by failure of detoxification gene induction by DNMT expression.”

      (4) Figure 4 represents a striking result. From its current presentation it could be inferred that DNMTs are actively promoting ROS generation from H2O2 and also to a lesser extent in the absence of exogenous H2O2. That would be very surprising and a major finding with far-reaching implications. It would need to be further validated, for example by in vitro reconstitution of the reaction and monitoring ROS production. Rather, I think the authors are proposing that some currently undefined, indirect consequence of DNMT activity promotes ROS generation, especially when exogenous H2O2 is available. It would help if this were clarified.

      We thank the reviewer for picking this up.  In the discussion, we raise two possible explanations for why DNMT (even without H2O2) increases the ROS levels.  One idea is direct activity of DNMT, and one is through the product of DNMT activity (5mC) acting as a platform to generate more ROS from endogenous or exogenous sources.  Whilst we attempted to measure ROS from mSSSI activity in vitro, this experiment gave inconsistent results and therefore we cannot distinguish between these two possibilities.  However, we argued that direct activity is less likely, exactly as the reviewer points out.  We have clarified our discussion in the revised version, rewriting the entire section titled

      Oxidative stress as a new source of DNA damage induction by DNMT expression to more clearly set out these possibilities. 

      Reviewer #2 (Public review):

      5-methylcytosine (5mC) is a key epigenetic mark in DNA and plays a crucial role in regulating gene expression in many eukaryotes including humans. The DNA methyltransferases (DNMTs) that establish and maintain 5mC, are conserved in many species across eukaryotes, including animals, plants, and fungi, mainly in a CpG context. Interestingly, 5mC levels and distributions are quite variable across phylogenies with some species even appearing to have no such DNA methylation.

      This interesting and well-written paper discusses the continuation of some of the authors' work published several years ago. In that previous paper, the laboratory demonstrated that DNA methylation pathways coevolved with DNA repair mechanisms, specifically with the alkylation repair system. Specifically, they discovered that DNMTs can introduce alkylation damage into DNA, specifically in the form of 3-methylcytosine (3mC). (This appears to be an error in the DNMT enzymatic mechanism where the generation 3mC as opposed to its preferred product 5-methylcytosine (5mC), is caused by the flipped target cytosine binding to the active site pocket of the DNMT in an inverted orientation.) The presence of 3mC is potentially toxic and can cause replication stress, which this paper suggests may explain the loss of DNA methylation in different species. They further showed that the ALKB2 enzyme plays a crucial role in repairing this alkylation damage, further emphasizing the link between DNA methylation and DNA repair.

      The co-evolution of DNMTs with DNA repair mechanisms suggests there can be distinct advantages and disadvantages of DNA methylation to different species which might depend on their environmental niche. In environments that expose species to high levels of DNA damage, high levels of 5mC in their genome may be disadvantageous. This present paper sets out to examine the sensitivity of an organism to genotoxic stresses such as alkylation and oxidation agents as the consequence of DNMT activity. Since such a study in eukaryotes would be complicated by DNA methylation controlling gene regulation, these authors cleverly utilize Escherichia coli (E.coli) and incorporate into it the DNMTs from other bacteria that methylate the cytosines of DNA in a CpG context like that observed in eukaryotes; the active sites of these enzymes are very similar to eukaryotic DNMTs and basically utilize the same catalytic mechanism (also this strain of E.coli does not specifically degrade this methylated DNA) .

      The experiments in this paper more than adequately show that E. coli expression of these DNMTs (comparing to the same strain without the DNMTS) do indeed show increased sensitivity to alkylating agents and this sensitivity was even greater than expected when a DNA repair mechanism was inactivated. Moreover, they show that this E. coli expressing this DNMT is more sensitive to oxidizing agents such as H2O2 and has exacerbated sensitivity when a DNA repair glycosylase is inactivated. Both propensities suggest that DNMT activity itself may generate additional genotoxic stress. Intrigued that DNMT expression itself might induce sensitivity to oxidative stress, the experimenters used a fluorescent sensor to show that H2O2 induced reactive oxygen species (ROS) are markedly enhanced with DNMT expression. Importantly, they show that DNMT expression alone gave rise to increased ROS amounts and both H2O2 addition and DNMT expression has greater effect that the linear combination of the two separately. They also carefully checked that the increased sensitivity to H2O2 was not potentially caused by some effect on gene expression of detoxification genes by DNMT expression and activity. Finally, by using mass spectroscopy, they show that DNMT expression led to production of the 5mC oxidation derivatives 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) in DNA. 5fC is a substrate for base excision repair while 5hmC is not; more 5fC was observed. Introduction of non-bacterial enzymes that produce 5hmC and 5fC into the DNMT expressing bacteria again showed a greater sensitivity than expected. Remarkedly, in their assay with addition of H2O2, bacteria showed no growth with this dual expression of DNMT and these enzymes.

      Overall, the authors conduct well thought-out and simple experiments to show that a disadvantageous consequence of DNMT expression leading to 5mC in DNA is increased sensitivity to oxidative stress as well as alkylating agents.

      Again, the paper is well-written and organized. The hypotheses are well-examined by simple experiments. The results are interesting and can impact many scientific areas such as our understanding of evolutionary pressures on an organism by environment to impacting our understanding about how environment of a malignant cell in the human body may lead to cancer.

      We thank the reviewer for their response to our study, and value the time taken to produce a public review that will aid readers in understanding the key results of our study. 

      Reviewer #3 (Public review):

      Summary:

      Krwawicz et al., present evidence that expression of DNMTs in E. coli results in (1) introduction of alkylation damage that is repaired by AlkB; (2) confers hypersensitivity to alkylating agents such as MMS (and exacerbated by loss of AlkB); (3) confers hypersensitivity to oxidative stress (H2O2 exposure); (4) results in a modest increase in ROS in the absence of exogenous H2O2 exposure; and (5) results in the production of oxidation products of 5mC, namely 5hmC and 5fC, leading to cellular toxicity. The findings reported here have interesting implications for the concept that such genotoxic and potentially mutagenic consequences of DNMT expression (resulting in 5mC) could be selectively disadvantageous for certain organisms. The other aspect of this work which is important for understanding the biological endpoints of genotoxic stress is the notion that DNA damage per se somehow induces elevated levels of ROS.

      Strengths:

      The manuscript is well-written, and the experiments have been carefully executed providing data that support the authors' proposed model presented in Fig. 7 (Discussion, sources of DNA damage due to DNMT expression).

      Weaknesses:

      (1) The authors have established an informative system relying on expression of DNMTs to gauge the effects of such expression and subsequent induction of 3mC and 5mC on cell survival and sensitivity to an alkylating agent (MMS) and exogenous oxidative stress (H2O2 exposure). The authors state (p4) that Fig. 2 shows that "Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to WT C2523, supporting the conclusion that the expression of DNMTs increased the levels of alkylation damage." This is a confusing statement and requires revision as Fig. 2 does ALL cells shown in Fig. 2 are expressing DNMTs and have been treated with MMS. It is the absence of AlkB and the expression of DNMTs that that causes the MMS sensitivity.

      We thank the reviewer for this and agree that this needs to be clarified with regards to the figure presented and will do so in the revised manuscript. The key comparison is between the active and inactive mSSSI which shows increased sensitivity when active methyltransferases are expressed.  We have clarified this in the revised version of the manuscript as follows:

      “Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to cells expressing inactive M.SssI”

      (2) It would be important to know whether the increased sensitivity (toxicity) to DNMT expression and MMS is also accompanied by substantial increases in mutagenicity. The authors should explain in the text why mutation frequencies were not also measured in these experiments.

      This is an important point because it is not immediately obvious that increased sensitivity would be associated with increased mutagenicity (if, for example, 3mC was never a cause of innacurate DNA repair even in the absence of AlkB).  We have now added a Rif resistance assay which demonstrates increased mutagenesis in the presence of DNMT, and that this is exacerbated by loss of AlkB. This is now added as supplemental figure 2 and described in the manuscript as follows:

      “One potential consequence of DNMT activity in inducing DNA damage might be increased mutagenesis.  To test this we performed a rifampicin resistance mutagenesis assay, in the absence of MMS, to test whether DNMT induced damage was sufficient to lead to mutation rate increase.  Mutation rate was increased by DNMT expression (p=1.6e-12; two way anova; Supplemental Figure 2) and alkB mutation (two way anova) separately (p<1e-16).  Moreover, there was a significant interaction such that combined alkB mutation and DNMT expression led to a further increased mutation rate compared to the expectation from alkB mutation and DNMT expression separately (p = 7.9e-10; Supplemental Figure 2).  Importantly, DNMT induction alone would be expected to lead to increased mutations due to cytosine deamination(Sarkies, 2022a); however, there is a synergistic effect on mutations when this is combined with loss of AlkB function in alkB mutants. This is consistent with 3mC induction by DNMTs which is repaired by AlkB in WT cells but leads to mutations in alkB mutant cells.

      (3) Materials and Methods. ROS production monitoring. The "Total Reactive Oxygen Species (ROS) Assay Kit" has not been adequately described. Who is the Vendor? What is the nature of the ROS probes employed in this assay? Which specific ROS correspond to "total ROS"?

      The ROS measurement was with a kit from ThermoFisher: https://www.thermofisher.com/order/catalog/product/88-5930-74.  The probe is DCFH-DA.  This is a general ROS sensor that is oxidised by a large number of cellular reactive oxygen species hence we cannot attribute the signal to a single species.  Use of a technique with the potential to more precisely identify the species involved is something we plan to do in future, but is beyond what we can do as part of this study.  We have added a comment as to the specificity of the ROS sensor in the revised version as follows:

      “The ROS detection reagent in this system is DCFH-DA, a generalised ROS sensor that is not specific to any particular ROS molecule.”     

      (4) The demonstration (Fig. 4) that DNMT expression results in elevated ROS and its further synergistic increase when cells are also exposed to H2O2 is the basis for the authors' discussion of DNA damage-induced increases in cellular ROS. S. cerevisiae does not possess DNMTs/5mC, yet exposure to MMS also results in substantial increases in intracellular ROS (Rowe et al, (2008) Free Rad. Biol. Med. 45:1167-1177. PMC2643028). The authors should be aware of previous studies that have linked DNA damage to intracellular increases in ROS in other organisms and should comment on this in the text.

      We thank the reviewer for this point.  We note that the increased ROS that we observed occur in the presence of DNMTs alone and in the presence of H2O2, not in the presence of MMS; however, the point that DNA damage in general can promote increased ROS in some circumstances is well taken.  We have included a comment on this in the revised version as follows:

      “We believe this is a plausible mechanism to explain both increased ROS and increased sensitivity to oxidative stress when DNMT is expressed.  However, other explanations are possible, and it is notable that DNA damaging agents such as MMS can lead to ROS generation(Rowe et al., 2008).  A more detailed chemical and kinetic study of the ROS formation in DNMT-expressing cells would be needed to resolve these questions.”

    1. Author response:

      Reviewer #1 (Public review):

      In the current article, Octavia Soegyono and colleagues study "The influence of nucleus accumbens shell D1 and D2 neurons on outcome-specific Pavlovian instrumental transfer", building on extensive findings from the same lab. While there is a consensus about the specific involvement of the Shell part of the Nucleus Accumbens (NAc) in specific stimulus-based actions in choice settings (and not in General Pavlovian instrumental transfer - gPIT, as opposed to the Core part of the NAc), mechanisms at the cellular and circuitry levels remain to be explored. In the present work, using sophisticated methods (rat Cre-transgenic lines from both sexes, optogenetics, and the well-established behavioral paradigm outcome-specific PIT-sPIT), Octavia Soegyono and colleagues decipher the differential contribution of dopamine receptors D1 and D2 expressing spiny projection neurons (SPNs).

      After validating the viral strategy and the specificity of the targeting (immunochemistry and electrophysiology), the authors demonstrate that while both NAc Shell D1- and D2-SPNs participate in mediating sPIT, NAc Shell D1-SPNs projections to the Ventral Pallidum (VP, previously demonstrated as crucial for sPIT), but not D2-SPNs, mediates sPIT. They also show that these effects were specific to stimulus-based actions, as value-based choices were left intact in all manipulations.

      This is a well-designed study, and the results are well supported by the experimental evidence. The paper is extremely pleasant to read and adds to the current literature.

      We thank the Reviewer for their positive assessment.

      Reviewer #2 (Public review):

      Summary:

      This manuscript by Soegyono et al. describes a series of experiments designed to probe the involvement of dopamine D1 and D2 neurons within the nucleus accumbens shell in outcome-specific Pavlovian-instrumental transfer (osPIT), a well-controlled assay of cue-guided action selection based on congruent outcome associations. They used an optogenetic approach to phasically silence NAc shell D1 (D1-Cre mice) or D2 (A2a-Cre mice) neurons during a subset of osPIT trials. Both manipulations disrupted cue-guided action selection but had no effects on negative control measures/tasks (concomitant approach behavior, separate valued guided choice task), nor were any osPIT impairments found in reporter-only control groups. Separate experiments revealed that selective inhibition of NAc shell D1 but not D2 inputs to ventral pallidum was required for osPIT expression, thereby advancing understanding of the basal ganglia circuitry underpinning this important aspect of decision making.

      Strengths:

      The combinatorial viral and optogenetic approaches used here were convincingly validated through anatomical tract-tracing and ex vivo electrophysiology. The behavioral assays are sophisticated and well-controlled to parse cue and value-guided action selection. The inclusion of reporter-only control groups is rigorous and rules out nonspecific effects of the light manipulation. The findings are novel and address a critical question in the literature. Prior work using less decisive methods had implicated NAc shell D1 neurons in osPIT but suggested that D2 neurons may not be involved. The optogenetic manipulations used in the current study provide a more direct test of their involvement and convincingly demonstrate that both populations play an important role. Prior work had also implicated NAc shell connections to ventral pallidum in osPIT, but the current study reveals the selective involvement of D1 but not D2 neurons in this circuit. The authors do a good job of discussing their findings, including their nuanced interpretation that NAc shell D2 neurons may contribute to osPIT through their local regulation of NAc shell microcircuitry.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      The current study exclusively used an optogenetic approach to probe the function of D1 and D2 NAc shell neurons. Providing a complementary assessment with chemogenetics or other appropriate methods would strengthen conclusions, particularly the novel demonstration of D2 NAc shell involvement. Likewise, the null result of optically inhibiting D2 inputs to the ventral pallidum leaves open the possibility that a more complete or sustained disruption of this pathway may have impaired osPIT.

      We acknowledge the reviewer's valuable suggestion that demonstrating NAc-S D1- and D2-SPN engagement in outcome-specific PIT through another technique would strengthen our optogenetic findings. Several approaches could provide this validation. Chemogenetic manipulation, as the reviewer suggested, represents one compelling option. Alternatively, immunohistochemical assessment of phosphorylated histone H3 at serine 10 (P-H3) offers another promising avenue, given its established utility in reporting striatal SPN plasticity in the dorsal striatum (Matamales et al., 2020). We hope to complete such an assessment in future work since it would address the limitations of previous work that relied solely on ERK1/2 phosphorylation measures in NAc-S SPNs (Laurent et al., 2014).

      Regarding the null result from optical silencing of D2 terminals in the ventral pallidum, we agree with the reviewer's assessment. While we acknowledge this limitation in the current manuscript (see discussion), we aim to address this gap in future studies to provide a more complete mechanistic understanding of the circuit.

      Reviewer #3 (Public review):

      Summary:

      The authors present data demonstrating that optogenetic inhibition of either D1- or D2-MSNs in the NAc Shell attenuates expression of sensory-specific PIT while largely sparing value-based decision on an instrumental task. They also provide evidence that SS-PIT depends on D1-MSN projections from the NAc-Shell to the VP, whereas projections from D2-MSNs to the VP do not contribute to SS-PIT.

      Strengths:

      This is clearly written. The evidence largely supports the authors' interpretations, and these effects are somewhat novel, so they help advance our understanding of PIT and NAc-Shell function.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      I think the interpretation of some of the effects (specifically the claim that D1-MSNs do not contribute to value-based decision making) is not fully supported by the data presented.

      We appreciate the reviewer's comment regarding the marginal attenuation of value-based choice observed following NAc-S D1-SPN silencing. While this manipulation did produce a slight reduction in choice performance, the behavior remained largely intact. We are hesitant to interpret this marginal effect as evidence for a direct role of NAc-S D1-SPNs in value-based decision-making, particularly given the substantial literature demonstrating that NAc-S manipulations typically preserve such choice behavior (Corbit & Balleine, 2011; Corbit et al., 2001; Laurent et al., 2012). Notably, previous work has shown that NAc-S D1 receptor blockade impairs outcome-specific PIT while leaving value-based choice unaffected (Laurent et al., 2014). We favor an alternative explanation for our observed marginal reduction. As documented in Supplemental Figure 1, viral transduction extended slightly into the nucleus accumbens core (NAc-C), a region established as critical for value-based decision-making (Corbit & Balleine, 2011; Corbit et al., 2001; Laurent et al., 2012). The marginal impairment may therefore reflect inadvertent silencing of a small NAc-C D1-SPN population rather than a functional contribution from NAc-S D1-SPNs. Future studies specifically targeting larger NAc-C D1-SPN populations would help clarify this possibility and provide definitive resolution of this question.

    1. Author Response:

      Reviewer #1( Public review):

      The reviewer raised two main concerns: the potential confound between XOR and motor coding, and the relationship between neural coding and behaviour.

      First, we appreciate the consideration of the collinearity between the XOR and motor dimensions. We fully agree that this confound may have contributed to the observed increase in XOR decoding over the course of learning. In response, we will merge the XOR and motor features in the main figures, tone down our interpretation of the XOR learning effect, and clarify how motor signals may obscure or mimic XOR-related changes. As the reviewer noted, this confound does not affect the colour/context cross-generalisation analyses, which remain central to our conclusions regarding flexible and prospective working memory coding.

      We also thank the reviewer for the suggestion to examine the behavioural relevance of the neural representations more directly. We agree entirely, and will incorporate new analyses relating coding strength to reaction times, as well as reflect on the implications of these results in the revised Discussion.

      Reviewer #2 (Public Review):

      The reviewer rightly noted that our manuscript overlooks the established concept of retrospective/prospective coding in working memory, giving the impression that we attempted to reframe it using newer machine learning terminology. We thank the reviewer for catching this important omission. Our intention was not to override this well-established conceptual framework with a newer machine learning term, but rather to build upon it. In fact, prospective coding and the idea of working memory as a resource for computation are closely related—one helps define the functions (prospective and retrospective coding) and the other explains the computational rationale behind applying them. For example, prospective codes specify what is being stored (future-relevant information), while the “memory-as-computation” view addresses why such representation is useful: to enable temporal decomposition of complex tasks and reduce computational load at decision time. We will revise the relevant paragraphs to explicitly reference this cognitive framework and clarify how it relates to — and is complemented by — the newer computational perspective we introduce. Thank you again for highlighting this.

      Reviewer 2 also argues that the evidence presented does not support dimensionality reduction, noting that participants likely transition from processing the sensory cue (e.g., blue) to a rule-based representation (e.g., context 1 vs context 2) later in the trial, and that this remapping does not inherently require dimensionality reduction. We agree that our results are consistent with such a transformation into an abstract rule representation during the delay period, as supported by the observed cross- colour context generalisation (Figure 3b) and that this process does not require dimensionality reduction per se. However, we would like to clarify that a shared decision boundary between two colour pairs (e.g., context 1 vs context 2) can manifest in two types of neural geometries. In one case — observed in our data — the irrelevant colour dimension is not maintained after the presentation period, such that blue and pink are maintained as context 1 but variance along the blues vs pink dimension is not represented in neural activity. In the other case, it is possible for the same abstract rule (context 1) to be constructed while maintaining the sensory representation of colour (e.g., “blue” or “pink”), resulting in a change in representational geometry without a reduction in dimensionality. Our data do not support the latter scenario: irrelevant colour information is not maintained in the delay period, suggesting that the abstraction is accompanied by a loss of variance along irrelevant sensory dimensions—i.e., a form of dimensionality reduction. We will clarify this point in the revised manuscript and include a new analysis that explicitly tests whether shattering dimensionality changes as a function of trial time.

      The reviewer also raised concerns about inconsistencies in our terminology, particularly the use of “colour pair” and “irrelevant colour.” We agree with the reviewer that the term “colour pair” was a conceptual device rather than a literal aspect of the task, and we will revise the text to make this clear. We recognise that our wording around “irrelevant colour” might have caused confusion. We did not mean “colour” in the broad sense of all colour processing, but rather referred to specific colour dimensions that are not relevant for task performance—for example, when context 1 is cued by both pink and blue, the dimension carrying variance between blue and pink can be considered irrelevant. We will clarify this point in the revised manuscript, using the reviewer’s suggestion to incorporate the description we had already provided in the Methods section.

      While we respectfully disagree with the reviewer’s interpretation of our findings—particularly regarding the absence of dimensionality reduction, which they associate with the failure of the direct test of cross-colour context decoding (see Fig. 3b, which shows a significant effect)—we appreciate the opportunity to clarify our position and will revise the manuscript to ensure our reasoning is as transparent and rigorous as possible.

      Reviewer #3 (PublIc review):

      The reviewer values the study’s demonstration that learning promotes abstraction in task representations, but raises concerns about the lack of direct evidence linking delay-period activity to specific working memory mechanisms and the ambiguous dissociation between XOR and motor representations. We thank the reviewer for their careful reading of the manuscript and will address both concerns in the revised version. As mentioned in our response to Reviewer #1, we will merge the motor and XOR analyses, tone down our interpretations, and clarify why these signals are entangled. Additionally, we will link delay-period neural activity to behavioural performance to establish a more direct connection to working memory processes. Notably, in Figure 4f, we show that early in learning, participants who exhibit stronger cross-generalisation of context during the delay are also more likely to exhibit decreased shattering dimensionality at decision time — providing an early link between the preparation of a contextual signal and the subsequent reduction in computational complexity at decision time. We will include additional analyses to further strengthen this link in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Measurement of BOLD MR imaging has regularly found regions of the brain that show reliable suppression of BOLD responses during specific experimental testing conditions. These observations are to some degree unexplained, in comparison with more usual association between activation of the BOLD response and excitatory activation of the neurons (most tightly linked to synaptic activity) in the same brain location. This paper finds two patients whose brains were tested with both non-invasive functional MRI and with invasive insertion of electrodes, which allowed the direct recording of neuronal activity. The electrode insertions were made within the fusiform gyrus, which is known to process information about faces, in a clinical search for the sites of intractable epilepsy in each patient. The simple observation is that the electrode location in one patient showed activation of the BOLD response and activation of neuronal firing in response to face stimuli. This is the classical association. The other patient showed an informative and different pattern of responses. In this person, the electrode location showed a suppression of the BOLD response to face stimuli and, most interestingly, an associated suppression of neuronal activity at the electrode site.

      Strengths:

      Whilst these results are not by themselves definitive, they add an important piece of evidence to a long-standing discussion about the origins of the BOLD response. The observation of decreased neuronal activation associated with negative BOLD is interesting because, at various times, exactly the opposite association has been predicted. It has been previously argued that if synaptic mechanisms of neuronal inhibition are responsible for the suppression of neuronal firing, then it would be reasonable

      Weaknesses:

      The chief weakness of the paper is that the results may be unique in a slightly awkward way. The observation of positive BOLD and neuronal activation is made at one brain site in one patient, while the complementary observation of negative BOLD and neuronal suppression actually derives from the other patient. Showing both effects in both patients would make a much stronger paper.

      We thank reviewer #1 for their positive evaluation of our paper. Obviously, we agree with the reviewer that the paper would be much stronger if BOTH effects – spike increase and decrease – would be found in BOTH patients in their corresponding fMRI regions (lateral and medial fusiform gyrus) (also in the same hemisphere). Nevertheless, we clearly acknowledge this limitation in the (revised) version of the manuscript (p.8: Material and Methods section).

      Note that with respect to the fMRI data, our results are not surprising, as we indicate in the manuscript: BOLD increases to faces (relative to nonface objects) are typically found in the LatFG and BOLD decreases in the medialFG (in the revised version, we have added the reference to an early neuroimaging paper that describes this dissociation clearly:

      Pelphrey, K. A., Mack, P. B., Song, A., Güzeldere, G., & McCarthy, G. Faces evoke spatially differentiated patterns of BOLD activation and deactivation. Neuroreport 14, 955–959 (2003).

      This pattern of increase/decrease in fMRI can be appreciated in both patients on Figure 2, although one has to consider both the transverse and coronal slices to appreciate it.

      Regarding electrophysiological data, in the current paper, one could think that P1 shows only increases to faces, and P2 would show only decreases (irrespective of the region). However, that is not the case since 11% of P1’s face-selective units are decreases (89% are increases) and 4% of P2’s face-selective units are increases. This has now been made clearer in the revised manuscript (p.5).

      As the reviewer is certainly aware, the number and positions of the electrodes are based on strict clinical criteria, and we will probably never encounter a situation with two neighboring (macro-micro hybrid electrodes), one with microelectrodes ending up in the lateral MidFG, the other in the medial MidFG, in the same patient. If there is no clinical value for the patient, this cannot be done.

      The only thing we can do is to strengthen these results in the future by collecting data on additional patients with an electrode either in the lateral or the medial FG, together with fMRI. But these are the only two patients we have been able to record so far with electrodes falling unambiguously in such contrasted regions and with large (and comparable) measures.

      While we acknowledge that the results may be unique because of the use of 2 contrasted patients only (and this is why the paper is a short report), the data is compelling in these 2 cases, and we are confident that it will be replicated in larger cohorts in the future.

      Finally, information regarding ethics approval has been provided in the paper.

      Reviewer #2 (Public review):

      Summary:

      This is a short and straightforward paper describing BOLD fMRI and depth electrode measurements from two regions of the fusiform gyrus that show either higher or lower BOLD responses to faces vs. objects (which I will call face-positive and facenegative regions). In these regions, which were studied separately in two patients undergoing epilepsy surgery, spiking activity increased for faces relative to objects in the face-positive region and decreased for faces relative to objects in the face-negative region. Interestingly, about 30% of neurons in the face-negative region did not respond to objects and decreased their responses below baseline in response to faces (absolute suppression).

      Strengths:

      These patient data are valuable, with many recording sessions and neurons from human face-selective regions, and the methods used for comparing face and object responses in both fMRI and electrode recordings were robust and well-established. The finding of absolute suppression could clarify the nature of face selectivity in human fusiform gyrus since previous fMRI studies of the face-negative region could not distinguish whether face < object responses came from absolute suppression, or just relatively lower but still positive responses to faces vs. objects.

      Weaknesses:

      The authors claim that the results tell us about both 1) face-selectivity in the fusiform gyrus, and 2) the physiological basis of the BOLD signal. However, I would like to see more of the data that supports the first claim, and I am not sure the second claim is supported.

      (1) The authors report that ~30% of neurons showed absolute suppression, but those data are not shown separately from the neurons that only show relative reductions. It is difficult to evaluate the absolute suppression claim from the short assertion in the text alone (lines 105-106), although this is a critical claim in the paper.

      We thank reviewer #2 for their positive evaluation of our paper. We understand the reviewer’s point, and we partly agree. Where we respectfully disagree is that the finding of absolute suppression is critical for the claim of the paper: finding an identical contrast between the two regions in terms of RELATIVE increase/decrease of face-selective activity in fMRI and spiking activity is already novel and informative. Where we agree with the reviewer is that the absolute suppression could be more documented: it wasn’t, due to space constraints (brief report). We provide below an example of a neuron showing absolute suppression to faces (P2), as also requested in the recommendations to authors. In the frequency domain, there is only a face-selective response (1.2 Hz and harmonics) but no significant response at 6 Hz (common general visual response). In the time-domain, relative to face onset, the response drops below baseline level. It means that this neuron has baseline (non-periodic) spontaneous spiking activity that is actively suppressed when a face appears.

      Author response image 1.

      (2) I am not sure how much light the results shed on the physiological basis of the BOLD signal. The authors write that the results reveal "that BOLD decreases can be due to relative, but also absolute, spike suppression in the human brain" (line 120). But I think to make this claim, you would need a region that exclusively had neurons showing absolute suppression, not a region with a mix of neurons, some showing absolute suppression and some showing relative suppression, as here. The responses of both groups of neurons contribute to the measured BOLD signal, so it seems impossible to tell from these data how absolute suppression per se drives the BOLD response.

      It is a fact that we find both kinds of responses in the same region. We cannot tell with this technique if neurons showing relative vs. absolute suppression of responses are spatially segregated for instance (e.g., forming two separate sub-regions) or are intermingled. And we cannot tell from our data how absolute suppression per se drives the BOLD response. In our view, this does not diminish the interest and originality of the study, but the statement "that BOLD decreases can be due to relative, but also absolute, spike suppression in the human brain” has been rephrased in the revised manuscript: "that BOLD decreases can be due to relative, or absolute (or a combination of both), spike suppression in the human brain”.

      Reviewer #3 (Public review):

      In this paper the authors conduct two experiments an fMRI experiment and intracranial recordings of neurons in two patients P1 and P2. In both experiments, they employ a SSVEP paradigm in which they show images at a fast rate (e.g. 6Hz) and then they show face images at a slower rate (e.g. 1.2Hz), where the rest of the images are a variety of object images. In the first patient, they record from neurons over a region in the mid fusiform gyrus that is face-selective and in the second patient, they record neurons from a region more medially that is not face selective (it responds more strongly to objects than faces). Results find similar selectivity between the electrophysiology data and the fMRI data in that the location which shows higher fMRI to faces also finds face-selective neurons and the location which finds preference to non faces also shows non face preferring neurons.

      Strengths:

      The data is important in that it shows that there is a relationship between category selectivity measured from electrophysiology data and category-selective from fMRI. The data is unique as it contains a lot of single and multiunit recordings (245 units) from the human fusiform gyrus - which the authors point out - is a humanoid specific gyrus.

      Weaknesses:

      My major concerns are two-fold:

      (i) There is a paucity of data; Thus, more information (results and methods) is warranted; and in particular there is no comparison between the fMRI data and the SEEG data.

      We thank reviewer #3 for their positive evaluation of our paper. If the reviewer means paucity of data presentation, we agree and we provide more presentation below, although the methods and results information appear as complete to us. The comparison between fMRI and SEEG is there, but can only be indirect (i.e., collected at different times and not related on a trial-by-trial basis for instance). In addition, our manuscript aims at providing a short empirical contribution to further our understanding of the relationship between neural responses and BOLD signal, not to provide a model of neurovascular coupling.

      (ii) One main claim of the paper is that there is evidence for suppressed responses to faces in the non-face selective region. That is, the reduction in activation to faces in the non-face selective region is interpreted as a suppression in the neural response and consequently the reduction in fMRI signal is interpreted as suppression. However, the SSVEP paradigm has no baseline (it alternates between faces and objects) and therefore it cannot distinguish between lower firing rate to faces vs suppression of response to faces.

      We understand the concern of the reviewer, but we respectfully disagree that our paradigm cannot distinguish between lower firing rate to faces vs. suppression of response to faces. Indeed, since the stimuli are presented periodically (6 Hz), we can objectively distinguish stimulus-related activity from spontaneous neuronal firing. The baseline corresponds to spikes that are non-periodic, i.e., unrelated to the (common face and object) stimulation. For a subset of neurons, even this non-periodic baseline activity is suppressed, above and beyond the suppression of the 6 Hz response illustrated on Figure 2. We mention it in the manuscript, but we agree that we do not present illustrations of such decrease in the time-domain for SU, which we did not consider as being necessary initially (please see below for such presentation).

      (1) Additional data: the paper has 2 figures: figure 1 which shows the experimental design and figure 2 which presents data, the latter shows one example neuron raster plot from each patient and group average neural data from each patient. In this reader's opinion this is insufficient data to support the conclusions of the paper. The paper will be more impactful if the researchers would report the data more comprehensively.

      We answer to more specific requests for additional evidence below, but the reviewer should be aware that this is a short report, which reaches the word limit. In our view, the group average neural data should be sufficient to support the conclusions, and the example neurons are there for illustration. And while we cannot provide the raster plots for a large number of neurons, the anonymized data is made available at:

      (a) There is no direct comparison between the fMRI data and the SEEG data, except for a comparison of the location of the electrodes relative to the statistical parametric map generated from a contrast (Fig 2a,d). It will be helpful to build a model linking between the neural responses to the voxel response in the same location - i.e., estimate from the electrophysiology data the fMRI data (e.g., Logothetis & Wandell, 2004).

      As mentioned above the comparison between fMRI and SEEG is indirect (i.e., collected at different times and not related on a trial-by-trial basis for instance) and would not allow to make such a model.

      (b) More comprehensive analyses of the SSVEP neural data: It will be helpful to show the results of the frequency analyses of the SSVEP data for all neurons to show that there are significant visual responses and significant face responses. It will be also useful to compare and quantify the magnitude of the face responses compared to the visual responses.

      The data has been analyzed comprehensively, but we would not be able to show all neurons with such significant visual responses and face-selective responses.

      (c) The neuron shown in E shows cyclical responses tied to the onset of the stimuli, is this the visual response?

      Correct, it’s the visual response at 6 Hz.

      If so, why is there an increase in the firing rate of the neuron before the face stimulus is shown in time 0?

      Because the stimulation is continuous. What is displayed at 0 is the onset of the face stimulus, with each face stimulus being preceded by 4 images of nonface objects.

      The neuron's data seems different than the average response across neurons; This raises a concern about interpreting the average response across neurons in panel F which seems different than the single neuron responses

      The reviewer is correct, and we apologize for the confusion. This is because the average data on panel F has been notch-filtered for the 6 Hz (and harmonic responses), as indicated in the methods (p.11): ‘a FFT notch filter (filter width = 0.05 Hz) was then applied on the 70 s single or multi-units time-series to remove the general visual response at 6 Hz and two additional harmonics (i.e., 12 and 18 Hz)’.

      Here is the same data without the notch-filter (the 6Hz periodic response is clearly visible):

      Author response image 2.

      For sake of clarity, we prefer presenting the notch-filtered data in the paper, but the revised version makes it clear in the figure caption that the average data has been notch-filtered.

      (d) Related to (c) it would be useful to show raster plots of all neurons and quantify if the neural responses within a region are homogeneous or heterogeneous. This would add data relating the single neuron response to the population responses measured from fMRI. See also Nir 2009.

      We agree with the reviewer that this is interesting, but again we do not think that it is necessary for the point made in the present paper. Responses in these regions appear rather heterogenous, and we are currently working on a longer paper with additional SEEG data (other patients tested for shorter sessions) to define and quantify the face-selective neurons in the MidFusiform gyrus with this approach (without relating it to the fMRI contrast as reported here).

      (e) When reporting group average data (e.g., Fig 2C,F) it is necessary to show standard deviation of the response across neurons.

      We agree with the reviewer and have modified Figure 2 accordingly in the revised manuscript.

      (f) Is it possible to estimate the latency of the neural responses to face and object images from the phase data? If so, this will add important information on the timing of neural responses in the human fusiform gyrus to face and object images.

      The fast periodic paradigm to measure neural face-selectivity has been used in tens of studies since its original reports:

      In this paradigm, the face-selective response spreads to several harmonics (1.2 Hz, 2.4 Hz, 3.6 Hz, etc.) (which are summed for quantifying the total face-selective amplitude). This is illustrated below by the averaged single units’ SNR spectra across all recording sessions for both participants.

      Author response image 3.

      There is no unique phase-value, each harmonic being associated with a phase-value, so that the timing cannot be unambiguously extracted from phase values. Instead, the onset latency is computed directly from the time-domain responses, which is more straightforward and reliable than using the phase. Note that the present paper is not about the specific time-courses of the different types of neurons, which would require a more comprehensive report, but which is not necessary to support the point made in the present paper about the SEEG-fMRI sign relationship.

      (g) Related to (e) In total the authors recorded data from 245 units (some single units and some multiunits) and they found that both in the face and nonface selective most of the recoded neurons exhibited face -selectivity, which this reader found confusing: They write “ Among all visually responsive neurons, we found a very high proportion of face-selective neurons (p < 0.05) in both activated and deactivated MidFG regions (P1: 98.1%; N = 51/52; P2: 86.6%; N = 110/127)’. Is the face selectivity in P1 an increase in response to faces and P2 a reduction in response to faces or in both it’s an increase in response to faces

      Face-selectivity is defined as a DIFFERENTIAL response to faces compared to objects, not necessarily a larger response to faces. So yes, face-selectivity in P1 is an increase in response to faces and P2 a reduction in response to faces.

      Additional methods

      (a) it is unclear if the SSVEP analyses of neural responses were done on the spikes or the raw electrical signal. If the former, how is the SSVEP frequency analysis done on discrete data like action potentials?

      The FFT is applied directly on spike trains using Matlab’s discrete Fourier Transform function. This function is suitable to be applied to spike trains in the same way as to any sampled digital signal (here, the microwires signal was sampled at 30 kHz, see Methods).

      In complementary analyses, we also attempted to apply the FFT on spike trains that had been temporally smoothed by convolving them with a 20ms square window (Le Cam et al., 2023, cited in the paper ). This did not change the outcome of the frequency analyses in the frequency range we are interested in. We have also added one sentence with information in the methods section about spike detection (p.10).

      (b) it is unclear why the onset time was shifted by 33ms; one can measure the phase of the response relative to the cycle onset and use that to estimate the delay between the onset of a stimulus and the onset of the response. Adding phase information will be useful.

      The onset time was shifted by 33ms because the stimuli are presented with a sinewave contrast modulation (i.e., at 0ms, the stimulus has 0% contrast). 100% contrast is reached at half a stimulation cycle, which is 83.33ms here, but a response is likely triggered before reaching 100% contrast. To estimate the delay between the start of the sinewave (0% contrast) and the triggering of a neural response, we tested 7 SEEG participants with the same images presented in FPVS sequences either as a sinewave contrast (black line) modulation or as a squarewave (i.e. abrupt) contrast modulation (red line). The 33ms value is based on these LFP data obtained in response to such sinewave stimulation and squarewave stimulation of the same paradigm. This delay corresponds to 4 screen refresh frames (120 Hz refresh rate = 8.33ms by frame) and 35% of the full contrast, as illustrated below (please see also Retter, T. L., & Rossion, B. (2016). Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia, 91, 9–28).

      Author response image 4.

      (2) Interpretation of suppression:

      The SSVEP paradigm alternates between 2 conditions: faces and objects and has no baseline; In other words, responses to faces are measured relative to the baseline response to objects so that any region that contains neurons that have a lower firing rate to faces than objects is bound to show a lower response in the SSVEP signal. Therefore, because the experiment does not have a true baseline (e.g. blank screen, with no visual stimulation) this experimental design cannot distinguish between lower firing rate to faces vs suppression of response to faces.

      The strongest evidence put forward for suppression is the response of non-visual neurons that was also reduced when patients looked at faces, but since these are non-visual neurons, it is unclear how to interpret the responses to faces.

      We understand this point, but how does the reviewer know that these are non-visual neurons? Because these neurons are located in the visual cortex, they are likely to be visual neurons that are not responsive to non-face objects. In any case, as the reviewer writes, we think it’s strong evidence for suppression.

      We thank all three reviewers for their positive evaluation of our paper and their constructive comments.

    1. Author response:

      The following is the authors’ response to the previous reviews

      We thank the Reviewers and the Editor for their thoughtful and constructive feedback. In the revised manuscript, we have addressed all comments thoroughly and made several substantial improvements:

      ● Benchmarking against state-of-the-art methods: We now provide a detailed comparison of our method, PGBAR, with MLspike and CASCADE using our cerebellar dataset recorded at high sampling rates. This comparison demonstrates that PGBAR offers more reliable spike time estimates with significantly lower variability in temporal accuracy (Figure 9).

      ● Quantitative analyses: We replaced qualitative statements with quantitative metrics. For example, we now report Pearson’s correlation (>0.95) of spike probabilities across trials and 100% of posterior samples with correct spike number detection during low SNR conditions (Figures 7 and 8).

      ● Clarified modeling rationale: We elaborated on the motivation behind modeling bursting dynamics using a hidden two-state process, which helps mitigate bias in spike detection under non-stationary firing conditions.

      ● Model identifiability and robustness: We demonstrate that our approach avoids parameter degeneracy through careful model design and parameter reparameterization. Sensitivity analyses (Figure 10) show that PGBAR is more robust to hyperparameter variation than MLspike.

      ● Improved clarity and accessibility: We revised the Introduction and Results sections to better explain the context, goals, and implications of our method, and clarified the advantages of joint parameter and state inference within our Bayesian framework.

      We believe that these additions significantly strengthen our manuscript and demonstrate the utility of PGBAR for high-temporal-precision spike inference. Please find below our detailed responses to both Public Reviews and Recommendations for the authors.

      Public Reviews

      Reviewer #1 (Public Review):

      Summary:

      In this study, Diana et al. present a Monte Carlo-based method to perform spike inference from calcium imaging data. A particular strength of their approach is that they can estimate not only averages but also uncertainties of the modelled process. The authors then focus on the quantification of spike time uncertainties in simulated data and in data recorded with a high sampling rate in cerebellar slices with GCaMP8f.

      Strengths:

      - The authors provide a solid groundwork for sequential Monte Carlo-based spike inference, which extends previous work of Pnevmatikakis et al., Greenberg et al., and others.

      - The integration of two states (silence vs. burst firing) seems to improve the performance of the model.

      - The acquisition of a GCaMP8f dataset in the cerebellum is useful and helps make the point that high spike time inference precision is possible under certain conditions.

      Weaknesses:

      - The algorithm is designed to predict single spike times. Currently, it is not benchmarked against other algorithms in terms of single spike precision and spike time errors. A benchmarking with the most recent other SMC model and another good model focused on single spike outputs (e.g., MLSpike) would be useful to have.

      We thank the reviewer for the observation. In our revised manuscript, we have included a detailed comparison of spike time accuracy between our method, MLspike, and the supervised method, CASCADE, now summarized in Figure 9. In this analysis, we used our in vitro dataset to estimate the average temporal accuracy of spike detection across the three methods. As discussed in the main text, the average temporal accuracy was defined as the time difference between ground truth and the nearest detected spikes averaged across the ground truth. The distributions of temporal accuracies across our experiments obtained from MLspike, Cascade, and PGBAR differ in their spread, with 10th-to-90th percentile ranges of 14 ms, 8 ms, and 3 ms, respectively. This result demonstrates that PGBAR spike time estimates are more reliable than MLspike and CASCADE across trials, with a narrower unbiased distribution of temporal accuracy. 

      A direct comparison of PGBAR with the Sequential Binding Model (SBM) developed by Greenberg et al. was not possible since the biophysical model is designed around early GCaMP variants and thus not suitable for inference with our GCaMP8f dataset. We generally agree that employing realistic models of the calcium indicator can improve inference, however, PGBAR responds to a different question, namely how to simultaneously infer spike times and model parameters, which was still an issue with the SBM approach. 

      Some of the analyses and benchmarks seem too cursory, and the reporting simply consists of a visual impression of results instead of proper analysis and quantification. For example, the authors write "The spike patterns obtained using our method are very similar across trials, showing that PGBAR can reliably detect single-trial action potential-evoked GCaMP8f fluorescence transients." This is a highly qualitative statement, just based on the (subjective) visual impression of a plot. Similarly, the authors write "we could reliably identify the two spikes in each trial", but this claim is not supported by quantification or a figure, as far as I can see. 

      We thank the reviewer for this remark. We have now justified quantitatively our statement regarding the similarity across trials. In the revised preprint, we explain that in the specific experiment illustrated in Figure 7, Pearson’s pairwise correlation between spike probabilities (Gaussian filtered with 20 ms bandwidth) across trials is always larger than 0.95. The statement quoted by the reviewer, "we could reliably identify the two spikes in each trial" refers to the fact that in 100% of the posterior samples, generated from the analysis of each trial, we detected 2 spikes in the time window considered. The temporal accuracy of our detection was then illustrated for all trials in Figure 7H, where we compared the posterior distribution of the inter-spike interval between the first two spikes across trials. 

      The statement referred by the Reviewer has been revised to read

      (line 319) “The Pearson’s pairwise correlation between spike probabilities (Gaussian filtered with 20 ms bandwidth) across trials is always larger than 0.95, which demonstrates that PGBAR provides robust predictions across trials and it can reliably detect single-trial action potential-evoked GCaMP8f fluorescence transients.”

      We revised the second statement as:

      (line 324) “Despite the relatively low SNR, 100% of the posterior samples contained two spikes in the considered time interval.” 

      The authors write "but the trade-off between temporal accuracy, SNR and sampling frequency must be considered", but they don't discuss these trade-offs systematically.

      We thank the reviewer for the comment. We have now removed the quoted sentence in the updated preprint. We revised this statement to read: 

      (line 302) “Based on this analysis we expect PGBAR to provide accurate estimates of inter-spike intervals down to 5 ms.”

      It has been shown several times from experimental data that spike inference with single spike resolution does not work well (Huang et al. eLife, 2021; Rupprecht et al., Nature Neuroscience, 2021) in general. This limitation should be discussed with respect to the applicability of the proposed algorithm for standard population calcium imaging data.

      We thank the reviewer for this comment. Detecting single spike times is indeed a difficult task. Compared to previous methods for single spike estimation, the advantage of our statistical approach is the rigorous analysis of uncertainties propagated by unknown model parameters and noisy recordings. This is an important aspect that was missing in previous approaches and that we were able to address thanks to our fully probabilistic approach. 

      Several analyses are based on artificial, simulated data with simplifying assumptions. Ever since Theis et al., Neuron, 2016, it has been known that artificially generated ground truth data should not be used as the primary means to evaluate spike inference algorithms. It would have been informative if the authors had used either the CASCADE dataset or their cerebellum dataset for more detailed analyses, in particular of single spike time precision.

      We thank the reviewer for this comment. 

      To address the reviewer’s concern about single spike time precision, we have added to our revised preprint a further comparison between the temporal accuracy of PGBAR, CASCADE, and MLspike for our cerebellar dataset (Fig. 9, already discussed above). 

      Nevertheless, as pointed out by the reviewer, simulated data should not be used as the primary means to evaluate the performance of an inference algorithm. However, it is standard practice in the field of model-based inference to validate the approach first with data generated by the same model used for inference. This step is usually done for two main reasons: first, for internal consistency of the method, and second, to explore the regimes where inference is achievable. We made use of simulated data to address specific questions. Specifically, in Figure 2, we illustrate the analysis of data simulated using the same model for inference. In Figure 3, we used simulated data to highlight the importance of modeling bursting activity to avoid biases induced by non-homogeneous firing rates. In Figure 6, we used simulated data to explore the theoretical accuracy of PGBAR under different conditions of signal-to-noise ratio and acquisition frequencies.

      In its current state, the sum of the current weaknesses makes the suggested method, while interesting for experts, rather unattractive for experimentalists who want to perform spike inference on their recorded calcium imaging data.

      In our preprint, we illustrated the application of PGBAR to benchmark data and our cerebellar recordings. Therefore, our approach can be part of the calcium imaging data analysis pipeline. The advantage of estimating statistical uncertainties and model parameters makes PGBAR an attractive tool for the wide neuroscience community interested in spike inference and statistical accuracy. In addition, as noted by Reviewer 2, our code is well documented. User-friendliness and integrating our method within GUI analysis software might be the next step if there is increasing interest in using this method.

      Other comments:

      One of the key features of the SMC model is the assumption of two states (bursting vs. non-bursting). However, while it seems clear that this approach is helpful, it is not clear where this idea comes from, from an observation of the data or another concept.

      We thank the reviewer for this comment. As the reviewer pointed out, accounting for two firing regimes is helpful as it prevents biases in estimating the number of spikes when the firing rate is non-stationary and does not follow single-frequency Poisson statistics (as shown in Figure 3 of our preprint), as expected during in vivo recordings. Animals can alter their behavioral state and be exposed to different sensory stimulations, which condition the activity of neurons. A first step beyond the assumption of a steady firing rate is indeed to introduce a hidden two-state process to separate periods of high and low firing rates. In our revised text, we explicitly discuss the rationale behind this choice. We want to emphasize that PGBAR is the only model-based approach that accounts for nonhomogeneous firing rates. In addition, due to the binary character of the underlying bursting state and the high dimensionality of the problem, traditional optimization methods would not be applicable. We solved this problem by applying modern sequential Monte Carlo algorithms (PGAS, Lindsten 2014, for joint estimation for time-varying signals and model parameters) for the first time in the context of spike inference. In summary, the novelty of our work is both in modeling the firing statistics and the inference strategy used.

      Another SMC algorithm (Greenberg et al., 2018) stated that the fitted parameters showed some degeneracy, resulting in ambiguous fitting parameters. It would be good to know if this problem was avoided by the authors.

      As the reviewer pointed out, one of the weaknesses of the SBM approach is the optimization of the model parameters. This is expected, as SBM uses a biophysical model of the calcium indicator, and a general issue of dynamical models is the presence of so-called sloppy directions in the parameter space, which leads to ambiguous estimations. This is an intrinsic problem due to the model complexity also associated with poorly known parameters such as kinetic constants, which are hard to constrain experimentally. PGBAR uses a much simpler model to describe calcium transients (a second-order autoregressive process) precisely to avoid the non-identifiability of model parameters. Furthermore, we employed a parameterization of the autoregressive model (discussed in the Reparameterization section of Materials and Methods) regarding peak response to a single action potential, decay constant, and rise time (i.e., time to peak). These phenomenological parameters are well documented for different calcium indicators, which enables us to design appropriate prior distributions that significantly facilitate the identifiability of parameters.

      Reviewer #2 (Public Review):

      Summary:

      Methods to infer action potentials from fluorescence-based measurements of intracellular calcium dynamics are important for optical measurements of activity across large populations of neurons. The variety of existing methods can be separated into two broad classes: a) model-independent approaches that are trained on ground truth datasets (e.g., deep networks), and b) approaches based on a model of the processes that link action potentials to calcium signals. Models usually contain parameters describing biophysical variables, such as rate constants of the calcium dynamics and features of the calcium indicator. The method presented here, PGBAR, is model-based and uses a Bayesian approach. A novelty of PGBAR is that static parameters and state variables are jointly estimated using particle Gibbs sampling, a sequential Monte Carlo technique that can efficiently sample the latent embedding space.

      Strengths:

      A main strength of PGBAR is that it provides probability distributions rather than point estimates of spike times. This is different from most other methods and may be an important feature in cases when estimates of uncertainty are desired. Another important feature of PGBAR is that it estimates not only the state variable representing spiking activity but also other variables such as baseline fluctuations and stationary model variables, in a joint process. PGBAR can therefore provide more information than various other methods. The information in the GitHub repository is well-organised.

      Weaknesses:

      On the other hand, the accuracy of spike train reconstructions is not higher than that of other model-based approaches, and clearly lower than the accuracy of a model-independent approach based on a deep network. The authors demonstrate convincingly that PGBAR can resolve inter-spike intervals in the range of 5 ms using fluorescence data obtained with a very fast genetically encoded calcium indicator at very high sampling rates (line scans at >= 1 kHz). It would be interesting to more systematically compare the performance of PGBAR to other methods in this regime of high temporal resolution, which has not been explored much.

      We appreciate the Reviewer’s comment. In response to this observation, we have now included a thorough comparison of PGBAR, MLspike, and CASCADE in addition to the analysis of our cerebellar dataset acquired with a high sampling rate (Figure 9 in the revised preprint). PGBAR and CASCADE predictions are comparable in terms of correlation with the ground truth spikes, and both outperform MLspike. We have also quantified the spike time accuracy as the average distance between ground-truth spikes and the nearest prediction for all the methods. Among the three, PGBAR has the lowest variability of spike time accuracy across our experimental trials. We concluded that while PGBAR and CASCADE show comparable correlations with ground truth, our method provides more reliable spike time estimates.  

      Recommendations for the authors

      Reviewing Editor (Recommendations For The Authors):

      In the discussion with reviewers, it was also suggested that while the manuscript emphasized the high temporal resolution of the method (5 ms), this was achieved under favorable conditions (very high sampling rate, fast indicator). Results cannot be compared easily to alternative methods based on published data because these conditions are unusual. Do other methods (at least some of which are presumably easier to use) achieve similar temporal resolution when applied to the same dataset? I feel this could be addressed easily and add valuable information.

      We thank the Reviewing Editor for the suggestion. In our revised preprint, we have now added a full comparison between the performance of PGBAR, MLspike (as an alternative Bayesian approach), and CASCADE (as a state-of-the-art supervised method) tested on our cerebellar dataset. This analysis highlights the improved reliability of our method in terms of temporal accuracy and trial-to-trial variability.

      Reviewer #1 (Recommendations For The Authors):

      - It is in several places difficult to understand the bigger context of some details. For example, the authors write "In this work, we use Monte Carlo methods to approximate the posterior distribution in Eq. (13)." It would be helpful to state what the bigger goal behind this procedure is, here and at other places. Please go through the Introduction and the Results, there is some room for improvement in terms of accessibility.

      We thank the Reviewer for the comment. Monte Carlo methods are generally used when dealing with intractable (non-analytical) probability distributions, which is the case for the models used for spike inference. The “bigger goal behind this procedure” is just the numerical approximation of posterior probabilities, which simply formalizes the question of estimating unknowns from data given a statistical model according to the Bayesian theorem. The advantage of Monte Carlo methods, compared to other techniques (e.g., variational methods), is to be statistically unbiased, which is one of the main reasons why we developed this approach. We clarified the goal of the Monte Carlo inference In the introduction, by adding the following text:

      (line 79) “In this work we employ the particle Gibbs (PG) sampler on a bursting autoregressive (BAR) model of time series calcium-dependent fluorescence to provide not only point estimates of spike times but also quantify the statistical uncertainty of each estimate. This is important for downstream analyses such as comparing activity across neurons or conditions.”

      We introduce the Results/Model section with the sentence:

      (line 91) “To infer spike times and their uncertainty from noisy fluorescence traces, we first build a probabilistic generative model that captures the main dynamics underlying the fluorescence signal.”

      And later on in the Results/Sequential Monte Carlo section, we added:

      (line 156) “The model described in the previous section is analytically intractable, therefore we employ Monte Carlo methods to sample from the posterior distribution in Eq. (13) of spike times and model parameters, allowing us to make probabilistic inferences rather than relying on point estimates alone.”

      In the Abstract: "it provides a flexible statistical framework to test more specific models of calcium indicators". What is meant by this sentence? I was unable to find any results related to this statement.

      In our work, we propose a statistical model (depicted in Figure 1A) that accounts for a binary model for non-homogeneous firing, a Gaussian random walk to describe the modulation of the baseline fluorescence coupled to an autoregressive process to link spikes to fluorescence. The phrase quoted by the Reviewer refers to the possibility of replacing the autoregressive model with more specific models of calcium indicators in the future. For instance, employing the biophysical models  of calcium indicators to refine the link between spikes and calcium fluorescence. The inference algorithm does not depend on the specific spike-to-fluorescence model. In this sense, our framework is flexible as it offers the opportunity to analyze data acquired using other calcium indicators.  

      The authors write "One of the key advantages of our sampling algorithm is the joint estimation of latent states and time-independent model parameters." Why is this an advantage? Advantage compared to which alternative algorithm?

      We thank the reviewer for this comment. All existing spike inference algorithms use ad-hoc techniques to choose or calibrate the hyperparameters introduced. The estimation of spike times is in general highly sensitive to parameters such as the peak fluorescence in response to single action potentials, kinetic constants, noise levels, baseline, or any regularization or model parameter. These parameters are usually unknown, and all available inference methods provide additional prescriptions to calibrate them. This problem can lead to the propagation of errors and systematic biases. Modern Monte Carlo algorithms, such as the ones employed in our work, address specifically this problem by targeting the joint posterior distribution of all time-dependent variables and the model parameters. Compared to previous approaches, our method offers a statistically rigorous algorithm to identify the parameters. Furthermore, this approach enables us to use Bayesian priors to constrain their ranges without introducing ad-hoc biases and reducing the sensitivity to inaccurate choices of hyperparameters compared to other methods (MLspike), as shown in our new Figure 10 (following a suggestion from Reviewer 2), where we illustrate a parameter sensitivity analysis across MLspike and PGBAR (see responses to Reviewer 2 for further details). We clarified this in the Introduction by adding the sentence:

      (line 60) “[...] Moreover, current Bayesian methods do not treat time-independent model parameters (e.g. rate constants) and dynamic variables equally. Instead, they require additional optimization procedures to calibrate model parameters, typically relying on ad-hoc tuning or grid search. This separation can lead to biased inference and poorly calibrated uncertainty estimates, particularly when parameters such as calcium decay time or spike amplitude are inaccurately specified. In contrast, our approach jointly infers both spike times and model parameters within a unified Bayesian framework, enabling uncertainty-aware estimation and avoiding separate, error-prone calibration steps.”

      and In the section “Validation and performance of PGBAR” we added the text:

      (line 201) “One of the key advantages of our sampling algorithm is the joint estimation of latent states and time-independent model parameters, such as spike amplitude, decay time, noise level, and baseline variance. This stands in contrast to most existing spike inference algorithms, which rely on fixed or externally calibrated parameters. Such fixed-parameter methods are vulnerable to systematic errors when parameter values are uncertain or misestimated. By jointly sampling from the posterior of all variables and parameters, our method propagates uncertainty correctly and mitigates bias due to manual tuning or poor initialization.”

      We also added the following text in the discussion:

      (line 411) “The estimation of time-independent model parameters is a well-known issue in spike detection algorithms, typically requiring ad-hoc calibration procedures, grid search, or manual settings. Because spike inference is sensitive to parameters such as the calcium response amplitude, rise and decay kinetics, and noise level, errors in these parameters can substantially affect the accuracy of spike time estimates. By jointly sampling model parameters and latent variables, PGBAR eliminates the need for separate calibration and ensures that uncertainty in parameters is propagated to spike time estimates in a principled way. As illustrated in Figure 10, this leads to a more robust inference compared to existing methods like MLSpike, which show greater sensitivity to parameter variation. In addition, PGBAR enables the users to calibrate the inference of action potentials by setting prior mean and variance of phenomenological parameters (e.g. rise and decay constants, firing rates, bursting frequencies).”

      The authors write "We tested our approach on the fast calcium indicator GCaMP8f (...)". Be more precise. Why exactly were these experiments done, what aspects of the algorithm were supposed to be tested? It is left to the reader to make sense out of these experiments. Please provide the logic of this experiment.

      We thank the reviewer for the comment. We developed our method specifically for regimes of high firing rates. For this reason, in addition to the CASCADE benchmark dataset, we have tested our approach on recordings of cerebellar granule cells due to their fast spiking patterns. For this purpose, we have employed the ultrafast state-of-the-art calcium indicator GCaMP8f combined with linescan imaging techniques to enable fast acquisition rates. We added the following text in the manuscript to clarify:

      (line 306) “We tested our approach on the fast calcium indicator GCaMP8f by performing high-speed (2.8 kHz) two-photon linescan calcium imaging of cerebellar granule cells in vitro. GCaMP8f was expressed in the Crus I region of the cerebellum using adeno-associated virus (AAV) injection (Fig. 7A). Compared to GCaMP6f, GCaMP8f exhibits a rise time that is nearly an order of magnitude faster, which we expected to translate into substantially improved temporal accuracy in spike time detection.”

      The authors write "If we consider as reference correlation the average across the CASCADE dataset (0.75) (...)". Why would this threshold be appropriate? This sounds arbitrary; this experiment was conducted with 2.8 kHz line scan imaging of GCaMP8, while the reference stems from low-rate imaging of older indicators.

      We thank the reviewer for the remark. In the sentence quoted, we have used 0.75 as a reference for the state-of-the-art correlation between ground truth and predicted spikes and indicated the lowest temporal resolution (10 ms) where the PGBAR correlation is larger than the reference value. As the Reviewer correctly pointed out, the reference 0.75 refers to datasets with much lower acquisition frequency; therefore, in our revised preprint, we have added a comparison of the correlations obtained from PGBAR, CASCADE, and MLspike using high-speed recordings of cerebellar GCs (Figure 9), showing the increased performance of our method at high temporal resolution.  

      How was PGBAR evaluated using a given dataset in Figure 4c or in Figure 7? It is unclear to the reviewer whether the priors were automatically/manually adjusted for each data set.

      We thank the Reviewer for this comment. Briefly, for the CASCADE dataset, we have designed the priors for all parameters according to the existing characterization of the calcium indicator used in each experiment (Chen et al. 2013). For our cerebellar data, we have performed single stimulation trials for each recording, which we used to design priors on peak fluorescence response, decay constant, and time to peak fluorescence. In the Results section of the revised preprint, we clarified more specifically how priors were designed for the CASCADE and our cerebellar datasets. We have added the following statements:

      (line 239) “Bayesian priors for all PGBAR parameters were adapted to each experiment according to the existing characterization of the different calcium indicators used (Chen et al., 2013).”

      (line 314) “For each recorded soma and bouton we applied two types of stimulations. Single time point stimulation and a fixed stimulation pattern generated from a 20 Hz Poisson process with 29 stimulation time points. First, we used the single-stimulation trials to design prior distributions of amplitudes, rise and decay constants (Fig. 7C). Next, we used PGBAR to analyze independently each Poisson stimulation trial in Figure 7E. By generating thousands of posterior samples of spike time patterns, we obtained the spike probability for all time frames and trials (Fig. 7F).” 

      The authors write "This analysis illustrates the variability expected when analyzing multiple trials of the same neuron." Variability across trials of neuronal activity? Or variability of spike inference?

      We thank the reviewer for the comment. In the revised text, we clarify that we refer to the variability of spike inference across trials.

      The original statement has been revised to read: 

      (line 301) “This analysis illustrates the expected variability of spike inference when analyzing multiple trials of the same neuron.”

      Technical question: How can the authors be sure that glass electrode stimulation only elicits a single AP per stimulation? This was not clear to me from the manuscript alone.

      We thank the reviewer for the question. Our experimental protocol is designed in a way that in each trial we make sure a single electrical stimulation elicits a single AP. We adjust our stimulation strength until we see an all-or-none calcium transient in response to a single AP. Given the fast temporal properties of GCaMP8f, we could distinguish a single AP response from multiple APs during a single electrical stimulation. We then introduced a single stim trial ahead of each Poisson-train trial to see whether our stimulation strength could elicit a single AP response reliably and consistently. In this way, we ensured that every single stim was producing a single AP. 

      Figure 8: Please explain what you mean by "bouton". What is the dashed line in (A)? Why is it interesting to look at the differences between bouton and soma?

      We thank the Reviewer for the comment. In the updated text we clarified that we refer to synaptic boutons along the parallel fiber (line 311) and that the dashed line in Figure 8 refers to the ground-truth number of spikes (29). We also pointed out that the estimated delay between somas and boutons is compatible with the proximity of synaptic boutons to the stimulation site along the parallel fiber by adding the following text: 

      (line 340) “This result is compatible with the proximity of synaptic boutons to the electrical stimulation along the parallel fiber. We analyzed both signals from somata and synaptic boutons because in vivo two-photon imaging can be made from both parts of the cell. Here we showed that our method performs reliably on both, demonstrating its robustness across recording sites.”

      Reviewer #2 (Recommendations For The Authors):

      The authors emphasised the result that PGBAR can resolve spike timing differences of 5 ms. However, this result was obtained based on fluorescence data measured with a very fast calcium indicator at very high sampling rates. It remains unclear how the performance of PGBAR compares to other methods in this regime of high temporal resolution, which has not been explored much in previous comparisons of methods. Potential users interested in this regime would benefit from a direct comparison to other approaches.

      We thank the Reviewer for this suggestion. In our revised manuscript, we have included a detailed comparison of spike time accuracy between our method, MLspike, and Cascade, summarized in Figure 9. In this analysis, we used our in vitro dataset to estimate the average temporal accuracy of spike detection across the three methods. As discussed in the main text, the average temporal accuracy was defined as the temporal offset between the ground truth and the nearest detected spikes averaged across the ground truth. The distributions of temporal accuracies across our experiments obtained from MLspike, Cascade, and PGBAR differ in their spread, with 10th-to-90th percentile ranges of 14 ms, 8 ms, and 3 ms, respectively. This result demonstrates that PGBAR estimates are more reliable than MLspike and CASCADE across trials, with a narrower unbiased distribution of temporal accuracy. 

      In practice, approaches are more appealing to users when they do not require dedicated measurements to estimate parameters such as rise/decay time constants of calcium fluorescence signals within cells. Users may therefore be interested to know how results would be affected if these parameters are estimated only crudely. It would thus be useful to know how spike probability estimates vary as a function of these parameters, which should be easy to test systematically, and whether the sensitivity of PGBAR to inaccurate initial parameter estimates is lower or higher than that of other methods, which should also be easy to test. As PGBAR jointly estimates spike probabilities and model parameters, it may have an advantage here over other methods.

      We thank the Reviewer for this suggestion. In the new Figure 10, we show a parametric sensitivity analysis for both PGBAR and MLspike. For PGBAR, we considered the hyperparameters of the Bayesian priors associated with the peak response to a single spike and the baseline variance, which influences how much of the fluorescence can be attributed to baseline modulation. For MLspike, we considered the transient amplitude and the decay time constant. For both methods, we varied the parameters between -50% and +50% of their optimal value and estimated the correlation between predictions and ground truth as well as the number of spikes (Figure 10A). Next, we calculated the coefficient of variation across all parameter configurations for each trial (Figure 10B). Our analysis shows that, compared to previous methods, PGBAR has a much lower sensitivity to the initial choices of the hyperparameters, confirming the intuition of the Reviewer thanks to the simultaneous inference of spike times and model parameters. This result provides an important addition to our work.  

      Equation 10: -1 should be in subscript (t-1). Remark: I have not fully verified the mathematical parts because some of it is beyond my expertise. 

      We thank the Reviewer for pointing out the typo. This has been corrected in the revised preprint.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We sincerely appreciate the editors for overseeing an efficient review process and for upholding the high standards of the journal. We have made extensive revisions to the manuscript after carefully reviewing the reviewers’ comments. We have addressed all the comments in our response and have incorporated the changes suggested by the reviewers to the best of our abilities. Notably, we have made the following major changes to the manuscript:

      (1) We have increased the patient cohort size from 10 to 23 for evaluating the levels of YEATS2 and H3K27cr.

      (2) To further strengthen the clinical relevance of our study, we have checked the expression of major genes involved in the YEATS2-mediated histone crotonylation axis (YEATS2, GCDH, ECHS1, Twist1 along with H3K27cr levels) in head and neck cancer tissues using immunohistochemistry.

      (3) We have performed extensive experiments to look into the role of p300 in assisting YEATS2 in regulating promoter histone crotonylation.

      The changes made to the manuscript figures have been highlighted in our response. We have also updated the Results section in accordance with the updated figures. Tables 1-4 and Supplementary files 1-3 have been moved to one single Excel workbook named ‘Supplementary Tables 1-8’. Additional revisions have been made to improve the overall quality of the manuscript and enhance data visualization. These additional changes are highlighted in the tracked changes version of the manuscript.

      Our response to the Public Reviews and ‘Recommendations to the Authors’ can be found below.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This manuscript investigates a mechanism between the histone reader protein YEATS2 and the metabolic enzyme GCDH, particularly in regulating epithelial-to-mesenchymal transition (EMT) in head and neck cancer (HNC).

      Strengths:

      Great detailing of the mechanistic aspect of the above axis is the primary strength of the manuscript.

      Weaknesses:

      Several critical points require clarification, including the rationale behind EMT marker selection, the inclusion of metastasis data, the role of key metabolic enzymes like ECHS1, and the molecular mechanisms governing p300 and YEATS2 interactions.

      We would like to sincerely thank the reviewer for the detailed, in-depth, and positive response. We have implemented constructive revisions to the manuscript to address the reviewer’s concerns effectively.

      Major Comments:

      (1) The title, "Interplay of YEATS2 and GCDH mediates histone crotonylation and drives EMT in head and neck cancer," appears somewhat misleading, as it implies that YEATS2 directly drives histone crotonylation. However, YEATS2 functions as a reader of histone crotonylation rather than a writer or mediator of this modification. It cannot itself mediate the addition of crotonyl groups onto histones. Instead, the enzyme GCDH is the one responsible for generating crotonyl-CoA, which enables histone crotonylation. Therefore, while YEATS2 plays a role in recognizing crotonylation marks and may regulate gene expression through this mechanism, it does not directly catalyse or promote the crotonylation process.

      We thank the reviewer for their insightful comment regarding the precision of our title. We agree that the initial wording 'mediates' could imply a direct enzymatic role for YEATS2 in histone crotonylation, which is indeed not the case. As the reviewer correctly points out, YEATS2 functions as a 'reader' of histone crotonylation marks.

      However, our research demonstrates that YEATS2 plays a crucial indirect regulatory role in the establishment of these crotonylation marks. Specifically, our data indicates that YEATS2 facilitates the recruitment of the histone crotonyltransferase p300 to specific gene promoters, such as that of SPARC. This recruitment mechanism directly impacts the localized deposition of crotonyl marks on nearby histone residues. Therefore, while YEATS2 does not directly catalyze the addition of crotonyl groups, its presence and interaction with p300 are essential for the regulation and establishment of histone crotonylation at these critical sites.

      To accurately reflect this nuanced, yet significant, regulatory mechanism, we have revised the title. We are replacing 'mediates' with 'regulates' to precisely convey that YEATS2 influences the histone crotonylation process, albeit indirectly, through its role in recruiting the enzymatic machinery. The updated title will now read: 'Interplay of YEATS2 and GCDH regulates histone crotonylation and drives EMT in head and neck cancer.' We believe this change maintains the core message of our findings while enhancing the scientific accuracy of the title.

      (2) The study suggests a link between YEATS2 and metastasis due to its role in EMT, but the lack of clinical or pre-clinical evidence of metastasis is concerning. Only primary tumor (PT) data is shown, but if the hypothesis is that YEATS2 promotes metastasis via EMT, then evidence from metastatic samples or in vivo models should be included to solidify this claim.

      We thank the reviewer for their valuable suggestion regarding the need for clinical or pre-clinical evidence of metastasis. We fully agree that direct evidence linking YEATS2 to metastasis would significantly strengthen our claims, especially given its demonstrated role in EMT.

      Our primary objective in this study was to meticulously dissect the molecular mechanisms by which YEATS2 regulates histone crotonylation and drives EMT in head and neck cancer. We have provided comprehensive upstream and downstream molecular insights into this process, culminating in a clear demonstration of YEATS2's functional importance in promoting EMT through multiple in vitro phenotypic assays (e.g., Matrigel invasion, wound healing, 3D invasion assays). As the reviewer notes, EMT is a widely recognized prerequisite for cancer metastasis[1]. Therefore, establishing YEATS2 as a driver of EMT directly implicates its potential role in metastatic progression.

      To further address the reviewer's concern and bridge the gap between EMT and metastasis, we have performed additional analyses that will be incorporated into the revised manuscript:

      Clinical Correlation with Tumor Grade: We analyzed publicly available head and neck cancer patient datasets. Our analysis revealed a significant positive correlation between YEATS2 expression and increasing tumor grade. Specifically, we observed significantly higher YEATS2 expression in Grade 2-4 tumors compared to Grade 1 tumors. Given that higher tumor grades are frequently associated with increased metastatic potential and poorer prognosis in HNC[2], this finding provides compelling clinical correlative evidence linking elevated YEATS2 expression to more aggressive disease.

      Gene Set Enrichment Analysis (GSEA) for Metastasis Pathways: To further explore the biological processes associated with YEATS2 in a clinical context, we performed GSEA on TCGA HNC patient samples stratified by high versus low YEATS2 expression. This analysis robustly demonstrated a positive enrichment of metastasis-related gene sets in the high YEATS2 expression group, compared to the low YEATS2 group. This strengthens the mechanistic link by showing that pathways associated with metastasis are co-ordinately upregulated when YEATS2 is highly expressed.

      These new clinical data provide strong correlative evidence supporting a direct association of YEATS2 with metastasis, building upon our detailed mechanistic dissection of its role in EMT.

      (3) There seems to be some discrepancy in the invasion data with BICR10 control cells (Figure 2C). BICR10 control cells with mock plasmids, specifically shControl and pEGFP-C3 show an unclear distinction between invasion capacities. Normally, we would expect the control cells to invade somewhat similarly, in terms of area covered, within the same time interval (24 hours here). But we clearly see more control cells invading when the invasion is done with KD and fewer control cells invading when the invasion is done with OE. Are these just plasmid-specific significant effects on normal cell invasion? This needs to be addressed.

      We thank the reviewer for their careful examination of Figure 2C and their insightful observation regarding the appearance of the control cells in relation to the knockdown (Figure 2B) and overexpression (Figure 2C) experiments. We understand how, at first glance, the control invasion levels across these panels might seem disparate.

      We wish to clarify that Figure 2B (YEATS2 knockdown) and Figure 2C (YEATS2 overexpression) represent two entirely independent experiments, conducted with distinct experimental conditions and methodologies, as detailed in our Methods section.

      Specifically:

      Figure 2B (Knockdown): Utilizes lentivirus-mediated transduction for stable shRNA delivery (shControl as control).

      Figure 2C (Overexpression): Utilizes transfection with plasmid DNA (pEGFP-C3 as control) via a standard transfection reagent.

      These fundamental differences in genetic manipulation methods (transduction vs. transfection), along with potential batch-to-batch variations in reagents or cell passage number at the time of each independent experiment, can indeed lead to variations in absolute basal invasion rates of control cells[3].

      Therefore, the invasion capacity of BICR10 control cells in Figure 2B (shControl) should only be compared to the YEATS2 knockdown conditions within that same panel. Similarly, the invasion capacity of control cells in Figure 2C (pEGFP-C3) should only be compared to the YEATS2 overexpression conditions within that specific panel. The crucial finding in each panel lies in the relative change in invasion caused by YEATS2 manipulation (knockdown or overexpression) compared to its respective, concurrently run control.

      We have ensured that all statistical analyses (as indicated in the figure legends and methods) were performed by comparing the experimental groups directly to their matched internal controls within each independent experiment. The significant increase in invasion upon YEATS2 overexpression and the significant decrease upon YEATS2 knockdown, relative to their respective controls, are robust and reproducible findings.

      (4) In Figure 3G, the Western blot shows an unclear band for YEATS2 in shSP1 cells with YEATS2 overexpression condition. The authors need to clearly identify which band corresponds to YEATS2 in this case.

      We thank the reviewer for pointing out the ambiguity in the YEATS2 Western blot for the shSP1 + pEGFP-C3-YEATS2 condition in Figure 3G. We apologize for this lack of clarity. The two bands seen in the shSP1+pEGFP-C3-YEATS2 condition correspond to the endogenous YEATS2 band (lower band) and YEATS2-GFP band (upper band, corresponding to overexpressed YEATS2-GFP fusion protein, which has a higher molecular weight). To avoid confusion, the endogenous band is now highlighted (marked by *) in the lane representing the shSP1+pEGFP-C3-YEATS2 condition. We have also updated the figure legend accordingly.

      (5) In ChIP assays with SP1, YEATS2 and p300 which promoter regions were selected for the respective genes? Please provide data for all the different promoter regions that must have been analysed, highlighting the region where enrichment/depletion was observed. Including data from negative control regions would improve the validity of the results.

      Throughout our study, we have performed ChIP-qPCR assays to check the binding of SP1 on YEATS2 and GCDH promoter, and to check YEATS2 and p300 binding on SPARC promoter. Using transcription factor binding prediction tools and luciferase assays, we selected multiple sites on the YEATS2 and GCDH promoter to check for SP1 binding. The results corresponding to the site that showed significant enrichment were provided in the manuscript. The region of SPARC promoter in YEATS2 and p300 ChIP assay was selected on the basis of YEATS2 enrichment found in the YEATS2 ChIP-seq data. The ChIP-qPCR data for all the promoter regions investigated (including negative controls) can be found below (Author response image 1.).

      Authors’ response image 1.

      (A) SP1 ChIP-qPCR results indicating SP1 occupancy on different regions of YEATS2 promoter. YEATS2 promoter region showing SP1 binding sites (indicated by red boxes) is shown above. SP1 showed significant enrichment at F1R1 region. The results corresponding to F1R1 region were included in Figure 3D. (B) SP1 ChIPqPCR results indicating SP1 occupancy on different regions of GCDH promoter. GCDH promoter region showing SP1 binding sites (indicated by red boxes) is shown above. SP1 showed significant enrichment at F2R2 region. The results corresponding to F2R2 region were included in Figure 7E. (C) YEATS2 ChIP-qPCR results in shControl vs. shYEATS2 BICR10 cells indicating YEATS2 occupancy on different regions of SPARC promoter. SPARC promoter region showing YEATS2 ChIP-seq and H3K27cr ChIP-seq signals is shown above. YEATS2 showed significant enrichment at F1R1 region. The results corresponding to F1R1 region were included in Figure 5C. (D) p300 ChIP-qPCR results in shControl vs. shYEATS2 BICR10 cells indicating p300 occupancy on different regions of SPARC promoter. p300 showed significant enrichment at F1R1 region. The results corresponding to F1R1 region were included in Figure 5F.

      (6) The authors establish a link between H3K27Cr marks and GCDH expression, and this is an already well-known pathway. A critical missing piece is the level of ECSH1 in patient samples. This will clearly delineate if the balance shifted towards crotonylation.

      We greatly appreciate the reviewer's insightful comment regarding the importance of assessing ECSH1 levels in patient samples to clearly delineate the metabolic balance shifting towards crotonylation. We fully agree that this is a critical piece of evidence.

      To directly address this point and substantiate our claim regarding the altered metabolic balance in HNC, we had previously analyzed the expression of both GCDH and ECHS1 in TCGA HNC RNA-seq data (as presented in Figure 4—figure supplement 1A and B). This analysis revealed a consistent increase in GCDH expression and a concomitant decrease in ECHS1 expression in tumor samples compared to normal tissues. Based on these findings, we hypothesized that this altered expression profile would indeed lead to an accumulation of crotonyl-CoA and, consequently, an overall increase in histone crotonylation in HNC.

      To further validate and extend these findings at the protein level, we have now performed immunohistochemistry (IHC) analysis for both ECHS1 and GCDH in a cohort of HNC normal vs. tumor tissues. Our IHC results strikingly corroborate the RNA-seq data: GCDH consistently showed increased protein expression in tumor samples, whereas ECHS1 exhibited significantly reduced protein expression in tumors compared to their adjacent normal counterpart tissues (Figure 4E and Authors’ response figure 5).

      These new data, combined with existing TCGA HNC RNA-seq analysis strongly supports our proposed mechanism where altered GCDH and ECHS1 expression contributes to increased histone crotonylation in head and neck cancer.

      (7) The p300 ChIP data on the SPARC promoter is confusing. The authors report reduced p300 occupancy in YEATS2-silenced cells, on SPARC promoter. However, this is paradoxical, as p300 is a writer, a histone acetyltransferase (HAT). The absence of a reader (YEATS2) shouldn't affect the writer (p300) unless a complex relationship between p300 and YEATS2 is present. The role of p300 should be further clarified in this case. Additionally, transcriptional regulation of SPARC expression in YEATS2 silenced cells could be analysed via downstream events, like Pol-II recruitment. Assays such as Pol-II ChIP-qPCR could help explain this.

      We greatly appreciate the reviewer's insightful observation regarding the apparently paradoxical reduction of p300 occupancy on the SPARC promoter upon YEATS2 silencing (Figure 5F), and their call for further clarification of p300's role and the potential complex relationship with YEATS2. We agree that this point required further mechanistic investigation.

      As we have shown through RNA-seq and ChIP-seq analyses, YEATS2 broadly influences histone crotonylation levels at gene promoters, thereby impacting gene expression. While p300 is indeed a known histone acetyltransferase (HAT) with promiscuous acyltransferase activity, including crotonyltransferase activity[4], the precise mechanism by which its occupancy is affected by a 'reader' protein like YEATS2 was unclear. Our initial data suggested a dependency of p300 recruitment on YEATS2.

      To directly address the reviewer's concern and thoroughly delineate the molecular mechanism of cooperativity between YEATS2 and p300 in regulating histone crotonylation, we have now performed a series of targeted experiments, which have been incorporated into the revised manuscript:

      (a) Validation of p300's role in SPARC expression: We performed p300 knockdown in BICR10 cells, followed by immunoblotting to assess SPARC protein levels. As expected, a significant decrease in SPARC protein levels was observed upon p300 knockdown (Figure 5G). This confirms p300's direct involvement in SPARC gene expression.

      (b) Direct interaction between YEATS2 and p300: To investigate a potential physical association, we performed co-immunoprecipitation assays to check for an interaction between endogenous YEATS2 and p300. Our results clearly demonstrate the presence of YEATS2 in the p300-immunoprecipitate sample, indicating that YEATS2 and p300 physically interact and likely function together as a complex to drive the expression of target genes like SPARC (Figure 5H). This direct interaction provides the mechanistic basis for how YEATS2 influences p300 occupancy.

      (c) Impact on transcriptional activity (Pol II recruitment): As suggested, we performed RNA Polymerase II (Pol II) ChIP-qPCR on the SPARC promoter in YEATS2 knockdown cells. We observed a significant decrease in Pol II occupancy on the SPARC promoter after YEATS2 knockdown in BICR10 cells (Figure 6C). This confirms that YEATS2 silencing leads to reduced transcriptional initiation/elongation at this promoter.

      (d) p300's direct role in H3K27cr on SPARC promoter: To confirm p300's specific role in crotonylation at this locus, we performed H3K27cr ChIP-qPCR after p300 knockdown. As anticipated, a significant decrease in H3K27cr enrichment was observed on the SPARC promoter upon p300 knockdown (Figure 6J), directly demonstrating p300's crotonyltransferase activity at this site.

      (e) Rescue of p300 occupancy and H3K27cr by YEATS2 overexpression in SP1deficient cells: To further establish the YEATS2-p300 axis, we performed SP1 knockdown (which reduces YEATS2 expression) followed by ectopic YEATS2 overexpression, and then assessed p300 occupancy and H3K27cr levels on the SPARC promoter. While SP1 knockdown led to a decrease in both p300 and H3K27cr enrichment, we observed a significant rescue of both p300 occupancy and H3K27cr enrichment upon YEATS2 overexpression in the shSP1 cells (Figure 6E and F). This provides strong evidence that YEATS2 acts downstream of SP1 to regulate p300 recruitment and H3K27cr levels.

      Collectively, these comprehensive new results clearly establish that YEATS2 directly interacts with and assists in the recruitment of p300 to the SPARC promoter. This recruitment is crucial for p300's localized crotonyltransferase activity, leading to increased H3K27cr marks and subsequent activation of SPARC transcription. This clarifies the previously observed 'paradox' and defines a novel cooperative mechanism between a histone reader (YEATS2) and a writer (p300) in regulating histone crotonylation and gene expression.

      (8) The role of GCDH in producing crotonyl-CoA is already well-established in the literature. The authors' hypothesis that GCDH is essential for crotonyl-CoA production has been proven, and it's unclear why this is presented as a novel finding. It has been shown that YEATS2 KD leads to reduced H3K27cr, however, it remains unclear how the reader is affecting crotonylation levels. Are GCDH levels also reduced in the YEATS2 KD condition? Are YEATS2 levels regulating GCDH expression? One possible mechanism is YEATS2 occupancy on GCDH promoter and therefore reduced GCDH levels upon YEATS2 KD. This aspect is crucial to the study's proposed mechanism but is not addressed thoroughly.

      We appreciate the reviewer's valuable comment questioning the novelty of GCDH's role in crotonyl-CoA production and seeking further clarification on how YEATS2 influences crotonylation levels beyond its reader function.

      We agree that GCDH's general role in producing crotonyl-CoA is well-established[5,6]. Our study, however, aims to delineate a novel epigenetic-metabolic crosstalk in head and neck cancer, specifically investigating how the interplay between the histone crotonylation reader YEATS2 and the metabolic enzyme GCDH contributes to increased histone crotonylation and drives EMT in this context.

      Our initial investigations using GSEA on publicly available TCGA RNA-seq data revealed that HNC patients with high YEATS2 expression also exhibit elevated expression of genes involved in the lysine degradation pathway, prominently including GCDH. Recognizing the known roles of YEATS2 in preferentially binding H3K27cr7 and GCDH in producing crotonylCoA, we hypothesized that the elevated H3K27cr levels observed in HNC are a consequence of the combined action of both YEATS2 and GCDH. We have provided evidence that increased nuclear GCDH correlates with higher H3K27cr abundance, likely due to an increased nuclear pool of crotonyl-CoA, and that YEATS2 contributes through its preferential maintenance of crotonylation marks by recruiting p300 (as detailed in Figure 5FH and Figure 6J-L of the manuscript and elaborated in our response to point 7). Thus, our work highlights that both YEATS2 and GCDH are crucial for the regulation of histone crotonylation-mediated gene expression in HNC.

      To directly address the reviewer's query regarding YEATS2's influence on GCDH levels and nuclear histone crotonylation:

      • YEATS2 does not transcriptionally regulate GCDH: We did not find any evidence of YEATS2 directly regulating the expression levels of GCDH at the transcriptional level in HNC cells.

      • Novel finding: YEATS2 regulates GCDH nuclear localization: Crucially, we discovered that YEATS2 downregulation significantly reduces the nuclear pool of GCDH in head and neck cancer cells (Figure 7G). This is a novel mechanism suggesting that YEATS2 influences histone crotonylation not only by affecting promoter H3K27cr levels via p300 recruitment, but also by regulating the availability of the crotonyl-CoA producing enzyme, GCDH, within the nucleus.

      • Common upstream regulation by SP1: Interestingly, we found that both YEATS2 and GCDH expression are commonly regulated by the transcription factor SP1 in HNC. Our data demonstrate that SP1 binds to the promoters of both genes, and its downregulation leads to a decrease in their respective expressions (Figure 3 and Figure 7). This provides an important upstream regulatory link between these two key players.

      • Functional validation of GCDH in EMT: We further assessed the functional importance of GCDH in maintaining the EMT phenotype in HNC cells. Matrigel invasion assays after GCDH knockdown and overexpression in BICR10 cells revealed that the invasiveness of HNC cells was significantly reduced upon GCDH knockdown and significantly increased upon GCDH overexpression (results provided in revised manuscript Figure 7F and Figure 7—figure supplement 1F).

      These findings collectively demonstrate a multifaceted role for YEATS2 in regulating histone crotonylation by both direct recruitment of the writer p300 and by influencing the nuclear availability of the crotonyl-CoA producing enzyme GCDH. We acknowledge that the precise molecular mechanism governing YEATS2's effect on GCDH nuclear localization remains an exciting open question for future investigation, but our current data establishes a novel regulatory axis.

      (9) The authors should provide IHC analysis of YEATS2, SPARC alongside H3K27cr and GCDH staining in normal vs. tumor tissues from HNC patients.

      We thank the reviewer for their suggestion. We have performed IHC analysis for YEATS2, H3K27cr and GCDH in normal and tumor samples obtained from HNC patient.

      Reviewer #2 (Public review):

      Summary:

      The manuscript emphasises the increased invasive potential of histone reader YEATS2 in an SP1-dependent manner. They report that YEATS2 maintains high H3K27cr levels at the promoter of EMT-promoting gene SPARC. These findings assigned a novel functional implication of histone acylation, crotonylation.

      We thank the reviewer for the constructive comments. We are committed to making beneficial changes to the manuscript in order to alleviate the reviewer’s concerns.

      Concerns:

      (1) The patient cohort is very small with just 10 patients. To establish a significant result the cohort size should be increased.

      We thank the reviewer for this suggestion. We have increased the number of patient samples to assess the levels of YEATS2 (n=23 samples) and the results have been included in Figure 1G and Figure 1—figure supplement 1F.

      (2) Figure 4D compares H3K27Cr levels in tumor and normal tissue samples. Figure 1G shows overexpression of YEATS2 in a tumor as compared to normal samples. The loading control is missing in both. Loading control is essential to eliminate any disparity in protein concentration that is loaded.

      To address the reviewer’s concern, we have repeated the experiment and used H3 as a loading control as nuclear protein lysates from patient samples were used to check YEATS2 and H3K27cr levels.

      (3) Figure 4D only mentions 5 patient samples checked for the increased levels of crotonylation and hence forms the basis of their hypothesis (increased crotonylation in a tumor as compared to normal). The sample size should be more and patient details should be mentioned.

      As part of the revision, we have now checked the H3K27cr levels in a total of 23 patient samples and the results have been included in Figure 4D and Figure 4— figure supplement 1D. Patient details are provided in Supplementary Table 6.

      (4) YEATS2 maintains H3K27Cr levels at the SPARC promoter. The p300 is reported to be hyper-activated (hyperautoacetylated) in oral cancer. Probably, the activated p300 causes hyper-crotonylation, and other protein factors cause the functional translation of this modification. The authors need to clarify this with a suitable experiment.

      We thank the reviewer for this insightful comment regarding the functional relationship between YEATS2 and p300 in the context of H3K27cr, especially considering reports of p300 hyper-activation in oral cancer. We agree that a precise clarification of p300's role and its cooperativity with YEATS2 is crucial to fully understand the functional translation of this modification.

      As we have shown through global RNA-seq and ChIP-seq analyses, YEATS2 broadly affects gene expression by regulating histone crotonylation levels at gene promoters. We also recognize that the histone writer p300 is a promiscuous acyltransferase, known to add various non-acetyl marks, including crotonylation[4]. Our initial data, showing decreased p300 occupancy on the SPARC promoter upon YEATS2 downregulation (Figure 5F), suggested a strong dependency of p300 on YEATS2 for its recruitment. To fully delineate the molecular mechanism of this cooperativity and clarify how YEATS2 influences p300-mediated histone crotonylation and its functional outcomes, we have performed the following series of experiments, which have been integrated into the revised manuscript:

      (a) Validation of p300's role in SPARC expression: We performed p300 knockdown in BICR10 cells, followed by immunoblotting to assess SPARC protein levels. As expected, a significant decrease in SPARC protein levels was observed upon p300 knockdown (Figure 5G). This confirms p300's direct involvement in SPARC gene expression.

      (b) Direct interaction between YEATS2 and p300: To investigate a potential physical association, we performed co-immunoprecipitation assays to check for an interaction between endogenous YEATS2 and p300. Our results clearly demonstrate the presence of YEATS2 in the p300-immunoprecipitate sample, indicating that YEATS2 and p300 physically interact and likely function together as a complex to drive the expression of target genes like SPARC (Figure 5H). This direct interaction provides the mechanistic basis for how YEATS2 influences p300 occupancy.

      (c) Impact on transcriptional activity (Pol II recruitment): As suggested, we performed RNA Polymerase II (Pol II) ChIP-qPCR on the SPARC promoter in YEATS2 knockdown cells. We observed a significant decrease in Pol II occupancy on the SPARC promoter after YEATS2 knockdown in BICR10 cells (Figure 6C). This confirms that YEATS2 silencing leads to reduced transcriptional initiation/elongation at this promoter.

      (d) p300's direct role in H3K27cr on SPARC promoter: To confirm p300's specific role in crotonylation at this locus, we performed H3K27cr ChIP-qPCR after p300 knockdown. As anticipated, a significant decrease in H3K27cr enrichment was observed on the SPARC promoter upon p300 knockdown (Figure 6J), directly demonstrating p300's crotonyltransferase activity at this site.

      (e) Rescue of p300 occupancy and H3K27cr by YEATS2 overexpression in SP1deficient cells: To further establish the YEATS2-p300 axis, we performed SP1 knockdown (which reduces YEATS2 expression) followed by ectopic YEATS2 overexpression, and then assessed p300 occupancy and H3K27cr levels on the SPARC promoter. While SP1 knockdown led to a decrease in both p300 and H3K27cr enrichment, we observed a significant rescue of both p300 occupancy and H3K27cr enrichment upon YEATS2 overexpression in the sh_SP1_ cells (Figure 6K and L). This provides strong evidence that YEATS2 acts downstream of SP1 to regulate p300 recruitment and H3K27cr levels.

      Collectively, these comprehensive new results clearly establish that YEATS2 directly interacts with and assists in the recruitment of p300 to the SPARC promoter. This recruitment is crucial for p300's localized crotonyltransferase activity, leading to increased H3K27cr marks and subsequent activation of SPARC transcription. This clarifies the previously observed 'paradox' and defines a novel cooperative mechanism between a histone reader (YEATS2) and a writer (p300) in regulating histone crotonylation and gene expression.

      (5) I do not entirely agree with using GAPDH as a control in the western blot experiment since GAPDH has been reported to be overexpressed in oral cancer.

      We would like to clarify that GAPDH was not used as a loading control for protein expression comparisons between normal and tumor samples. GAPDH was used as a loading control only in experiments using head and neck cancer cell lines where shRNA-mediated knockdown or overexpression was employed. These manipulations specifically target the genes of interest and are not expected to alter GAPDH expression, making it a suitable loading control in these instances.

      (6) The expression of EMT markers has been checked in shControl and shYEATS2 transfected cell lines (Figure 2A). However, their expression should first be checked directly in the patients' normal vs. tumor samples.

      We thank the reviewer for the suggestion. We have now checked the expression of EMT marker Twist1 alongside YEATS2 expression in normal vs. tumor tissue samples using IHC (Figure 4E).

      (7) In Figure 3G, knockdown of SP1 led to the reduced expression of YEATS2 controlled gene Twist1. Ectopic expression of YEATS2 was able to rescue Twist1 partially. In order to establish that SP1 directly regulates YEATS2, SP1 should also be re-introduced upon the knockdown background along with YEATS2 for complete rescue of Twist1 expression.

      To address the reviewer’s concern regarding the partial rescue of Twist1 in SP1 depleted-YEATS2 overexpressed cells, we performed the experiment as suggested by the reviewer. We overexpressed both SP1 and YEATS2 in SP1-depleted cells and found that Twist1 depletion was almost completely rescued.

      Authors’ response image 2.

      Immunoblot depicting the decreased Twist1 levels on SP1 knockdown and its subsequent rescue of expression upon YEATS2 and SP1 overexpression in BICR10 (endogenous YEATS2 band indicated by *).

      (8) In Figure 7G, the expression of EMT genes should also be checked upon rescue of SPARC expression.

      We thank the reviewer for the suggestion. We have examined the expression of EMT marker Twist1 on YEATS2/ GCDH rescue. On overexpressing both YEATS2 and GCDH in sh_SP1_ cells we found that the depleted expression of Twist1 was rescued.

      Authors’ response image 3.

      Immunoblot depicting the decreased Twist1 levels on SP1 knockdown and its subsequent rescue of expression upon dual overexpression of YEATS2 and GCDH in BICR10 (* indicates GFP-tagged YEATS2 probed using GFP antibody).

      Reviewer #1 (Recommendations for the authors):

      While the study offers insights into the specific role of this axis in regulating epithelial-tomesenchymal transition (EMT) in HNC, its broader mechanistic novelty is limited by prior discoveries in other cancer types (https://doi.org/10.1038/s41586-023-06061-0). The manuscript would benefit from the inclusion of metastasis data, the role of key metabolic enzymes like ECHS1, the molecular mechanisms governing p300 and YEATS2 interactions, additional IHC data, negative control data in ChIP, and an explanation of discrepancies in certain figures.

      We thank the reviewer for their constructive suggestions. We have made extensive revisions to our manuscript to substantiate our findings. We have looked into the expression of ECHS1/ GCDH in HNC tumor tissues using IHC, performed extensive experiments to validate the role of p300 in YEATS2-mediated histone crotonylation, and provided additional data supporting our findings wherever required. The revised figures have been provided in the updated version of the manuscript and also in the Authors’ response.

      Minor Comments:

      (1) The study begins with a few EMT markers, such as Vimentin, Twist, and N-Cadherin to validate the role of YEATS2 in promoting EMT. Including a broader panel of EMT markers would strengthen the conclusions about the effects of YEATS2 on EMT and invasion. Additionally, the rationale for selecting these EMT markers is not fully elaborated. Why were other well-known EMT players not included in the analysis?

      On performing RNA-seq with shControl and sh_YEATS2_ samples, we discovered that TWIST1 was showing decrease in expression on YEATS2 downregulation. So Twist1 was investigated as a potential target of YEATS2 in HNC cells. N-Cadherin was chosen because it is known to get upregulated directly by Twist1[8]. Further, Vimentin was chosen as it a well-known marker for mesenchymal phenotype and is frequently used to indicate EMT in cancer cells[9].

      Authors’ response image 4.

      IGV plot showing the decrease in Twist1 expression in shControl vs. shYEATS2 RNA-seq data.

      Other than the EMT-markers used in our study, the following markers were amongst those that showed significant change in gene expression on YEATS2 downregulation.

      Authors’ response table 1.

      List of EMT-related genes that showed significant change in expression on YEATS2 knockdown in RNA-seq analysis.

      As depicted in the table above, majority of the genes that showed downregulation on YEATS2 knockdown were mesenchymal markers, while epithelial-specific genes such as Ecadherin and Claudin-1 showed upregulation. This data signifies the essential role of YEATS2 in driving EMT in head and neck cancer.

      (2) The authors use Ponceau staining, but the rationale behind this choice is unclear. Ponceau is typically used for transfer validation. For the same patient, western blot loading controls like Actin/GAPDH should be shown. Also, at various places throughout the manuscript, Ponceau staining has been used. These should also be replaced with Actin/GAPDH blots.

      Ponceau S staining is frequently used as alternative for housekeeping genes like GAPDH as control for protein loading[10]. However, to address this issue, we have repeated the western and used H3 as a loading control as nuclear protein lysates from patient samples were used to check YEATS2 and H3K27cr levels.

      For experiments (In Figures 5E, 6F, 6I, and 7H ) where we assessed SPARC levels in conditioned media obtained from BICR10 cells (secretory fraction), Ponceau S staining was deliberately used as the loading control. In such extracellular protein analyses, traditional intracellular housekeeping genes (like Actin or GAPDH) are not applicable. Ponceau S has been used as a control for showing SPARC expression in secretory fraction of mammalian cell lines in previous studies as well11.  

      (3) The manuscript briefly mentions that p300 was identified as the only protein with increased expression in tumours compared to normal tissue in the TCGA dataset. What other writers were checked for? Did the authors check for their levels in HNC patients?

      We thank the reviewer for this observation. As stated by previous studies [12,13], p300 and GCN5 are the histone writers that can act as crotonyltransferases at the H3K27 position. Although the crotonyltransferase activity of GCN5 has been demonstrated in yeast, it has not been confirmed in human. Whereas the histone crotonyltransferase activity of p300 has been validated in human cells using in vitro HCT assays[4,14]. Therefore, we chose to focus on p300 for further validation of its role in YEATS2mediated regulation of histone crotonylation. We did not check the levels of p300 in HNC patient tissues. However, p300 showed higher expression in tumor as compared to normal in publicly available HNC TCGA RNA-seq data (Figure 5—figure supplement 1G).

      We acknowledge that the original statement in the manuscript, 'For this we looked at expression of the known writers of H3K27Cr mark in TCGA dataset, and discovered that p300 was the only protein that had increased expression in tumor vs. normal HNC dataset…', was indeed slightly misleading. Our intention was to convey that p300 is considered the major and most validated histone crotonyltransferase capable of influencing crotonylation at the H3K27 position in humans, and that its expression was notably increased in the HNC TCGA tumor dataset. We have now reframed this sentence in the revised manuscript to accurately reflect our findings and focus, as follows:

      'For this, we checked the expression of p300, a known writer of H3K27cr mark in humans, in the TCGA dataset. We found that p300 had increased expression in tumor vs. normal HNC dataset…'

      This revised wording more accurately reflects our specific focus on p300's established role and its observed upregulation in HNC.

      (4) Figure 6E, blot should be replaced. The results aren't clearly visible.

      We thank the reviewer for this observation. We have repeated the western blot and the Figure 6E (Figure 6F in the revised version of manuscript) has now been replaced with a cleaner blot.

      (5) Reference 9 and 19 are the same. Please rectify.

      We apologize for this inadvertent error. We have rectified this error in the updated version of the manuscript.

      References

      (1) Brabletz, T.; Kalluri, R.; Nieto, M. A.; Weinberg, R. A. EMT in Cancer. Nat Rev Cancer 2018, 18(2), 128–134. https://doi.org/10.1038/nrc.2017.118.

      (2) Pisani, P.; Airoldi, M.; Allais, A.; Aluffi Valletti, P.; Battista, M.; Benazzo, M.; Briatore, R.; Cacciola, S.; Cocuzza, S.; Colombo, A.; Conti, B.; Costanzo, A.; Della Vecchia, L.; Denaro, N.; Fantozzi, C.; Galizia, D.; Garzaro, M.; Genta, I.; Iasi, G. A.; Krengli, M.; Landolfo, V.; Lanza, G. V.; Magnano, M.; Mancuso, M.; Maroldi, R.; Masini, L.; Merlano, M. C.; Piemonte, M.; Pisani, S.; Prina-Mello, A.; Prioglio, L.; Rugiu, M. G.; Scasso, F.; Serra, A.; Valente, G.; Zannetti, M.; Zigliani, A. Metastatic Disease in Head & Neck Oncology. Acta Otorhinolaryngol Ital 2020, 40 (SUPPL. 1), S1–S86. https://doi.org/10.14639/0392-100X-suppl.1-40-2020.

      (3) Lin, J.; Zhang, P.; Liu, W.; Liu, G.; Zhang, J.; Yan, M.; Duan, Y.; Yang, N. A Positive Feedback Loop between ZEB2 and ACSL4 Regulates Lipid Metabolism to Promote Breast Cancer Metastasis. Elife 2023, 12, RP87510. https://doi.org/10.7554/eLife.87510.

      (4) Liu, X.; Wei, W.; Liu, Y.; Yang, X.; Wu, J.; Zhang, Y.; Zhang, Q.; Shi, T.; Du, J. X.; Zhao, Y.; Lei, M.; Zhou, J.-Q.; Li, J.; Wong, J. MOF as an Evolutionarily Conserved Histone Crotonyltransferase and Transcriptional Activation by Histone Acetyltransferase-Deficient and Crotonyltransferase-Competent CBP/P300. Cell Discov 2017, 3 (1), 17016. https://doi.org/10.1038/celldisc.2017.16.

      (5) Jiang, G.; Li, C.; Lu, M.; Lu, K.; Li, H. Protein Lysine Crotonylation: Past, Present, Perspective. Cell Death Dis 2021, 12 (7), 703. https://doi.org/10.1038/s41419-021-03987-z.

      (6) Yuan, H.; Wu, X.; Wu, Q.; Chatoff, A.; Megill, E.; Gao, J.; Huang, T.; Duan, T.; Yang, K.; Jin, C.; Yuan, F.; Wang, S.; Zhao, L.; Zinn, P. O.; Abdullah, K. G.; Zhao, Y.; Snyder, N. W.; Rich, J. N. Lysine Catabolism Reprograms Tumour Immunity through Histone Crotonylation. Nature 2023, 617 (7962), 818–826. https://doi.org/10.1038/s41586-023-06061-0.

      (7) Zhao, D.; Guan, H.; Zhao, S.; Mi, W.; Wen, H.; Li, Y.; Zhao, Y.; Allis, C. D.; Shi, X.; Li, H. YEATS2 Is a Selective Histone Crotonylation Reader. Cell Res 2016, 26 (5), 629–632. https://doi.org/10.1038/cr.2016.49.

      (8) Alexander, N. R.; Tran, N. L.; Rekapally, H.; Summers, C. E.; Glackin, C.; Heimark, R. L. NCadherin Gene Expression in Prostate Carcinoma Is Modulated by Integrin-Dependent Nuclear Translocation of Twist1. Cancer Res 2006, 66 (7), 3365–3369.

      https://doi.org/10.1158/0008-5472.CAN-05-3401.

      (9) Satelli, A.; Li, S. Vimentin in Cancer and Its Potential as a Molecular Target for Cancer Therapy. Cellular and Molecular Life Sciences 2011, 68 (18), 3033–3046. https://doi.org/10.1007/s00018-011-0735-1.

      (10) Romero-Calvo, I.; Ocón, B.; Martínez-Moya, P.; Suárez, M. D.; Zarzuelo, A.; Martínez-Augustin, O.; de Medina, F. S. Reversible Ponceau Staining as a Loading Control Alternative to Actin in Western Blots. Anal Biochem 2010, 401 (2), 318–320. https://doi.org/https://doi.org/10.1016/j.ab.2010.02.036.

      (11) Ling, H.; Li, Y.; Peng, C.; Yang, S.; Seto, E. HDAC10 Inhibition Represses Melanoma Cell Growth and BRAF Inhibitor Resistance via Upregulating SPARC Expression. NAR Cancer 2024, 6 (2), zcae018. https://doi.org/10.1093/narcan/zcae018.

      (12) Gao, D.; Li, C.; Liu, S.-Y.; Xu, T.-T.; Lin, X.-T.; Tan, Y.-P.; Gao, F.-M.; Yi, L.-T.; Zhang, J. V; Ma, J.Y.; Meng, T.-G.; Yeung, W. S. B.; Liu, K.; Ou, X.-H.; Su, R.-B.; Sun, Q.-Y. P300 Regulates Histone Crotonylation and Preimplantation Embryo Development. Nat Commun 2024, 15 (1), 6418. https://doi.org/10.1038/s41467-024-50731-0.

      (13) Li, K.; Wang, Z. Histone Crotonylation-Centric Gene Regulation. Epigenetics Chromatin 2021, 14 (1), 10. https://doi.org/10.1186/s13072-021-00385-9.

      (14) Sabari, B. R.; Tang, Z.; Huang, H.; Yong-Gonzalez, V.; Molina, H.; Kong, H. E.; Dai, L.; Shimada, M.; Cross, J. R.; Zhao, Y.; Roeder, R. G.; Allis, C. D. Intracellular Crotonyl-CoA Stimulates Transcription through P300-Catalyzed Histone Crotonylation. Mol Cell 2015, 58 (2), 203–215. https://doi.org/https://doi.org/10.1016/j.molcel.2015.02.029.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      In Figure 1, it is very difficult to identify where CySCs end and GSCs begin without using a cell surface marker for these different cell types. In addition, the methods for quantifying the mitochondrial distribution in GSCs vs. CySCs are very much unclear and appear to rely on colocalization with molecular markers that are not in the same cellular compartment (Tj-nuclear vs. Vasa-perinuclear and cytoplasmic) the reader has no way to determine the validity of the mitochondrial distribution. Similarly, the labelling with gstD1-GFP is also very much unclear - I see little to no GFP signal in either GSCs or CySCs in panels 1GK. Lastly, while the expression o SOD in CySCs does increase the gstD1-GFP signal in CySCs, the effects on GSCs claimed by the authors are not apparent.

      We appreciate the reviewer’s detailed feedback on Figure 1 and the concerns raised regarding identifying CySCs and GSCs, as well as the methods used for quantifying mitochondrial distribution and gstD1-GFP labeling. Below, we address each point and describe the revisions made to improve clarity and rigor

      Distinguishing CySCs and GSCs and Mitochondrial Distribution in GSCs vs. CySCs in Figure1

      We acknowledge the difficulty in distinguishing CySCs from GSCs without the use of additional cell surface markers. To improve clarity, we have now included a membrane marker discslarge (Dlg) in our revised Figure 1 and S1 to delineate cell boundaries more clearly. Additionally, we provide higher-magnification images to indicate the mitochondria in CySCs and GSCs. We also agree that ing on mitochondrial distribution might be far-fetched. In the revised manuscript, we have limited our analysis to mitochondrial shape, which was found to be different in GSC and CySC (Fig. 1, D, F, G, and S1B). We have clarified our quantification methods in the revised Methods section, providing details on the image processing and analysis pipeline used to assess mitochondrial distribution. 

      Clarity of gstD1-GFP Labelling:

      We recognize the reviewer’s concern regarding the weak GFP signal in these panels. To improve visualization, we have included fresh set of images by optimizing the contrast and presenting additional monochrome images with higher exposure settings to better illustrate gstD1-GFP expression (Figure 1L,1Q, and S1C’’’-D’’’). Additionally, we have demarcated the cell boundaries using Dlg along with individual labelling of Vasa+ and Tj+ cells. Due to technical difficulty associated with acquisition of images, we could not co-stain Vasa, Tj and Dlg together. Therefore, quantified the gstD-GFP intensity separately for GSCs and CySCs under similar acquisition conditions (Figure 1R).   

      Effects of SOD depletion on GSCs:

      While our initial analysis suggested changes in gstD1-GFP expression in GSCs upon Sod1 depletion in CySCs, we acknowledge that the effects may not be as apparent in the provided images. In response, we have expanded our quantification, included a statistical analysis of gstD1-GFP intensity specifically in GSCs and CySCs (Figure 1S), and added more representative images in the revised figure panels (Figure S1C-D’’’) to support our claims.

      In Figure 2, while the cell composition of the niche region does appear to be different from controls when SOD1 is knocked down in the CySCs, at least in the example images shown in Figures 2A and B, how cell type is quantified in figures 2E-G is very much unclear in the figure and methods. Are these counts of cells contacting the niche? If so, how was that defined? Or were additional regions away from the niche also counted and, if so, how were these regions defined?

      Thank you for your  regarding the quantification of cell types in Figures 2E-G. We counted all cells that were Tj-positive and Zfh1-positive in individual testis, while for GSCs, only those in direct contact with the hub were included. This clarification has been incorporated into the revised figure legend and methods (line no.400-407). We have now provided a clearer description in the text to improve transparency in our analysis.

      In Figure 3, it is quite interesting that there is an increase in Eya<sup>+</sup>, differentiating cyst cells in SOD1 knockdown animals, and that these Eya+ cells appear closer to the niche than in controls. However, this seems at odds with the proliferation data presented in Figure 2, since Eya<sup>+</sup> somatic cells do not normally divide at all. Are they suggesting that now differentiating cyst cells are proliferative? In addition, it is important for them to show example images of the changes in Socs36E and ptp61F expression.

      Thank you for your insightful observations. We acknowledge the apparent contradiction and appreciate the opportunity to clarify our interpretation.

      Regarding the increase in Eya<sup>+</sup> differentiating cyst cells in Sod1RNAi individuals and their proximity to the niche, we do not suggest that these differentiating cells are proliferative. Instead, we propose that the knockdown of Sod1 may alter the timing or regulation of cyst cell differentiation, leading to an accumulation of Eya<sup>+</sup> cells near the niche. To clarify this point, we have revised the manuscript (line no. 186-189) to emphasize that our proliferation data specifically refers to early-stage somatic cells, not Eya<sup>+</sup> differentiating cyst cells.

      We also appreciate the reviewer's request for example images illustrating the changes in Socs36E and Ptp61F expression. We could not access the antibodies specific to Socs36E and Ptp61F. Hence, we had to rely on the measurements were obtained using real-time PCR from the tip region of testis. We have clarified the same in the figure legends (line 700). 

      Overall, the various changes in signaling are quite puzzling-while Jak/Stat signaling from the niche is reduced, hh signaling appears to be increased. Similarly, while the authors conclude that premature differentiation occurs close to the niche, EGF signaling, which occurs from germ cells to cyst cells during differentiation, is decreased. Many times these, changes are contradictory, and the authors do not provide a suitable explanation to resolve these contradictions. 

      We appreciate the reviewer’s thoughtful feedback on the signaling changes described in our study. We acknowledge that the observed alterations in Jak/Stat, Hedgehog (Hh), and EGF signaling may appear contradictory at first glance. However, our data suggest that these changes reflect a complex interplay between different signaling pathways that regulate cyst cell behavior in response to specific genetic perturbation.

      Regarding Jak/Stat and Hh signaling, while Jak/Stat activity is reduced in the niche, the increase in Hh signaling may reflect a compensatory mechanism or a context-dependent response of cyst cells to reduced Jak/Stat input. Prior studies have suggested that Hh signaling can function in parallel and independently of Jak/Stat signaling (PMID: 23175633) and our findings align with this possibility. 

      The reduction in EGFR signaling in this context appears contradictory to existing literature. One possible explanation is that, the altered GSC -CySC balance and loss of contact in Tj>Sod1i testes, leads to insufficient ligand response, thereby failing to activate EGFR signaling. (line no.222-224, 313-318). 

      Reviewer #2 (Public review):

      We sincerely appreciate the reviewer’s detailed feedback, which has helped refine our manuscript. In this study we have focussed on the role of ROS generated due to manipulation of Sod1 in the interplay between GSC and CySCs. In this regard, we have conducted additional experiments and incorporated quantitative data into the revised manuscript. Additionally, we have refined the text and provided further context to enhance the clarity. Key revisions include:

      (1) Clarification of Quantification Methods – We have refined intensity measurements by incorporating a membrane marker (Dlg) to better delineate cell boundaries and have normalized Ptc and Ci expression per cell to improve clarity.

      (2) Cell-Specific ROS Measurement – We separately measured ROS in germ cells and cyst cells and performed independent Sod1 depletion in GSCs to determine its direct effects.

      (3) Mitochondrial Analysis – We revised our approach, focusing on mitochondrial shape rather than asymmetric distribution, and removed overreaching claims.

      (4) Proliferation Analysis – We reanalyzed FUCCI data by normalizing to total cell count, supporting the conclusion that increased proliferation, rather than differentiation delay, underlies the observed phenotype.

      (5) E-Cad Quantification – We specifically analyzed E-Cad levels at the GSC-hub interface to strengthen conclusions on GSC attachment.

      (6) JAK/STAT Signaling – While we could not obtain a STAT92E antibody, we clarified the spatial limitations of our current analysis and revised the text accordingly.

      (7) Rescue Experiments and Gal4 Titration Control – We performed additional control experiments to confirm that observed effects are not due to Gal4 dilution.

      (8) Image Quality and Terminology Corrections – We enhanced figure resolution, corrected terminology (e.g., "cystic" to "cyst"), and revised ambiguous phrasing for clarity and accuracy.

      As suggested, we have also changed the manuscript title to better align with our results:

      Previous Manuscript Title: Non-autonomous cell redox-pairs dictate niche homeostasis in multi-lineage stem populations

      Updated Manuscript Title: Superoxide Dismutases maintain niche homeostasis in stem cell populations

      Specific responses to the reviewer’s: 

      While the decrease in pERK in CySCs is clear from the image and matched in the quantification, the increase in cyst cells is not apparent from the fire LUT used. The change in fluorescence intensity therefore may be that more cells have active ERK, rather than an increase per cell (similar arguments apply to the quantifications for p4E-BP or Ptc). Therefore, it is hard to know whether Sod1 knockdownresults in increased or decreased signaling in individual cells.

      Thank you for your insightful . To clarify, in the Fire LUT images, only pERK intensity is shown, not the cyst cell number. In our context, while there are more cells, the overall pERK intensity is lower, eliminating any ambiguity about whether the change is occurring per cell or due to an increased number of circulating cells. Moreover, for Ptc and Ci levels, we have normalized Ptc and Ci expression intensity per cell to enhance clarity and ensure an accurate interpretation of signaling changes.

      There are several places in which the authors could strengthen their manuscript by explaining the methods more clearly. For example, it is unclear how the intensity graphs in Figure 1Q are obtained. The curves appear smoothed and therefore unlikely to be from individual samples, but this is not clearly explained. However, this quantification method is clearly not helpful, as it shows the overlap between somatic and germline markers, suggesting it cannot accurately distinguish between the two cell types. Additionally, using a nuclear marker (Tj) for the cyst cells and cytoplasmic marker (Vasa) for the germ cells risks being misleading, as one would not expect much overlap between cytoplasmic gstD1-GFP and nuclear Tj. Also related to the methods, it is unclear how Vasa+ cells at the hub were counted. The methods suggest this was from a single plane, but this runs the risk of being arbitrary since GSCs can be distributed around the hub in 3D. (As a note, the label on the graph "Vasa+ cells" is misleading, as there are many more cells that are Vasa-positive than the ones counted.)

      We appreciate the reviewer’s careful evaluation of our manuscript and their insightful suggestions for improving the clarity of our methods. Below, we address each concern raised and describe the revisions made accordingly.

      Clarification of Intensity Graphs in Figure 1Q

      We have removed this graph, as we recognize that the markers previously used were not appropriate for distinguishing the different cell types. To address this concern, we have revised the text and now included a membrane marker discs-large (Dlg) in our revised Figure 1 and S1 to more clearly delineate cell boundaries. Due to technical difficulty associated with acquisition of images, we could not co-stain Vasa, Tj and Dlg together. Therefore, quantified the gstD-GFP intensity separately for GSCs and CySCs under similar acquisition conditions (Figure 1R).   

      Counting of Vasa<sup>+</sup> Cells at the Hub

      We appreciate the reviewer’s concern regarding our method for counting Vasa+ cells. In our original analysis, we included GSCs as the Vasa-positive cells that were in direct contact with the hub. To account for the three-dimensional arrangement of GSCs, we used the Cell counter plugin of Fiji and performed counting across different focal planes to ensure all hub-associated cells were considered. For better clarity on cell distribution around the hub, we have presented a single focal place image sliced through mid of the hub zone. To enhance transparency, we have now provided a more detailed explanation of our counting approach in the Methods section (line no 400- 403).

      We agree that the label "Vasa+ cells" may be misleading, as many cells express Vasa beyond the specific subset being counted. To address this, we have changed the label to " GSCs" to reflect the subset analyzed more accurately.

      The crucial experiment for this manuscript is presented in Figures 1 G-S, arguing that Sod1 knockdown with Tj-Gal4 increases gstD1-GFP expression in germ cells. This needs strengthening as the current quantifications are not convincing and appear to show an overlap between Tj (a nuclear cyst cell marker) and Vasa (a cytoplasmic germ cell marker). Labeling cell outlines would help, or alternatively, labeling different cell types genetically can be used to determine whether the expression is increased specifically within that cell type. Similarly, the measurement of ROS shown in the supplemental data should be conducted in a cell-specific manner. To clearly make the case that Sod1 knockdown in cyst cells is impacting ROS in the germline, it would be important to manipulate germ cell ROS independently. Without this, it will be difficult to prove that any effects observed are a result of increased ROS in the germline rather than indirect effects on the germline of altered cyst cell behaviour. 

      We appreciate the reviewer’s insightful feedback regarding the specificity of Sod1 knockdown effects in germ cells and the need for clearer quantification in Figures 1G–S. Below, we address each concern and outline the modifications made:

      Clarification of Cell Type-Specific Expression:

      We acknowledge the overlap observed between Tj (nuclear cyst cell marker) and Vasa (cytoplasmic germ cell marker) in the presented images. To strengthen our claim that gstD1GFP expression increases specifically in germ cells upon Sod1 knockdown, we have now labelled cell outlines using membrane marker discs-large (Dlg) to better distinguish cell boundaries, along with individual labelling of Vasa<sup>+</sup> and Tj<sup>+</sup> cells. Due to technical difficulty associated with acquisition of images, we could not co-stain Vasa, Tj and Dlg together. 

      Cell-Specific Measurement of ROS:

      We agree that a cell-type-specific ROS measurement is critical to establishing a direct effect on germ cells. To address this, we have now performed ROS measurements separately in germ cells and cyst cells under similar acquisition conditions. These data are now included in the revised (Figure 1R). Similarly, upon CySC-specific Sod1 depletion, we performed measurement of gstD1-GFP intensity which was found to be enhanced in GSCs, along with expected increase in CySCs (Fig 1S). We have independently manipulated ROS levels in GSCs (Nos Gal4> Sod1i) and observed that elevated ROS negatively impacts GSCs, leading to a reduction in their number, while having an insignificant effect on adjacent CySCs.(Fig S2 E, F).

      Quantifications of mitochondrial localization in Figure 1 should include some adequate statistical method to evaluate whether the distribution is random or oriented towards the GSC/CySC interface. From the image provided (Figure 1B), it would appear that there are two clusters of mitochondria, on either side of a CySC nucleus, one cluster towards a GSC and one cluster away. Therefore evaluating bias would be important. Additional experiments will be necessary to support the statement that "Redox state of GSC is maintained by asymmetric distribution of CySC mitochondria". This would require manipulating mitochondrial distribution in CySCs.

      We appreciate the reviewer’s suggestion regarding the quantification of mitochondrial localization. We agree that ing on mitochondrial distribution might be far-fetched. In revised manuscript, we have demarcated the cell boundary and limited our analysis to mitochondrial shape which was found to be different in GSC and CySC (Fig. 1, D, F, G and S1B). Mitochondrial shape was quantified based on the mitochondrial area and circularity (Figure 1F and G). To prevent any misinterpretation, we have removed the statement, "Redox state of GSC is maintained by asymmetric distribution of CySC mitochondria."

      One point raised by the authors is that the increase of somatic cell numbers is driven by accelerated proliferation, based on an increased number of cells in various stages of the cell cycle as assessed by the FUCCI reporter. However, there are more somatic cells in this genetic background, so it could be argued that the observed increase in different phases of the cell cycle is due to an increased number of cells. In order to argue for an increased proliferation rate, the number of cells in each phase should be divided by the total number of cells, expecting to see an increase in S and G2/M phases along with a decrease in G1. Otherwise, the simplest explanation is a block or delay in differentiation, meaning that more cells remain in the cell cycle.

      We appreciate the  regarding the interpretation of our FUCCI reporter data. We acknowledge that the observed increase in the number of cells in various phases of the cell cycle could be influenced by the overall higher number of somatic cells in this genetic background.

      To address this concern, we have now re-analyzed our FUCCI data by normalizing the number of cells in each phase to the total number of cells and we did not observe a significant shift in the proportion of cells in S and G2/M phases relative to G1. This suggests presence of more proliferative cells, that is less cells in Go phase, rather than alterations in the timing of cell cycle progression stages. We are not sure about a block in differentiation because we see an enhanced accumulation of Eya+ cells near the niche. We have also supported our FUCCI data with pH3 staining where we have found more pH3+ spots under SOD1 depleted background. We have revised our manuscript accordingly (Figure 2I, K and S2U) to reflect this interpretation and appreciate the constructive feedback.

      In Figure 3, the authors claim that knockdown of Sod1 in the soma decreases the attachment of GSCs to the hub-based on lower E-Cad levels compared to controls. Previous work has shown that in GSCs, E-Cad localizes to the Hub-GSC interface (PMID: 20622868). Therefore, the authors should quantify E-Cad staining at the interphase between the germ cells and the niche.

      We appreciate the reviewer’s . As suggested, we have now quantified ECad staining specifically at the interface between the germ cells and the niche. Our analysis confirms that E-Cad levels are significantly reduced at this interphase upon Sod1 knockdown in the soma compared to controls, supporting our conclusion that Sod1 depletion affects GSC attachment to the hub as well as the whole niche. The revised Figure 3M now includes these quantifications, and we have updated the figure legend and results section accordingly.

      The authors show decreased expression of the JAK/STAT targets socs36E and ptp61F, arguing that this could be a reason for decreased GSC adhesion to the hub. However, these data were obtained from whole testes and lacked spatial resolution, whereas a STAT92E staining in control and tj>Sod1 RNAi testes could easily prove this point. Indeed, previous work has shown that socs36E is expressed in the CySCs, not GSCs (PMID: 19797664), suggesting that any decrease in JAK/STAT may be autonomous to the CySCs.

      We appreciate the reviewer’s observation regarding the spatial resolution of our JAK/STAT target expression analysis. To improve accuracy, we have attempted to collect only the tip of the testes while excluding the rest; however, we acknowledge that this approach may still obscure cell-specific changes. We had attempted to procure the STAT92E antibody but, despite multiple inquiries, we did not receive a positive response. While we agree that STAT92E staining would have strengthen our findings, we are currently unable to perform this experiment. Nevertheless, our observations align with prior work indicating that socs36E is predominantly expressed in CySCs (PMID: 19797664). We have revised the manuscript text accordingly to clarify this limitation.

      Additional considerations should be taken regarding the rescue experiments where PI3KDN and Hh RNAi are expressed in a Tj>Sod1 RNAi background. To rule out that any rescue can be attributed to titration of the Gal4 protein when an additional UAS sequence is present, a titration control would be useful. These pathways are not described accurately since Insulin signaling is necessary for the differentiation of somatic cells (not maintenance as written in the text), and its inhibition has been shown to increase the number of undifferentiated somatic cells (PMID:27633989). As far as Hh is concerned, the expression of this molecule is restricted to the niche. It would be important to establish whether the expression is altered in this case, especially as the authors rescue the Sod1 knockdown by also knocking down Hh. One possibility that the authors need to rule out is that some of the effects they observe are due to the knockdown of Sod1 (and/or Hh) in the hub as Tj-Gal4 is expressed in the hub as well as the CySCs (PMID:27546574).

      We appreciate the reviewer’s insightful s and suggestions. Below, we address each concern and describe the steps we have taken to incorporate the necessary modifications in our revised manuscript.

      Titration Control for Rescue Experiments  

      We acknowledge the reviewer’s concern regarding potential Gal4 titration effects when introducing additional UAS constructs. To address this, we conducted a control experiment quantifying SOD1 levels in control, Tj > Sod1 RNAi, and Tj > Sod1 RNAi, UAS hhRNAi backgrounds using real-time PCR (Figure S4 M). The Sod1 levels in single and double UAS copy conditions were comparable, indicating that Gal4 titration does not significantly affect the results.

      Clarification of Insulin Signaling Role 

      We appreciate the reviewer’s insight regarding the involvement of insulin signaling in this context. Initially, we included data on PI3K/TOR as we found it intriguing. However, as the data didn’t add much to the overall observations, we have removed them to ensure clarity and prevent any potential confusion.

      Hh Expression and Niche Consideration 

      We recognize the importance of evaluating whether Hedgehog (Hh) expression is altered in the Sod1 RNAi background. We have already quantified hh in qRT-PCR (Figure S4C). 

      Potential Effects of Sod1 and Hh Knockdown in the Hub 

      We acknowledge the concern that Tj-Gal4 is expressed in both the hub and CySCs, potentially affecting hub function upon Sod1 and Hh knockdown. To address this, we have included additional data using the CySC-specific driver C-587 Gal4 to distinguish CySC-intrinsic effects from potential hub contributions. Our results show that while the phenotypic changes are consistent across both drivers, the effects are significantly stronger with Tj-Gal4, suggesting a role of the hub in this process. These findings have been incorporated into the revised manuscript (Fig S1G-H, M-N).

      In general, the GSCs (and other aspects) are difficult to see in the images; enlargements or higher-resolution images should be provided. Additionally, the manuscript contains several mistakes or inaccuracies (examples include referring to ROS having "evolved" in the abstract when it is cells that have evolved to use ROS, or the references to "cystic" cells when they are usually referred to as "cyst" cells, or that "CySCs also repress GSC differentiation by suppressing transcription of bag-of-marbles" when CySCs produce BMPs that lead to suppression of bam expression in the germline). These would need editing for both clarity and accuracy.

      We appreciate the reviewer’s insightful feedback and have made the necessary revisions to address the concerns raised.

      Image Clarity and Resolution: 

      We have provided higher-resolution images in some of the revised images for better understanding. The revised figures now offer better clarity for key observations.

      Clarification of Terminology and Accuracy:

      The phrase regarding ROS in the abstract has been revised to reflect that cells have evolved to utilize ROS, rather than ROS itself evolving (line no. 27).

      References to "cystic" cells have been corrected to "cyst" cells for consistency with standard terminology.

      The statement about CySCs repressing GSC differentiation has been revised for accuracy, clarifying that CySCs produce BMPs, which lead to the suppression of bam expression in the germline (line no. 84).

      We have carefully reviewed the manuscript for any additional inaccuracies or ambiguities to ensure clarity and precision. We appreciate the reviewer’s constructive s, which have helped improve the manuscript.

      Reviewer #3 (Public review):

      In response to Reviewer 3’s comments, we would like to highlight the point that in the present study we have focussed on the interplay between CySC and GSC and have accordingly conducted our experiments. We did observe some changes in the hub and do not rule out the effect of hub cells in exacerbating some of our phenotypes. We have included additional controls to highlight the effect of CySC ROS. These points have been appropriately discussed in the manuscript. Key revisions include:  

      (1)  Data Clarity & Visualization: To improve mitochondrial lineage association, we incorporated a membrane marker (Dlg) in Figure 1, enhancing the distinction between CySCs and GSCs. Additionally, we refined gstD-GFP quantifications in individual cell types and provided high-resolution images.

      (2) ROS Transfer & Measurement: We revised our discussion to acknowledge indirect ROS transfer mechanisms and added separate ROS quantifications in GSCs and CySCs, confirming higher ROS levels in CySCs (Figure 1R).

      (3) Tj-Gal4 Specificity & Niche Characterization: Recognizing Tj-Gal4 expression in hub cells, we included C587-Gal4 as a CySC-specific driver, demonstrating that hub cells contribute partially to the phenotype (Figure S1G,H,M,N).

      (4) Signaling Pathway Validation: We optimized dpERK staining, included controls (Tj>EGFRi), and clarified limitations regarding MAPK signaling. Due to lethality, we could not perform an EGFR gain-of-function rescue. We also validated increased Hh signaling via qPCR and a Tj>UAS Ci control (Figure S4).

      (5) Conceptual & Terminological Refinements: We revised our discussion of BMP signaling, ROS gradients, and testis-specific terminology. All figures and labels now accurately represent GSC scoring (single Vasa⁺ cells in contact with the niche).

      (6) Figure & Methods Improvements: We enhanced image resolution, provided grayscale versions where needed,and expanded Materials & Methods to clarify experimental conditions.

      These revisions strengthen our conclusions and address the reviewer’s concerns, ensuring a more precise and transparent presentation of our findings. To align with the reviewer’s s we have changed the title of the manuscript to “Superoxide Dismutases maintain niche homeostasis in stem cell populations”.

      Specific responses to the reviewer’s comments: 

      (1) Data

      a.  Problems proving which mitochondria are associated with which lineage.

      We acknowledge the challenge of distinguishing CySCs from GSCs without additional cell surface markers. To enhance clarity, we have incorporated the membrane marker Discs-large (Dlg) in our revised Figure 1 to better delineate cell boundaries, providing a clearer depiction of mitochondrial distribution in GSCs and CySCs.

      b.There is no evidence that ROS diffuses from CySCs into GSCs.

      We acknowledge the reviewer’s concern. There are reports which talks about diffusion of ROS across cells on which we have included a few lines in the discussion (line no. 274-276). We do understand that our previous quantifications showed ROS diffusion from CySC to GSC rather indirectly. Therefore, in revised manuscript we have measured ROS separately in the two cell populations. We found that the CySCs show higher ROS profile than GSCs (Fig 1R).  

      c.The changes in GST-GFP (redox readout) are possibly seen in differentiating germ cells (i.e., spermatogonia) but not in GSCs. This weakens their model that ROS in CySC is transferred to GSCs.

      Thank you for your observation. We acknowledge that the changes in gstD-GFP (redox readout) are more prominent in differentiating germ cells. It is known that differentiating cells show higher ROS profile than the stem cells. Hence, expectedly the intensity of gstDGFP was lesser in stem cell zone compared to the differentiating zone. In our manuscript we are focussed on the redox state among stem cell populations. Therefore, we have included better quality images and measured the gstD1-GFP intensity individually in GSCs and CySCs (Figure 1R) by demarcating the cell boundaries (Figure 1M, S1C-D’’’). We found that CySCs show higher ROS profile than GSCs and enhancement of ROS in CySC by Sod1 depletion resulted in a consequent increase in ROS in GSCs. We believe this revision strengthens our model by addressing the potential discrepancy and providing a more comprehensive understanding of ROS dynamics within the GSC niche.

      d.Most of the paper examines the effect of SOD depletion (which should increase ROS) on the CySC lineage and GSC lineage. One big caveat is that Tj-Gal4 is expressed in hub cells (Fairchild, 2016), so the loss of SOD from hub cells may also contribute to the phenotype. In fact, the niche in Figure 2D looks larger than the niche in the control in Figure 2C, arguing that the expression of Tj in niche cells may be contributing to the phenotype. The authors need to better characterize the niche in tj>SOD-RNAi testes.

      We appreciate the reviewer’s insightful  regarding the potential contribution of hub cell to the observed phenotype. We acknowledge that Tj-Gal4 is expressed in hub cells and this could influence the niche size and overall phenotype.

      To address this concern, we have included an additional control using C587-Gal4, a CySC specific driver, to distinguish CySC-specific effects from potential hub contributions. All the effects on cell number observed in Tj>Sod1i was replicated in C587>Sod1i testis, except that the observed phenotypes were comparatively weaker. These indicate partial contribution of hub cells to the observed phenotype, exacerbating its severity. However, the effect of Sod1 depletion in CySC on GSC lineages remains significant. These findings have been incorporated into Figure S1- G,H,M and N) and incorporated in the discussion (line no.308311). 

      e. The Tj>SOD1-RNAi phenotype is an expansion of the Zfh1<sup+</sup> CySC pool, expansion of the Tj<sup>+</sup> Zfh1- cyst cells (both due to increased somatic proliferation) and a non-autonomous disruption of the germline.

      We appreciate the reviewer’s observation. Our data confirm that Tj>SOD-RNAi leads to an expansion of both Zfh1<sup+</sup> CySCs and Tj<sup>+</sup> Zfh1- cyst cells, which we attribute to increased somatic proliferation. Additionally, we observe a non-autonomous disruption of the germline, likely due to dysregulated signaling from the altered somatic niche.

      f. I am not convinced that MAPK signaling is decreased in tj>SOD-i testes. Not only is this antibody finicky, but the authors don't have any follow-up experiments to see if they can restore SOD-depleted CySCs by expressing an EGFR gain of function. Additionally, reduced EGFR activity causes fewer somatic cells (not more) (Amoyel, 2016) and also inhibits abscission between GSCs and gonial blasts (Lenhart 2015), which causes interconnected cysts of 8- to 16 germ cells with one GSC emanating from the hub.

      We acknowledge that the dpERK antibody can be challenging. We took necessary precautions, including optimizing staining conditions and using positive control (Tj>EGFRi) (Figure: S4B). Our results consistently showed a decrease in dpERK levels in Tj>Sod1i testes, supporting our conclusion.

      We agree that inclusion of an experiment using EGFR gain-of-function to rescue the effects of CySC-Sod1 depletion would have strengthened our findings. We had attempted this experiment; however, the progenies constitutively expressing EGFR under Sod1RNAi background were lethal, preventing us from completing the analysis.

      We agree that our observations do not align with the reported effects of EGFR signaling on somatic cell numbers and abscission and we appreciate the references provided. Based on our observations, we feel that modulation of MAPK signaling in the niche probably, happens in a context-dependent manner. One possible explanation is that, the altered GSC -CySC balance and loss of contact in Tj>Sod1i testes, leads to insufficient ligand response, thereby failing to activate EGFR signaling. While it is well established that ROS can enhance EGFR signaling to promote cellular proliferation and early differentiation, our results indicate a more nuanced regulation in this context. However, further detailed analysis is required to completely understand the regulatory controls. We have clarified this point in the manuscript (line no.

      313-320).

      g. The increase in Hh signaling in SOD-depleted CySCs would increase their competitiveness against GSCs and GSCs would be lost (Amoyel 2014). The authors need to validate that Hh protein expression is indeed increased in SOD-depleted CySCs/cyst cells and which cells are producing this Hh. Normally, only hub cells produce Hh (Michel,2012; Amoyel 2013) to promote self-renewal in CySCs.

      We appreciate the reviewer’s suggestion regarding the validation of Hh protein expression and its source. Since Tj-Gal4 is expressed in the hub, it is likely activating the Hh pathway and promoting CySC proliferation. Unfortunately, we could not procure Hh antibody to directly assess its protein levels. However, to address this, we performed real-time PCR from RNA derived from the tip region and found a significant increase in hh mRNA levels in SOD-depleted cyst cells. These findings support our hypothesis that elevated Hh signaling enhances CySC competitiveness, leading to GSC loss. To support this idea, we have included a Tj>Ci positive control which caused abnormal proliferation of Tj<sup>+</sup> cells resulted in ablation of GSCs. We have incorporated these results in the revised manuscript (Results section, Figure S-4).

      h.The increase in p4E-BP is an indication that Tor signaling is increased, but an increase in Tor in the CySC lineage does not significantly affect the number of CySCs or cyst cells (Chen, 2021). So again I am not sure how increased Tor factors into their phenotype.

      We acknowledge the reviewer’s concern regarding the role of increased Tor signaling in our phenotype. The observed increase in Tor could indeed be a downstream effect of elevated ROS levels. However, establishing a direct causal relationship between Sod1 and Tor would require additional experiments, which we feel might be a good study in its own merit. To maintain clarity and focus in the revised manuscript, we have opted not to include this preliminary data at this stage.

      I.The over-expression of SOD in CySCs part is incomplete. The authors would need to monitor ROS in these testes. They would also need to examine with tj>SOD affects the size of the hub.

      We value the reviewer's . To address this, we have now monitored ROS levels in the testes upon SOD overexpression in CySCs using DHE (Figure S5 I). Our results indicate a significant reduction in ROS levels compared to controls. 

      Additionally, we examined hub size upon Sod1 overexpression and observed a slight, but statistically insignificant, reduction. As our study primarily focuses on ROS-mediated GSCCySC interactions, we did not include a detailed investigation on hub size regulation.

      (2) Concept

      Why would it be important to have a redox gradient across adjacent cells? The authors mention that ROS can be passed between cells, but it would be helpful for them to provide more details about where this has been documented to occur and what biological functions ROS transfer regulates.

      We thank the reviewer for this insightful . We acknowledge that the concept of a redox gradient was not adequately conveyed, as the cell boundary was not clearly defined. To address this, we have revised our interpretation to propose that high ROS levels in one cell may influence the ROS levels in an adjacent cell through either direct transfer or as a secondary effect of altered niche maintenance signaling, rather than through the establishment of a gradient.

      Regarding ROS transfer between cells, it has been documented in several biological contexts. For instance, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) can diffuse through aquaporins, influencing signaling pathways in neighbouring cells (PMID: 17105724). We have incorporated these details and relevant references into the revised manuscript to enhance the conceptual understanding of ROS transfer. 

      (3) Issues with the scholarship of the testis

      a. Line 82 - There is no mention of BMPs, which are the only GSC-self-renewal signal. Upd/Jak/STAT is required for the adhesion of GSCs to the niche but not self-renewal (Leatherman and Dinardo, 2008, 2010). The author should read a review about the testis. I suggest Greenspan et al 2015. The scholarship of the testis should be improved.

      We appreciate the reviewer’s feedback regarding the role of BMPs in GSC selfrenewal, we have added this in the revised manuscript (line no. 83) We have now incorporated a discussion on BMP signaling as the primary self-renewal signal for GSCs, distinguishing it from the role of Upd/JAK/STAT in niche adhesion, as highlighted in Leatherman and Dinardo (2010). Additionally, we have cited and reviewed the work by Greenspan et al. (2015) and ensure a more comprehensive discussion of GSC regulation. These revisions can be found in the line no. 285-289 of the revised manuscript.

      b. Line 82-84 - BMPs are produced by both hub cells and CySCs. BMP signaling in GSCs represses bam. So it is not technically correct to say the CySCs repress bam expression in GSCs.

      We acknowledge the reviewer’s clarification regarding BMP signaling and its role in repressing bam expression in GSCs. We have revised the relevant section (line no.83-85). 

      c.Throughout the figures the authors score Vasa<sup>+</sup> cells for GSCs. This is technically not correct. What they are counting is single, Vasa<sup>+</sup> cells in contact with the niche. All graphs should be updated with the label "GSCs" on the Y-axis.

      We appreciate the reviewer’s careful assessment of our methodology. We acknowledge that scoring Vasa⁺ cells alone does not definitively identify GSCs. Our quantification specifically considers single Vasa<sup>⁺</sup> cells in direct contact with the niche. To ensure clarity and accuracy, we have updated all figure legends and Y-axis labels in the relevant graphs to explicitly state "GSCs" instead of "Vasa⁺ cells."

      (4) Issues with the text

      a. Line 1: multi-lineage is not correct. Multi-lineage refers to stem cells that produce multiple types of daughter cells. GSCs produce only one type of offspring and CySCs produce only one type of offspring. So both are uni-lineage. Please change accordingly.

      We acknowledge the incorrect usage of "multi-lineage" and agree that both GSCs and CySCs are uni-lineage, as they each produce only one type of offspring. We have revised Line 1 accordingly and also updated the title. 

      b. Lines 62-75 - Intestinal stem cells have constitutively high ROS (Jaspar lab paper), so low ROS in stem cell cells is not an absolute.

      We appreciate the clarification. We have revised Lines 62–75 to acknowledge that low ROS is not universal in stem cells, citing the Jaspar lab study on intestinal stem cells (Line 70). Thank you for the valuable insight.

      c.  Line 79: The term cystic is not used in the Drosophila testis. There are cyst stem cells (CySCs) that produce cyst cells. Please revise.

      We have revised the text to replace "cystic" with the correct terminology, referring to cyst stem cells (CySCs) in the manuscript.

      d. Line 90 - perfectly balanced is an overstatement and should be toned down.

      Thank you for the suggestion. We have revised it to “balanced” instead of "perfectly balanced."  

      e. Line 98 - division of labour is not supported by the data and should be rephrased.

      Thank you for the feedback. We have rephrased it (line no. 98-101) to avoid the term "division of labor".

      f. Line 200 - the authors provide no data on BMPs - the GSC self-renewal cue - so they should avoid discussing an absence of self-renewal cues.

      We appreciate the reviewer’s point. We have revised it to avoid discussing the absence of self-renewal cues, given that we do not present data on BMP signaling. This ensures that our conclusions remain within the scope of the provided data.

      (5) Issues with the figures

      a The images are too small to appreciate the location of mitochondria in GSCs and CySCs.

      b. Figure 1

      c. cell membranes are not marked, reducing the precision of assigning mitochondria to GSC or CySCs. It would be very helpful if the authors depleted ATP5A from GSCs and showed that the puncta are reduced in these cells, and did a similar set of experiments for the Tj-Gal4 lineage. It would also be very helpful if the authors expressed membrane markers (like myrGFP) in the GSC and then in the CySC lineage and then stained with ATP5A. This would pinpoint in which cells ATP5A immunoreactivity is occurring.

      d. The presumed changes in gst-GFP (redox readout) are possibly seen in differentiating germ cells (i.e.,spermatogonia) but not in GSC. iii. Panels F, Q, and S are not explained and currently are irrelevant.

      e. Figure 3K - The evidence to support less Ecad in GSCs in tj>SOD-i testes is not compelling as the figure is too small and the insets show changes in Ecad in somatic cells, not GSC. d. Figure 4:

      f. Panel A, B The apparent decline (not quantified) may not contribute to the phenotype.

      ii.dpERK is a finicky antibody and the authors are showing a single example of each genotype. This is an important experiment because the authors are going to use it to conclude that MAPK is decreased in the tj>SOD-i samples. However, the authors don't have any positive (dominantactive EGFR) or negative (tj>mapk-i). As is standing, the data is not compelling. The graph in F does not convey any useful information.

      g. Figure S1D - cannot discern green on black. It is critical for the authors to show monochromes (grayscale) for thereabouts that they want to emphasize. I cannot see the green on black in Figure S1D.

      h. Figure S4 - there is no quantification of the number of Tj cells in K-N.

      We appreciate your detailed feedback regarding the figures in our manuscript. Below, we address each concern and outline the revisions we have made.

      (a) Image Size and Mitochondrial Localization in GSCs and CySCs 

      We acknowledge the need for larger images to better visualize mitochondrial localization. We have now increased the resolution and size of the images in Figure 1. Additionally, we have included high-magnification insets to enhance clarity (Figure 1 B#)

      (b) Figure 1 B,B#,C 

      (i) We have now marked cell membranes using Dlg to improve the precision of mitochondrial assignment to GSCs and CySCs and then stained for ATP5A, which clearly demarcates ATP5A immunoreactivity in specific cell types.

      (ii) We have revisited the gstD-GFP (redox readout) data and now provide revised images (Figure S1C-D’’’) and quantification (Figure 1 R,S) to better illustrate changes in the redox state. It is indeed intense in differentiating germ cells as expected but also present in the stem cell zone.

      (iii) Panels F, Q, and S have now been removed in the revised figure legend. 

      (C) Figure 3K: We have digitally magnified the figure size and improved contrast to better visualize E-cadherin levels. The insets have been revised to ensure they focus specifically on GSCs rather than somatic cells. Earlier, we quantified the E-cadherin intensity changes in the GSC-hub interface and provided statistical analysis to support our findings (Figure 3M).

      (d) Figure 4: (i) Panels A and B have now been quantified, and we provide statistical comparisons to support our observations. (ii) We acknowledge the variability of dpERK staining. To strengthen our conclusions, we have provided negative (Tj>MAPK-i) controls (Figure S4 B). Additionally, we have removed panel F (MAPK area cover) to avoid confusion.

      (e) We appreciate the suggestion regarding grayscale images and have provided the monochrome images for mitochondria and gstD-GFP image representation. We have now removed Figure S1D as it was no longer required.

      (f) Figure S4: The quantification of the number of Tj-positive cells was actually included in the main figure along with statistical analysis.

      (g) We sincerely appreciate the reviewer’s insightful s, which have significantly improved the quality and clarity of our manuscript. We hope that our revisions adequately address the concerns raised.

      (6) Issues with Methods

      a.  Materials and Methods are not described in sufficient depth - please revise.

      b.  Note that Tj-Gal4 has real-time expression in hub cells and this is not considered by the authors. The ideal genotype for targeting CySCs is Tj-Gal4, Gal80TS, hh-Gal80. Additionally, the authors do not mention whether they are depleting throughout development into adulthood or only in adults. If the latter, then they must have used a temperature shift, growing the flies at 18C and then upshifting to 25C or 29C during adult stages.

      c.  The authors need to show data points in all of the graphs. Some graphs do this but others do not.

      d.  The authors state that all data points are from three biological replicates. This is not sufficient for GSC and CySC counts. Most labs count GSCs and CySCs from at least 10 testes of the correct genotype.

      We appreciate the reviewer’s valuable feedback and have made the necessary revisions to improve the clarity and rigor of our study. Below, we address each concern in detail:

      Materials and Methods

      We have revised the Materials and Methods section to provide a more detailed description of the experimental procedures, including genotypes, sample preparation, and quantification methods.

      Tj-Gal4 Expression and Experimental Design

      We acknowledge the reviewer’s point regarding Tj-Gal4 expression in hub cells. While Tj-Gal4 is active in hub cells, our focus was on CySCs, and we have now included a discussion of this caveat in the revised manuscript (line no. 308-311)

      Thank you for your suggestion on the ideal genotype for targeting CySCs. While we attempted to procure hh-Gal80, we couldn’t manage to get it, so we opted for another well-established Gal4 driver, C-587 Gal4, to target CySCs. Our results indicate that although the phenotypic changes are consistent across both drivers, the effects are significantly stronger with Tj-Gal4, highlighting the role of CySCs in this process with partial contributions from the hub. These findings have been incorporated into the revised manuscript (lines 309–311).

      We now clarify whether gene depletion was conducted throughout development or restricted to adulthood. For adult-specific depletion using the UAS-Gal4 system, crosses were set up at 25°C, and after two days, progenies were shifted to 29°C and aged for 3–5 days at 29°C. This process is now explicitly detailed in the revised Methods section (line no. 345-348).

      Data Presentation in Graphs

      We have updated all graphs to ensure that individual data points are shown consistently across all figures.

      Sample Size for GSC and CySC Counts

      We acknowledge the reviewer’s concern regarding biological replicates. Our initial study was based on 10 biological replicates, each set consisting of at least 7-8 testes per genotype, in line with standard practice in the field. This change is reflected in the revised Results and Methods sections.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Comments:

      (1) HCC shows heterogeneity, and it is unclear what tissues (tumor or normal) were used from the DKO mice and human HCC gene expression dataset to obtain the gene signature, and how the authors reconcile these gene signatures with HCC prognosis.

      Mice studies: Aged DKO mice develop aggressive tumors (major and minor nodules, See Figure 1), and the entire liver is burdened with multiple tumor nodules. It is technically challenging to demarcate the tumor boundaries as most of the surrounding tissues do not display normal tissue architecture. Therefore, livers from age- and sex-matched wild-type C57/BL6 mice were used as control tissue. All the mice were inbred in our facility. Spatial transcriptomics and longitudinal studies are ongoing to collect tumors at earlier time points wherein we can differentiate tumor and non-tumor tissue.

      Human Studies: We mined five separate clinical data sets. The human HCC gene expression comprised of samples from the (i) National Cancer Institute (NCI) cohort (GEO accession numbers, GSE1898 and GSE4024) and (ii) Korea, (iii) Samsung, (iv) Modena, and (v) Fudan cohorts as previously described (GEO accession numbers, GSE14520, GSE16757, GSE43619, GSE36376, and GSE54236). We have added a new supplemental table 4, giving details of these datasets. Depending on the cohort, they are primarily HCC samples- surgical resections of HCC, control samples, with some tumors and paired non-tumor tissues.

      (2) The authors identified a unique set of gene expression signatures that are linked to HCC patient outcomes, but analysis of these gene sets to understand the causes of cancer promotion is still lacking. The studies of urea cycle metabolism and estrogen signaling were preliminary and inconclusive. These mechanistic aspects may be followed up in revision or future studies.

      We agree. Experiments to elicit HCC causality and promotion are complex, given the heterogeneous nature of liver cancer. Moreover, the length of time (12 months) needed to spontaneously develop cancer in this DKO mouse model makes it challenging. As mentioned by the reviewer, mechanistic studies are ongoing, and longitudinal time course experiments are actively being pursued to delineate causality. Having said that, we mined the TCGA LIHC (The Cancer Genome Atlas Liver Hepatocellular Carcinoma) database to examine the expression of the individual urea cycle genes and found them suppressed in liver tumorigenesis (new Supplementary Figure 4). We also evaluated if estrogen receptor a (Era) targets altered in DKO females (DKO_Estrogen) correlate with overall survival in HCC (new Supplementary Figure 6). We note that Era expression per se is reduced in males and females upon liver tumorigenesis. Also, DKO_Estrogen signature positively corroborated with better overall survival (new Supplementary Figure 6). These findings further bolster the relevance of urea cycle metabolism and estrogen signaling during HCC.

      (3) While high levels of bile acids are convincingly shown to promote HCC progression, their role in HCC initiation is not established. The DKO model may be limited to conditions of extremely high levels of organ bile acid exposure. The DKO mice do not model the human population of HCC patients with various etiology and shared liver pathology (i.e. cirrhosis). Therefore, high circulating bile acids may not fully explain the male prevalence of HCC incidence.

      We agree with this comment that our studies do not show bile acids can initiate HCC and may act as one of the many factors that contribute to the high male prevalence of HCC. This is exactly the reason why throughout the manuscript we do not write about HCC initiation. To clarify further, in the revised discussion of the manuscript, we have added a sentence to highlight this aspect, “while this study demonstrates bile acids promote HCC progression it does not investigate or provide evidence if excess bile acids are sufficient for HCC initiation.”

      (4) The authors showed lower circulating bile acids and increased fecal bile acid excretion in female mice and hypothesized that this may be a mechanism underlying the lower bile acid exposure that contributed to lower HCC incidence in female DKO mice. Additional analysis of organ bile acids within the enterohepatic circulation may be performed because a more accurate interpretation of the circulating bile acids and fecal bile acids can be made in reference to organ bile acids and total bile acid pool changes in these mice.

      As shown in this manuscript- we provide BA compositional analyses from the liver, serum, urine, and feces (Figures 5 and 6, new Supplementary Figure 8, Supplementary Tables 4 and 5). Unfortunately, we did not collect the intestinal tissue or gallbladders for BA analysis in this study. Separate cohorts of mice are being aged for future BA analyses from different organs within the enterohepatic loop. We thank you for this suggestion. Nevertheless, we have previously measured and reported BA values to be elevated in the intestines and the gall bladder of young DKO mice (PMC3007143).

      Reviewer #2 (Public review)

      Weaknesses:

      (1) The translational value to human HCC is not so strong yet. Authors show that there is a correlation between the female-selective gene signature and low-grade tumors and better survival in HCC patients overall. However, these data do not show whether this signature is more highly correlated with female tumor burden and survival. In other words, whether the mechanisms of female protection may be similar between humans and mice. In that respect, it would also be good to elaborate on whether women have higher fecal BA excretion and lower serum BA concentration.

      The reviewer poses an interesting question to test if the DKO female-specific signatures are altered differently in male vs. female HCC samples. As we found the urea cycle and estrogen signaling to be protective and enriched in our mouse model, we tested their expression pattern using the TCGA-LIHC RNA-seq data. We found urea cycle genes and Era transcripts broadly reduced in tumor samples irrespective of the sex (new Supplementary Figure 4 and Supplementary Figure 6), indicating that these pathways are compromised upon tumorigenesis even in the female livers.

      While prior studies have shown (i) a smaller BA pool w synthesis in men than women (PMID: 22003820), we did not find a study that systematically investigated BA excretion between the sexes in HCC context. The reviewer is spot on in suggesting BA analysis from HCC and unaffected human fecal samples from both sexes. Designing and performing such studies in the future will provide concrete proof of whether BA excretion protects female livers from developing liver cancer. We thank you for these suggestions.

      (2) The authors should perform a thorough spelling and grammar check.

      We apologize for the typos, which have been fixed, and as suggested by the reviewer, we have performed a grammar check.

      (3) There are quite some errors and inaccuracies in the result section, figures, and legends. The authors should correct this.

      We apologize for the inadvertent errors in the manuscript, and we have clarified these inaccuracies in the revised version. Thank you.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Public review):

      Summary:

      The manuscript by Xie and colleagues presents transcriptomic experiments that measure gene expression in eight different tissues taken from adult female and male mice from four species. These data are used to make inferences regarding the evolution of sex-biased gene expression across these taxa.

      Strengths:

      The experimental methods and data analysis appear appropriate. The authors promote their study as unprecedented in its size and technical precision.

      We do not understand the statement "the authors promote" as if there was a doubt about this. If there is a doubt, we welcome to see it specified.

      Weaknesses:

      The manuscript does not present a clear set of novel evolutionary conclusions. The major findings recapitulate many previous comparative transcriptomics studies - gene expression variation is prevalent between individuals, sexes, and species; and genes with sex-biased expression evolve more rapidly than genes with unbiased expression - but it is not clear how the study extends our understanding of gene expression or its evolution.

      There have been no "previous comparative transcriptomics studies" at a micro- evolutionary scale in animals, hence, we do not "replicate" these. And our contrast between somatic and gonadal patterns reveals insights that have not been recognized before, namely that gonadal sex-specific expression turnover is actually not faster that the corresponding non-sex-specific truover. We have now further clarified this distinction throughout the text and have also adapted the title of the paper accordingly.

      We agree with the overall statement that "gene expression variation is prevalent between individuals, sexes, and species" but the aspect of "sex-biased gene expression between individuals" has not been systematically analysed before in such a context.

      Concerning the statement that "genes with sex-biased expression evolve more rapidly than genes with unbiased expression", we note that this is mostly derived from gonadal data and that there is no study that has quantified this so far at a population level and between subspecies in comparison to somatic data.

      Our results show further that previous assumptions of a substantial set of genes with sex- biased expression conserved between mice and humans are due to underestimating the convergence issues when there is an extremly fast turnover of sex-biased gene expression. This has a major implication for using mice as a model for gender-speficic medicine questions in humans.

      Many gene expression differences between individual animals are selectively neutral, because these differences in mRNA concentration are buffered at the level of translation, or differences in protein abundance have no effect on cellular or organismal function. The hypothesis that sex-biased genes are enriched for selectively neutral expression differences is supported by the excess of inter-individual expression variance and inter-specific expression differences in sex-biased genes.

      This statement repeats a statement from the first round of reviews. We had added new data and extensive discussion on this topic. We do not understand why this has not been taken into account. In fact, a major strength of our paper is that it shows that most sex- biased gene expression differences are not neutral!

      There are two major issues here: to identify sex-biased gene expression in the first place, we (and all other papers in the field) use the neutral model as null-hypothesis. Genes that are not compatible with this null-hypothesis are considered sex-biased. In contrast to most previous papers, we have the possibility to take into account the variances between individuals to add an additional significance test. Hence, we can apply a much more rigorous two-step process: first a ratio-cutoff plus a Wilcoxon rank sum test with correction for multiple testing to identify significant deviations from the null-hypothesis. We have added some additional statements in the Results and Discussion sections to emphasize this.Second, by focusing on the genes that are not following a neutral model, the variance and divergences data support the action of selection, rather than neutral drift.

      A higher rate of adaptive coding evolution is inferred among sex-biased genes as a group, but it is not clear whether this signal is driven by many sex-biased genes experiencing a little positive selection, or a few sex-biased genes experiencing a lot of positive selection, so the relationship between expression and protein-coding evolution remains unclear.

      Again, there are two major issues here. First, the distribution of alpha-values shown in Figure 3B are rather homogeneous, i.e. there is not support for a scenario that the average is driven by only a few genes.

      Second, it seems that the referee wants to see an analysis where dn/ds ratios are broken down for every single gene. This has been done in previous papers, but it is now understood that this procedure is fraught with error because of the demographic contingencies inherent to natural populations that can yield wrong results for individual loci. We have added some statements to the text to clarify this further.

      It is likely that only a subset of the gene expression differences detected here will have phenotypic effects relevant for fitness or medicine, but without some idea of how many or which genes comprise this subset, it is difficult to interpret the results in this context.

      It is the basic underlying assumption for the whole research field that significantly sex- biased genes are phenotypically relevant for fitness, since they would otherwise not be sex- biased in the first place.

      Throughout the paper the concepts of sexual selection and sexually antagonistic selection are conflated; while both modes of selection can drive the evolution of sexually dimorphic gene expression, the conditions promoting and consequence of both kinds of selection are different, and the manuscript is not clear about the significance of the results for either mode of selection.

      We had explained in our previous response that our data collection was not designed to distinguish between these two processes. But given that the issue is being brought up again, we have now added some discussion on this issue.

      The manuscript's conclusion that "most of the genetic underpinnings of sex-differences show no long-term evolutionary stability" is not supported by the data, which measured gene expression phenotypes but did not investigate the underlying genetic variation causing these differences between individuals, sexes, or species.

      We agree that - under a strict definition - our use of the term "genetic underpinning" in this conclusion sentence can be criticized. The most correct term would be "transcriptional underpinnings", but of course, given that it is the current practice of the whole field to assume that "transcriptional" is part of the overall genetics, we do not consider our initial statement as incorrect. Still, we have changed the term accordingly.

      Furthermore, most of the gene expression differences are observed between sex-specific organs such as testes and ovaries, which are downstream of the sex-determination pathway that is conserved in these four mouse species, so these conclusions are limited to gene expression phenotypes in somatic organs shared by the sexes.

      Yes - correct. But the whole focus of the paper is on somatic expression, i.e. organs that share the same cell compositions. Of course, the comparison between gonadal organs is conflated by being composed of different cell types. We have extended the discussion of this point.

      The differences between sex-biased expression in mice and humans are attributed to differences in the two species effective population sizes; but the human samples have significantly more environmental variation than the mouse samples taken from age-matched animals reared in controlled conditions, which could also explain the observed pattern.

      These are indeed the two alternative explanations that we had discussed (last paragraph of the discussion section, now the penultimate paragraph).

      The smoothed density plots in Figure 5 are confusing and misleading. Examining the individual SBI values in Table S9 reveals that all of the female and male SBI values for each species and organ are non-overlapping, with the exception of the heart in domesticus and mammary gland in musculus, where one male and one female individual fall within the range of the other sex. The smoothed plots therefore exaggerate the overlap between the sexes;

      Smoothing across discrete values is an entirely standard procedure for continuous variables. It allows to visualize the inherent data trends that cannot easily be glanced from simple inspection of the actual values. This is a mathematical procedure, not an "exaggeration". We used the same smoothening procedure for all the comparisons, and it is clear that the distributions between females and males of the sex organs and a few somatic organs are well separated (non-overlapping), which serves as a control.

      in particular, the extreme variation shown in the SBI in the mammary glands in spretus females and spicilegus males is hard to understand given the normalized values in Table S3. The R code used to generate the smoothed plots is not included in the Github repository, so it is not possible to independently recreate those plots from the underlying data.

      We apologize that there was indeed an error in the Figure - the columns for SPR and SPI were accidentally interchanged. We have corrected this figure. Generally, the smoothened patterns we show are easily verified by looking up the respective primary values. We apologize that the code lines for the plots were accidentally omitted. We have used a standard function from ggplot2: geom_density, with "adjust=3, alpha=0.5" for all plots and included this description in the Methods. We have now added this to the R code in the GitHub repository.

      The correlations provided in Table S9 are confusing - most of the reported correlations are 1.0, which are not recovered when using the SBI values in Table S9, and which does not support the manuscript's assertion that sex-biased gene expression can vary between organs within an individual. Indeed, using the SBI values in Table S9, many correlations across organs are negative, which is expected given the description of the result in the text.

      There is a misunderstanding here. The tables do not report correlations, but only p-values for correlations, the raw ones and the ones after corrections for multiple testing. P = 1.0 means no significant correlation. We have adjusted the caption of this table to clarify this further.

      Reviewer #3 (Public review):

      This manuscript reports interesting data on sex differences in expression across several somatic and reproductive tissues among 4 mice species or subspecies. The focus is on sex- biased expression in the somatic tissues, where the authors report high rates of turnover such that the majority of sex-biased genes are only sex-biased in one or two taxa. The authors show sex-biased genes have higher expression variance than unbiased genes but also provide some evidence that sex-bias is likely to evolve from genes with higher expression variance. The authors find that sex-biased genes (both female- and male-biased) experience more adaptive evolution (i.e., higher alpha values) than unbiased genes. The authors develop a summary statistic (Sex-Bias Index, SBI) of each individual's degree of sex- bias for a given tissue. They show that the distribution of SBI values often overlap considerably for somatic (but not reproductive) tissues and that SBI values are not correlated across tissues, which they interpret as indicating an individual can be relatively "male-like" in one tissue and relatively "female-like" in another tissue.

      This is a good summary of the data, but we are puzzled that it does not include the completely new module analysis and the finding of extremely fast evolution of sex-biased somatic gene expression compared to the gonadal one.

      Though the data are interesting, there are some disappointing aspects to how the authors have chosen to present the work. For example, their criteria for sex-bias requires an expression ratio of one sex to the other of 1.25. A reasonably large fraction of the "sex- biased genes" have ratios just beyond this cut-off (Fig. S1). A gene which has a ratio of 1.27 in taxa 1 can be declared as "sex-biased" but which has a ratio of 1.23 in taxa 2 will not be declared as "sex-biased". It is impossible to know from how the data are presented in the main text the extent to which the supposed very high turnover represents substantial changes in dimorphic expression. A simple plot of the expression sex ratio of taxa 1 vs taxa 2 would be illuminating but the authors declined this suggestion.

      Choosing a cutoff is the standard practice when dealing with continuously distributed data. As we have pointed out, we looked at various cutoff options and decided to use the present one, based on the observed data distributions. Note that some studies have used even lower ones (e.g. 1.1). To visualize the data distribution, we had provided the overall distribution of ratios, because one would have to look at many more plots otherwise. But we have now also added individual plots as Figure 1, Figure supplement 2, as requested. They confirm what is also evident from the overall plots, namely that most ratio changes are larger than the incremental values suggested by the reviewer. Note that the original data are of course also available for inspection.

      I was particularly intrigued by the authors' inference of the proportion of adaptive substitutions ("alpha") in different gene sets. The show alpha is higher for sex-biased than unbiased genes and nicely shows that the genes that are unbiased in focal taxa but sex- biased in the sister taxa also have low alpha. It would be even stronger that sex-bias is associated with adaptive evolution to estimate alpha for only those genes that are sex- biased in the focal taxa but not in the sister taxa (the current version estimates alpha on all sex-biased genes within the focal taxa, both those that are sex-biased and those that are unbiased in the sister taxa).

      We have added the respective values in the results section, but since fewer genes are involved, they are less comparable to the other sets of genes. Still, the tendencies remain.

      The author's Sex Bias Index is measured in an individual sample as: SBI = median(TPM of female-biased genes) - median(TPM of male-biased genes). This index has some strange properties when one works through some toy examples (though any summary statistic will have limitations). The authors do little to jointly discuss the merits and limitations of this metric. It would have been interesting to examine their two key points (degree of overlapping distributions between sexes and correlation across tissues) using other individual measures of sex-bias.

      We had responded to this comment before (including the explanation that it has no strange properties when one applies the normalization that is now implemented) and we have added a whole section devoted to the discussion of the merits of the SBI. We do not know which other "individual measures of sex-bias" this should be compared to. Still, we have now added a paragraph in the discussion about using PCA as an alternative to show that this would result in similar conclusions, but is technically less suitable for this purpose.

      Figure 5 shows symmetric gaussian-looking distributions of SBI but it makes me wonder to what extent this is the magic of model fitting software as there are only 9 data points underlying each distribution. Whereas Figure 5 shows many broadly overlapping distributions for SBI, Figure 6 seems to suggest the sexes are quite well separated for SBI (e.g., brain in MUS, heart in DOM).

      We use a standard fitting function in R (see above), which tries to fit a normalized distribution, but this function can also add an additional peak when the data are too heterogeneous (e.g. Mammary in Figure 7).

      Fig. S1 should be shown as the log(F/M) ratio so it is easier to see the symmetry, or lack thereof, of female and male-biased genes.

      The log will work differently for values <1, compared to values >1 when used in a single plot. We have now generated combined plots with symmetric values to allow a better comparability.

      It is important to note that for the variance analysis that IQR/median was calculated for each gene within each sex for each tissue. This is a key piece of information that should be in the methods or legend of the main figure (not buried in Supplemental Table 17).

      ​We have now moved these descriptions into the Methods section.

    1. Author response:

      Evidence reducibility and clarity

      Reviewer 1:

      In this manuscript, the role of the insulin receptor and the insulin growth factor receptor was investigated in podocytes. Mice, were both receptors were deleted, developed glomerular dysfunction and developed proteinuria and glomerulosclerosis over several months. Because of concerns about incomplete KO, the authors generated podocyte cell lines where both receptors were deleted. Loss of both receptors was highly deleterious with greater than 50% cell death. To elucidate the mechanism, the authors performed global proteomics and find that spliceosome proteins are downregulated. They confirm this by using long-range sequencing. These results suggest a novel role for these pathways in podocytes.

      Thank you

      This is primarily a descriptive study and no technical concerns are raised. The mechanism of how insulin and IGF1 signaling are linked to the spiceosome is not addresed.

      We do not think the paper is descriptive as we used non-biased phospho and total proteomics in the DKO cells to uncover the alterations in the spliceosome (that have not been previously described) that were detrimental. However, we are happy to look further into the underlying mechanism.

      We would propose:

      (1) Stimulating/inhibiting insulin/IGF signalling pathways in the Wild-type and DKO knockout cells and check expression levels and/or phosphorylation status of splice factors (including those in Figure 3E) and those revealed by phospho-proteomic data; a variety of inhibitors of insulin/IGF1 pathways could also be used along the pathways that are shown in Fig 2.

      (2) Looking at the RNaseq data bioinformatically in more detail – the introns/exons that move up or down are targets of the splice factors involved; most splice factors binding sequences are known, so it should be possible to ask bioinformatically – from the sequences around the splice sites of the exons and introns that move in the DKO, which splice factors binding sites are seen most frequently? To uncover splice factors/RNA-binding proteins (RBPs) that are involved in the insulin signaling we will use a software named MATT which was specifically designed to look for RNA-binding motifs (PMID 30010778). In brief, using the long-sequencing data, we will test 250 nt sequences flanking the splice sites of all regulated splicing events (intronic and exonic) against all RNA- binding proteins in the CISBP-RNA database (PMID 23846655) using MATT. This will result in a list of RBPs potentially involved in the insulin signaling. We will validate these by activating insulin signaling (similar to Figures 2 B,C) and probe whether the RBPs are activated (e.g. phosphorylated or change in expression) or we will manipulate expression of the candidate RBPs and measure how they affect the insulin signaling.

      (3) Examining the phospho and total proteomic data for IGF1R and Insulin receptor knockout alone podocytes (which we have already generated) and analysing these in more detail and include this data set to elucidate the relative importance of both receptors to spliceosome function.

      The phenotype of the mouse is only superficially addressed. The main issues are that the completeness of the mouse KO is never assessed nor is the completeness of the KO in cell lines. The absence of this data is a significant weakness.

      We apologise for not making clear but we did assess the level of receptor knockdown in the animal and cell models.  The in vivo model showed variable and non-complete levels of insulin receptor and IGF1 receptor podocyte knock down (shown in supplementary figure 1B). This is why we made the in vitro  floxed podocyte cell lines in which we could robustly knockdown both the insulin receptor and IGF1 receptor (shown in Figure 2A)

      The mouse experiments would be improved if the serum creatinines were measured to provide some idea how severe the kidney injury is.

      We can address this:

      We have further urinary Albumin:creatinine ratio (uACR) data at 12, 16 and 20 weeks. We also have more blood tests of renal function that can be added. There is variability in creatinine levels which is not uncommon in transgenic mouse models (probably partly due to variability in receptor knock down with cre-lox system). This is part of rationale of developing the robust double receptor knockout cell models where we knocked out both receptors by >80%.

      An attempt to rescue the phenotype by overexpression of SF3B4 would also be useful. If this didn't work, an explanation in the text would suffice.

      We would consider  over express SF3BF4 in the Wild type and DKO cells and assess the effects on spliceosome if deemed necessary.  However, we think it is unlikely to rescue the phenotype as so many other spliceosome components are downregulated in the DKO cells.

      As insulin and IGF are regulators of metabolism, some assessment of metabolic parameters would be an optional add-on.

      We have some detail on this and can add to the manuscript. However it is not extensive as not a major driver of this work.

      Lastly, the authors should caveat the cell experiments by discussing the ramifications of studying the 50% of the cells that survive vs the ones that died.

      Thank you, we appreciate this and this was the rationale behind cells being studied after 2 days differentiation before significant cell loss in order to avoid the issue of studying the 50% of cells that survive.

      Reviewer 2:

      In this manuscript, submitted to Review Commons (journal agnostic), Coward and colleagues report on the role of insulin/IGF axis in podocyte gene transcription. They knocked out both the insulin and IGFR1 mice. Dual KO mice manifested a severe phenotype, with albuminuria, glomerulosclerosis, renal failure and death at 4-24 weeks.

      Long read RNA sequencing was used to assess splicing events. Podocyte transcripts manifesting intron retention were identified. Dual knock-out podocytes manifested more transcripts with intron retention (18%) compared wild-type controls (18%), with an overlap between experiments of ~30%.

      Transcript productivity was also assessed using FLAIR-mark-intron-retention software. Intron retention w seen in 18% of ciDKO podocyte transcripts compared to 14% of wild-type podocyte transcripts (P=0.004), with an overlap between experiments of ~30% (indicating the variability of results with this method). Interestingly, ciDKO podocytes showed downregulation of proteins involved in spliceosome function and RNA processing, as suggested by LC/MS and confirmed by Western blot.

      Pladienolide (a spliceosome inhibitor) was cytotoxic to HeLa cells and to mouse podocytes but no toxicity was seen in murine glomerular endothelial cells.<br /> Specific comments.

      The manuscript is generally clear and well-written. Mouse work was approved in advance. The six figures are generally well-designed, bars/superimposed dot-plots.

      Thank you

      Evaluation.

      Methods are generally well described. It would be helpful to say that tissue scoring was performed by an investigator masked to sample identity.

      We did this and will add this information to the methods/figure legend.

      Specific comments.

      (1) Data are presented as mean/SEM. In general, mean/SD or median/IQR are preferred to allow the reader to evaluate the spread of the data. There may be exceptions where only SEM is reasonable.

      Graphs can be changed to SD rather than SEM.

      (2) It would be useful to for the reader to be told the number of over-lapping genes (with similar expression between mouse groups) and the results of a statistical test comparing WT and KO mice. The overlap of intron retention events between experimental repeats was about 30% in both knock-out podocytes. This seems low and I am curious to know whether this is typical for typical for this method; a reference could be helpful.

      This is an excellent question. We had 30% overlap as the parameters used for analysis were very stringent. We suspect we could get more than 30% by being less stringent, which still be considered as similar events if requested. Our methods were based on FLAIR analysis (PMID: 32188845)

      (3) Please explain "adjusted p value of 0.01." It is not clear how was it adjusted. The number of differentially-expressed proteins between the two cell types was 4842.

      We used the Benjamini-Hochberg method to adjust our data. We think the reviewer is referring to the transcriptomic data and not the proteomic data.

      Minor comments

      Page numbers in the text would help the reviewer communicate more effectively with the author.

      We will do this

      Reviewer 3:

      These investigators have previously shown important roles for either insulin receptor (IR) or insulin-like growth factor receptor (IGF1R) in glomerular podocyte function. They now have studied mice with deletion of both receptors and find significant podocyte dysfunction. They then made a podocyte cell line with inducible deletion of both receptors and find abnormalities in transcriptional efficiency with decreased expression of spliceosome proteins and increased transcripts with impaired splicing or premature termination.

      The studies appear to be performed well and the manuscript is clearly written.

      Thank you

      Referees cross-commenting

      I am in agreement with Reviewer 1 that the studies are overly descriptive and do not provide sufficient mechanism and the lack of more investigation of the in vivo model is a significant weakness.

      Please see our responses to reviewer 1 above.

      Significance

      Reviewer 1:

      With the GLP1 agonists providing renal protection, there is great interest in understanding the role of insulin and other incretins in kidney cell biology. It is already known that Insulin and IGFR signaling play important roles in other cells of the kidney. So, there is great interest in understanding these pathways in podocytes. The major advance is that these two pathways appear to have a role in RNA metabolism, the major limitations are the lack of information regarding the completeness of the KO's. If, for example, they can determine that in the mice, the KO is complete, that the GFR is relatively normal, then the phenotype they describe is relatively mild.

      Thank you. The receptor  KO in the mice is unlikely to be complete (Please see comments above and Supplementary Figure 1b). There are many examples of KO models targeting other tissues showing that complete KO of these receptors seems difficult to achieve , particularly in reference to the IGF1 receptor. In the brain (which is also terminally differentiated cells PMID:28595357 (barely 50% iof IGF1R knockdown was achieved in the target cells). Ovarian granulosa cells PMID:28407051 -several tissue specific drivers tried but couldn't achieve any better than 80%. The paper states that 10% of IGF1R is sufficient for function in these cells so they conclude that their knockdown animals are probably still responding to IGF1. Finally, in our recent IGF1R podocyte knockdown model we found Cre levels were important for excision of a single floxed gene (PMID: 38706850) hence we were not surprised that trying to excise two floxed genes (insulin receptor and IGF1 receptor) was challenging. This is the rationale for making the double receptor knockout cell lines to understand process / biology in more detail.

      Reviewer 2:

      The manuscript is generally clear and well-written. Mouse work was approved in advance. The figures are generally well-designed, bars/superimposed dot-plots.

      Evaluation.

      Methods are generally well described. It would be helpful to say that tissue scoring was performed by an investigator masked to sample identity.

      Thank you we will do this.

      Reviewer 3:

      There are a number of potential issues and questions with these studies.

      (1) For the in vivo studies, the only information given is for mice at 24 weeks of age. There needs to be a full time course of when the albuminuria was first seen and the rate of development. Also, GFR was not measured. Since the podocin-Cre utilized was not inducible, there should be a determination of whether there was a developmental defect in glomeruli or podocytes. Were there any differences in wither prenatal post natal development or number of glomeruli?

      Thank you we will add in further phenotyping data. We do not think there was a major developmental phenotype as  albuminuria did not become significantly different until several months of age. We could have used a doxycycline inducible model but we know the excision efficiency is much less than the podocin-cre driven model SUPP FIGURE 1. This would likely give a very mild (if any) phenotype and not reveal the biology adequately.

      (2) Although the in vitro studies are of interest, there are no studies to determine if this is the underlying mechanism for the in vivo abnormalities seen in the mice. Cultured podocytes may not necessarily reflect what is occurring in podocytes in vivo.

      Thank you for this we are happy to employ Immunohistochemistry (IHC) and immunofluorescence (IF) using spliceosome antibodies on tissue sections from DKO and control mice to examine spliceosome changes. However, as the DKO results in podocyte loss, there may not be that many DKO podocytes still present in the tissue sections. This will be taken into consideration.

      (3) Given that both receptors are deleted in the podocyte cell line, it is not clear if the spliceosome defect requires deletion of both receptors or if there is redundancy in the effect. The studies need to be repeated in podocyte cell lines with either IR or IGFR single deletions.

      Thank you. We have full total and phospho-proteomic data sets from single insulin receptor and IGF1 receptor knockout cell lines that we will investigate for this point.

      (4) There are not studies investigating signaling mechanisms mediating the spliceosome abnormalities.

      Thank you as outlined as above to reviewer 1 point 1 we are very happy to investigate insulin / IGF signalling pathways in more detail.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      In this study, Ma et al. aimed to determine previously uncharacterized contributions of tissue autofluorescence, detector afterpulse, and background noise on fluorescence lifetime measurement interpretations. They introduce a computational framework they named "Fluorescence Lifetime Simulation for Biological Applications (FLiSimBA)" to model experimental limitations in Fluorescence Lifetime Imaging Microscopy (FLIM) and determine parameters for achieving multiplexed imaging of dynamic biosensors using lifetime and intensity. By quantitatively defining sensor photon effects on signal-to-noise in either fitting or averaging methods of determining lifetime, the authors contradict any claims of FLIM sensor expression insensitivity to fluorescence lifetime and highlight how these artifacts occur differently depending on the analysis method. Finally, the authors quantify how statistically meaningful experiments using multiplexed imaging could be achieved. 

      A major strength of the study is the effort to present results in a clear and understandable way given that most researchers do not think about these factors on a day-to-day basis. The model code is available and written in Matlab, which should make it readily accessible, although a version in other common languages such as Python might help with dissemination in the community. One potential weakness is that the model uses parameters that are determined in a

      specific way by the authors, and it is not clear how vastly other biological tissue and microscope setups may differ from the values used by the authors. 

      Overall, the authors achieved their aims of demonstrating how common factors

      (autofluorescence, background, and sensor expression) will affect lifetime measurements and they present a clear strategy for understanding how sensor expression may confound results if not properly considered. This work should bring to awareness an issue that new users of lifetime biosensors may not be aware of and that experts, while aware, have not quantitatively determined the conditions where these issues arise. This work will also point to future directions for improving experiments using fluorescence lifetime biosensors and the development of new sensors with more favorable properties. 

      We appreciate the comments and helpful suggestions. We now also include FLiSimBA simulation code in Python in addition to Matlab to make it more accessible to the community.

      One advantage of FLiSimBA is that the simulation package is flexible and adaptable, allowing users to input parameters based on the specific sensors, hardware, and autofluorescence measurements for their biological and optical systems. We used parameters based on a FRETbased sensor, measured autofluorescence from mouse tissue, and measured dark count/after pulse of our specific GaAsP PMT in this manuscript as examples. In Discussion and Materials and methods, we now emphasize this advantage and further clarify how these parameters can be adapted to diverse tissues, imaging systems, and sensors based on individual experiments. We further explain that these input parameters will not affect the conclusions of our study, but the specific input parameters would alter the quantitative thresholds.

      Reviewer #2 (Public review): 

      Summary: 

      By using simulations of common signal artefacts introduced by acquisition hardware and the sample itself, the authors are able to demonstrate methods to estimate their influence on the estimated lifetime, and lifetime proportions, when using signal fitting for fluorescence lifetime imaging. 

      Strengths: 

      They consider a range of effects such as after-pulsing and background signal, and present a range of situations that are relevant to many experimental situations. 

      Weaknesses: 

      A weakness is that they do not present enough detail on the fitting method that they used to estimate lifetimes and proportions. The method used will influence the results significantly. They seem to only use the "empirical lifetime" which is not a state of the art algorithm. The method used to deconvolve two multiplexed exponential signals is not given. 

      We appreciate the comments and constructive feedback. Our revision based on the reviewer’s suggestions has made our manuscript clearer and more user friendly. We originally described the detail of the fitting methods in Materials and methods. Given the importance of these methodological details for evaluating the conclusions of this study, we have moved the description of the fitting method from Materials and methods to Results. In addition, we provide further clarification and more details of the rationale of using these different methods of lifetime estimates in Discussion to aid users in choosing the best metric for evaluating fluorescence lifetime data.

      More specifically, we modified our writing to highlight the following.

      (1) In Results, we describe that lifetime histograms were fitted to Equation 3 with the GaussNewton nonlinear least-square fitting algorithm and the fitted P<sub1</sub> was used as lifetime estimation.

      (2) In Results, we clarify that our simulation of multiplexed imaging was modeled with two sensors, each displaying a single exponential decay, but the two sensors have different decay constants. We also describe that Equation 3 with the Gauss-Newton nonlinear least-square fitting algorithm was used to deconvolve the two multiplexed exponential signals (Fig. 8)

      Reviewer #3 (Public review): 

      Summary: 

      This study presents a useful computational tool, termed FLiSimBA. The MATLAB-based FLiSimBA simulations allow users to examine the effects of various noise factors (such as autofluorescence, afterpulse of the photomultiplier tube detector, and other background signals) and varying sensor expression levels. Under the conditions explored, the simulations unveiled how these factors affect the observed lifetime measurements, thereby providing useful guidelines for experimental designs. Further simulations with two distinct fluorophores uncovered conditions in which two different lifetime signals could be distinguished, indicating multiplexed dynamic imaging may be possible. 

      Strengths: 

      The simulations and their analyses were done systematically and rigorously. FliSimba can be useful for guiding and validating fluorescence lifetime imaging studies. The simulations could define useful parameters such as the minimum number of photons required to detect a specific lifetime, how sensor protein expression level may affect the lifetime data, the conditions under which the lifetime would be insensitive to the sensor expression levels, and whether certain multiplexing could be feasible. 

      Weaknesses: 

      The analyses have relied on a key premise that the fluorescence lifetime in the system can be described as two-component discrete exponential decay. This means that the experimenter should ensure that this is the right model for their fluorophores a priori and should keep in mind that the fluorescence lifetime of the fluorophores may not be perfectly described by a twocomponent discrete exponential (for which alternative algorithms have been implemented: e.g., Steinbach, P. J. Anal. Biochem. 427, 102-105, (2012)). In this regard, I also couldn't find how good the fits were for each simulation and experimental data to the given fitting equation (Equation 2, for example, for Figure 2C data). 

      We thank the reviewer for the constructive feedback. We agree that the FLiSimBA users should ensure that the right decay equations are used to describe the fluorescent sensors. In this study, we used a FRET-based PKA sensor FLIM-AKAR to provide proof-of-principle demonstration of the capability of FLiSimBA. The donor fluorophore of FLIM-AKAR, truncated monomeric enhanced GFP, displays a single exponential decay. FLIM-AKAR, a FRET-based sensor, displays a double exponential decay. The time constants of the two exponential components were determined and reported previously (Chen, et al, Neuron (2017)).  Thus, a double exponential decay equation with known τ<sub>1</sub> and τ<sub>2</sub> was used for both simulation and fitting. The goodness of fit is now provided in Supplementary Fig. 1 for both simulated and experimental data. In addition to referencing our prior study characterizing the double exponential decay model of FLIM-AKAR in Materials and methods, we have emphasized in Discussion the versality of FLiSimBA to adapt to different sensors, tissues, and analysis methods, and the importance of using the right mathematical models to describe the fluorescence decay of specific sensors. 

      Also, in Figure 2C, the 'sensor only' simulation without accounting for autofluorescence (as seen in Sensor + autoF) or afterpulse and background fluorescence (as seen in Final simulated data) seems to recapitulate the experimental data reasonably well. So, at least in this particular case where experimental data is limited by its broad spread with limited data points, being able to incorporate the additional noise factors into the simulation tool didn't seem to matter too much.  

      In the original Fig 2C, the sensor fluorescence was much higher than the contributions from autofluorescence, afterpulse, and background signals, resulting in minimal effects of these other factors, as the reviewer noted. This original figure was based on photon counts from single neurons expressing FLIM-AKAR. For the rest of the manuscript, photon counts were based on whole fields of view (FOV). Since the FOV includes cells that do not express fluorescent sensors, the influence of autofluorescence, dark currents, and background is much more pronounced, as shown in Fig. 2B. 

      Both approaches – using photon counts from the whole FOV or from individual neurons – have their justifications. Photon counts from the whole FOV simulate data from fluorescence lifetime photometry (FLiP), whereas photon counts from individual neurons simulate data from fluorescence lifetime imaging microscopy (FLIM). However, the choice of approach does not affect the conclusions of the manuscript, as a range of photon count values are simulated. To maintain consistency throughout the manuscript, we have revised the photon counts in this figure (now Supplementary Fig. 1C) to match those from the whole FOV.

      Additionally, we have made some modifications in our analyses of Supplementary Fig. 1C and Fig. 2B, detailed in the “FLIM analysis” section of Materials and methods. For instance, to minimize system artifact interference at the histogram edges, we now use a narrower time range (1.8 to 11.5 ns) for fitting and empirical lifetime calculation.

      Reviewer #1 (Recommendations for the authors): 

      (1) The authors report how autofluorescence was measured from "imaged brain slices from mice at postnatal 15 to 19 days of age without sensor expression." However, it remains unclear how many acute slices and animals were used (for example, were all 15um x 15um FOV from a single slice) and if mouse age affects autofluorescence quantification. Furthermore, would in vivo measurements have different autofluorescence conditions given that blood flow would be active? It would help if the authors more clearly explained how reliable their autofluorescence measurement is by clarifying how they obtained it, whether this would vary across brain areas, and whether in vitro vs in vivo conditions would affect autofluorescence. 

      We have added description in Materials and methods that for autofluorescence ‘Fluorescence decay histograms from 19 images of two brain slices from a single mouse were averaged.’ We have added in Discussion that users should carefully ‘measure autofluorescence that matches the age, brain region, and data collection conditions (e.g., ex vivo or in vivo) of their tissue…’, and emphasize that FLiSimBA offers customization of inputs, and it is important for users to adapt the inputs such as autofluorescence to their experimental conditions. We also clarify in Discussion that the change of input parameters such as autofluorescence across age and brain region would not affect the general insights from this study, but will affect quantitative values.

      (2) Does sensor expression level issues arise more with in-utero electroporation compared to AAV-based delivery of biosensors? A brief comment on this in the discussion may help as most users in the field today may be using AAV strategies to deliver biosensors.

      In our experience, in-utero electroporation results in higher sensor expression than AAV-based delivery, and so pose less concern for expression-level dependence. However, both delivery methods can result in expression level dependence, especially with a sensor that is not bright. We have added in Discussion ‘For a sensor with medium brightness delivered via in utero electroporation, adeno-associated virus, or as a knock-in gene, the brightness may not always fall within the expression level-independent regime.’

      (3) Figure 1. Should the x-axis on the top figures be "Time (ns)" instead of "Lifetime (ns)"?

      Similarly in Figure 8A&B, wouldn't it make more sense to have the x-axis be Time not Lifetime?

      The x-axis labels in Fig. 1 and Fig. 8A-8B have been changed to ‘Time (ns)’.   

      (4) Figure 2b: why is the empirical lifetime close to 3.5ns? Shouldn't it be somewhere between

      2.14 and 0.69? 

      In our empirical lifetime calculation, we did not set the peak channel to have a time of 0.0488 ns (i.e. the laser cycle 12.5 ns divided by 256 time channels). Rather, we set the first time channel within a defined calculation range (i.e. 1.8 ns in Supplementary Fig. 1B) to have a time of 0.0488 ns (i.e.). Thus, the empirical lifetime exceeds 2.14 ns and depends on the time range of the histogram used for calculation. 

      For Fig. 2B and Supplementary Fig. 1C, we have now adjusted the range to 1.8-11.5 ns to eliminate FLIM artifacts at the histogram edges in our experimental data, resulting in an empirical lifetime around 2.255 ns. In contrast, the range for calculating the empirical lifetime of simulated data in the rest of the study (e.g. Fig. 4D) is 0.489-11.5 ns, yielding a larger lifetime of ~3.35 ns. 

      We have clarified these details and our rationale in Materials and methods.

      (5) Figure 2b: how come the afterpulse+background contributes more to the empirical lifetime than the autofluorescence (shorter lifetime). This was unclear in the results text why autofluorescence photons did not alter empirical lifetime as much as did the afterpulse/background.

      With a histogram range from 1.8 ns to 11.5 ns used in Fig. 2B, the empirical lifetime for FLIM-AKAR sensor fluorescence, autofluorescence, and background/afterpulse are: 2-2.3 ns, around 1.69 ns, and around 4.90 ns. The larger difference of background/afterpulse from FLIM-AKAR sensor fluorescence leads to larger influence of afterpulse+background than autofluorescence. We have added an explanation of this in Results.

      (6) One overall suggestion for an improvement that could help active users of lifetime biosensors understand the consequences would be to show either a real or simulated example of a "typical experiment" conducted using FLIM-AKAR and how an incorrect interpretation could be drawn as a consequence of these artifacts. For example, do these confounds affect experiments involving comparisons across animals more than within-subject experiments such as washing a drug onto the brain slice, and the baseline period is used to normalize the change in signal? I think this type of direct discussion will help biosensor users more deeply grasp how these factors play out in common experiments being conducted.

      We have added the following in Discussion, ‘…While this issue is less problematic when the same sample is compared over short periods (e.g. minutes), It can lead to misinterpretation when fluorescence lifetime is compared across prolonged periods or between samples when comparison is made across chronic time periods or between samples with different sensor expression levels. For example, apparent changes in fluorescence lifetime observed over days, across cell types, or subcellular compartments may actually reflect variations in sensor expression levels rather than true differences in biological signals (Fig. 6), Therefore, considering biologically realistic factors in FLiSimBA is essential, as it qualitatively impacts the conclusions.’

      Reviewer #2 (Recommendations for the authors): 

      The paper would be improved with more detail on the fitting methods, and the use of state-of-theart methods. Consult for example the introduction of this paper where many methods are listed: https://www.mdpi.com/1424-8220/22/19/7293

      We have moved the description of the Gauss-Newton nonlinear least-square fitting algorithm from Materials and methods to Results to enhance clarity. We appreciate the reviewer’s suggestion to combine FLiSimBA with various analysis methods. However, the primary focus of our manuscript is to call for attention of how specific contributing factors in biological experiments influence FLIM data, and to provide a tool that rigorously considers these factors to simulate FLIM data, which can then be used for fitting. Therefore, we did not expand the scope of our manuscript. Instead, we have added in the Discussion that ‘‘FLiSimBA can be used to test multiple fitting methods and lifetime metrics as an exciting future direction for identifying the best analysis method for specific experimental conditions’, citing relevant references.

      I would also improve the content of the GitHub repository as it is very hard to identify to source code used for simulation and fitting. 

      We have reorganized and relabeled our GitHub repository and now have three folders labeled as ‘Simulation_inMatlab’, ‘DataAnalysis_inMatlab’, and ‘SimulationAnalysis_inPython’. We also updated the clarification of the contents of each folder in the README file.

      Reviewer #3 (Recommendations for the authors): 

      (1) P. 10 "For example, to detect a P1 change of 0.006 or a lifetime change of 5 ps with one sample measurement in each comparison group, approximately 300,000 photons are needed." If I am reading the graphs in Figures 3B and C, this sentence is talking about the red line. However, the intersection of 0.006 in the MDD of P1 in 3B and red is not 3E5 photons. And the intersection of 0.005 ns and red in 3C is not 3E5 photons either. Are you sure you are talking about n=1? Maybe the values are correct for the blue curve with n=5.

      Thank you for catching our error. We have corrected the text to ‘with five sample measurements’.

      (2) Figure 2 (B) legend: It would be helpful to specify what is being compared in the legend. For example, consider revising "* p < 0.05 vs sensor only; n.s. not significant vs sensor + autoF; # p < 0.05 vs sensor + autoF. Two-way ANOVA with Šídák's multiple comparisons test" to "* p <0.05 for sensor + auto F (cyan) vs sensor only; n.s. not significant for final simulated data (purple) vs sensor + autoF; # p < 0.05 for final simulated data (purple) vs sensor + autoF. Twoway ANOVA with Šídák's multiple comparisons test".

      We’ve made the change and thanks for the suggestion to make it clearer.

      (3) Figure 2 (c) Can you please show the same Two-way ANOVA test values for Experimental vs. Sensor only and for Experimental vs. Sensor + autoF? Currently, the value (n.s.) is marked only for Experimental vs. Final simulation. Given that the experimental data are sparse (compared to the simulations), it seems likely that there may be no significant difference among the 3 different simulations regarding how well they match the experimental data. Also, can you specify the P1 and P2 of the experimental data  used to generate the simulated data on this panel? Also, what is the reason why P1=0.5 was used for panels A and B, instead of the value matching the experimental value?

      As the reviewer suggested, we have included statistical tests in the figure (now Supplementary Fig. 1C). Please see our response to the Public Review of Reviewer 3’s comments as well as our changes in Materials and Methods on other changes and their rationale for this figure. We have now specified the P<sub>1</sub> value of the experimental data used to generate the simulated data on this panel both in Figure Legends and Materials and Methods. Based on the suggestion, we have now used the same P<sub>1</sub> value in Fig. 2B.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #3 (Public Review)

      Summary:

      In this paper the authors examined the effects of strip cropping, a relatively new agricultural technique of alternating crops in small strips of several meters wide, on ground beetle diversity. The results show an increase in species diversity (i.e. abundance and species richness) of the ground beetle communities compared to monocultures.

      Strengths:

      The article is well written; it has an easily readable tone of voice without too much jargon or overly complicated sentence structure. Moreover, as far as reviewing the models in depth without raw data and R scripts allows, the statistical work done by the authors looks good. They have well thought out how to handle heterogenous, unbalanced and taxonomically unspecific yet spatially and temporarily correlated field data. The models applied and the model checks performed are appropriate for the data at hand. Combining RDA and PCA axes together is a nice touch. Moreover, after the first round of reviews, the authors have done a great job at rewriting the paper to make it less overstated, more relevant to the data at hand and more solid in the findings. Many of the weaknesses noted in the first review have been dealt with. The overall structure of the paper is good, with a clear introduction, hypotheses, results section and discussion.

      We are grateful for this positive feedback. We are glad that our extensive revision after extensive review from three reviewers has paid off in addressing earlier weakness of our manuscript.

      Weaknesses:

      The weaknesses that remain are mainly due to a difficult dataset and choices that could have stressed certain aspects more, like the relationship between strip cropping and intercropping. The mechanistic understanding of strip cropping is what is at stake here. Does strip cropping behave similar to intercropping, a technique which has been proven to be beneficial to biodiversity because of added effects due to increased resource efficiency and greater plant species richness.

      Unfortunately, the authors do not go into this in the introduction or otherwise and simply state that they consider strip cropping a form of intercropping.

      We agree with the reviewer that a mechanistic understanding on how intercropping and strip cropping differ would be very interesting. However, we also feel that this topic is somewhat beyond the scope of the current manuscript. We are already planning work to elucidate mechanisms that may explain the pest and suppressive effects of strip cropping.

      I also do not like the exclusive focus on percentages, as these are dimensionless. I think more could have been done to show underlying structure in the data, even after rarefaction.

      While we generally agree with this point raised by the reviewer, for our heterogeneous dataset it was difficult to come up with meaningful units with dimensions. Therefore, we believe that percentages are the most suitable approach to present readers a fair comparison of the treatments.

      A further weakness is a limited embedding into the larger scientific discourses other than providing references. But this may be a matter of style and/or taste

      We believe our manuscript to be well-embedded within the relevant scientific discourse, but as indicated by reviewer 3 this might indeed be a matter of style/taste. Without exact examples it is difficult for us to judge this point.

      Reviewer #3 (Recommendations for the authors): 

      Suggestion for title: "Strip cropping shows promising preliminary increases in ground beetle community diversity compared to monocultures"

      We agree that the title could indeed be nuanced. We incorporated the suggested title, except for the word “preliminary”, as we felt that this is slightly misplaced for a 4-year study conducted at 4 locations.

      line 26: the word previous may be confusing to readers, as it suggests previous research on beetles or insects. I think it would be better to use for instance "related" or "productivity focused research"

      We agree that this wording might be confusing, and changed it to “other studies showed”.

      Line 84-85: this is vague. can you make explicit what you are trying to answer here?

      We made “biodiversity metric changes” more explicit, and changed the sentence accordingly.

      Line 88-89: I think this would fit better with the first question in line 83-84, so I suggest placing it upwards. Also, I think you mean abundant instead of common. Common suggests commonness in the entire population. Abundant suggests found often in this study. While these definitions may very much overlap, they are distinctly different.

      We have moved this sentence up and changed “common” to “abundant”. To make the result section more in line with this section, we also moved the section on the relationship between crop configuration and abundant genera up.  

      Line 146: defining rareness of species should be in the methods section. Also "following" would be better than "according"

      We now added a sentence on how we examine habitat preferences and rarity in the methods section (line 316-317). We also changed “according to” to “following”.

      Line 291: it is called being "flush" with the soil surface. This expression is not much used by non-native speakers, but is regularly encountered in studies on pitfalls, so the authors could decide to change the sentence using the proper English vernacular.

      Suggestion incorporated.

      Line 322-327, this method could do with a reference

      This method is a relatively standard calculation to calculate relative changes and to center variation around zero. Nevertheless, we added a reference to a paper that used the same method.

      Line: 333-335. I would still like to see a reference for this method.

      This methodology has not been described in literature to the best of our knowledge. As we compared two crops within strip cropping with their respective monoculture references, we compare one strip cropping field with two monocultural fields. Here we took a conservative approach by comparing the strip crop field with the monoculture with the highest richness and activity density, to see if strip cropped fields outperformed monocultures with diverse ground beetle communities.

      Line 364-366. references?

      We have added references for these R packages.

    1. Author response:

      The following is the authors’ response to the previous reviews

      We would like to thank you and your chosen reviewers for the diligent work and insightful comments. Following the latest round of feedback, we have made the following changes to the manuscript:

      (1) We have added details regarding the specific versions of Cryosparc and cryoDRGN used in our analysis.

      (2) We have addressed Reviewer 2’s comment concerning the negative RMSF values in Figure S12. The negative values occur because this display shows the difference in RMSF values from the MD simulations of glycosylated versus non-glycosylated ACE. To avoid similar confusion, we have split Figure S12 into three panels. Panels A and B show the RMSF values for each residue in the glycosylated and non-glycosylated sACE MD simulations, respectively, and all values here are positive. Panel C (the original Figure S12) now includes expanded labeling to clarify that it depicts the difference in RMSF values between the presence and absence of glycans. In this panel, a negative value indicates that the residues exhibit higher RMSF in simulations where glycans are present. The figure legend has been revised to accurately describe the updated figure.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors claim that they can use a combination of repetitive transcranial magnetic stimulation (intermittent theta burst-iTBS) and transcranial alternating current stimulation (gamma tACS) to cause slight improvements in memory in a face/name/profession task.

      Strengths:

      The idea of stimulating the human brain non-invasively is very attractive because, if it worked, it could lead to a host of interesting applications. The current study aims to evaluate one such exciting application.

      Weaknesses:

      (1) It is highly unclear what, if anything, transpires in the brain with non-invasive stimulation. To cite one example of many, a rigorous study in rats and human cadavers, compellingly showed that traditional parameters of transcranial electrical stimulation lead to no change in brain activity due to the attenuation by the soft tissue and skull (Mihály Vöröslakos et al Nature Communications 2018): https://www.nature.com/articles/s41467-018-02928-3. It would be very useful to demonstrate via invasive neurophysiological recordings that the parameters used in the current study do indeed lead to any kind of change in brain activity. Of course, this particular study uses a different non-invasive stimulation protocol.

      Thank you for raising the important issue regarding the actual neurophysiological effects of non-invasive brain stimulation. Unfortunately, invasive neurophysiological recordings in humans for this type of study are not feasible due to ethical constraints, while studies on cadavers or rodents would not fully resolve our question. Indeed, the authors of the cited study (Mihály Vöröslakos et al., Nature Communications, 2018) highlight the impossibility of drawing definitive conclusions about the exact voltage required in the in-vivo human brain due to significant differences between rats and humans, as well as the in-vivo human brain and cadavers due to alterations in electrical conductivity that occur in postmortem tissue. Huang and colleagues addressed the difficulties in reaching direct evidence of non-invasive brain stimulation (NIBS) effects in a review published in Clinical Neurophysiology in 2017. They conclude that the use of EEG to assess brain response to TMS has great potential for a less indirect demonstration of plasticity mechanisms induced by NIBS in humans.

      To address this challenge, we conducted Experiments 3 and 4, which respectively examined the neurophysiological and connectivity changes induced by the stimulation in a non-invasive manner using TMS-EEG and fMRI. The observed changes in brain oscillatory activity (increased gamma oscillatory activity), cortical excitability (enhanced posteromedial parietal cortex reactivity), and brain connectivity (strengthened connections between the precuneus and hippocampi) provided evidence of the effects of our non-invasive brain stimulation protocol, further supporting the behavioral data.

      Additionally, we carefully considered the issue of stimulation distribution and, in response, performed a biophysical modeling analysis and E-field calculation using the parameters employed in our study (see Supplementary Materials).

      We acknowledge that further exploration of this aspect would be highly valuable, and we agree that it is worth discussing both as a technical limitation and as a potential direction for future research. We therefore, modify the discussion accordingly (main text, lines 280-289).

      “Although we studied TMS and tACS propagation through the E-field modeling and observed an increase in the precuneus gamma oscillatory activity, excitability and connectivity with the hippocampi, we cannot exclude that our results might reflect the consequences of stimulating more superficial parietal regions other than the precuneus nor report direct evidence of microscopic changes in the brain after the stimulation. Invasive neurophysiological recordings in humans for this type of study are not feasible due to ethical constraints. Studies on cadavers or rodents would not fully resolve our question due to significant differences between them (i.e. rodents do not have an anatomical correspondence while cadavers have an alterations in electrical conductivity occurring in postmortem tissue). However, further exploration of this aspect in future studies would help in the understanding of γtACS+iTBS effects.”

      (2) If there is any brain activity triggered by the current stimulation parameters, then it is extremely difficult to understand how this activity can lead to enhancing memory. The brain is complex. There are hundreds of neuronal types. Each neuron receives precise input from about 10,000 other neurons with highly tuned synaptic strengths. Let us assume that the current protocol does lead to enhancing (or inhibiting) simultaneously the activity of millions of neurons. It is unclear whether there is any activity at all in the brain triggered by this protocol, it is also unclear whether such activity would be excitatory, or inhibitory. It is also unclear how many neurons, let alone what types of neurons would change their activity. How is it possible that this can lead to memory enhancement? This seems like using a hammer to knock on my laptop and hope that the laptop will output a new Mozart-like sonata.

      Thank you for your comment. As you correctly point out, we still do not have precise knowledge of which neurons—and to what extent—are activated during non-invasive brain stimulation in humans. However, this challenge is not limited to brain stimulation but applies to many other therapeutic interventions, including psychiatric medications, without limiting their use.

      Nevertheless, a substantial body of research has investigated the mechanisms underlying the efficacy of TMS and tACS in producing behavioral after-effects, primarily through its ability to induce long-term potentiation (Bliss & Collingridge, The Journal of Physiology, 1993a; Ridding & Rothwell, Nature Reviews Neuroscience, 2007; Huang et al., Clinical Neurophysiology, 2017; Koch et al., Neuroimage 2018; Koch et al., Brain 2022; Jannati et al., Neuropsychopharmacology, 2023; Wischnewski et al., Trends in Cognitive Science, 2023; Griffiths et al., Trends in Neuroscience, 2023).

      We acknowledge that we took this important aspect for granted. We consequently expanded the introduction accordingly (main text, lines 48-60).

      “Repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) are two forms of NIBS widely used to enhance memory performances (Grover et al., 2022; Koch et al., 2018; Wang et al., 2014). rTMS, based on the principle of Faraday, induces depolarization of cortical neuronal assemblies and leads to after-effects that have been linked to changes in synaptic plasticity involving mechanisms of long-term potentiation (LTP) (Huang et al., 2017; Jannati et al., 2023). On the other hand, tACS causes rhythmic fluctuations in neuronal membrane potentials, which can bias spike timing, leading to an entrainment of the neural activity (Wischnewski et al., 2023). In particular, the induction of gamma oscillatory a has been proposed to play an important role in a type of LTP known as spike timing-dependent plasticity, which depends on a precise temporal delay between the firing of a presynaptic and a postsynaptic neuron (Griffiths and Jensen, 2023). Both LTP and gamma oscillations have a strong link with memory processes such as encoding (Bliss and Collingridge, 1993; Griffiths and Jensen, 2023; Rossi et al., 2001), pointing to rTMS and tACS as good candidates for memory enhancement.”

      (3) Even if there is any kind of brain activation, it is unclear why the authors seem to be so sure that the precuneus is responsible. Are there neurophysiological data demonstrating that the current protocol only activates neurons in the precuneus? Of note, the non-invasive measurements shown in Figure 3 are very weak (Figure 3A top and bottom look very similar, and Figure 3C left and right look almost identical). Even if one were to accept the weak alleged differences in Figure 3, there is no indication in this figure that there is anything specific to the precuneus, rather a whole brain pattern. This would be the kind of minimally rigorous type of evidence required to make such claims. In a less convincing fashion, one could look at different positions of the stimulation apparatus. This would not be particularly compelling in terms of making a statement about the precuneus. But at least it would show that the position does matter, and over what range of distances it matters, if it matters.

      Thank you for your feedback. Our assumption that the precuneus plays a key role in the observed effects is based on several factors:

      (1) The non-invasive stimulation protocol was applied to an individually identified precuneus for each participant. Given existing evidence on TMS propagation, we can reasonably assume that the precuneus was at least a mediator of the observed effects (Ridding & Rothwell, Nature Reviews Neuroscience 2007). For further details about target identification and TMS and tACS propagation, please refer to the MRI data acquisition section in the main text and Biophysical modeling and E-field calculation section in the supplementary materials.

      (2) To investigate the effects of the neuromodulation protocol on cortical responses, we conducted a whole-brain analysis using multiple paired t-tests comparing each data point between different experimental conditions. To minimize the type I error rate, data were permuted with the Monte Carlo approach and significant p-values were corrected with the false discovery rate method (see the Methods section for details). The results identified the posterior-medial parietal areas as the only regions showing significant differences across conditions.

      (3) To control for potential generalized effects, we included a control condition in which TMS-EEG recordings were performed over the left parietal cortex (adjacent to the precuneus). This condition did not yield any significant results, reinforcing the cortical specificity of the observed effects.

      However, as stated in the Discussion, we do not claim that precuneus activity alone accounts for the observed effects. As shown in Experiment 4, stimulation led to connectivity changes between the precuneus and hippocampus, a network widely recognized as a key contributor to long-term memory formation (Bliss & Collingridge, Nature 1993). These connectivity changes suggest that precuneus stimulation triggered a ripple effect extending beyond the stimulation site, engaging the broader precuneus-hippocampus network.

      Regarding Figure 3A, it represents the overall expression of oscillatory activity detected by TMS-EEG. Since each frequency band has a different optimal scaling, the figure reflects a graphical compromise. A more detailed representation of the significant results is provided in Figure 3B. The effect sizes for gamma oscillatory activity in the delta T1 and T2 conditions were 0.52 and 0.50, respectively, which correspond to a medium effect based on Cohen’s d interpretation.

      We add a paragraph in the discussion to improve the clarity of the manuscript regarding this important aspect (lines 193-198).

      “Given the existing evidence on TMS propagation and the computation of the Biophysical model with the Efield, we can reasonably assume that the individually identified PC was a mediator of the observed effects (Ridding and Rothwell, 2007). Moreover, we observed specific cortical changes in the posteromedial parietal areas, as evidenced by the whole-brain analysis conducted on TMS-EEG data and the absence of effect on the lateral posterior parietal cortex used as a control condition.”

      (4) In the absence of any neurophysiological documentation of a direct impact on the brain, an argument in this type of study is that the behavioral results show that there must be some kind of effect. I agree with this argument. This is also the argument for placebo effects, which can be extremely powerful and useful even if the mechanism is unrelated to what is studied. Then let us dig into the behavioral results.

      Hoping to have already addressed your concern regarding the neurophysiological impact of the stimulation on the brain, we would like to emphasize that the behavioral results were obtained controlling for placebo effects. This was achieved by having participants perform the task under different stimulation conditions, including a sham condition.

      4a. There does not seem to be any effect on the STMB task, therefore we can ignore this.

      4b. The FNAT task is minimally described in the supplementary material. There are no experimental details to understand what was done. What was the size of the images? How long were the images presented for? Were there any repetitions of the images? For how long did the participants study the images? Presumably, all the names and occupations are different? What were the genders of the faces? What is chance level performance? Presumably, the same participant saw different faces across the different stimulation conditions. If not, then there can be memory effects across different conditions that are even more complex to study. If yes, then it would be useful to show that the difficulty is the same across the different stimuli.

      We thank you for signaling the lack in the description of FNAT task. We added the information required in the supplementary information (lines 93-101).

      “Each picture's face size was 19x15cm. In the learning phase, faces were shown along with names and occupations for 8 seconds each (totaling approximately 2 minutes). During immediate recall, the faces were displayed alone for 8 seconds. In the delayed recall and recognition phase, pictures were presented until the subject provided answers. We used a different set of stimuli for each stimulation condition, resulting in a total of 3 parallel task forms balanced across conditions and session order. All parallel forms comprised 6 male and 6 female faces; for each sex, there were 2 young adults (around 30 years old), 2 middle-aged adults (around 50 years old), and 2 elderly adults (around 70 years old). Before the experiments, we conducted a pilot study to ensure no differences existed between the parallel forms of the task.”

      The chance level in the immediate and delayed recall is not quantifiable since the participants had to freely recall the name and the occupation without a multiple choice. In the recognition, the chance level was around 33% (since the possible answers were 3).

      4c. Although not stated clearly, if I understand FNAT correctly, the task is based on just 12 presentations. Each point in Figure 2A represents a different participant. Unfortunately, there is no way of linking the performance of individual participants across the conditions with the information provided. Lines joining performance for each participant would be useful in this regard. Because there are only 12 faces, the results are quantized in multiples of 100/12 % in Figure 3A. While I do not doubt that the authors did their homework in terms of the statistical analyses, it is difficult to get too excited about these 12 measurements. For example, take Figure 3A immediate condition TOTAL, arguably the largest effect in the whole paper. It seems that on average, the participants may remember one more face/name/occupation.

      Thank you for the suggestion. We added graphs showing lines linking the performance of individual participants across conditions to improve clarity, please see Fig.2 revised. We apologize for the lack of clarity in the description of the FNAT. As you correctly pointed out, we used the percentage based on the single association between face, name and occupation (12 in total). However, each association consisted of three items, resulting in a total of 36 items to learn and associate – we added a paragraph to make it more explicit in the manuscript (lines 425-430).

      “We considered a correct association when a subject was able to recall all the information for each item (i.e. face, name and occupation), resulting in a total of 36 items to learn and associate. To further investigate the effect on FNAT we also computed a partial recall score accounting for those items where subjects correctly matched only names with faces (FNAT NAME) and only occupations with faces (FNAT OCCUPATION). See supplementary information for score details.”

      In the example you mentioned, participants were, on average, able to correctly recall and associate three more items compared to the other conditions. While this difference may not seem striking at first glance, it is important to consider that we assessed memory performance after a single, three-minute stimulation session. Similar effects are typically observed only after multiple stimulation sessions (Koch et al., NeuroImage, 2018; Grover et al., Nature Neuroscience, 2022). Moreover, memory performance changes are often measured by a limited set of stimuli due to methodological constraints related to memory capacity. For example, Rey Auditory Verbal learning task, requiring to learn and recall 15 words, is a typical test used to detect memory changes (Koch et al., Neuroimage, 2018; Benussi et al., Brain stimulation 2021; Benussi et al., Annals of Neurology, 2022). 

      4d. Block effects. If I understand correctly, the experiments were conducted in blocks. This is always problematic. Here is one example study that articulated the big problems in block designs (Li et al TPAMI 2021):https://ieeexplore.ieee.org/document/9264220

      Thank you for the interesting reference. According to this paper, in a block design, EEG or fMRI recordings are performed in response to different stimuli of a given class presented in succession. If this is the case, it does not correspond to our experimental design where both TMS-EEG and fMRI were conducted in resting state on different days according to the different stimulation conditions.

      4e. Even if we ignore the lack of experimental descriptions, problems with lack of evidence of brain activity, the minimalistic study of 12 faces, problems with the block design, etc. at the end of the day, the results are extremely weak. In FNAT, some results are statistically significant, some are not. The interpretation of all of this is extremely complex. Continuing with Figure 3A, it seems that the author claims that iTBS+gtACS > iTBS+sham-tACS, but iTBS+gtACS ~ sham+sham. I am struggling to interpret such a result. When separating results by name and occupation, the results are even more perplexing. There is only one condition that is statistically significant in Figure 3A NAME and none in the occupation condition.

      Thank you again for your feedback. Hoping to have thoroughly addressed your initial concerns in our previous responses, we now move on to your observations regarding the behavioral results, assuming you were referring to Figure 2A. The main finding of this study is the improvement in long-term memory performance, specifically the ability to correctly recall the association between face, name, and occupation (total FNAT), which was significantly enhanced in both Experiments 1 and 2. However, we also aimed to explore the individual contributions of name and occupation separately to gain a deeper understanding of the results. Our analysis revealed that the improvement in total FNAT was primarily driven by an increase in name recall rather than occupation recall. We understand that this may have caused some confusion. We consequently modified the manuscript in the (lines 97-99; 107-111; 425-430) to make it clearer and moved the graph relative to FNAT NAME and OCCUPATION from fig.2 in the main text to fig. S4 in supplementary information.

      “Dual iTBS+γtACS increased the performances in recalling the association between face, name and occupation (FNAT accuracy) both for the immediate (F<sub>2,38</sub>=7.18; p =0.002; η<sup>2</sup><sub>p</sub>=0.274) and the delayed (F<sub>2,38</sub>=5.86; p =0.006; η<sup>2</sup><sub>p</sub>=0.236) recall performances (Fig. 2, panel A).”

      “The in-depth analysis of the FNAT accuracy investigating the specific contribution of face-name and face-occupation recall reveald that dual iTBS+γtACS increased the performances in the association between face and name (FNAT NAME) delayed recall (F<sub>2,38</sub> =3.46; p =0.042; η<sup>2</sup>p =0.154; iTBS+γtACS vs. sham-iTBS+sham-tACS: 42.9±21.5 % vs. 33.8±19 %; p=0.048 Bonferroni corrected) (Fig. S4, supplementary information).”

      “We considered a correct association when a subject was able to recall all the information for each item (i.e. face, name and occupation), resulting in a total of 36 items to learn and associate. To further investigate the effect on FNAT we also computed a partial recall score accounting for those items where subjects correctly matched only names with faces (FNAT NAME) and only occupations with faces (FNAT OCCUPATION). See supplementary information for score details.”

      Regarding the stimulation conditions, your concerns about the performance pattern (iTBS+gtACS > iTBS+sham-tACS, but iTBS+gtACS ~ sham+sham) are understandable. However, this new protocol was developed precisely in response to the variability observed in behavioral outcomes following non-invasive brain stimulation, particularly when used to modulate memory functions (Corp et al., 2020; Pabst et al., 2022). As discussed in the manuscript, it is intended as a boost to conventional non-invasive brain stimulation protocols, leveraging the mechanisms outlined in the Discussion section.

      (5) In sum, it would be amazing to be able to use non-invasive stimulation for any kind of therapeutic purpose as the authors imagine. More work needs to be done to convince ourselves that this kind of approach is viable. The evidence provided in this study is weak.

      We hope our response will be carefully considered, fostering a constructive exchange and leading to a reassessment of your evaluation.

      Reviewer #2 (Public review):

      Summary:

      The manuscript "Dual transcranial electromagnetic stimulation of the precuneus-hippocampus network boosts human long-term memory" by Borghi and colleagues provides evidence that the combination of intermittent theta burst TMS stimulation and gamma transcranial alternating current stimulation (γtACS) targeting the precuneus increases long-term associative memory in healthy subjects compared to iTBS alone and sham conditions. Using a rich dataset of TMS-EEG and resting-state functional connectivity (rs-FC) maps and structural MRI data, the authors also provide evidence that dual stimulation increased gamma oscillations and functional connectivity between the precuneus and hippocampus. Enhanced memory performance was linked to increased gamma oscillatory activity and connectivity through white matter tracts.

      Strengths:

      The combination of personalized repetitive TMS (iTBS) and gamma tACS is a novel approach to targeting the precuneus, and thereby, connected memory-related regions to enhance long-term associative memory. The authors leverage an existing neural mechanism engaged in memory binding, theta-gamma coupling, by applying TMS at theta burst patterns and tACS at gamma frequencies to enhance gamma oscillations. The authors conducted a thorough study that suggests that simultaneous iTBS and gamma tACS could be a powerful approach for enhancing long-term associative memory. The paper was well-written, clear, and concise.

      Weaknesses:

      (1) The study did not include a condition where γtACS was applied alone. This was likely because a previous work indicated that a single 3-minute γtACS did not produce significant effects, but this limits the ability to isolate the specific contribution of γtACS in the context of this target and memory function

      Thank you for your comments. As you pointed out, we did not include a condition where γtACS was applied alone. This decision was based on the findings of Guerra et al. (Brain Stimulation 2018), who investigated the same protocol and reported no aftereffects. Given the substantial burden of the experimental design on patients and our primary goal of demonstrating an enhancement of effects compared to the standalone iTBS protocol, we decided to leave out this condition. However, you raise an important aspect that should be further discussed, we modified the limitation section accordingly (lines 290-297).

      “We did not assess the effects of γtACS alone. This decision was based on the findings of Guerra et al. (Guerra et al., 2018), who investigated the same protocol and reported no aftereffects. Given the substantial burden of the experimental design on patients and our primary goal of demonstrating an enhancement of effects compared to the standalone iTBS protocol, we decided to leave out this condition. While examining the effects of γtACS alone could help isolate its specific contribution to this target and memory function, extensive research has shown that achieving a cognitive enhancement aftereffect with tACS alone typically requires around 20–25 minutes of stimulation (Grover et al., 2023).”

      (2) The authors applied stimulation for 3 minutes, which seems to be based on prior tACS protocols. It would be helpful to present some rationale for both the duration and timing relative to the learning phase of the memory task. Would you expect additional stimulation prior to recall to benefit long-term associative memory?

      Thank you for your comment and for raising this interesting point. As you correctly noted, the protocol we used has a duration of three minutes, a choice based on previous studies demonstrating its greater efficacy with respect to single stimulation from a neurophysiological point of view. Specifically, these studies have shown that the combined stimulation enhanced gamma-band oscillations and increased cortical plasticity (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022). Given that the precuneus (Brodt et al., Science 2018; Schott et al., Human Brain Mapping 2018), gamma oscillations (Osipova et al., Journal of Neuroscience 2006; Deprés et al., Neurobiology of Aging 2017; Griffiths et al., Trends in Neurosciences 2023), and cortical plasticity (Brodt et al., Science 2018) are all associated with memory formation and encoding processes, we decided to apply the co-stimulation immediately before it to enhance the efficacy. We added this paragraph to the manuscript rationale (lines 48-60).

      “Repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) are two forms of NIBS widely used to enhance memory performances (Grover et al., 2022; Koch et al., 2018; Wang et al., 2014). rTMS, based on the principle of Faraday, induces depolarization of cortical neuronal assemblies and leads to after-effects that have been linked to changes in synaptic plasticity involving mechanisms of long-term potentiation (LTP) (Huang et al., 2017; Jannati et al., 2023). On the other hand, tACS causes rhythmic fluctuations in neuronal membrane potentials, which can bias spike timing, leading to an entrainment of the neural activity (Wischnewski et al., 2023). In particular, the induction of gamma oscillatory a has been proposed to play an important role in a type of LTP known as spike timing-dependent plasticity, which depends on a precise temporal delay between the firing of a presynaptic and a postsynaptic neuron (Griffiths and Jensen, 2023). Both LTP and gamma oscillations have a strong link with memory processes such as encoding (Bliss and Collingridge, 1993; Griffiths and Jensen, 2023; Rossi et al., 2001), pointing to rTMS and tACS as good candidates for memory enhancement.”

      Regarding the question of whether stimulation could also benefit recall, the answer is yes. We can speculate that repeating the stimulation before recall might provide an additional boost. This is supported by evidence showing that both the precuneus and gamma oscillations are involved in recall processes (Flanagin et al., Cerebral Cortex 2023; Griffiths et al., Trends in Neurosciences 2023). Furthermore, previous research suggests that reinstating the same brain state as during encoding can enhance recall performance (Javadi et al., The Journal of Neuroscience 2017). We added this consideration to the discussion (lines 305-311).

      “Future studies should further investigate the effects of stimulation on distinct memory processes. In particular, stimulation could be applied before retrieval (Rossi et al., 2001), to better elucidate its specific contribution to the observed enhancements in memory performance. Additionally, it would be worth examining whether repeated stimulation - administered both before encoding and before retrieval - could produce a boosting effect. This is especially relevant in light of findings showing that matching the brain state between retrieval and encoding can significantly enhance memory performance (Javadi et al., 2017).”

      (3) How was the burst frequency of theta iTBS and gamma frequency of tACS chosen? Were these also personalized to subjects' endogenous theta and gamma oscillations? If not, were increases in gamma oscillations specific to patients' endogenous gamma oscillation frequencies or the tACS frequency?

      The stimulation protocol was chosen based on previous studies (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022).  Gamma tACS sinusoid frequency wave was set at 70 Hz while iTBS consisted of ten bursts of three pulses at 50 Hz lasting 2 s, repeated every 10 s with an 8 s pause between consecutive trains, for a total of 600 pulses total lasting 190 s (see iTBS+γtACS neuromodulation protocol section). In particular, the theta iTBS has been inspired by protocols used in animal models to elicit LTP in the hippocampus (Huang et al., Neuron 2005). Consequently, neither Theta iTBS nor the gamma frequency of tACS were personalized. The increase in gamma oscillations was referred to the patient’s baseline and did not correspond to the administrated tACS frequency.

      (4) The authors do a thorough job of analyzing the increase in gamma oscillations in the precuneus through TMS-EEG; however, the authors may also analyze whether theta oscillations were also enhanced through this protocol due to the iTBS potentially targeting theta oscillations. This may also be more robust than gamma oscillations increases since gamma oscillations detected on the scalp are very low amplitude and susceptible to noise and may reflect activity from multiple overlapping sources, making precise localization difficult without advanced techniques.

      Thank you for the suggestion. We analyzed theta oscillations, finding no changes.

      (5) Figure 4: Why are connectivity values pre-stimulation for the iTBS and sham tACS stimulation condition so much higher than the dual stimulation? We would expect baseline values to be more similar.

      We acknowledge that the pre-stimulation connectivity values for the iTBS and sham tACS conditions appear higher than those for the dual stimulation condition. However, as noted in our statistical analyses, there were no significant differences at baseline between conditions (p-FDR= 0.3514), suggesting that any apparent discrepancy is due to natural variability rather than systematic bias. One potential explanation for these differences is individual variability in baseline connectivity measures, which can fluctuate due to factors such as intrinsic neural dynamics, participant state, or measurement noise. Despite these variations, our statistical approach ensures that any observed post-stimulation effects are not confounded by pre-existing differences.

      (6) Figure 2: How are total association scores significantly different between stimulation conditions, but individual name and occupation associations are not? Further clarification of how the total FNAT score is calculated would be helpful.

      We apologize for any lack of clarity. The total FNAT score reflects the ability to correctly recall all the information associated with a person—specifically, the correct pairing of the face, name, and occupation. Participants received one point for each triplet they accurately recalled. The scores were then converted into percentages, as detailed in the Face-Name Associative Task Construction and Scoring section in the supplementary materials.

      Total FNAT was the primary outcome measure. However, we also analyzed name and occupation recall separately to better understand their partial contributions. Our analysis revealed that the improvement in total FNAT was primarily driven by an increase in name recall rather than occupation recall.

      We acknowledge that this distinction may have caused some confusion. To improve clarity, we revised the manuscript accordingly (lines 97-98; 107-111; 425-430).

      “Dual iTBS+γtACS increased the performances in recalling the association between face, name and occupation (FNAT accuracy) both for the immediate (F<sub>2,38</sub>=7.18 ;p=0.002; η<sup>2</sup><sub>p</sub>=0.274) and the delayed (F<sub>2,38</sub>=5.86;p=0.006; η<sup>2</sup><sub>p</sub>=0.236) recall performances (Fig. 2, panel A).”

      “The in-depth analysis of the FNAT accuracy investigating the specific contribution of face-name and face-occupation recall revealed that dual iTBS+γtACS increased the performances in the association between face and name (FNAT NAME) delayed recall (F<sub>2,38</sub> =3.46; p =0.042; η<sup>2</sup>p =0.154; iTBS+γtACS vs. sham-iTBS+sham-tACS: 42.9±21.5 % vs. 33.8±19 %; p=0.048 Bonferroni corrected) (Fig. S4, supplementary information).”

      “We considered a correct association when a subject was able to recall all the information for each item (i.e. face, name and occupation), resulting in a total of 36 items to learn and associate. To further investigate the effect on FNAT we also computed a partial recall score accounting for those items where subjects correctly matched only names with faces (FNAT NAME) and only occupations with faces (FNAT OCCUPATION). See supplementary information for score details.”

      We also moved the data regarding the specific contribution of name and occupation recall in the supplementary information (fig.S4) and further specified how we computed the score in the score (lines 102-104).

      “The score was computed by deriving an accuracy percentage index dividing by 12 and multiplying by 100 the correct association sum. The partial recall scores were computed in the same way only considering the sum of face-name (NAME) and face-occupation (OCCUPATION) correctly recollected.”

      Reviewer #3 (Public review):

      Summary:

      Borghi and colleagues present results from 4 experiments aimed at investigating the effects of dual γtACS and iTBS stimulation of the precuneus on behavioral and neural markers of memory formation. In their first experiment (n = 20), they found that a 3-minute offline (i.e., prior to task completion) stimulation that combines both techniques leads to superior memory recall performance in an associative memory task immediately after learning associations between pictures of faces, names, and occupation, as well as after a 15-minute delay, compared to iTBS alone (+ tACS sham) or no stimulation (sham for both iTBS and tACS). Performance in a second task probing short-term memory was unaffected by the stimulation condition. In a second experiment (n = 10), they show that these effects persist over 24 hours and up to a full week after initial stimulation. A third (n = 14) and fourth (n = 16) experiment were conducted to investigate the neural effects of the stimulation protocol. The authors report that, once again, only combined iTBS and γtACS increase gamma oscillatory activity and neural excitability (as measured by concurrent TMS-EEG) specific to the stimulated area at the precuneus compared to a control region, as well as precuneus-hippocampus functional connectivity (measured by resting-state MRI), which seemed to be associated with structural white matter integrity of the bilateral middle longitudinal fasciculus (measured by DTI).

      Strengths:

      Combining non-invasive brain stimulation techniques is a novel, potentially very powerful method to maximize the effects of these kinds of interventions that are usually well-tolerated and thus accepted by patients and healthy participants. It is also very impressive that the stimulation-induced improvements in memory performance resulted from a short (3 min) intervention protocol. If the effects reported here turn out to be as clinically meaningful and generalizable across populations as implied, this approach could represent a promising avenue for the treatment of impaired memory functions in many conditions.

      Methodologically, this study is expertly done! I don't see any serious issues with the technical setup in any of the experiments (with the only caveat that I am not an expert in fMRI functional connectivity measures and DTI). It is also very commendable that the authors conceptually replicated the behavioral effects of experiment 1 in experiment 2 and then conducted two additional experiments to probe the neural mechanisms associated with these effects. This certainly increases the value of the study and the confidence in the results considerably.

      The authors used a within-subject approach in their experiments, which increases statistical power and allows for stronger inferences about the tested effects. They are also used to individualize stimulation locations and intensities, which should further optimize the signal-to-noise ratio.

      Weaknesses:

      I want to state clearly that I think the strengths of this study far outweigh the concerns I have. I still list some points that I think should be clarified by the authors or taken into account by readers when interpreting the presented findings.

      I think one of the major weaknesses of this study is the overall low sample size in all of the experiments (between n = 10 and n = 20). This is, as I mentioned when discussing the strengths of the study, partly mitigated by the within-subject design and individualized stimulation parameters. The authors mention that they performed a power analysis but this analysis seemed to be based on electrophysiological readouts similar to those obtained in experiment 3. It is thus unclear whether the other experiments were sufficiently powered to reliably detect the behavioral effects of interest. That being said, the authors do report significant effects, so they were per definition powered to find those. However, the effect sizes reported for their main findings are all relatively large and it is known that significant findings from small samples may represent inflated effect sizes, which may hamper the generalizability of the current results. Ideally, the authors would replicate their main findings in a larger sample. Alternatively, I think running a sensitivity analysis to estimate the smallest effect the authors could have detected with a power of 80% could be very informative for readers to contextualize the findings. At the very least, however, I think it would be necessary to address this point as a potential limitation in the discussion of the paper.

      Thank you for the observation. As you mentioned, our power analysis was based on our previous study investigating the same neuromodulation protocol with a corresponding experimental design. The relatively small sample could be considered a possible limitation of the study which we will add to the discussion. A fundamental future step will be to replay these results on a larger population, however, to strengthen our results we performed the sensitivity analysis you suggested.

      In detail, we performed a sensitivity analysis for repeated-measures ANOVA with α=0.05 and power(1-β)=0.80 with no sphericity correction. For experiment 1, a sensitivity analysis with 1 group and 3 measurements showed a minimal detectable effect size of f=0.524 with 20 participants. In our paper, the ANOVA on total FNAT immediate performance revealed an effect size of η<sup>2</sup>=0.274 corresponding to f=0.614; the ANOVA on FNAT delayed performance revealed an effect size of η<sup>2</sup>=0.236 corresponding to f=0.556. For experiment 2, a sensitivity analysis for total FNAT immediate performance (1 group and 3 measurements) showed a minimal detectable effect size of f=0.797 with 10 participants. In our paper, the ANOVA on total FNAT immediate performance revealed an effect size of η<sup>2</sup>=0.448 corresponding to f=0.901. The sensitivity analysis for total FNAT delayed performance (1 group and 6 measurements) showed a minimal detectable effect size of f=0.378 with 10 participants. In our paper, the ANOVA on total FNAT delayed performance revealed an effect size of η<sup>2</sup>=0.484 corresponding to f=0.968. Thus, the sensitivity analysis showed that both experiments were powered enough to detect the minimum effect size computed in the power analysis. We have now added this information to the manuscript and we thank the reviewer for her/his suggestion in the statistical analysis and results section (lines 99-100; 127-128; 130-131; 543-545).

      “The sensitivity analysis showed a minimal detectable effect size of  η<sup>2</sup>=0.215 with 20 participants.”

      “The sensitivity analysis showed a minimal detectable effect size of  η<sup>2</sup>=0.388 with 10 participants.”

      “The sensitivity analysis showed a minimal detectable effect size of η<sup>2</sup>=0.125 with 10 participants.”

      “Since we do not have an a priori effect size for experiment 1 and 2, we performed a sensitivity power analysis to ensure that these experiments were able to detect the minimum effect size with 80% power and alpha level of 0.05.”

      It seems that the statistical analysis approach differed slightly between studies. In experiment 1, the authors followed up significant effects of their ANOVAs by Bonferroni-adjusted post-hoc tests whereas it seems that in experiment 2, those post-hoc tests where "exploratory", which may suggest those were uncorrected. In experiment 3, the authors use one-tailed t-tests to follow up their ANOVAs. Given some of the reported p-values, these choices suggest that some of the comparisons might have failed to reach significance if properly corrected. This is not a critical issue per se, as the important test in all these cases is the initial ANOVA but non-significant (corrected) post-hoc tests might be another indicator of an underpowered experiment. My assumptions here might be wrong, but even then, I would ask the authors to be more transparent about the reasons for their choices or provide additional justification. Finally, the authors sometimes report exact p-values whereas other times they simply say p < .05. I would ask them to be consistent and recommend using exact p-values for every result where p >= .001.

      Thank you again for the suggestions. Your observations are correct, we used a slightly different statistical depending on our hypothesis. Here are the details:

      In experiment 1, we used a repeated-measure ANOVA with one factor “stimulation condition” (iTBS+γtACS; iTBS+sham-tACS; sham-iTBS+sham-tACS). Following the significant effect of this factor we performed post-hoc analysis with Bonferroni correction.

      In experiment 2, we used a repeated-measures with two factors “stimulation condition” and “time”. As expected, we observed a significant effect of condition, confirming the result of experiment 1, but not of time. Thus, this means that the neuromodulatory effect was present regardless of the time point. However, to explore whether the effects of stimulation condition were present in each time point we performed some explorative t-tests with no correction for multiple comparisons since this was just an explorative analysis.

      In experiment 3, we used the same approach as experiment 1. However, since we had a specific hypothesis on the direction of the effect already observed in our previous study, i.e. increase in spectral power (Maiella et al., Scientific Report 2022), our tests were 1-tailed.

      For the p-values, we corrected the manuscript reporting the exact values for every result.

      While the authors went to great lengths trying to probe the neural changes likely associated with the memory improvement after stimulation, it is impossible from their data to causally relate the findings from experiments 3 and 4 to the behavioral effects in experiments 1 and 2. This is acknowledged by the authors and there are good methodological reasons for why TMS-EEG and fMRI had to be collected in sperate experiments, but it is still worth pointing out to readers that this limits inferences about how exactly dual iTBS and γtACS of the precuneus modulate learning and memory.

      Thank you for your comment. We fully agree with your observation, which is why this aspect has been considered in the study's limitations. To address your concern, we add this sentence to the limitation discussion (lines 299-301).

      “Consequently, these findings do not allow precise inferences regarding the specific mechanisms by which dual iTBS and γtACS of the precuneus modulate learning and memory.”

      There were no stimulation-related performance differences in the short-term memory task used in experiments 1 and 2. The authors argue that this demonstrates that the intervention specifically targeted long-term associative memory formation. While this is certainly possible, the STM task was a spatial memory task, whereas the LTM task relied (primarily) on verbal material. It is thus also possible that the stimulation effects were specific to a stimulus domain instead of memory type. In other words, could it be possible that the stimulation might have affected STM performance if the task taxed verbal STM instead? This is of course impossible to know without an additional experiment, but the authors could mention this possibility when discussing their findings regarding the lack of change in the STM task.

      Thank you for your interesting observation. We argue that the intervention primarily targeted long-term associative memory formation, as our findings demonstrated effects only on FNAT. However, as you correctly pointed out, we cannot exclude the possibility that the stimulation may also influence short-term verbal associative memory. We add this aspect when discussing the absence of significant findings in the STM task (lines 205-210).

      “Visual short-term associative memory, measured by STBM performance, was not modulated by any experimental condition. Even if we cannot exclude the possibility that the stimulation could have influenced short-term verbal associative memory, we expected this result since short-term associative memory is known to rely on a distinct frontoparietal network while FNAT, used to investigate long-term associative memory, has already been associated with the neural activity of the PC and the hippocampus (Parra et al., 2014; Rentz et al., 2011).”

      While the authors discuss the potential neural mechanisms by which the combined stimulation conditions might have helped memory formation, the psychological processes are somewhat neglected. For example, do the authors think the stimulation primarily improves the encoding of new information or does it also improve consolidation processes? Interestingly, the beneficial effect of dual iTBS and γtACS on recall performance was very stable across all time points tested in experiments 1 and 2, as was the performance in the other conditions. Do the authors have any explanation as to why there seems to be no further forgetting of information over time in either condition when even at immediate recall, accuracy is below 50%? Further, participants started learning the associations of the FNAT immediately after the stimulation protocol was administered. What would happen if learning started with a delay? In other words, do the authors think there is an ideal time window post-stimulation in which memory formation is enhanced? If so, this might limit the usability of this procedure in real-life applications.

      Thank you for your comment and for raising these important points.

      We hypothesized that co-stimulation would enhance encoding processes. Previous studies have shown that co-stimulation can enhance gamma-band oscillations and increase cortical plasticity (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022). Given that the precuneus (Brodt et al., Science 2018; Schott et al., Human Brain Mapping 2018), gamma oscillations (Osipova et al., Journal of Neuroscience 2006; Deprés et al., Neurobiology of Aging 2017; Griffiths et al., Trends in Neurosciences 2023), and cortical plasticity (Brodt et al., Science 2018) have all been associated with encoding processes, we decided to apply co-stimulation before the encoding phase, to boost it. We enlarged the introduction to specify the link between neural mechanisms and the psychological process of the encoding (lines 55-60).

      “In particular, the induction of gamma oscillatory activity has been proposed to play an important role in a type of LTP known as spike timing-dependent plasticity, which depends on a precise temporal delay between the firing of a presynaptic and a postsynaptic neuron (Griffiths and Jensen, 2023). Both LTP and gamma oscillations have a strong link with memory processes such as encoding (Bliss and Collingridge, 1993; Griffiths and Jensen, 2023; Rossi et al., 2001), pointing to rTMS and tACS as good candidates for memory enhancement.”

      We applied the co-stimulation immediately before the learning phase to maximize its potential effects. While we observed a significant increase in gamma oscillatory activity lasting up to 20 minutes, we cannot determine whether the behavioral effects we observed would have been the same with a co-stimulation applied 20 minutes before learning. Based on existing literature, a reduction in the efficacy of co-stimulation over time could be expected (Huang et al., Neuron 2005; Thut et al., Brain Topography 2009). However, we hypothesize that multiple stimulation sessions might provide an additional boost, helping to sustain the effects over time (Thut et al., Brain Topography 2009; Koch et al., Neuroimage 2018; Koch et al., Brain 2022).

      Regarding the absence of further forgetting in both stimulation conditions, we think that the clinical and demographical characteristics of the sample (i.e. young and healthy subjects) explain the almost absence of forgetting after one week.

      Reviewer #1 (Recommendations for the authors):

      To address the concerns, the authors should:

      (1) Include invasive neuronal recordings (e.g., in rats or monkeys if not possible in humans) demonstrating that the current stimulation protocol leads to direct changes in brain activity.

      We understand the interest of the first reviewer in the understanding of neurophysiological correlates of the stimulation protocol, however, we are skeptical about this request as we think it goes beyond the aims of the study. As already mentioned in the response to the reviewer, invasive neurophysiological recordings in humans for this type of study are not feasible due to ethical constraints. At the same time, studies on cadavers or rodents would not fully resolve the question. Indeed, the authors of the study cited by the reviewer (Mihály Vöröslakos et al., Nature Communications, 2018) highlight the impossibility of drawing definitive conclusions about the exact voltage required in the in-vivo human brain due to significant differences between rats and humans, as well as the in-vivo human cadavers due to alterations in electrical conductivity that occur in postmortem tissue. Huang and colleagues addressed the difficulties in reaching direct evidence of non-invasive brain stimulation (NIBS) effects in a review published in Clinical Neurophysiology in 2017. They conclude that the use of EEG to assess brain response to TMS has a great potential for a less indirect demonstration of plasticity mechanisms induced by NIBS in humans.

      It is exactly to meet the need to investigate the changes in brain activity after the stimulation protocol that we conducted Experiments 3 and 4. These experiments respectively examined the neurophysiological and connectivity changes induced by the stimulation in a non-invasive manner using TMS-EEG and fMRI. The observed changes in brain oscillatory activity (increased gamma oscillatory activity), cortical excitability (enhanced posteromedial parietal cortex reactivity), and brain connectivity (strengthened connections between the precuneus and hippocampi) provided evidence of the effects of our non-invasive brain stimulation protocol, further supporting the behavioral data.

      Additionally, we carefully considered the issue of stimulation distribution and, in response, performed a biophysical modeling analysis and E-field calculation using the parameters employed in our study (see Supplementary Materials).

      Acknowledging the reviewer's point of view, we modified the manuscript accordingly, discussing this aspect both as a technical limitation and as a potential direction for future research (main text, lines 280-289).

      “Although we studied TMS and tACS propagation through the E-field modeling and observed an increase in the precuneus gamma oscillatory activity, excitability and connectivity with the hippocampi, we cannot exclude that our results might reflect the consequences of stimulating more superficial parietal regions other than the precuneus nor report direct evidence of microscopic changes in the brain after the stimulation. Invasive neurophysiological recordings in humans for this type of study are not feasible due to ethical constraints. Studies on cadavers or rodents would not fully resolve our question due to significant differences between them (i.e. rodents do not have an anatomical correspondence while cadavers have an alterations in electrical conductivity occurring in postmortem tissue). However, further exploration of this aspect in future studies would help in the understanding of γtACS+iTBS effects.”

      (2) Address all the technical questions about the experimental design.

      We addressed all the technical questions about the experimental design.

      (3) Repeat the experiments with randomized trial order and without a block design.

      The experiments were conducted with randomized trial order and we did not use a block design.

      (4) Add many more faces to the study. It is extremely difficult to draw any conclusion from merely 12 faces. Ideally, there would be lots of other relevant memory experiments where the authors show compelling positive results.

      We understand your perplexity about drawing conclusions from 12 faces, however, this is not the case. As we explained in the response reviewer, the task we implemented did not rely on the recall of merely 12 faces. Instead, participants had to correctly learn, associate and recall 12 faces, 12 names and 12 occupations for a total of 36 items. To improve the clarity of the manuscript, we added a paragraph to make this aspect more explicit (lines 425-430).

      “We considered a correct association when a subject was able to recall all the information for each item (i.e. face, name and occupation), resulting in a total of 36 items to learn and associate. To further investigate the effect on FNAT we also computed a partial recall score accounting for those items where subjects correctly matched only names with faces (FNAT NAME) and only occupations with faces (FNAT OCCUPATION). See supplementary information for score details.”

      The behavioral changes we observed are similar to those who are typically observed after multiple stimulation sessions (Koch et al., NeuroImage, 2018; Grover et al., Nature Neuroscience, 2022, Benussi et al., Annals of Neurology, 2022). Moreover, memory performance changes are often measured by a limited set of stimuli due to methodological constraints related to memory capacity. For example, Rey Auditory Verbal learning task, requiring to learn and recall 15 words, is a typical test used to detect memory changes (Koch et al., Neuroimage, 2018; Benussi et al., Brain stimulation 2021; Benussi et al., Annals of Neurology, 2022). 

      (5) Provide a clear explanation of the apparent randomness of which results are statistically significant or not in Figure 3. But perhaps with many more experiments, a lot more memory evaluations, many more stimuli, and addressing all the other technical concerns, either the results will disappear or there will be a more interpretable pattern of results.

      We provided explanations for all the concerns shown by the reviewer.

      Reviewer #2 (Recommendations for the authors):

      Minor comments:

      (1) Figure 4: Why are connectivity values pre-stimulation for the iTBS and sham tACS stimulation condition so much higher than the dual stimulation? We would expect baseline values to be more similar.

      We acknowledge that the pre-stimulation connectivity values for the iTBS and sham tACS conditions appear higher than those for the dual stimulation condition. However, as noted in our statistical analyses, there were no significant differences at baseline between conditions (p-FDR= 0.3514), suggesting that any apparent discrepancy is due to natural variability rather than systematic bias. One potential explanation for these differences is individual variability in baseline connectivity measures, which can fluctuate due to factors such as intrinsic neural dynamics, participant state, or measurement noise. Despite these variations, our statistical approach ensures that any observed post-stimulation effects are not confounded by pre-existing differences.

      (2) Figure 2: How are total association scores significantly different between stimulation conditions, but individual name and occupation associations are not? Further clarification of how the total FNAT score is calculated would be helpful.

      We apologize for any lack of clarity. The total FNAT score reflects the ability to correctly recall all the information associated with a person—specifically, the correct pairing of the face, name, and occupation. Participants received one point for each triplet they accurately recalled. The scores were then converted into percentages, as detailed in the Face-Name Associative Task Construction and Scoring section in the supplementary materials.

      Total FNAT was the primary outcome measure. However, we also analyzed name and occupation recall separately to better understand their partial contributions. Our analysis revealed that the improvement in total FNAT was primarily driven by an increase in name recall rather than occupation recall.

      We acknowledge that this distinction may have caused some confusion. To improve clarity, we revised the manuscript accordingly (lines 97-98; 107-111; 425-430).

      “Dual iTBS+γtACS increased the performances in recalling the association between face, name and occupation (FNAT accuracy) both for the immediate (F<sub>2,38</sub>=7.18; p=0.002; η<sup>2</sup><sub>p</sub>=0.274) and the delayed (F<sub>2,38</sub>=5.86; p =0.006; η<sup>2</sup><sub>p</sub>=0.236) recall performances (Fig. 2, panel A).”

      “The in-depth analysis of the FNAT accuracy investigating the specific contribution of face-name and face-occupation recall revealed that dual iTBS+γtACS increased the performances in the association between face and name (FNAT NAME) delayed recall (F<sub>2,38</sub> =3.46; p =0.042; η<sup>2</sup>p =0.154; iTBS+γtACS vs. sham-iTBS+sham-tACS: 42.9±21.5 % vs. 33.8±19 %; p=0.048 Bonferroni corrected) (Fig. S4, supplementary information).”

      “We considered a correct association when a subject was able to recall all the information for each item (i.e. face, name and occupation), resulting in a total of 36 items to learn and associate. To further investigate the effect on FNAT we also computed a partial recall score accounting for those items where subjects correctly matched only names with faces (FNAT NAME) and only occupations with faces (FNAT OCCUPATION). See supplementary information for score details.”

      We also moved the data regarding the specific contribution of name and occupation recall in the supplementary information (fig.S4) and further specified how we computed the score in the score (lines 102-104).

      “The score was computed by deriving an accuracy percentage index dividing by 12 and multiplying by 100 the correct association sum. The partial recall scores were computed in the same way only considering the sum of face-name (NAME) and face-occupation (OCCUPATION) correctly recollected.”

      Reviewer #3 (Recommendations for the authors):

      A very small detail, in the caption for Figure 2A, OCCUPATION is described as being shown on the 'left' but it should be 'right'.

      We corrected this error.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) Figure 1: It might be simpler to streamline  acronyms for different test cases, e.g,  E01contra, E01 ipsi (rather than EO1IPS), E02, and control. Thus, it would be possible to label  each of the three schematic panels as E01, E02, control.

      Please describe what the dots in the brain mean and move the V1 label so it does not occlude  dots.

      Please make clear that the "track reconstructions" are the bright spheres in the micrographs (there are track-like elements in some micrographs which may be tears or?)

      Thank you. We relabeled the groups as control, EO1contra, EO1ipsi, and EO2. These were  changed in all figures and in the document at several places.

      We indicated in the new caption that “Dots schematize ocular dominance columns”.

      We indicated that electrode track penetrations were the “(bright spots at right/posterior)”.

      (2) Figure 2: Should "horizontal" be vertical (line  556) of the caption? When describing the  scale bar for firing rate, please explain the meaning of italicized vs regular font.

      Please make the purple lines in Figures I and J easier to see (invisible in my PDF).

      Not quite clear what is significantly different from what when viewing the figure at a glance.  Would it be possible to clarify using standard methods?

      Yes, it should say vertical, thank you. We explained the italics (they denote the standard scale  bar size if no number is provided.)

      We changed the purple lines to yellow in all figures.

      We added comparison bars that help indicate significance.

      (3) Figures 3-5. Please make corrections like those  noted above.

      Yes, we applied the previous changes to Figures 3 - 5.

      (4) Minor. Sometimes the authors spell out temporal  frequency and sometimes abbreviate it.  Perhaps adopt a consistent style.

      Fixed, thanks.

      Reviewer #2 (Public Review):

      (1) The assessment of the tuning properties is  based on fits to the data. Presumably,  neurons for which the fits were poor were excluded? It would be useful to know what the criteria  were, how many neurons were excluded, and whether there was a significant difference  between the groups in the numbers of neurons excluded (which could further point to  differences between the groups).

      Yes, this is an important omission, thank you for catching it. We now write in methods (line 213):  “ Inclusion/exclusion: For each stimulus type, we examined  the set of all responses to visual  stimuli and blanks with an ANOVA test to evaluate the null hypothesis that the mean response  to all of these stimuli were the same; cells with a p<0.05 to this visual responsiveness test were  included in fits and analyses, and cells with p>0.05 were excluded. ”

      (2) For the temporal frequency data, low- and high-frequency  cut-offs are defined, but then  only used for the computation of the bandwidth. Given that the responses to low temporal  frequencies change profoundly with premature eye opening, it would be useful to directly  compare the low- and high-frequency cut-offs between groups, in addition to the index that is  currently used.

      We now provide this data in Figure 3 - figure supplement  1 .

      (3) In addition to the tuning functions and firing  rates that have been analyzed so far, are  there any differences in the temporal profiles of neural responses between the groups  (sustained versus transient responses, rates of adaptation, latency)? If the temporal dynamics  of the responses are altered significantly, that could be part of an explanation for the altered  temporal tuning.

      This is a great topic for future studies. Unfortunately, with drifting gratings, it is difficult to  establish these properties, which could be better assessed with standing or  square-wave-modulated gratings or other stimuli. We did not run standing gratings in our battery  of stimuli for this initial study.

      (4) It would be beneficial for the general interpretation  of the results to extend the discussion. First, it would be useful to provide a more detailed discussion of what type of visual information might make it through the closed eyelids (the natural state), in contrast to the structured  information available through open eyes. Second, it would be useful to highlight more clearly  that these data were collected in peripheral V1 by discussing what might be expected in  binocular, more central V1 regions. Third, it would be interesting to discuss the observed  changes in firing rates in the context of the development of inhibitory neurons in V1 (which still  undergo significant changes through the time period of premature visual experience chosen  here).

      Thank you, good ideas. Let’s take these three suggestions in turn.

      First, in the discussion, we added a subsection “ Biology  of early development in mustelids ” that  focuses on the developmental conditions of wild and laboratory animals:

      In the wild, mustelids raise their young in nests in the ground, in cavities such as holes in trees  or caves, or in areas of dense vegetation (Ruggiero et al. 1994). They may move the young  from one nest to another as they grow, but otherwise the young are primarily in the relatively  dark nest. It is highly likely that some light penetrates and that information about the 24-hour  cycle is available, but the light is likely to be dim and unlikely to provide a basis for high  luminance, high contrast stimulation through the closed lids. The animals begin to spend  substantial time outside the nest after eye opening.

      The ferret is a domesticated strain of the European polecat. In laboratory settings, ferret  jills give birth and keep their kits in a nest box. A laboratory typically maintains a 24-hour cycle  with 12 or 14 hours of light, and the light reaching the closed lids must first pass through the  cage, the nest box, and the nesting material. Therefore, developing ferrets have an obvious  circadian light signal but the light available for image formation is likely dim and of low contrast.

      Although the light that reaches the close lids in developing ferrets is likely to be relatively  dim, and any image-forming signal passing through the closed lids would be highly filtered in  luminance, spatial frequency, and contrast, it is important to remember that visual input before  natural eye opening (through the closed lids) can drive activity in retina, LGN, and cortex  (Huttenlocher 1967, Chapman and Stryker 1993, Krug et al., 2001, Akerman et al., 2002,Akerman et al., 2004). Further, orientation selectivity can be observed through the closed lids  (Krug et al., 2001), indicating that some coarse image-forming information does make it through  the closed lids.

      Second, we added text speculating about binocular cortex (lines 492 - 500): … our recordings  were performed in monocular cortex so that we could be sure of the developmental condition of  the eye that drove the classic responses. It is interesting to speculate about what might occur  more centrally in binocular visual cortex. Ocular dominance shifts are not induced when one eye  is opened prematurely (Issa et al 1999), indicating that ocular dominance plasticity is not  engaged at this early stage, but one might imagine that the impacts on temporal frequency and  spontaneous firing rates would still be present.

      Third, on inhibition, we added a paragraph (lines 502 - 509):

      We introduced premature patterned vision at a time when cortical inhibition is undergoing  substantial changes. GABAergic signaling has already undergone its switch (Ben-Ari, 2002)  from providing primarily depolarizing input to hyperpolarizing input by P21-23 (Mulholland et al.,  2021). In the days prior to eye opening, inhibitory cells exhibit activity that is closely associated  with the emerging functional modules that will reflect orientation columns (Mulholland et al.,  2021), but do not yet exhibit selectivity to orientation, in contrast to excitatory neurons, which do  exhibit selectivity to orientation at that time (Chang and Fitzpatrick, 2022).

      (5) In the methods section, the statement 'actively  kept in nesting box' is unclear. Presumably  this means that the jill prevents the kits from leaving the nesting box? It also would be worth at  least mentioning in this context that there obviously are still visual events in the nesting box too.

      Thanks. We improved this description (lines 118 - 121):  Ferret kits in laboratory housing receive  limited visual stimulation through their closed lids, as the mother actively keeps the kits in their  relatively dark nest . In order to ensure that animals  with early-opened eyes actually had  patterned visual experience  (and animals with closed  lids had the same stimulation filtered  through the lids) , animals were brought to the lab  for 2 hours a day for 4 consecutive days  beginning at P25.

      (6) The stimulus presentation could be more clearly  described. Is every stimulus presented in  an individual trial (surrounded by periods with a blank screen), or are all stimuli shown as a  continuous sequence? The description of the parameter screening is also potentially confusing  ('orientation was co-varied with stimuli consisting of drifting gratings at different spatial  frequencies' sounds as if there are separate stimuli for orientation; might be better to say  something like 'in the first set, orientation, spatial frequency, ... were covaried...')

      Yes, thank you, we fixed this (lines 184 - 201). We deleted the text indicated and added a  sentence “Each individual grating stimulus was full screen and had a single set of parameters  (direction, spatial frequency, temporal frequency), and was separated from the other stimuli by a  gray screen interstimulus interval.”. We also deleted a repetition of 100% contrast in the  description of the second set.

      (7) Description of low-pass index is unclear. What  is the 'largest temporal frequency response  observed'? The maximum response or the response to the largest temporal frequency tested?

      Thanks. We added a paragraph at line 236:

      We defined a low pass index as the response to the lowest temporal frequency tested (in this case 0.5 Hz) to the maximum response obtained to the set of temporal frequencies shown. LPI =  R(TF=0.5 Hz)/max(R(TF=0.5Hz), R(TF=1Hz), … R(TF=32Hz)).  If a cell exhibited the highest  firing for a temporal frequency of 0.5 Hz, then it would have an low pass index of 1. If it  exhibited a similar firing rate in response to a temporal frequency of 0.5 Hz even if the preferred  temporal frequency were higher, then the low pass index would still be near 1. If the cell  responded poorly at a temporal frequency of 0.5 Hz, then it would have a low pass index near 0.

      (8) The discussion should also cite the results  of strobe-reared cats by Pasternak et al (1981  and 1985).

      Thank you for pointing out the omission. We now write (lines 430-435):  Cats raised in a  strobe-light environment (mostly after eye opening) exhibited strong changes in subsequent  direction selectivity (Kennedy and Orban 1983; Humphrey and Saul 1998)  and behavioral  sensitivity to motion (Pasternak et al., 1981; Pasternak et al., 1985) that partially recovers with  motion detection training . However, temporal frequency  tuning of these animals has not been  reported in detail.  Pasternak et al (1981) reported  that strobe-reared ferrets exhibited greater  difficulty in distinguishing slow moving stimuli from static stimuli compared to controls, an  ability that slightly improved with practice, suggesting possible temporal frequency deficits.

      (9) Finally, it would be useful to include a mention  of the early development of MT in  marmosets in the discussion of impacts of prematurity on motion vision (Bourne & Rosa 2006).

      Yes, thank you. We cited Bourne & Rosa and also Lempel and Nielsen (for ferret PSS). (Lines  492-501):

      Several other basic mechanistic questions remain unanswered. It is unclear where in the visual  circuit cascade these deficits first arise. Does the lateral geniculate nucleus or retina exhibit  altered temporal frequency tuning? Is the influence of the patterned visual stimulation  instructive, so that if one provided premature stimulation with only certain temporal frequencies,  one would see selectivity for those temporal frequencies, or would tuning always be broad?  Other questions remain concerning the top-down influence on V1 from “higher” motion areas  such as MT (monkeys) or PSS (ferret); MT exhibits mature neural markers earlier than V1  (Bourne and Rosa, 2006), and suppression of PSS impacts motion selectivity in V1 (Lempel and  Nielsen, 2021).  Future studies will be needed to  address these questions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Phytophathogens including fungal pathogens such as F. graminearum remain a major threat to agriculture and food security. Several agriculturally relevant fungicides including the potent Quinofumelin have been discovered to date, yet the mechanisms of their action and specific targets within the cell remain unclear. This paper sets out to contribute to addressing these outstanding questions.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      The paper is generally well-written and provides convincing data to support their claims for the impact of Quinofumelin on fungal growth, the target of the drug, and the potential mechanism. Critically the authors identify an important pyrimidine pathway dihydroorotate dehydrogenase (DHODH) gene FgDHODHII in the pathway or mechanism of the drug from the prominent plant pathogen F. graminearum, confirming it as the target for Quinofumelin. The evidence is supported by transcriptomic, metabolomic as well as MST, SPR, molecular docking/structural biology analyses.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      Whilst the study adds to our knowledge about this drug, it is, however, worth stating that previous reports (although in different organisms) by Higashimura et al., 2022 https://pmc.ncbi.nlm.nih.gov/articles/PMC9716045/ had already identified DHODH as the target for Quinofumelin and hence this knowledge is not new and hence the authors may want to tone down the claim that they discovered this mechanism and also give sufficient credit to the previous authors work at the start of the write-up in the introduction section rather than in passing as they did with reference 25? other specific recommendations to improve the text are provided in the recommendations for authors section below.

      We appreciate the reviewer's suggestion. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of previous work on quinofumelin by Higashimura et al., 2022 in the discussion section to more effectively contextualize their contributions. Moreover, we have made revisions and provided responses in accordance with the recommendations.

      Reviewer #2 (Public review):

      Summary:

      In the current study, the authors aim to identify the mode of action/molecular mechanism of characterized a fungicide, quinofumelin, and its biological impact on transcriptomics and metabolomics in Fusarium graminearum and other Fusarium species. Two sets of data were generated between quinofumelin and no treatment group, and differentially abundant transcripts and metabolites were identified. The authors further focused on uridine/uracil biosynthesis pathway, considering the significant up- and down-regulation observed in final metabolites and some of the genes in the pathways. Using a deletion mutant of one of the genes and in vitro biochemical assays, the authors concluded that quinofumelin binds to the dihydroorotate dehydrogenase.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      Omics datasets were leveraged to understand the physiological impact of quinofumelin, showing the intracellular impact of the fungicide. The characterization of FgDHODHII deletion strains with supplemented metabolites clearly showed the impact of the enzyme on fungal growth.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      Some interpretation of results is not accurate and some experiments lack controls. The comparison between quinofumelin-treated deletion strains, in the presence of different metabolites didn't suggest the fungicide is FgDHODHII specific. A wild type is required in this experiment.

      Potential Impact: Confirming the target of quinofumelin may help understand its resistance mehchanism, and further development of other inhibitory molecules against the target.

      The manuscript would benefit more in explaining the study rationale if more background on previous characterization of this fungicide on Fusarium is given.

      We appreciate the reviewer's suggestion. Under no treatment with quinofumelin, mycelial growth remains normal and does not require restoration. In the presence of quinofumelin treatment, the supplementation of downstream metabolites in the de novo pyrimidine biosynthesis pathway can restore mycelial growth that is inhibited by quinofumelin. The wild-type control group is illustrated in Figure 4. Figure 5b depicts the phenotypes of the deletion mutants. With respect to the relationship among quinofumelin, FgDHODHII, and other metabolites, quinofumelin specifically targets the key enzyme FgDHODHII in the de novo pyrimidine biosynthesis pathway, disrupting the conversion of dihydroorotate to orotate, which consequently inhibits the synthesis downstream metabolites including uracil. In our previous study, quinofumelin not only exhibited excellent antifungal activity against the mycelial growth and spore germination of F. graminearum, but also inhibited the biosynthesis of deoxynivalenol (DON). We have added this part to the introduction section.

      Reviewer #3 (Public review):

      Summary:

      The manuscript shows the mechanism of action of quinofumelin, a novel fungicide, against the fungus Fusarium graminearum. Through omics analysis, phenotypic analysis, and in silico approaches, the role of quinofumelin in targeting DHODH is uncovered.

      We appreciate the reviewer's accurate summary of our manuscript.

      Strengths:

      The phenotypic analysis and mutant generation are nice data and add to the role of metabolites in bypassing pyrimidine biosynthesis.

      We appreciate the reviewer's recognition of the strengths of our manuscript.

      Weaknesses:

      The role of DHODH in this class of fungicides has been known and this data does not add any further significance to the field. The work of Higashimura et al is not appreciated well enough as they already showed the role of quinofumelin upon DHODH II.

      There is no mention of the other fungicide within this class ipflufenoquin, as there is ample data on this molecule.

      We appreciate the reviewer's suggestion. We sincerely appreciate the reviewer's insightful comment regarding the work of Higashimura et al. We agree that their investigation into the role of quinofumelin in DHODH II inhibition provides critical foundational insights for this field. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of their work in the discussion section to more effectively contextualize their contributions. The information regarding action mechanism of ipflufenoquin against filamentous fungi was added in discussion section.

      Reviewer #1 (Recommendations for the authors):

      (1) Given that the DHODH gene had been identified as a target earlier, could the authors perform blast experiments with this gene instead and let us know the percentage similarity between the FgDHODHII gene and the Pyricularia oryzae class II DHODH gene in the report by Higashimura et al., 2022.

      BLAST experiment revealed that the percentage similarity between the FgDHODHII gene and the class II DHODH gene of P. oryzae was 55.41%. We have added the description ‘Additionally, the amino acid sequence of the FgDHODHII exhibits 55.41% similarity to that of DHODHII from Pyricularia oryzae, as previously reported (Higashimura et al., 2022)’ in section Results.

      (2) Abstract:

      The authors started abbreviating new terms e.g. DEG, DMP, etc but then all of a sudden stopped and introduced UMP with no full meaning of the abbreviation. Please give the full meaning of all abbreviations in the text, UMP, STC, RM, etc.

      We have provided the full meaning for all abbreviations as requested.

      (3) Introduction section:

      The introduction talks very little about the work of other groups on quinofumelin. Perhaps add this information in and reference them including the work of Higashimura et al., 2022 which has done quite significant work on this topic but is not even mentioned in the background

      We have added the work of other groups on quinofumelin in section introduction.

      (4) General statements:

      Please show a model of the pyrimidine pathway that quinofumelin attacks to make it easier for the reader to understand the context. They could just copy this from KEGG

      We have added the model (Fig. 7).

      (5) Line 186:

      The authors did a great job of demonstrating interactions with the Quinofumelin and went to lengths to perform MST, SPR, molecular docking, and structural biology analyses yet in the end provide no details about the specific amino acid residues involved in the interaction. I would suggest that site-directed mutagenesis studies be performed on FgDHODHII to identify specific amino acid residues that interact with Quinofumelin and show that their disruption weakens Quinofumelin interaction with FgDHODHII.

      Thank you for this insightful suggestion. We fully agree with the importance of elucidating the interaction mechanism. At present, we are conducting site-directed mutagenesis studies based on interaction sites from docking results and the mutation sites of FgDHODHII from the resistant mutants; however, due to the limitations in the accuracy of existing predictive models, this work remains ongoing. Additionally, we are undertaking co-crystallization experiments of FgDHODHII with quinofumelin to directly and precisely reveal their interaction pattern

      (6) Line 76:

      What is the reference or evidence for the statement 'In addition, quinofumelin exhibits no cross-resistance to currently extensively used fungicides, indicating its unique action target against phytopathogenic fungi.

      If two fungicides share the same mechanism of action, they will exhibit cross resistance. Previous studies have demonstrated that quinofumelin retains effective antifungal activity against fungal strains resistant to commercial fungicides, indicating that quinofumelin does not exhibit cross-resistance with other commercially available fungicides and possesses a novel mechanism of action. Additionally, we have added the relevant inference.

      (7) Line 80-82:

      Again, considering the work of previous authors, this target is not newly discovered. Please consider toning down this statement 'This newly discovered selective target for antimicrobial agents provides a valuable resource for the design and development of targeted pesticides.'

      We have rewritten the description of this sentence.

      (8) Line 138: If the authors have identified DHODH in experimental groups (I assume in F. graminearum), what was the exact locus tag or gene name in F. graminearum, and why not just continue with this gene you identified or what is the point of doing a blast again to find the gene if the DHODH gene if it already came up in your transcriptomic or metabolic studies? This unfortunately doesn't make sense but could be explained better.

      The information of FgDHODHII (gene ID: FGSG_09678) has been added. We have revised this part.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 40:

      Please add a reference.

      We have added the reference

      (2) Line 47:

      Please add a reference.

      We have added the reference.

      (3) Line 50:

      The lack of target diversity in existing fungicides doesn't necessarily serve as a reason for discovering new targets being more challenging than identifying new fungicides within existing categories, please consider adjusting the argument here. Instead, the authors can consider reasons for the lack of new targets in the field.

      We have revised the description.

      (4) Line 63:

      Please cite your source with the new technology.

      We have added the reference.

      (5) Line 68:

      What are you referring to for "targeted medicine", do you have a reference?

      We have revised the description and the reference.

      (6) Line 74:

      One of the papers referred to "quinoxyfen", what are the similarities and differences between the two? Please elaborate for the readership.

      Quinoxyfen, similar to quinofumelin, contains a quinoline ring structure. It inhibits mycelial growth by disrupting the MAP kinase signaling pathway in fungi (https://www.frac.info). In addition, quinoxyfen still exhibits excellent antifungal activity against the quinofumelin-resistant mutants (the findings from our group), indicating that action mechanism for quinofumelin and quinoxyfen differ.

      (7) Line 84:

      Please introduce why RNA-Seq was designed in the study first. What were the groups compared? How was the experiment set up? Without this background, it is hard to know why and how you did the experiment.

      According to your suggestions, we have added the description in Section Results. In addition, the experimental process was described in Section Materials and methods as follows: A total of 20 mL of YEPD medium containing 1 mL of conidia suspension (1×105 conidia/mL) was incubated with shaking (175 rpm/min) at 25°C. After 24 h, the medium was added with quinofumelin at a concentration of 1 μg/mL, while an equal amount of dimethyl sulfoxide was added as the control (CK). The incubation continued for another 48 h, followed by filtration and collection of hyphae. Carry out quantitative expression of genes, and then analyze the differences between groups based on the results of DESeq2 for quantitative expression.

      (8) Figures:

      The figure labeling is missing (Figures 1,2,3 etc). Please re-order your figure to match the text

      The figures have been inserted.

      (9) Line. 97:

      "Volcano plot" is a common plot to visualize DEGs, you can directly refer to the name.

      We have revised the description.

      (10) Figure 1d, 1e:

      Can you separate down- and up-regulated genes here? Does the count refer to gene number?

      The expression information for down- and up-regulated genes is presented in Figure 1a and 1b. However, these bubble plots do not distinguish down- and up-regulated genes. Instead, they only display the significant enrichment of differentially expressed genes in specific metabolic pathways. To more clearly represent the data, we have added the detailed counts of down- and up-regulated genes for each metabolic pathway in Supplementary Table S1 and S2. Here, the term "count" refers to differentially expressed genes that fall within a certain pathway.

      (11) Line 111:

      Again, no reasoning or description of why and how the experiment was done here.

      Based on the results of KEGG enrichment analysis, DEMs are associated with pathways such as thiamine metabolism, tryptophan metabolism, nitrogen metabolism, amino acid sugar and nucleotide sugar metabolism, pantothenic acid and CoA biosynthesis, and nucleotide sugar production compounds synthesis. To specifically investigate the metabolic pathways involved action mechanism of quinofumelin, we performed further metabolomic experiments. Therefore, we have added this description according the reviewer’s suggestions.

      (12) Figure 2a:

      It seems many more metabolites were reduced than increased. Is this expected? Due to the antifungal activity of this compound, how sick is the fungus upon treatment? A physiological study on F. graminearum (in a dose-dependent manner) should be done prior to the omics study. Why do you think there's a stark difference between positive and negative modes in terms of number of metabolites down- and up-regulated?

      Quinofumelin demonstrates exceptional antifungal activity against Fusarium graminearum. The results indicate that the number of reduced metabolites significantly exceeds the number of increased metabolites upon quinofumelin treatment. Mycelial growth is markedly inhibited under quinofumelin exposure. Prior to conducting omics studies, we performed a series of physiological and biochemical experiments (refer to Qian Xiu's dissertation https://paper.njau.edu.cn/openfile?dbid=72&objid=50_49_57_56_49_49&flag=free). Upon quinofumelin treatment, the number of down-regulated metabolites notably surpasses that of up-regulated metabolites compared to the control group. Based on the findings from the down-regulated metabolites, we conducted experiments by exogenously supplementing these metabolites under quinofumelin treatment to investigate whether mycelial growth could be restored. The results revealed that only the exogenous addition of uracil can restore mycelial growth impaired by quinofumelin.

      Quinofumelin exhibits an excellent antifungal activity against F. graminearum. At a concentration of 1 μg/mL, quinofumelin inhibits mycelial growth by up to 90%. This inhibitory effect indicates that life activities of F. graminearum are significantly disrupted by quinofumelin. Consequently, there is a marked difference in down- and up-regulated metabolites between quinofumelin-treated group and untreated control group. The detailed results were presented in Figures 1 and 2.

      (13) Figure 2e:

      This is a good analysis. To help represent the data more clearly, the authors can consider representing the expression using fold change with a p-value for each gene.

      To more clearly represent the data, we have incorporated the information on significant differences in metabolites in the de novo pyrimidine biosynthesis pathway, as affected by quinofumelin, in accordance with the reviewer’s suggestions.

      (14) Line 142:

      Please indicate fold change and p-value for statistical significance. Did you validate this by RT-qPCR?

      We validated the expression level of the DHODH gene under quinofumelin treatment using RT-qPCR. The results indicated that, upon treatment with the EC50 and EC90 concentrations of quinofumelin, the expression of the DHODH gene was significantly reduced by 11.91% and 33.77%, respectively (P<0.05). The corresponding results have been shown in Figure S4.

      (15) Line 145:

      It looks like uracil is the only metabolite differentially abundant in the samples - how did you conclude this whole pathway was impacted by the treatment?

      The experiments involving the exogenous supplementation of uracil revealed that the addition of uracil could restore mycelial growth inhibited by quinofumelin. Consequently, we infer that quinofumelin disrupts the de novo pyrimidine biosynthesis pathway. In addition, as uracil is the end product of the de novo pyrimidine biosynthesis pathway, the disruption of this pathway results in a reduction in uracil levels.

      (16) Figure 3:

      What sequence was used as the root of the tree? Why were the species chosen? Since the BLAST query was Homo sapiens sequence, would it be good to use that as the root?

      FgDHODHII sequence was used as the root of the tree. These selected fungal species represent significant plant-pathogenic fungi in agriculture production. According to your suggestion, we have removed the BLAST query of Homo sapiens in Figure 3.

      (17) Figure 4:

      How were the concentrations used to test chosen?

      Prior to this experiment, we carried out concentration-dependent exogenous supplementation experiments. The results indicated that 50 μg/mL of uracil can fully restore mycelial growth inhibited by quinofumelin. Consequently, we chose 50 μg/mL as the testing concentration.

      (18) Line 164:

      Why do you hypothesize supplementing dihydroorotate would restore resistance? The metabolite seemed accumulated in the treatment condition, whereas downstream metabolites were comparable or even depleted. The DHODH gene expression was suppressed. Would accumulation of dihydroorotate be associated with growth inhibition by quinofumelin? Please include the hypothesis and rationale for the experimental setup.

      DHODH regulates the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthesis pathway. The inhibition of DHODH by quinofumelin results in the accumulation of dihydroorotate and the depletion of the downstream metabolites, including UMP, uridine and uracil. Consequently, downstream metabolites were considered as positive controls, while upstream metabolite dihydroorotate served as a negative control. This design further demonstrates DHODH as action target of quinofumelin against F. graminearum. In addition, the accumulation of dihydroorotate is not associated with growth inhibition by quinofumelin; however, but the depletion of downstream metabolites in the de novo pyrimidine biosynthesis pathway is closely associated with growth inhibition by quinofumelin.

      (19) Line 168:

      I'm not sure if this conclusion is valid from your results in Figure 4 showing which metabolites restore growth.

      o minimize the potential influence of strain-specific effects, five strains were tested in the experiments shown in Figure 4. For each strain, the first row (first column) corresponds to control condition, while second row (first column) represents treatment with 1 μg/mL of quinofumelin, which completely inhibits mycelial growth. The second row (second column) for each strain represents the supplementation with 50 μg/mL of dihydroorotate fails to restore mycelial growth inhibited by quinofumelin. In contrast, the second row (third column, fourth column, fifth colomns) for each strain demonstrated that the supplementation of 50 μg/mL of UMP, uridine and uracil, respectively, can effectively restore mycelial growth inhibited by quinofumelin.

      (20) Figure 5a:

      The fact you saw growth of the deletion mutant means it's not lethal. However, the growth was severely inhibited.

      Our experimental results indicate that the growth of the deletion mutant is lethal. The mycelial growth observed originates from mycelial plugs that were not exposed to quinofumelin, rather than from the plates amended with quinofumelin.

      (21) Figure 5b:

      Would you expect different restoration of growth in the presence of quinofumelin vs. no treatment? The wild type control is missing here. Any conclusions about the relationship between quinofumelin, FgDHODHII, and other metabolites in the pathway?

      Under no treatment with quinofumelin, mycelial growth remains normal and does not require restoration. In the presence of quinofumelin treatment, the supplementation of downstream metabolites in the de novo pyrimidine biosynthesis pathway can restore mycelial growth that is inhibited by quinofumelin. The wild-type control group is illustrated in Figure 4. Figure 5b depicts the phenotypes of the deletion mutants. With respect to the relationship among quinofumelin, FgDHODHII, and other metabolites, quinofumelin specifically targets the key enzyme FgDHODHII in the de novo pyrimidine biosynthesis pathway, disrupting the conversion of dihydroorotate to orotate, which consequently inhibits the synthesis downstream metabolites including uracil.

      (22) Figure 6b:

      Lacking positive and negative controls (known binder and non-binder). What does the Kd (in comparison to other interactions) indicate in terms of binding strength?

      We tested the antifungal activities of publicly reported DHODH inhibitors (such as leflunomide and teriflunomide) against F. graminearum. The results showed that these inhibitors exhibited no significant inhibitory effects against the strain PH-1. Therefore, we lacked an effective chemical for use as a positive control in subsequent experiments. Biacore experiments offers detailed insights into molecular interactions between quinofumelin and DHODHII. As shown in Figure 6b, the left panel illustrates the time-dependent kinetic curve of quinofumelin binding to DHODHII. Within the first 60 s after quinofumelin was introduced onto the DHODHII surface, it bound to the immobilized DHODHII on the chip surface, with the response value increasing proportionally to the quinofumelin concentration. Following cessation of the injection at 60 s, quinofumelin spontaneously dissociated from the DHODHII surface, leading to a corresponding decrease in the response value. The data fitting curve presented on the right panel indicates that the affinity constant KD of quinofumelin for DHODHII is 6.606×10-6 M, which falls within the typical range of KD values (10-3 ~ 10-6 M) for protein-small molecule interaction patterns. A lower KD value indicates a stronger affinity; thus, quinofumelin exhibits strong binding affinity towards DHODHII.

      Reviewer #3 (Recommendations for the authors):

      The authors should add information about the other molecule within this class, ipflufenoquin, and what is known about it. There are already published data on its mode of action on DHODH and the role of pyrimidine biosynthesis.

      We have added the information regarding action mechanism of ipflufenoquin against filamentous fungi in discussion section.

      The work of Higashimura et al is not appreciated well enough as they already showed the role of quinofumelin upon DHODH II.

      We sincerely appreciate the reviewer's insightful comment regarding the work of Higashimura et al. We agree that their investigation into the role of quinofumelin in DHODH II inhibition provides critical foundational insights for this field. In the revised manuscript, we have incorporated the reference in the introduction section and expanded the discussion of their work in the discussion section to more effectively contextualize their contributions.

      It is unclear how the protein model was established and this should be included. What species is the molecule from and how was it obtained? How are they different from Fusarium?

      The three-dimensional structural model of F. graminearum DHODHII protein, as predicted by AlphaFold, was obtained from the UniProt database. Additionally, a detailed description along with appropriate citations has been incorporated in the ‘Manuscript’ file.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      We thank the reviewer for the positive feedback on the work. The reviewer has raised two weaknesses and in the following we discuss how those can be addressed.  

      Weaknesses:

      The impact of the article is limited by using a network with discrete time- steps, and only a small number of time steps from stimulus to reward. They assume that each time step is on the order of hundreds of ms. They justify this by pointing to some slow intrinsic mechanisms, but they do not implement these slow mechanisms is a network with short time steps, instead they assume without demonstration that these could work as suggested. This is a reasonable first approximation, but its validity should be explicitly tested.

      Our goal here was to give a proof of concept that online random feedback is sufficient to train an RNN to estimate value. Indeed, it is important to show that the idea works in a model where the slow mechanisms are explicitly implemented. However, this is a non-trivial task and desired to be addressed in future works.  

      As the delay between cue and reward increases the performance decreases. This is not surprising given the proposed mechanism, but is still a limitation, especially given that we do not really know what a is the reasonable value of a single time step.

      In reply to this comment and the other reviewer's related comment, we have conducted two sets of additional simulations, one for examining incorporation of eligibility traces, and the other for considering (though not mechanistically implementing) behavioral time-scale synaptic plasticity (BTSP). We have added their results to the revised manuscript as Appendix. We think that the results addressed this point to some extent while how longer cue-reward delay can be learnt by elaboration of the model remains as a future issue.

      Reviewer #2 (Public Review):

      We thank the reviewer for the positive feedback on the work. The reviewer gave comments on our revisions, and here we discuss how those can be addressed.

      Comments on revisions: I would still want to see how well the network learns tasks with longer time delays (on the order of 100 or even 1000 timesteps). Previous work has shown that random feedback struggles to encode longer timescales (see Murray 2019, Figure 2), so I would be interested to see how that translates to the RL context in your model.

      We would like to note that in Murray et al 2019 the random feedback per se appeared not to be primarily responsible for the difficulty in encoding longer timesclaes. In the Figure 2d (Murray 2019), the author compared his RFLO (random feedback local online) and BPTT with two intermediate algorithms, which incorporated either one of the two approximations made in RFLO: i) random feedback instead of symmetric feedback, and ii) omittance of non-local effect (i.e., dependence of the derivative of the loss with respect to a given weight on the other weights). The performance difference between RFLO and BPTT was actually mostly explained by ii), as the author mentioned "The results show that the local approximation is essentially fully responsible for the performance difference between RFLO and BPTT, while there is no significant loss in performance due to the random feedback alone. (Line 6-8, page 7 of Murray, 2019, eLife)".

      Meanwhile, regarding the difference in the performance of the model with random feedback vs the model with symmetric feedback in our settings, actually it appeared (already) in the case with 6 time-steps or less (the biologically constrained model with random feedback performed worse: Fig. 6J, left).

      In practice, our model, either with random or symmetric feedback, would not be able to learn the cases with very long delays. This is indeed a limitation of our model. However, our model is critically different from the model of Murray 2019 in that we use RL rather than supervised learning and we use a scalar bootstrapped (TD) reward-prediction-error rather than the true output error. We would think that these differences may be major reasons for the limited learning ability of our model.

      Regarding the feasibility of the model when tasks involve longer time delays: Indeed this is a problem and the other reviewers have also raised the same point. Our model can be extended by incorporating either a kind of eligibility trace (similar one to those contained in RFLO and e-prop) or behavioral time-scale synaptic plasticity (BTSP), and we have added the results of simulations incorporating each to the revised manuscript as Appendix. But how longer cue-reward delay can be learnt by elaboration of the model remains as a future issue.

      Reviewer #3 (Public Review):

      Comments on revisions: Thank you for addressing all my comments in your reply.

      We are happy to learn that all concerns raised by the reviewer in the previous round were addressed adequately. We agree with the reviewer that there are several ways the work can be improved.

      The various points raised by the reviewers at weaknesses are desired to be taken up in future works.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript provides an initial characterization of three new missense variants of the PLCG1 gene associated with diverse disease phenotypes, utilizing a Drosophila model to investigate their molecular effects in vivo. Through the meticulous creation of genetic tools, the study assesses the small wing (sl) phenotype - the fly's ortholog of PLCG1 - across an array of phenotypes from longevity to behavior in both sl null mutants and variants. The findings indicate that the Drosophila PLCG1 ortholog displays aberrant functions. Notably, it is demonstrated that overexpression of both human and Drosophila PLCG1 variants in fly tissue leads to toxicity, underscoring their pathogenic potential in vivo.

      Strengths:

      The research effectively highlights the physiological significance of sl in Drosophila. In addition, the study establishes the in vivo toxicity of disease-associated variants of both human PLCG1 and Drosophila sl.

      Weaknesses:

      The study's limitations include the human PLCG1 transgene's inability to compensate for the Drosophila sl null mutant phenotype, suggesting potential functional divergence between the species. This discrepancy signals the need for additional exploration into the mechanistic nuances of PLCG1 variant pathogenesis, especially regarding their gain-of-function effects in vivo.

      Overall:

      The study offers compelling evidence for the pathogenicity of newly discovered disease-related PLCG1 variants, manifesting as toxicity in a Drosophila in vivo model, which substantiates the main claim by the authors. Nevertheless, a deeper inquiry into the specific in vivo mechanisms driving the toxicity caused by these variants in Drosophila could significantly enhance the study's impact.

      Reviewer #2 (Public Review):

      The manuscript by Ma et al. reports the identification of three unrelated people who are heterozygous for de novo missense variants in PLCG1, which encodes phospholipase C-gamma 1, a key signaling protein. These individuals present with partially overlapping phenotypes including hearing loss, ocular pathology, cardiac defects, abnormal brain imaging results, and immune defects. None of the patients present with all of the above phenotypes. PLCG1 has also been implicated as a possible driver for cell proliferation in cancer.

      The three missense variants found in the patients result in the following amino acid substitutions: His380Arg, Asp1019Gly, and Asp1165Gly. PLCG1 (and the closely related PLCG2) have a single Drosophila ortholog called small wing (sl). sl-null flies are viable but have small wings with ectopic wing veins and supernumerary photoreceptors in the eye. As all three amino acids affected in the patients are conserved in the fly protein, in this work Ma et al. tested whether they are pathogenic by expressing either reference or patient variant fly or human genes in Drosophila and determining the phenotypes produced by doing so.

      Expression in Drosophila of the variant forms of PLCG1 found in these three patients is toxic; highly so for Asp1019Gly and Asp1165Gly, much more modestly for His380Arg. Another variant, Asp1165His which was identified in lymphoma samples and shown by others to be hyperactive, was also found to be toxic in the Drosophila assays. However, a final variant, Ser1021Phe, identified by others in an individual with severe immune dysregulation, produced no phenotype upon expression in flies.

      Based on these results, the authors conclude that the PLCG1 variants found in patients are pathogenic, producing gain-of-function phenotypes through hyperactivity. In my view, the data supporting this conclusion are robust, despite the lack of a detectable phenotype with Ser1021Phe, and I have no concerns about the core experiments that comprise the paper.

      Figure 6, the last in the paper, provides information about PLCG1 structure and how the different variants would affect it. It shows that the His380, Asp1019, and Asp1165 all lie within catalytic domains or intramolecular interfaces and that variants in the latter two affect residues essential for autoinhibition. It also shows that Ser1021 falls outside the key interface occupied by Asp1019, but more could have been said about the potential effects of Ser1021Phe.

      Overall, I believe the authors fully achieved the aims of their study. The work will have a substantial impact because it reports the identification of novel disease-linked genes, and because it further demonstrates the high value of the Drosophila model for finding and understanding gene-disease linkages.

      Reviewer #3 (Public Review):

      Summary:

      The paper attempts to model the functional significance of variants of PLCG2 in a set of patients with variable clinical manifestations.

      Strengths:

      A study attempting to use the Drosophila system to test the function of variants reported from human patients.

      Weaknesses:

      Additional experiments are needed to shore up the claims in the paper. These are listed below.

      Major Comments:

      (1) Does the pLI/ missense constraint Z score prediction algorithm take into consideration whether the gene exhibits monoallelic or biallelic expression?

      To our knowledge, pLI and missense Z don't consider monoallelic or biallelic expression. Instead, they reflect sequence constraint and are calculated based on the observed versus expected variant frequencies in population databases.

      (2) Figure 1B: Include human PLCG2 in the alignment that displays the species-wide conserved variant residues.

      We have updated Figure 1B and incorporated the alignment of PLCG2.

      (3) Figure 4A:

      Given that

      (i) sl is predicted to be the fly ortholog for both mammalian PLCγ isozymes: PLCG1 and PLCG2 [Line 62]

      (ii) they are shown to have non-redundant roles in mammals [Line 71]

      (iii) reconstituting PLCG1 is highly toxic in flies, leading to increased lethality.

      This raises questions about whether sl mutant phenotypes are specifically caused by the absence of PLCG1 or PLCG2 functions in flies. Can hPLCG2 reconstitution in sl mutants be used as a negative control to rule out the possibility of the same?

      The studies about the non-redundant roles of PLCG1 and PLCG2 mainly concern the immune system.

      We have assessed the phenotypes in the sl<sup>T2A</sup>/Y; UAS-hPLCG2 flies. Expression of human PLCG2 in flies is also toxic and leads to severely reduced eclosion rate.

      We have updated the manuscript with these results, and included the eclosion rate of sl<sup>T2A</sup>/Y; UAS-hPLCG2 flies in the new Figure 4B.

      (4) Do slT2A/Y; UAS-PLCG1Reference flies survive when grown at 22{degree sign}C? Since transgenic fly expressing PLCG1 cDNA when driven under ubiquitous gal4s, Tubulin and Da, can result in viable progeny at 22{degree sign}C, the survival of slT2A/Y; UAS-PLCG1Reference should be possible.

      The eclosion rate of sl<sup>T2A</sup>/Y >PLCG1<sup>Reference</sup> flies at 22°C is slightly higher than at 25°C, but remains severely reduced compared to the UAS-Empty control. We have presented these results in the updated Figure S3.

      and similarly

      Does slT2A flies exhibit the phenotypes of (i) reduced eclosion rate (ii) reduced wing size and ectopic wing veins and (iii) extra R7 photoreceptor in the fly eye at 22{degree sign}C?

      The mutant phenotypes are still observed at 22 °C.

      If so, will it be possible to get a complete rescue of the slT2A mutant phenotypes with the hPLCG1 cDNA at 22{degree sign}C? This dataset is essential to establish Drosophila as an ideal model to study the PLCG1 de novo variants.

      Thank you for the suggestion. It is difficult to directly assess the rescue ability of the PLCG1 cDNAs due to the toxicity. However, our ectopic expression assays show that the variants are more toxic than the reference with variable severities, suggesting that the variants are deleterious.

      The ectopic expression strategy has been used to evaluate the consequence of genetic variants and has significantly contributed to the interpretation of their pathogenicity in many cases (reviewed in Her et al., Genome, 2024, PMID: 38412472).

      (5) Localisation and western blot assays to check if the introduction of the de novo mutations can have an impact on the sub-cellular targeting of the protein or protein stability respectively.

      Thank you for the suggestion.

      We expressed PLCG1 cDNAs in the larval salivary glands and performed antibody staining (rabbit anti-Human PLCG1; 1:100, Cell Signaling Technology, #5690). The larval salivary gland are composed of large columnar epithelia cells that are ideal for analyzing subcellular localization of proteins. The PLCG1 proteins are cytoplasmic and localize near the cell surface, with some enrichment in the plasma membrane region. The variant proteins are detected, and did not show significant difference in expression level or subcellular distribution compared to the reference. We did not include this data.

      (6) Analysing the nature of the reported gain of function (experimental proof for the same is missing in the manuscript) variants:

      Instead of directly showing the effect of introducing the de novo variant transgenes in the Drosophila model especially when the full-length PLCG1 is not able to completely rescue the slT2A phenotype;

      (i) Show that the gain-of-function variants can have an impact on the protein function or signalling via one of the three signalling outputs in the mammalian cell culture system: (i) inositol-1,4,5-trisphosphate production, (ii) intracellular Ca2+ release or (iii) increased phosphorylation of extracellular signal-related kinase, p65, and p38.

      We appreciate the reviewer’s suggestion. We utilized the CaLexA (calcium-dependent nuclear import of LexA) system (Masuyama et al., J Neurogenet, 2012, PMID: 22236090) to assess the intracellular Ca<sup>2+</sup> change associated with the expression of PLCG1 cDNAs in fly wing discs. The results show that, compared to the reference, expression of the D1019G or D1165G variants leads to elevated intracellular Ca<sup>2+</sup> levels, similar to the hyperactive S1021F and D1165H variants. However, the H380R or L597F variants did not show a detectable phenotype in this assay. These results suggest that D1019G and D1165G are hyperactive variants, whereas H380R and L597F variant are not, or their effect is too mild to be detected in this assay. We have updated the related sections in the manuscript and Figures 5A and S5.

      OR

      (ii) Run a molecular simulation to demonstrate how the protein's auto-inhibited state can be disrupted and basal lipase activity increased by introducing D1019G and D1165G, which destabilise the association between the C2 and cSH2 domains. The H380R variant may also exhibit characteristics similar to the previously documented H335A mutation which leaves the protein catalytically inactive as the residue is important to coordinate the incoming water molecule required for PIP2 hydrolysis.

      We utilized the DDMut platform, which predicts changes in the Gibbs Free Energy (ΔΔG) upon single and multiple point mutations (Zhou et al., Nucleic Acid Res, 2023, PMID: 37283042), to gain insight into the molecular dynamics changes of variants. The results are now presented in Figure S7.

      Additionally, we performed Molecular dynamics (MD) simulations. The results show that, similar to the hyperactive D1165H variant, the D1019G and D11656G variants exhibit increased disorganization, with a higher root mean square deviations (RMSD) compared to the reference PLCG1.The data are also presented in the updated Figure S7.

      (7) Clarify the reason for carrying out the wing-specific and eye-specific experiments using nub-gal4 and eyless-gal4 at 29˚C despite the high gal4 toxicity at this temperature.

      We used high temperature and high expression level to see if the mild H380R and L597F variants could show phenotypes in this condition.

      The toxicity of the two strong variants (D1019G and D1165G) has been consistently confirmed in multiple assays at different temperatures.

      (8) For the sake of completeness the authors should also report other variants identified in the genomes of these patients that could also contribute to the clinical features.

      Thank you!

      The additional variants and their potential contributions to the clinical features are listed and discussed in Table 1 and its legend.

      Reviewer #1 (Recommendations For The Authors):

      The manuscript's significant contribution is tempered by a lack of comprehensive analysis using the generated genetic reagents in Drosophila. To enhance our understanding of the PLCG1 orthologs, I suggest the following:

      (1) A more detailed molecular analysis to distinguish the actions of sl variants from the wild-type could be very informative. For example, utilizing the HA-epitope tag within the current UAS-transgenes could reveal more about the cellular dynamics and abundance of these variants, potentially elucidating mechanisms beyond gain-of-function.

      We appreciate the reviewer’s suggestion. The UAS-sl cDNA constructs contain stop codon and do not express an HA-epitope tag. Alternatively, we utilized commercially available antibodies against human PLCG1 antibodies to assess the subcellular localization and protein stability by expressing the reference and variant PLCG1 cDNAs in Drosophila larval salivary glands. The reference proteins are cytoplasmic with some enrichment along the plasma membrane. However, we did not observe significant differences between the reference and variant proteins in this assay. We did not include this data.

      (2) I suggest further investigating the relative contributions of developmental processes and acute (Adult) effects on the sl-variant phenotypes observed. For example, employing systems that allow for precise temporal control of gene expression, such as the temperature-sensitive Gal80, could differentiate between these effects, shedding light on the mechanisms that affect longevity and locomotion. This knowledge would be vital for a deeper understanding of the corresponding human disorders and for developing therapeutic interventions.

      We appreciate the reviewer’s suggestion. We utilized Tub-GAL4, Tub-GAL80<sup>ts</sup> to drive the expression of sl wild-type or variant cDNAs, and performed temperature shifts after eclosion to induce expression of the cDNAs only in adult flies. The sl<sup>D1184G</sup> variant (corresponding to PLCG1<sup>D1165G</sup>) caused severely reduced lifespan and the flies mostly die within 10 days. The sl<sup>D1041G</sup> variant (corresponding to PLCG1<sup>D1019G</sup>) led to reduced longevity and locomotion. The sl<sup>H384R</sup> variant (corresponding to PLCG1<sup>H380R</sup>) showed only a mild effect on longevity and no significant effect on climbing ability. These results suggest that the two strong variants (sl<sup>D1041G<sup> and sl<sup>D1184G</sup>) contribute to both developmental and acute effects while the H384R variant mainly contributes to developmental stages.

      I also suggest a more refined analysis of overexpression toxicity. Rather than solely focusing on ubiquitous transgene expression, overexpressing transgene in endogenous pattern using sl-t2a-Gal4 may yield a more nuanced understanding of the pathogenic mechanisms of gain-of-function mutations, particularly in the pathogenesis associated with these variants exclusively located in the coding regions.

      We appreciate the reviewer’s suggestion. We therefore performed the experiments using sl<sup>T2A</sup> to drive overexpression ofPLCG1cDNAs in heterozygous female progeny with one copy of wild-type sl+ (sl<sup>T2A</sup>/ yw > UAS-cDNAs). In this context, expression of PLCG1<sup>Reference<sup>, PLCG1<sup>H380R</sup>orPLCG1<sup>L597F</sup> is viable whereas expression of PLCG1<sup>D1019G</sup> or PLCG1<sup>D1165G</sup> is lethal, suggesting that the PLCG1<sup>D1019G</sup> and PLCG1<sup>D1165G</sup> variants exert a strong dominant toxic effect while the PLCG1<sup>H380R</sup>and PLCG1<sup>L597F<sup> are comparatively milder. Similar patterns have been consistently observed in other ectopic expression assays with varying degrees of severity. These results are updated in the manuscript and figures.

      Reviewer #2 (Recommendations For The Authors):

      The work in the paper could be usefully extended by determining the effects of expressing His380Phe and His380Ala in flies. These variants suppress PLCG1 activity, so their phenotype, if any, would be predicted not to be the same as His380Arg. Determining this would add further strength to the conclusions of the paper.

      We thank the reviewer for the constructive suggestions! We have tested the enzymatic-dead H380A variant, which still exhibits toxicity when expressed in sl<sup>T2A</sup>/Y hemizygous flies, but it is not toxic in heterozygous females suggesting that the reduced eclosion rate is likely not directly associated with enzymatic activity. We have updated the manuscript and figures accordingly.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors):

      Suggestions:

      Although this study has an impressive dataset, I felt that some parts of the discussion would benefit from further explanation, specifically when discussing the differences in female aggression direction between groups with different sex compositions. In the discussion is suggested that males buffer female-on-female aggression and that they 'support' lower-ranking females (see line 212), however, the study only tested the sex composition of the group and does not provide any evidence of this buffering. Thus, I would suggest adding more information on how this buffering or protection from males might manifest (for example, listing male behaviours that might showcase this protection) or referencing other studies that support this claim. Another example of this can be found in lines 223-224, which suggests that females choose lower-ranking individuals when they are presented with a larger pool of competitors; however, in lines 227-228, it's stated that this result contradicts previous work in baboons, which makes the previous claim seem unjustified. I recommend adding other examples from studies that support the results of this paper and adding a line that addresses reasons why these differences between gorillas and baboons might be caused (for example, different social dynamics or ecological constraints). In addition, I suggest the inclusion of physiological data such as direct measures of energy expenditure, caloric intake, or hormone levels, as it would strengthen the claims made in the second paragraph of the discussion. However, I understand this might not be possible due to data or time constraints, so I suggest adding more robust justification on why lactation and pregnancy were used as a proxy for energetic need. In the methods (lines 127-128), it is unclear which phase of the pregnancy or lactation is more energetically demanding. I would also suggest adding a comment on the limitations of using reproductive state to infer energetic need. Lastly, if the data is available, I believe it would be interesting to add body size and age of the females or the size difference between aggressor and target as explanatory variables in the models to test if physiological characteristics influence female-on-female aggression.

      Male support:

      We have now added more references (Watts 1994, 1997) and enriched our arguments regarding male presence buffering aggression. Previous research suggests that male gorillas may support lower-ranking females and they may intervene in female-female conflicts (Sicotte 2002). Unfortunately, our dataset did not allow us to test for male protection. We conduct proximity scans every 10 minutes and these scans are not associated to each interaction, meaning that we cannot reliably test if proximity to a male influences the likelyhood to receive aggression.

      Number of competitors and choice of weaker competitors:

      We added a very relevant reference in humans, showing that people choose weaker competitors when they have they can choose. We removed the example to baboons because it used sex ratio and the relevance to our study was not that straightforward.

      Reproductive state as a proxy for energetic needs:

      We now mention clearly that reproductive state is an indirect measure of energetic needs.

      We rephrased our methods to: “Lactation is often considered more energetically demanding than pregnancy as a whole but the latest stages of pregnancy are highly energetically demanding, potentially even more than lactation”

      Unfortunately, we do not have access to physiological and body size data. Regarding female age, for many females, ages are estimates with errors up to a decade, and thus, we choose not to use them as a reliable predictor. Having accurate values for all these variables, would indeed be very valuable and improve the predicting power of our study.

      Recommendations for writing and presentation:

      Overall, the manuscript is well-organised and well-written, but there are certain areas that could improve in clarity. In the introduction, I believe that the term 'aggression heuristic' should be introduced earlier and properly defined in order to accommodate a broader audience. The main question and aims of the study are not stated clearly in the last paragraph of the introduction. In the methods, I think it would improve the clarity to add a table for the classification of each type of agonistic interactions instead of naming them in the text. For example, a table that showcase the three intensity categories (severe, mild and moderate), than then dives into each behaviour (e.g. hit, bite, attack, etc.) and a short description of these behaviours, I think this would be helpful since some of the behaviours mentioned can be confusing (what's the difference between attack, hit and fight?). In addition, in line 104, it states that all interactions were assigned equal intensity, which needs to be explained.

      We now define aggression heuristics in both the abstract and the first paragraph of the introduction. We have also explained aggressive interactions that their nature was not obvious from their names. Hopefully, these explanations make clear the differences among the recorded behaviours.

      We have now specified that the “equal intensity” refers to avoidances and displacements used to infer power relationships: “We assigned to all avoidance/displacement interactions equal intensity, that is, equal influence to the power relationship of the interacting individuals”

      Minor corrections:

      (1) In line 41, there is a 1 after 'similar'. I am unsure if it's a mistake or a reference.

      We corrected the typo.

      (2) In lines 68-69, there is mention of other studies, but no references are provided.

      We added citations as suggested.

      (3) Remove the reference to Figure 1 (line 82) from the introduction; the figure should be referenced in the text just before the image, however, your figure is in a different section.

      We removed the reference as suggested.

      (4) Line 98 and 136, it's written 'ad libtum' but the correct spelling is 'ad libitum'.

      We corrected the typo.

      (5) Figure 3, remove the underscores between the words in the axis titles.

      We removed the underscores.

      Reviewer #2 (Recommendations for the authors):

      Here, I have outlined some specific suggestions that require attention. Addressing these comments will enhance the readability and enhance the quality of the manuscript.

      (1) L69. Add citation here, indicating the studies focusing on aggression rates.

      We added citations as suggested.

      (2) L88. The study periods used in this study and the authors' previous study (Reference 11) are different. So please add one table as Table 1 showing the details info on the sampling efforts and data included in their analysis of this study. For example, the study period, the numbers of females and males, sampling hours, the number of avoidance/displacement behaviors used to calculate individual Elo-ratings, and the number of mild/moderate/severe aggressive interactions, etc.

      We have now added another table, as suggested (new Table 1) and we have also made clear that we used the hierarchies presented in detail in (Smit & Robbins 2025).

      (3) L103. If readers do not look over Reference 25 on purpose, they do not know what the authors want to talk about and why they mention the optimized Elo-rating method. Clarify this statement and add more content explaining the differences between the two methods, or just remove it.

      We rephrased the text and in response to the previous comment, we clearly state that there are more details about our approach in Smit & Robbins 2025. At the end of the relevant sentence, we added the following parenthesis “(see “traditional Elo rating method”; we do not use the “optimized Elorating method” as it yields similar results and it is not widely used)” and we removed the sentence referring to the optimized Elo-rating method.

      (4) L110. Here, the authors stated that the individual with the standardized Elo-score 1 was the highest-ranking. L117, the "aggression direction" score of each aggressive interaction was the standardized Elo-score of the aggressor, subtracting that of the recipient. So, when the "aggression direction" score was 1, it should mean that the aggressor was the highest-ranking and the recipient was the lowest-ranking female. This is not as the authors stated in L117-120 (where the description was incorrectly reversed). Please clarify.

      The highest ranking individual has indeed Elo_score equal to 1 and we calculated the interaction score (or "aggression direction score") of each aggressive interaction by subtracting the standardized Elo-score of the aggressor from that of the recipient (Elo_recepient – Elo_aggressor). So, when the aggressor is the lowest-ranking female (Elo_score=0) and the recipient the highestranking female one (Elo_score=1), the "aggression direction score" is 1-0 = 1.

      (5) Regarding point 3 of the Public Review, please also revise/expand the paragraph L193-208 in the Discussion section accordingly.

      Please see our response to the public review. We have enriched the results section, added pairwise comparisons in a new table (Table 2) and modified the discussion accordingly.

      (6) Table 1. It's not clear why authors added the column 'Aggression Rate' but did not provide any explanation in the Methods/Results section. How did they calculate the correlation between each tested variable and the "overall adult female aggression rates"? Correlating the number of females in the first trimester of female pregnancy with the female aggression rates in each study group? What did the correlation coefficients mean? L202-204 may provide some hints as to why the authors introduced the Aggression Rate. But it should be made clear in the previous text.

      We now added more details in the legend of the table to make our point clear: “To highlight that aggression rates can increase due to increase in interactions of different score, we also include the effect of some of the tested variables on overall adult female aggression rates, based on results of linear mixed effects models from (Smit & Robbins 2024).”  We did not include detailed methods to calculate those results because they are detailed in (Smit & Robbins 2024). We find it valuable to show the results of both aggression rates and aggression directionality according to the same predictor variables as a means to clarify that aggression rates and aggression directionality are not always coordinated to one another (they do not always change in a consistent manner relative to one another).

      (7) L166.This is not rigorous. Please rephrase. There is only one western gorilla group containing only one resident male included in the analysis.

      We have toned down our text: “Our results did not show any significant difference between femalefemale aggression patterns within the one western and four mountain gorillas groups”

      (8) L167. I don't think the interaction scores in the third trimester of female pregnancy were significantly higher than those in the first trimester. The same concern applies in L194-195.

      We have now added a new table with post hoc pairwise comparisons among the different reproductive states that clarifies that.

      (9) L202. There is no column 'Aggression rates' in Table 1 of Reference 11.

      We have rephrased to make clear that we refer to Table 1 of the present study.

      (10) L204-205. Reference 49. Maybe not a proper citation here. This claim requires stronger evidence or further justification. Additionally, please rephrase and clarify the arguments in L204208 for better readability and precision.

      We have added three more references and rephrased to clarify our argument.

      Reviewer #3 (Recommendations for the authors):

      (1) Line 41: The word "similar" is misspelled.

      We corrected the typo.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #2 (Public review):

      Summary:

      The authors reported that mutations were identified in the ZC3H11A gene in four adolescents from 1015 high myopia subjects in their myopia cohort. They further generated Zc3h11a knockout mice utilizing the CRISPR/Cas9 technology.

      Comments on revisions:

      Chong Chen and colleagues revised the manuscript; however, none of my suggestions from the initial review have been sufficiently addressed.

      (1) I indicated that the pathogenicity and novelty of the mutation need to be determined according to established guidelines and databases. However, the conclusion was still drawn without sufficient justification.

      Thank you for your valuable feedback on the assessment of mutation pathogenicity and novelty. We regret to inform you that complete familial genetic information required for segregation analysis is currently unavailable in this study. Despite our exhaustive efforts to contact the four mutation carriers and their relatives, we encountered the following uncontrollable limitations: Two patients could not be further traced due to invalid contact information, one patient had relocated to another region, making sample collection logistically unfeasible, the remaining patient explicitly declined family participation in genetic testing due to privacy concerns.

      We fully acknowledge that the lack of pedigree data may affect the certainty of pathogenicity evaluation. To address this limitation, we systematically analyzed the four ZC3H11A missense mutations (c.412G>A p.V138I, c.128G>A p.G43E, c.461C>T p.P154L, and c.2239T>A p.S747T) based on ACMG guidelines and database evidence. The key findings are summarized below: All of the identified mutations exhibited very low frequencies or does not exist in the Genome Aggregation Database (gnomAD) and Clinvar, and using pathogenicity prediction software SIFT, PolyPhen2, and CADD, most of them display high pathogenicity levels. Among them, c.412G>A, c.128G>A and c.461C>T were located in or around a domain named zf-CCCH_3 (Figure 1A and B). Furthermore, all of the mutation sites were located in highly conserved amino acids across different species (Figure 1C). The four mutations induced higher structural flexibility and altered the negative charge at corresponding sites, potentially disrupting protein-RNA interactions (Figure 1D and E). Concurrently, overexpression of mutant constructs (ZC3H11A-V138I, ZC3H11A-G43E, ZC3H11A-P154L, and ZC3H11A-S747T) revealed significantly reduced nuclear IκBα mRNA levels compared to the wild-type, suggesting impaired NF-κB pathway regulation (Supplementary Figure 4). Zc3h11a knockout mice also exhibited a myopic phenotype, with alterations in the PI3K-AKT and NF-κB signaling pathways. Integrating this evidence, the mutations meet the following ACMG criteria: PM1 (domain-located mutations), PM2 (extremely low population frequency), PP3 (computational predictions supporting pathogenicity), PS3 (functional validation via experimental assays). Under the ACMG framework, these mutations are classified as "Likely Pathogenic".

      Regarding the novelty of this mutation, comprehensive searches in ClinVar, dbSNP, and HGMD databases revealed no prior reports associating this variant with myopia. Similarly, a PubMed literature search identified no direct evidence linking this mutation to myopia. Based on this evidence, we classify this variant as a likely pathogenic and novel mutation.

      On the other hand, we acknowledge that the absence of family segregation data may reduce the confidence in pathogenicity assessment. Nevertheless, functional experiments and converging multi-level evidence strongly support the reliability of our conclusion. Future studies will prioritize family-based validation to strengthen the evidence chain. We sincerely appreciate your attention to this matter and kindly request your understanding of the practical limitations inherent to this research.

      (2) The phenotype of heterozygous mutant mice is too weak to support the gene's contribution to high myopia. The revised manuscript does not adequately address these discrepancies. Furthermore, no explanation was provided for why conditional gene deletion was not used to avoid embryonic lethality, nor was there any discussion on tissue- or cell-specific mechanistic investigations.

      We sincerely appreciate your insightful comments regarding the relationship between murine phenotypes and human disease. We fully acknowledge your concerns about the phenotypic strength of Zc3h11a heterozygous mutant mice and their association with high myopia (HM) pathogenesis. Here we provide point-by-point responses to your valuable comments: Our study demonstrates that Zc3h11a heterozygous mutant mice exhibit myopic refractive phenotypes with upregulated myopia-associated factors (TGF-β1, MMP2, and IL6), although axial elongation did not reach statistical significance. Notably, at 4 and 6 weeks of age, Het mice did display longer axial lengths and vitreous chamber depths compared to WT mice. While these differences did not reach statistical significance at other time points, an increasing trend was still observed. Several technical considerations may explain these findings: The small murine eye size (where 1D refractive change corresponds to only 5-6μm axial length change). The theoretical resolution limit of 6μm for the SD-OCT device used in this study. These factors likely contributed to the marginal statistical significance observed in the subtle changes of vitreous chamber depth and axial length measurements. Additionally, existing research indicates that axial length measurements from frozen sections in age-matched mice tend to be longer than those obtained through in vivo measurements. This phenomenon may reflect species differences between humans and mice - while both show significant refractive power changes, the axial length differences are less pronounced in mice. These results align with previous reports of phenotypic differences between mouse models and human myopia.

      To address these issues comprehensively, we have added a dedicated discussion section in the revised manuscript specifically examining these axial length measurement considerations, following your valuable suggestion.

      Additionally, we regret to inform you that the currently available floxed ZC3H11A mouse strain requires a minimum of 12-18 months for custom construction, which exceeds our research timeline due to current resource limitations in our team. To address this gap, we have supplemented the discussion section with additional content regarding tissue- and cell-specific mechanisms. Based on your constructive suggestions, we will prioritize the following in our subsequent work: Collaborate with transgenic animal centers to generate Zc3h11a conditional knockout mice. Evaluate the impact of specific knockouts on myopia progression using form-deprivation (FDM) models. While we recognize the limitations of our current study, we believe that by integrating clinical cohort data, phenotypic evidence, and functional experiments, this research provides valuable directional evidence for ZC3H11A's potential role in myopia pathogenesis. Your comments will significantly contribute to improving our future research design, and we sincerely hope you can recognize the exploratory significance of our current findings.

      (3) The title, abstract, and main text continue to misrepresent the role of the inflammatory intracellular PI3K-AKT and NF-κB signaling cascade in inducing high myopia. No specific cell types have been identified as contributors to the phenotype. The mice did not develop high myopia, and no relationship between intracellular signaling and myopia progression has been demonstrated in this study.

      Thank you for your valuable comments regarding the interpretation of signaling pathways in our study. We fully acknowledge your rigorous concerns about the role of PI3K-AKT and NF-κB signaling cascades in high myopia and recognize that we did not identify specific cell types contributing to the observed phenotype. In response to your feedback, we have removed the hypothetical statement linking genetic changes within inflammatory cells to the development of myopia. The current interpretation is strictly based on experimental evidence of pathway relevance and is supported by the theoretical basis presented in the reference, specifically that loss of Zc3h11a leads to activation of the PI3K-AKT and NF-κB pathways in retinal cells, contributing to the myopic phenotype.

      Author response image 1.

      Model of the association between inflammation and myopia progression. Activated mAChR3 (M3R) activates phosphoinositide 3-kinase (PI3K)–AKT and mitogen-associated protein kinase (MAPK) signaling pathways, in turn activating NF-κB and AP1 (i.e., the Jun.-Fos heterodimer) and stimulating the expression of the target genes NF-κB, MMP2, TGFβ, IL- 1β and -6, and TNF-α. MMP2 and TGF-β promote tissue remodeling and TNF-α may act in a paracrine feedback loop in the retina or sclera to activate NF-κB during myopia progression.

      To address the limitations raised, we will prioritize the following in future studies: Cell-type-specific knockout models to identify key cellular contributors. Mechanistic investigations to establish causal relationships between signaling pathways and myopia progression. We sincerely appreciate your rigorous review, which has significantly improved the scientific accuracy and clarity of our manuscript. We believe the revised version better reflects both the novelty and limitations of our findings. We kindly request your recognition of the study’s contributions while acknowledging its current constraints.

      Reviewer #3 (Public review):

      Chen et al have identified a new candidate gene for high myopia, ZC3H11A, and using a knock-out mouse model, have attempted to validate it as a myopia gene and explain a potential mechanism. They identified 4 heterozygous missense variants in highly myopic teenagers. These variants are in conserved regions of the protein, and predicted to be damaging, but the only evidence the authors provide that these specific variants affect protein function is a supplement figure showing decreased levels of IκBα after transfection with overexpression plasmids (not specified what type of cells were transfected). This does not prove that these mutations cause loss of function, in fact it implies they have a gain-of-function mechanism. They then created a knock-out mouse. Heterozygotes show myopia at all ages examined but increased axial length only at very early ages. Unfortunately, the authors do not address this point or examine corneal structure in these animals. They show that the mice have decreased B-wave amplitude on electroretinogram (a sign of retinal dysfunction associated with bipolar cells), and decreased expression of a bipolar cell marker, PKCα. On electron microscopy, there are morphologic differences in the outer nuclear layer (where bipolar, amacrine, and horizontal cell bodies reside). Transcriptome analysis identified over 700 differentially expressed genes. The authors chose to focus on the PI3K-AKT and NF-κB signaling pathways and show changes in expression of genes and proteins in those pathways, including PI3K, AKT, IκBα, NF-κB, TGF-β1, MMP-2 and IL-6, although there is very high variability between animals. They propose that myopia may develop in these animals either as a result of visual abnormality (decreased bipolar cell function in the retina) or by alteration of NF-κB signaling. These data provide an interesting new candidate variant for development of high myopia, and provide additional data that MMP2 and IL6 have a role in myopia development. For this revision, none of my previous suggestions have been addressed.

      Reviewer #3 (Recommendations for the authors):

      None of these suggestions were addressed in the revision:

      Major issues:

      (1) Figure 2: refraction is more myopic but axial length is not longer - why is this not discussed and explored? The text claims the axial length is longer, but that is not supported by the figure. If this is a measurement issue, that needs to be discussed in the text.

      We sincerely appreciate your valuable comments regarding the relationship between refractive status and axial length in our study. In response to your concerns, we have conducted an in-depth analysis and would like to address the issues as follows:

      Our data demonstrate significant differences in refractive error between heterozygous (Het) and wild-type (WT) mice during the 4-10 weeks. Notably, at 4 and 6 weeks of age, Het mice did exhibit longer axial lengths and greater vitreous chamber depth compared to WT mice, although these differences did not reach statistical significance at other time points while still showing an increasing trend. Additional measurements of corneal curvature revealed no significant differences between groups. Considering the small size of mouse eyes (where a 1D refractive change corresponds to only 5-6μm axial length change) and the theoretical resolution limit of 6μm for the SD-OCT device used in this study, these technical factors may account for the marginal statistical significance of the observed small changes in vitreous chamber depth and axial length measurements. Furthermore, existing studies have shown that axial length measurements from frozen sections tend to be longer than those obtained from in vivo measurements in age-matched mice. These considerations provide plausible explanations for the apparent discrepancy between refractive changes and axial length parameters. Following your suggestion, we have added a dedicated discussion section addressing these axial length measurement issues in the revised manuscript. We fully understand your concerns regarding data consistency, and your comments have prompted us to conduct more comprehensive and thorough analysis of our results. We believe the revised manuscript now more accurately reflects our findings while providing important technical references for future studies.

      (2)  Slipped into the methods is a statement that mice with small eyes or ocular lesions were excluded. How many mice were excluded? Are the authors ignoring another phenotype of these mice?

      We appreciate your attention to the exclusion criteria and their implications. Below we provide a detailed clarification: A total of 7 mice (4 Het-KO and 3 WT) with small eyes or ocular lesions were excluded from the observation cohort. These anomalies were consistent with the baseline incidence of spontaneous malformations observed in historical colony data of wild-type C57BL/6J mice (approximately 11%), and were not attributed to the Zc3h11a heterozygous knockout. We have added the above content in the methods section. Your insightful comment has significantly strengthened our reporting rigor. We hope this clarification alleviates your concerns regarding potential selection bias or overlooked phenotypes.

      Minor/Word choice issues:

      All the figure legends need to be improved so that each figure can be interpreted without having to refer to the text.

      Thank you for your valuable comments. We have made modifications to the legend of each graphic, as detailed in the main text.

      Abstract: line 24: use refraction, not "vision"

      Thank you for your valuable comments. The “Vision” has been changed to “refraction”.

      Line 28: re-word "density of bipolar cell-labeled proteins" Do the authors mean density of bipolar cells? Or certain proteins were less abundant in bipolar cells?

      Thank you for your rigorous review of this terminology. We acknowledge the need to clarify the precise meaning of the phrase "density of bipolar cell-labeled proteins." In the original text, this term specifically refers to the expression abundance of the bipolar cell-specific marker protein PKCα, which was identified using immunofluorescence labeling techniques. Specifically: We utilized PKCα (a bipolar cell marker) to label bipolar cell populations. The "density" was quantified by measuring the fluorescence signal intensity per unit area in confocal microscopy images, rather than direct cell counting. This metric reflects changes in the expression of the specific marker protein (PKCα) within bipolar cells, which indirectly correlates with alterations in bipolar cell populations. To address ambiguity, we have revised the terminology throughout the manuscript to "bipolar cell-labelled protein PKCα immunofluorescence abundance".

      Additionally, since fluorescence intensity quantification is inherently semi-quantitative, we have included Western blot results for PKCα in the revised manuscript (Figure 3I, J) to validate the expression changes observed via immunofluorescence. We sincerely appreciate your feedback, which has significantly improved the precision of our manuscript.

      Line 45: axial length, not ocular axis

      Thank you for your valuable comments. The “ocular axis” has been changed to “axial length”.

      Lines73-75: confusing

      Thank you for your valuable comments. The relevant content has been modified to “Multiple zinc finger protein genes (e.g., ZNF644, ZC3H11B, ZFP161, ZENK) are associated with myopia or HM. Of these, ZC3H11B (a human homolog of ZC3H11A) and five GWAS loci (Schippert et al., 2007; Shi et al., 2011; Szczerkowska et al., 2019; Tang et al., 2020; Wang et al., 2004) correlate with AL elongation or HM severity. Proteomic studies further suggest ZC3H11A involvement in the TREX complex, implicating RNA export mechanisms in myopia pathogenesis”

      Line 138: what is dark 3.0 and dark 10.0

      Thank you for your valuable comments. The relevant content has been modified to “Upon dark adaptation, b-wave amplitudes in seven-week-old Het-KO mice were significantly lower at dark 3.0 (0.48 log cd·s/m²) and dark 10.0 (0.98 log cd·s/m²) compared to WT mice.” A detailed description has been added to the main text methods.

      Line 171-175: the GO terms of "biological processes" and "molecular functions" are so broad as to be meaningless.

      Thank you for your valuable comments. The relevant content has been modified to “GO enrichment analysis revealed significant enrichment of differentially expressed genes in the following functions: Zinc ion transmembrane transport (GO:0071577) within metal ion homeostasis, associated with retinal photoreceptor maintenance (Ugarte and Osborne, 2001), RNA biosynthesis and metabolism (GO:0006366) in transcriptional regulation, potentially influencing ocular development, negative regulation of NF-κB signaling (GO:0043124) in inflammatory modulation, a pathway involved in scleral remodelling (Xiao et al., 2025), calcium ion binding (GO:0005509), critical for phototransduction (Krizaj and Copenhagen, 2002), zinc ion transmembrane transporter activity (GO:0005385), participating in retinal zinc homeostasis (Figure 5C and D).”

      Line 257-259: which results indicated loss of Zc3h11a inhibited translocation of IκBα from nucleus to cytoplasm? Results of this study, or the previously referenced study?

      We sincerely appreciate your critical inquiry regarding the mechanistic relationship between Zc3h11a deficiency and IκBα translocation. We are grateful for this opportunity to clarify this important point. The findings regarding Zc3h11a-mediated regulation of IκBα mRNA nuclear export and its impact on NF-κB signaling originate from the study by Darweesh et al. The key experimental evidence demonstrates that: The depletion of Zc3h11a leads to nuclear retention of IκBα mRNA, resulting in failure to maintain normal levels of cytoplasmic IκBα mRNA and protein. This defect in IκBα mRNA export disrupts the essential inhibitory feedback loop on NF-κB activity, causing hyperactivation of this pathway. This manifests as upregulation of numerous innate immune-related mRNAs, including IL-6 and a large group of interferon-stimulated genes.While our study references this mechanism to explain the observed NF-κB dysregulation in Zc3h11a Het-KO mice, the specific nuclear export mechanism was indeed elucidated by Darweesh et al. The reference has been inserted into the corresponding position in the main text. Importantly, our research extends these previous molecular insights into the phenotypic context of myopia.

      We sincerely regret any ambiguity in the original text and deeply appreciate your rigorous approach in ensuring proper attribution of these fundamental findings. Your comment has significantly improved the clarity and accuracy of our manuscript.

      Figure 6 shows decrease of both mRNA and protein expression, but nothing about translocation.

      Thank you for your valuable comments. The research results of Darweesh et al. showed that Zc3h11a protein plays a role in regulation of NF-κB signal transduction. Depletion of Zc3h11a resulted in enhanced NF-κB mediated signaling, with upregulation of numerous innate immune related mRNAs, including IL-6 and a large group of interferon-stimulated genes. IL-6 upregulation in the absence of the Zc3h11a protein correlated with an increased NF-κB transcription factor binding to the IL-6 promoter and decreased IL-6 mRNA decay. The enhanced NF-κB signaling pathway in Zc3h11a deficient cells correlated with a defect in IκBα inhibitory mRNA and protein accumulation. Upon Zc3h11a depletion The IκBα mRNA was retained in the cell nucleus resulting in failure to maintain normal levels of the cytoplasmic IκBα mRNA and protein that is essential for its inhibitory feedback loop on NF-κB activity. These findings demonstrate that ZC3H11A can regulate the NF-κB pathway by controlling the translocation of IκBα mRNA, a mechanism that was indeed elucidated by Darweesh et al. We sincerely apologize for any lack of clarity in our original description and have now inserted the appropriate reference in the relevant section of the main text.

      We deeply appreciate your valuable comments in identifying this ambiguity in our manuscript, which have significantly improved the accuracy and clarity of our work.

      Line 283: what do you mean "may confer embryonic lethality"? Were they embryonic lethal or not?

      We sincerely appreciate your critical request for clarification. Our experimental data from 15 pregnancies of Zc3h11a Het-KO mice intercrosses (n = 15 litters) conclusively confirmed the absence of homozygous knockout (Homo-KO) pups at birth. These findings align with the embryonic lethality of Zc3h11a homozygous deletion as reported by Younis et al. We fully acknowledge the ambiguity in our original phrasing and have revised the text to:“Second, Zc3h11a homozygous KO (Homo-KO) mice were not obtained in our study because homozygous deletion of exons confer embryonic lethality.”Your vigilance in ensuring terminological precision has greatly strengthened the rigor of our manuscript. We hope this clarification fully resolves your concerns.

      Line 338: What is meant that Het-KO mice were constructed at 4 weeks of age? Do these mice not have a germline mutation?

      Thank you for your valuable comments. We have revised the following content: “The germline heterozygous Zc3h11a knockout (Het-KO) mice were generated by CRISPR/Cas9-mediated gene editing at the embryonic stage on a C57BL/6J background, provided by GemPharmatech Co., Ltd (Nanjing, China). Phenotypic analyses were initiated when the mice reached four weeks of age.”

      Line 346-347: how many mice were excluded due to having small eyes or ocular lesions? The methods section should state how refraction and ocular biometrics were measured.

      Thank you for your valuable comments. We have added or revised the following content: “To exclude potential confounding effects of spontaneous ocular developmental abnormalities, a total of 7 mice (4 Het-KO and 3 WT) with small eyes or ocular lesions were excluded from the observation cohort. These anomalies were consistent with the baseline incidence of spontaneous malformations observed in historical colony data of wild-type C57BL/6J mice (approximately 11%), and were not attributed to the Zc3h11a heterozygous knockout.

      The methods for measuring refraction and ocular biometrics are as follows and have been added to the original method. Refractive measurements were performed by a researcher blinded to the genotypes. Briefly, in a darkroom, mice were gently restrained by tail-holding on a platform facing an eccentric infrared retinoscope (EIR) (Schaeffel et al., 2004; Zhou et al., 2008a). The operator swiftly aligned the mouse position to obtain crisp Purkinje images centered on the pupil using detection software (Schaeffel et al., 2004), enabling axial measurements of refractive state and pupil size. Three repeated measurements per eye were averaged for analysis. The anterior chamber (AC) depth, lens thickness, vitreous chamber (VC) depth, and axial length (AL) of the eye were measured by real-time optical coherence tomography (a custom built OCT) (Zhou et al., 2008b). In simple terms, after anesthesia, each mouse was placed in a cylindrical holder on a positioning stage in front of the optical scanning probe. A video monitoring system was used to observe the eyes during the process. Additionally, by detecting the specular reflection on the corneal apex and the posterior lens apex in the two dimensional OCT image, the optical axis of the mouse eye was aligned with the axis of the probe. Eye dimensions were determined by moving the focal plane with a stepper motor and recording the distance between the interfaces of the eyes. Then, using the designed MATLAB software and appropriate refractive indices, the recorded optical path length was converted into geometric path length. Each eye was scanned three times, and the average value was taken.”

      Line 428: what age retinas

      Thank you for your meticulous attention to the experimental design details. Regarding the age of retinal samples, we have clarified the following in the revised manuscript:" Retinas were harvested from four-week-old mice for RNA sequencing." This revision enhances the transparency and reproducibility of our methodology. We deeply appreciate your rigorous review.

      Figure 3 D-F: these images are too small to adequately assess, please show at higher magnification. Are there fewer bipolar cells, or just decreased expression of PKC? From these images, expression of ZC3H11A does not appear decreased, but the retina appears thinner. Is that true, or are these poorly matched sections?

      Thank you for your professional insights regarding image quality and data interpretation. Your rigorous review has significantly enhanced the scientific rigor of our study. We hereby address your concerns point by point: The images in Figures 3D-F were acquired using a Zeiss LSM880 confocal microscope with a 10x eyepiece and 20x objective lens, a standard magnification for retinal section imaging that balances cellular resolution with full-thickness structural preservation. We quantified PKCα immunofluorescence intensity (a bipolar cell-specific marker) to assess changes in bipolar cell populations, rather than direct cell counting. This metric reflects PKCα expression abundance as a proxy for bipolar cell alterations (Figure 3H). To clarify terminology, we have revised the text to "bipolar cell-labelled protein PKCα immunofluorescence abundance" and detailed the methodology in the revised Methods section. Recognizing the semi-quantitative nature of fluorescence intensity analysis, we supplemented these data with Western blot results confirming reduced PKCα protein levels (Figure 3I). Zc3h11a expression was validated both by immunofluorescence intensity (Figure 3G) and Western blot (Figures 6F, H) quantification, confirming reduced expression in Zc3h11a Het-KO retinas. The apparent "retinal thinning" observed in histology sections stems from technical artifacts during tissue processing (fixation, dehydration, sectioning), not biological differences. HE staining, which better preserves sample morphology, showed no structural or thickness differences between Zc3h11a Het-KO mice and wild-type mice (Supplementary Figure 2).

      Your expert feedback has driven us to establish a more robust validation framework. We believe the revised data now more accurately reflect the biological reality and sincerely hope these improvements meet your approval.

      Figure 3G-J: Relative fluorescence intensity of immunohistochemistry is not a valid measure of protein expression.

      We sincerely appreciate your thorough review and valuable comments regarding the immunofluorescence quantification method in Figures 3G-J. In response to your concern that "relative fluorescence intensity is not an effective quantitative measure of protein expression," we have implemented the following improvements to our analysis and validation: To ensure result reliability, all immunofluorescence experiments followed strict protocols: experimental and control samples were fixed, stained, and imaged in the same batch to eliminate inter-batch variability. Imaging was performed using a Zeiss LSM 880 confocal microscope with identical parameters, and the relative fluorescence intensity of specific signals per unit area was measured and statistically analyzed using ZEN software. We fully acknowledge the semi-quantitative nature of relative fluorescence intensity measurements. Therefore, we validated key differentially expressed proteins using Western blot analysis: The Western blot results for Zc3h11a (Figures 6F, H) were completely consistent with the relative fluorescence intensity trends (Figure 3G). Additionally, the newly included Western blot data for PKCα (Figure 3 I) further confirmed the reliability of our relative fluorescence intensity quantification. Your expert advice has significantly enhanced the rigor of our study. Should any additional data or clarification be required, we would be pleased to provide further support.

      Figure 4: what are the arrows pointing at? This should be in the Figure legend. What is MB? Why are there no scale bars? What is difference between E and F, not clear from legend.

      We sincerely appreciate your thorough review of Figure 4 and your valuable suggestions. In response to your concerns, we have carefully examined and improved the relevant content with the following modifications and clarifications: We sincerely apologize for not clearly indicating the arrow annotations in the original figure legend. In the revised version, we have provided detailed explanations for the arrow indicators: black arrows indicate perinuclear space dilation, blue arrows indicate cytoplasmic edema, and red arrows indicate disorganized and loosely arranged membrane discs. The updated legend has been clearly marked below Figure 4 in the main text. MB represents membrane discs, which are critical subcellular structures in the outer segments of retinal photoreceptor cells (rods and cones). They are responsible for light signal capture and transduction (containing visual pigments such as rhodopsin). The structural integrity of MB is essential for normal visual function. The scale bars in the original figures were located in the lower right corner of each subpanel, with specific parameters as follows: Figures 4A and B: magnification ×1000, scale bar 10 μm; Figures 4C and D: magnification ×700, scale bar 20 μm; Figures 4E and G: magnification ×2000, scale bar 5 μm; Figures 4F and H: magnification ×7000, scale bar 2 μm. Both Figures 4E and 4F show electron microscopy images of membrane discs (MB) in wild-type mouse photoreceptor cells. The only difference lies in the magnification: Figure 4E (×2000) demonstrates the overall arrangement pattern of membrane discs, while Figure 4F (×7000) focuses on ultrastructural details of the membrane discs (such as structural integrity). We have thoroughly checked the consistency between the figures and text, and have supplemented detailed legend descriptions in the main text. Once again, we sincerely appreciate your rigorous review, which has significantly enhanced the scientific rigor and readability of our study. Should you have any further suggestions, we would be happy to incorporate them.

      Figure 5A: Why such a large y-axis? Figure legend does not match figure

      We sincerely appreciate your careful review of Figure 5A and your valuable suggestions regarding the figure details. In response to your concerns, we have thoroughly examined and improved the relevant content as follows: The Y-axis of the volcano plot represents -log₁₀(p-value), where the magnitude of the values reflects statistical significance. Our RNA-seq data underwent rigorous multiple testing correction, and the adjusted p-values for some genes were extremely small, resulting in large values after -log₁₀ transformation. We have re-examined the data distribution and confirmed that the expanded Y-axis range is solely due to a small number of highly significant genes (as shown in the figure, the majority of genes remain clustered in the lower half of the Y-axis). This result accurately reflects the true data characteristics.

      We sincerely apologize for the inadvertent error in the original labeling of "Up/Down" in the figure legend. This has now been corrected, and we strictly adhere to the following threshold criteria: Significantly upregulated (Up): adjusted p-value < 0.05 and log₂(FC) ≥ 1. Significantly downregulated (Down): adjusted p-value < 0.05 and log₂(FC) ≤ -1. To ensure the reliability of our conclusions, we have rechecked the raw data, statistical analysis, and visualization process. We confirmed that all significant genes strictly meet the above threshold criteria and that the visualization accurately reflects the true results. The revised figure has been updated in the manuscript as Figure 5A. We deeply appreciate your valuable feedback, which has helped us correct the errors in the figure and improve its accuracy and readability.

      Figure 6F: Based on the western blot, only Zc3h11a appears different.

      Thank you for your careful evaluation of the Western blot data in Figure 6F. We fully understand your concerns regarding the visual differences in PI3K and p-AKT/AKT bands and appreciate the opportunity to clarify the quantitative methodology and biological significance of these findings. Below we provide a detailed explanation of the experimental design and data analysis.

      First, the data for each group were derived from retinal samples of three independent mice, with all experiments performed in parallel to control for technical variability. Image analysis was conducted using ImageJ software with standardized settings for grayscale quantification. Zc3h11a and PI3K levels were normalized to GAPDH as an internal reference, while p-AKT levels were calculated as a ratio to total AKT. The results showed that Zc3h11a protein levels were significantly reduced (p < 0.01, Figures 6F and H), consistent with the expected effects of heterozygous knockout, with good agreement between visual and statistical results. For PI3K and p-AKT/AKT, the bands appeared visually similar due to: The nonlinear nature of Western blot chemiluminescence signals in the saturation range, which compresses subtle quantitative differences in the images; the fact that p-AKT represents only 5-15% of the total AKT pool, making small proportional changes difficult to discern visually. However, it is important to note that both PI3K and p-AKT/AKT showed statistically significant differences between groups (p < 0.001 and p < 0.01, respectively; Figures 6G and I). Furthermore, signal transduction pathways exhibit cascade amplification effects - in the PI3K-AKT pathway, even small changes in upstream proteins can produce significant downstream effects (e.g., NF-κB activation) through kinase cascades (Figure 6J). Additionally, our RNA-Seq results revealed activation of the PI3K-AKT signaling pathway in Zc3h11a Het-KO mice (Figure 5D), and the qRT-PCR results were consistent with the western blot results (Figure 6A-C). Your expert comments have prompted us to present these data differences with greater biological rigor. Although the visual differences are subtle, based on statistical significance, pathway characteristics, and RNA sequencing, and qRT-PCR data, we believe these changes have biological relevance. We sincerely appreciate your commitment to data rigor and respectfully request your recognition of both the experimental results and the scientific logic of this study.

      Figure 8: What is the role of ZC3H11A in this figure? Are the authors proposing that ZC3H11A regulates the translation of IκBα? They have not shown any evidence of that.

      Thank you for your insightful exploration of the role of ZC3H11A in Figure 8. We appreciate your critical review and hope to elucidate the mechanistic framework behind our findings. In Figure 8, Zc3h11a is depicted as a regulator of IκBα mRNA nucleocytoplasmic transport, a mechanism originally elucidated by Darweesh et al. Their studies demonstrated that Zc3h11a binds to IκBα mRNA and promotes its nuclear export. Loss of Zc3h11a results in nuclear retention of IκBα mRNA, leading to reduced cytoplasmic IκBα protein levels and subsequent hyperactivation of the NF-κB pathway. While the specific nuclear export mechanism has been elucidated by Darweesh et al., our study demonstrates that Zc3h11a haploinsufficiency results in decreased IκBα mRNA and protein levels in the retina (Figure 7), linking Zc3h11a haploinsufficiency to NF-κB pathway dysregulation in myopia and highlighting that these molecular insights can be extended to a new pathological context (myopia). Your critical comments have enhanced the clarity of our mechanistic concepts and we hope that these descriptions will demonstrate the importance of ZC3H11A as a new candidate gene for myopia.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations for the authors):

      (1) I am not convinced by the figures the authors present on Shh protein expression. The "bright tiny dots" of Shh protein in the cortex are not visible on the images in Figure 7. I wonder whether the authors could present higher magnification and/or black and white images with increased contrast.

      We have modified Figure 7: we now present a higher magnification and a black and white image with increased contrast to better visualize SHH (+) bright tiny dots in the lateral cortex.

      (2)The manuscript also contains several typos.

      We apologize for these mistakes which have all been corrected.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      The study "Monitoring of Cell-free Human Papillomavirus DNA in Metastatic or Recurrent Cervical Cancer: Clinical Significance and Treatment Implications" by Zhuomin Yin and colleagues focuses on the relationship between cell-free HPV (cfHPV) DNA and metastatic or recurrent cervical cancer patients. It expands the application of cfHPV DNA in tracking disease progression and evaluating treatment response in cervical cancer patients. The study is overall well-designed, including appropriate analyses.

      Strengths:

      The findings provide valuable reference points for monitoring drug efficacy and guiding treatment strategies in patients with recurrent and metastatic cervical cancer. The concordance between HPV cfDNA fluctuations and changes in disease status suggests that cfDNA could play a crucial role in precision oncology, allowing for more timely interventions. As with similar studies, the authors used Droplet Digital PCR to measure cfDNA copy numbers, a technique that offers ultrasensitive nucleic acid detection and absolute quantification, lending credibility to the conclusions.

      Weaknesses:

      Despite including 28 clinical cases, only 7 involved recurrent cervical cancer, which may not be sufficient to support some of the authors' conclusions fully. Future studies on larger cohorts could solidify HPV cfDNA's role as a standard in the personalized treatment of recurrent cervical cancer patients.

      (1) The authors should provide source data for Figures 2, 3, and 4 as supplementary material.

      We greatly appreciate your evaluation of our study and fully agree with the limitations you have pointed out. We appreciate your constructive feedback. Based on your suggestions, we have made the following additions to the article. We have realized that the information provided in Figures 2, 3, and 4 is limited. Therefore, we have presented the original data from Figures 2, 3, and 4 in tabular form in Supplementary Table 2.

      (2) Description of results in Figure 2: Figure 2 would benefit from clearer annotations regarding HPV virus subtypes. For example, does the color-coding in Figure 2B imply that all samples in the LR subgroup are of type HPV16? If that is the case, is it possible that detection variations are due to differences in subtype detection efficiency rather than cfDNA levels? The authors should clarify these aspects. Annotation of Figure 2B suggests that the p-value comes from comparing the LR and LN + H + DSM groups. This should be clarified in the legend. If this p-value comes from comparing HPV cfDNA copies for the (LR, LNM, HM) and (LN + HM, LN + HM + DSM) groups, did the authors carry out post-hoc pairwise comparisons? It would be helpful to include acronyms for these groups in the legend also.

      We fully agree with your point regarding the need for clearer labeling of HPV genotypes in Figures 2B and 2C. If each data point could be color-coded to represent the HPV genotype, Figures 2B and 2C would be clearer and provide more information. However, we must acknowledge that due to the limitations of our current graphing software and our graphical expertise, we were unable to fully represent each HPV genotype in the figures. To address this, we have presented the data in Supplementary Table 2. This table shows the HPV genotype for each patient, the corresponding metastasis patterns, and the baseline HPV copy numbers. We hope this will address the limitation of insufficient information in Figure 2.

      The point you raised regarding whether the differences in detection results might stem from variations in subtype detection efficiency rather than cfDNA levels is a valid limitation of this study. Due to the limited sample size, we did not perform subgroup analyses based on different HPV genotypes, which may have introduced bias in the results presented in Figures 2B and 2C. In response, we have added the following clarification in the discussion section (lines 416-422) and addressed this limitation in the limitations section (lines 499-502). Based on your suggestion, we believe that it is essential to expand the sample size and perform subgroup analysis of the baseline copy numbers for each HPV genotype before treatment. We hope to achieve this goal in future studies.

      Thank you for your thoughtful comments regarding the statistical analyses in the study. The p-value in Figure 2B comes from the comparison among five groups, using a two-sided Kruskal-Wallis test. Your suggestion to perform post-hoc pairwise comparisons is excellent and has made the data presentation in the article more rigorous. Following your advice, we conducted pairwise comparisons between the groups. We used the Mann-Whitney U test to compare HPV cfDNA copy numbers between two groups. Since the LR group only had one value, it could not be included in the pairwise comparisons. Significant differences were observed in two comparisons: LNM vs. LN + H + DSM (P = 0.006) and HM vs. LN + H + DSM (P = 0.036). No significant differences were found between the other groups: LNM vs. HM (P = 0.768), LNM vs. LN + HM (P = 0.079), HM vs. LN + HM (P = 0.112), and LN + HM vs. LN + H + DSM (P = 0.145), as determined by the Mann-Whitney U test  (Figure 2B). (Lines 258-263).

      Thank you for your thoughtful suggestion regarding the inclusion of group acronyms in the legends of Figures 2B and 2C. Including the full names corresponding to the abbreviations would indeed enhance clarity. While we attempted to add both acronyms and full names to the figure legend, the full names were too lengthy and impacted the figure's presentation. Therefore, we have provided the full names corresponding to the abbreviations in the figure caption below, to help readers easily understand the abbreviations used in the figure.

      (3) Interpretation of results in Figure 2 and elsewhere: Significant differences detected in Figure 2B could imply potential associations between HPV cfDNA levels (or subtypes) and recurrence/metastasis patterns. Figure 2C shows that there is a difference in cfDNA levels between the groups compared, suggesting an association but this would not necessarily be a direct "correlation". Overall, interpretation of statistical findings would benefit from more precise language throughout the text and overstatement should be avoided.

      Thank you for your insightful comments regarding the interpretation of results in Figure 2 and elsewhere. We acknowledge that there are several limitations in this study, and the interpretation of the results should be more careful and cautious. Indeed, in the results section, there were issues with inaccurate wording and exaggeration. We have made revisions in the discussion section, which are presented as follows: Preliminary results indicate that baseline HPV cfDNA levels may be linked to recurrence/metastasis patterns, potentially reflecting tumor burden and spread (Lines 411-413). Additionally, we have also made changes in the conclusion section, which are presented as follows: The baseline copy number of HPV cfDNA may be associated with metastatic patterns, thereby reflecting tumor burden and the extent of spread to some extent (Lines 511-513).

      (4) The authors state that six patients showed cfDNA elevation with clinically progressive disease, yet only three are represented in Figure 3B1 under "Patients whose disease progressed during treatment." What is the expected baseline variability in cfDNA for patients? If we look at data from patients with early-stage cancer would we see similar fluctuations? And does the degree of variability vary for different HPV subtypes? Without understanding the normal fluctuations in cfDNA levels, interpreting these changes as progression indicators may be premature.

      Thank you for your feedback. We appreciate your thorough review and attention to detail. Six cervical squamous cell carcinoma (SCC) patients exhibited elevated HPV cfDNA levels as their clinical condition progressed. In the previous Figures 3A1 and 3A2, we only presented data from three patients, as we initially believed that displaying the cfDNA curves from three patients would offer a clearer view, while including six patients might lead to overlap and reduce clarity. However, this may have caused confusion for readers. Based on your suggestion, we have revised Figure 3A1 to include the cfDNA curves for all six patients who with squamous cell carcinoma who experienced clinical disease progression during treatment (Figure 3A1), along with the corresponding SCC-Ag curves (Figure 3A2).

      Thank you for highlighting the issue of baseline variability in HPV cfDNA. This is indeed a limitation of our study, which did not address this aspect. If baseline variability is defined as changes in HPV cfDNA levels measured at different time points before treatment in the same patient, fluctuations at different time points are inevitable and objective. Following your suggestion, we have added a discussion on baseline variability in the limitations section of the manuscript to provide readers with a more objective understanding of our study's findings (Lines 501-502).In future studies, we will incorporate baseline variability into the research design to better understand pre-treatment HPV cfDNA fluctuations and provide support for clinical decision-making.

      (5) It would be helpful if where p-values are given, the test used to derive these values was also stated within parentheses e.g. (P < 0.05, permutation test with Benjamini-Hochberg procedure).

      Thank you for your valuable suggestions and examples. Following your advice, we have included the statistical test methods used to obtain the p-values in parentheses wherever they appear in the results section. Additionally, we have specified the statistical test methods for the p-values below the figures in the results section.

      Reviewer #2 (Public review):

      Summary:

      The authors conducted a study to evaluate the potential of circulating HPV cell-free DNA (cfDNA) as a biomarker for monitoring recurrent or metastatic HPV+ cervical cancer. They analyzed serum samples from 28 patients, measuring HPV cfDNA levels via digital droplet PCR and comparing these to squamous cell carcinoma antigen (SCC-Ag) levels in 26 SCC patients, while also testing the association between HPV cfDNA levels and clinical outcomes. The main hypothesis that the authors set out to test was whether circulating HPV cfDNA levels correlated with metastatic patterns and/or treatment response in HPV+ CC.

      The main claims put forward by the paper are that:

      (1) HPV cfDNA was detected in all 28 CC patients enrolled in the study and levels of HPV cfDNA varied over a median 2-month monitoring period.

      (2) 'Median baseline' HPV cfDNA varied according to 'metastatic pattern' in individual patients.

      (3) Positivity rate for HPV cfDNA was more consistent than SCC-Ag.

      (4) In 20 SCC patients monitored longitudinally, concordance with changes in disease status was 90% for HPV cfDNA.

      This study highlights HPV cfDNA as a promising biomarker with advantages over SCC-Ag, underscoring its potential for real-time disease surveillance and individualized treatment guidance in HPV-associated cervical cancer.

      Strengths:

      This study presents valuable insights into HPV+ cervical cancer with potential translational significance for management and guiding therapeutic strategies. The focus on a non-invasive approach is particularly relevant for women's cancers, and the study exemplifies the promising role of HPV cfDNA as a biomarker that could aid personalized treatment strategies.

      Weaknesses:

      While the authors acknowledge the study's small cohort and variability in sequential sampling protocols as a limitation, several revisions should be made to ensure that (1) the findings are presented in a way that aligns more closely with the data without overstatement and (2) that the statistical support for these findings is made more clear. Specific suggestions are outlined below.

      (1) Line 54 in the abstract refers to 'combined multiple-metastasis pattern' but it is not clear what this refers to at this point in the text.

      Thank you for your detailed feedback. You are correct that the "combined multi-metastatic pattern" was not adequately explained in the abstract, which may have caused confusion. To address this, we have clarified the definitions of the combined multi-metastatic pattern and single-metastatic pattern in lines 53-55 of the manuscript. Patients with a combined multi-metastatic pattern (lymph node + hematogenous ± diffuse serosal metastasis)  exhibited a higher median baseline HPV cfDNA level compared to those with a single-metastasis pattern (local recurrence, lymph node metastasis, or hematogenous metastasis) (P = 0.003).

      (2) Line 90 The reference to 'prospective clinical study (NCT03175848) in primary stage IVB CC to investigate the role of radiotherapy (RT) in combination therapy' seems not to be at all relevant at this point in the text. I would limit the description of this study to the methods.

      Thank you for your thoughtful and thorough review. Your suggestions are highly relevant. Upon further reflection, we recognized that this sentence was redundant in its original placement. Following your recommendation, we have removed it from this section and moved it to the methods section (Lines 109-111). The revised statement is as follows: "Notably, 19 cases from the primary CC group participated in our prospective clinical study (NCT03175848), focused on stage IVB cervical cancer."

      (3) Line 56 refers to HPV cfDNA levels (range 0.3-16.9) but what units?

      Thank you for your feedback regarding the manuscript format. While you highlighted this specific issue, we have since identified several other instances of omitted units in parentheses throughout the manuscript. We acknowledge that such formatting oversights can create ambiguity for readers. Following your suggestions, we have corrected all such issues in the manuscript. We greatly appreciate your careful and thorough review.

      (4) Lines 247-248 claim that higher baseline HPV cfDNA levels correlated with a more substantial post-chemotherapy decrease. This correlation should be statistically validated, and the p-value should be included.

      Thank you for your insightful comments, which highlighted an issue with this sentence. Upon review, I have made the necessary revisions. Since no statistical analysis was conducted and the P-value was not provided, the original sentence was imprecise. Given the small sample size, statistical analysis is not feasible. I have revised the sentence as follows: “For patients in whom systemic cytotoxic chemotherapy was effective, a significant decrease in HPV cfDNA levels could be detected after chemotherapy” (Lines 297-298).

      (5) The authors mention that baseline samples were collected "between Day -14 and Day +30 preceding initial treatment." If Day -14 indicates two weeks before treatment, then this would imply some samples were taken up to 30 days post-treatment. This notation should be clarified. To what extent might outliers or more extreme values in Figure 2 driven by variability in how baseline sampling was carried out?

      Thank you for your insightful comments. Undoubtedly, this is indeed a major limitation of our study. These factors could lead to a certain degree of bias in the detection data. The primary reason is that the study was conducted during the COVID-19 pandemic, making it sometimes difficult to conduct sampling regularly. In accordance with your suggestion, I have already added this part of the content to the results section of the article (Lines 266-275). We have also included the variation in baseline sampling as a limitation in the discussion section (Lines 497-499). In future studies, we will strive to improve the study design by ensuring baseline samples are collected prior to treatment, thereby enhancing the reliability of statistical and analytical results.

      (6) Would be useful to amend Figure 1 to show a subset of patients with SCC and a subset of patients who underwent longitudinal monitoring.

      Thank you for your detailed suggestion. Including a subset of pathological types could indeed add more information to Figure 1. However, regarding the pathological types of the patients in this group, we have listed them in Table 1 and Supplementary Table 2. Among the 28 patients, 26 are diagnosed with squamous cell carcinoma, so 92.9% of the patients in this study have squamous cell carcinoma. To avoid making Figure 1 too complex, we decided not to include the pathological type in the figure.

      (7) Line 120 "a time point matching or closely following HPV cfDNA sampling" - what is the time range for 'closely following' here? A couple of hours or days after sampling?

      Thank you for your detailed feedback. Based on your suggestion, we have revised the sentence as follows:

      "For patients with squamous cell CC in the sequential sampling group, concurrent SCC-Ag testing was performed at a time point that matched, or was within 7 days before or after, the HPV cfDNA sampling." (Line 123-125)

      (8) Lines 178-190 and lines 179-180 seem to make exactly the same point.

      Thank you very much for your careful review. Indeed, these two sentences were repetitive and conveyed the same point. I have removed the previous sentence here (lines 206-207).

      (9) In Figure 4, please indicate the number of patients in each group in the legend e.g. HPV16+ (n=x number of patients).

      Thank you for your feedback on the details of Figure 4 and the examples provided. We have updated Figure 4 according to your suggestions and included the number of patients in each group in the figure legend.

      (10) Lines 322-3 'HPV cfDNA predicted treatment response or disease progression at an earlier time point than imaging assessments' - based on the data available and the numbers of patients, I would argue that this is too bold a claim.

      Thank you very much for pointing out this issue. We fully agree with your view. We have modified this sentence as follows: "Secondly, dynamically monitored HPV cfDNA levels appeared to predict treatment response and disease progression. " (Lines 391-392).

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Chao et al. produced an updated version of the SpliceAI package using modern deep learning frameworks. This includes data preprocessing, model training, direct prediction, and variant effect prediction scripts. They also added functionality for model fine-tuning and model calibration. They convincingly evaluate their newly trained models against those from the original SpliceAI package and investigate how to extend SpliceAI to make predictions in new species. While their comparisons to the original SpliceAI models are convincing on the grounds of model performance, their evaluation of how well the new models match the original's understanding of non-local mutation effects is incomplete. Further, their evaluation of the new calibration functionality would benefit from a more nuanced discussion of what set of splice sites their calibration is expected to hold for, and tests in a context for which calibration is needed.

      Strengths:

      (1) They provide convincing evidence that their new implementation of SpliceAI matches the performance of the original model on a similar dataset while benefiting from improved computational efficiencies. This will enable faster prediction and retraining of splicing models for new species as well as easier integration with other modern deep learning tools.

      (2) They produce models with strong performance on non-human model species and a simple, well-documented pipeline for producing models tuned for any species of interest. This will be a boon for researchers working on splicing in these species and make it easy for researchers working on new species to generate their own models.

      (3) Their documentation is clear and abundant. This will greatly aid the ability of others to work with their code base.

      We thank the reviewer for these positive comments.  

      Weaknesses:

      (1) The authors' assessment of how much their model retains SpliceAI's understanding of "nonlocal effects of genomic mutations on splice site location and strength" (Figure 6) is not sufficiently supported. Demonstrating this would require showing that for a large number of (non-local) mutations, their model shows the same change in predictions as SpliceAI or that attribution maps for their model and SpliceAI are concordant even at distances from the splice site. Figure 6A comes close to demonstrating this, but only provides anecdotal evidence as it is limited to 2 loci. This could be overcome by summarizing the concordance between ISM maps for the two models and then comparing across many loci. Figure 6B also comes close, but falls short because instead of comparing splicing prediction differences between the models as a function of variants, it compares the average prediction difference as a function of the distance from the splice site. This limits it to only detecting differences in the model's understanding of the local splice site motif sequences. This could be overcome by looking at comparisons between differences in predictions with mutants directly and considering non-local mutants that cause differences in splicing predictions.

      We agree that two loci are insufficient to demonstrate preservation of non-local effects. To address this, we have extended our analysis to a larger set of sites: we randomly sampled 100 donor and 100 acceptor sites, applied our ISM procedure over a 5,001 nt window centered at each site for both models, and computed the ISM map as before. We then calculated the Pearson correlation between the collection of OSAI<sub>MANE</sub> and SpliceAI ISM importance scores. We also created 10 additional ISM maps similar to those in Figure 6A, which are now provided in Figure S23.

      Follow is the revised paragraph in the manuscript’s Results section:

      First, we recreated the experiment from Jaganathan et al. in which they mutated every base in a window around exon 9 of the U2SURP gene and calculated its impact on the predicted probability of the acceptor site. We repeated this experiment on exon 2 of the DST gene, again using both SpliceAI and OSAI<sub>MANE</sub> . In both cases, we found a strong similarity between the resultant patterns between SpliceAI and OSAI<sub>MANE</sub> , as shown in Figure 6A. To evaluate concordance more broadly, we randomly selected 100 donor and 100 acceptor sites and performed the same ISM experiment on each site. The Pearson correlation between SpliceAI and OSAI<sub>MANE</sub> yielded an overall median correlation of 0.857 (see Methods; additional DNA logos in Figure S23). 

      To characterize the local sequence features that both models focus on, we computed the average decrease in predicted splice-site probability resulting from each of the three possible singlenucleotide substitutions at every position within 80bp for 100 donor and 100 acceptor sites randomly sampled from the test set (Chromosomes 1, 3, 5, 7, and 9). Figure 6B shows the average decrease in splice site strength for each mutation in the format of a DNA logo, for both tools.

      We added the following text to the Methods section:

      Concordance evaluation of ISM importance scores between OSAI<sub>MANE</sub> and SpliceAI

      To assess agreement between OSAI<sub>MANE</sub> and SpliceAI across a broad set of splice sites, we applied our ISM procedure to 100 randomly chosen donor sites and 100 randomly chosen acceptor sites. For each site, we extracted a 5,001 nt window centered on the annotated splice junction and, at every coordinate within that window, substituted the reference base with each of the three alternative nucleotides. We recorded the change in predicted splice-site probability for each mutation and then averaged these Δ-scores at each position to produce a 5,001-score ISM importance profile per site.

      Next, for each splice site we computed the Pearson correlation coefficient between the paired importance profiles from ensembled OSAI<sub>MANE</sub> and ensembled SpliceAI. The median correlation was 0.857 for all splice sites. Ten additional zoom-in representative splice site DNA logo comparisons are provided in Supplementary Figure S23.

      (2) The utility of the calibration method described is unclear. When thinking about a calibrated model for splicing, the expectation would be that the models' predicted splicing probabilities would match the true probabilities that positions with that level of prediction confidence are splice sites. However, the actual calibration that they perform only considers positions as splice sites if they are splice sites in the longest isoform of the gene included in the MANE annotation. In other words, they calibrate the model such that the model's predicted splicing probabilities match the probability that a position with that level of confidence is a splice site in one particular isoform for each gene, not the probability that it is a splice site more broadly. Their level of calibration on this set of splice sites may very well not hold to broader sets of splice sites, such as sites from all annotated isoforms, sites that are commonly used in cryptic splicing, or poised sites that can be activated by a variant. This is a particularly important point as much of the utility of SpliceAI comes from its ability to issue variant effect predictions, and they have not demonstrated that this calibration holds in the context of variants. This section could be improved by expanding and clarifying the discussion of what set of splice sites they have demonstrated calibration on, what it means to calibrate against this set of splice sites, and how this calibration is expected to hold or not for other interesting sets of splice sites. Alternatively, or in addition, they could demonstrate how well their calibration holds on different sets of splice sites or show the effect of calibrating their models against different potentially interesting sets of splice sites and discuss how the results do or do not differ.

      We thank the reviewer for highlighting the need to clarify our calibration procedure. Both SpliceAI and OpenSpliceAI are trained on a single “canonical” transcript per gene: SpliceAI on the hg 19 Ensembl/Gencode canonical set and OpenSpliceAI on the MANE transcript set. To calibrate each model, we applied post-hoc temperature scaling, i.e. a single learnable parameter that rescales the logits before the softmax. This adjustment does not alter the model’s ranking or discrimination (AUC/precision–recall) but simply aligns the predicted probabilities for donor, acceptor, and non-splice classes with their observed frequencies. As shown in our reliability diagrams (Fig. S16-S22), temperature scaling yields negligible changes in performance, confirming that both SpliceAI and OpenSpliceAI were already well-calibrated. However, we acknowledge that we didn’t measure how calibration might affect predictions on non-canonical splice sites or on cryptic splicing. It is possible that calibration might have a detrimental effect on those, but because this is not a key claim of our paper, we decided not to do further experiments. We have updated the manuscript to acknowledge this potential shortcoming; please see the revised paragraph in our next response.

      (3) It is difficult to assess how well their calibration method works in general because their original models are already well calibrated, so their calibration method finds temperatures very close to 1 and only produces very small and hard to assess changes in calibration metrics. This makes it very hard to distinguish if the calibration method works, as it doesn't really produce any changes. It would be helpful to demonstrate the calibration method on a model that requires calibration or on a dataset for which the current model is not well calibrated, so that the impact of the calibration method could be observed.

      It’s true that the models we calibrated didn’t need many changes. It is possible that the calibration methods we used (which were not ours, but which were described in earlier publications) can’t improve the models much. We toned down our comments about this procedure, as follows.

      Original:

      “Collectively, these results demonstrate that OSAIs were already well-calibrated, and this consistency across species underscores the robustness of OpenSpliceAI’s training approach in diverse genomic contexts.” Revised:

      “We observed very small changes after calibration across phylogenetically diverse species, suggesting that OpenSpliceAI’s training regimen yielded well‐calibrated models, although it is possible that a different calibration algorithm might produce further improvements in performance.”

      Reviewer #2 (Public review):

      Summary:

      The paper by Chao et al offers a reimplementation of the SpliceAI algorithm in PyTorch so that the model can more easily/efficiently be retrained. They apply their new implementation of the SpliceAI algorithm, which they call OpenSpliceAI, to several species and compare it against the original model, showing that the results are very similar and that in some small species, pretraining on other species helps improve performance.

      Strengths:

      On the upside, the code runs fine, and it is well documented.

      Weaknesses:

      The paper itself does not offer much beyond reimplementing SpliceAI. There is no new algorithm, new analysis, new data, or new insights into RNA splicing. There is no comparison to many of the alternative methods that have since been published to surpass SpliceAI. Given that some of the authors are well-known with a long history of important contributions, our expectations were admittedly different. Still, we hope some readers will find the new implementation useful.

      We thank the reviewer for the feedback. We have clarified that OpenSpliceAI is an open-source PyTorch reimplementation optimized for efficient retraining and transfer learning, designed to analyze cross-species performance gains, and supported by a thorough benchmark and the release of several pretrained models to clearly position our contribution.

      Reviewer #3 (Public review):

      Summary:

      The authors present OpenSpliceAI, a PyTorch-based reimplementation of the well-known SpliceAI deep learning model for splicing prediction. The core architecture remains unchanged, but the reimplementation demonstrates convincing improvements in usability, runtime performance, and potential for cross-species application.

      Strengths:

      The improvements are well-supported by comparative benchmarks, and the work is valuable given its strong potential to broaden the adoption of splicing prediction tools across computational and experimental biology communities.

      Major comments:

      Can fine-tuning also be used to improve prediction for human splicing? Specifically, are models trained on other species and then fine-tuned with human data able to perform better on human splicing prediction? This would enhance the model's utility for more users, and ideally, such fine-tuned models should be made available.

      We evaluated transfer learning by fine-tuning models pretrained on mouse (OSAI<sub>Mouse</sub>), honeybee (OSAI<sub>Honeybee</sub>), Arabidopsis (OSAI<sub>Arabidopsis</sub>), and zebrafish (OSAI<sub>Zebrafish</sub>) on human data. While transfer learning accelerated convergence compared to training from scratch, the final human splicing prediction accuracy was comparable between fine-tuned and scratch-trained models, suggesting that performance on our current human dataset is nearing saturation under this architecture.

      We added the following paragraph to the Discussion section:

      We also evaluated pretraining on mouse (OSAI<sub>Mouse</sub>), honeybee (OSAI<sub>Honeybee</sub>), zebrafish (OSAI<sub>Zebrafish</sub>), and Arabidopsis (OSAI<sub>Arabidopsis</sub>) followed by fine-tuning on the human MANE dataset. While cross-species pretraining substantially accelerated convergence during fine-tuning, the final human splicing-prediction accuracy was comparable to that of a model trained from scratch on human data. This result indicates that our architecture seems to capture all relevant splicing features from human training data alone, and thus gains little or no benefit from crossspecies transfer learning in this context (see Figure S24).

      Reviewer #1 (Recommendations for the authors):

      We thank the editor for summarizing the points raised by each reviewer. Below is our point-bypoint response to each comment:

      (1) In Figure 3 (and generally in the other figures) OpenSpliceAI should be replaced with OSAI_{Training dataset} because otherwise it is hard to tell which precise model is being compared. And in Figure 3 it is especially important to emphasize that you are comparing a SpliceAI model trained on Human data to an OSAI model trained and evaluated on a different species.

      We have updated the labels in Figures 3, replacing “OpenSpliceAI” with “OSAI_{training dataset}” to more clearly specify which model is being compared.

      (2) Are genes paralogous to training set genes removed from the validation set as well as the test set? If you are worried about data leakage in the test set, it makes sense to also consider validation set leakage.

      Thank you for this helpful suggestion. We fully agree, and to avoid any data leakage we implemented the identical filtering pipeline for both validation and test sets: we excluded all sequences paralogous or homologous to sequences in the training set, and further removed any sequence sharing > 80 % length overlap and > 80 % sequence identity with training sequences. The effect of this filtering on the validation set is summarized in Supplementary Figure S7C.

      Figure S7. (C) Scatter plots of DNA sequence alignments between validation and training sets for Human-MANE, mouse, honeybee, zebrafish, and Arabidopsis. Each dot represents an alignment, with the x-axis showing alignment identity and the y-axis showing alignment coverage. Alignments exceeding 80% for both identity and coverage are highlighted in the redshaded region and were excluded from the test sets.

      Reviewer #3 (Recommendations for the authors):

      (1) The legend in Figure 3 is somewhat confusing. The labels like "SpliceAI-Keras (species name)" may imply that the model was retrained using data from that species, but that's not the case, correct?

      Yes, “SpliceAI-Keras (species name)” was not retrained; it refers to the released SpliceAI model evaluated on the specified species dataset. We have revised the Figure 3 legends, changing “SpliceAI-Keras (species name)” to “SpliceAI-Keras” to clarify this.

      (2) Please address the minor issues with the code, including ensuring the conda install works across various systems.

      We have addressed the issues you mentioned. OpenSpliceAI is now available on Conda and can be installed with:  conda install openspliceai. 

      The conda package homepage is at: https://anaconda.org/khchao/openspliceai We’ve also corrected all broken links in the documentation.

      (3) Utility:

      I followed all the steps in the Quick Start Guide, and aside from the issues mentioned below, everything worked as expected.

      I attempted installation using conda as described in the instructions, but it was unsuccessful. I assume this method is not yet supported.

      In Quick Start Guide: predict, the link labeled "GitHub (models/spliceai-mane/10000nt/)" appears to be incorrect. The correct path is likely "GitHub (models/openspliceaimane/10000nt/)".

      In Quick Start Guide: variant (https://ccb.jhu.edu/openspliceai/content/quick_start_guide/quickstart_variant.html#quick-startvariant), some of the download links for input files were broken. While I was able to find some files in the GitHub repository, I think the -A option should point to data/grch37.txt, not examples/data/input.vcf, and the -I option should be examples/data/input.vcf, not data/vcf/input.vcf.

      Thank you for catching these issues. We’ve now addressed all issues concerning Conda installation and file links. We thank the editor for thoroughly testing our code and reviewing the documentation.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This fundamental work employed multidisciplinary approaches and conducted rigorous experiments to study how a specific subset of neurons in the dorsal striatum (i.e., "patchy" striatal neurons) modulates locomotion speed depending on the valence of the naturalistic context.

      Strengths:

      The scientific findings are novel and original and significantly advance our understanding of how the striatal circuit regulates spontaneous movement in various contexts.

      We appreciate the reviewer’s positive evaluation.

      Weaknesses:

      This is extensive research involving various circuit manipulation approaches. Some of these circuit manipulations are not physiological. A balanced discussion of the technical strengths and limitations of the present work would be helpful and beneficial to the field. Minor issues in data presentation were also noted.

      We have incorporated the recommended discussion of technical limitations and addressed the physiological plausibility of our manipulations on Page 33 of the revised Discussion section. Specifically, we wrote:

      “Judicious interpretation of the present data must consider the technical limitations of the various methods and circuit-level manipulations applied. Patchy neurons are distributed unevenly across the extensive structure of the striatum, and their targeted manipulation is constrained by viral spread in the dorsal striatum. Somatic calcium imaging using single-photon microscopy captures activity from only a subset of patchy neurons within a narrow focal plane beneath each implanted GRIN lens. Similarly, limitations in light diffusion from optical fibers may reduce the effective population of targeted fibers in both photometry and optogenetic experiments. For example, the more modest locomotor slowing observed with optogenetic activation of striatonigral fibers in the SNr compared to the stronger effects seen with Gq-DREADD activation across the dorsal striatum could reflect limited fiber optic coverage in the SNr. Alternatively, it may suggest that non-striatonigral mechanisms also contribute to generalized slowing. Our photometry data does not support a role for striatopallidal projections from patchy neurons in movement suppression. The potential contribution of intrastriatal mechanisms, discussed earlier, remains to be empirically tested. Although the behavioral assays used were naturalistic, many of the circuit-level interventions were not. Broad ablation or widespread activation of patchy neurons and their efferent projections represent non-physiological manipulations. Nonetheless, these perturbation results are interpreted alongside more naturalistic observations, such as in vivo imaging of patchy neuron somata and axon terminals, to form a coherent understanding of their functional role”.

      Reviewer #2 (Public review):

      Hawes et al. investigated the role of striatal neurons in the patch compartment of the dorsal striatum. Using Sepw1-Cre line, the authors combined a modified version of the light/dark transition box test that allows them to examine locomotor activity in different environmental valence with a variety of approaches, including cell-type-specific ablation, miniscope calcium imaging, fiber photometry, and opto-/chemogenetics. First, they found ablation of patchy striatal neurons resulted in an increase in movement vigor when mice stayed in a safe area or when they moved back from more anxiogenic to safe environments. The following miniscope imaging experiment revealed that a larger fraction of striatal patchy neurons was negatively correlated with movement speed, particularly in an anxiogenic area. Next, the authors investigated differential activity patterns of patchy neurons' axon terminals, focusing on those in GPe, GPi, and SNr, showing that the patchy axons in SNr reflect movement speed/vigor. Chemogenetic and optogenetic activation of these patchy striatal neurons suppressed the locomotor vigor, thus demonstrating their causal role in the modulation of locomotor vigor when exposed to valence differentials. Unlike the activation of striatal patches, such a suppressive effect on locomotion was absent when optogenetically activating matrix neurons by using the Calb1-Cre line, indicating distinctive roles in the control of locomotor vigor by striatal patch and matrix neurons. Together, they have concluded that nigrostriatal neurons within striatal patches negatively regulate movement vigor, dependent on behavioral contexts where motivational valence differs.

      We are grateful for the reviewer’s thorough summary of our main findings.

      In my view, this study will add to the important literature by demonstrating how patch (striosomal) neurons in the striatum control movement vigor. This study has applied multiple approaches to investigate their functionality in locomotor behavior, and the obtained data largely support their conclusions. Nevertheless, I have some suggestions for improvements in the manuscript and figures regarding their data interpretation, accuracy, and efficacy of data presentation.

      We appreciate the reviewer’s overall positive assessment and have made substantial improvements to the revised manuscript in response to reviewers’ constructive suggestions. 

      (1) The authors found that the activation of the striatonigral pathway in the patch compartment suppresses locomotor speed, which contradicts with canonical roles of the direct pathway. It would be great if the authors could provide mechanistic explanations in the Discussion section. One possibility is that striatal D1R patch neurons directly inhibit dopaminergic cells that regulate movement vigor (Nadal et al., Sci. Rep., 2021; Okunomiya et al., J Neurosci., 2025). Providing plausible explanations will help readers infer possible physiological processes and give them ideas for future follow-up studies.

      We have added the recommended data interpretation and future perspectives on Page 30 of the revised Discussion section. Specifically, we wrote:

      “Potential mechanisms by which striatal patchy neurons reduce locomotion involve the suppression of dopamine availability within the striatum. Dopamine, primarily supplied by neurons in the SNc and VTA, broadly facilitates locomotion (Gerfen and Surmeier 2011, Dudman and Krakauer 2016). Recent studies have shown that direct activation of patchy neurons leads to a reduction in striatal dopamine levels, accompanied by decreased walking speed (Nadel, Pawelko et al. 2021, Dong, Wang et al. 2025, Okunomiya, Watanabe et al. 2025). Patchy neuron projections terminate in structures known as “dendron bouquets”, which enwrap SNc dendrites within the SNr and can pause tonic dopamine neuron firing (Crittenden, Tillberg et al. 2016, Evans, Twedell et al. 2020). The present work highlights a role for patchy striatonigral inputs within the SN in decelerating movement, potentially through GABAergic dendron bouquets that limit dopamine release back to the striatum (Dong, Wang et al. 2025). Additionally, intrastriatal collaterals of patch spiny projection neurons (SPNs) have been shown to suppress dopamine release and associated synaptic plasticity via dynorphin-mediated activation of kappa opioid receptors on dopamine terminals (Hawes, Salinas et al. 2017). This intrastriatal mechanism may further contribute to the reduction in striatal dopamine levels and the observed decrease in locomotor speed, representing a compelling avenue for future investigation.”

      (2) On page 14, Line 301, the authors stated that "Cre-dependent mCheery signals were colocalized with the patch marker (MOR1) in the dorsal striatum (Fig. 1B)". But I could not find any mCherry on that panel, so please modify it.

      We have included representative images of mCherry and MOR1 staining in Supplementary Fig. S1 of the revised manuscript.

      (3) From data shown in Figure 1, I've got the impression that mice ablated with striatal patch neurons were generally hyperactive, but this is probably not the case, as two separate experiments using LLbox and DDbox showed no difference in locomotor vigor between control and ablated mice. For the sake of better interpretation, it may be good to add a statement in Lines 365-366 that these experiments suggest the absence of hyperactive locomotion in general by ablating these specific neurons.

      As suggested by the reviewer, we have added the following statement on Page 17 of the revised manuscript: “These data also indicate that PA elevates valence-specific speed without inducing general hyperactivity”.

      (4) In Line 536, where Figure 5A was cited, the author mentioned that they used inhibitory DREADDs (AAV-DIO-hM4Di-mCherrry), but I could not find associated data on Figure 5. Please cite Figure S3, accordingly.

      We have added the citation for the now Fig. S4 on Page 25 of the revised manuscript.

      (5) Personally, the Figure panel labels of "Hi" and "ii" were confusing at first glance. It would be better to have alternatives.

      As suggested by the reviewer, we have now labeled each figure panel with a distinct single alphabetical letter.

      (6) There is a typo on Figure 4A: tdTomata → tdTomato

      We have made the correction on the figure.

      Reviewer #3 (Public review):

      Hawes et al. combined behavioral, optical imaging, and activity manipulation techniques to investigate the role of striatal patch SPNs in locomotion regulation. Using Sepw1-Cre transgenic mice, they found that patch SPNs encode locomotion deceleration in a light-dark box procedure through optical imaging techniques. Moreover, genetic ablation of patch SPNs increased locomotion speed, while chemogenetic activation of these neurons decreased it. The authors concluded that a subtype of patch striatonigral neurons modulates locomotion speed based on external environmental cues. Below are some major concerns:

      The study concludes that patch striatonigral neurons regulate locomotion speed. However, unless I missed something, very little evidence is presented to support the idea that it is specifically striatonigral neurons, rather than striatopallidal neurons, that mediate these effects. In fact, the optogenetic experiments shown in Fig. 6 suggest otherwise. What about the behavioral effects of optogenetic stimulation of striatonigral versus striatopallidal neuron somas in Sepw1-Cre mice?

      Our photometry data implicate striatonigral neurons in locomotor slowing, as evidenced by a negative cross-correlation with acceleration and a negative lag, indicating that their activity reliably precedes—and may therefore contribute to—deceleration. In contrast, photometry results from striatopallidal neurons showed no clear correlation with speed or acceleration.

      Figure 6 demonstrates that optogenetic manipulation within the SNr of Sepw1-Cre<sup>+</sup> striatonigral axons recapitulated context-dependent locomotor changes seen with Gq-DREADD activation of both striatonigral and striatopallidal Sepw1-Cre<sup>+</sup> cells in the dorsal striatum but failed to produce the broader locomotor speed change observed when targeting all Sepw1-Cre<sup>+</sup> cells in the dorsal striatum using either ablation or Gq-DREADD activation. The more subtle speed-restrictive phenotype resulting from ChR activation in the SNr could, as the reviewer suggests, implicate striatopallidal neurons in broad locomotor speed regulation. However, our photometry data indicate that this scenario is unlikely, as activity of striatopallidal Sepw1-Cre<sup>+</sup> fibers is not correlated with locomotor speed. Another plausible explanation is that the optogenetic approach may have affected fewer striatonigral fibers, potentially due to the limited spatial spread of light from the optical fiber within the SNr. Broad locomotor speed change in LDbox might require the recruitment of a larger number of striatonigral fibers than we were able to manipulate with optogenetics. We have added discussion of these technical limitations to the revised manuscript. Additionally, we now discuss the possibility that intrastriatal collaterals may contribute to reduced local dopamine levels by releasing dynorphin, which acts on kappa opioid receptors located on dopamine fibers (Hawes, Salinas et al. 2017), thereby suppressing dopamine release.

      The reviewer also suggests an interesting experiment involving optogenetic stimulation of striatonigral versus striatopallidal somata in Sepw1-Cre mice. While we agree that this approach would yield valuable insights, we have thus far been unable to achieve reliable results using retroviral vectors. Moreover, selectively targeting striatopallidal terminals optogenetically remains technically challenging, as striatonigral fibers also traverse the pallidum, and the broad anatomical distribution of the pallidum complicates precise targeting. This proposed work will need to be pursued in a future study, either with improved retrograde viral tools or the development of additional mouse lines that offer more selective access to these neuronal populations as we documented recently (Dong, Wang et al. 2025).

      In the abstract, the authors state that patch SPNs control speed without affecting valence. This claim seems to lack sufficient data to support it. Additionally, speed, velocity, and acceleration are very distinct qualities. It is necessary to clarify precisely what patch neurons encode and control in the current study.

      We believe the reviewer’s interpretation pertains to a statement in the Introduction rather than the Abstract: “Our findings reveal that patchy SPNs control the speed at which mice navigate the valence differential between high- and low-anxiety zones, without affecting valence perception itself.” Throughout our study, mice consistently preferred the dark zone in the Light/Dark box, indicating intact perception of the valence differential between illuminated areas. While our manipulations altered locomotor speed, they did not affect time spent in the dark zone, supporting the conclusion that valence perception remained unaltered. We appreciate the reviewer’s insight and agree it is an intriguing possibility that locomotor responses could, over time, influence internal states such as anxiety. We addressed this in the Discussion, noting that while dark preference was robust to our manipulations, future studies are warranted to explore the relationship between anxious locomotor vigor and anxiety itself.

      We report changes in scalar measures of animal speed across Light/Dark box conditions and under various experimental manipulations. Separately, we show that activity in both patchy neuron somata and striatonigral fibers is negatively correlated with acceleration—indicating a positive correlation with deceleration. Notably, the direction of the cross-correlational lag between striatonigral fiber activity and acceleration suggests that this activity precedes and may causally contribute to mouse deceleration, thereby influencing reductions in speed. To clarify this, we revised a sentence in the Results section: “Moreover, patchy neuron efferent activity at the SNr may causally contribute to deceleration, as indicated by the negative cross-correlational lag, thereby reducing animal speed.”. We also updated the Discussion to read: “Together, these data specifically implicate patchy striatonigral neurons in slowing locomotion by acting within the SNr to drive deceleration.”

      One of the major results relies on chemogenetic manipulation (Figure 5). It would be helpful to demonstrate through slice electrophysiology that hM3Dq and hM4Di indeed cause changes in the activity of dorsal striatal SPNs, as intended by the DREADD system. This would support both the positive (Gq) and negative (Gi) findings, where no effects on behavior were observed.

      We were unable to perform this experiment; however, hM3Dq has previously been shown to be effective in striatal neurons (Alcacer, Andreoli et al. 2017). The lack of effect observed in Gi-DREADD mice serves as an unintended but valuable control, helping to rule out off-target effects of the DREADD agonist JHU37160 and thereby reinforcing the specificity of hM3Dq-mediated activation in our study. We have now included an important caveat regarding the Gi-DREADD results, acknowledging the possibility that they may not have worked effectively in our target cells: “Potential explanations for the negative results in Gi-DREADD mice include inherently low basal activity among patchy neurons or insufficient expression of GIRK channels in striatal neurons, which may limit the effectiveness of Gi-coupling in suppressing neuronal activity (Shan, Fang et al. 2022).

      Finally, could the behavioral effects observed in the current study, resulting from various manipulations of patch SPNs, be due to alterations in nigrostriatal dopamine release within the dorsal striatum?

      We agree that this is an important potential implication of our work, especially given that we and others have shown that patchy striatonigral neurons provide strong inhibitory input to dopaminergic neurons involved in locomotor control (Nadel, Pawelko et al. 2021, Lazaridis, Crittenden et al. 2024, Dong, Wang et al. 2025, Okunomiya, Watanabe et al. 2025). Accordingly, we have expanded the discussion section to include potential mechanistic explanations that support and contextualize our main findings.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Here are some minor issues for the authors' reference:

      (1) This work supports the motor-suppressing effect of patchy SPNs, and >80% of them are direct pathway SPNs. This conclusion is not expected from the traditional basal ganglia direct/indirect pathway model. Most experiments were performed using nonphysiological approaches to suppress (i.e., ablation) or activate (i.e., continuous chemo-optogenetic stimulation). It remains uncertain if the reported observations are relevant to the normal biological function of patchy SPNs under physiological conditions. Particularly, under what circumstances an imbalanced patch/matrix activity may be induced, as proposed in the sections related to the data presented in Figure 6. A thorough discussion and clarification remain needed. Or it should be discussed as a limitation of the present work.

      We have added discussion and clarification of physiological limitations in response to reviewer feedback. Additionally, we revised the opening sentence of an original paragraph in the discussion section to emphasize that it interprets our findings in the context of more physiological studies reporting natural shifts in patchy SPN activity due to cognitive conflict, stress, or training. The revised opening sentence now reads: “Together with previous studies of naturally occurring shifts in patchy neuron activation, these data illustrate ethologically relevant roles for a subgroup of genetically defined patchy neurons in behavior.”

      (2) Lines 499-500: How striato-nigral cells encode speed and deceleration deserves a thorough discussion and clarification. These striatonigral cells can target both SNr GABAergic neurons and dendrites of the dopaminergic neurons. A discussion of microcircuits formed by the patchy SPNs axons in the SNr GABAergic and SNC DAergic neurons should be presented.

      We have added this point at lines 499–500, including a reference to a relevant review of microcircuitry. Additionally, we expanded the discussion section to address microcircuit mechanisms that may underlie our main findings.

      (3) Line 70: "BNST" should be spelled out at the first time it is mentioned.

      This has been done.

      (4) Line 133: only GCaMP6 was listed in the method, but GCaMP8 was also used (Figure 4). Clarification or details are needed.

      Thank you for your careful attention to detail. We have corrected the typographical errors in the Methods section. Specifically, in the Stereotaxic Injections section, we corrected “GCaMP83” to “GCaMP8s.” In the Fiber Implant section, we removed the incorrect reference to “GCaMP6s” and clarified that GCaMP8s was used for photometry, and hChR2 was used for optogenetics.

      (5) Line 183: Can the authors describe more precisely what "a moment" means in terms of seconds or minutes?

      This has been done.

      (6) Line 288: typo: missing / in ΔF.

      Thank you this has been fixed.

      (7) Line 301-302: the statement of "mCherry and MOR1 colocalization" does not match the images in Figure 1B.

      This has been corrected by proving a new Supplementary Figure S1.

      (8) Related to the statement between Lines 303-304: Figure 1c data may reflect changes in MOR1 protein or cell loss. Quantification of NeuN+ neurons within the MOR1 area would strengthen the conclusion of 60% of patchy cell loss in Figure 1C.

      Since the efficacy of AAV-FLEX-taCasp3 in cell ablation has been well established in our previous publications and those of others (Yang, Chiang et al. 2013, Wu, Kung et al. 2019), we do not believe the observed loss of MOR1 staining in Fig. 1C merely reflects reduced MOR1 expression. Moreover, a general neuronal marker such as NeuN may not reliably detect the specific loss of patchy neurons in our ablation model, given the technical limitations of conventional cell-counting methods like MBF’s StereoInvestigator, which typically exhibit a variability margin of 15–20%.

      (9) Lines 313-314: "Similarly, PA mice demonstrated greater stay-time in the dark zone (Figure 1E)." Revision is needed to better reflect what is shown in Figure 1E and avoid misunderstandings.

      Thank you this has been addressed.

      (10) The color code in Figure 2Gi seems inconsistent with the others? Clarifications are needed.

      Color coding in Figure 2Gi differs from that in 2Eii out of necessity. For example, the "Light" cells depicted in light blue in 2Eii are represented by both light gray and light red dots in 2Gi. Importantly, Figure 2G does not encode specific speed relationships; instead, any association with speed is indicated by a red hue.

      (11) Lines 538-539: the statement of "Over half of the patch was covered" was not supported by Figure 5C. Clarification is needed.

      Thank you. For clarity, we updated the x-axis labels in Figures 1C and 5C from “% area covered” to “% DS area covered,” and defined “DS” as “dorsal striatal” in the corresponding figure legends. Additionally, we revised the sentence in question to read: “As with ablation, histological examination indicated that a substantial fraction of dorsal patch territories, identified through MOR1 staining, were impacted (Fig. 5C).”

      (12) Figure 3: statistical significance in Figure 3 should be labeled in various panels.

      We believe the reviewer's concern pertains to the scatter plot in panel F—specifically, whether the data points are significantly different from zero. In panel 3F, the 95% confidence interval clearly overlaps with zero, indicating that the results are not statistically significant.

      (13) Figures 6D-E: no difference in the speed of control mice and ChR2 mice under continuous optical stimulation was not expected. It was different from Gq-DRADDS study in Figure 5E-F. Clarifications are needed.

      For mice undergoing constant ChR2 activation of Sepw1-Cre<sup>+</sup> SNr efferents, overall locomotor speed does not differ from controls. However, the BIL (bright-to-illuminated) effect on zone transitions is disrupted: activating Sepw1-Cre<sup>+</sup> fibers in the SNr blunts the typical increase in speed observed when mice flee from the light zone toward the dark zone. This impaired BIL-related speed increase upon exiting the light was similarly observed in the Gq-DREADD cohort. The reviewer is correct that this optogenetic manipulation within the SNr did not produce the more generalized speed reductions seen with broader Gq-DREADD activation of all Sepw1-Cre<sup>+</sup> cells in the dorsal striatum. A likely explanation is the difference in targeting—ChR2 specifically activates SNr-bound terminals, whereas Gq-DREADD broadly activates entire Sepw1-Cre<sup>+</sup> cells. Notably, many of the generalized speed profile changes observed with chemogenetic activation are opposite to those resulting from broad ablation of Sepw1-Cre<sup>+</sup> cells.

      The more subtle speed-restrictive phenotype observed with ChR2 activation targeted to the SNr may suggest that fewer striatonigral fibers were affected by this technique, possibly due to the limited spread of light from the fiber optic. Broad locomotor speed change in LDbox might require the recruitment of a larger number of striatonigral fibers than we were able to manipulate with an optogenetic approach. Alternatively, it could indicate that non-striatonigral Sepw1-Cre+ projections—such as striatopallidal or intrastriatal pathways—play a role in more generalized slowing. If striatopallidal fibers contributed to locomotor slowing, we would expect to see non-zero cross-correlations between neural activity and speed or acceleration, along with negative lag indicating that neural activity precedes the behavioral change. However, our fiber photometry data do not support such a role for Sepw1-Cre+ striatopallidal fibers.

      We have also referenced the possibility that intrastriatal collaterals could suppress striatal dopamine levels, potentially explaining the stronger slowing phenotype observed when the entire striatal population is affected, as opposed to selectively targeting striatonigral terminals.

      These technical considerations and interpretive nuances have been incorporated and clarified in the revised discussion section.

      (14) Lines 632: "compliment": a typo?

      Yes, it should be “complement”.

      (15) Figure 4 legend: descriptions of panels A and B were swapped.

      Thank you. This has been corrected.

      6) Friedman (2020) was listed twice in the bibliography (Lines 920-929).

      Thank you. This has been corrected.

      Reviewer #3 (Recommendations for the authors):

      It will be helpful to label and add figure legends below each figure.

      Thank you for the suggestion.

      Editor's note:

      Should you choose to revise your manuscript, if you have not already done so, please include full statistical reporting including exact p-values wherever possible alongside the summary statistics (test statistic and df) and, where appropriate, 95% confidence intervals. These should be reported for all key questions and not only when the p-value is less than 0.05 in the main manuscript. We noted some instances where only p values are reported.

      Readers would also benefit from coding individual data points by sex and noting N/sex.

      We have included detailed statistical information in the revised manuscript. Both male and female mice were used in all experiments in approximately equal numbers. Since no sex-related differences were observed, we did not report the number of animals by sex.

      References

      Alcacer, C., L. Andreoli, I. Sebastianutto, J. Jakobsson, T. Fieblinger and M. A. Cenci (2017). "Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy." J Clin Invest 127(2): 720-734.

      Crittenden, J. R., P. W. Tillberg, M. H. Riad, Y. Shima, C. R. Gerfen, J. Curry, D. E. Housman, S. B. Nelson, E. S. Boyden and A. M. Graybiel (2016). "Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons." Proc Natl Acad Sci U S A 113(40): 11318-11323.

      Dong, J., L. Wang, B. T. Sullivan, L. Sun, V. M. Martinez Smith, L. Chang, J. Ding, W. Le, C. R. Gerfen and H. Cai (2025). "Molecularly distinct striatonigral neuron subtypes differentially regulate locomotion." Nat Commun 16(1): 2710.

      Dudman, J. T. and J. W. Krakauer (2016). "The basal ganglia: from motor commands to the control of vigor." Curr Opin Neurobiol 37: 158-166.

      Evans, R. C., E. L. Twedell, M. Zhu, J. Ascencio, R. Zhang and Z. M. Khaliq (2020). "Functional Dissection of Basal Ganglia Inhibitory Inputs onto Substantia Nigra Dopaminergic Neurons." Cell Rep 32(11): 108156.

      Gerfen, C. R. and D. J. Surmeier (2011). "Modulation of striatal projection systems by dopamine." Annual review of neuroscience 34: 441-466.

      Hawes, S. L., A. G. Salinas, D. M. Lovinger and K. T. Blackwell (2017). "Long-term plasticity of corticostriatal synapses is modulated by pathway-specific co-release of opioids through kappa-opioid receptors." J Physiol 595(16): 5637-5652.

      Lazaridis, I., J. R. Crittenden, G. Ahn, K. Hirokane, T. Yoshida, A. Mahar, V. Skara, K. Meletis, K. Parvataneni, J. T. Ting, E. Hueske, A. Matsushima and A. M. Graybiel (2024). "Striosomes Target Nigral Dopamine-Containing Neurons via Direct-D1 and Indirect-D2 Pathways Paralleling Classic Direct-Indirect Basal Ganglia Systems." bioRxiv.

      Nadel, J. A., S. S. Pawelko, J. R. Scott, R. McLaughlin, M. Fox, M. Ghanem, R. van der Merwe, N. G. Hollon, E. S. Ramsson and C. D. Howard (2021). "Optogenetic stimulation of striatal patches modifies habit formation and inhibits dopamine release." Sci Rep 11(1): 19847.

      Okunomiya, T., D. Watanabe, H. Banno, T. Kondo, K. Imamura, R. Takahashi and H. Inoue (2025). "Striosome Circuitry Stimulation Inhibits Striatal Dopamine Release and Locomotion." J Neurosci 45(4).

      Shan, Q., Q. Fang and Y. Tian (2022). "Evidence that GIRK Channels Mediate the DREADD-hM4Di Receptor Activation-Induced Reduction in Membrane Excitability of Striatal Medium Spiny Neurons." ACS Chem Neurosci 13(14): 2084-2091.

      Wu, J., J. Kung, J. Dong, L. Chang, C. Xie, A. Habib, S. Hawes, N. Yang, V. Chen, Z. Liu, R. Evans, B. Liang, L. Sun, J. Ding, J. Yu, S. Saez-Atienzar, B. Tang, Z. Khaliq, D. T. Lin, W. Le and H. Cai (2019). "Distinct Connectivity and Functionality of Aldehyde Dehydrogenase 1a1-Positive Nigrostriatal Dopaminergic Neurons in Motor Learning." Cell Rep 28(5): 1167-1181 e1167.

      Yang, C. F., M. C. Chiang, D. C. Gray, M. Prabhakaran, M. Alvarado, S. A. Juntti, E. K. Unger, J. A. Wells and N. M. Shah (2013). "Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males." Cell 153(4): 896-909.

    1. Author response:

      Reviewer #1 (Public Review):

      The study would benefit from clearer evidence and additional experiments that would help to establish the molecular and cellular mechanisms underlying the brain phenotype, the central topic of the work.

      We agree that additional experiments are necessary to elucidate the mechanism(s) by which EML3 deficiency causes the observed developmental phenotypes. However, as no further experimentation is possible due to the closure of our laboratory, we are committed to sharing available materials—including custom antibodies and cryopreserved sperm from our mouse lines. We will include previously generated experimental data not presented in the original submission. While these additional data do not reveal the mechanisms, we believe that sharing hypotheses that were experimentally ruled out will benefit the scientific community.

      Reviewer #2 (Public Review):

      While the manuscript presents valuable data, there are also several weaknesses that limit the overall impact of the study. Most notably, there is no clear mechanistic link established between the loss of Eml3 function and the observed phenotype, leaving the biological significance of the findings somewhat speculative, as it is not straightforward how a microtubule-associated protein can have an impact on the stability of the pial basement membrane. In this respect, but also in general for the whole manuscript, there seems to be a considerable amount of experimental work that has been conducted but is not presented, possibly due to the negative nature of the results. At least some of those results could be shown, particularly (but not only) the stainings for the composition of the ECM components.

      We agree that additional experiments are necessary to elucidate the mechanisms at play. While we cannot conduct further experiments, we will include additional existing data, including supplemental ECM component staining, in a new figure or panel. As this reviewer rightly anticipated, these results might not clarify the mechanism but sharing the hypotheses that were already experimentally tested will be helpful.

      Additionally, the phenotype reported appears to be dependent on the genetic background, as it is absent in the CD1 strain. This observation raises concerns as to how robust the results are and how much they can be generalized to other mouse strains, but, more importantly, to humans.

      Indeed, we have determined that genetic background greatly influences the manifestation of developmental defects caused by absence or mutation of the EML3 protein in mice. Modifier genes appear to play a significant role in phenotypic expression. In humans, the presence or absence of such modifiers may result in a broad spectrum of outcomes—from no clinical relevance, as seen in CD1 mice, to potential intrauterine mortality. We agree that this underscores the challenge of translating mouse model findings to human implications. Future studies could include a search for EML3 non-coding regulatory mutations and expanded analysis of neuronal development defects, such as COB, as well as cases of intrauterine growth restriction (IUGR).

      There is no data included in the manuscript about the generation and analysis of the Eml3AAA/AAA mouse line. This is an important omission, especially as no details on the validation or phenotypic characterization of this additional mouse line are provided. Including these elements would greatly strengthen the rigor and interpretability of the work, especially if that mouse line is to be shared with the scientific community.

      We acknowledge this oversight and will add a Materials and Methods section describing the generation of Eml3 TQT86AAA mice as well as validation and phenotypic characterizations that were done for that mouse line.

      Reviewer #3 (Public Review):

      Besides the data provided in the figures, the authors report a significant amount of experiments/results as "Data not shown". Negative data is still important data to report, and the authors may want to choose some crucial "not shown data" to report in the manuscript.

      We will incorporate key datasets previously omitted, with priority given to those requested by Reviewer #2.

      Results in Figure 3A apparently contradict results in 3B. A better explanation of the results should improve understanding of the data. Even though the conclusion that the "onset and progression of neurogenesis is normal in Eml3 null mice" seems logical based on the data, the final numbers are not (Figure 3A) and this should be acknowledged, as well.

      We will provide further explanations for the data presented in figures 3A and 3B to better convey the fact that the two datasets are not contradicting. In essence, since Eml3 null mice are developmentally delayed (as determined by the number of somites at a specific age, Fig. 1C), the milestones in neurogenesis are reached at a later age in Eml3 null mice (Fig. 3A). However, Eml3 null mice have reached the same neurogenesis milestones as their WT counterparts when they have the same number of somites (Fig. 3B).

      The authors should define which cell types are identified by SOX1 and PAX6.

      We will expand our manuscript to define the expression timing and cell identity marked by SOX1 and PAX6 in neural progenitors during cortical development.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary: 

      During early Drosophila pupal development, a subset of larval abdominal muscles (DIOMs) is remodelled using an autophagy-dependent mechanism. 

      To better understand this not very well studied process, the authors have generated a transcriptomics time course using dissected abdominal muscles of various stages from wild-type and autophagy-deficient mutants. The authors have further identified a function for BNIP3 in muscle mitophagy using this system. 

      Strengths: 

      (1) The paper does provide a detailed mRNA time course resource for DIOM remodeling. 

      (2) The paper does find an interesting BNIP3 loss of function phenotype, a block of mitophagy during muscle remodeling, and hence identifies a specific linker between mitochondria and the core autophagy machinery. This adds to the mechanism of how mitochondria are degraded. 

      (3) Sophisticated fly genetics demonstrates that the larval muscle mitochondria are, to a large extent, degraded by autophagy during DIOM remodeling. 

      Weaknesses: 

      (1) Mitophagy during DIOM remodeling is not novel (earlier papers from Fujita et al.). 

      (2) The transcriptomics time course data are not well connected to the autophagy part. Both could be separated into 2 independent manuscripts. 

      (3) The muscle phenotypes need better quantifications, both for the EM and light microscopy data in various figures. 

      (4) The transcriptomics data are hard to browse in the provided PDF format. 

      Thank you for reviewing our manuscript and for your feedback. While we understand and appreciate the suggestion to divide the manuscript into two separate studies, we believe that presenting the work as a single manuscript is more appropriate. This is because the time-course RNA-seq of DIOMs provides critical insight into BNIP3-mediated mitophagy during DIOM remodeling, which ties together the two components of our study. In response to Reviewer #1’s recommendations, we have quantified data from both EM and confocal images, and we have revised the RNA counts table in Supplementary File 1 accordingly. Please see our detailed responses and revisions on the following pages.

      Reviewer #2 (Public review): 

      Summary: 

      Autophagy (macroautophagy) is known to be essential for muscle function in flies and mammals. To date, many mitophagy (selective mitochondrial autophagy) receptors have been identified in mammals and other species. While the loss of mitophagy receptors has been shown to impair mitochondrial degradation (e.g., OPTN and NDP52 in Parkin-mediated mitophagy and NIX and BNIP3 in hypoxia-induced mitophagy) at the level of cultured cells, it remains unclear, especially under physiological conditions in vivo. In this study, the authors revealed that one of the receptors BNIP3 plays a critical role in mitochondrial degradation during muscle remodeling in vivo. 

      Overall, the manuscript provides solid evidence that BNIP3 is involved in mitophagy during muscle remodeling with in vivo analyses performed. In particular, all experiments in this study are well-designed. The text is well written and the figures are very clear. 

      Strengths: 

      (1) In each experiment, appropriate positive and negative controls are used to indicate what is responsible for the phenomenon observed by the authors: e.g. FIP200, Atg18, Stx17 siRNAs during DIOM remodeling in Figure 2 and Full, del-LIR, del-MER in Figure 5. 

      (2) Although the transcriptional dynamics of DIOM remodeling during metamorphosis is autophagy-independent, the transcriptome data obtained by the authors would be valuable for future studies. 

      (3) In addition to the simple observation that loss of BNIP3 causes mitochondrial accumulation, the authors further observed that, by combining siRNA against STX17, which is required for fusion of autophagosomes with lysosomes, BNIP3 KO abolishes mitophagosome formation, which will provide solid evidence for BNIP3-mediated mitophagy. Furthermore, using a Gal80 temperature-sensitive approach, the authors showed that mitochondria derived from larval muscle, but not those synthesized during hypertrophy, remain in BNIP3 KO fly muscles. 

      Weaknesses: 

      (1) Because BNIP3 KO causes mitochondrial accumulation, it is expected that adult flies will have some physiological defects, but this has not been fully analyzed or sufficiently mentioned in the manuscript. 

      (2) In Figure 5, the authors showed that BNIP3 binds to Atg18a by co-IP, but no data are provided on whether MER-mut or del-MER attenuates the affinity for Atg18a. 

      Thank you for pointing out the critical issues in the previous version of our manuscript. In this revision, we have conducted several physiological assays using BNIP3 KO flies, as well as co-IP experiments to confirm that the DMER weakens the interaction with Atg18a. We have also addressed all the recommendations provided. Please see our detailed point-by-point responses below.

      Reviewer #3 (Public review): 

      Summary: 

      Fujita et al build on their earlier, 2017 eLife paper that showed the role of autophagy in the developmental remodeling of a group of muscles (DIOM) in the abdomen of Drosophila. Most larval muscles undergo histolysis during metamorphosis, while DIOMs are programmed to regrow after initial atrophy to give rise to temporary adult muscles, which survive for only 1 day after eclosion of the adult flies (J Neurosci. 1990;10:403-1. and BMC Dev Biol 16, 12, 2016). The authors carry out transcriptomics profiling of these muscles during metamorphosis, which is in agreement with the atrophy and regrowth phases of these muscles. Expression of the known mitophagy receptor BNIP3/NIX is high during atrophy, so the authors have started to delve more into the role of this protein/mitophagy in their model. BNIP3 KO indeed impairs mitophagy and muscle atrophy, which they convincingly demonstrate via nice microscopy images. They also show that the already known Atg8a-binding LIR and Atg18a-binding MER motifs of human NIX are conserved in the Drosophila protein, although the LIR turned out to be less critical for in vivo protein function than the MER motif. 

      Strengths: 

      Established methodology, convincing data, in vivo model. 

      Weaknesses: 

      The significance for Drosophila physiology and for human muscles remains to be established. 

      Thank you for reviewing our manuscript. In response to the comment, we have performed lifespan, adult locomotion, and eclosion assays in BNIP3 KO flies. Although we observed substantial mitochondrial accumulation in the DIOMs of BNIP3 KO flies, no significant differences were detected in these physiological assays under our experimental conditions. We plan to further investigate the physiological role of BNIP3 in flies and extend our studies to human muscle in future work. Please see our detailed responses below.

      Reviewer #1 (Recommendations for the authors): 

      Major points: 

      (1) Unfortunately, the RNA counts file table in Supplementary file 1 is a PDF and not an Excel sheet. The labelling makes it unclear from which time points and genotype the listed values on the 650-page files are. 

      We have now corrected the labelling of time points and genotypes in Supplementary File 1 to improve clarity and have provided the updated Excel file.

      Looking at these counts it seems that sarcomere genes (Mhc, bt, sls, wupA, TpnC ) are 10x to 100x lower in sample "ctrl_1" compared to the three other control samples. Which time point is that? It is essential to have access to the full dataset, wild type and autophagy-deficient, to be able to assess the quality of the RNA SEQ data. These need to be deposited in a public database or to be provided in a useful format. 

      Thank you for pointing that out. In the previous version, “Ctrl_1” referred to the Control sample at 1 day APF, when atrophy occurs. We have corrected the labeling in Supplementary File 1 accordingly and have deposited the RNA-seq data to GEO, where it is now publicly available (GSE293359).

      (2) Which statistical test was used to assess the differences in muscle volumes in Figure 2E? I was not able to find a table with the measured data.

      In Figure 2E, we used the Mann-Whitney test for statistical analysis. The raw data used for quantification have also been provided (Supplementary File 2).

      The shown volumes do not correlate with the scheme shown in Figure 2A, in particular at the larval stage the muscle seems much larger.

      We have revised the schematic models of muscle cells in Figures 1C and 2A in accordance with the reviewer’s suggestion.

      (3) It is important to remember that adult Drosophila muscles are not homogenous, at least not the adult leg and abdominal muscles, as they are organised as tubes with myofibrils closer to the surface, and nuclei as well as mitochondria largely in the centre (see PMID 33828099). Hence, only showing a single plane in the muscle images can be very misleading. The authors should at least provide virtual XZ-cross section views in Figure 3G to ensure that similar muscle planes are compared. This applies to the interpretation of both, the mitochondria and the myofibril phenotypes in wildtype vs BNIP3-KO. 

      Thank you for your comment. As suggested, we have added XZ-cross-sectional views in Figure 3G. The XY plane corresponds to a central section of the Z-stack, as indicated in the figure.

      (4) The EM images are nice, however only 2 of the 4 conditions shown were quantified. As the section plane can be misleading, at least several planes should be analysed also for wild type and BNIP3-KO, and not only for stx17 RNAi and the double mutant. 

      In response to the comment, we quantified the TEM images of wild-type and BNIP3-KO DIOMs and added the resulting graph to Figure 4C. The corresponding raw data have also been provided (Supplementary File 2).

      (5) How was Figure 5D, 5D' quantified? What corresponds to "regular", "medium", "high"? A statistical test is missing. I would rather conclude that MIR and LIR are redundant as double mutant appears to be stronger than both singles. This is also concluded in some sections of the text, so the authors seem to contradict themselves. Why not measure the mitochondria areas as done in Figure 6A' instead? 

      In the previous version, we manually categorized pooled, blinded images from different genotypes. However, as the reviewer pointed out, this approach was not quantitative. In the revised version, we analyzed the images using ImageJ to quantify the mitochondrial area per cell. Statistical significance was assessed using the Kruskal-Wallis test. Accordingly, we have revised Figure 5D, the method section, and the figure legend.

      (6) Figure 6B data seem to come from a single image per genotype only. At least 3 or 4 animals should be measured and the values reported. 

      We analyzed Pearson’s correlation coefficients (R values) from at least five images per genotype and performed statistical analysis. The resulting quantification is presented in Figure 6B’, and the corresponding text has been revised accordingly.

      (7) As BNIP3 mutants are viable, it would be interesting to report if they can fly and how long they live. 

      Additional data on adult lifespan, climbing ability, and elapsed time for eclosion in BNIP3 KO flies have been included as supplemental information (Figure 3-figure supplement 2). No significant differences were observed in those assays under our experimental conditions.

      (8) The transcriptomics data are not well linked to the autophagy mechanism. In particular, the mutant transcriptomics data are confusing, as the abstract seems to suggest that blocking autophagy impacts transcriptomics, which is not (strongly) the case. I would at least re-write this part, as it is currently misleading and sparks wrong expectations to the reader. Also throughout the text, the authors need to make clear if there are transcriptomic changes or not and if there are, how these are linked to autophagy. 

      In the abstract, we described the findings as “transcriptional dynamics independent of autophagy” (line 49) because the loss of autophagy had only a minimal effect on transcriptional changes. This conclusion is supported by the data presented in our manuscript. In the result section, we state: “In contrast to our prediction, the knockdown of Atg18a, FIP200, or Stx17 only had a slight impact on transcriptomic dynamics in DIOM remodeling (Fig. 2C), with only minor changes detected (Fig. 2-figure supplement 2G)” (lines 199-201). In the Discussion section, we further note: “The transcriptional dynamics associated with DIOM remodeling are largely independent of autophagy (Fig.2). Instead, our RNA-seq data suggest that it is regulated primarily by ecdysone signaling, with minimal influence from autophagy inhibition” (lines 326-328).

      (9) No table with the measured data is provided. 

      We have provided the raw data files corresponding to all quantified results as Supplementary File 2.

      Minor points: 

      (1) To my knowledge, it is standard to indicate the time after puparium formation in hours, instead of days, (e.g. 24h, 48h etc.). 

      Thank you for the comments. In our previous publications on DIOM remodeling during metamorphosis (PMID: 28063257 and 33077556), we used days rather than hours to indicate developmental time points. To maintain consistency across our studies, we have chosen to continue using days in the present manuscript.

      (2) "Myofibrils typically form beneath the sarcolemma (Mao et al., 2022; Sanger et al., 2010); therefore, when mitochondria accumulate, myofibrils are restricted to the cell periphery." This is quite a general statement that does not always hold, in particular not in Drosophila flight muscles and likely also not in abdominal muscles (see PMIDs 29846170, 28174246). 

      Thank you for pointing that out. We rewrote the sentence as follows: In the absence of BNIP3, mitochondria derived from the larval muscle accumulate and cluster in the cell center, physically obstructing myofibril formation during hypertrophy and restricting myofibrils to the cell periphery (Fig. 6E) (lines 392-394).

      Reviewer #2 (Recommendations for the authors): 

      Suggestions for improved or additional experiments, data or analyses. 

      The authors should test, by a co-IP experiment, whether BNIP3 mutants lose the interaction with HA-Atg18a. 

      As requested, we tested the effect of MER deletion on the interaction between BNIP3 and Atg18a in co-IP experiment. As shown in the new Fig. 5C, the deletion of MER weakened the interaction. This result was confirmed in three independent experiments. Its corresponding text has also been revised as follows: “We confirmed that HA-tagged Drosophila Atg18a co-immunoprecipitated with GFP-tagged full-length Drosophila BNIP3, and that this interaction was attenuated by the deletion of the MER (residues 42-53) (Fig. 5C)” (lines 270-273).

      Minor corrections to the text and figures 

      (1) In the list of authors, Kawaguchi Kohei could be Kohei Kawaguchi_._ 

      Thank you very much. It has been corrected.

      (2) In Fig3D, other receptors (Zonda, CG12511, Key, Ref2P) should be mentioned briefly. 

      Thank you for the suggestion. We have revised the sentences as follows: “The time course RNA-seq data (Fig. 1 and 2) indicated that, among the known mitophagy regulators, only BNIP3 was robustly expressed in 1 d APF DIOMs. In contrast, Zonda, CG12511, Pink1, Park, Key, Ref(2)P, and IKKe—the Drosophila orthologs of FKBP8, FUNDC1, PINK1, Parkin, Optineurin, p62, and TBK1, respectively—showed little or undetectable expression at this stage (Fig. 3D).” (lines 230-234).

      Reviewer #3 (Recommendations for the authors): 

      Remarks: 

      (1) What is the consequence of impaired muscle remodeling on the organismal level? Is the eclosion of adult flies impaired? One could think of assays for this, such as quantifying failed eclosions and/or video microscopy of the eclosion process. Is muscle function impaired? One could measure the contractile force of isolated fibers during electrical stimulation as well, etc. I believe that showing the physiological importance of muscle remodeling would be the biggest advantage that could arise from using a complete animal model.

      We appreciate the comments. We have added data on adult lifespan, climbing ability, and the elapsed time for eclosion in BNIP3 KO flies as supplemental information (Figures 3-figure supplement 2). In BNIP3 KO DIOMs, despite the massive accumulation of mitochondria, an organized peripheral myofibril layer with contractile function is retained. However, we have not measured the contractile force of isolated muscle cells due to technical limitations. We plan to address this in future studies.

      A related note is that I missed the proper discussion of the function and fate of these short-lived adult muscles (please see references in my summary). 

      We have added a sentence regarding the function and fate of DIOMs in the introduction (lines 80-82) as follows: “The remodeled adult DIOMs function during eclosion, persist for approximately 12 hours, and are subsequently eliminated via programmed cell death (Kimura and Truman, 1990; J Neurosci. 1990;10:403-1)”.

      (2) I don't think that "data not shown" should be used these days, when supplemental data allow the inclusion of not-so-critical results. 

      We have added the data as Figure 5-figure supplement 2. As shown in the figure, overexpression of GFP-BNIP3 in 3IL BWMs did not induce the formation of tdTomato-positive autolysosomes, which are abundantly accumulated in DIOMs at 1 and 2 d APF.

      (3) The term "naked mitochondria" does not sound scientific enough to this reviewer. I suggest "cytosolic mitochondria" or "unengulfed mitochondria". 

      In accordance with the reviewer’s suggestion, we have replaced “naked mitochondria” with “unengulfed mitochondria” (lines 251 and 670).

    1. Author Response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      Summary:

      This work uses a novel, ethologically relevant behavioral task to explore decision-making paradigms in C. elegans foraging behavior. By rigorously quantifying multiple features of animal behavior as they navigate in a patch food environment, the authors provide strong evidence that worms exhibit one of three qualitatively distinct behavioral responses upon encountering a patch: (1) "search", in which the encountered patch is below the detection threshold; (2) "sample", in which animals detect a patch encounter and reduce their motor speed, but do not stay to exploit the resource and are therefore considered to have "rejected" it; and (3) "exploit", in which animals "accept" the patch and exploit the resource for tens of minutes. Interestingly, the probability of these outcomes varies with the density of the patch as well as the prior experience of the animal. Together, these experiments provide an interesting new framework for understanding the ability of the C. elegans nervous system to use sensory information and internal state to implement behavioral state decisions.

      Strengths:

      The work uses a novel, neuroethologically-inspired approach to studying foraging behavior

      The studies are carried out with an exceptional level of quantitative rigor and attention to detail

      Powerful quantitative modeling approaches including GLMs are used to study the behavioral states that worms enter upon encountering food, and the parameters that govern the decision about which state to enter

      The work provides strong evidence that C. elegans can make 'accept-reject' decisions upon encountering a food resource

      Accept-reject decisions depend on the quality of the food resource encountered as well as on internally represented features that provide measurements of multiple dimensions of internal state, including feeding status and time

      Reviewer #2 (Public review):

      This study provides an experimental and computational framework to examine and understand how C. elegans make decisions while foraging environments with patches of food. The authors show that C. elegans reject or accept food patches depending on a number of internal and external factors.

      The key novelty of this paper is the explicit demonstration of behavior analysis and quantitative modeling to elucidate decision-making processes. In particular, the description of the exploring vs. exploiting phases, and sensing vs. non-sensing categories of foraging behavior based on the clustering of behavioral states defined in a multi-dimensional behavior-metrics space, and the implementation of a generalized linear model (GLM) whose parameters can provide quantitative biological interpretations.

      The work builds on the literature of C. elegans foraging by adding the reject/accept framework.

      Reviewer #3 (Public review):

      Summary:

      In this study by Haley et al, the authors investigated explore-exploit foraging using C. elegans as a model system. Through an elegant set of patchy environment assays, the authors built a GLM based on past experience that predicts whether an animal will decide to stay on a patch to feed and exploit that resource, instead of choosing to leave and explore other patches.

      Strengths:

      I really enjoyed reading this paper. The experiments are simple and elegant, and address fundamental questions of foraging theory in a well-defined system. The experimental design is thoroughly vetted, and the authors provide a considerable volume of data to prove their points. My only criticisms have to do with the data interpretation, which I think are easily addressable.

      Weaknesses:

      History-dependence of the GLM

      The logistic GLM seems like a logical way to model a binary choice, and I think the parameters you chose are certainly important. However, the framing of them seem odd to me. I do not doubt the animals are assessing the current state of the patch with an assessment of past experience; that makes perfect logical sense. However, it seems odd to reduce past experience to the categories of recently exploited patch, recently encountered patch, and time since last exploitation. This implies the animals have some way of discriminating these past patch experiences and committing them to memory. Also, it seems logical that the time on these patches, not just their density, should also matter, just as the time without food matters. Time is inherent to memory. This model also imposes a prior categorization in trying to distinguish between sensed vs. not-sensed patches, which I criticized earlier. Only "sensed" patches are used in the model, but it is questionable whether worms genuinely do not "sense" these patches.

      It seems more likely that the worm simply has some memory of chemosensation and relative satiety, both of which increase on patches and decrease while off of patches. The magnitudes are likely a function of patch density. That being said, I leave it up to the reader to decide how best to interpret the data.

      Model design: We agree with the reviewer that past experience is not likely to be discretized into the exact parameters of our model. We have added to our manuscript to further clarify this point (lines 645-647). Investigating the mechanisms behind this behavior is beyond the scope of this project but is certainly an exciting trajectory for future C. elegans research.

      osm-6

      The argument is that osm-6 animals can't sense food very well, so when they sense it, they enter the exploitation state by default. That is what they appear to do, but why? Clearly they are sensing the food in some other way, correct? Are ciliated neurons the only way worms can sense food? Don't they also actively pump on food, and can therefore sense the food entering their pharynx? I think you could provide further insight by commenting on this. Perhaps your decision model is dependent on comparing environmental sensing with pharyngeal sensing? Food intake certainly influences their decision, no? Perhaps food intake triggers exploitation behavior, which can be over-run by chemo/mechanosensory information?

      osm-6 behavior: We thank the reviewer for pointing out the need to further elaborate on a mechanistic hypothesis to explain the behavior of osm-6 sensory mutants. We agree with the reviewer’s speculation that post-ingestive and other non-ciliary sensory cues likely drive detection of food. We have added additional commentary to our manuscript to state this (lines 529-538).

      Impact

      I think this work will have a solid impact on the field, as it provides tangible variables to test how animals assess their environment and decide to exploit resources. I think the strength of this research could be strengthened by a reassessment of their model that would both simplify it and provide testable timescales of satiety/starvation memory.

      Reviewer #2 (Recommendations for the authors):

      The authors have addressed most of my concerns.

      Reviewer #3 (Recommendations for the authors):

      The authors provide a considerable amount of processed data (great, thank you!), but it would be even better if they provided the raw data of the worm coordinates, and when and where these coordinates overlapped with patches. This is the raw data that was ultimately used for all the quantifications in the paper, and would be incredibly useful to readers who are interested in modeling the data themselves.

      This should not be prohibitive.

      Data Availability: We thank the reviewer for pointing out this need. We are uploading all processed data (e.g. worm coordinates relative to the arena and patches) to a curated data storage server. We have updated our data availability statement to state this (lines 684-688).

      Search vs. sample & sensing vs. non-sensing.

      The different definitions of behaviors in Figures 2H-K are a bit confusing. I think the confusion stems in part from the changing terms and color associations in Figures 2 H-K. Essentially the explore density in Figure 2 H is split into two densities based on the two densities (sensing vs. non-responding) observed in Figure 2I. In turn, the sensing density in Figure 2I is split into two densities (explore vs exploit) based on the two densities observed in Figure 2 H. But the way the figures are colored, yellow means search (Figure 2H) and non-responding (Figure 2I), green means exploit (Figure 2H) which includes sensing and non-responding, but also exclusively sensing (Figure 2I), and blue consistently means exploit in both figures. It might help to use two different color codes for Figures 2H and 2I, and then in 2J you define search as explore AND non-responding, sample as explore AND sensing, and exploit as exploit.

      Color schema: While we understand the confusion, we believe that introducing additional colors may also present some misunderstandings. We have decided to leave the figure as it is.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Two important factors in visual performance are the resolving power of the lens and the signal-to-noise ratio of the photoreceptors. These both compete for space: a larger lens has improved resolving power over a smaller one, and longer photoreceptors capture more photons and hence generate responses with lower noise. The current paper explores the tradeoff of these two factors, asking how space should be allocated to maximize eye performance (measured as encoded information).

      Your summary is clear, concise and elegant. The competition is not just for space, it is for space, materials and energy. We  now emphasise that we are considering these three costs in our rewrites of the Abstract and the first paragraph of the Discussion.  

      Strengths:

      The topic of the paper is interesting and not well studied. The approach is clearly described and seems appropriate (with a few exceptions - see weaknesses below). In most cases, the parameter space of the models are well explored and tradeoffs are clear.  

      Weaknesses:

      Light level

      The calculations in the paper assume high light levels (which reduces the number of parameters that need to be considered). The impact of this assumption is not clear. A concern is that the optimization may be quite different at lower light levels. Such a dependence on light level could explain why the model predictions and experiment are not in particularly good agreement. The paper would benefit from exploring this issue.

      Thank you for raising this point. We briefly explained in our original Discussion, under Understanding the adaptive radiation of eyes (Version 1, Iines 756 – 762), how our method can be modified to investigate eyes adapted for lower light levels. We have some thoughts on how eyes might be adapted. In general, transduction rates are increased by increasing D, reducing f, increasing d<sub>rh</sub> and increasing L . In addition, d<sub>rh</sub> is increased to allow for a larger D within the constraint of eye radius/corneal surface area, and to avoid wasteful oversampling (the changes in D, f and d<sub>rh</sub> increase acceptance angle ∆ρ). We suspect that in eyes optimised for the efficient use of space, materials and energy the increases in L will be relatively small, first because  increasing D, reducing f and increasing d<sub>rh</sub> are much more effective at increasing transduction rate than increasing L. Second, increasing sensitivity by reducing f decreases the cost Vo whereas increasing sensitivity by increasing L increases the cost V<sub>ph</sub>. This disadvantage, together with exponential absorption, might explain why L is only 10% - 20% longer in the apposition eyes of nocturnal bees (Somanathan et al, J. comp. Physiol. A195, 571583, 2009). Because this line of argument is speculative and enters new territory, we have not included it in our revised version. We already present a lot of new material for readers to digest, and we agree with referee 2 that “It is possible to extend the theory to other types of eyes, although it would likely require more variables and assumptions/constraints to the theory. It is thus good to introduce the conceptual ideas without overdoing the applications of the theory”. Nonetheless, we take your point that some of the eyes in our data set might be adapted for lower light levels, and we have rewritten the Discussion section, How efficiently do insects allocate resources within their apposition eyes accordingly. On line 827 – 843 we address the assumption that eyes are adapted for full daylight,  and also take the opportunity  to mention two more reasons for increasing the eye parameter p: namely increasing image velocity (Snyder, 1979), and constructing  bright zones that increase the detectability of small targets (van Hateren et al., 1989; Straw et al., 2006).

      Discontinuities

      The discontinuities and non-monotonicity of the optimal parameters plotted in Figure 4 are concerning. Are these a numerical artifact? Some discussion of their origin would be quite helpful.

      Good points, we now address the discontinuities in the Results, where they are first observed (lines 311 - 319) 

      Discrepancies between predictions and experiment

      As the authors clearly describe, experimental measurements of eye parameters differ systematically from those predicted. This makes it difficult to know what to take away from the paper. The qualitative arguments about how resources should be allocated are pretty general, and the full model seems a complex way to arrive at those arguments. Could this reflect a failure of one of the assumptions that the model rests on - e.g. high light levels, or that the cost of space for photoreceptors and optics is similar? Given these discrepancies between model and experiment, it is also hard to evaluate conclusions about the competition between optics and photoreceptors (e.g. at the end of the abstract) and about the importance for evolution (end of introduction).

      Your misgivings boil down to two issues: what use is a model that fails to fit the data, and do we need a complicated model to show something that seems to be intuitively obvious?  Our study is useful because it introduces new approaches, methods, factors and explanations which advance our analysis and understanding of eye design and evolution. Your comments make it clear that we failed to get this message across and we have revised the manuscript accordingly. We have rewritten the Abstract and the first paragraph of the Discussion to emphasise the value of our new measure of cost, specific volume, by including more of its practical advantages. In particular, our use of specific volume 1) opens the door to the morphospace of all eyes of given type and cost. 2) This allows one to construct performance surfaces across morphospace that not only identify optima, but by evaluating the sub-optimal cast light on efficiency and adaptability. 3) Shows that photoreceptor energy costs have a major impact on design and efficiency, and 4) allows us to calculate and compare the capacities and efficiencies of compound eyes and simple eyes using a superior measure of cost. It is also possible that your dissatisfaction was deepened by disappointment. The first sentence of our original Abstract said that the goal of design is to maximize performance, so you might have expected to see that eyes are optimised.  Given that optimization provides cast iron proof that a system is designed to be efficient, and previous studies of coding by fly LMCs (Laughlin, 1981; Srinivasan et al., 1982 & van Hateren 1992) validated Barlow’s Efficient Coding Hypothesis by showing that coding is optimised, your expectation is reasonable. However, our investigation of how the allocation of resources to optics and photoreceptors affects an eye’s performance, efficiency and design does not depend a priori  on finding optima, therefore we have removed the “maximized”. Our revised Abstract now says, “to improve performance”.  

      In short, our study illustrates an old adage in statistics “All models fail to fit, but some are useful”. As is often the case, the way in which our model fails is useful. In the original version of the Results and Discussion, we argued that the allocation of resources is efficient, and identified factors that can, in principle, explain the scattering of data points. Indeed, our modelling identifies two of these deficiencies; a lack of data on species-specific energy usage, and the need for models that quantify the relationship between the quality of the captured image and the behavioural tasks for which an eye might be specialised. Thus, by examining the model’s failings we identify critical factors and pose new questions for future research.  We have rewritten the Discussion section How efficiently do insects allocate resources…. to make these points. We hope that these revisions will convince you that we have established a starting point for definitive studies, invented a vehicle that has travelled far enough to discover new territory, and shown that it can be modified to cope with difficult terrain.

      Turning to the need for a complicated model, because the costs and benefits depend on elementary optics and geometry, we too thought that there ought to be a simple model. However, when we tried to formulate a simple set of equations that approximate the definitive findings of our more complicated model we discovered that this is not as straightforward as we thought.  Many of the parameters in our model interact to determine costs and benefits, and many of these interactions are non-linear (e.g. the volumes of shells in spheres involve quadratic and cubic terms, and information depends on the log of a square root). So, rather than hold back publication of our complicated model, we decided to explain how it works as clearly as we can and demonstrate its value.

      In response to your final comment, “it is hard to evaluate conclusions about the competition between optics and photoreceptors (e.g. at the end of the abstract) and about the importance for evolution (end of introduction)”, we stand by our original argument. There must be competition in an eye of fixed cost, and because competition favours a heavy investment in photoreceptors, both in theory and in practice, it  is a significant factor in eye design. A match between investments in optics and photoreceptors is predicted by theory and observed in fly NS eyes, therefore this is a design principle. As for evolution, no one would deny that it is important to view the adaptive radiation of eyes through a cost-benefit lens. Our lens is the first to view the whole eye, optics and photoreceptor array, and the first to treat the costs of space, materials and energy. Although the view through our lens is a bit fuzzy, it reveals that costs, benefits and trade-offs are important. Thus we have established a promising starting point for a new and more comprehensive cost-benefit approach to understanding eye design and evolution.  As for the involvement of genes, when there are heritable changes in phenotype genes must be involved and if, as we suggest, efficient resource allocation is beneficial, the developmental mechanisms responsible for allocating resources to optics and photoreceptor array will be playing a formative role in eye evolution.

      Reviewer #2 (Public Review):

      Summary:

      In short, the paper presents a theoretical framework that predicts how resources should be optimally distributed between receptors and optics in eyes.

      Strengths:

      The authors build on the principle of resource allocation within an organism and develop a formal theory for optimal distribution of resources within an eye between the receptor array and the optics. Because the two parts of eyes, receptor arrays and optics, share the same role of providing visual information to the animal it is possible to isolate these from resource allocation in the rest of the animal. This allows for a novel and powerful way of exploring the principles that govern eye design. By clever and thoughtful assumptions/constraints, the authors have built a formal theory of resource allocation between the receptor array and the optics for two major types of compound eye as well as for camera-type eyes. The theory is formalized with variables that are well characterized in a number of different animal eyes, resulting in testable predictions.

      The authors use the theory to explain a number of design features that depend on different optimal distribution of resources between the receptor array and the optics in different types of eyes. As an example, they successfully explain why eye regions with different spatial resolution should be built in different ways. They also explain differences between different types of eyes, such as long photoreceptors in apposition compound eyes and much shorter receptors in camera type eyes. The predictive power in the theory is impressive.

      To keep the number of parameters at a minimum, the theory was developed for two types of compound eye (neural superposition, and apposition) and for camera-type eyes. It is possible to extend the theory to other types of eyes, although it would likely require more variables and assumptions/constraints to the theory. It is thus good to introduce the conceptual ideas without overdoing the applications of the theory.

      The paper extends a previous theory, developed by the senior author, that develops performance surfaces for optimal cost/benefit design of eyes. By combining this with resource allocation between receptors and optics, the theoretical understanding of eye design takes a major leap and provides entirely new sets of predictions and explanations for why eyes are built the way they are.

      The paper is well written and even though the theory development in the Results may be difficult to take in for many biologists, the Discussion very nicely lists all the major predictions under separate headings, and here the text is more tuned for readers that are not entirely comfortable with the formalism of the Results section. I must point out though that the Results section is kept exemplary concise. The figures are excellent and help explain concepts that otherwise may go above the head of many biologists.

      We are heartened by your appreciation of our manuscript - it persuaded us not to undertake extensive revisions – thank you.

      Reviewer #3 (Public Review):

      Summary:

      This is a proposal for a new theory for the geometry of insect eyes. The novel costbenefit function combines the cost of the optical portion with the photoreceptor portion of the eye. These quantities are put on the same footing using a specific (normalized) volume measure, plus an energy factor for the photoreceptor compartment. An optimal information transmission rate then specifies each parameter and resource allocation ratio for a variable total cost. The elegant treatment allows for comparison across a wide range of species and eye types. Simple eyes are found to be several times more efficient across a range of eye parameters than neural superposition eyes. Some trends in eye parameters can be explained by optimal allocation of resources between the optics and photoreceptors compartments of the eye.

      Strengths:

      Data from a variety of species roughly align with rough trends in the cost analysis, e.g. as a function of expanding the length of the photoreceptor compartment.

      New data could be added to the framework once collected, and many species can be compared.

      Eyes of different shapes are compared.

      Weaknesses:

      Detailed quantitative conclusions are not possible given the approximations and simplifying assumptions in the models and poor accounting for trends in the data across eye types.

      Reviewer #1 (Recommendations For The Authors):

      Figure 1: Panel E defines the parameters described in panel d. Consider swapping the order of those panels (or defining D and Delta Phi in the figure legend for d). Order follows narrative, eye types then match 

      We think that you are referring to Figure 1. We modified the legend.

      Lines 143-145: How does a different relative cost impact your results?

      Thank you for raising this question. Because our assumption that relative costs are the same is our starting point, and for optics it is not an obvious mistake, we do not raise your question here. We address your question where you next raise it because, for photoreceptors the assumption is obviously wrong.  We now emphasise that our method for accounting for photoreceptor energy costs can be applied to other costs. 

      Lines 187-190: Same as above - how do your results change if this assumption is not accurate?

      We have revised our manuscript to emphasise that we are dealing with the situation in which our initial assumption (costs per unit volume are equal) breaks down. On (lines 203 - 208) we write “ However, this assumption breaks down when we consider specific metabolic rates. To enable and power phototransduction, photoreceptors have an exceptionally high specific metabolic rate (energy consumed per gram, and hence unit volume, per second) (Laughlin et al., 1998; Niven et al., 2007; Pangršič et al., 2005). We account for this extra cost by applying an energy surcharge, S<sub>E</sub>. To equate…. 

      We also revised part of the Discussion section, Specific volume is a useful measure of cost to make it clear that we are able take account for situations in which the costs per unit volume are not equal, and we give our treatment of photoreceptor energy costs as an example of how this is done. On lines 626 - 640 we say  

      Cost estimates can be adjusted for situations in which costs per unit volume are not equal, as illustratedby our treatment of photoreceptor energy consumption.  To support transduction the photoreceptor array has an exceptionally high metabolic rate (Laughlin et al., 1998; Niven et al., 2007; Pangršič et al., 2005). We account forthis higher energy cost by using the animal’s specific metabolic rate (power per unit mass and hence power per unit volume) to convert an array’s power consumption into an equivalent volume (Methods). Photoreceptor ion pumps are the major consumers of energy and the smaller contribution of pigmented glia (Coles, 1989) is included in our calculation of the energy tariff K<sub>E</sub>. (Methods) The higher costs of materials and their turnover in the photoreceptor array can be added the energy tariff K<sub>E</sub> but given the magnitude of the light-gated current (Laughlin et al., 1998) the relative increase will be very small. Thus for our intents and purposes the effects of these additional costs are covered by our models. For want of sufficient data…”.

      Reviewer #2 (Recommendations For The Authors):

      A few comments for consideration by the authors:

      (1) In the abstract, Maybe give another example explaining why other eyes should be different to those of fast diurnal insects.

      This worthwhile extrapolation is best kept to the Discussion.

      (2) Would it be worthwhile mentioning that the photopigment density is low in rhabdoms compared to vertebrate outer segments? This will have major effects on the relative size of retina and optics.

      Thank you, we now make this good point in the Discussion (lines 698-702).

      (3) It took me a while to understand what you mean by an energy tariff. For the less initiated reader many other variables may be difficult to comprehend. A possible remedy would be to make a table with all variables explained first very briefly in a formal way and then explained again with a few more words for readers less fluent in the formalism.

      A very useful suggestion. We have taken your advice (p.4).

      (4) The "easy explanation" on lines 356-357 need a few more words to be understandable.

      We have expanded this argument, and corrected a mistake, the width of the head front to back is not 250 μm, it is 600 μm (lines 402-407)

      (5) Maybe devote a short paragraph in the Discussion to other types of eye, such as optical superposition eyes and pinhole eyes. This could be done very shortly and without formalism. I'm sure the authors already have a good idea of the optimal ratio of receptor arrays and optics in these eye types.

      We do not discuss this because we have not found a full account of the trade-offs and their  effects on costs and benefits. We hope that our analysis of apposition and simple eyes will encourage people to analyse the relationships between costs and benefits in other eye types. To this end we pointed out in the Discussion that recent advances in imaging and modelling could be helpful.

      (6)  Could the sentence on lines 668-671 be made a little clearer?

      “Efficiency is also depressed by increasing the photoreceptor energy tariff K<sub>E</sub>, and in line with the greater impact of photoreceptor energy costs in simple eyes, the reduction in efficiency is much greater in simple eyes (Figure 8b).0.

      We replaced this sentence with “In both simple and apposition eyes efficiency is reduced by increasing the photoreceptor energy tariff K<sub>E</sub>. This effect is much greater in simple eyes, thus as found for reductions in photoreceptor length (Figure 7b),K<sub>E</sub> has more impact on the design of simple eyes” (lines749 – 752).

      (7)  I have some reservations about the text on lines 789-796. The problem is that optics can do very little to improve the performance of a directional photoreceptor where delrho should optimally be very wide. Here, membrane folding is the only efficient way to improve performance (SNR). The option to reduce delrho for better performance comes later when simultaneous spatial resolution (multiple pixels) is introduced.

      Yes, we have been careless. We have rewritten this paragraph to say (lines 920-931)

      “Two key steps in the evolution of eyes were the stacking of photoreceptive membranes to absorb more photons, and the formation of optics to intercept more photons and concentrate them according to angle of incidence to form an image (Nilsson, 2013, 2021). Our modelling of well-developed image forming eyes shows that to improve performance stacked membranes (rhabdomeres) compete with optics for the resources invested in an eye, and this competition profoundly influences both form and function. It is likely that competition between optics and photoreceptors was shaping eyes as lenses evolved to support low resolution spatial vision. Thus the developmental mechanisms that allocate resources within modern high resolution eyes (Casares & MacGregor, 2021), by controlling cell size and shape, and as our study emphasises, gradients in size and shape across an eye, will have analogues or homologues in more ancient eyes. Their discovery….” (lines 920-931

      Reviewer #3 (Recommendations For The Authors):

      Suggestions for major revisions:

      While the approach is novel and elegant, the results from the analysis of insect morphology do not broadly support the optimization argument and hardly constrain parameters, like the energy tariff value, at all. The most striking result of the paper is the flat plateau in information across a broad range of shape parameters and the length, and resolution trend in Figure 5.

      At no point in the Results and Discussion do we argue that resource allocation is optimized. Indeed, we frequently observe that it is not. Our mistake was to start the Abstract by observing that animals evolve to minimise costs. We have rewritten the Abstract accordingly.

      The information peaks are quite shallow. This might actually be a very important and interesting result in the paper - the fact that the information plateaus could give the insect eye quite a wide range of parameters to slide between while achieving relatively efficient sensing of the environment. Instead of attempting to use a rather ad hoc and poorly supported measure of energetics in PR cost, perhaps the pitch could focus on this flexibility. K<sub>E</sub> does not seem to constrain eye parameters and does not add much to the paper.

      We agree, being able to construct performance surfaces across morphospace is an important advance in the field of eye design and evolution, and the performance surface’s flat top has interesting implications for the evolution of adaptations. Encouraged by your remarks, we have rewritten the Abstract and the introductory paragraph of the Discussion to draw attention to these points. 

      We are disappointed that we failed to convince you that our energy tariff, K<sub>E</sub> , is no better than a poorly supported ad hoc parameter that does not add much to the paper. In our opinion a resource allocation model that ignores photoreceptor energy consumption is obviously inadequate because the high energy cost of phototransduction is both wellknown and considered to be a formative factor in eye evolution (Niven and Laughlin, 2008). One of the advantages of modelling is that one can assess the impact of factors that are known to be present, are thought to be important, but have not been quantified. We followed standard modelling practice by introducing a cost that has the same units as the other costs and, for good physiological reasons, increases linearly with the number of microvilli, according to K<sub>E</sub>. We then vary this unknown cost parameter to discover when and why it is significant. We were pleased to discover that we could combine data on photoreceptor energy demands and whole animal metabolic rates to establish the likely range of K<sub>E</sub>. This procedure enabled us to unify the cost-benefit analyses of optics and photoreceptors, and to discover that realistic values of K<sub>E</sub> have a profound impact on the structure and performance of an efficient eye. We hope that this advance will encourage people to collect the data needed to evaluate K<sub>E</sub>.To emphasise the importance of K<sub>E</sub> and dispel doubts associated with the failure of the model to fit the data, we have revised two sections:  Flies invest efficiently in costly photoreceptor arrays in the Results, and How efficiently do insects allocate resources within their apposition eyes?  in the Discussion. These rewrites also explain why it is impossible for us to infer K<sub>E</sub> by adjusting its value so that the model’s predictions fit the data.

      The graphics after Figure 3 are quite dense and hard to follow. None of the plateau extent shown in Fig 3 is carried through to the subsequent plots, which makes the conclusions drawn from these figures very hard to parse. If the peak information occurs on a flat plateau, it would be more helpful to see those ranges of parameters displayed in the figures.

      Ideally one should do as you suggest and plot the extent of the plateau, but in our situation this is not very helpful. In the best data set, flies, optimised models predict D well, get close to ∆φ in larger eyes, and demonstrate that these optimum values are not very sensitive to K<sub>E</sub> L is a different matter, it is very sensitive to K<sub>E</sub> L which, as we show (and frequently remind) is poorly constrained by experimental data. The best we can do is estimate the envelope of L vs C<sub>tot</sub>  curves, as defined by a plausible range of K<sub>E</sub>L . Because most of the plateau boundaries you ask for will fall within this envelope, plotting them does little to clear the fog of uncertainty. We note that all three referees agree that our model can account for two robust trends, i) in apposition eyes L increase with optical resolving power and acuity, both within individual eyes and among eyes of different sizes, and ii) L is much longer is apposition eyes than in simple eyes. Nonetheless, the scatter of data points and their failure to fit creates a bad impression. We gave a number of reasons why the model does not fit the data points, but these were scattered throughout the Results and Discussion and, as referees 1 and 3 point out, this makes it difficult to draw convincing conclusions. To rectify this failing, we have rewritten two sections, in the Results Flies invest efficiently in costly photoreceptor arrays and in the Discussion, How efficiently do insects allocate resources within their apposition eyes?, to discuss these reasons en bloc, draw conclusions and suggest how better data and refinements to modelling could resolve these issues.  

      Throughout the figures, the discontinuities in the optimal cuts through parameter space are not sufficiently explained.

      We added a couple of sentences that address the “jumps” (lines 313 – 318)

      None of the data seems to hug any of the optimal lines and only weakly follow the trends shown in the plots. This makes interpretation difficult for the reader and should be better explained. The text can be a little telegraphic in the Results after roughly page 10, and requires several readings to glean insight into the manuscript's conclusions.

      We revised the Results section in which we compare the best data set, flies’  NS eyes with theoretical predictions, Flies invest efficiently in costly photoreceptor arrays,  to expand our interpretation of the data and clarify our arguments. The remaining sections have not been expanded. In the next section, which is on fused rhabdom apposition eyes, our interpretation of the scattering of data points follows the same line of argument. The remaining Results sections are entirely theoretical.  

      Overall, the rough conclusions outlined in the Results seem moderately supported by the matches of the data to the optimal information transmission cuts through parameter space, but only weakly.

      We agree, more data is required to test and refine our theoretical predictions.

      The Discussion is long and well-argued, and contains the most cogent writing in the manuscript.

      Thank you: this is most pleasing. We submitted our study to eLife because it allows longer Discussions, but we worried that ours was too long. However, we felt that our extensive Discussion was necessary for two reasons. First, we are introducing a new approach to understanding of eye design and evolution. Second, because the data on eye morphology and costs are limited, we had to make a number of assumptions and by discussing these, warts and all, we hoped to encourage experimentalists to gather more data and focus their efforts on the most revealing material.  

      Minor comments:

      We have acted upon most of your minor comments and we confine our remarks to our disagreements. We are grateful for your attention to details that we \textshould have picked up on.  

      It's a more standard convention to say "cost-benefit" rather than with a colon. 

      "equation" should be abbreviated "eq" or "eqn", never with a "t"

      when referring to the work of van Hateren, quote the paper and the database using "van Hateren" not just "Hateren"

      small latex note: use "\textit{SNR}" to get the proper formatting for those letters when in the math environment

      Line 100-110: "f" is introduced, but only f' is referenced in the figure. This should be explained in order. d_rh is not included in the figure. Also in this section, d_rh/f is also referenced before \Delta \rho_rf, which is the same quantity, without explanation.  

      Figure 1 shows eye structure and geometry. f’ is a lineal dimension of the eye but f is not, so f is not shown in Fig 1e. We eliminated the confusion surrounding ∆ρ<sub>rh</sub>  by deleting “and changing the acceptance angle of the photoreceptive waveguide ∆ρ<sub>rh</sub> (Snyder, 1979)”.  

      Fig 1 caption: this says "From dorsal to ventral," then describes trends that run ventral to dorsal, which is a confusing typo.

      Fig 3 - adding some data points to these plots might help the reader understand how (or if) K_E is constrained by the data.

      It is not possible to add data points because to total cost, Ctot ,is unknown.

      Fig 4c (and in other subplots): the jumps in L with C_tot could be explained better in the text - it wasn't clear to this reviewer why there are these discontinuities.

      Dealt with in the revised text (lines  310-318).

      Fig 4d: The caption for this subplot could be more clearly written.

      We have rewritten the subscript for subplot 4d.

      Fig 5 and other plots with data: please indicate which symbols are samples from the same species. This info is hard to reconstruct from the tables.

      We have revised Figure 5 accordingly. Species were already indicated in Figure 6.

      Line 328: missing equation number

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The objective of this research is to understand how the expression of key selector transcription factors, Tal1, Gata2, Gata3, involved in GABAergic vs glutamatergic neuron fate from a single anterior hindbrain progenitor domain is transcriptionally controlled. With suitable scRNAseq, scATAC-seq, CUT&TAG, and footprinting datasets, the authors use an extensive set of computational approaches to identify putative regulatory elements and upstream transcription factors that may control selector TF expression. This data-rich study will be a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators identified in the study. The data are displayed in some of the main and supplemental figures in a way that makes it difficult to appreciate and understand the authors' presentation and interpretation of the data in the Results narrative. Primary images used for studying the timing and coexpression of putative upstream regulators, Insm1, E2f1, Ebf1, and Tead2 with Tal1 are difficult to interpret and do not convincingly support the authors' conclusions. There appears to be little overlap in the fluorescent labeling, and it is not clear whether the signals are located in the cell soma nucleus.

      Strengths:

      The main strength is that it is a data-rich compilation of putative upstream regulators of selector TFs that control GABAergic vs glutamatergic neuron fates in the brainstem. This resource now enables future perturbation-based hypothesis testing of the gene regulatory networks that help to build brain circuitry.

      We thank Reviewer #1 for the thoughtful assessment and recognition of the extensive datasets and computational approaches employed in our study. We appreciate the acknowledgment that our efforts in compiling data-rich resources for identifying putative regulators of key selector transcription factors (TFs)—Tal1, Gata2, and Gata3—are valuable for future hypothesis-driven research.

      Weaknesses:

      Some of the findings could be better displayed and discussed.

      We acknowledge the concerns raised regarding the clarity and interpretability of certain figures, particularly those related to expression analyses of candidate upstream regulators such as Insm1, E2f1, Ebf1, and Tead2 in relation to Tal1. We agree that clearer visualization and improved annotation of fluorescence signals are crucial to accurately support our conclusions. In our revised manuscript, we will enhance image clarity and clearly indicate sites of co-expression for Tal1 and its putative regulators, ensuring the results are more readily interpretable. Additionally, we will expand explanatory narratives within the figure legends to better align the figures with the results section.

      Reviewer #2 (Public review):

      Summary:

      In the manuscript, the authors seek to discover putative gene regulatory interactions underlying the lineage bifurcation process of neural progenitor cells in the embryonic mouse anterior brainstem into GABAergic and glutamatergic neuronal subtypes. The authors analyze single-cell RNA-seq and single-cell ATAC-seq datasets derived from the ventral rhombomere 1 of embryonic mouse brainstems to annotate cell types and make predictions or where TFs bind upstream and downstream of the effector TFs using computational methods. They add data on the genomic distributions of some of the key transcription factors and layer these onto the single-cell data to get a sense of the transcriptional dynamics.

      Strengths:

      The authors use a well-defined fate decision point from brainstem progenitors that can make two very different kinds of neurons. They already know the key TFs for selecting the neuronal type from genetic studies, so they focus their gene regulatory analysis squarely on the mechanisms that are immediately upstream and downstream of these key factors. The authors use a combination of single-cell and bulk sequencing data, prediction and validation, and computation.

      We also appreciate the thoughtful comments from Reviewer #2, highlighting the strengths of our approach in elucidating gene regulatory interactions that govern neuronal fate decisions in the embryonic mouse brainstem. We are pleased that our focus on a critical cell-fate decision point and the integration of diverse data modalities, combined with computational analyses, has been recognized as a key strength.

      Weaknesses:

      The study generates a lot of data about transcription factor binding sites, both predicted and validated, but the data are substantially descriptive. It remains challenging to understand how the integration of all these different TFs works together to switch terminal programs on and off.

      Reviewer #2 correctly points out that while our study provides extensive data on predicted and validated transcription factor binding sites, clearly illustrating how these factors collectively interact to regulate terminal neuronal differentiation programs remains challenging. We acknowledge the inherently descriptive nature of the current interpretation of our combined datasets.

      In our revision, we will clarify how the different data types support and corroborate one another, highlighting what we consider the most reliable observations of TF activity. Additionally, we will revise the discussion to address the challenges associated with interpreting the highly complex networks of interactions within the gene regulatory landscape.

      We sincerely thank both reviewers for their constructive feedback, which we believe will significantly enhance the quality and accessibility of our manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The results in Figure 3 and several associated supplements are mainly a description/inventory of putative CREs some of which are backed to some extent by previous transgenic studies. But given the way the authors chose to display the transgenic data in the Supplements, it is difficult to fully appreciate how well the transgenic data provide functional support. Take, for example, the Tal +40kb feature that maps to a midbrain enhancer: where exactly does +40kb map to the enhancer region? Is Tal +40kb really about 1kb long? The legend in Supplemental Figure 6 makes it difficult to interpret the bar charts; what is the meaning of: features not linked to gene -Enh? Some of the authors' claims are not readily evident or are inscrutable. For example, Tal locus features accessible in all cell groups are not evident (Fig 2A,B). Other cCREs are said to closely correlate with selector expression for example, Tal +.7kb and +40kb. However, inspection of the data seems to indicate that the two cCREs have very different dynamics and only +40kb seems to correlate with the expression track above it. Some features are described redundantly such as the Gata2 +22 kb, +25.3 kb, and +32.8 kb cCREs above and below the Gata3 cCRE. What is meant by: The feature is accessible at 3' position early, and gains accessibility at 5' positions ... Detailed feature analysis later indicated the binding of Nkx6-1 and Ascl1 that are expressed in the rV2 neuronal progenitors, at 3' positions, and binding of Insm1 and Tal1 TFs that are activated in early precursors, at 5' positions (Figure 3C).

      To allow easier assessment of the overlap of the features described in this study in reference to the transgenic studies, we have added further information about the scATAC features, cCREs and previously published enhancers, as well as visual schematics of the feature-enhancer overlaps in the Supplementary table 4. The Supplementary Table 4 column contents are also now explained in detail in the table legend (under the table). We hope those changes make the feature descriptions clearer. To answer the reviewer's question about the Tal1+40kb enhancer, the length of the published enhancer element is 685 bp and the overlapping scATAC feature length is 2067 bp (Supplementary Table 3, sheet Tal1, row 103).

      The legend and the chart labelling in the Supplementary Figure 5 (formerly Supplementary figure 6) have been elaborated, and the shown categories explained more clearly.

      Regarding the features at the Tal1 locus, the text has been revised and the references to the features accessible in all cell groups were removed. These features showed differences in the intensity of signal but were accessible in all cell groups. As the accessibility of these features does not correlate with Tal1 expression, they are of less interest in the context of this paper.

      The gain in accessibility of the +0.7kb and +40 kb features correlates with the onset of Tal1 RNA expression. This is now more clearly stated in the text, as " For example, the gain in the accessibility of Tal1 cCREs at +0.7 and +40 kb correlated temporally with the expression of Tal1 mRNA (Figure 2B), strongly increasing in the earliest GABAergic precursors (GA1) and maintained at a lower level in the more mature GABAergic precursor groups (GA2-GA6), " (Results, page 4). The reviewer is right that the later dynamics of the +0.7 and +40 cCREs differ and this is now stated more clearly in the text (Results, page 5, last chapter).

      The repetition in the description of the Gata2 +22 kb, +25.3 kb, and +32.8 kb cCREs has been removed.

      The Tal1 +23 kb cCRE showed within-feature differences in accessibility signal. This is explained in the text on page 5, referring to the relevant figure 2A, showing the accessibility or scATAC signal in cell groups and the features labelled below, and 3C, showing the location of the Nkx6-1 and Ascl1 binding sites in this feature: "The Tal1 +23 kb cCRE contained two scATAC-seq peaks, having temporally different patterns of accessibility. The feature is accessible at 3' position early, and gains accessibility at 5' positions concomitant with GABAergic differentiation (Figure 2A, accessibility). Detailed feature analysis later indicated that the 3' end of this feature contains binding sites of Nkx6-1 and Ascl1 that are expressed in the rV2 neuronal progenitors, while the 5' end contains TF binding sites of Insm1 and Tal1 TFs that are activated in early precursors (described below, see Figure 3C)."

      (2) Supplementary Figure 3 is not presented in the Results.

      Essential parts of previous Supplementary Figure 3 have been incorporated into the Figure 4 and the previous Supplementary Figure omitted.

      (3) The significance of Figure 3 and the many related supplements is difficult to understand. A large number of footprints with wide-ranging scores, many very weak or unbound, are displayed in the various temporal cell groups in different epigenomic regions of Tal1 and Vsx2. The footprints for GA1 and Ga2 are combined despite Tal1 showing stronger expression in GA1 and stronger accessibility (Figure 2). Many possibilities are outlined in the Results for how the many different kinds of motifs in the cCREs might bind particular TFs to control downstream TF expression, but no experiments are performed to test any of the possibilities. How well do the TOBIAS footprints align with C&T peaks? How was C&T used to validate footprints? Are Gata2, 3, and Vsx2 known to control Tal1 expression from perturbation experiments?

      Figure 3 and related supplements present examples of the primary data and summarise the results of comprehensive analysis. The methods of identifying the selector TF regulatory features and the regulators are described in the Methods (Materials and Methods page 16). Briefly, the correlation between feature accessibility and selector TF RNA expression (assessed by the LinkPeaks score and p-value) were used to select features shown in the Figure 3.

      We are aware of differences in Tal1 expression and accessibility between GA1 and GA2. However, number of cells in GA2 was not high enough for reliable footprint calculations and therefore we opted for combining related groups throughout the rV2 lineage for footprinting.

      As suggested, CUT&Tag could be used to validate the footprinting results with some restrictions. In the revised manuscript, we included analysis of CUT&Tag peak location and footprints similarly to an earlier study (Eastman et al. 2025). In summary, we analysed whether CUT&Tag peaks overlap locations in which footprinting was also recognized and vice versa. Per each TF with CUT&Tag data we calculated a) Total number of CUT&Tag consensus peaks b) Total number of bound TFBS (footprints) c) Percentage of CUT&Tag overlapping bound TFBS d) Percentage of bound TFBS overlapping CUT&Tag. These results are shown in Supplementary Table 6 and in Supplementary figure 11 with analysis described in Methods (Materials and Methods, page 19). There is considerable overlap between CUT&Tag peaks and bound footprints, comparable to one shown in Eastman et al. 2025. However, these two methods are not assumed to be completely matching for several reasons: binding by related/redundant TFs, antigen masking in the TF complex, chromatin association without DNA binding, etc. In addition, some CUT&Tag peaks with unbound footprints could arise from non-rV2 cells that were part of the bulk CUT&Tag analysis but not of the scATAC footprint analysis.

      The evidence for cross-regulation of selector genes and the regulation of Tal1 by Gata2, Gata3 and Vsx2 is now discussed (Discussion, chapter Selector TFs directly autoregulate themselves and cross-regulate each other, page 12-13). The regulation of Tal1 expression by Vsx2 has, to our knowledge, not been earlier studied.

      (4) Figure 4 findings are problematic as the primary images seem uninterpretable and unconvincing in supporting the authors' claims. There is a lack of clear evidence in support of TF coexpression and that their expression precedes Tal1.

      Figure 4 has been entirely redrawn with higher resolution images and a more logical layout. In the revised Figure 4, only the most relevant ISH images are shown and arrowheads are added showing the colocalization of the mRNA in the cell cytoplasm. Next to the plots of RNA expression along the apical-basal axis of r1, an explanatory image of the quantification process is added (Figure 4D).

      (5) What was gained from also performing ChromVAR other than finding more potential regulators and do the results of the two kinds of analyses corroborate one another? What is a dual GATA:TAL BS?

      Our motivation for ChromVAR analysis is now more clearly stated in the text (Results, page 9): “In addition to the regulatory elements of GABAergic fate selectors, we wanted to understand the genome-wide TF activity during rV2 neuron differentiation. To this aim we applied ChromVAR (Schep et al., 2017)" Also, further explanation about the Tal1and Gata binding sites has been added in this chapter (Results, page 9).

      The dual GATA:Tal BS (TAL1.H12CORE.0.P.B) is a 19-bp motif that consists of an E-box and GATA sequence, and is likely bound by heteromeric Gata2-Tal1 TF complex, but may also be bound by Gata2, Gata3 or Tal1 TFs separately. The other TFBSs of Tal1 contain a strong E-box motif and showed either a lower activity (TAL1.H12CORE.1.P.B) or an earlier peak of activity in common precursors with a decline after differentiation (TAL1.H12CORE.2.P.B) (Results, page 9).

      (6) The way the data are displayed it is difficult to see how the C&T confirmed the binding of Ebf1 and Insm1, Tal1, Gata2, and Gata3 (Supplementary Figures 9-11). Are there strong footprints (scores) centered at these peaks? One can't assess this with the way the displays are organized in Figure 3. What is the importance of the H3K4me3 C&T? Replicate consistency, while very strong for some TFs, seems low for other TFs, e.g. Vsx2 C&T on Tal1 and Gata2. The overlaps do not appear very strong in Supplementary Figure 10. Panels are not letter labeled.

      We have added an analysis of footprint locations within the CUT&Tag peaks (Supplementary Figure 11). The Figure shows that the footprints are enriched at the middle regions of the CUT&Tag peaks, which is expected if TF binding at the footprinted TFBS site was causative for the CUT&Tag peaks.

      The aim of the Supplementary Figures 9-11 (Supplementary Figures 8-10 in the revised manuscript) was to show the quality and replicability of the CUT&Tag.

      The anti-H3K4me3 antibody, as well as the anti-IgG antibody, was used in CUT&Tag as part of experiment technical controls. A strong CUT&Tag signal was detected in all our CUT&Tag experiments with H3K4me3. The H3K4me3 signal was not used in downstream analyses.

      We have now labelled the H3K4me3 data more clearly as "positive controls" in the Supplementary Figure 8. The control samples are shown only on Supplementary Figure 8 and not in the revised Supplementary Figure 10, to avoid repetition. The corresponding figure legends have been modified accordingly.

      To show replicate consistency, the genome view showing the Vsx2 CUT&Tag signal at Gata2 gene has been replaced by a more representative region (Supplementary Figure 8, Vsx2). The Vsx2 CUT&Tag signal at the Gata2 locus is weak, explaining why the replicability may have seemed low based on that example.

      Panel labelling is added on Supplementary Figures S8, S9, S10.  

      (7) It would be illuminating to present 1-2 detailed examples of specific target genes fulfilling the multiple criteria outlined in Methods and Figure 6A.

      We now present examples of the supporting evidence used in the definition of selector gene target features and target genes. The new Supplementary Figure 12 shows an example gene Lmo1 that was identified as a target gene of Tal1, Gata2 and Gata3.

      Reviewer #2 (Recommendations for the authors):

      (1) The authors perform CUT&Tag to ask whether Tal1 and other TFs indeed bind putative CREs computed. However, it is unclear whether some of the antibodies (such as Gata3, Vsx2, Insm1, Tead2, Ebf1) used are knock-out validated for CUT&Tag or a similar type of assay such as ChIP-seq and therefore whether the peaks called are specific. The authors should either provide specificity data for these or a reference that has these data. The Vsx2 signal in Figure S9 looks particularly unconvincing.

      Information about the target specificity of the antibodies can be found in previous studies or in the product information. The references to the studies have been now added in the Methods (Materials and Methods, CUT&Tag, pages 18-19). Some of the antibodies are indeed not yet validated for ChIP-seq, Cut-and-run or CUT&Tag. This is now clearly stated in the Materials and Methods (page 19): "The anti-Ebf1, anti-Tal1, anti-IgG and anti-H3K4me3 antibodies were tested on Cut-and-Run or ChIP-seq previously (Boller et al., 2016b; Courtial et al., 2012) and Cell Signalling product information). The anti-Gata2 and anti-Gata3 antibodies are ChIP-validated ((Ahluwalia et al., 2020a) and Abcam product information). There are no previous results on ChIP, ChIP-seq or CUT&Tag with the anti-Insm1, anti-Tead2 and anti-Vsx2 antibodies used here. The specificity and nuclear localization have been demonstrated in immunohistochemistry with anti-Vsx2 (Ahluwalia et al., 2020b) and anti-Tead2 (Biorbyt product information). We observed good correlation between replicates with anti-Insm1, similar to all antibodies used here, but its specificity to target was not specifically tested". We admit that specificity testing with knockout samples would increase confidence in our data. However, we have observed robust signals and good replicability in the CUT&Tag for the antibodies shown here.

      Vsx2 CUT&Tag signal at the loci previously shown in Supplementary Figure S9 (now Supplementary Figure 8) is weak, explaining why the replicability may seem low based on those examples. The genome view showing the Vsx2 CUT&Tag signal at Gata2 gene locus in Supplementary Figure 8 (previously Supplementary figure 9) has now been replaced by a view of Vsx2 locus that is more representative of the signal.

      (2) It is unclear why the authors chose to focus on the transcription factor genes described in line 626 as opposed to the many other putative TFs described in Figure 3/Supplementary Figure 8. This is the major challenge of the paper - the authors are trying to tell a very targeted story but they show a lot of different names of TFs and it is hard to follow which are most important.

      We agree with the reviewer that the process of selection of the genes of interest is not always transparent. We are aware that interpretations of a paper are based on the known functions of the putative regulatory TFs, however additional aspects of regulation could be revealed even if the biological functions of all the TFs were known. This is now stated in the Discussion “Caveats of the study” chapter. It would be relevant to study all identified candidate genes, but as often is the case, our possibilities were limited by the availability of materials (probes, antibodies), time, and financial resources. In the revised manuscript, we now briefly describe the biological processes related to the selected candidate regulatory TFs of the Tal1 gene (Results, page 8, "Pattern of expression of the putative regulators of Tal1 in the r1"). We hope this justifies the focus on them in our RNA co-expression analysis. The TFs analysed by RNAscope ISH are examples, which demonstrate alignment of the tissue expression patterns with the scRNA-seq data, suggesting that the dynamics of gene expression detected by scRNA-seq generally reflects the pattern of expression in the developing brainstem.

      (3) How is the RNA expression level in Figure 5B and 4D-L computed? These are the clusters defined by scATAC-seq. Is this an inferred RNA expression? This should be made more clear in the text.

      The charts in Figures 5B and 4G,H,I show inferred RNA expression. The Y-axis labels have now been corrected and include the term inferred’. RNA expression in the scATAC-seq cell clusters is inferred from the scRNA-seq cells after the integration of the datasets.

      (4) The convergence of the GABA TFs on a common set of target genes reminds me of a nice study from the Rubenstein lab PMID: 34921112 that looked at a set of TFs in cortical progenitors. This might be a good comparison study for the authors to use as a model to discuss the convergence data.

      We thank the reviewer for bringing this article to our attention. The article is now discussed in the manuscript (Discussion, page 11).

      (5) The data in Figure 4, the in-situ figure, needs significant work. First, the images especially B, F, and J appear to be of quite low resolution, so they are hard to see. It is unclear exactly what is being graphed in C, G, and K and it does not seem to match the text of the results section. Perhaps better labeling of the figure and a more thorough description will make it clear. It is not clear how D, H, and L were supposed to relate to the images - presumably, this is a case where cell type is spatially organized, but this was unclear in the text if this is known and it needs to be more clearly described. Overall, as currently presented this figure does not support the descriptions and conclusions in the text.

      Figure 4 has been entirely redrawn with higher resolution images and more logical layout. In the revised Figure 4, the ISH data and the quantification plots are better presented; arrows showing the colocalization of the mRNA in the cell cytoplasm were added; and an explanatory image of the quantification process is added on (D).

      Minor points

      (1) Helpful if the authors include scATAC-seq coverage plots for neuronal subtype markers in Figure 1/S1.

      We are unfortunately uncertain what is meant with this request. Subtype markers in Figure 1/S1 scATAC-seq based clusters are shown from inferred RNA expression, and therefore these marker expression plots do not have any coverage information available.

      (2) The authors in line 429 mention the testing of features within TADs. They should make it clear in the main text (although tadmap is mentioned in the methods) that this is a prediction made by aggregating HiC datasets.

      Good point and that this detail has been added to both page 3 and 16.

      (3) The authors should include a table with the phastcons output described between lines 511 and 521 in the main or supplementary figures.

      We have now clarified int the text that we did not recalculate any phastcons results, we merely used already published and available conservation score per nucleotide as provided by the original authors (Siepel et al. 2005). (Results, page 5: revised text is " To that aim, we used nucleotide conservation scores from UCSC (Siepel et al., 2005). We overlaid conservation information and scATAC-seq features to both validate feature definition as well as to provide corroborating evidence to recognize cCRE elements.")

      (4) It is very difficult to read the names of the transcription factor genes described in Figure 3B-D and Supplementary Figure 8 - it would be helpful to resize the text.

      The Figures 3B-D and Supplementary Figure 7 (former Supplementary figure 8) have been modified, removing unnecessary elements and increasing the size of text.

      (5) It is unclear what strain of mouse is used in the study - this should be mentioned in the methods.

      Outbred NMRI mouse strain was used in this study. Information about the mouse strain is added in Materials and Methods: scRNA-seq samples (page 14), scATAC-seq samples (page 15), RNAscope in situ hybridization (page 17) and CUT&Tag (page 18).

      (6) Text size in Figure 6 should be larger. R-T could be moved to a Supplementary Figure.

      The Figure 6 has been revised, making the charts clearer and the labels of charts larger. The Figure 6R-S have been replaced by Supplementary table 8 and the Figure 6T is now shown as a new Figure (Figure 7).

      Additional corrections in figures

      Figure 6 D,I,N had wrong y-axis scale. It has been corrected, though it does not have an effect on the interpretation of the data as Pos.link and Neg.link counts were compared to each other’s (ratio).

      On Figure 2B, the heatmap labels were shifted making it difficult to identify the feature name per row. This is now corrected.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public reviews:

      Reviewer 1 (Public Review):

      Many thanks for the positive and constructive feedback on the manuscript.

      This study reveals a great deal about how certain neural representations are altered by expectation and learning on shorter and longer timescales, so I am loath to describe certain limitations as 'weaknesses'. But one limitation inherent in this experimental design is that, by focusing on implicit, task-irrelevant predictions, there is not much opportunity to connect the predictive influences seen at the neural level to the perceptual performance itself (e.g., how participants make perceptual decisions about expected or unexpected events, or how these events are detected or appear).

      Thank you for the interesting comment. We now discuss the limitation of task-irrelevant prediction . In brief, some studies which showed sharpening found that task demands were relevant, while some studies which showed dampening were based on task-irrelevant predictions, but it is unlikely that task relevance - which was not manipulated in the current study - would explain the switch between sharpening and dampening that we observe within and across trials.

      The behavioural data that is displayed (from a post-recording behavioural session) shows that these predictions do influence perceptual choice - leading to faster reaction times when expectations are valid. In broad strokes, we may think that such a result is broadly consistent with a 'sharpening' view of perceptual prediction, and the fact that sharpening effects are found in the study to be larger at the end of the task than at the beginning. But it strikes me that the strongest test of the relevance of these (very interesting) EEG findings would be some evidence that the neural effects relate to behavioural influences (e.g., are participants actually more behaviourally sensitive to invalid signals in earlier phases of the experiment, given that this is where the neural effects show the most 'dampening' a.k.a., prediction error advantage?)

      Thank you for the suggestion. We calculated Pearson’s correlation coefficients for behavioural responses (difference in mean reaction times), neural responses during the sharpening effect (difference in decoding accuracy), and neural responses during the dampening effect for each participant, which resulted in null findings.

      Reviewer 2 (Public Review):

      Thank you for your helpful and constructive comments on the manuscript.

      The strength in controlling for repetition effects by introducing a neutral (50% expectation) condition also adds a weakness to the current version of the manuscript, as this neutral condition is not integrated into the behavioral (reaction times) and EEG (ERP and decoding) analyses. This procedure remained unclear to me. The reported results would be strengthened by showing differences between the neutral and expected (valid) conditions on the behavioral and neural levels. This would also provide a more rigorous check that participants had implicitly learned the associations between the picture category pairings.

      Following the reviewer's suggestion, we have included the neutral condition in the behavioural analysis and performed a repeated measures ANOVA on all three conditions.

      It is not entirely clear to me what is actually decoded in the prediction condition and why the authors did not perform decoding over trial bins in prediction decoding as potential differences across time could be hidden by averaging the data. The manuscript would generally benefit from a more detailed description of the analysis rationale and methods.

      In the original version of the manuscript, prediction decoding aimed at testing if the upcoming stimulus category can be decoded from the response to the preceding ( leading) stimulus. However, in response to the other Reviewers’ comments we have decided to remove the prediction decoding analysis from the revised manuscript as it is now apparent that prediction decoding cannot be separated from category decoding based on pixel information.

      Finally, the scope of this study should be limited to expectation suppression in visual perception, as the generalization of these results to other sensory modalities or to the action domain remains open for future research.

      We have clarified the scope of the study in the revised manuscipt .

      Reviewer 3 (Public Review):

      Thank you for the thought-provoking and interesting comments and suggestions.

      (1) The results in Figure 2C seem to show that the leading image itself can only be decoded with ~33% accuracy (25% chance; i.e. ~8% above chance decoding). In contrast, Figure 2E suggests the prediction (surprisingly, valid or invalid) during the leading image presentation can be decoded with ~62% accuracy (50% chance; i.e. ~12% above chance decoding). Unless I am misinterpreting the analyses, it seems implausible to me that a prediction, but not actually shown image, can be better decoded using EEG than an image that is presented on-screen.

      Following this and the remaining comments by the Reviewer (see below), we have decided to remove the prediction analysis from the manuscript. Specifically, we have focused on the Reviewer’s concern that it is implausible that image prediction would be better decoded that an image that is presented on-screen. This led us to perform a control analysis, in which we tried to decode the leading image category based on pixel values alone (rather than on EEG responses). Since this decoding was above chance, we could not rule out the possibility that EEG responses to leading images reflect physical differences between image categories. This issue does not extend to trailing images, as the results of the decoding analysis based on trailing images are based on accuracy comparisons between valid and invalid trials, and thus image features are counterbalanced. We would like to thank the Reviewer for raising this issue

      (2) The "prediction decoding" analysis is described by the authors as "decoding the predictable trailing images based on the leading images". How this was done is however unclear to me. For each leading image decoding the predictable trailing images should be equivalent to decoding validity (as there were only 2 possible trailing image categories: 1 valid, 1 invalid). How is it then possible that the analysis is performed separately for valid and invalid trials? If the authors simply decode which leading image category was shown, but combine L1+L2 and L4+L5 into one class respectively, the resulting decoder would in my opinion not decode prediction, but instead dissociate the representation of L1+L2 from L4+L5, which may also explain why the time-course of the prediction peaks during the leading image stimulus-response, which is rather different compared to previous studies decoding predictions (e.g. Kok et al. 2017). Instead for the prediction analysis to be informative about the prediction, the decoder ought to decode the representation of the trailing image during the leading image and inter-stimulus interval. Therefore I am at present not convinced that the utilized analysis approach is informative about predictions.

      In this analysis, we attempted to decode ( from the response to leading images) which trailing categories ought to be presented. The analysis was split between trials where the expected category was indeed presented (valid) vs. those in which it was not (invalid). The separation of valid vs invalid trials in the prediction decoding analysis served as a sanity check as no information about trial validity was yet available to participants. However, as mentioned above, we have decided to remove the “prediction decoding” analysis based on leading images as we cannot disentangle prediction decoding from category decoding.

      (3) I may be misunderstanding the reported statistics or analyses, but it seems unlikely that >10  of the reported contrasts have the exact same statistic of Tmax= 2.76 . Similarly, it seems implausible, based on visual inspection of Figure 2, that the Tmax for the invalid condition decoding (reported as Tmax = 14.903) is substantially larger than for the valid condition decoding (reported as Tmax = 2.76), even though the valid condition appears to have superior peak decoding performance. Combined these details may raise concerns about the reliability of the reported statistics.

      Thank you for bringing this to our attention. This copy error has now been rectified.

      (4) The reported analyses and results do not seem to support the conclusion of early learning resulting in dampening and later stages in sharpening. Specifically, the authors appear to base this conclusion on the absence of a decoding effect in some time-bins, while in my opinion a contrast between time-bins, showing a difference in decoding accuracy, is required. Or better yet, a non-zero slope of decoding accuracy over time should be shown ( not contingent on post-hoc and seemingly arbitrary binning).

      Thank you for the helpful suggestion. We have performed an additional analysis to address this issue, we calculated the trial-by-trial time-series of the decoding accuracy benefit for valid vs. invalid for each participant and averaged this benefit across time points for each of the two significant time windows. Based on this, we fitted a logarithmic model to quantify the change of this benefit over trials, then found the trial index for which the change of the logarithmic fit was < 0.1% (i.e., accuracy was stabilized). Given the results of this analysis and to ensure a sufficient number of trials, we focussed our further analyses on bins 1-2 to directly assess the effects of learning. This is explained in more detail in the revised manuscript .

      (5) The present results both within and across trials are difficult to reconcile with previous studies using MEG (Kok et al., 2017; Han et al., 2019), single-unit and multi-unit recordings (Kumar et al., 2017; Meyer & Olson 2011), as well as fMRI (Richter et al., 2018), which investigated similar questions but yielded different results; i.e., no reversal within or across trials, as well as dampening effects with after more training. The authors do not provide a convincing explanation as to why their results should differ from previous studies, arguably further compounding doubts about the present results raised by the methods and results concerns noted above.

      The discussion of these findings has been expanded in the revised manuscript . In short, the experimental design of the above studies did not allow for an assessment of these effects prior to learning. Several of them also used repeated stimuli (albeit some studies changed the pairings of stimuli between trials), potentially allowing for RS to confound their results.

      Recommendations for the Authors:

      Reviewer 1 (Recommendations for the authors):

      (1) On a first read, I was initially very confused by the statement on p.7 that each stimulus was only presented once - as I couldn't then work out how expectations were supposed to be learned! It became clear after reading the Methods that expectations are formed at the level of stimulus category (so categories are repeated multiple times even if exemplars are not). I suspect other readers could have a similar confusion, so it would be helpful if the description of the task in the 'Results' section (e.g., around p.7) was more explicit about the way that expectations were generated, and the (very large) stimulus set that examples are being drawn from.

      Following your suggestion, we have clarified the paradigm by adding details about the categories and the manner in which expectations are formed.

      (2) p.23: the authors write that their 1D decoding images were "subjected to statistical inference amounting to a paired t-test between valid and invalid categories". What is meant by 'amounting to' here? Was it a paired t-test or something statistically equivalent? If so, I would just say 'subjected to a paired t-test' to avoid any confusion, or explaining explicitly which statistic inference was done over.

      We have rephrased this as “subjected to (1) a one-sample t-test against chance-level, equivalent to a fixed-effects analysis, and (2) a paired t-test”.

      Relatedly, this description of an analysis amounting to a 'paired t-test' only seems relevant for the sensory decoding and memory decoding analyses (where there are validity effects) rather than the prediction decoding analysis. As far as I can tell the important thing is that the expected image category can be decoded, not that it can be decoded better or worse on valid or invalid trials.

      In the previous version of the manuscript, the comparison of prediction decoding between valid and invalid trials was meant as a sanity check. However, in response to the other Reviewers’ comments we have decided to remove the prediction decoding analysis from the revised manuscript due to confounds.

      It would be helpful if authors could say a bit more about how the statistical inferences were done for the prediction decoding analyses and the 'condition against baseline' contrasts (e.g., when it is stated that decoding accuracy in valid trials *,in general,* is above 0 at some cluster-wise corrected value). My guess is that this amounts to something like a one-sample t-test - but it may be worth noting that one-sample t-tests on information measures like decoding accuracy cannot support population-level inference, because these measures cannot meaningfully be below 0 (see Allefeld et al, 2016).

      When testing for decoding accuracy against baseline, we used one-sample t-tests against chance level (rather than against 0) throughout the manuscript. We now clarify in the manuscript that this corresponds to a fixed-effects analysis (Allefeld et al., 2016). In contrast, when testing for differences in decoding accuracy between valid and invalid conditions, we used paired-sample t-tests. As mentioned above, the prediction decoding analysis has been removed from the analysis.

      (3) By design, the researchers focus on implicit predictive learning which means the expectations being formed are ( by definition) task-irrelevant. I thought it could be interesting if the authors might speculate in the discussion on how they think their results may or may not differ when predictions are deployed in task-relevant scenarios -  particularly given that some studies have found sharpening effects do not seem to depend on task demands ( e.g., Kok et al, 2012 ; Yon et al, 2018)  while other studies have found that some dampening effects do seem to depend on what the observer is attending to ( e.g., Richter et al, 2018) . Do these results hint at a possible explanation for why this might be? Even if the authors think they don't, it might be helpful to say so!

      Thank you for the interesting comment. We have expanded on this in the revised manuscript.

      Reviewer 2  (Recommendations for the authors):

      Methods/results

      (1) The goal of this study is the assessment of expectation effects during statistical learning while controlling for repetition effects, one of the common confounds in prediction suppression studies (see, Feuerriegel et al., 2021). I agree that this is an important aspect and I assume that this was the reason why the authors introduced the P=0.5 neutral condition (Figure 1B, L3). However, I completely missed the analyses of this condition in the manuscript. In the figure caption of Figure 1C, it is stated that the reaction times of the valid, invalid, and neutral conditions are shown, but only data from the valid and invalid conditions are depicted. To ensure that participants had built up expectations and had learned the pairing, one would not only expect a difference between the valid and invalid conditions but also between the valid and neutral conditions. Moreover, it would also be important to integrate the neutral condition in the multivariate EEG analysis to actually control for repetition effects. Instead, the authors constructed another control condition based on the arbitrary pairings. But why was the neutral condition not compared to the valid and invalid prediction decoding results? Besides this, I also suggest calculating the ERP for the neutral condition and adding it to Figure 2A to provide a more complete picture.

      As mentioned above, we have included the neutral condition in the behavioural analysis, as outlined in the revised manuscript. We have also included a repeated measures ANOVA on all 3 conditions. The purpose of the neutral condition was not to avoid RS, but rather to provide a control condition. We avoided repetition by using individual, categorised stimuli. Figure 1C has been amended to include the neutral condition). In response to the remaining comments, we have decided to remove the prediction decoding analysis from the manuscript.

      (2) One of the main results that is taken as evidence for the OPT is that there is higher decoding accuracy for valid trials (indicate sharpening) early in the trial and higher decoding accuracy for invalid trials (indicate dampening) later in the trial. I would have expected this result for prediction decoding that surprisingly showed none of the two effects. Instead, the result pattern occurred in sensory decoding only, and partly (early sharpening) in memory decoding. How do the authors explain these results? Additionally, I would have expected similar results in the ERP; however, only the early effect was observed. I missed a more thorough discussion of this rather complex result pattern. The lack of the opposing effect in prediction decoding limits the overall conclusion that needs to be revised accordingly.

      Since sharpening vs. dampening rests on the comparison between valid and invalid trials, evidence for sharpening vs. dampening could only be obtained from decoding based on responses to trailing images. In prediction decoding (removed from the current version), information about the validity of the trial is not yet available. Thus, our original plan was to compare this analysis with the effects of validity on the decoding of trailing images (i.e. we expected valid trials to be decoded more accurately after the trailing image than before). The results of the memory decoding did mirror the sensory decoding of the trailing image in that we found significantly higher decoding accuracy of the valid trials from 123-180 ms. As with the sensory decoding, there was a tendency towards a later flip (280-296 ms) where decoding accuracy of invalid trials became nominally higher, but this effect did not reach statistical significance in the memory decoding.

      (3) To increase the comprehensibility of the result pattern, it would be helpful for the reader to clearly state the hypotheses for the ERP and multivariate EEG analyses. What did you expect for the separate decoding analyses? How should the results of different decoding analyses differ and why? Which result pattern would (partly, or not) support the OPT?

      Our hypotheses are now stated in the revised manuscript.

      (4) I was wondering why the authors did not test for changes during learning for prediction decoding. Despite the fact that there were no significant differences between valid and invalid conditions within-trial, differences could still emerge when the data set is separated into bins. Please test and report the results.

      As mentioned above, we have decided to remove the prediction decoding analysis from the current version of the manuscript.

      (5) To assess the effect of learning the authors write: 'Given the apparent consistency of bins 2-4, we focused our analyses on bins 1-2.' Please explain what you mean by 'apparent consistency'. Did you test for consistency or is it based on descriptive results? Why do the authors not provide the complete picture and perform the analyses for all bins? This would allow for a better assessment of changes over time between valid and invalid conditions. In Figure 3, were valid and invalid trials different in any of the QT3 or QT4 bins in sensory or memory encoding?

      We have performed an additional analysis to address this issue. The reasoning behind the decision to focus on bins 1-2 is now explained in the revised manuscript. In short, fitting a learning curve to trial-by-trial decoding estimates indicates that decoding stabilizes within <50% of the trials. To quantify changes in decoding occurring within these <50% of the trials while ensuring a sufficient number of trials for statistical comparisons, we decided to focus on bins 1-2 only.

      (6) Please provide the effect size for all statistical tests.

      Effect sizes have now been provided.

      (7) Please provide exact p-values for non-significant results and significant results larger than 0.001.

      Exact p-values have now been provided.

      (8) Decoding analyses: I suppose there is a copy/paste error in the T-values as nearly all T-values on pages 11 and 12 are identical (2.76) leading to highly significant p-values (0.001) as well as non-significant effects (>0.05). Please check.

      Thank you for bringing this to our attention. This error has now been corrected.

      (9) Page 12:  There were some misleading phrases in the result section. To give one example: 'control analyses was slightly above change' - this sounds like a close to non-significant effect, but it was indeed a highly significant effect of p<0.001. Please revise.

      This phrase was part of the prediction decoding analysis and has therefore been removed.

      (10) Sample size: How was the sample size of the study be determined (N=31)? Why did only a subgroup of participants perform the behavioral categorization task after the EEG recording? With a larger sample, it would have been interesting to test if participants who showed better learning (larger difference in reaction times between valid and invalid conditions) also showed higher decoding accuracies.

      This has been clarified in the revised manuscript. In short, the larger sample size of N=31 was based on previous research; ten participants were initially tested as part of a pilot which was then expanded to include the categorisation task.

      (11) I assume catch trials were removed before data analyses?

      We have clarified that catch trials were indeed removed prior to analyses.

      (12) Page 23, 1st line: 'In each, the decoder...' Something is missing here.

      Thank you for bringing this to our attention, this sentence has now been rephrased as “In both valid and invalid analyses” in the revised manuscript.

      Discussion

      (1) The analysis over multiple trials showed dampening within the first 15 min followed by sharpening. I found the discussion of this finding very lengthy and speculative (page 17). I recommend shortening this part and providing only the main arguments that could stimulate future research.

      Thank you for the suggestion. Since Reviewer 3 has requested additional details in this part of the discussion, we have opted to keep this paragraph in the manuscript. However, we have also made it clearer that this section is relatively speculative and the arguments provided for the across trials dynamics are meant to stimulate further research.

      (2) As this task is purely perceptual, the results support the OPT for the area of visual perception. For action, different results have been reported. Suppression within-trial has been shown to be larger for expected than unexpected features of action targets and suppression even starts before the start of the movement without showing any evidence for sharpening ( e.g., Fuehrer et al., 2022, PNAS). For suppression across trials, it has been found that suppression decreases over the course of learning to associate a sensory consequence to a specific action (e.g., Kilteni et al., 2019, ELife). Therefore, expectation suppression might function differently in perception and action (an area that still requires further research). Please clarify the scope of your study and results on perceptual expectations in the introduction, discussion, and abstract.

      We have clarified the scope of the study in the revised manuscript.

      Figures

      (1) Figure 1A: Add 't' to the arrow to indicate time.

      This has been rectified.

      (2) Figure 3:  In the figure caption, sensory and memory decoding seem to be mixed up. Please correct. Please add what the dashed horizontal line indicates.

      Thank you for bringing this to our attention, this has been rectified.

      Reviewer 3  (Recommendations for the authors):

      I applaud the authors for a well-written introduction and an excellent summary of a complicated topic, giving fair treatment to the different accounts proposed in the literature. However, I believe a few additional studies should be cited in the Introduction, particularly time-resolved studies such as Han et al., 2019; Kumar et al., 2017; Meyer and Olson, 2011. This would provide the reader with a broader picture of the current state of the literature, as well as point the reader to critical time-resolved studies that did not find evidence in support of OPT, which are important to consider in the interpretation of the present results.

      The introduction has been expanded to include the aforementioned studies in the revised manuscript.

      Given previous neuroimaging studies investigating the present phenomenon, including with time-resolved measures (e.g. Kok et al., 2017; Han et al., 2019; Kumar et al., 2017; Meyer & Olson 2011), why do the authors think that their data, design, or analysis allowed them to find support for OPT but not previous studies? I do not see obvious modifications to the paradigm, data quantity or quality, or the analyses that would suggest a superior ability to test OPT predictions compared to previous studies. Given concerns regarding the data analyses (see points below), I think it is essential to convincingly answer this question to convince the reader to trust the present results.

      The most obvious alteration to the paradigm is the use of non-repeated stimuli. Each of the above time-resolved studies utilised repeated stimuli (either repeated, identical stimuli, or paired stimuli where pairings are changed but the pool of stimuli remains the same), allowing for RS to act as a confound as exemplars are still presented multiple times. By removing this confound, it is entirely plausible that we may find different time-resolved results given that it has been shown that RS and ES are separable in time (Todorovic & de Lange, 2012). We also test during learning rather than training participants on the task beforehand. By foregoing a training session, we are better equipped to assess OPT predictions as they emerge. In our across-trial results, learning appears to take place after approximately 15 minutes or 432 trials, at which point dampening reverses to sharpening. Had we trained the participants prior to testing, this effect would have been lost.

      What is actually decoded in the "prediction decoding" analysis? The authors state that it is "decoding the predictable trailing images based on the leading images" (p.11). The associated chance level (Figure 2E) is indicated as 50%. This suggests that the classes separated by the SVM are T6 vs T7. How this was done is however unclear. For each leading image decoding the predictable trailing images should be equivalent to decoding validity (as there are only 2 possible trailing images, where one is the valid and the other the invalid image). How is it then possible that the analysis is performed separately for valid and invalid trials? Are the authors simply decoding which leading image was shown, but combine L1+L2 and L4+L5 into one class respectively? If so, this needs to be better explained in the manuscript. Moreover, the resulting decoder would in my opinion not decode the predicted image, but instead learn to dissociate the representation of L1+L2 from L4+L5, which may also explain why the time course of the prediction peaks during the leading image stimulus-response, which is rather different compared to previous studies decoding (prestimulus) predictions (e.g. Kok et al. 2017). If this is indeed the case, I find it doubtful that this analysis relates to prediction. Instead for the prediction analysis to be informative about the predicted image the authors should, in my opinion, train the decoder on the representation of trailing images and test it during the prestimulus interval.

      As mentioned above, the prediction decoding analysis has been removed from the manuscript. The prediction decoding analysis was intended as a sanity check, as validity information was not yet available to participants.

      Related to the point above, were the leading/trailing image categories and their mapping to L1, L2, etc. in Figure 1B fixed across subjects? I.e. "'beach' and 'barn' as 'Leading' categories would result in 'church' as a 'Trailing' category with 75% validity" (p.20) for all participants? If so, this poses additional problems for the interpretation of the analysis discussed in the point above, as it may invalidate the control analyses depicted in Figure 2E, as systematic differences and similarities in the leading image categories could account for the observed results.

      Image categories and their mapping were indeed fixed across participants. While this may result in physical differences and similarities between images influencing results, counterbalancing categories across participants would not have addressed this issue. For example, had we swapped “beach” with “barn” in another participant, physical differences between images may still be reflected in the prediction decoding. On the other hand, counterbalancing categories across trials was not possible given our aim of examining the initial stages of learning over trials. Had we changed the mappings of categories throughout the experiment for each participant, we would have introduced reversal learning and nullified our ability to examine the initial stages of learning under flat priors. In any case, the prediction decoding analysis has been removed from the manuscript, as outlined above.

      Why was the neutral condition L3 not used for prediction decoding? After all, if during prediction decoding both the valid and invalid image can be decoded, as suggested by the authors, we would also expect significant decoding of T8/T9 during the L3 presentation.

      In the neutral condition, L3 was followed by T8 vs. T9 with 50% probability, precluding prediction decoding. While this could have served as an additional control analysis for EEG-based decoding, we have opted for removing prediction decoding from the analysis. However, in response to the other Reviewers’ comments, the neutral condition has now been included in the behavioral analysis.

      The following concern may arise due to a misunderstanding of the analyses, but I found the results in Figures 2C and 2E concerning. If my interpretation is correct, then these results suggest that the leading image itself can only be decoded with ~33% accuracy (25% chance; i.e. ~8% above chance decoding). In contrast, the predicted (valid or invalid) image during the leading image presentation can be decoded with ~62% accuracy (50% chance; i.e. ~12% above chance decoding). Does this seem reasonable? Unless I am misinterpreting the analyses, it seems implausible to me that a prediction but not actually shown image can be better decoded than an on-screen image. Moreover, to my knowledge studies reporting decoding of predictions can (1) decode expectations just above chance level (e.g. Kok et al., 2017; which is expected given the nature of what is decoded) and (2) report these prestimulus effects shortly before the anticipated stimulus onset, and not coinciding with the leading image onset ~800ms before the predicted stimulus onset. For the above reasons, the key results reported in the present manuscript seem implausible to me and may suggest the possibility of problems in the training or interpretation of the decoding analysis. If I misunderstood the analyses, the analysis text needs to be refined. If I understood the analyses correctly, at the very least the authors would need to provide strong support and arguments to convince the reader that the effects are reliable (ruling out bias and explaining why predictions can be decoded better than on-screen stimuli) and sensible (in the context of previous studies showing different time-courses and results).

      As explained above, we have addressed this concern by performing an additional analysis, implementing decoding based on image pixel values. Indeed we could not rule out the possibility that “prediction” decoding reflected stimulus differences between leading images.

      Relatedly, the authors use the prestimulus interval (-200 ms to 0 ms before predicted stimulus onset) as the baseline period. Given that this period coincides with prestimulus expectation effects ( Kok et al., 2017) , would this not result in a bias during trailing image decoding? In other words, the baseline period would contain an anticipatory representation of the expected stimulus ( Kok et al., 2017) , which is then subtracted from the subsequent EEG signal, thereby allowing the decoder to pick up on this "negative representation" of the expected image. It seems to me that a cleaner contrast would be to use the 200ms before leading image onset as the baseline.

      The analysis of trailing images aimed at testing specific hypotheses related to differences between decoding accuracy in valid vs. invalid trials. Since the baseline was by definition the same for both kinds of trials (since information about validity only appears at the onset of the trailing image), changing the baseline would not affect the results of the analysis. Valid and invalid trials would have the same prestimulus effect induced by the leading image.

      Again, maybe I misunderstood the analyses, but what exactly are the statistics reported on p. 11 onward? Why is the reported Tmax identical for multiple conditions, including the difference between conditions? Without further information this seems highly unlikely, further casting doubts on the rigor of the applied methods/analyses. For example: "In the sensory decoding analysis based on leading images, decoding accuracy was above chance for both valid (Tmax= 2.76, pFWE < 0.001) and invalid trials (Tmax= 2.76, pFWE < 0.001) from 100 ms, with no significant difference between them (Tmax= 2.76, pFWE > 0.05) (Fig. 2C)" (p.11).

      Thank you for bringing this to our attention. As previously mentioned, this copy error has been rectified in the revised manuscript.

      Relatedly, the statistics reported below in the same paragraph also seem unusual. Specifically, the Tmax difference between valid and invalid conditions seems unexpectedly large given visual inspection of the associated figure: "The decoding accuracy of both valid (Tmax = 2.76, pFWE < 0.001) and invalid trials (Tmax = 14.903, pFWE < 0.001)" (p.12). In fact, visual inspection suggests that the largest difference should probably be observed for the valid not invalid trials (i.e. larger Tmax).

      This copy error has also been rectified in the revised manuscript.

      Moreover, multiple subsequent sections of the Results continue to report the exact same Tmax value. I will not list all appearances of "Tmax = 2.76" here but would recommend the authors carefully check the reported statistics and analysis code, as it seems highly unlikely that >10 contrasts have exactly the same Tmax. Alternatively, if I misunderstand the applied methods, it would be essential to better explain the utilized method to avoid similar confusion in prospective readers.

      This error has also now been rectified. As mentioned above the prediction decoding analysis has been removed.

      I am not fully convinced that Figures 3A/B and the associated results support the idea that early learning stages result in dampening and later stages in sharpening. The inference made requires, in my opinion, not only a significant effect in one-time bin and the absence of an effect in other bins. Instead to reliably make this inference one would need a contrast showing a difference in decoding accuracy between bins, or ideally an analysis not contingent on seemingly arbitrary binning of data, but a decrease ( or increase) in the slope of the decoding accuracy across trials. Moreover, the decoding analyses seem to be at the edge of SNR, hence making any interpretation that depends on the absence of an effect in some bins yet more problematic and implausible.

      Thank you for the helpful suggestion. As previously mentioned we fitted a logarithmic model to quantify the change of the decoding benefit over trials, then found the trial index for which the change of the logarithmic fit was < 0.1 %. Given the results of this analysis and to ensure a sufficient number of trials, we focussed our further analyses on bins 1-2 . This is explained in more detail in the revised manuscript.

      Relatedly, based on the literature there is no reason to assume that the dampening effect disappears with more training, thereby placing more burden of proof on the present results. Indeed, key studies supporting the dampening account (including human fMRI and MEG studies, as well as electrophysiology in non-human primates) usually seem to entail more learning than has occurred in bin 2 of the present study. How do the authors reconcile the observation that more training in previous studies results in significant dampening, while here the dampening effect is claimed to disappear with less training?

      The discussion of these findings has been expanded on in the revised manuscript. As previously outlined, many of the studies supporting dampening did not explicitly test the effect of learning as they emerge, nor did they control for RS to the same extent.

      The Methods section is quite bare bones. This makes an exact replication difficult or even impossible. For example, the sections elaborating on the GLM and cluster-based FWE correction do not specify enough detail to replicate the procedure. Similarly, how exactly the time points for significant decoding effects were determined is unclear (e.g., p. 11). Relatedly, the explanation of the decoding analysis, e.g. the choice to perform PCA before decoding, is not well explained in the present iteration of the manuscript. Additionally, it is not mentioned how many PCs the applied threshold on average resulted in.

      Thank you for this suggestion, we have described our methods in more detail.

      To me, it is unclear whether the PCA step, which to my knowledge is not the default procedure for most decoding analyses using EEG, is essential to obtain the present results. While PCA is certainly not unusual, to my knowledge decoding of EEG data is frequently performed on the sensor level as SVMs are usually capable of dealing with the (relatively low) dimensionality of EEG data. In isolation this decision may not be too concerning, however, in combination with other doubts concerning the methods and results, I would suggest the authors replicate their analyses using a conventional decoding approach on the sensory level as well.

      Thank you for this suggestion, we have explained our decision to use PCA in the revised manuscript.

      Several choices, like the binning and the focus on bins 1-2 seem rather post-hoc. Consequently, frequentist statistics may strictly speaking not be appropriate. This further compounds above mentioned concerns regarding the reliability of the results.

      The reasoning behind our decision to focus on bins 1-2 is now explained in more detail in the revised manuscript.

      A notable difference in the present study, compared to most studies cited in the introduction motivating the present experiment, is that categories instead of exemplars were predicted.

      This seems like an important distinction to me, which surprisingly goes unaddressed in the Discussion section. This difference might be important, given that exemplar expectations allow for predictions across various feature levels (i.e., even at the pixel level), while category predictions only allow for rough (categorical) predictions.

      The decision to use categorical predictions over exemplars lies in the issue of RS, as it is impossible to control for RS while repeating stimuli over many trials. This has been discussed in more detail in the revised manuscript.

      While individually minor problems, I noticed multiple issues across several figures or associated figure texts. For example: Figure 1C only shows valid and invalid trials, but the figure text mentions the neutral condition. Why is the neutral condition not depicted but mentioned here? Additionally, the figure text lacks critical information, e.g. what the asterisk represents. The error shading in Figure 2 would benefit from transparency settings to not completely obscure the other time-courses. Increasing the figure content and font size within the figure (e.g. axis labels) would also help with legibility (e.g. consider compressing the time-course but therefore increasing the overall size of the figure). I would also recommend using more common methods to indicate statistical significance, such as a bar at the bottom of the time-course figure typically used for cluster permutation results instead of a box. Why is there no error shading in Figure 2A but all other panels? Fig 2C-F has the y-axis label "Decoding accuracy (%)" but certainly the y-axis, ranging roughly from 0.2 to 0.7, is not in %. The Figure 3 figure text gives no indication of what the error bars represent, making it impossible to interpret the depicted data. In general, I would recommend that the authors carefully revisit the figures and figure text to improve the quality and complete the information.

      Thank you for the suggestions. Figure 1C now includes the neutral condition. Asterisks denote significant results. The font size in Figure 2C-E has been increased. The y-axis on Figure 2C-E has been amended to accurately reflect decoding accuracy in percentage. Figure 2A has error shading, however, the error is sufficiently small that the error shading is difficult to see. The error bars in Figure 3 have been clarified.

      Given the choice of journal (eLife), which aims to support open science, I was surprised to find no indication of (planned) data or code sharing in the manuscript.

      Plans for sharing code/data are now outlined in the revised manuscript.

      While it is explained in sufficient detail later in the Methods section, it was not entirely clear to me, based on the method summary at the beginning of the Results section, whether categories or individual exemplars were predicted. The manuscript may benefit from clarifying this at the start of the Results section.

      Thank you for this suggestion, following this and suggestions from other reviewers, the experimental paradigm and the mappings between categories has been further explained in the revised manuscript, to make it clearer that predictions are made at the categorical level.

      "Unexpected trials resulted in a significantly increased neural response 150 ms after image onset" (p.9). I assume the authors mean the more pronounced negative deflection here. Interpreting this, especially within the Results section as "increased neural response" without additional justification may stretch the inferences we can make from ERP data; i.e. to my knowledge more pronounced ERPs could also reflect increased synchrony. That said, I do agree with the authors that it is likely to reflect increased sensory responses, it would just be useful to be more cautious in the inference.

      Thank you for the interesting comment, this has been rephrased as a “more pronounced negative deflection” in the revised manuscript.

      Why was the ERP analysis focused exclusively on Oz? Why not a cluster around Oz? For object images, we may expect a rather wide dipole.

      Feuerriegel et al (2021) have outlined issues questioning the robustness of univariate analyses for ES, as such we opted for a targeted ROI approach on the channel showing peak amplitude of the visually evoked response (Fig. 2B). More details on this are in the revised manuscript.           

      How exactly did the authors perform FWE? The description in the Method section does not appear to provide sufficient detail to replicate the procedure.

      FWE as implemented in SPM is a cluster-based method of correcting for multiple comparisons using random field theory. We have explained our thresholding methods in more detail in the revised manuscript.

      If I misunderstand the authors and they did indeed perform standard cluster permutation analyses, then I believe the results of the timing of significant clusters cannot be so readily interpreted as done here (e.g. p.11-12); see: Maris & Oostenveld 2007; Sassenhagen & Dejan 2019.

      All statistics were based on FWE under random field theory assumptions (as implemented in SPM) rather than on cluster permutation tests (as implemented in e.g.  Fieldtrip)

      Why did the authors choose not to perform spatiotemporal cluster permutation for the ERP results?

      As mentioned above, we opted to target our ERP analyses on Oz due to controversies in the literature regarding univariate effects of ES (Feuerriegel et al., 2021).

      Some results, e.g. on p.12 are reported as T29 instead of Tmax. Why?

      As mentioned above, prediction decoding analyses have been removed from the manuscript.

    1. Author response:

      Reviewer #1 (Public Review):

      (1) The network they propose is extremely simple. This simplicity has pros and cons: on the one hand, it is nice to see the basic phenomenon exposed in the simplest possible setting. On the other hand, it would also be reassuring to check that the mechanism is robust when implemented in a more realistic setting, using, for instance, a network of spiking neurons similar to the one they used in the 2008 paper. The more noisy and heterogeneous the setting, the better.

      The choice of a minimal model to illustrate our hypothesis is deliberate. Our main goal was to suggest a physiologically-grounded mechanism to rapidly encode temporally-structured information (i.e., sequences of stimuli) in Working Memory, where none was available before. Indeed, as discussed in the manuscript, previous proposals were unsatisfactory in several respects. In view of our main goal, we believe that a spiking implementation is beyond the scope of the present work.

      We would like to note that the mechanism originally proposed in Mongillo et al. (2008), has been repeatedly implemented, by many different groups, in various spiking network models with different levels of biological realism (see, e.g., Lundquivst et al. (2016), for an especially ‘detailed’ implementation) and, in all cases, the relevant dynamics has been observed. We take this as an indication of ‘robustness’; the relevant network dynamics doesn’t critically depend on many implementation details and, importantly, this dynamics is qualitatively captured by a simple rate model (see, e.g., Mi et al. (2017)).

      In the present work, we make a relatively ‘minor’ (from a dynamical point of view) extension of the original model, i.e., we just add augmentation. Accordingly, we are fairly confident that a set of parameters for the augmentation dynamics can be found such that the spiking network behaves, qualitatively, as the rate model. A meaningful study, in our opinion, then would require extensively testing the (large) parameters’ space (different models of augmentation?) to see how the network behavior compares with the relevant experimental observations (which ones? behavioral? physiological?). As said above, we believe that this is beyond the scope of the present work.       

      This being said, we definitely agree with the reviewer that not presenting a spiking implementation is a limitation of the present work. We will clearly acknowledge, and discuss, this limitation in the revised version.

      (2) One major issue with the population spike scenario is that (to my knowledge) there is no evidence that these highly synchronized events occur in delay periods of working memory experiments. It seems that highly synchronized population spikes would imply (a) a strong regularity of spike trains of neurons, at odds with what is typically observed in vivo (b) high synchronization of neurons encoding for the same item (and also of different items in situations where multiple items have to be held in working memory), also at odds with in vivo recordings that typically indicate weak synchronization at best. It would be nice if the authors at least mention this issue, and speculate on what could possibly bridge the gap between their highly regular and synchronized network, and brain networks that seem to lie at the opposite extreme (highly irregular and weakly synchronized). Of course, if they can demonstrate using a spiking network simulation that they can bridge the gap, even better.

      Direct experimental evidence (in monkeys) in support of the existence of highly synchronized events -- to be identified with the ‘population spikes’ of our model -- during the delay period of a memory task is available in the literature and we have cited it, i.e., Panichello et al. (2024). In the revised version, we will provide an explicit discussion of the results of Panichello et al. (2024) and how these results directly relate to our model. After submission, we became aware of another experimental study (in humans) specifically dealing with sequence memory, i.e., Liebe et al. (2025). Their results, again, are fully consistent with our model. We will also provide an explicit discussion of these results in the revised version.

      We note that there is no fundamental contradiction between highly synchronized events in ‘small’ neural populations (e.g., a cell assembly) on one hand, and temporally irregular (i.e., Poisson-like) spiking at the single-neuron level and weakly synchronized activity at the network level, on the other hand. This was already illustrated in our original publication, i.e., Mongillo et al. (2008) (see, in particular, Fig. S2).

      We further note that the mechanism we propose to encode temporal order -- a temporal gradient in the synaptic efficacies brought about by synaptic augmentation -- would also work if the memory of the items is maintained by ‘tonic’ persistent activity (i.e., without highly synchronized events), provided this activity occurs at suitably low rates such as to prevent the saturation of the synaptic augmentation.

      We will include a detailed discussion of these points in the revised version.

      Reviewer #2 (Public Review):

      The study relates to the well-known computational theory for working memory, which suggests short-term synaptic facilitation is required to maintain working memory, but doesn't rely on persistent spiking. This previous theory appears similar to the proposed theory, except for the change from facilitation to augmentation. A more detailed explanation of why the authors use augmentation instead of facilitation in this paper is warranted: is the facilitation too short to explain the whole process of WM? Can the theory with synaptic facilitation also explain the immediate storage of novel sequences in WM?

      In the model, synaptic dynamics displays both short-term facilitation and augmentation (and shortterm depression). Indeed, synaptic facilitation, alone, would be too short-lived to encode novel sequences. This is illustrated in Fig. 1B. We will provide a more detailed discussion of this point in the revised version. 

      In Figure 1, the authors mention that synaptic augmentation leads to an increased firing rate even after stimulus presentation. It would be good to determine, perhaps, what the lowest threshold is to see the encoding of a WM task, and whether that is biologically plausible.

      We believe that this comment is related to the above point. The reviewer is correct; augmentation alone would require fairly long stimulus presentations to encode an item in WM. ‘Fast’ encoding, indeed, is guaranteed by the presence of short-term facilitation. We will emphasize this important point in the revised version.

      In the middle panel of Figure 4, after 15-16 sec, when the neuronal population prioritizes with the second retro-cue, although the second retro-cue item's synaptic spike dominates, why is the augmentation for the first retro-cue item higher than the second-cue augmentation until the 20 sec?

      This is because of the slow build-up and slow decay of the augmentation. When the second item is prioritized, and the corresponding neuronal population re-activates, its augmentation level starts to increase. At the same time, as the first item is now de-prioritized and the corresponding neuronal population is now silent, its augmentation level starts to decrease. Because of the ‘slowness’ of both processes (i.e., augmentation build-up and decay), it takes about 5 seconds for the augmentation level of the second item to overcome the augmentation level of the first item.

      We note that the slow time scales of the augmentation dynamics, consistently with experimental observations, are necessary for our mechanism to work.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors introduce a novel algorithm for the automatic identification of longrange axonal projections. This is an important problem as modern high-throughput imaging techniques can produce large amounts of raw data, but identifying neuronal morphologies and connectivities requires large amounts of manual work. The algorithm works by first identifying points in three-dimensional space corresponding to parts of labelled neural projections, these are then used to identify short sections of axons using an optimisation algorithm and the prior knowledge that axonal diameters are relatively constant. Finally, a statistical model that assumes axons tend to be smooth is used to connect the sections together into complete and distinct neural trees. The authors demonstrate that their algorithm is far superior to existing techniques, especially when dense labelling of the tissue means that neighbouring neurites interfere with the reconstruction. Despite this improvement, however, the accuracy of reconstruction remains below 90%, so manual proofreading is still necessary to produce accurate reconstructions of axons.

      Strengths:

      The new algorithm combines local and global information to make a significant improvement on the state-of-the-art for automatic axonal reconstruction. The method could be applied more broadly and might have applications to reconstructions of electron microscopy data, where similar issues of highthroughput imaging and relatively slow or inaccurate reconstruction remain.

      We thank the reviewer for their positive comments and for taking the time to review our manuscript. We are truly grateful that the reviewer recognized the value of our method in automatically reconstructing long-range axonal projections. While we report that our method achieves reconstruction accuracy of approximately 85%, we fully acknowledge that manual proofreading is still necessary to ensure accuracy greater than 95%. We also appreciate the reviewer’s insightful suggestion regarding the potential adaptation of our algorithm for reconstructing electron microscopy (EM) data, where similar challenges in high-throughput imaging and relatively slow or inaccurate reconstruction persist. We look forward to exploring ways to integrate our method with EM data in future work.

      Weaknesses:

      There are three weaknesses in the algorithm and manuscript.

      (1) The best reconstruction accuracy is below 90%, which does not fully solve the problem of needing manual proofreading.

      We sincerely appreciate the reviewer's valuable insights regarding reconstruction accuracy. Indeed, as illustrated in Figure S4, our current best automated reconstruction accuracy on fMOST data is still below 90%. This indicates that manual proofreading remains essential to ensure reliability.

      For the reconstruction of long-range axonal projections, ensuring the accuracy of the reconstruction process necessitates manual revision of the automatically generated results. Existing literature has demonstrated that a higher accuracy in automatic reconstruction correlates with a reduced need for manual revisions, thereby facilitating an accelerated reconstruction process (Winnubst et al., Cell 2019; Liu et al., Nature Methods 2025).

      As the reviewer rightly points out, achieving an accuracy exceeding 95% currently necessitates manual proofreading. Although our method does not completely eliminate this requirement, it significantly alleviates the proofreading workload by: 1) Minimizing common errors in regions with dense neuron distributions; 2) Providing more reliable initial reconstructions; and 3) Reducing the number of corrections needed during the proofreading process.

      In the future, we will continue to enhance our reconstruction framework. As imaging systems achieve higher signal-to-noise ratios and deep learning techniques facilitate more accurate foreground detection, we anticipate that our method will attain even greater reconstruction accuracy. Furthermore, we plan to develop a software system capable of predicting potential error locations in our automated reconstruction results, thereby streamlining manual revisions. This approach distinguishes itself from existing models by obviating the need for individual traversal of the brain regions associated with each neuron reconstruction.

      (2) The 'minimum information flow tree' model the authors use to construct connected axonal trees has the potential to bias data collection. In particular, the assumption that axons should always be as smooth as possible is not always correct. This is a good rule-of-thumb for reconstructions, but real axons in many systems can take quite sharp turns and this is also seen in the data presented in the paper (Figure 1C). I would like to see explicit acknowledgement of this bias in the current manuscript and ideally a relaxation of this rule in any later versions of the algorithm.

      We appreciate the reviewer's insightful opinion regarding the potential bias introduced by our minimum information flow tree model. The reviewer is absolutely correct in noting that while axon smoothness serves as a useful reconstruction heuristic, it should not be treated as an absolute constraint given that real axons can exhibit sharp turns (as shown in Figure 1C). In response to this valuable feedback, we add explicit discussion of this limitation in Discussion section as follow: “Finally, the minimal information flow tree’s fundamental assumption, that axons should be as smooth as possible does not always hold true.

      In fact, real axons can take quite sharp turns leading the algorithm to erroneously separate a single continuous axon into disjoint neurites.”

      In our reconstruction process, the post-processing approach partially mitigates erroneous reconstructions derived from this rule. Specifically: The minimum information flow tree will decompose such structures into two separate branches (Fig. S7A), but the decomposition node is explicitly recorded. The newly decomposed branches attempt to reconnect by searching for plausible neurites starting from their head nodes (determined by the minimum information flow tree). If no connectable neurites are found, the branch is automatically reconnected to its originally recorded decomposition node (Fig. S7B). In Fig.S7C, two reconstruction examples demonstrate the effectiveness of the post-processing approach.

      As pointed out by the reviewers, the proposed rule for revising neuron reconstruction does not encompass all scenarios. Relaxing the constraints of this rule may lead to numerous new erroneous connections. Currently, the proposed rule is solely based on the positions of neurite centerlines and does not integrate information regarding the intensity of the original images or segmentation data. Incorporating these elements into the rule could potentially reduce reconstruction errors. 

      (3) The writing of the manuscript is not always as clear as it could be. The manuscript would benefit from careful copy editing for language, and the Methods section in particular should be expanded to more clearly explain what each algorithm is doing. The pseudo-code of the Supplemental Information could be brought into the Methods if possible as these algorithms are so fundamental to the manuscript.

      We sincerely thank the reviewer for these valuable suggestions to improve our manuscript’s clarity and methodological presentation. We have implemented the following revisions:

      (1) Language Enhancement: we have conducted rigorous internal linguistic reviews to address grammatical inaccuracies and improve textual clarity.

      (2) Methods Expansion and Pseudo-code Integration: we have incorporated all relevant derivations from the Supplementary Materials into the Methods section, with additional explanatory text to clarify the purpose and implementation of each algorithm. All mathematical formulations have been systematically rederived with modifications to variable nomenclature, subscript/superscript notations and identified errors in the original submission. All pseudocode from Supplementary Materials has been integrated into their corresponding methods subsection.

      Reviewer #2 (Public review):

      In this manuscript, Cai et al. introduce PointTree, a new automated method for the reconstruction of complex neuronal projections. This method has the potential to drastically speed up the process of reconstructing complex neurites. The authors use semi-automated manual reconstruction of neurons and neurites to provide a 'ground-truth' for comparison between PointTree and other automated reconstruction methods. The reconstruction performance is evaluated for precision, recall, and F1-score and positions. The performance of PointTree compared to other automated reconstruction methods is impressive based on these 3 criteria.

      As an experimentalist, I will not comment on the computational aspects of the manuscript. Rather, I am interested in how PointTree's performance decreases in noisy samples. This is because many imaging datasets contain some level of background noise for which the human eye appears essential for the accurate reconstruction of neurites. Although the samples presented in Figure 5 represent an inherent challenge for any reconstruction method, the signal-to-noise ratio is extremely high (also the case in all raw data images in the paper). It would be interesting to see how PointTree's performance changes in increasingly noisy samples, and for the author to provide general guidance to the scientific community as to what samples might not be accurately reconstructed with PointTree.

      We thank the reviewer for her/his time reviewing our manuscript and the interest on how PointTree perform on noisy samples. It is important to clarify that PointTree is solely responsible for the reconstruction of neurons from the foreground regions of neural images. The foreground regions of these neuronal images are obtained through a deep learning segmentation network. In cases where the image has a low signal-to-noise ratio, if the segmentation network can accurately identify the foreground areas, then PointTree will be able to accurately reconstruct neurons. In fact, existing deep learning networks have demonstrated their capability to effectively extract foreground regions from low signal-to-noise ratio images; therefore, PointTree is well-suited for processing neuronal images characterized by low signal-to-noise ratios.

      In the revised manuscript, we conducted experiments on datasets with varying signal-to-noise ratios (SNR). The results demonstrate that Unet3D is capable of identifying the foreground regions in low-SNR images, thereby supporting the assertion that PointTree has broad applicability across diverse neuronal imaging datasets. 

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      It would be interesting to see how PointTree's performance changes in increasingly noisy samples, and for the author to provide general guidance to the scientific community as to what samples might not be accurately reconstructed with PointTree.

      We extend our heartfelt gratitude to the reviewer for their insightful suggestion concerning experiments involving different noisy samples. Here are the details of the datasets used:

      LSM dataset: Mean SNR = 5.01, with 25 samples, and a volume size of 192×192×192.

      fMOST dataset: Mean SNR = 8.68, with 25 samples, and a volume size of 192×192×192.

      HD-fMOST dataset: Mean SNR = 11.4, with 25 samples, and a volume size of 192×192×192.

      The experimental results reveal that, thanks to the deep learning network's robust feature extraction capabilities, even when working with low-SNR data (as depicted in Figure 4B, first two columns of the top row), satisfactory segmentation results (Figure 4B, first two columns of the third row) were achieved. These results laid a solid foundation for subsequent accurate reconstruction.

      PointTree demonstrated consistent mean F1-scores of 91.0%, 90.0%, and 93.3% across the three datasets, respectively. This underscores its reconstruction robustness under varying SNR conditions when supported by the segmentation network. For more in-depth information, please refer to the manuscript section titled "Reconstruction of data with different signal-to-noise ratios" and Figure 4.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      The authors tried to identify the relationships among the gut microbiota, lipid metabolites, and the host in type 2 diabetes (T2DM) by using macaques that spontaneously develop T2DM, considered one of the best models of the human disease.

      Strengths:

      The authors comprehensively compared the gut microbiota and plasma fatty acids between macaques with spontaneous T2DM and control macaques and verified the results with macaques on a high-fat diet-fed mice model.

      Weaknesses:

      Comment 1: The observed multi-omics of the macaques can be done on humans, which weakens the impact of the conclusion of the manuscript.

      We fully acknowledge the critical role of human studies in T2DM research. In our study, the spontaneous T2DM macaque model provided a unique window to address inherent challenges in human studies, including medication interference and environmental heterogeneity. Human studies have struggled to standardize confounding factors such as diet, exercise, and antibiotic use. Moreover, most human T2DM patients receive long-term glucose-lowering medications (e.g., metformin), which directly alter gut microbiota composition and function, masking disease-associated microbial signatures (Sun et al., 2018; Petakh et al., 2023). In contrast, the spontaneous T2DM macaques, untreated with glucose-lowering drugs or antibiotics under strictly controlled conditions, revealed microbiota dysbiosis driven purely by disease progression. Our work bridged the gap between rodent studies and human clinical trials, providing an important clinical reference for guiding targeted interventions, particularly microbiota modulation. We sincerely appreciate the valuable comments. We have added background to the part of the introduction, “In fact, T2DM macaques avoid medication interference and environmental heterogeneity under controlled experimental conditions, and share key pathological features with humans, such as amyloidosis of pancreatic islets, which is absent in mouse models (25, 26), suggesting that T2DM macaques are the optimal animal model for simulating human T2DM and its complications (27).” (Lines 98-103).

      References:

      Sun L., Xie C., Wang G., Wu Y., Wu Q., Wang X., Liu J., Deng Y., Xia J., et al. 2018) Gut microbiota and intestinal FXR mediate the clinical benefits of metformin Nat. Med 24:1919-1929 https://doi.org/10.1038/s41591-018-0222-4

      Petakh P., Kamyshna I., Kamyshnyi A 2023) Effects of metformin on the gut microbiota: A systematic review Mol. metab 77:101805-101805 https://doi.org/10.1016/j.molmet.2023.101805

      Comment 2: In addition, the age and sex of the control macaque group did not necessarily match those of the T2DM group, leaving the possibility for compromising the analysis.

      Thank you for pointing this out. The availability of spontaneous T2DM macaques is very limited. Wang et al. (2018) identified only nine diabetic macaques among 2,000 screened, and our prior study (Jiang et al., 2022) found merely seven diabetic cases in 1,408 macaques. In this work, we obtained eight spontaneous T2DM macaques with FPG ≥ 7 mmol/L and eight heathy control macaques with FPG ≤ 6.1 mmol/L (three consecutive detections, each detection interval of one month) from a population of 1,698 captive macaques. To avoid confound factors affect the investigated macaques, all macaques were individually housed with standardized diets and environmental controls. While age and sex partially matched, controls originated from the same population to minimize confounding. The T2DM and control groups were matched for age period (5 adult and 3 elder) and had comparable mean ages (mean age of T2DM individuals = 12.88, mean age of control individuals = 11.25) (Table S1). In terms of gender matching, we compared blood metabolome data of 12 healthy adult female and 12 healthy adult male macaques from another study (Liu et al., 2023) and obtained only a small number of differential metabolites that were not associated with tryptophan (Table 1). We acknowledge this limitation and will prioritize matched controls in future studies.

      Author response table 1.

      List of all differential metabolites.

      References:

      Wang J., Xu S., Gao J., Zhang L., Zhang Z., Yang W., Li Y., Liao S., Zhou H., Liu P., et al. 2018) SILAC-based quantitative proteomic analysis of the livers of spontaneous obese and diabetic rhesus monkeys Am. J. Physiol-endoc. M 315:E29-E306 https://doi.org/10.1152/ajpendo.00016.2018

      Jiang C., Pan X., Luo J., Liu X., Zhang L., Liu Y., Lei G., Hu G., Li J 2022) Alterations in microbiota and metabolites related to spontaneous diabetes and pre-diabetes in rhesus macaques Genes 13:1513 https://doi.org/10.3390/genes13091513

      Liu X., Liu X.Y., Wang X.Q., Shang K., Li J.W., Lan Y., Wang J., Li J., et al. 2023). Multi-Omics Analysis Reveals Changes in Tryptophan and Cholesterol Metabolism before and after Sexual Maturation in Captive Macaques BMC Genomics 24:308. https://doi.org/10.1186/s12864-023-09404-3

      Comment 3: Regarding the metabolomic analysis, the authors did not include fecal samples which are important, considering the authors' claim about the importance of gut microbiota in the pathogenesis of T2DM.

      We thank the reviewer for this suggestion. This study employed untargeted metabolomics on macaque fecal samples to identify metabolites associated with spontaneously developing T2DM. To validate the metabolites identified through the untargeted metabolomic analysis, we conducted targeted medium- and long-chain fatty acid (MLCFA) metabolomics on macaque serum, and we further quantitatively examined the content of palmitic acid (PA) in mice feces, ileum, and serum. Although targeted MLCFA metabolomics was not performed on macaque fecal samples, we performed untargeted metabolomics on macaque feces and confirmed the contribution of PA in mice that underwent fecal microbiota transplantation (FMT) from T2DM macaques. We have added future expectations in the part of the discussion, “Previous studies have shown that insulin-resistant patients exhibit increased fecal monosaccharides associated with microbial carbohydrate metabolism (70). Furthermore, commensal species of Lachnospiraceae actively overproduce long-chain fatty acids during metabolic dysfunction through altered bacterial lipid metabolism. The microbe-derived fatty acids impair intestinal epithelial integrity to exacerbate metabolic dysregulation (71). Given that microbial metabolic activity causally modulates host metabolic homeostasis, the content change of PA was potentially associated with a dynamic equilibrium between host absorption and microbial metabolism. Further integrative studies on the fecal fatty acid metabolome, microbial PA metabolism, and functional pathways will be crucial for delineating causal links between dysbiosis and lipid metabolic dysfunction in T2DM.” (Lines 426-437).

      Comment 4: In the mouse experiments, the control group should be given a FMT from control macaques rather than just untreated SPF mice since the fecal microbiota composition is likely very different between macaques and mice.

      Thanks for your helpful suggestion. We recognized the importance of a FMT control group and supplemented mouse experiments (using the C57BL/6J strain) with FMT from control macaques (HFT group). Another group of mice without FMT was set as control. Due to the lengthy experimental period, observations were concluded at 30 days post-FMT. We compared changes in the gut microbiota before and after antibiotic treatment in mice (-14D and 0D), and tracked body weight and fasting plasma glucose (FPG) levels from day -14 to day 30. At 30 days after FMT, fecal samples from all groups were collected for 16S rRNA sequencing. Additionally, samples of T2DM microbiota transplant (TP), and control transplant (HTP) were sequenced. Finally, we integrated the 16S sequencing data from the FTPA group (palmitic acid (PA) diet and FMT from T2DM macaques) and FT group (normal diet and FMT from T2DM macaques) at day 30 for combined analysis. The results showed that the antibiotic treatment used in this study effectively depleted the gut microbiota. Following FMT, gut microbial diversity stabilized within 30 days, with similar microbial community proportions between HFT and control groups. Core functional groups of the healthy microbiota (Bacteroidota and Bacillota) stably colonized mice despite host species divergence, confirming that T2DM phenotypes originate specifically from macaque microbiota. Importantly, increased abundance of Lachnospiraceae (including genera Ruminococcus (current name: Mediterraneibacter), Coprococcus, and Clostridium) and the key species Ruminococcus gnavus (current name: Mediterraneibacter gnavus) were also observed in FT group versus HFT group on day 30, validating our original findings. We have added findings in the results, “To eliminate interference from host species divergence in gut microbiota composition, we supplemented mouse experiments using FMT from control macaques (HFT group) (Figure S4A). By day 30, the HFT group exhibited significantly lower body weight than the untreated control group (p < 0.05) (Figure S4B). Throughout the experimental period, FPG levels in both HFT and control groups remained within the normal range (< 6 mmol/L) without significant differences, indicating that transplantation of control macaque microbiota did not induce glycemic alterations (Figure S4C).” (Lines 276-283), and “Integrating 16S rRNA sequencing data from the HFT, FT, and FTPA groups showed that the antibiotic treatment effectively depleted the gut microbiota, resulting in microbial diversity decreased sharply, with the dominant phyla shifting from Bacteroidota and Bacillota to Pseudomonadota (Figure S4D-G). The HFT group restored microbial diversity within 30 days, achieving community proportions comparable to untreated controls. Core functional phyla (Bacteroidota and Bacillota) stably colonized in HFT group (Figure S4D-I). Critically, FT and FTPA groups exhibited increased Lachnospiraceae (including genera Ruminococcus (current name: Mediterraneibacter), Coprococcus, and Clostridium) compared with the HFT group on day 30. In addition, LEfSe comparison identified significant R. gnavus (current name: M. gnavus) enrichment in the FT group (LDA > 3, p < 0.01) (Figure S4J-M).” (Lines 324-334, 825-837). Specifically:

      (1) Experimental design: transplant preparation and FMT from control macaques

      After single cage feeding and FPG detection, fecal samples from three control macaques were collected and mixed for transplantation preparation. Then, 4 ml diluent (Berland et al., 2021) was added per gram of feces. Sodium L-ascorbic acid (5% (w/v)) and L-cysteine hydrochloride monohydrate (0.1% (w/v)) were added to all suspensions (The sterile diluent of control group was added with the same amount of reagent). The mixture was homogenized and filtered sequentially through 200, 400, and 800 μm sterile mesh screens. The filtrate was centrifuged (600 × g, 5 min), and supernatants were aliquoted (400 μL/tube) for storage at -80°C. For use, the transplant was quickly thawed in a 37℃ water bath.

      Specific-pathogen-free male C57BL/6J mice aged 6 weeks were randomized into control and HFT (receiving FMT from control macaques) groups. Mice received antibiotic water (ampicillin, neomycin sulfate, and metronidazole, 1 g/L each) from days -14 to 0. All mice were maintained under standard conditions (12h light/dark, 22-25°C, 40-60% humidity) with sterile diet and twice-daily water changes. Body weight, fasting plasma glucose (FPG) were monitored, and fecal samples were collected throughout the study, with fecal 16S rRNA sequencing performed (Figure S4). The study was approved by the Ethics Committee of College of Life Sciences, Sichuan University, and conducted in accordance with the local legislation and institutional requirements.

      (2) Results

      Body weight monitoring revealed no significant difference between HFT and control groups before (-14D) and after (0D) antibiotic treatment. By day 30, the HFT group exhibited significantly lower body weight than the untreated control group (p < 0.05) (Figure S4B). Throughout the experimental period, FPG levels in both HFT and control groups remained within the normal range (< 6 mmol/L) without significant differences, indicating that transplantation of control macaque microbiota did not induce glycemic alterations (Figure S4C).

      Shannon and Simpson indices showed a significant reduction in gut microbiota diversity after antibiotic treatment (0D) (p < 0.01) (Figure S4D,E). The intestinal microbiota of normal mice (-14D) was predominantly composed of Bacteroidota and Bacillota. After two weeks of antibiotic treatment (0D), microbial diversity decreased sharply compared to the -14D group, with the dominant phyla shifting from Bacteroidota and Bacillota to Pseudomonadota (Author response image 1A; Figure S4L). In healthy gut homeostasis, obligate anaerobes such as Bacillota and Bacteroidota maintain intestinal equilibrium. Antibiotic disruption induced dysbiosis in mice, causing substantial restructuring of fecal microbial composition. During dysbiosis, colon epithelial cells shift to anaerobic glycolysis for energy production, increasing epithelial oxygenation and driving expansion of facultative anaerobic Pseudomonadota (de Nies et al., 2023; Szajewska et al., 2024).

      NMDS analysis of integrated 16S rRNA sequencing data of FTPA30D (PA diet and FMT from T2DM macaques) and FT30D (normal diet and FMT from T2DM macaques) revealed high intra-group repeatability among pre-antibiotic (-14D), post-antibiotic (0D), HFT30D, T2DM microbiota transplant (TP), and control transplant (HTP) groups. The 0D group showed maximal separation from other clusters, while the -14D, control30D, and HFT30D clustered closely together, with HFT30D nearest to control30D (Figure S4F). On the day 30, all groups showed restoration of microbiota community structure, and the composition of gut microbiota in HFT30D was basically consistent with the control30D group at all taxonomic levels (Author response image 1A-C). At the phylum level, HFT30D group showed significantly reduced relative abundance of Pseudomonadota and increased abundance of Bacteroidota, Bacillota_A, Bacillota_I, and gut barrier-enhancing Verrucomicrobiota (Author response image 1A). These findings demonstrated that FMT from control macaques effectively restored the gut microbiota of antibiotic-treated mice toward a normative state.

      Author response image 1.

      Composition of gut microbiota in mice. (A) Phylum level; (B) Family level; (C) Genus level.

      At the phylum level, the FT30D and FTPA30D groups exhibited lower proportions of Bacteroidota/Bacillota compared to the HFT30D (Author response image 1A). Family-level analysis revealed markedly increased abundance of Lactobacillaceae and Lachnospiraceae in FTPA30D and FT30D groups relative to HFT30D, consistent with the changes in the microbiota of spontaneously T2DM macaques (Author response image 1B). Notably, while both HTP and TP groups contained Lachnospiraceae, only FT30D and FTPA30D mice demonstrated significant increase of this family, which was close to that in TP group. Although Muribaculaceae and Bacteroidaceae showed partial recovery in these groups, their relative abundances remained substantially lower than in control30D and HFT30D groups, suggesting that microbiota transplantation from T2DM macaques may reduce specific beneficial taxa while promoting expansion of conditionally pathogenic or metabolically-altered bacteria, such as Lachnospiraceae.

      Further analysis of Lachnospiraceae dynamics revealed that at the genus level, most Lachnospiraceae members exhibited higher abundance in the TP group compared to the HTP group. FT30D and FTPA30D groups showed increased abundance of Ruminococcus (current name: Mediterraneibacter), Coprococcus, and Clostridium relative to HFT30D group, consistent with prior analyses (Figure S4). LEfSe comparison between FT30D and HFT30D identified significantly enriched Ruminococcus gnavus (current name: Mediterraneibacter gnavus) in FT30D recipients (LDA > 3, p < 0.01), corroborating earlier findings (Figure S4L). As a mucin-degrading microbe, R. gnavus (current name: M. gnavus) promotes insulin resistance through modulation of tryptamine/phenethylamine levels (Zhai et al., 2023) and exhibits pro-inflammatory properties (Henke et al., 2019; Paone and Cani, 2020). The absence of R. gnavus (current name: M. gnavus) enrichment in FTPA30D was potentially related to differential long-term impacts of T2DM microbiota transplantation across the 30- versus 120-day experimental timelines.

      Author response image 2.

      Identification of differential microbiota in mice. (A) Linear discriminant analysis Effect Size (LEfSe) analysis between pre-antibiotic (-14D) and post-antibiotic (0D) groups; (B) HFT and FTPA groups; (C) HFT and FT groups.

      References:

      Berland M., Cadiou J., Levenez F., Galleron N., Quinquis B., Thirion F., Gauthier F., Le ChatelierE., Plaza Oñate F., Schwintner C., et al. 2021) High engraftment capacity of frozen ready-to-use human fecal microbiota transplants assessed in germ-free mice Sci. Rep 11 https://doi.org/10.1038/s41598-021-83638-7

      Szajewska H., Scott KP., Meij T de., Forslund-Startceva S.K., Knight R., Koren O., Little P., Johnston B.C., Łukasik J., Suez J., Tancredi D.J., Sanders M.E 2024) Antibiotic-perturbed microbiota and the role of probiotics Nat. Rev. Gastro. Hepat 1-18 https://doi.org/10.1038/s41575-024-01023-x

      de Nies L., Kobras C.M., Stracy M 2023) Antibiotic-induced collateral damage to the microbiota and associated infections. Nat. Rev. Microbiol 21:789-804 https://doi.org/10.1038/s41579-023-00936-9

      Zhai L., Xiao H., Lin C., Wong H.L.X., Lam Y.Y., Gong M., Wu G., Ning Z., Huang C., Zhang Y., et al. 2023) Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome Nat. Commun 14 https://doi.org/10 .1038/s41467-023-40552-y

      Henke M.T., Kenny D.J., Cassilly C.D., Vlamakis H., Xavier R.J., Clardy J 2019) Ruminococcusgnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide Proc. Nat. Acad. Sci 116:12672-12677 https://doi.org/10.1073/pnas.1904099116

      Paone P., Cani P.D 2020) Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69:2232-2243 https://doi.org/10.1136/gutjnl-2020-322260

      Comment 5: Additionally, the palmitic acid-containing diets fed to mice to induce a diabetes-like condition do not mimic spontaneous T2DM in macaques.

      Thanks for your helpful suggestion. We agree that the palmitic acid (PA)-containing diet alone could not fully mimic spontaneous T2DM in macaques. In our study, the PA diet was employed in mouse experiments to investigate whether gut microbiota modulates serum PA levels and mediates T2DM progression. Our critical finding revealed that microbiota was essential for enhanced PA absorption, while simply increasing dietary levels of PA did not effectively enhance intestinal uptake. The fecal microbiota transplantation (FMT) combined with PA-diet approach successfully induced prediabetic states in mice, which can be further applied to the induction of T2DM in macaques. We have added future expectations in the part of the discussion, “Our study highlights the essential roles of gut microbiota in T2DM development, which may account for the inability of prior studies to induce T2DM in macaques through high-fat diet intervention alone (28, 29). Furthermore, applying this approach to induce T2DM in macaques will enable deeper investigation into gut-microbiota-driven mechanisms underlying disease pathogenesis.” (Lines 393-398).

      Reviewer #1 (Recommendations for the authors):

      General comments

      Comment 1: The authors used macaques in this study. The author claims that macaques may be the best animal model to investigate the relationships among gut microbiota, lipid metabolites, and the host in type 2 diabetes (T2DM). However, there have already been some studies investigating these relationships in humans (for example, doi: 10.1016/j.cmet.2022.12.013, and doi: 10.1038/s41586-023-06466-x). The authors should cite and discuss these papers.

      We thank the reviewer for this suggestion. We have cited the two papers in the part of discussion, “Previous studies have shown that insulin-resistant patients exhibit increased fecal monosaccharides associated with microbial carbohydrate metabolism (70). Furthermore, commensal species of Lachnospiraceae actively overproduce long-chain fatty acids during metabolic dysfunction through altered bacterial lipid metabolism. The microbe-derived fatty acids impair intestinal epithelial integrity to exacerbate metabolic dysregulation (71).” (Lines 426-432).

      Specific comments

      Major:

      Comment 2: (1) First of all, sex and age of the T2DM and control groups are different (Suppl Table 1). Since the size of the captive population is 1,698, the authors should be able to select the factors including the sex and age of the control group to match those of the T2DM group and they should do so.

      In this work, we obtained eight spontaneous T2DM macaques with FPG ≥ 7 mmol/L and eight heathy control macaques with FPG ≤ 6.1 mmol/L (three consecutive detections, each detection interval of one month) from a population of 1,698 captive macaques. To avoid confound factors affect the investigated macaques, all macaques were individually housed with standardized diets and environmental controls. While age and sex partially matched, controls originated from the same population to minimize confounding. The T2DM and control groups were matched for age period (5 adult and 3 elder) and had comparable mean ages (mean age of T2DM individuals = 12.88, mean age of control individuals = 11.25) (Table S1). In terms of gender matching, we compared blood metabolome data of 12 healthy adult female and 12 healthy adult male macaques from another study (Liu et al., 2023) and obtained only a very small number of differential metabolites that were not associated with tryptophan (Author response table 1). We acknowledge this limitation and will prioritize matched controls in future studies.

      References:

      Liu X., Liu X.Y., Wang X.Q., Shang K., Li J.W., Lan Y., Wang J., Li J., et al. 2023). Multi-Omics Analysis Reveals Changes in Tryptophan and Cholesterol Metabolism before and after Sexual Maturation in Captive Macaques BMC Genomics 24:308. https://doi.org/10.1186/s12864-023-09404-3

      Comment 3: (2) Are the normal ranges known for the parameters of macaques shown in Table 1? If so, the authors should include those values in Table 1. If not, the authors should show the values of average and SD or SE of all 1,698 individuals as the reference.

      We thank the reviewer for this suggestion. In this study, the normal ranges of fasting plasma glucose (FPG), fasting plasma insulin (FPI), homeostasismodel assessment- insulin resistance (HOMA-IR), and glycosylated hemoglobin A1cwe (HbA1c) were referenced against human standards. According to the American Diabetes Association (ADA) for glucose metabolism status and the diagnostic criteria for diabetes, individuals with FPG ≥ 7 mmol/L were diagnosed as T2DM subjects, and individuals with FPG ≤ 6.1 mmol/L were controls. More sensitive assays show a normal fasting plasma insulin level to be under 12 μU/mL (Matsuda and DeFronzo, 1999). HOMA-IR ≥ 2.67 indicated the possibility of insulin resistance, which is used in clinical diagnosis (Lorenzo et al., 2012). HbA1c percentages higher than 6.5% were used as an auxiliary diagnostic index for diabetic macaques (Cowie et al., 2010). The normal ranges of triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) were referenced against the blood lipid index of rhesus macaques (Yu et al., 2019). We have added the normal ranges of parameters to Table 1, “FPG: fasting plasma glucose (normal range: ≤ 6.1 mmol/L); FPI: fasting plasma insulin (normal range: ≤ 12 μU/mL); HOMA-IR: homeostasismodel assessment- insulin resistance (normal range: ≤ 2.67); BMI: body mass index; HbA1c: glycosylated hemoglobin A1c (normal range: < 6.5%); TG: triglycerides (normal range: 0.95±0.47 mmol/L); TC: total cholesterol (normal range: 3.06±0.98 mmol/L); HDL: high-density lipoprotein cholesterol (normal range: 1.62±0.46 mmol/L); LDL: low-density lipoprotein cholesterol (normal range: 2.47±0.98 mmol/L). (30, 31, 32, 33).”.

      References:

      Matsuda M., DeFronzo R.A 1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp Diabetes care 22:1462-1470 https://doi.org/10.2337/diacare.22.9.1462

      Lorenzo C., Hazuda H.P., Haffner S.M 2012) Insulin resistance and excess risk of diabetes in Mexican-Americans: the San Antonio Heart Study J. Clin. Endocr. Metab 97:793-799 https://doi.org/10.1210/jc.2011-2272

      Cowie C.C., Rust K.F., Byrd-Holt D.D., Gregg E.W., Ford E.S., Geiss L.S., Bainbridge K.E., Fradkin J.E 2010) Prevalence of diabetes and high risk for diabetes using A1C criteria in the US population in 1988–2006 Diabetes care 33:562-568 https://doi.org/10.2337/dc09-1524

      Yu W., Hao X., Yang F., Ma J., Zhao Y., Li Y., Wang J., Xu H., Chen L., Liu Q., et al. 2019) Hematological and biochemical parameters for Chinese rhesus macaque PLoS One 14:e0222338 https://doi.org/10.1371/journal.pone.0222338

      Comment 4: (3) The authors measured the fasting plasma glucose (FPG) levels, but it is common to measure whole blood glucose since glucose is consumed during the processing of obtaining plasma which could compromise the results. Please explain why plasma glucose levels were measured.

      The criteria for screening spontaneous T2DM macaques were guided by the American Diabetes Association (ADA) for glucose metabolism status and the diagnostic criteria for diabetes. Individuals with FPG ≥ 7 mmol/L were diagnosed as T2DM subjects, and individuals with FPG ≤ 6.1 mmol/L were controls. For the identified subjects, a total of three times of FPG tests were employed, with an interval of one month to reduce the possible error. These individuals were raised in a single cage, and blood samples were collected after an overnight fast at least 12 h. After the three test results meet the standards, venous blood was collected for FPG testing to ensure the reliability of the data to the greatest extent. We have added FPG values of three time to the Table S1.

      Comment 5: (4) Since the BMI of the T2DM and control groups did not significantly differ (p>0.05, Table 1), the food intake of the two groups may not significantly differ as well. The authors should examine the food intake data. The food intake is also important in considering the relevance of feeding the PA diet in mice experiments. Were the intake of T2DM macaques including PA more than the control group?

      All macaques in this study were individually housed under standardized environments with timed and measured feeding to minimize confounders. Given the non-significant BMI difference between T2DM and control groups, food intake was probably not significantly different. In this study, our findings highlight the essential roles of gut microbiota in T2DM development, and this is probable also the reason that previous studies have failed to induce T2DM in macaques because they have only used a high-fat diet (Ji et al., 2012; Tang, 2020). We agree that PA intake in T2DM macaques warrants focused investigation. Future investigations will incorporate detailed dietary monitoring including palmitic acid (PA) intake and nutrient composition to examine potential relationships between specific dietary components, metabolic parameters, and diabetes progression.

      References

      Ji F., Jin L., Zeng X., Zhang X., Zhang Y., Sun Y., Gao L., He H., Rao J., Liu X., et al. 2012) Comparison of gene expression between naturally occurring and diet-induced T2DM in cynomolgus monkeys Dongwuxue Yanjiu 33:79–84 https://doi.org/10.3724/SP.J.1141.2012 .01079

      Tang MT. 2020) Study on the Role of Glucose and Lipid in the Establishment of Type 2 Diabetic Cynomolgus Monkey Model M.S. Thesis, Dept. Veterinary Med., South China Agricultural Univ. 2020

      Comment 6: (5) It may be that the fecal microbiome of the T2DM macaques is involved in the pathogenesis of T2DM; however, it is more important how the gut microbiota compositions were obtained/established by those T2DM macaques. There was no description of when the fecal samples were collected during the course of T2DM. If it was after T2DM symptoms appeared, the authors should perform gut metagenome and also gut metabolome analyses to see the change in those parameters to try to understand how gut microbiome changes are induced leading to T2DM pathogenesis.

      The spontaneous T2DM macaques untreated with glucose-lowering drugs or antibiotics, revealed microbiota dysbiosis driven purely by disease progression. After macaques met diagnostic thresholds across three FPG assessments (each detection interval of one month), we collected fresh fecal samples and stored them aseptically at -80 °C until analysis. The scarcity of spontaneous T2DM macaques precludes invasive sampling, restricting tissue collection to naturally deceased diabetic individuals, which prevented us to explicitly define the disease stage of the T2DM individuals. We recognize the scientific value of gut metagenomic and metabolomic analyses to track microbiome evolution during diabetes progression. This study explored the interaction of gut microbiota and metabolites in T2DM macaques, and future studies can continue to investigate its dynamic changes in the disease process of T2DM.

      Comment 7: (6) Regarding the fatty acids, the authors only measured them in the plasma, but they also should measure in feces, since the authors focus on gut microbiota; in addition, a recent report showed fecal fatty acids, especially elaidic acid, contributed the pathogenesis of obesity and T2DM by acting on the gut epithelial cells (doi: 10.1016/j.cmet.2022.12.013). Besides, this study showed the link between a Lachnospiraceae species and fecal palmitic and elaidic acids, which the authors also focused on in this manuscript.

      We thank the reviewer for this suggestion. This study employed untargeted metabolomics on macaque fecal samples to identify metabolites associated with spontaneously developing T2DM. To validate the metabolites identified through the untargeted metabolomic analysis, we conducted targeted medium- and long-chain fatty acid (MLCFA) metabolomics on macaque serum, and we further quantitatively examined the content of palmitic acid (PA) in mice feces, ileum, and serum. Although targeted MLCFA metabolomics was not performed on macaque fecal samples, we did perform untargeted metabolomics on macaque feces and confirmed the contribution of PA in mice that underwent fecal microbiota transplantation (FMT) from T2DM macaques. We have added future expectations in the part of the discussion, “Previous studies have shown that insulin-resistant individuals exhibit increased fecal monosaccharides associated with microbial carbohydrate metabolism (70). Furthermore, commensal species of Lachnospiraceae actively overproduce long-chain fatty acids during metabolic dysfunction through altered bacterial lipid metabolism. The microbe-derived fatty acids impair intestinal epithelial integrity to exacerbate metabolic dysregulation (71). Given that microbial metabolic activity causally modulates host metabolic homeostasis, the content change of PA was potentially associated with a dynamic equilibrium between host absorption and microbial metabolism. Further integrative studies on the fecal fatty acid metabolome, microbial PA metabolism, and functional pathways will be crucial for delineating causal links between dysbiosis and lipid metabolic dysfunction in T2DM.” (Lines 426-437).

      Comment 8: (7) In FMT and PA diet experiments, SPF mice were used as the control group. However, the gut microbiota composition of the SPF mice is markedly different from that of macaques; the difference must be much bigger than the difference between T2DM and healthy control macaques; therefore, mice with FMT from healthy control macaques have to be used as the control group. As mentioned above (in point #4), is the feeding of mice with PA diet a relevant model reflecting the condition observed in macaques in this study?

      Thanks for your helpful suggestion. We recognized the importance of a FMT control group and supplemented mouse experiments (using the C57BL/6J strain) with FMT from control macaques (HFT group). Another group of mice without FMT was set as control. Due to the lengthy experimental period, observations were concluded at 30 days post-FMT. We compared changes in the gut microbiota before and after antibiotic treatment in mice (-14D and 0D), and tracked body weight and fasting plasma glucose (FPG) levels from day -14 to day 30. At 30 days after FMT, fecal samples from all groups were collected for 16S rRNA sequencing. Additionally, samples of T2DM microbiota transplant (TP), and control transplant (HTP) were sequenced. Finally, we integrated the 16S sequencing data from the FTPA group (palmitic acid (PA) diet and FMT from T2DM macaques) and FT group (normal diet and FMT from T2DM macaques) at day 30 for combined analysis. The results showed that the antibiotic treatment used in this study effectively depleted the gut microbiota. Following FMT, gut microbial diversity stabilized within 30 days, with similar microbial community proportions between HFT and control groups. Core functional groups of the healthy microbiota (Bacteroidota and Bacillota) stably colonized mice despite host species divergence, confirming that T2DM phenotypes originate specifically from macaque microbiota. Importantly, increased abundance of Lachnospiraceae (including genera Ruminococcus (current name: Mediterraneibacter), Coprococcus, and Clostridium) and the key species Ruminococcus gnavus (current name: Mediterraneibacter gnavus) were also observed in FT group versus HFT group on day 30, validating our original findings. We have added findings in the results, “To eliminate interference from host species divergence in gut microbiota composition, we supplemented mouse experiments using FMT from control macaques (HFT group) (Figure S4A). By day 30, the HFT group exhibited significantly lower body weight than the untreated control group (p < 0.05) (Figure S4B). Throughout the experimental period, FPG levels in both HFT and control groups remained within the normal range (< 6 mmol/L) without significant differences, indicating that transplantation of control macaque microbiota did not induce glycemic alterations (Figure S4C).” (Lines 276-283), and “Integrating 16S rRNA sequencing data from the HFT, FT, and FTPA groups showed that the antibiotic treatment effectively depleted the gut microbiota, resulting in microbial diversity decreased sharply, with the dominant phyla shifting from Bacteroidota and Bacillota to Pseudomonadota (Figure S4D-G). The HFT group restored microbial diversity within 30 days, achieving community proportions comparable to untreated controls. Core functional phyla (Bacteroidota and Bacillota) stably colonized in HFT group (Figure S4D-I). Critically, FT and FTPA groups exhibited increased Lachnospiraceae (including genera Ruminococcus (current name: Mediterraneibacter), Coprococcus, and Clostridium) compared with the HFT group on day 30. In addition, LEfSe comparison identified significant R. gnavus (current name: M. gnavus) enrichment in the FT group (LDA > 3, p < 0.01) (Figure S4J-M).” (Lines 324-334, 825-837).

      We agree that the PA-containing diet alone could not fully mimic spontaneous T2DM in macaques. In our study, the PA diet was employed in mouse experiments to investigate whether gut microbiota modulates serum PA levels and mediates T2DM progression. Our critical finding revealed that microbiota was essential for enhanced PA absorption, while simply increasing dietary levels of PA did not effectively enhance intestinal uptake. The FMT combined with PA-diet approach successfully induced prediabetic states in mice, which can be further applied to the induction of T2DM in macaques. We have added future expectations in the part of the discussion, “Our study highlights the essential roles of gut microbiota in T2DM development, which may account for the inability of prior studies to induce T2DM in macaques through high-fat diet intervention alone (28, 29). Furthermore, applying this approach to induce T2DM in macaques will enable deeper investigation into gut-microbiota-driven mechanisms underlying disease pathogenesis.” (Lines 393-398).

      Comment 9: FPG was measured here in the mouse experiments, but there was no description of whether mice were under fasting conditions, and this should be clarified. If there are no fasting durations, this should be described in the Materials and Methods section.

      As suggested, we have added description to the Materials and Methods section, “Throughout the experiment, body weight and feces were collected every month, FPG was detected every half month under fasting at least 12 h.” (Lines 619-620).

      Comment 10: From the PA contents in feces, ileum, and serum in mice (Figures 5A-D), the authors concluded that the absorption of PA was significantly enhanced in the ileum leading to the increase of PA in serum. However, it could also be possible that consumption of PA by gut microbiota occurs at the same time and the authors should discuss the possibility.

      We thank the reviewer for spotting this. We have added a discussion to the manuscript, “Previous studies have shown that insulin-resistant individuals exhibit increased fecal monosaccharides associated with microbial carbohydrate metabolism (70). Furthermore, commensal species of Lachnospiraceae actively overproduce long-chain fatty acids during metabolic dysfunction through altered bacterial lipid metabolism. The microbe-derived fatty acids impair intestinal epithelial integrity to exacerbate metabolic dysregulation (71). Given that microbial metabolic activity causally modulates host metabolic homeostasis, the content change of PA was potentially associated with a dynamic equilibrium between host absorption and microbial metabolism. Further integrative studies on the fecal fatty acid metabolome, microbial PA metabolism, and functional pathways will be crucial for delineating causal links between dysbiosis and lipid metabolic dysfunction in T2DM.” (Lines 426-437).

      Comment 11: (8) Nomenclature and classification of bacteria has been revised by the List of Prokaryotic names with Standing in Nomenclature (LPSN) (https://lpsn.dsmz.de/) and recognized as Global Core Biodata Resource in 2023. For example, Ruminococcus gnavus is now Mediterraneibacter gnavus. Therefore, the name of microbes should be corrected accordingly; one proposal is to show the revised correct name with the previous name in parenthesis, such as "Mediterraneibacter gnavus (previously Ruminococcus gnavus)".

      Thank you for pointing this out. We have corrected the name of microbe, “Ruminococcus (current name: Mediterraneibacter)”, “Ruminococcus gnavus (current name: Mediterraneibacter gnavus), and “R. gnavus (current name: M. gnavus)” (Lines 146, 313, 316-317, 336, 345, 367-368, 401, 404-405, 409, 448, 764-765)

      Minor:

      Comment 12:

      (1) The sentence starting "A total of..." (lines 143-144) seems grammatically wrong; a word such as "represented" should be inserted after "differentially", or alternatively "differentially" should be "differential"?

      (2) "medium-and" (line 220) needs a space between "medium-" and "and" to make it "medium- and".

      (3) Abbreviations should be spelled out when they appear for the first time in the main text; for example, WBC, NEU, and LYM in line 237.

      (4) Should FGP (line 437) be FPG?

      (5) What is the definition of "prediabetes" in mice? Is this clearly defined elsewhere?

      We sincerely thank the reviewer for careful reading. As suggested, we have improved the statements and revised it according to the requirements:

      (1) Line 143: “A total of 21 microbes were identified as differential microbes”.

      (2) Line 221: “targeted medium- and long-chain fatty acid”.

      (3) Lines 238-239: “white blood cell (WBC)”, “neutrophil (NEU)”, and “lymphocyte (LYM)”.

      (4) Line 472: “FPG, HbA1c and FPI were detected”.

      (5) Prediabetes or impaired glucose regulation (IGR) is diagnosed when one exhibits blood glucose level higher than normal yet below the diabetic threshold, which is even more prevalent than T2DM in the population (American Diabetes, 2021). Given the higher glycemic diagnostic criteria in mice, we assessed diabetic manifestations integrating physiological and pathological evidence. Compared to control mice, those receiving FMT from T2DM macaques combined with a high-palmitic-acid diet (FTPA group) developed prediabetic characteristics by day 120. Physiological alterations included elevated fasting plasma glucose (FPG), increased fasting plasma insulin (FPI), impaired glucose tolerance, heightened insulin resistance, weight gain, and elevated serum total cholesterol (TC) and triglyceride (TG) levels. Particularly in pathological changes, hepatocytes focal necrosis with inflammatory cell infiltration was commonly observed in FTPA group, alongside decreased volume in pancreatic islets and inflammatory cell infiltration (lines 258-276).

      References:

      American Diabetes Association 2021) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021 Diabetes care 44:S15-S33 https://doi.org/10.2337/dc21-S002

      Reviewer #2 (Public review):

      This study analyzes the interaction among the gut microbiota, lipid metabolism, and the host in type 2 diabetes (T2DM) using rhesus macaques. The authors first identified 8 macaques with T2DM from 1698 individuals. Then, they observed in T2DM macaques: dysbiosis by 16S rRNA gene amplicon analysis and shotgun sequencing, imbalanced tryptophan metabolism and fatty acid beta oxidization in the feces by metabolome analysis, increased plasma concentration of palmitic acid by MS analysis, and sn inflammatory gene signature of blood cells by transcriptomic analysis. Finally, they transplanted feces of T2DM macaques into mice and fed them with palmitic acid and showed that those mice became diabetic through increased absorption of palmitic acid in the ileum.

      Comment 1: This study clearly shows the interaction among gut microbiota, lipid metabolism, and the host in T2DM. The experiments were well designed and performed, and the data are convincing. One point I would suggest is that in the experiments of mice with FMT, control mice should be those colonized with feces of healthy macaques, but not with no FMT.

      See response to Reviewer 1, Public review comment 4.

    1. Author Response:

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigated how partial loss of SynGap1 affects inhibitory neurons derived from the MGE in the auditory cortex, focusing on their synaptic inputs and excitability. While haplo-insufficiently of SynGap1 is known to lead to intellectual disabilities, the underlying mechanisms remain unclear.

      Strengths:

      The questions are novel

      Weaknesses:

      Despite the interesting and novel questions, there are significant issues regarding the experimental design and potential misinterpretations of key findings. Consequently, the manuscript contributes little to our understanding of SynGap1 loss mechanisms.

      Major issues in the second version of the manuscript:

      In the review of the first version there were major issues and contradictions with the sEPSC and mEPSC data, and were not resolved after the revision, and the new control experiments rather confirmed the contradiction.

      In the original review I stated: "One major concern is the inconsistency and confusion in the intermediate conclusions drawn from the results. For instance, while the sEPSC data indicates decreased amplitude in PV+ and SOM+ cells in cHet animals, the frequency of events remains unchanged. In contrast, the mEPSC data shows no change in amplitudes in PV+ cells, but a significant decrease in event frequency. The authors conclude that the former observation implies decreased excitability. However, traditionally, such observations on mEPSC parameters are considered indicative of presynaptic mechanisms rather than changes of network activity. The subsequent synapse counting experiments align more closely with the traditional conclusions. This issue can be resolved by rephrasing the text. However, it would remain unexplained why the sEPSC frequency shows no significant difference. If the majority of sEPSC events were indeed mediated by spiking (which is blocked by TTX), the average amplitudes and frequency of mEPSCs should be substantially lower than those of sEPSCs. Yet, they fall within a very similar range, suggesting that most sEPSCs may actually be independent of action potentials. But if that was indeed the case, the changes of purported sEPSC and mEPSC results should have been similar." Contradictions remained after the revision of the manuscript. On one hand, the authors claimed in the revised version that "We found no difference in mEPSC amplitude between the two genotypes (Fig. 1g), indicating that the observed difference in sEPSC amplitude (Figure 1b) could arise from decreased network excitability". On the other hand, later they show "no significative difference in either amplitude or inter-event intervals between sEPSC and mEPSC, suggesting that in acute slices from adult A1, most sEPSCs may actually be AP independent." The latter means that sEPSCs and mEPSCs are the same type of events, which should have the same sensitivity to manipulations.

      We thank the reviewer for the detailed comments. Our results suggest a diverse population of PV+ cells, with varying reliance on action potential-dependent and -independent release. Several PV+ cells indeed show TTX sensitivity (reduced EPSC event amplitudes following TTX application: See new Supplementary Figure 2b-e), but their individual responses are diluted when all cells are pooled together. To account for this variability, we recorded sEPSC followed by mEPSC from more mice of both genotypes (new Figure 1f-j). Further, following the editors and reviewers’ suggestions, we removed speculations about the role of network activity changes.

      In summary, our data confirmed that TTX blocked APs in PV+ cells and that recordings were stable as indicated by lack of changes in series resistance during the recording period in our experimental setup (new Suppl. Figure 2f-i). We found no difference in mEPSC amplitude between the two genotypes (Fig. 1g, right), indicating that the observed difference in sEPSC amplitude (Figure 1c, right) could be due to impaired AP-dependent release in cHet mice and the presence of large-amplitude sEPSCs that are preferentially affected by TTX in control mice (new Suppl. Figure 2b-e). Conversely, cHet mice showed longer inter-mEPSC time interval (cumulative distribution in Figure 1g, left), and significantly lower charge transfer and DQ*f (Figure 1j) compared to controls littermates, suggesting a decrease of glutamatergic presynaptic release sites onto PV+ cells. 

      Concerns about the quality of the synapse counting experiments were addressed by showing additional images in a different and explaining quantification. However, the admitted restriction of the analysis of excitatory synapses to the somatic region represent a limitation, as they include only a small fraction of the total excitation - even if, the slightly larger amplitudes of their EPSPs are considered.

      We agree with the reviewer that restricting the anatomical analysis of excitatory synapses to PV cell somatic region is a limitation, as highlighted it in the discussion of the revised manuscript. Recent studies, based on serial block-face scanning electron microscopy, suggest that cortical PV+ interneurons receive more robust excitatory inputs to their perisomatic region as compared to pyramidal neurons (see for example, Hwang et al. 2021, Cerebral Cortex, http://doi.org/10.1093/cercor/bhaa378). It is thus possible that putative glutamatergic synapses, analysed by vGlut1/PSD95 colocalisation around PV+ cell somata, may be representative of a substantially major excitatory input population. Since analysing putative excitatory synapses onto PV+ dendrites would be difficult and require a much longer time, we re-phrased the text to more clearly highlight the rationale and limitation of this approach.

      New experiments using paired-pulse stimulation provided an answer to issues 3 and 4. Note that the numbering of the Figures in the responses and manuscript are not consistent.

      We are glad that the reviewer found that the new paired-pulse experiments answered previously raised concerns. We corrected the discrepancy in figure numbers in the manuscript. Thank you for noticing.

      I agree that low sampling rate of the APs does not change the observed large differences in AP threshold, however, the phase plots are still inconsistent in a sense that there appears to be an offset, as all values are shifted to more depolarized membrane potentials, including threshold, AP peak, AHP peak. This consistent shift may be due to a non-biological differences in the two sets of recordings, and, importantly, it may negate the interpretation of the I/f curves results (Fig. 5e).

      We agree with the reviewers that higher sampling rate would allow to more accurately assess different parameters, such as AP peak, half-width, rise time, etc., while it would not affect the large differences in AP threshold we observed between control and mutant mice. Since the phase plots to not add to our result analysis, we removed them from the revised manuscript. 

      Additional issues:

      The first paragraph of the Results mentioned that the recorded cells were identified by immunolabelling and axonal localization. However, neither the Results nor the Methods mention the criteria and levels of measurements of axonal arborization.

      Recorded MGE-derived interneurons were filled with biocytin, and their identity was confirmed by immunolabeling for neurochemical markers (PV or SST) and analysis of anatomical properties. In particular, whole biocytin-positive immunolabelled neurons were acquired using a Leica SP8-DLS confocal microscope (20x objective, NA 0.75; Z-step 1 1μm).  For each imaged neuron, which was the result of multiple merged confocal stacks, we visually determined the spatial distribution across cortical layers of the axonal arbor and whether its dendrites carried spines.  We added this information in the method section. Furthermore, to better represent our methodological approach, we added a new figure (Supplemental Figure 1) including 1) two examples of PV+ interneurons, showing dendrites devoid of spines and axons spreading from Layer II to Layer V (new Suppl. Figure 1a); and 2) two examples of SST+ interneurons showing dendritic with spines and axons projecting from Layer IV to Layer I where they gave rise to multiple collaterals (new Suppl. Figure 1b).  

      The other issues of the first review were adequately addressed by the Authors and the manuscript improved by these changes.

      We are happy the reviewer found that the other issues were well addressed.

      Reviewer #3 (Public review):

      This paper compares the synaptic and membrane properties of two main subtypes of interneurons (PV+, SST+) in the auditory cortex of control mice vs mutants with Syngap1 haploinsufficiency. The authors find differences between control and mutants in both interneuron populations, although they claim a predominance in PV+ cells. These results suggest that altered PVinterneuron functions in the auditory cortex may contribute to the network dysfunctions observed in Syngap1 haploinsufficiency-related intellectual disability.

      The subject of the work is interesting, and most of the approach is rather direct and straightforward, which are strengths. There are also some methodological weaknesses and interpretative issues that reduce the impact of the paper.

      (1) Supplementary Figure 3: recording and data analysis. The data of Supplementary Figure 3 show no differences either in the frequency or amplitude of synaptic events recorded from the same cell in control (sEPSCs) vs TTX (mEPSCs). This suggests that, under the experimental conditions of the paper, sEPSCs are AP-independent quantal events. However, I am concerned by the high variability of the individual results included in the Figure. Indeed, several datapoints show dramatically different frequencies in control vs TTX, which may be explained by unstable recording conditions. It would be important to present these data as time course plots, so that stability can be evaluated. Also, the claim of lack of effect of TTX should be corroborated by positive control experiments verifying that TTX is working (block of action potentials, for example). Lastly, it is not clear whether the application of TTX was consistent in time and duration in all the experiments and the paper does not clarify what time window was used for quantification.

      We understand the reviewer’s concern about high variability. To account for this variability, we recorded sEPSC followed by mEPSC from more mice of both genotypes (see new Figure 1f-j). We confirmed that TTX worked as expected several times through the time course of this study, in different aliquots prepared from the same TTX vial that was used for all experiments. The results of the last test we performed, showing that TTX application blocks action potentials in a PV+ cell, are depicted in new Suppl. Figure 2a. Furthermore, new Suppl. Figure 2f-i shows series resistance (Rs) over time for 4 different PV+ interneurons, indicating recording stability. These results are representative of the entire population of recorded neurons, which we have meticulously analysed one by one. TTX was applied using the same protocol for all recorded neurons. In particular, sEPSCs were first sampled over a 2 min period. A TTX (1μM; Alomone Labs)-containing solution was then perfused into the recording chamber at a flow rate of 2 mL/min. We then waited for 5 min before sampling mEPSCs over a 2 min period. We added this information in the revised manuscript methods.

      (2)  Figure 1 and Supplementary Figure 3: apparent inconsistency. If, as the authors claim, TTX does not affect sEPSCs (either in the control or mutant genotype, Supplementary Figure 3 and point 1 above), then comparing sEPSC and mEPSC in control vs mutants should yield identical results. In contrast, Figure 1 reports a _selective_ reduction of sEPSCs amplitude (not in mEPSCs) in mutants, which is difficult to understand. The proposed explanation relying on different pools of synaptic vesicles mediating sEPSCs and mEPSCs does not clarify things. If this was the case, wouldn't it also imply a decrease of event frequency following TTX addition? However, this is not observed in Supplementary Figure 3. My understanding is that, according to this explanation, recordings in control solution would reflect the impact of two separate pools of vesicles, whereas, in the presence of TTX, only one pool would be available for release. Therefore, TTX should cause a decrease in the frequency of the recorded events, which is not what is observed in Supplementary Figure 3.

      To account for the large variability and clarify these results, we recorded sEPSCs followed by mEPSCs from more mice of both genotypes (new Figure 1f-j). We found no difference in mEPSC amplitude between the two genotypes (Fig. 1g, right), indicating that the observed difference in sEPSC amplitude (Figure 1c, right) could be due to impaired AP-dependent release in cHet mice and the presence of large-amplitude sEPSCs that are preferentially affected by TTX in control mice (new Suppl. Figure 2b-e). Conversely, cHet mice showed longer inter-mEPSC time interval (cumulative distribution in Figure 1g, left), and significantly lower charge transfer and DQ*f (Figure 1j) compared to controls littermates, suggesting a decrease of glutamatergic presynaptic release sites. We rephrased the text in the revised manuscript according to the updated data and, following the reviewer’s suggestions, we removed speculations relying on different pools of synaptic vesicles.

      (3) Figure 1: statistical analysis. Although I do appreciate the efforts of the authors to illustrate both cumulative distributions and plunger plots with individual data, I am confused by how the cumulative distributions of Figure 1b (sEPSC amplitude) may support statistically significant differences between genotypes, but this is not the case for the cumulative distributions of Figure 1g (inter mEPSC interval), where the curves appear even more separated. A difference in mEPSC frequency would also be consistent with the data of Supplementary Fig 2b, which otherwise are difficult to reconciliate. I would encourage the authors to use the Kolmogorov-Smirnov rather than a t-test for the comparison of cumulative distributions.

      We thank the reviewer for this thoughtful suggestion. We recorded more mice of both genotypes and the updated data now show a significant difference between the cumulative distributions of the inter mEPSC intervals recorded from the two genotypes (new Figure 1g). For statistical analysis, we based our conclusion on the statistical results generated by LMM, modelling animal as a random effect and genotype as fixed effect. We used this statistical analysis because we considered the number of mice as independent replicates and the number of cells in each mouse as repeated measures (Berryer et al. 2016; Heggland et al., 2019; Yu et al., 2022). For cumulative distributions, the same number of events was chosen randomly from each cell and analysed by LMM, modelling animal as a random effect and genotype as fixed effect. The reason we decided to use LMM for our statistical analyses is based on the growing concern over reproducibility in biomedical research and the ongoing discussion on how data are analysed (see for example, Yu et al (2022), Neuron 110:21-35 https://doi: 10.1016/j.neuron.2021.10.030; Aarts et al. (2014). Nat Neurosci 17, 491–496. https://doi.org/10.1038/nn.3648). We acknowledge that patch-clamp data has been historically analysed using t-test and analysis of variance (ANOVA), or equivalent nonparametric tests. However, these tests assume that individual observations (recorded neurons in this case) are independent of each other. Whether neurons from the same mouse are independent or correlated variables is an unresolved question, but does not appear to be likely from a biological point of view. Statisticians have developed effective methods to analyze correlated data, including LMM.

      (4) Methods. I still maintain that a threshold at around -20/-15 mV for the first action potential of a train seems too depolarized (see some datapoints of Fig 5c and Fig7c) for a healthy spike. This suggest that some cells were either in precarious conditions or that the capacitance of the electrode was not compensated properly.

      As suggested by the reviewer, in the revised figures we excluded the neurons with threshold at -20/-15 mV. In addition, we performed statistical analysis with and without these cells (data reported below) and found that whether these cells are included or excluded, the statistical significance of the results does not change.

      Fig.5c: including the 2 outliers from cHet group with values of -16.5 and 20.6 mV: 42.6±1.01 mV in control, n=33 cells from 15 mice vs -35.3±1.2 mV in cHet, n=40 cells from 17 mice, ***p<0.001, LMM; excluding the 2 outliers from cHet group -42.6±1.01 mV in control, n=33 cells from 15 mice vs -36.2±1.1 mV in cHet, n=38 cells from 17 mice, ***p<0.001, LMM.

      Fig.7c: including the 2 outliers from cHet group with values of -16.5 and 20.6 mV: 43.4±1.6 mV in control, n=12 cells from 9 mice vs -33.9±1.8 mV in cHet, n=24 cells from 13 mice, **p=0.002, LMM; excluding the 2 outliers from cHet group -43.4±1.6 mV in control, n=12 cells from 9 mice vs -35.4±1.7 mV in cHet, n=22 cells from 13 mice, *p=0.037, LMM.

      (5) The authors claim that "cHet SST+ cells showed no significant changes in active and passive membrane properties (Figure 8d,e); however, their evoked firing properties were affected with fewer AP generated in response to the same depolarizing current injection".

      This sentence is intrinsically contradictory. Action potentials triggered by current injections are dependent on the integration of passive and active properties. If the curves of Figure 8f are different between genotypes, then some passive and/or active property MUST have changed. It is an unescapable conclusion. The general _blanket_ statement of the authors that there are no significant changes in active and passive properties is in direct contradiction with the current/#AP plot.

      We agreed with the reviewer and rephrased the abstract, results and discussion according to better represent the data. As discussed in the previous revision, it's possible that other intrinsic factors, not assessed in this study, may have contributed to the effect shown in the current/#AP plot. 

      (6) The phase plots of Figs 5c, 7c, and 7h suggest that the frequency of acquisition/filtering of current-clamp signals was not appropriate for fast waveforms such as spikes. The first two papers indicated by the authors in their rebuttal (Golomb et al., 2007; Stevens et al., 2021) did not perform a phase plot analysis (like those included in the manuscript). The last work quoted in the rebuttal (Zhang et al., 2023) did perform phase plot analysis, but data were digitized at a frequency of 20KHz (not 10KHz as incorrectly indicated by the authors) and filtered at 10 kHz (not 2-3 kHz as by the authors in the manuscript). To me, this remains a concern.

      We agree with the reviewer that higher sampling rate would allow to more accurately assess different AP parameters, such as AP peak, half-width, rise time, etc. The papers were cited in context of determining AP threshold, not performing phase plot analysis. We apologize for the confusion and error. Finally, we removed the phase plots since they did not add relevant information. 

      (7)  The general logical flow of the manuscript could be improved. For example, Fig 4 seems to indicate no morphological differences in the dendritic trees of control vs mutant PV cells, but this conclusion is then rejected by Fig 6. Maybe Fig 4 is not necessary. Regarding Fig 6, did the authors check the integrity of the entire dendritic structure of the cells analyzed (i.e. no dendrites were cut in the slice)? This is critical as the dendritic geometry may affect the firing properties of neurons (Mainen and Sejnowski, Nature, 1996).

      As suggested by the reviewer, we removed Fig.4. All the reconstructions used for dendritic analysis contained intact cells with no evidently cut dendrites.

    1. Author response:

      The following is the authors’ response to the current reviews.

      We thank the editors at eLife and the one reviewer for engaging our revised manuscript. As we noted in our previous response to reviewers, which we wrote in October 2024 when we submitted our initial revision the majority of critique we received was targeted not so much at the argument of this manuscript but at the debate regarding the evidence in the two other manuscripts that this one accompanied; “ Evidence for deliberate burial of the dead by Homo naledi” and “241,000 to 335,000 Years Old Rock Engravings Made by Homo naledi in the Rising Star Cave system, South Africa.” Because of that critique we revised this manuscript to emphasize that the key element in constructing our argument is that H. naledi engaged in mortuary behavior (the movement of dead H. naledi by living H. naledi into the Rising Star cave system) and place that in context of a) the increasingly complex later Pleistocene record of meaning making activity and b) the assumed correlations between brain size and cognitive capacities in Pliocene and Pleistocene hominins. This framing, as noted in the eLife editorial comment, is the main thrust of our manuscript. There is a growing convergence of evidence that totality of the currently available data and analyses for H. naledi in the Rising Star cave system support mortuary behavior: that is, the agential and intentional action by H. naledi individuals in the transport of bodies to the Lesedi Chamber and Dinaledi Subsystem--see Berger et al. 2025 plus the 2nd round reviews and the eLife editorial comment associated with it, and also Van Rooyen et al. 2025. We acknowledge the serious debates around the assertion of funerary behavior (cultural burial) and seek to illustrate that while we believe the data support the funerary behavior hypothesis, it is not a necessary requirement for our main argument.

      A few specific responses to the reviewer in this revised manuscript:

      Reviewer states: “Claims for a positive correlation between absolute and/or relative brain size and cognitive ability are not common in discussions surrounding the evolution of Middle- and Late Pleistocene hominin behavior.” We are not making the argument that absolute brain size in the later Pleistocene is a point of focus, rather that there are many arguments and assertions about EQ and cognitive capacity that are central in the proposals for the evolution of hominins in general and genus Homo in particular across the Plio-pleistocene period. We offer a brief review of this in the text and suggest, as noted by this reviewer, that “exploration of the specific/potential socio-cultural, neuro-structural, ecological and other factors will be more informative than the emphasis on absolute/relative brain size”…this (in their words) is exactly our main point. However, we contend that such a framing should not be exclusive to later Pleistocene contexts, but rather that the examination of earlier hominins might also be better served by moving away from the traditional assumptions of cognitive complexity associated with absolute/relative brain size. The reviewer states: “The authors use, in a number of instances throughout the paper, secondary sources of information such as review papers (e.g., McBrearty & Brooks 2000; Scerri & Will 2023; Galway-Witham et al. 2019) instead of the original works that are the basis for making the desired case.” We do indeed use review papers in the main body of the text for clarity, brevity, and to acknowledge robust previous review work in these areas, however in the supplemental text and with the figures and table we offer substantive bibliographies of the original citations and studies. We encourage readers to please spend time with those materials as well. Finally, the reviewer states: “Given the inadequate analyses in the accompanying papers, and the lack of evidence for stone tools in the naledi sites, the present claims for the expression of culturally and symbolically mediated behaviors by this small-brained hominin must be adequately established.” We are quite specific in this manuscript, and in other publications, that we are not arguing for “symbolically mediated” behavior, but do stand by our non-controversial suggestions of meaning-making, and cultural behavior, as relevant in Pleistocene hominins (e.g. Kissel and Fuentes 2017, 2018). We do not argue that stone tools are necessary as mandatory indicators of such possibilities and lay out the H. naledi information in the context of the broader and increasing datasets and analyses for meaning-making behavior in Pleistocene hominins (see Figure 1 and table 1, and in the text).

      Our point with this manuscript which we reiterate here is that “The increasing data for complex behavior and meaning-making across the Pleistocene should play a major element in structuring how we investigate, explain, and model the origins and patterns of hominin and human evolution” and we feel that the current evidence for H. naledi behavior contributes to the broader suites of data, hypotheses, analyses, and theory building in this endeavor.


      The following is the authors’ response to the original reviews.

      Before laying out how we addressed the specific comments on this manuscript we want to clarify the goal and intent of this paper to maximize effective critical reading of its contents. We appreciate and look forward to continued critique and enhanced discussion of this topic and argument.

      Our starting point for constructing the argument in this manuscript is that H. naledi engaged in mortuary behavior. This emerges from the totality of the currently available data and analyses for Homo naledi in the Rising Star cave system, which support agential and intentional action by Homo naledi individuals in the transport of bodies to the Lesedi Chamber and Dinaledi Subsystem. We do feel that the data support the cultural burial hypothesis as well as the likelihood that at least some of the markings reported as engravings are non-naturally occurring (see Martinón-Torres et al. 2024) and made by Homo naledi. But these two elements are not necessary for the validity of the argument we pursue in this manuscript.

      Our second key point is that gross brain size does not necessarily correlate with particular patterns of complex behavior in Pleistocene hominins. On this there is wide agreement, yet both scholarly and public arguments for the success of the genus Homo and the success of Homo sapiens have incorporated an assumption of a Rubicon of cerebral size. From this we propose a third point: that smaller brained Pleistocene hominins, including Homo naledi, are part of a Pleistocene hominin niche that includes patterns of complex social and cognitive behavior. Such behavior was historically considered to be exclusive to Homo sapiens but is now documented to occur earlier, across a range of hominin taxa in the latter half of the Pleistocene. We offer the case of H. naledi behavior in the Rising Star system as an example of this. This case contributes to the development of a broader approach to the cognitive, physiological, and behavioral framings of, and explanations for, Pleistocene hominin behavior.

      Responses to specific critiques in the eLife reviews centered on this manuscript:

      Reviewer #1:

      All inferences regarding hominin behaviour and biology of Homo naledi, discussed by Fuentes and colleagues, are wholly dependent on the evidence presented in the archaeology preprints being true.

      Reviewer #2:

      Fuentes et al. provide a detailed and thoughtful commentary on the evolutionary and behavioral implications of complex behaviors associated with a small-brained hominin, Homo naledi…..While the review by Fuentes et al. highlights important assumptions about the relationship between hominin brain size, cognition, and complex behaviors, the evidence presented by Berger et al. 2023a,b does not support the claim that Homo naledi engaged in burial practices or symbolic expression through wall engravings.

      Reviewer #3:

      This paper presents the cognitive implications of claims made in two accompanying papers (Berger et al. 2023a, 2023b) about the creation of rock engravings, the intentional disposal of the dead, and fire use by Homo naledi. The importance of the paper, therefore, relies on the validity of the claims for the presence of socio-culturally complex and cognitively demanding behaviors that are presented in the associated papers. Given the archaeological, hominin, and taphonomic analyses in the associated papers are not adequate to enable the exceptional claims for nalediassociated complex behaviors, the inferences made in this paper are currently inadequate and incomplete.

      We have clarified in the manuscript text and above why we argue that the inferences we are setting as core to our argument do not require cultural burial or engravings by H. naledi be demonstrated. However, we do clarify in the revision that the current evidence for the transport of dead conspecifics into difficult to reach areas deep into the cave system by naledi is well supported by the archeological and paleoanthropological data currently available (e.g. Berger et al. 2024, Elliott et al. 2021, Robbins et al. 2021, Hawks et al. 2017) and that this is the basis for our argument.

      Reviewer #3:

      The claimed behaviors are widely recognized as complex and even quintessential to Homo sapiens. The implications of their unequivocal association with such a small-brained Middle Pleistocene hominin are thus far reaching. Accordingly, the main thrust of the paper is to highlight that greater cognition and complex socio-cultural behaviors were not necessarily associated with a positively encephalized brain. This argument begs the obvious question of whether absolute brain size and/or encephalization quotient (i.e., the actual brain volume of a given species relative the expected brain size for a species of the same average body size) can measure cognitive capacity and the complexity of socio-cultural behaviors among late Middle Pleistocene hominins….Claims for a positive correlation between absolute and/or relative brain size and cognitive ability are not common in discussions surrounding the evolution of Middle- and Late Pleistocene hominin behavior.

      We assert that claims for a positive correlation between absolute and/or relative brain size and cognitive ability are central—either explicitly or implicitly—in most arguments concerning cognitively complex behavior in the genus Homo. This is especially true for ideas about success of Pleistocene Homo relative to other hominins. We clarify this in the text offering various citations in support of this position (e.g. Meneganzin and Currie 2022, Galway-Witham, Cole, and Stringer 2019, DeCasien, Barton, and Higham 2022, Dunbar 2003, Kissel and Fuentes 2021, Muthukrishna et al. 2018, Püschelet al. 2021, Tattersall 2023).

      Reviewer #3:

      Currently, the bulk of the evidence for early complex technological and social behaviors derives from multiple sites across South Africa and postdates the emergence of H. sapiens by more than 100,000 years. Such lag in the expression of complex technologies and behaviors within our species renders the brain size-implies-cognitive capacity argument moot. Instead, a rich body of research over the past several decades has focused on aspects related to sociocultural, environmental, and even the wiring of the brain in order to understand factors underlying the expression of the capacity for greater behavioral variability. In this regard, even if the claimed evidence for complex behaviors among the small-brained naledi populations proves valid, the exploration of the specific/potential socio-cultural, neuro-structural, ecological and other factors will be more informative than the emphasis on absolute/relative brain size.”

      While not at all denying the critically important and rich record of cultural complexity in the Late Pleistocene South African archeological record, we disagree that “the bulk of the evidence for early complex technological and social behaviors derives from multiple sites across South Africa and postdates the emergence of H. sapiens by more than 100,000 years”. We offer a range of examples and citations in support of our assertion in the text (esp. in pp12-14 and Table 1 and Figure 1)

      We lay out the currently available data for such cultural complexity in Figure 1 with extensive documentation and citations for each case in the Supplementary material (both aa a table and a bibliography). We wholly agree with Reviewer 3 that “the exploration of the specific/potential socio-cultural, neuro-structural, ecological and other factors will be more informative than the emphasis on absolute/relative brain size” and are attempting to do just that in the manuscript.

      Reviewer #3:

      The paper presents as supporting evidence previous claims for the appearance of similar complex behaviors predating the emergence of our species, H. sapiens, although it does acknowledge their controversial nature. It then uses the current claims for the association of such behaviors with H. naledi as decisive. Given the inadequate analyses in the accompanying papers and the lack of evidence for stone tools in the naledi sites, the present claims for the expression of culturally and symbolically mediated behaviors by this small-brained hominin must be adequately established.

      We respond to the first part of this critique above (regarding the other papers). But again, we emphasize that although we do feel that the argument for cultural burial is supported (see Berger et al. 2024 preprint) what we are arguing for in this paper is that the agential and intentional transportation of dead (mortuary behavior) is the sufficient factor undergirding our proposal. We do not agree that absence of recognizable stone tools at the site negates our proposal and assert that the context provided by Figure 1, and the data in the table for figure 1 in the SOM, in concert with the supported mortuary behavior (transport and emplacement of the dead) offer sufficient support for the argument we make in the text regarding brain size and the role of emotional cognition and complex behavior in the Pleistocene hominin niche and H. naledi’s participation in it.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Cheong et al. use a synapse-resolution wiring map of the fruit fly nerve cord to comprehensively investigate circuitry between descending neurons (DNs) from the brain and motor neurons (MNs) that enact different behaviours. These neurons were painstakingly identified, categorised, and linked to existing genetic driver lines; this allows the investigation of circuitry to be informed by the extensive literature on how flights walk, fly, and escape from looming stimuli. New motifs and hypotheses of circuit function were presented. This work will be a lasting resource for those studying nerve cord function.

      Strengths:

      The authors present an impressive amount of work in reconstructing and categorising the neurons in the DN to MN pathways. There is always a strong link between the circuitry identified and what is known in the literature, making this an excellent resource for those interested in connectomics analysis or experimental circuits neuroscience. Because of this, there are many testable hypotheses presented with clear predictions, which I expect will result in many follow-up publications. Most MNs were mapped to the individual muscles that they innervate by linking this connectome to pre-existing light microscopy datasets. When combined with past fly brain connectome datasets (Hemibrain, FAFB) or future ones, there is now a tantalising possibility of following neural pathways from sensory inputs to motor neurons and muscle.

      Weaknesses:

      As with all connectome datasets, the sample size is low, limiting statistical analyses. Readers should keep this in mind, but note that this is the current state-of-the-art. Some figures are weakened by relying too much on depictions of wiring diagrams as evidence of circuit function, similarity between neuropils, etc. without additional quantitative justification.

      We thank the reviewer for their helpful comments. We are excited about the release of this densely reconstructed connectome and its potential to facilitate circuit exploration in the VNC. We note that while statistical methods for analyzing complicated networks such as the connectome are still being developed, the wiring diagrams presented are themselves visualizations of quantitative data. We address specific concerns below.

      Reviewer #2 (Public Review):

      Summary:

      In Cheong et al., the authors analyze a new motor system (ventral nerve cord) connectome of Drosophila. Through proofreading, cross-referencing with another female VNC connectome, they define key features of VNC circuits with a focus on descending neurons (DNs), motor neurons (MNs), and local interneuron circuits. They define DN tracts, MNs for limb and wing control, and their nerves (although their sample suffers for a subset of MNs). They establish connectivity between DNs and MNs (minimal). They perform topological analysis of all VNC neurons including interneurons. They focus specifically on identifying core features of flight circuits (control of wings and halteres), leg control circuits with a focus on walking rather than other limbed behaviors (grooming, reaching, etc.), and intermediate circuits like those for escape (GF). They put these features in the context of what is known or has been posited about these various circuits.

      Strengths:

      Some strengths of the manuscript include the matching of new DN and MN types to light microscopy, including the serial homology of leg motor neurons. This is a valuable contribution that will certainly open up future lines of experimental work.

      Also, the analysis of conserved connectivity patterns within each leg neuromere and interconnecting connectivity patterns between neuromeres will be incredibly valuable. The standard leg connectome is very nice.

      Finally, the finding of different connectivity statistics (degrees of feedback) in different neuropils is quite interesting and will stimulate future work aimed at determining its functional significance.

      We thank the reviewer for their constructive feedback, and are optimistic about the utility of the MANC connectome to the Drosophila neurobiology community in dissecting VNC circuit function.

      Weaknesses:

      First, it seems like quite a limitation that the neurotransmitter predictions were based on training data from a fairly small set of cells, none of which were DNs. It's wonderful that the authors did the experimental work to map DN neurotransmitter identity using FISH, and great that the predictions were overall decently accurate for both ACh and Glu, but unfortunate that they were not accurate for GABA. I hope there are plans to retrain the neurotransmitter predictions using all of this additional ground truth experimental data that the authors collected for DNs, in order to provide more accurate neurotransmitter type predictions across more cell types.

      The reviewer makes an excellent suggestion, and collecting further ground truth data and retraining the neurotransmitter classifier is an ongoing research project. 

      Second, the degradation of many motor neurons is unfortunate. Figure 5 Supplement 1 shows that roughly 50% of the leg motor neurons have significantly compromised connectivity data, whereas, for non-leg motor neurons, few seem to be compromised. If that is the correct interpretation of this figure, perhaps a sentence like this that includes some percentages (~50% of leg MNs, ~5% of other MNs) could be added to the main text so that readers can get a sense of the impact more easily.

      Thank you for this suggestion. We have added a line describing the percentage of leg and other MNs affected (L416-417).

      As well, Figure 5 Supplement 1 caption says "Note that MN groups where all members of the group have reconstruction issues may not be flagged" - could the authors comment on how common they think this is based on manual inspection? If it changes the estimate of the percentage of affected leg motor neurons from 50% to 75% for example, this caveat in the current analysis would need to be addressed more directly. Comparing with FANC motor neurons could perhaps be an alternative/additional approach for estimating the number of motor neurons that are compromised.

      We agree that a direct comparison to another dataset, such as FANC, would aid in identifying reconstruction issues. However, a full analysis is not currently possible as only a minority of FANC neurons have been proofread or annotated. We were able to gain some insights into reconstruction quality by looking at T1 motor neurons, where FANC MN reconstruction is more complete. As reported in the submitted manuscript, we were able to confidently match T1 MNs between FANC and MANC for all but one MN (we are missing one ltm MN on the right side of MANC). While some of the MANC neurons had smaller/less dense arbors than FANC, none of them would have been flagged as having reconstruction issues. However, for FANC, we observe that neurons on the right have less dense arbors and fewer reconstructed synapses than neurons on the left.  We have prepared a reviewer figure analyzing the consistency of synapse counts for the T1 (front leg) MNs:

      Author response image 1.

      In these results (MANC on the left, FANC on the right) we compare the number of input synapses on matched motor neurons on the left (LHS) and right hand side (RHS) of each dataset. We see that the MANC distribution is much more symmetric, indicating left and right hand side synapse counts for matched MNs are more similar in MANC. This is likely largely due to the left-right difference in reconstruction completeness in the FANC T1 leg neuropils. The number of synapses per cell type is also more variable in FANC. Overall, we recommend that end users should inspect the morphology and total synapse counts of individual MNs of interest in either dataset as part of any detailed analysis.

      This analysis might benefit from some sort of control for true biological variability in the number of MN synapses between left and right or across segments. I assume the authors chose the threshold of 0.7 because it seemed to do a good job of separating degraded neurons from differences in counts that could just be due to biological variability or reconstruction imperfections, but perhaps there's some way to show this more explicitly. For example, perhaps show how much variability there is in synapse counts across all homologs for one or two specific MN types that are not degraded and are reconstructed extremely well, so any variability in input counts for those neurons is likely to be biologically real. Especially because the identification of serial homologs among motor neurons is a key new contribution of this paper, a more in-depth analysis of similarities and differences in homologous leg MNs across segments could be interesting to the field if the degradation doesn't preclude it.

      We agree that there can be ambiguity in whether variability in synapse counts between left-right homologs of a MN type represents biological variability or technical issues. We have added a comparison of synapse counts of T1 leg MNs in MANC (Left) vs FANC (Right) as noted in the previous point. As the number of connectomes available to us increases, we will have a better idea of how synapse counts of MNs vary within and between animals.

      Fourth, the infomap communities don't seem to be so well controlled/justified. Community detection can be run on any graph - why should I believe that the VNC graph is actually composed of discrete communities? Perhaps this comes from a lack of familiarity with the infomap algorithm, but I imagine most readers will be similarly unfamiliar with it, so more work should be done to demonstrate the degree to which these communities are really communities that connect more within than across communities.

      A priori we expect that there is some degree of functional division between circuits controlling different limbs or motor systems, given current evidence that VNC neuropils and neural hemilineages are relatively specialized in controlling motor output. We have added this explanation to section 2.4.2 (L633-635).

      The Infomap algorithm was chosen out of several directed and undirected community detection methods that we tried, as it defined communities that each had connectivity with narrow and specific motor neuron subclasses. For example, it labeled populations in each of the six leg neuropils as belonging to distinct communities. We think this provides an interesting partitioning of the VNC network that could have biological relevance (which future functional studies should investigate). To the reviewer’s final sentence, we do show intra- vs inter-community connectivity in Fig. 9–supplement 1B. Notably, most communities except several small ones have far more intra-community connectivity than inter-community connectivity. We have added text highlighting this observation (L656-658).

      We do, however, agree with the general point of the reviewer that it is not yet known which community detection methods are ‘optimal’ for use with connectomics data, so we have added further text (L679-683) explaining that community detection in MANC will require further investigation and validation in the future.

      I think the length of this manuscript reduces its potential for impact, as I suspect the reality is that many people won't read through all 140 pages and 21 main figures of (overall excellent) work and analysis.

      We intend this paper to serve not only as a first look into the organization of descending-to-motor circuits, but also as a resource for future investigations in MANC. The provided detail is intended to serve these purposes.

      Reviewer #1 (Recommendations For The Authors):

      General comments:

      I find that there are too many main figures with too much content in them, as well as too much corresponding text. Much of the initial anatomical identification and description could be summarised in fewer main figures, with more supplementary figures if the authors desired. I think there is a lot of great insight in this paper, particularly in the second half, but I am concerned that the extensive detail in the initial sections may challenge reader engagement through to the later sections of the paper. It would also be useful to have a higher level and shorter discussion.

      Reiterating our response from above, we intend this paper to serve not only as a first look into the organization of descending-to-motor circuits, but also as a resource for future investigations in MANC. The provided detail is intended to serve these purposes.

      There is sometimes an over-reliance on wiring diagrams or complex plots as evidence without further quantification. I will mention several examples below, as well as additional suggestions.

      Specific comments:

      In Figure 2E, how are DNs divided into pair vs population type? This was a very interesting idea, particularly in light of "command-like" neurons vs ensembles of DNs controlling behaviour. However, it is not clear how this distinction is made. This concept is referenced throughout the manuscript, so I think a clear quantitative way of identifying "pair" vs "population" identity for each DN would be very useful. And at the very least, a thorough explanation of how it is done in the current manuscript.

      We have added additional text in the Figure 2 legend to point towards Materials and Methods where the DN grouping (pair vs. population) is explained. These groups were formed based on morphology and further split into types based on connectivity, if needed. However, as the connectome represents a static snapshot of connectivity with no functional data, it remains possible that some DNs that were grouped as populations may act functionally as multiple pairs. Future work should continue to update these annotations.

      In Figure 4, there are some inconsistencies between neurotransmitter predictions and experimental FISH data. Have the authors taken into consideration Lacin et al. 2019 (https://elifesciences.org/articles/43701)? Specifically in that paper, it is stated: "We did not find any cases of neurons using more than one neurotransmitter, but found that the acetylcholine specific gene ChAT is transcribed in many glutamatergic and GABAergic neurons, but these transcripts typically do not leave the nucleus and are not translated." I wonder if this might explain some of the inconsistencies between FISH (mRNA detection) and the neurotransmitter predictions (presumably based on indirect protein structures detected via EM imagery), or the presence of so much co-transmission.

      We agree and have added this possible explanation for apparent co-transmission in the text (L394-397).

      In Figure 8B, the authors state: "We found that individual DN and MN subclasses have direct downstream and upstream partners, respectively, that are relatively hemilineage-restricted (Figure 8B)." While the connectivity patterns highlighted are intriguing, further quantitative analysis could help strengthen this point. The connectivity matrices in Figure 8B are linked to activation phenotypes and hemilineages below. But I don't really know how to interpret "relatively hemilineage-restricted" in light of this plot. How does this connectivity pattern for example compare statistically to a randomly selected set of DNs (maintaining the same group size for example)? Would random DN sets be less hemilineage restricted? Similar quantification would be helpful to support this statement "...with high correspondence between the hemilineages connected to individual DN and MN subclasses that are expected to be functionally related."

      "both upper tectulum DNs (DNut) and wing MNs (MNwm) have significant connectivity with hemilineages 6A, 7B, 2A, 19B, 12A and 3B". What is significant connectivity? Looking at the plot in Figure 8B, why is DNut -> 16B not considered significant? Is there a threshold and if so, what is the justification?

      These plots aim to be descriptive rather than drawing hard quantitative thresholds between ‘significant’ and ‘non-significant’ connectivity. We have revised the text to remove the terms ‘restricted’ and ‘significant’ and to clarify our interpretation (L555-559).

      In Figure 9G-H, this is a very interesting finding, but how do we know that the difference is real? Why not do a statistical test to compare the brain and VNC? Or create a null model network with edge swaps, etc. to compare against.

      Statistical comparison between the brain and VNC may be problematic given differences in generating these connectomes, as well as missing connectivity (only half the brain is imaged) in the hemibrain connectome. Comparison to a null model is possible and for purposes of understanding motif frequency in general has already been done (see for example, Lin et al., 2024, Nature). However, a null or shuffled model is not required for comparing motif frequencies between brain or VNC neuropils as is the point of this particular graph. At present, we simply highlight a qualitative observation that will require future work to investigate.

      Referring to Figure 12 in the main text, "we observe that the power MN upstream network is largely shared among all power MNs and is highly bilateral." Quantifying the fraction of shared upstream neurons from power MNs would make this statement much stronger. Particularly if compared to other non-power MNs. Or potentially using some other network comparison metric.

      This is a good point. We have added cosine similarity to figure 6 for wing/haltere MNs to show the similarity between inputs across these MNs, and added text in section 2.3 (L461-465) and 2.5.3 discussing the cosine similarity (L987-988).

      In Figure 13B, "Nearly 50% of these restricted neurons (totalling about 1200 per leg neuropil) have been serially matched across the six neuropils (Figure 13B)". There seems like a disconnect here. In the IR, CR, and BR columns, I see ~2750, ~500, and ~1250 neurons not in a serial set (~4500 total); I see ~1500, ~750, and ~1000 in a serial set (~3250 total). This would mean that ~58% of neurons are not in serial sets, ~42% are in serial sets. Shouldn't the conclusion be the opposite then? That surprisingly most intrinsic neurons are not repeated across leg neuropils. I find this fascinating if true. Perhaps there is some confusion on my part, however.

      We now find that about half of the leg-restricted neurons are serially repeated across the 6 leg neuropil with similar morphology and connectivity, especially to the downstream leg motor neurons. Since first submission of this paper, we have identified some additional serial homologues while completing the systematic cell typing, described in the accompanying paper Marin et al. 2024. Figure 13B has now been updated to reflect this. In total, 3998 of 7684 restricted neurons (IR,CR,BR) have been assigned to a serial set or serial type. The sentence in the text has been adjusted to report that 52% of these restricted neurons are in serial sets (L1125).

      In Figure 13D-E, "the Tect INs are not a homogenous population." Providing additional evidence could strengthen this statement. A connectivity matrix is shown in (D), followed by examples of morphologies in (E). What makes a population homogenous or heterogenous? For example, compared to all possible INs, the Tect IN morphology actually looks quite similar. Are those connectivity matrices in (D) really so different? What would a random selection of neurons look like?

      Our sister paper, Marin et al. (2024), has looked into variation of connectivity across neurons of the entire VNC in much more detail, including clustering methods that include connectivity and other criteria for cell typing. Thus, we have now amended the text to direct the reader to that paper for more detail on variability of connectivity in the Tect INs, which were divided into 5 cell types in Marin et al. (2024) (L1027-1031). In addition, we have replaced our clustering by connectivity in Figure 13 with the cell type clusters from Marin et al. (2024).

      In reference to Figure 13 - Supplement 1, "This standard leg connectome was very similar across legs, but there were small deviations 1051 between T1, T2, and T3 legs, as shown in Figure 13-Supplement 1." - what makes a deviation considered small? T1 seems to generally have many more synapses, T2 many less, and T3 a mixture depending on the connection. Also, are there lost connections or new connections? A quantification of these issues would be helpful instead of simply depicting the wiring diagrams.

      The connections that differ are likely due to the reconstruction state of leg MNs. We have now stated this in the main text for clarification (L1143-1145). In the leg neuropils, T2 and T3 left hand side MNs have sparser dendritic arbors than the right hand side. Therefore the differences in Figure 13–Supplement 1, which are almost exclusively the connections between the leg restricted neurons onto leg MNs, seem stronger in T1. Future work, bolstered by additional datasets, will undoubtedly reveal further insight into the comparison of circuits for the different legs.

      In Figure 15 - Supplement 2, "We used effective connectivity to identify leg DNs with similar MN connectivity patterns (Figure 15-Supplement 2). Of previously identified DNs, we found that DNg13 showed a highly similar effective connectivity fingerprint."

      How was this similarity calculated? How do we know these particular DNs have similar effective connectivity? The connectivity matrix depicted is quite complex, with both layer and connectivity scores quantified at each location. A principled way of determining similarity would make this statement much stronger.

      The similarity was calculated simply as the Euclidean distance between the effective connectivity matrix for each DN onto the set of MNs. While this is a straightforward comparison mathematically, effective connectivity calculations (as first introduced in this context by Li et al., 2020 by our collaborators Larry Abbott and Ashok Litwin-Kumar) have not yet been subject to functional validation. We therefore agree with the reviewer that this should not be over interpreted at this point. Future functional work should explore hypotheses suggested here and more quantitatively compare the similarity of different DN-MN pathways.

      Minor notes:

      In Figure 4E, the circles, squares, and triangles in the figure legend are too small. This is also true to some extent in the plot itself.

      We have increased the size of the symbols in the legend and plot.

      In Figure 8E right, the figure legend and x/y axes are not clear to me. Unfortunately, I'm not sure what the plot is showing because of this.

      The right plot in figure 8E is the number of DN groups each MN group receives input from, at a threshold of 1% input. As this plot is redundant to the left plot, we have decided to remove it.

      In Figure 8I, it would be interesting to see which neurons are directly downstream of DNs. One can't see layers 2/3/4 with the fan-out expansion of neurons and the y-axis scale.

      We have revised the plot to better show cell composition of individual layers.

      In Figure 19E, it would be helpful to also have a standard y-axis.

      The panel has been revised accordingly.

      Reviewer #2 (Recommendations For The Authors):

      General:

      In the Title, you do not mention DNs or MNs but these are a major focus of this study. The title could be more descriptive of the work.

      Per the reviewer’s comments, we have revised the title to “Transforming descending input into motor output: An analysis of the Drosophila Male Adult Nerve Cord connectome”.

      A glossary would be helpful, where all the paper's abbreviations and their definitions are provided in one place. Perhaps a hierarchical structure would help (for at least part of the glossary), so that terms like NTct, WTct, and HTct could be nested underneath UTct, for example.

      We do include a glossary in the sister paper, Marin et al. (2024) and in this paper have included a short glossary in the first Figure. Please refer to these sources for abbreviation reference.

      Introduction:

      Define 'Premotor'.

      We have defined ‘premotor circuits’ to be ‘circuits that directly or indirectly control motor output’ in lines 45-46.

      It might be worthwhile to start with a broader introduction sentence than the current one that focuses just on the fly, in order to emphasize the impact of MANC as the first complete connectome of a motor circuit in any animal with limbs or wings.

      We have revised the introductory paragraph per the reviewer’s suggestions.

      "Muscles in the leg are not innervated uniformly; indeed, in the T1 legs the number of MNs per muscle varies by as much as an order of magnitude" needs to specify the axis of variability more clearly - the authors probably mean variability across muscles in the leg (not variability across individuals for example) but I think the current sentence is a bit ambiguous in that respect.

      We have reworded this sentence to clarify this point (L132-133).

      Line 182 end of paragraph: It would be useful to point out explicitly what makes the MANC project valuable in the context of a similar FANC project - for example, that the MANC connectome is more complete, is a male (so interesting for anyone interested in sexual dimorphism), and gives the field an n=2 for VNC connectome datasets.

      We agree, and have added a sentence describing the benefits of the MANC connectome on L209-212.

      Line 213: A brief phrase or sentence of context could be provided to help unaware readers understand that 42% of synaptic connectivity being captured is in the same sort of range as previous datasets like the hemibrain and likely leads to the vast majority of important cell-cell connections being identified (perhaps cite Buhmann et al 2021 Nature Methods which does an analysis of this), and therefore is a reason to think highly of this dataset's quality and its potential for impact on the field. The sentence at the end of this paragraph doesn't quite do it for me.

      We have added the comparison of MANC synapse completeness to that of the Hemibrain, and revised the ending sentence in L234-237.

      Line 271: Clarify what happened to the remaining 15% of DNs that weren't able to be assigned to a tract. They travelled outside the tracts, or data quality issues prevented assignment, or something else?

      Indeed, some DNs could not be assigned to a tract as they traveled outside of all axon tracts and did not bundle with other DNs. We have added this explanation to the text (L300-301).

      Figure 1:

      The pie chart "DN postsynaptic partners by neuron class" is a bit hard to interpret without having another pie chart next to it showing "Neurons in MANC by neuron class". I know these numbers are written on the schematic but it would be nice to be able to easily tell which cell classes are overrepresented or underrepresented in the set of postsynaptic partners of DNs. e.g. It's obvious that ANs are overrepresented and DNs are underrepresented in the set of postsynaptic partners of DNs, but it would be nice if readers didn't have to do any mental math to figure out if INs or MNs are under/overrepresented.

      We agree and have added a pie chart of the neuron class composition of the entire VNC to Figure 1.

      "35.9% of leg MNs are matched to FANC" Why is this number so low? Because FANC motor neurons were only identified in T1, so the remaining 2/3rds of leg MNs in MANC weren't matched? How successful was matching for the neurons where it was actually attempted?

      For this work, we only matched the T1 neurons across the two datasets. This was both a way of checking that we found everything in these segments and a way of being more sure of muscle target assignments as our collaborators in the FANC dataset had generated extensive light level data to match motor neurons with their target leg muscles. The T2 and T3 MNs were not fully proofread or identified in FANC, precluding further analysis, and leading to the 35.9% matched number. We hope to be able to compare between these datasets more thoroughly in future, and have matched all the premotor leg restricted intrinsic neurons of our standard connectome to FANC. We report on their stereotypy in our latest preprint, Stürner, Brooks et al. 2024.

      Figure 2:

      Figure 2A: Perhaps darken the color of the MTD-III skeletons. Currently, they're so light it's hard to see, and this is one of the most interesting tracts because the claim is that it's a new tract.

      We take the reviewer’s point, however, the color scheme used for the tracts in Figure 2 is coordinated between multiple figures and figure panels, and thus we would prefer to keep it as is. If readers would like to examine DNs of a particular tract, we encourage them to retrieve said DNs using the tract annotations in NeuPrint.

      Figure 2 supplement 1: It's not clear to me what I should be getting out of seeing the right side DNs as well. If you want readers to be able to visually compare the left and right side morphologies and appreciate the high degree of symmetry, you may want to put the left and right side DN panels side-by-side. Perhaps do that (show both the left and right side DNs) for one or two tracts in the main Fig2, and then leave out the remaining panels - or if you want to include the remaining panels, explain more clearly what readers are supposed to learn from seeing them.

      We agree and have now removed Figure 2 supplement 1.

      Figure 2C caption: Instead of "DN primary neurites" I think the authors probably mean "longest single branch of each DN" or something along those lines. I think "primary neurite" is usually used to refer to the thick non-synaptic branch coming out of a neuron's soma, which can't be how it's being used here.

      We agree and have changed all references to ‘primary neurite’ for DNs to ‘longest neurite’.

      Figure 2D+E: Perhaps add an overall % of neurons of each class to the legend. I ask because I would be very interested to know what % of all DNs exist as single pairs versus as populations, and I imagine that could be a number that is quoted a fair amount by others in the field when talking about DNs.

      We agree and have added the overall percentage of each neuron class to the results (L275-276) and Figure 2 legend.

      Figure 3:

      UTct.IntTct neurons are by far the largest class of DNxn neurons, so would it be worth calling these the DNxt class (DN projecting to some combination of tectulum neuropils), to mirror the DNxl class? I would vote for doing that.

      Thanks for the suggestion.  However, the subclass naming scheme for DNs had been coordinated between multiple groups of people working on MANC reconstruction and annotation. As making changes to subclasses will impact many analyses that have already been completed for existing work, we will refrain from doing so.

      Figure 3G feels a bit out of place in this figure and under-explained

      We have clarified in the text our citations to Figure 3G to better explain our interpretation of this data.

      Figure 4

      "DNp20 has few vesicles and may be electrically coupled": If I'm correct that DNp20 is also known as DNOVS1 and is the second largest diameter axon in the neck after the giant fiber, then yes, Suver et al. 2016 J Neurosci show that this DN is gap junction coupled to neck motor neurons (see their Fig 2F). This neuron (along with the giant fiber) is enough of an outlier that it might be more representative to show a different, more canonical DN that has a low prediction probability.

      The reviewer is right that DNp20 is also known as DNOVS1 with known gap junction coupling.  We now clarify in the text (L366) how we think that could lead to a lower neurotransmitter prediction score, which is what we were trying to illustrate.

      Figure 4E: It looks like only a single DN has more inputs (~11000) than outputs (~9000), is that right? It could be interesting to dedicate some panels and text to the connectivity profile of that one unique neuron.

      Yes, that is correct, there is just one pair of DNs, DNxn166, that receives more input than it gives output (the two triangles lie on top of each other). We think that the other DN pair in that same box (more variable in total synapse number and therefore the triangles are further apart) also receives an unusually high amount of input versus output. The morphology of these two types are shown in Figure 4F and they both have fine processes that look more like dendrites, especially when compared to other DNs such as the ones in 4G. Unfortunately, neither of these two types have been matched to light microscopy images so we cannot say if they have the same type of morphology in the brain, or further explore their brain connectivity, at this time point.

      Figure 4E: "black rectangle ... gray rectangle" don't look different shades to me. It's obvious which is which based on where they are in the graph but if you want to color code this, pick more separate colors. Or code it with something other than colors.

      We have made the rectangle in Figure 4E a lighter shade of grey and added labels to refer to the panels D, F and G. The figure legend now also describes more clearly that we are plotting every DN as a single shape and exactly how many DN types are included in those rectangles to avoid confusion.

      Figure 5:

      "subclass is their two-letter muscle anatomical category" should be explained better, I'm not sure what "muscle anatomical category" means.

      We have changed the wording in the Figure 5 legend to better clarify that MN subclasses are the broad muscle category that they innervate (e.g. legs, wings).

      Figure 7:

      Leg MN identification and serial homology.

      Why are there no tarsus reductor (tarm1 and tarm2) motor neurons? Do we not know their anatomy from light microscopy well enough, perhaps? Were these MNs identified in FANC? Is it reasonable to guess that the remaining small number of unidentified T1 leg motor neurons in MANC would control these muscles? I think Marta Moita's lab has some ongoing projects on these muscles (see Twitter), so if more LM data is needed perhaps it will come from them.

      We now know that the small number of unidentified T1 leg motor neurons (a T1 pair with a serial T2 pair, serial set 17664) are not in fact MNs. A new and unpublished dataset (Janelia whole male CNS volume, the optic lobe from which has been published as Nern et al., 2025) shows they have axons within the VNC. The MN annotation for these neurons has been removed and they now have the type name INXXX471. Thus, we have no T1 leg MNs without a muscle target annotated. Our muscle target annotation comes from matching to the FANC dataset that has also not annotated tarsus reductor MNs. We suspect that the tarsus reductor MNs are hard to distinguish from the tarsus depressor MNs of which there are 5 per side and segment.

      It seems there are a few more leg motor neurons in MANC vs FANC. Any indication of which muscles they control?

      See above.

      -Figure 7E: A qualitative comparison between the cosine similarity results here and from FANC could be useful. What generally is the same versus different? Any indication of male/female differences?

      We observe no differences in the cosine similarity of T1 leg MNs between MANC and FANC and only very minor differences between T1, T2 and T3, as shown in Figure 7. In our most recent work, now on bioRxiv (Stürner, Brooks et al., 2024), we were able to find all intrinsic leg serial sets that we included in our standard leg premotor circuit here in the FANC dataset. We do not see any differences between them in terms of morphology, and while we have several cases in which we are still missing 1 of the 6 neurons in a serial set in FANC, we see similar connectivity when comparing small circuits. We have also found almost all neurons interconnecting the legs, with some very interesting exceptions, mainly coming from the abdomen, that we believe are male specific. These male-specific neurons can also be found in this preprint (Stürner, Brooks et al., 2024).

      Figure 8

      Figure 8A: Why are ~1/3rd of the wing and leg motor neurons considered populations instead of pairs? I thought essentially all wing and leg motor neurons have unique morphologies.

      Pair vs populations are assigned based on MN morphology and connectivity. For the wing MNs, many sets of DVMns and DLMns have near-identical morphology and connectivity, are not easily distinguishable in the VNC and are categorized as a ‘population’. For the leg MNs, there are ‘true’ population MN types that provide multiple innervation of the same muscle.

      The text states "up to a maximum of 20% [traversal probability] (corresponding to a synapse input fraction of 1)" but I interpret the bottom of Figure 8G to have flipped values, where a synapse input fraction of 0.2 yields a traversal probability of 1. Is there a mistake here or have I misunderstood?

      Thank you for pointing this discrepancy out. The text description was indeed flipped, and we have corrected this error.

      Caption for J says "Layers without neurons are omitted". How is it possible to have a layer without neurons?? Something about how the traversal is done doesn't seem to be explained clearly enough. If it's really possible to have a layer without neurons, I think the approach might need to be revisited as this seems quite strange.

      Here, ‘layer’ should be viewed as a nonlinear measure of indirect connectivity combining path length and synaptic weights. Layers without neurons are possible due to the details of the calculation–layer position is assigned probabilistically by the downstream synapse connectivity of the source neurons, and the probability is scaled up to 1 at an input synapse fraction of 0.2. Neuron-to-neuron connectivity of an input synapse fraction of >=0.2 is very rare in the VNC connectome and thus neurons strictly assigned to layer 2 downstream of each DN type are similarly rare. We have updated the figure legend for figure 8 to better explain this.

      Section 2.6

      "flies have been shown to walk normally without proprioceptive feedback, suggesting that inter- and intra-leg coordination is not strictly dependent on sensory feedback loops from the legs" is quite a drastic overinterpretation of that paper's results. The ablation there was not complete (some subtypes of sensory neurons were not perturbed), and the perturbed flies certainly walked with some defects. This statement certainly should be removed or significantly softened.

      Thank you for pointing this detail out. The term ‘normally’ has been removed from this sentence to soften the statement.

      Figure 13, Standard leg connectome

      Unfortunately, the motor neurons controlling the tarsus could not be included here, I suppose due to the difficulty in identifying the T2 and T3 homologs for these motor neurons. This should be mentioned in the text. This version of the standard leg connectome is without a doubt still an incredibly valuable discovery, but readers should be made aware that this version of the standard leg connectome does in fact lack the motor neurons for one joint.

      The MNs controlling the tarsus could not be matched with high confidence. We have added a sentence pointing this out when the leg circuit is introduced (L1141-1142).

      The focus here is on locomotion is the absence of other behaviors whereas the legs are responsible for grooming, reaching, boxing, etc. How should we consider the leg connectome in light of this?

      This is a very good point, and we have indeed found known grooming neurons that target our leg premotor circuit (L1158-1161). We’ve now added this observation to the Discussion (L1949-1951).

      Minor points

      L84 - re: Descending neurons work together - cite Braun et al., bioRxiv 2023; cite Yang HH bioRxiv 2023 .

      We agree that these papers are relevant to the function of DNs in combination, and have added them to the introduction (L83-84, 86-87).

      L193 - "intrepid" is overly florid language; similar for L1507 "enigmatic".

      We have replaced these words with suitable synonyms.

      L273 - The acronym "ITD" is not explained. Please check all other acronyms. Related, it would be good to include a Table or Box with all acronyms for the reader.

      We have added the full name of the ITD to the text. A glossary is available in Figure 1, and a full glossary of MANC terms is available in Table 1 of our sister paper, Marin et al. 2024.

      -L514, you state that hemilineages 6A and 6B unexpectedly produce uncoordinated leg movements (flight-related was expected). However, Harris didn't study animals in tethered flight but headless on the ground.

      The experimental setup of Harris et al. was capable of assessing flight-like motor output even if not true flight, as seen in the predominantly wing movement phenotypes of activating hemilineages 7B, 11A/B and 2A. We now also note that hemilineage annotation in Marin et al., 2024, shows that the 6B hemilineage has some projections into the leg neuropils, in support of a leg motor role in addition to an upper tectular role (L570-571).

      L1425 - "the TTM" is repeated twice.

      This sentence addresses both the TTM and its MN (TTMn). We have revised this sentence to improve clarity by expanding the full name of TTM in that paragraph and leaving TTMn abbreviated

      L1728 - Ascending neuron projections to the brain - cite Chen et al., Nat Neuro 2023.

      We agree that Chen et al. 2023 is relevant to the discussion of AN function, and have added this citation (L1836-1838).

      L1817, It is a good idea to compare with previous predictions for circuit control. But these originate from non-Drosophila work as well. Please cite and consider the original models from Buschges, Cruse, Holmes, and others.

      Thanks for the suggestion. We now cite the non-Drosophila literature as well. (L1971)

      L1827, how precisely should these "theories" be updated? Be explicit.

      We summarize in the sentences before what is different in comparison to one of the suggested models. We have now additionally added examples to the sentence (L1942-1945) to suggest that theoretical leg circuits need to account for the posterior-to-anterior as well as anterior-to-posterior connections between leg neuropils, as well as relative lack of connectivity between the left and right mesothoracic leg neuropils.

      L1831, include a discussion about another alternative which is through mechanical coupling and sensory feedback.

      We agree that leg sensory input likely contributes to leg locomotor circuits. We have added the following sentence to point out that annotations of sensory neurons in MANC are available through work in a companion paper (Marin et al. 2024), and future work is necessary to examine the contribution of sensory input to leg motor circuits (L1954-1956).

      Methods

      https://flyconnectome.github.io/malevnc/ link doesn't work.

      We have updated the link.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The paper by Lee and Ouellette explores the role of cyclic-d-AMP in chlamydial developmental progression. The manuscript uses a collection of different recombinant plasmids to up- and down-regulate cdAMP production, and then uses classical molecular and microbiological approaches to examine the effects of expression induction in each of the transformed strains. 

      Strengths: 

      This laboratory is a leader in the use of molecular genetic manipulation in Chlamydia trachomatis and their efforts to make such efforts mainstream is commendable. Overall, the model described and defended by these investigators is thorough and significant.

      Thank you for these comments.

      Weaknesses: 

      The biggest weakness in the document is their reliance on quantitative data that is statistically not significant, in the interpretation of results. These challenges can be addressed in a revision by the authors. 

      Thank you for these comments. We point out that, while certain RT-qPCR data may not be statistically significant, our RNAseq data indicate late genes are, as a group, statistically significantly increased when increasing c-di-AMP levels and decreased when decreasing c-di-AMP levels. We do not believe running additional experiments to “achieve” statistical significance in the RT-qPCR data is worthwhile. We hope the reviewer agrees with this assessment.

      We have also included new data in this revised manuscript, which we believe further strengthens aspects of the conclusions linked to individual expression of full-length DacA isoforms. We have also quantified inclusion areas and bacterial sizes for critical strains.

      Reviewer #2 (Public review): 

      Summary: 

      This manuscript describes the role of the production of c-di-AMP on the chlamydial developmental cycle. Chlamydia are obligate intracellular bacterial pathogens that rely on eukaryotic host cells for growth. The chlamydial life cycle depends on a cell form developmental cycle that produces phenotypically distinct cell forms with specific roles during the infectious cycle. The RB cell form replicates amplifying chlamydia numbers while the EB cell form mediates entry into new host cells disseminating the infection to new hosts. Regulation of cell form development is a critical question in chlamydia biology and pathogenesis. Chlamydia must balance amplification (RB numbers) and dissemination (EB numbers) to maximize survival in its infection niche. The main findings In this manuscript show that overexpression of the dacA-ybbR operon results in increased production of c-di-AMP and early expression of the transitionary gene hctA and late gene omcB. The authors also knocked down the expression of the dacA-ybbR operon and reported a reduction in the expression of both hctA and omcB. The authors conclude with a model suggesting the amount of c-di-AMP determines the fate of the RB, continued replication, or EB conversion. Overall, this is a very intriguing study with important implications however the data is very preliminary and the model is very rudimentary and is not well supported by the data. 

      Thank you for your comments. Chlamydia is not an easy experimental system, but we have done our best to address the reviewer’s concerns in this revised submission.

      Describing the significance of the findings: 

      The findings are important and point to very exciting new avenues to explore the important questions in chlamydial cell form development. The authors present a model that is not quantified and does not match the data well. 

      Describing the strength of evidence: 

      The evidence presented is incomplete. The authors do a nice job of showing that overexpression of the dacA-ybbR operon increases c-di-AMP and that knockdown or overexpression of the catalytically dead DacA protein decreases the c-di-AMP levels. However, the effects on the developmental cycle and how they fit the proposed model are less well supported. 

      dacA-ybbR ectopic expression: 

      For the dacA-ybbR ectopic expression experiments they show that hctA is induced early but there is no significant change in OmcB gene expression. This is problematic as when RBs are treated with Pen (this paper) and (DOI 10.1128/MSYSTEMS.00689-20) hctA is expressed in the aberrant cell forms but these forms do not go on to express the late genes suggesting stress events can result in changes in the developmental expression kinetic profile. The RNA-seq data are a little reassuring as many of the EB/Late genes were shown to be upregulated by dacA-ybbR ectopic expression in this assay.

      As the reviewer notes, we also generated RNAseq data, which validates that late gene transcripts (including sigma28 and sigma54 regulated genes) are statistically significantly increased earlier in the developmental cycle in parallel to increased c-di-AMP levels. The lack of statistical significance in the RT-qPCR data for omcB, which shows a trend of higher transcripts, is less concerning given the statistically significantly RNAseq dataset. We have reported the data from three replicates for the RT-qPCR and do not think it would be worthwhile to attempt more replicates in an attempt to “achieve” statistical significance.

      We recognize that hctA may also increase during stress as noted by the Grieshaber Lab. In re-evaluating these data, we decided to remove the Penicillin-linked studies from the manuscript since they detract from the focus of the story we are trying to tell given the potential caveat the reviewer mentions.

      The authors also demonstrate that this ectopic expression reduces the overall growth rate but produces EBs earlier in the cycle but overall fewer EBs late in the cycle. This observation matches their model well as when RBs convert early there is less amplification of cell numbers. 

      dacA knockdown and dacA(mut) 

      The authors showed that dacA knockdown and ectopic expression of the dacA mutant both reduced the amount of c-di-AMP. The authors show that for both of these conditions, hctA and omcB expression is reduced at 24 hpi. This was also partially supported by the RNA-seq data for the dacA knockdown as many of the late genes were downregulated. However, a shift to an increase in RB-only genes was not readily evident. This is maybe not surprising as the chlamydial inclusion would just have an increase in RB forms and changes in cell form ratios would need more time points.

      Thank you for this comment. We agree that it is not surprising given the shift in cell forms. The reduction in hctA transcripts argues against a stress state as noted above by the reviewer, and the RNAseq data from dacA-KD conditions indicates at least that secondary differentiation has been delayed. We agree that more time points would help address the reviewer’s point, but the time and cost to perform such studies is prohibitive with an obligate intracellular bacterium.

      Interestingly, the overall growth rate appears to differ in these two conditions, growth is unaffected by dacA knockdown but is significantly affected by the expression of the mutant. In both cases, EB production is repressed. The overall model they present does not support this data well as if RBs were blocked from converting into EBs then the growth rate should increase as the RB cell form replicates while the EB cell form does not. This should shift the population to replicating cells. 

      We agree that it seems that perturbing c-di-AMP production by knockdown or overexpressing the mutant DacA(D164N) has different impacts on chlamydial growth. We have generated new data, which we believe addresses this. Overexpressing membrane-localized DacA isoforms is clearly detrimental to chlamydiae as noted in the manuscript. However, when we removed the transmembrane domain and expressed N-terminal truncations of these isoforms, we observed no effects of overexpression on chlamydial morphology or growth. Importantly, for the wild-type full-length or truncated isoforms, overexpressing each resulted in the same level of c-di-AMP production, further supporting that the negative effect of overexpressing the wild-type full-length is linked to its membrane localization and not c-di-AMP levels. These data have been included as new Figure 3. These data indicate that too much DacA in the membrane is disruptive and suggest that the balance of DacA to YbbR is important since overexpression of both did not result in the same phenotype. This is further described in the Discussion.

      As it relates to knockdown of dacA-ybbR, we have essentially removed/reduced the amount of these proteins from the membrane and have blocked the production of c-di-AMP. This is fundamentally different from overexpression.

      Overall this is a very intriguing finding that will require more gene expression data, phenotypic characterization of cell forms, and better quantitative models to fully interpret these findings. 

      Reviewer #1 (Recommendations for the authors): 

      There is a generally consistent set of experiments conducted with each of the mutant strains, allowing a straightforward examination of the effects of each transformant. There are a few general and specific things that need to be addressed for both the benefit of the reader and the accuracy of interpretation. The following is a list of items that need to be addressed in the document, with an overall goal of making it more readable and making the interpretations more quantitatively defended. 

      Specific comments: 

      (1) The manuscript overall is wordy and there are quite a few examples of text in the results that should be in the discussion (examples include lines 224-225, 248-262, 282-288, 304-308) the manuscript overall could use a careful editing for verbosity. 

      Thank you for this comment. We have removed some of the indicated sentences. However, to maintain the flow and logic of the manuscript, some statements may have been preserved to help transition between sections. As far as verbosity, we have tried to be as clear as possible in our descriptions of the results to minimize ambiguity. Others who read our manuscript appreciated the thoroughness of our descriptions.

      (2) There is also a trend in the document to base fact statements on qualitative and quantitative differences that do not approach statistical significance. Examples of this include the following: lines 156-158, 190-192, 198-199, 230-232, 239-242, 292-293). This is something the authors need to be careful about, as these different statistically insignificant differences may tend to multiply a degree of uncertainty across the entire manuscript. 

      We have quantified inclusion areas and tried to remove instances of qualitative assessments as noted by the reviewer. In regards to some of the transcripts, we can only report the data as they are. In some cases, there are trends that are not statistically significant, but it would seem to be inaccurate to state that they were unchanged. In other cases, a two-fold or less difference in transcript levels may be statistically significant but biologically insignificant. A reader can and should make their own conclusions.

      (3) Any description of inclusion or RB size being modestly different needs to be defended with microscopic quantification. 

      We have quantified inclusion areas and RB sizes and tried to remove instances of qualitative assessments as noted by the reviewer.

      (4) It would be very helpful to reviewers if there was a figure number added to each figure in the reviewer-delivered text. 

      Added.

      (5) Figure 1A: This should indicate that the genes indicated beneath each developmental form are on high (I think that is what that means). 

      We have reorganized Figure 1 to better improve the flow.

      (6) Figure 1B is exactly the same as the three images in Figure 8B. I would delete this in Figure 1. This relates to comment 9. 

      We presented this intentionally to clearly illustrate to the reader, who may not be knowledgeable in this area, what we propose is happening in the various strains. As such, we respectfully disagree and have left this aspect of the figure unchanged.

      (7) Figure 1D: It is not clear if the period in E.V has any meaning. I think this is just a typo. Also, the color coding needs to be indicated here. What do the gray bars represent? The labeling for the gene schematic for dacA-KDcom should not be directly below the first graph in D. This makes the reader think this is a label for the graph. This can be accomplished if the image in panel B is removed and the first graph in panel D is moved into B. This will make a better figure. 

      We have reorganized Figure 1 to better improve the flow.

      (8) Figure 2 C, G: The utility of these panels is not clear. For them to have any value, they need to be expressed in genome copies. If they are truly just a measure of chlamydia genomic DNA, they have minimal utility to the reader. There are similar panels in several other figures. 

      We have reported genome copies as suggested in lieu of ng gDNA for these measurements. Importantly, it does not alter any interpretations.

      (9) I am not sure about the overall utility of Figure 8. Granted, a summary of their model is useful, but the cartoons in the figure are identical or very nearly identical to model figures shown in two other publications from the same group (PMID: 39576108, 39464112) These are referenced at least tangentially in the current manuscript (Jensen paper- now published- and ref 53). Because the model has been published before, if they are to be included, there needs to be a direct comparison of the results in each of these three papers, as they basically describe the same developmental process. The model images should also be referenced directly to the first of the other papers.

      This was intentional so that readers familiar with our work will see the similarities between these systems. We have added additional comments in the Discussion related to our newly published work. As an aside, Dr. Lee generated the first version of the figure that was adapted by others in the lab. It is perhaps unlucky that those other studies have been published before his work.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review)

      Summary:

      Advances in machine vision and computer learning have meant that there are now state-of-the-art and open-source toolboxes that allow for animal pose estimation and action recognition. These technologies have the potential to revolutionize behavioral observations of wild primates but are often held back by labor-intensive model training and the need for some programming knowledge to effectively leverage such tools. The study presented here by Fuchs et al unveils a new framework (ASBAR) that aims to automate behavioral recognition in wild apes from video data. This framework combines robustly trained and well-tested pose estimate and behavioral action recognition models. The framework performs admirably at the task of automatically identifying simple behaviors of wild apes from camera trap videos of variable quality and contexts. These results indicate that skeletal-based action recognition offers a reliable and lightweight methodology for studying ape behavior in the wild and the presented framework and GUI offer an accessible route for other researchers to utilize such tools.

      Given that automated behavior recognition in wild primates will likely be a major future direction within many subfields of primatology, open-source frameworks, like the one presented here, will present a significant impact on the field and will provide a strong foundation for others to build future research upon.

      Strengths:

      Clearly articulated the argument as to why the framework was needed and what advantages it could convey to the wider field.

      For a very technical paper it was very well written. Every aspect of the framework the authors clearly explained why it was chosen and how it was trained and tested. This information was broken down in a clear and easily digestible way that will be appreciated by technical and non-technical audiences alike.

      The study demonstrates which pose estimation architectures produce the most robust models for both within-context and out-of-context pose estimates. This is invaluable knowledge for those wanting to produce their own robust models.

      The comparison of skeletal-based action recognition with other methodologies for action recognition helps contextualize the results.

      We thank Reviewer #1 for their thoughtful and constructive review of our manuscript. We are especially grateful for your recognition of the clarity of the manuscript, the strength of the technical framework, and its accessibility to both technical and non-technical audiences. Your feedback highlights exactly the kind of interdisciplinary engagement we hope to foster with this work.

      Weaknesses

      While I note that this is a paper most likely aimed at the more technical reader, it will also be of interest to a wider primatological readership, including those who work extensively in the field. When outlining the need for future work I felt the paper offered almost exclusively very technical directions. This may have been a missed opportunity to engage the wider readership and suggest some practical ways those in the field could collect more ASBAR-friendly video data to further improve accuracy.

      We appreciate this insightful suggestion and fully agree that emphasizing practical relevance is important for engaging a broader readership. In response, we have reformulated the opening of the Discussion section to place stronger emphasis on the value of shared, open-source resources and the real-world accessibility of the ASBAR framework. The revised text explicitly highlights the practical benefits of ASBAR for field researchers working in resource-constrained environments, and underscores the importance of community-driven data sharing to advance behavioral research in natural settings.

      This section now reads: Despite the growing availability of open-source resources, such as large-scale animal pose datasets and machine learning toolboxes for pose estimation and human skeleton-based action recognition, their integration for animal behavior recognition—particularly in natural settings—remains largely unexplored. With ASBAR, a framework combining animal pose estimation and skeleton-based action recognition, we provide a comprehensive data and model pipeline, methodology, and GUI to assist researchers in automatically classifying animal behaviors via pose estimation. We hope these resources will become valuable tools for advancing the understanding of animal behavior within the research community.

      To illustrate ASBAR’s capabilities, we applied it to the challenging task of classifying great ape behaviors in their natural habitat. Our skeletonbased approach achieved accuracy comparable to previous video-based studies for Top-K and Mean Class Accuracies. Additionally, by reducing the input size of the action recognition model by a factor of approximately 20 compared to video-based methods, our approach requires significantly less computational power, storage space, and data transfer resources. These qualities make ASBAR particularly suitable for field researchers working in resource-constrained environments.

      Our framework and results are built on the foundation of shared and open-source materials, including tools like DeepLabCut, MMAction2, and datasets such as OpenMonkeyChallenge and PanAf500. This underscores the importance of making resources publicly available, especially in primatology, where data scarcity often impedes progress in AI-assisted methodologies. We strongly encourage researchers with large annotated video datasets to make them publicly accessible to foster interdisciplinary collaboration and further advancements in animal behavior research.

      Reviewer #2 (Public Review)

      Fuchs et al. propose a framework for action recognition based on pose estimation. They integrate functions from DeepLabCut and MMAction2, two popular machine-learning frameworks for behavioral analysis, in a new package called ASBAR.

      They test their framework by

      Running pose estimation experiments on the OpenMonkeyChallenge (OMC) dataset (the public train + val parts) with DeepLabCut.

      Annotating around 320 image pose data in the PanAf dataset (which contains behavioral annotations). They show that the ResNet-152 model generalizes best from the OMC data to this out-of-domain dataset.

      They then train a skeleton-based action recognition model on PanAf and show that the top-1/3 accuracy is slightly higher than video-based methods (and strong), but that the mean class accuracy is lower - 33% vs 42%. Likely due to the imbalanced class frequencies. This should be clarified. For Table 1, confidence intervals would also be good (just like for the pose estimation results, where this is done very well).

      We thank Reviewer #2 for their clear and helpful summary of our work, and for the thoughtful suggestions to improve the manuscript. We appreciate this observation. In the revised manuscript, we now clarify that the lower Mean Class Accuracy (MCA) in the initial version was indeed driven by significant class imbalance in the PanAf dataset, which contains highly uneven representation across behavior categories. To address this, we made two key improvements to the action recognition model:

      (1) We replaced the standard cross-entropy loss with a class-balanced focal loss, following the approach of Sakib et al. (2021), to better account for rare behaviors during training.

      (2) We initialized the PoseConv3D model with pretrained weights from FineGym (Shao et al., 2020) rather than training from scratch, which increased performance across underrepresented classes.

      Together, these changes substantially improved model performance on tail classes, increasing the Mean Class Accuracy from 33.6% to 47%, now exceeding that of the videobased baseline.

      Moreover, we sincerely thank Reviewer #2 for the thorough and constructive private feedback. Your comments have greatly helped us improve both the structure and clarity of the manuscript, and we have implemented several key revisions based on your recommendations to streamline the text and sharpen its focus on the core contributions. In particular, we have revised the tone of both the Introduction and Discussion sections to more modestly and accurately reflect the scope of our findings. We removed unnecessary implementation details—such as the description of graph-based models that were not part of the final pipeline—to avoid distracting tangents. The Methods section has been clarified and consolidated to include all evaluation metrics, a description of the data augmentation, and other methodological elements that were previously scattered across the Results section. Additionally, the Discussion now explicitly addresses the limitations of our EfficientNet results, including a dedicated paragraph that acknowledges the use of suboptimal hyperparameters and highlights the need for architecture-specific tuning, particularly with respect to learning rate schedules.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This work by Ding et al uses agent-based simulations to explore the role of the structure of molecular motor myosin filaments in force generation in cytoskeletal structures. The focus of the study is on disordered actin bundles which can occur in the cell cytoskeleton and have also been investigated with in vitro purified protein experiments.

      Strengths:

      The key finding is that cooperative effects between multiple myosin filaments can enhance both total force and the efficiency of force generation (force per myosin). These trends were possible to obtain only because the detailed structure of the motor filaments with multiple heads is represented in the model.

      We appreciate your comments about the strength of our study. 

      Weaknesses:

      It is not clearly described what scientific/biological questions about cellular force production the work answers. There should be more discussion of how their simulation results compare with existing experiments or can be tested in future experiments.

      Please see our response to the comment (1) below.

      The model assumptions and scientific context need to be described better.

      We apologize for the insufficient descriptions about the model and the scientific context. We revised the manuscript to better explain model assumptions and scientific context as described in our responses below.

      The network contractility seems to be a mere appendix to the bundle contractility which is presented in much more detail.

      Please see our response to the comment (6) below.

      Reviewer #1 (Recommendations for the authors):

      (1) It is not clearly described what scientific/biological questions about cellular force production the work answers. There should be more discussion of how their simulation results compare with existing experiments, or can be tested in future experiments. The authors do briefly mention Reference 4 where different myosin isoforms were used, but it is not clear that these experiments support the scalings predicted in this work in Figures 3-6. Also, the experiments in Ref. 4 apparently did not involve passive crosslinkers (ACPs) which are key in this study.

      Thank you for the comment. In the 5th paragraph of the discussion section of the original manuscript, we applied our findings to understand how structural differences between ventral stress fibers and actin arcs could affect force generation. In addition, at the end of the discussion section, we mentioned that experiments with artificially-made myosin thick filaments could be used for verifying our results. 

      The experiments in Ref. 4 were only ones that we could directly compare our results with. In previous study, actomyosin bundles were experimentally created with ACPs (K.L. Weirich et al., Biophys J, 2021, 120: 1957-1970), but the motions of myosin thick filaments were only quantities measured in the experiments. In general, measuring forces generated by in vitro actomyosin bundles is very challenging. This is why the predictions from our model are particularly valuable for understanding the force generation of actomyosin structures. 

      (2) The architecture of the bundles seems to be prescribed by hand in these simulations. Several well-known stochastic aspects of the dynamics of actin and actin-binding proteins are not included in the model. For example, there is no remodeling of the actin structures through actin polymerization and depolymerization, or crosslink (ACP) binding and unbinding. Can the authors comment on why these effects could be neglected for the questions they want to address?

      Thank you for the comment. We previously showed that the force generation process in actomyosin networks and bundles is affected by actin dynamics (Q. Yu et al., Biophys J, 2018, 115: 2003-2013) and the unbinding of ACPs (T. Kim, Biomech Model Mechanobiol, 2015, 14(2): 345-355 and W. Jung et al., Comput Part Mech, 2015, 2(4): 317-327). 

      However, we did not include the actin dynamics and the ACP unbinding in the current study to clearly understand the effects of the structural properties of thick filaments on the force generation process. We have learned that the stochastic behaviors of cytoskeletal components lead to noisier results, which requires us to run a much larger number of simulations to obtain statistically convincing data. We added the following paragraph in the discussion section of the revised manuscript:

      “Although this study focused mainly on parameters related to motor structures, we expect that other parameters would affect the force generation process. For example, as we showed before, a decrease in ACP density would reduce forces by deteriorating connectivity between filaments. With very low ACP density, some of neighboring motors may not have ACPs between them, thus adding up their forces as shown in Fig. 2. However, such low ACP density may not maintain the structure of bundles or cross-linked networks well. In addition, the force-dependent unbinding of ACPs could change the spatial distribution of ACPs during force generation. If they behave as a slip bond which unbinds more frequently with higher forces, ACPs may not stay between two motors for long time due to high tension. Then, forces generated by two motors may have a higher chance to add up. By contrast, if they behave as a catch bond which unbinds less frequently with larger forces, more ACPs will be recruited between two motors, reducing a chance to add up

      forces. The length of actin filaments is unlikely to affect the force generation process significantly unless filaments are very short. Additionally, as we showed before, actin turnover would reduce forces by competing with motor activities, change connectivity between filaments over time, and prevent motors from being stalled for long time, all of which could affect force generation.”

      (3) The present study is confined to the fixed density of motors and ACPs. However, these can be easily varied in in vitro experiments. Works such as Reference 4 show an optimum in contractility vs myosin concentration. Myosins act not only to slide actin filaments but also crosslink them.

      Can the authors vary myosin concentration to demonstrate such effects in their model?

      As the reviewer pointed out, there is a belief that myosin thick filaments can serve as crosslinkers as well. However, unless there are a fraction of dead myosins (which remain bound on filaments without walking) or myosins dwell at the barbed ends filaments for very long time, it looks very hard for bundles or networks to generate large forces. A former experiment showed that active myosins increases the viscosity of actin networks, not elasticity (D. Humphrey et al., Nature, 2002, 416: 413-416) Computer simulations with reasonable assumptions did not show significant force generation without cross-linkers. We have tested systems with a large number of motors and a few cross-linkers in previous studies (T. Kim, Biomech Model Mechanobiol, 2015, 14(2): 345-355 and W. Jung et al., Comput Part Mech, 2015, 2(4): 317-327). We observed that large force/stress was generated momentarily, but it was relaxed very fast. It is expected that there will be similar outcomes if we try such conditions in the current study.

      (4) Why is there a (factor of 1.5-2) discrepancy in the measured (Ftot) and estimated (Fest) force values in Figure 4-6? How can the authors improve their scaling arguments to capture this? What about the estimated efficiency?

      Thank you for the comment. Indeed, there was a discrepancy between the actual and estimated forces. When the estimated force was calculated, we used the z positions of motors without consideration of the actual bundle geometry with multiple filaments. For example, if two motors are located on the opposite sides of the bundle (i.e., if they are located far from each other in x or y direction), forces generated by them may not counterbalance each other. Then, the estimated force can be smaller than the actual force because counterbalance between motors can be overcounted. The original manuscript had the following sentences to clarify this point: “F</sub>est</sub> was generally smaller than F<sub>tot</sub> because this analysis does not account for actual bundle geometry consisting of multiple F-actins; if two motors are located far from each other in x or y direction, they may not counterbalance or add up forces. Nevertheless, we found that F<sub>est</sub> captures the overall dependence of F<sub>tot</sub> on parameters well.”

      (5) Several choices of parameter values used in the simulations are not clear:

      a) Why consider F actin of 140 nm specifically? Actin can come in a range of lengths. How do their results depend upon the length scale of actin?

      It seems that there is a misunderstanding. 140 nm is the equilibrium length of one actin segment in our model. The actual F-actin consists of multiple actin segments. The length of Factin was 9 μm in bundle simulations and 10 μm (average) in network simulations. We expect that the general tendency of our results would not change with different filament length. However, if filament length becomes too short, the force generation process would be impaired due to lack of connectivity between filaments. 

      b) Similarly, very specific values of myosin backbone length (42 nm), number of myosin heads (8), number of arms (24), and Actin Cross-linking Proteins (ACPs). What informs these values and how will the results change if they are different? It is not especially clear how an "Arm" differs from "heads" and what kind of coarse-graining is involved.

      In the “model overview” section of the original manuscript, we mentioned the following to clarify the definitions of motor arms and motor heads: 

      “To mimic the structure of bipolar filaments, each motor has a backbone, consisting of serially linked segments, and two arms on each endpoint of the backbone segments that represent 8 myosin heads (N<sub>h</sub> = 8).”

      We devised this coarse-graining scheme of myosin thick filaments in our previous work (T. Kim, Biomech Model Mechanobiol, 2015, 14(5): 1143-1155). Through extensive tests, we showed that force generation and motor behaviors are largely independent of coarse-graining level. In other words, a motor with the same value of N<sub>h</sub>N<sub>a</sub> leads to similar outcomes regardless of the value of N<sub>a</sub>. However, in a bundle with multiple filaments, each motor has a sufficient number of arms to ensure simultaneous interactions with those filaments. This is why we decided to useN<sub>h</sub> = 8 and N<sub>a</sub> = 24. 

      To match the length of thick filaments and the total number of heads (N<sub>h</sub>N<sub>a</sub>) in the model with real myosin thick filaments, we have used 42 nm for each backbone length. Varying this length is equivalent to a variation in L<sub>sp</sub> that we did for Fig. 6.

      We used high ACP density to ensure connections between all neighboring pairs of actin filaments. We already showed how the presence of ACPs affects the force generation process in Fig. 2 using two actin filaments. It is expected that a variation of ACP density would affect our results to some extent. Since the main focus of the current study is the structural properties of motors, we did not explore the effects of ACP density. I hope that the reviewer would understand our intention. 

      (6) The manuscript focuses on disordered bundles with only one figure on networks. However, actin fibers also ubiquitously exist as disordered networks, and it is important to explore in more detail the contractile forces in such network arrangements.

      We appreciate the comment. Because we plan to delve into the effects of motor structures on the force generation in networks as a follow-up study, we showed the minimal results in the current study to prove the generality of our findings. I hope that the reviewer would understand our intention and plan.

      It is not described very clearly how these networks were generated.

      We apologize for lack of explanation about how the networks were generated. We added the following section in Supplementary Text of the revised manuscript:

      “Network assembly

      Unlike F-actin in bundle simulations, F-actin in network simulations is formed by stochastic processes as in our previous studies. The formation of F-actin is initiated from a nucleation event with a constant rate constant, k<sub>n,A</sub>, with the appearance of one cylindrical segment in a random position with a random orientation perpendicular to the z direction. The polymerization of F-actin is simulated by adding cylindrical segments at the barbed end of existing filaments with a rate constant, k<sub>p,A</sub>. The ratio of k<sub>n,A</sub>to k<sub>p,A</sub> is adjusted to result in the average filament length of ~10 μm. The rest of the assembly process is identical to that described in the main text.”

      Crosslinked biopolymers like actin typically form disordered elastic networks with their coordination number below rigidity percolation threshold (z=4 in 2D), see for example review by Broedersz and Mackintosh Rev. Mod, Phys. 2013. Such networks should exist in the bendingdominated regime, where bending forces play a vital role in force propagation. Was that observed in the simulations? Why or why not?

      We appreciate the comment. We are aware of the bending-dominated regime and indeed showed the importance of the bending stiffness of actin filaments at low shear strain level in our previous work (T. Kim et al., PLOS Comput Biol, 2009, 5(7): e1000439). In case of active networks with motors, such a bending-dominated regime has not been observed without external shear strain. Instead, buckling of actin filaments was found to be essential for breaking symmetry between tensile and compressive forces developed by motor activities. We have shown that the free contraction of networks is inhibited if filament bending stiffness is increased substantially (J. Li et al., Soft Matter, 2017, 13: 3213-3220 and T. Bidone et al., PLOS Comput Biol, 2017, 13(1): e1005277). We expect that contractile forces generated by bundles or networks will be reduced significantly if we highly increase bending stiffness. However, considering the focus of the current study is on the structural properties of motors, we did not perform such simulations. 

      (7) It would be interesting to see the simulated predictions of the bundle or network contraction dynamics. This can be done by changing to free boundary conditions so that the bundle can contract.

      Thank you for the suggestion. We have previously investigated the free contraction of actomyosin networks with different motor density and ACP density (J Li et al., Soft Matter, 2017, 13: 3213). We observed that the rate of network contraction was higher with more motors and ACPs. However, we did not test the effects of the structural properties of thick filaments in the previous study. We plan to investigate the effects in future studies because the focus of the current study is the force generation process. Please note that in the discussion section of the original manuscript, we mentioned the following:

      “Although we focused on force generation, the contractile behaviors of actomyosin structures (i.e., a decrease in length) have also been of great interest. Our model can be used to study such contractile behaviors by deactivating the periodic boundary condition and removing connection between one end of bundle/network and a domain boundary as done previously [20]. To achieve higher contractile speed with the same total number of myosin heads, the existence of multiple contractile units would be better as suggested in a previous work [4]. This means that there is a trade-off between force generation and contractile speed. Previous studies also showed that the contractile speed of networks is proportional to motor density [18, 43, 51]. We may be able to use our model to systematically investigate how the contractile speed is regulated by parameters that we tested in this study, including the number, distribution, length, and structure of motors.”

      Minor suggestions for improvement:

      (1) What are the vertical markers in Figures 1E and F? They should be labelled. if they are crosslinkers, it is not clear why the color is different from Figure 1A and B.

      We believe that the reviewer meant Figs. 2E, F. Those vertical lines are indeed ACPs (crosslinkers). We changed the color of ACPs in Fig. 1A and Fig. 2B-D to purple to be consistent. In addition, we changed the colors of two filaments in Figs. 2B-D slightly to be consistent with Fig. 2E.

      (2) To help understanding, please include a figure showing how forces are measured.

      We added Fig. S1 in the revised manuscript to explain how the bundle force is calculated.

      (3) It should be possible to extend the scaling arguments to predict what is the crossover myosin density (N_M) in Figure 4a at which the efficiency changes from going as 1/N_M to saturating. 

      As the reviewer might have observed, the slope of the efficiency in Fig. 4A gradually changes, rather than showing a sharp transition. Thus, it is hard to define one crossover myosin density. 

      Similarly, what are the slopes in Figure 6a-b?

      We drew the reference lines in those two plots. Unfortunately, we do not have explanations about the origin of these slopes.

      (4) Some more explanation for the observed values should be added. Figure 4: Why does efficiency plateau at a value close to 0.8 in (A)? 

      We assume that the reviewer meant the plateau of η close to 0.08, not 0.8. Our speculation for the origin of this plateau value is related to L<sub>M</sub> (= 462 nm under the reference condition). Ideally, ~43 motors are required to cover the entire length of the bundle (= 20 μm). Under this condition, η is ~0.023. Although this is not 0.08, we believe that these two values are related to each other. For example, if we increase L<sub>M</sub>, this plateau level would increase. We added the following sentences in the result section of the revised manuscript:

      “The plateau level of η at ~0.08 is related to the minimum number of motors required for saturating an entire bundle, implying that the plateau level would be higher if each motor is longer.”

      Figure 5: Overlapping between motors seems to increase the total force applied by them because of cooperative effects. However, it is not abundantly clear why that should peak at a value of f = 0.06.

      As shown in Fig. 5B, smaller f always results in higher F<sub>tot</sub> due to higher level of cooperative overlap. The minimum value of f we tested in this study was 0.06, so F<sub>tot</sub> was maximal at f = 0.06.

      (5) Why is the network force expected to scale approximately as sqrt(N_M)? Is it because of the 2D geometry where the number of motors along the x or y-direction scale as sqrt(N_M)?

      We initially thought that the weaker dependence of the total force on N<sub>M</sub> was related to the random orientations of motors. However, if the network is fully saturated with motors, the inclusion of more motors will increase forces in both x and y directions almost linearly, resulting in the direct proportionality of F<sub>tot</sub> to N<sub>M</sub>. Our new hypothesis for weaker dependence is consistent with the reviewer’s speculation; the network is not fully saturated even with 1000 motors, so the entire regime shown in Fig. 7B corresponds to that with N<sub>M</sub> < 100 in Fig. 4A where similar weaker dependence on N<sub>M</sub> was observed. We added the following sentence in the result section of the revised manuscript to clarify this point:

      “the average number of motors in each direction which can experience the cooperative overlap would be ~. Maximal N<sub>M</sub> tested with the network was ~2,500, so the dependence of F<sub>tot</sub> on N<sub>M</sub> with the network is similar to that with N<sub>M</sub> < ~50 with the bundle (Fig. 4A).”

      (6) Figures 6 D and A: Figure 6D suggests that there is a more full overlap in the cases where there was a longer bare zone or larger spacing between motor arms. However, the quantification of the total force in A shows that the force is highest for the case where LM was increased by increasing the number of arms. Why do the authors think that is? I would expect from the explanation in Fig 6D that the Lsp and Lbz would be higher than Na in Fig 6A.

      Fig. 6D shows a difference in the level of the cooperative overlap () between two motors. As the reviewer pointed out, the case with more arms shows the lowest , resulting in the lowest as we showed in Fig. S2B. However, as show in in Eq. 7, the total force is a function of both N<sub>a</sub> and . Thus, due to higher N<sub>a</sub> and lower , the force in the case with different N<sub>a</sub> can be similar to that in the case with different L<sub>bz</sub>. In the original manuscript, we had the following sentence to explain how the force can be similar between the two cases: 

      “Thus, was higher (Fig. S2B, blue), resulting in higher F<sub>tot</sub> and η despite smaller N<sub>a</sub>.”

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors use a mechanical model to investigate how the geometry and deformations of myosin II filaments influence their force generation. They introduce a force generation efficiency that is defined as the ratio of the total generated force and the maximal force that the motors can generate. By changing the architecture of the myosin II filaments, they study the force generation efficiency in different systems: two filaments, a disorganized bundle, and a 2D network. In the simple two-filament systems, they found that in the presence of actin crosslinking proteins motors cannot add up their force because of steric hindrances. In the disorganized bundle, the authors identified a critical overlap of motors for cooperative force generation. This overlap is also influenced by the arrangement of the motor on the filaments and influenced by the length of the bare zone between the motor heads.

      Strengths:

      The strength of the study is the identification of organizational principles in myosin II filaments that influence force generation. It provides a complementary mechanistic perspective on the operation of these motor filaments. The force generation efficiency and the cooperative overlap number are quantitative ways to characterize the force generation of molecular motors in clusters and between filaments. These quantities and their conceptual implications are most likely also applicable in other systems.

      Thank you for the comments about the strength of our study. 

      Weaknesses:

      The detailed model that the authors present relies on over 20 numerical parameters that are listed in the supplement. Because of this vast amount of parameters, it is not clear how general the findings are. On the other hand, it was not obvious how specific the model is to myosin II, meaning how well it can describe experimental findings or make measurable predictions. The model seems to be quantitative, but the interpretation and connection to real experiments are rather qualitative in my point of view.

      As the reviewer mentioned, all agent-based computational models for simulating the actin cytoskeleton are inevitably involved with such a large number of parameters. Some of the parameter values are not known well, so we have tuned our parameter values carefully by comparing our results with experimental observations in our previous studies since 2009.We were aware of the importance of rigorous representation of unbinding and walking rates of myosin motors, so we implemented the parallel cluster model, which can predict those rates with consideration of the mechanochemical rates of myosin II, into our model. Thus, we are convincing that our motors represent myosin II.

      In our manuscript, our results were compared with prior observations in Ref. 4 (Thoresen et al., Biophys J, 2013) several times. In particular, larger force generation with more myosin heads per thick filament was consistent between the experiment and our simulations. 

      Our study can make various predictions. First, our study explains why non-muscle myosin II in stress fibers shows focal distributions rather than uniform distributions; if they stay closely, they can generate much larger forces in the stress fibers via the cooperative overlap. Our study also predicts a difference between bipolar structures (found in skeletal muscle myosins and nonmuscle myosins) and side polar structures (found in smooth muscle myosins) in terms of the likelihood of the cooperative overlap. As shown below, myosin filaments with the bipolar structure can add up their forces better than those with the side polar structure when their overlap level is the same.

      Author response image 1.

       

      It was often difficult for me to follow what parameters were changed and what parameters were set to what numerical values when inspecting the curve shown in the figures. The manuscript could be more specific by explicitly giving numbers. For example, in the caption for Figure 6, instead of saying "is varied by changing the number of motor arms, the bare zone length, the spacing between motor arms", the authors could be more specific and give the ranges: "is varied by changing the number of motor arms form ... to .., the bare zone length from .. to..., and the spacing between motor arms from .. to ..".

      This unspecificity is also reflected in the text: "We ran simulations with a variation in either L<sub>sp</sub> or L<sub>bz</sub>" What is the range of this variation? "WhenL<sub>M</sub> was similar" similar to what? "despite different N<sub>M</sub>." What are the different values for N<sub>M</sub>? These are only a few examples that show that the text could be way more specific and quantitative instead of qualitative descriptions.

      We appreciate the comment. In the revised manuscript, we specified the range of the variation in each parameter.

      In the text, after equation (2) the authors discuss assumptions about the binding of the motor to the actin filament. I think these model-related assumptions and explanations should be discussed not in the results section but rather in the "model overview" section.

      Thank you for pointing this out. In the original manuscript, we described all the details of the model in Supplementary Material. We feel that the assumptions about interactions between motors and actin filaments are too detailed information to be included in the model overview section.

      The lines with different colors in Figure 2A are not explained. What systems and parameters do they represent?

      The different colors used in Fig. 2A were used for distinguishing 20 cases. We added the explanation about the colors in the figure caption in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      To guarantee the reproducibility of the results, I recommend that the authors publish their simulation code on GitHub.

      We appreciate the reviewer’s suggestion. Following the suggestion, we prepared and posted the code on GitHub as mentioned in the Data Availability of the revised manuscript: The source code of our model is available on GitHub: https://github.com/ktyman2/ThickFilament”

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Given the importance that these coupling mechanisms have been given in theory, this is a timely and important contribution to the literature in terms of determining whether these theoretical assumptions hold true in human data.

      Thank you!

      I did not follow the logic behind including spindle amplitude in the meta-analysis. This is not a measure of SO-spindle coupling (which is the focus of the review), unless the authors were restricting their analysis of the amplitude of coupled spindles only. It doesn't sound like this is the case though. The effect of spindle amplitude on memory consolidation has been reviewed in another recent meta-analysis (Kumral et al, 2023, Neuropsychologia). As this isn't a measure of coupling, it wasn't clear why this measure was included in the present meta-analysis. You could easily make the argument that other spindle measures (e.g., density, oscillatory frequency) could also have been included, but that seems to take away from the overall goal of the paper which was to assess coupling.

      Indeed, spindle amplitude refers to all spindle events rather than only coupled spindles. This choice was made because we recognized the challenge of obtaining relevant data from each study—only 4 out of the 23 included studies performed their analyses after separating coupled and uncoupled spindles. This inconsistency strengthens the urgency and importance of this meta-analysis to standardize the methods and measures used for future analysis on SO-SP coupling and beyond. We agree that focusing on the amplitude of coupled spindles would better reveal their relations with coupling, and we have discussed this limitation in the manuscript.

      Nevertheless, we believe including spindle amplitude in our study remains valuable, as it served several purposes. First, SO-SP coupling involves the modulation between spindle amplitude and slow oscillation phase. Different studies have reported conflicting conclusions regarding how overall spindle amplitude was related to coupling as an indicator of oscillation strength overnight– some found significant correlations (e.g., Baena et al., 2023), while others did not (e.g., Roebber et al., 2022). This discrepancy highlights an indirect but potentially crucial insight into the role of spindle amplitude in coupling dynamics. Second, in studies related to SO-SP coupling, spindle amplitude is one of the most frequently reported measures along with other coupling measures that significantly correlated with oversleep memory improvements (e.g. Kurz et al., 2023; Ladenbauer et al., 2021; Niknazar et al., 2015), so we believe that including this measure can provide a more comprehensively review of the existing literature on SO-SP coupling. Third, incorporating spindle amplitude allows for a direct comparison between the measurement of coupling and individual events alone in their contribution to memory consolidation– a question that has been extensively explored in recent research. (e.g., Hahn et al., 2020; Helfrich et al., 2019; Niethard et al., 2018; Weiner et al., 2023). Finally, spindle amplitude was identified as the most important moderator for memory consolidation in Kumral et al.'s (2023) meta-analysis. By including it in our analysis, we sought to replicate their findings within a broader framework and introduce conceptual overlaps with existing reviews. Therefore, although we were not able to selectively include coupled spindles, there is still a unique relation between spindle amplitude and SO-SP coupling that other spindle measures do not have. 

      Originally, we also intended to include coupling density or counts in the analysis, which seems more relevant to the coupling metrics. However, the lack of uniformity in methods used to measure coupling density posed a significant limitation. We hope that our study will encourage consistent reporting of all relevant parameters in future research, allowing future meta-analyses to incorporate these measures comprehensively. We have added this discussion to the revised version of the manuscript (p. 3) to further clarify these points.

      All other citations were referenced in the manuscript.

      At the end of the first paragraph of section 3.1 (page 13), the authors suggest their results "... further emphasise the role of coupling compared to isolated oscillation events in memory consolidation". This had me wondering how many studies actually test this. For example, in a hierarchical regression model, would coupled spindles explain significantly more variance than uncoupled spindles? We already know that spindle activity, independent of whether they are coupled or not, predicts memory consolidation (e.g., Kumral meta-analysis). Is the variance in overnight memory consolidation fully explained by just the coupled events? If both overall spindle density and coupling measures show an equal association with consolidation, then we couldn't conclude that coupling compared to isolated events is more important.

      While primary coupling measurements, including coupling phase and strength, showed strong evidence for their associations with memory consolidation, measures of spindles, including spindle amplitude, only exhibited limited evidence (or “non-significant” effect) for their association with consolidation. These results are consistent with multiple empirical studies using different techniques (e.g., Hahn et al., 2020; Helfrich et al., 2019; Niethard et al., 2018; Weiner et al., 2023), which reported that coupling metrics are more robust predictors of consolidation and synaptic plasticity than spindle or slow oscillation metrics alone. However, we agree with the reviewer that we did not directly separate the effect between coupled and uncoupled spindles, and a more precise comparison would involve contrasting the “coupling of oscillation events” with ”individual oscillation events” rather than coupling versus isolated events.

      We recognized that Kumral and colleagues’ meta-analysis reported a moderate association between spindle measures and memory consolidation (e.g., for spindle amplitude-memory association they reported an effect size of approximately r = 0.30). However, one of the advantages of our study is that we actively cooperated with the authors to obtain a large number of unreported and insignificant data relevant to our analysis, as well as separated data that were originally reported under mixed conditions. This approach decreases the risk of false positives and selective reporting of results, making the effect size more likely to approach the true value. In contrast, we found only a weak effect size of r = 0.07 with minimal evidence for spindle amplitude-memory relation. However, we agree with the reviewer that using a more conservative term in this context would be a better choice since we did not measure all relevant spindle metrics including the density.

      To improve clarity in our manuscript, we have revised the statement to: “Together with other studies included in the review, our results suggest a crucial role of coupling but did not support the role of spindle events alone in memory consolidation,” and provide relevant references (p. 13). We believe this can more accurately reflect our findings and the existing literature to address the reviewer’s concern.

      It was very interesting to see that the relationship between the fast spindle coupling phase and overnight consolidation was strongest in the frontal electrodes. Given this, I wonder why memory promoting fast spindles shows a centro-parietal topography? Surely it would be more adaptive for fast spindles to be maximally expressed in frontal sites. Would a participant who shows a more frontal topography of fast spindles have better overnight consolidation than someone with a more canonical centro-parietal topography? Similarly, slow spindles would then be perfectly suited for memory consolidation given their frontal distribution, yet they seem less important for memory.

      Regarding the topography of fast spindles and their relationship to memory consolidation, we agree this is an intriguing issue, and we have already developed significant progress in this topic in our ongoing work, and have found evidence that participants with a more frontal topography of fast spindles show better overnight consolidation. These findings will be presented in our future publications. We share a few relevant observations: First, there are significant discrepancies in the definition of “slow spindle” in the field. Some studies defined slow spindle from 9-12 Hz (e.g. Mölle et al., 2011; Kurz et al., 2021), while others performed the event detection within a range of 11-13/14 Hz and found a frontal-dominated topography (e.g. Barakat et al., 2011; D'Atri et al., 2018). Compounding this issue, individual and age differences in spindle frequency are often overlooked, leading to challenges in reliably distinguishing between slow and fast spindles. Some studies have reported difficulty in clearly separating the two types of spindles altogether (e.g., Hahn et al., 2020). Moreover, a critical factor often ignored in past research is the propagating nature of both slow oscillations and spindles across the cortex, where spindles are coupled with significantly different phases of slow oscillations (see Figure 5). In addition, the frontal region has the strongest and most active SOs as its origin site, which may contribute to the role of frontal coupling. In contrast, not all SOs propagate from PFC to centro-parietal sites. The reviewer also raised an interesting idea that slow spindles would be perfectly suited for memory consolidation given their frontal distribution. We propose that one possible explanation is that if SOs couple exclusively with slow SPs, they may lose their ability to coordinate inter-area activity between centro-parietal and frontal regions, which could play a critical role in long-range memory transmission across hippocampus, thalamus, and prefrontal cortex. This hypothesis requires investigation in future studies. We believe a better understanding of coupling in the context of the propagation of these waves will help us better understand the observed frontal relationship with consolidation. Therefore, we believe this result supports our conclusion that coupling precision is more important than intensity, and we have addressed this in revised manuscript (pp. 15-16).

      The authors rightly note the issues with multiple comparisons in sleep physiology and memory studies. Multiple comparison issues arise in two ways in this literature. First are comparisons across multiple electrodes (many studies now use high-density systems with 64+ channels). Second are multiple comparisons across different outcome variables (at least 3 ways to quantify coupling (phase, consistency, occurrence) x 2 spindle types (fast, slow). Can the authors make some recommendations here in terms of how to move the field forward, as this issue has been raised numerous times before (e.g., Mantua 2018, Sleep; Cox & Fell 2020, Sleep Medicine Reviews for just a couple of examples). Should researchers just be focusing on the coupling phase? Or should researchers always report all three metrics of coupling, and correct for multiple comparisons? I think the use of pre-registration would be beneficial here, and perhaps could be noted by the authors in the final paragraph of section 3.5, where they discuss open research practices.

      There are indeed multiple methods that we can discuss, including cluster-based and non-parametric methods, etc., to correct for multiple comparisons in EEG data with spatiotemporal structures. In addition, encouraging the reporting of all tested but insignificant results, at least in supplementary materials, is an important practice that helps readers understand the findings with reduced bias. We agree with the reviewer’s suggestions and have added more information in section 3.4-3.5 (p. 17) to advocate for a standardized “template” used to report effect sizes and correct multiple comparisions in future research.

      We advocate for the standardization of reporting all three coupling metrics– phase, strength, and prevalence (density, count, and/or percentage coupled). Each coupling metric captures distinct a property of the coupling process and may interact with one another (Weiner et al., 2023). Therefore, we believe it is essential to report all three metrics to comprehensively explore their different roles in the “how, what, and where” of long-distance communication and consolidation of memory. As we advance toward a deeper understanding of the relationship between memory and sleep, we hope this work establishes a standard for the standardization, transparency, and replication of relevant studies.

      Reviewer #2 (Public review):

      Regarding the Moderator of Age: Although the authors discuss the limited studies on the analysis of children and elders regarding age as a moderator, the figure shows a significant gap between the ages of 40 and 60. Furthermore, there are only a few studies involving participants over the age of 60. Given the wide distribution of effect sizes from studies with participants younger than 40, did the authors test whether removing studies involving participants over 60 would still reveal a moderator effect?

      We agree that there is an age gap between younger and older adults, as current studies often focus on contrasting newly matured and fully aged populations to amplify the effect, while neglecting the gradual changes in memory consolidation mechanisms across the aging spectrum. We suggest that a non-linear analysis of age effects would be highly valuable, particularly when additional child and older adult data become available.

      In response to the reviewer’s suggestion, we re-tested the moderation effect of age after excluding effect sizes from older adults. The results revealed a decrease in the strength of evidence for phase-memory association due to increased variability, but were consistent for all other coupling parameters. The mean estimations also remained consistent (coupling phase-memory relation: -0.005 [-0.013, 0.004], BF10 = 5.51, the strength of evidence reduced from strong to moderate; coupling strength-memory relation: -0.005 [-0.015, 0.008], BF10 = 4.05, the strength of evidence remained moderate). These findings align with prior research, which typically observed a weak coupling-memory relationship in older adults during aging (Ladenbauer et al, 2021; Weiner et al., 2023) but not during development (Hahn et al., 2020; Kurz et al., 2021; Kurz et al., 2023). Therefore, this result is not surprising to us, and there are still observable moderate patterns in the data. We have reported these additional results in the revised manuscript (pp. 6, 11), and interpret “the moderator effect of age in the phase-memory association becomes less pronounced during development after excluding the older adult data”. We believe the original findings including the older adult group remain meaningful after cautious interpretation, given that the older adult data were derived from multiple studies and different groups, and they represent the aging effects.

      Reviewer #3 (Public review):

      First, the authors conclude that "SO-SP coupling should be considered as a general physiological mechanism for memory consolidation". However, the reported effect sizes are smaller than what is typically considered a "small effect”.

      While we acknowledge the concern about the small effect sizes reported in our study, it is important to contextualize these findings within the field of neuroscience, particularly memory research. Even in individual studies, small effect sizes are not uncommon due to the inherent complexity of the mechanisms involved and the multitude of confounding variables. This is an important factor to be considered in meta-analyses where we synthesize data from diverse populations and experimental conditions. For example, the relationship between SO-slow SP coupling and memory consolidation in older adults is expected to be insignificant.

      As Funder and Ozer (2019) concluded in their highly cited paper, an effect size of r = 0.3 in psychological and related fields should be considered large, with r = 0.4 or greater likely representing an overestimation and rarely found in a large sample or a replication. Therefore, we believe r = 0.1 should not be considered as a lower bound of the small effect. Bakker et al. (2019) also advocate for a contextual interpretation of the effect size. This is particularly important in meta-analyses, where the results are less prone to overestimation compared to individual studies, and we cooperated with all authors to include a large number of unreported and insignificant results. In this context, small correlations may contain substantial meaningful information to interpret. Although we agree that effect sizes reported in our study are indeed small at the overall level, they reflect a rigorous analysis that incorporates robust evidence across different levels of moderators. Our moderator analyses underscore the dynamic nature of coupling-memory relationships, with stronger associations observed in moderator subgroups that have historically exhibited better memory performance, particularly after excluding slow spindles and older adults. For example, both the coupling phase and strength of frontal fast spindles with slow oscillations exhibited "moderate-to-large" correlations with the consolidation of different types of memory, especially in young adults, with r values ranging from 0.18 to 0.32. (see Table S9.1-9.4). We have included discussion about the influence of moderators and hierarchical structures on the dynamics of coupling-memory associations (pp. 17, 20). In addition, we have updated the conclusion to be “SO-fast SP coupling should be considered as a general physiological mechanism for memory consolidation” (p. 1).

      Second, the study implements state-of-the-art Bayesian statistics. While some might see this as a strength, I would argue that it is the greatest weakness of the manuscript. A classical meta-analysis is relatively easy to understand, even for readers with only a limited background in statistics. A Bayesian analysis, on the other hand, introduces a number of subjective choices that render it much less transparent.

      This kind of analysis seems not to be made to be intelligible to the average reader. It follows a recent trend of using more and more opaque methods. Where we had to trust published results a decade ago because the data were not openly available, today we must trust the results because the methods can no longer be understood with reasonable effort.

      This becomes obvious in the forest plots. It is not immediately apparent to the reader how the distributions for each study represent the reported effect sizes (gray dots). Presumably, they depend on the Bayesian priors used for the analysis. The use of these priors makes the analyses unnecessarily opaque, eventually leading the reader to question how much of the findings depend on subjective analysis choices (which might be answered by an additional analysis in the supplementary information).

      We appreciate the reviewer for sharing this viewpoint and we value the opportunity to clarify some key points. To address the concern about clarity, we have included more details in the methods section explaining how to interpret Bayesian statistics including priors, posteriors, and Bayes factors, making our results more accessible to those less familiar with this approach.

      On the use of Bayesian models, we believe there may have been a misunderstanding. Bayesian methods, far from being "opaque" or overly complex, are increasingly valued for their ability to provide nuanced, accurate, and transparent inferences (Sutton & Abrams, 2001; Hackenberger, 2020; van de Schoot et al., 2021; Smith et al., 1995; Kruschke & Liddell, 2018). It has been applied in more than 1,200 meta-analyses as of 2020 (Hackenberger, 2020). In our study, we used priors that assume no effect (mean set to 0, which aligns with the null) while allowing for a wide range of variation to account for large uncertainties. This approach reduces the risk of overestimation or false positives and demonstrates much-improved performance over traditional methods in handling variability (Williams et al., 2018; Kruschke & Liddell, 2018). In addition, priors can also increase transparency, since all assumptions are formally encoded and open to critique or sensitivity analysis. In contrast, frequentist methods often rely on hidden or implicit assumptions such as homogeneity of variance, fixed-effects models, and independence of observations that are not directly testable. Sensitivity analyses reported in the supplemental material (Table S9.1-9.4) confirmed the robustness of our choices of priors– our results did not vary by setting different priors.

      As Kruschke and Liddell (2018) described, “shrinkage (pulling extreme estimates closer to group averages) helps prevent false alarms caused by random conspiracies of rogue outlying data,” a well-known advantage of Bayesian over traditional approaches. This explains the observed differences between the distributions and grey dots in the forest plots, which is an advantage of Bayesian models in handling heterogeneity. Unlike p-values, which can be overestimated with a large sample size and underestimated with a small sample size, Bayesian methods make assumptions explicit, enabling others to challenge or refine them– an approach aligned with open science principles (van de Schoot et al., 2021). For example, a credible interval in Bayesian model can be interpreted as “there is a 95% probability that the parameter lies within the interval.”, while a confidence interval in frequentist model means “In repeated experiments, 95% of the confidence intervals will contain the true value.” We believe the former is much more straightforward and convincing for readers to interpret. We will ensure our justification for using Bayesian models is more clearly presented in the manuscript (pp. 21-23).

      We acknowledge that even with these justifications, different researchers may still have discrepancies in their preferences for Bayesian and frequentist models. To increase the effort of transparent reporting, we have also reported the traditional frequentist meta-analysis results in Supplemental Material 10 to justify the robustness of our analysis, which suggested non-significant differences between Bayesian and frequentist models. We have included clearer references in the updated version of the manuscript to direct readers to the figures that report the statistics provided by traditional models.

      However, most of the methods are not described in sufficient detail for the reader to understand the proceedings. It might be evident for an expert in Bayesian statistics what a "prior sensitivity test" and a "posterior predictive check" are, but I suppose most readers would wish for a more detailed description. However, using a "Markov chain Monte Carlo (MCMC) method with the no-U-turn Hamiltonian Monte Carlo (HMC) sampler" and checking its convergence "through graphical posterior predictive checks, trace plots, and the Gelman and Rubin Diagnostic", which should then result in something resembling "a uniformly undulating wave with high overlap between chains" is surely something only rocket scientists understand. Whether this was done correctly in the present study cannot be ascertained because it is only mentioned in the methods and no corresponding results are provided. 

      We appreciate the reviewer’s concerns about accessibility and potential complexity in our descriptions of Bayesian methods. Our decision to provide a detailed account serves to enhance transparency and guide readers interested in replicating our study. We acknowledge that some terms may initially seem overwhelming. These steps, such as checking the MCMC chain convergence and robustness checks, are standard practices in Bayesian research and are analogous to “linearity”, “normality” and “equal variance” checks in frequentist analysis. In addition, Hamiltonian Monte Carlo (HMC) is the default algorithm Stan (the software we used to fit Bayesian models) uses to sample from the posterior distribution in Bayesian models. It is a type of MCMC method designed to be faster and more efficient than traditional sampling algorithms, especially for complex or high-dimensional models. We have added exemplary plots in the supplemental material S4.1-4.3 and the method section (pp. 21-22) to explain the results and interpretation of these convergence checks. We hope this will help address any concerns about methodological rigor.

      In one point the method might not be sufficiently justified. The method used to transform circular-linear r (actually, all references cited by the authors for circular statistics use r² because there can be no negative values) into "Z_r", seems partially plausible and might be correct under the H0. However, Figure 12.3 seems to show that under the alternative Hypothesis H1, the assumptions are not accurate (peak Z_r=~0.70 for r=0.65). I am therefore, based on the presented evidence, unsure whether this transformation is valid. Also, saying that Z_r=-1 represents the null hypothesis and Z_r=1 the alternative hypothesis can be misinterpreted, since Z_r=0 also represents the null hypothesis and is not half way between H0 and H1.

      First, we realized that in the title of Figures 12.2 and 12.3. “true r = 0.35” and “true r = 0.65” should be corrected as “true r_z” (note that we use r_z instead of Z_r in the revised manuscript per your suggestion). The method we used here is to first generate an underlying population that has null (0), moderate (0.35), or large (0.65) r_z correlations, then test whether the sampling distribution drawn from these populations followed a normal distribution across varying sample sizes. Nevertheless, the reviewer correctly noticed discrepancies between the reported true r_z and its sampling distribution peak. This discrepancy arises because, when generating large population data, achieving exact values close to a strong correlation like r_z = 0.65 is unlikely. We loop through simulations to generate population data and ensure their r_z values fall within a threshold. For moderate effect sizes (e.g., r_z = 0.35), this is straightforward using a narrow range (0.34 < r_z < 0.35). However, for larger effect sizes like r_z = 0.65, a wider range (0.6 < r_z < 0.7) is required. therefore sometimes the population we used to draw the sample has a r_z slightly deviated from 0.65. This remains reasonable since the main point of this analysis is to ensure that a large r_z still has a normal sampling distribution, but not focus specifically on achieving r_z = 0.65.

      We acknowledge that this variability of the range used was not clearly explained in supplemental material 12 and it is not accurate to report “true r_z = 0.65”. In the revised version, we have addressed this issue by adding vertical lines to each subplot to indicate the r_z of the population we used to draw samples, making it easier to check if it aligns with the sampling peak. In addition, we have revised the title to “Sampling distributions of r_z drawn from strong correlations

      (r_z = 0.6-0.7)”. We confirmed that population r_z and the peak of their sampling distribution remain consistent under both H0 and H1 in all sample sizes with n > 25, and we hope this explanation can fully resolve your concern.

      We agree with the reviewer that claiming r_z = -1 represents the null hypothesis is not accurate. The circlin r_z = 0 is better analogous to Pearson’s r = 0 since both represent the mean drawn from the population under the null hypothesis. In contrast, the mean effect size under null will be positive in the raw circlin r, which is one of the important reasons for the transformation. To provide a more accurate interpretation, we updated Table 6 to describe the following strength levels of evidence: no effect (r < 0), null (r = 0), small (r = 0.1), moderate (r = 0.3), and large (r =0.5). We thank the reviewer again for their valuable feedback.

      Reviewer #2 (Recommendations for the authors):

      (1) There is an extra space in the Notes of Figure 1. "SW R sharp-wave ripple.".

      We thank the reviewer for pointing this out. We have confirmed that the "extra space" is not an actual error but a result of how italicized Times New Roman font is rendered in the LaTeX format. We believe that the journal’s formatting process will resolve this issue.

      (2) In the introduction, slow oscillations (SO) are defined with a frequency of 0.16-4 Hz, sleep spindles (SP) at 8-16 Hz, and sharp-wave ripples (SWR) at 80-300 Hz. The term "fast oscillation" (FO) is first introduced with the clarification "SPs in our case." However, on page 2, the authors state, "SO-FO coupling involving SWRs, SPs, and SOs..." There seems to be a discrepancy in the definition of FO; does it consistently refer to SPs and SWRs throughout the article?

      We appreciate the reviewer’s observation regarding the potential ambiguity of the term "FO." In our manuscript, "FO" is used as a general term to describe the interaction of a "relatively faster oscillation" with a "relatively slower oscillation" in the phase-amplitude coupling mechanism, therefore it is not intended to exclusively refer to SPs or SWRs. For example, it is usually used to describe SO–SP–SWR couplings during sleep memory studies, but Theta–Alpha–Gamma couplings in wakeful memory studies. To address this confusion, we removed the phrase "SPs in our case" and explicitly use "SPs" when referring to spindles. In addition, we have replaced "fast oscillation" with "faster oscillation" to emphasize that it is used in a relative sense (p. 1), rather than to refer to a specific oscillation. Also, we only retained the term “FO” when introducing the PAC mechanism.

      (3) On page 2, the first paragraph contains the phrase: "...which occur in the precise hierarchical temporal structure of SO-FO coupling involving SWRs, SPs, and SOs ..." Since "SO-FO" refers to slow and fast oscillations, it is better to maintain the order of frequencies, suggesting it as: SOs, SPs, and SWRs.

      We sincerely thank the reviewer for their valuable suggestion. We have updated the sentence to maintain the correct order from the lowest to the highest frequencies in the revised version (p. 2).

      (4) References should be provided:

      a “Studies using calcium imaging after SP stimulation explained the significance of the precise coupling phase for synaptic plasticity.".

      b. "Electrophysiology evidence indicates that the association between memory consolidation and SO-SP coupling is influenced by a variety of behavioral and physiological factors under different conditions."

      c. "Since some studies found that fast SPs predominate in the centroparietal region, while slow SPs are more common in the frontal region, a significant amount of studies only extracted specific types of SPs from limited electrodes. Some studies even averaged all electrodes to estimate coupling..."

      This is a great point.  These have been referenced as follows:

      a. Rephrased: “Studies using calcium imaging and SP stimulation explained the significance of the precise coupling phase for synaptic plasticity.” We changed “after” to “and” to reflect that these were conducted as two separate experiments. This is a summary statement, with relevant citations provided in the following two sentences of the paragraph, including Niethard et al., 2018, and Rosanova et al., 2005. (p. 2)

      b. Included diverse sources of evidence: “Electrophysiology evidence from studies included in our meta-analysis (e.g. Denis et al., 2021; Hahn et al., 2020; Mylonas et al., 2020) and others (e.g. Bartsch et al., 2019; Muehlroth et al., 2019; Rodheim et al., 2023) reported that the association between memory consolidation and SO-SP coupling is influenced by a variety of behavioral and physiological factors under different conditions.” (p. 3)

      c. Added references and more details: “Since some studies found that fast SPs predominate in the centroparietal region, while slow SPs are more common in the frontal region, a significant amount of studies selectively extracted specific types of SPs from limited electrodes (e.g. Dehnavi et al., 2021; Perrault et al., 2019; Schreiner et al., 2021). Some studies even averaged all electrodes in their spectral and/or time-series analysis to estimate metrics of oscillations and their couplings (e.g. Denis et al., 2022; Mölle et al., 2011; Nicolas et al., 2022).” (p. 4)

      Reviewer #3 (Recommendations for the authors):

      There are a number of terms that are not clearly defined or used:

      (1) SP amplitude. Does this mean only the amplitude of coupled spindles or of spindles in general?

      This refers to the amplitude of spindles in general. We clarified this in the revised text (and see response to reviewer #1, point #1).

      (2) The definition of a small effect

      We thank the reviewer again for raising this important question. As we responded in the public review, small effect sizes are common in neuroscience and meta-analyses due to the complexity of the underlying mechanisms and the presence of numerous confounding variables and hierarchical levels. To help readers better interpret effect sizes, we changed rigid ranges to widely accepted benchmarks for effect size levels in neuroscience research: small (r=0.1), moderate (r=0.3), and large (r=0.5; Cohen, 1988). We also noted that an evidence and context-based framework will provide a more practical way to interpret the observed effect sizes compared to rigid categorizations.

      (3) Can a BF10 based on experimental evidence actually be "infinite" and a probability actually be 1.00?

      We appreciate the reviewer for highlighting this potential confusion. The formula used to calculate BF10 is P(data | H1) / P(data | H0). In the experimental setting with an informative prior, an ‘infinite’ BF10 value indicates that all posterior samples are overwhelmingly compatible with H1 given the data and assumptions (Cox et al., 2023; Heck et al., 2023; Ly et al., 2016). In such cases, the denominator P(data | H0) becomes vanishingly small, leading BF10 to converge to infinity. This scenario occurs when the probability of H1 converges to 1 (e.g., 0.9999999999…).

      It is a well-established convention in Bayesian statistics to report the Bayes factor as "infinity" in cases where the evidence is overwhelmingly strong, and BF10 exceeds the numerical limits of the computation tools to become effectively infinite. To address this ambiguity, we added a footnote in the revised version of the manuscript to clarify the interpretation of an 'infinite' BF10 . (p. 8)

      (4) Z_r should be renamed to r_z or similar. These are not Z values (-inf..+inf), but r values (-1..1).

      We thank the reviewers for their suggestions. We agree that r_z would provide a clearer and more accurate interpretation, while z is more appropriate for referring to Fisher's z-transformed r (see point (5)). We have updated the notation accordingly.

      (5) Also, it remains quite unclear at which points in the analyses, "r" values or "Fisher's z transformed r" values are used. Assumptions of normality should only apply to the transformed values. However, the formulas for the random effects model seem to assume normality for r values.

      The correlation values were z-transformed during preprocessing to ensure normality and the correct estimation of sampling variances before running the models. The outputs were then back-transformed to raw r values only when reporting the results to help readers interpret the effect size. We mentioned this in Section 5.5.1, therefore the normality assumptions are not a concern. We have updated the notation r to z (-inf..+inf) in the formula of the random and mixed effect models in the revised version of the manuscript (p. 22).

      Language

      (1) Frequency. In the introduction, the authors use "frequency" when they mean something like the incidence of spindles.

      We agree that the term "frequency" has been used inconsistently to describe both the incidence of events and the frequency bands of oscillations. We have replaced "frequency" with "prevalence" to refer to the incidence of coupling events where applicable (p. 3).

      (2) Moderate and mediate. These two terms are usually meant to indicate two different types of causal influences.

      Thanks for the reviewer’s suggestions. We agree that "moderate" is more appropriate to describe moderators in this study since it does not directly imply causality. We have replaced mediate with moderate in relevant contexts.

      (3) "the moderate effect of memory task is relatively weak": "moderator effect" or "moderate effect"?

      We appreciate the reviewer for pointing out this mistake. We have updated the term to "moderator effect" in Section 2.2.2 (p. 6).

      (4) "in frontal regions we found a latest coupled but most precise and strong SO-fast SP coupling" Meaning?

      We thank the reviewer for bringing this concern of clarity to our attention. By 'latest,' we refer to the delayed phase of SO-fast SP coupling observed in the frontal regions compared to the central and parietal regions (see Figure 5), "Precise and strong" describes the high precision and strength of phase-locking between the SO up-state and the fast SP peak in these regions. We have rephrased this sentence to be: “We found that SO-fast SP coupling in the frontal region occurred at the latest phase observed across all regions, characterized by the highest precision and strength of phase-locking.” to improve clarity (p. 9).

      (5) Figure 5 and others contain angles in degrees and radians.

      We appreciate the reviewer pointing out this inconsistency. We have updated the manuscript and supplementary material to consistently use radians throughout.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      We thank the reviewer for their careful evaluation and positive comments. 

      Adaptation paradigm

      “why is it necessary to use an *adaptation* paradigm to study the link between SF tuning and pRF estimation? Couldn't you just use pRF bar stimuli with varying SFs?” 

      We thank the reviewer for this question. First, by using adaptation we can infer the correspondence between the perceptual and the neuronal adaptation to spatial frequency. We couldn’t draw any inference about perception if we only varied the SF inside the bar. More importantly, while changing the SF inside the bar might help drive different neuronal populations, this is not guaranteed. As we touched on in our discussion, responses obtained from the mapping stimuli are dominated by complex processing rather than the stimulus properties alone. A considerable proportion of the retinotopic mapping signal is probably simply due to spatial attention to the bar (de Haas & Schwarzkopf, 2018; Hughes et al., 2019). So, adaptation is a more targeted way to manipulate different neuronal populations.

      Other pRF estimates: polar angle and eccentricity 

      We included an additional plot showing the polar angle for both adapter conditions (Figure S4), as well as participant-wise scatter plots comparing raw pRF size, eccentricity, and polar angle between two adapter conditions (available in shared data repository). In line with previous work on the reliability of pRF estimates (van Dijk, de Haas, Moutsiana, & Schwarzkopf, 2016; Senden, Reithler, Gijsen, & Goebel, 2014), both polar angle and eccentricity maps are very stable between the two adaptation conditions. 

      Variability in pRF size change

      As the reviewer pointed out, the pRF size changes show some variability across eccentricities, and ROIs (Figure 5A and 5B). It is likely that the variability could relate to the varying tuning properties of different regions and eccentricities for the specific SF we used in the mapping stimulus. So one reason V2 is most consistent could be that the stimulus is best matched for the tuning there. However, what factors contribute to this variability is an interesting question that will require further study. 

      Other recommendations

      We have addressed the other recommendations of the reviewer with one exception. The reviewer suggested we should comment on the perceived contrast decrease after SF adaptation (as seen in Figure 6B) in the main text. However, since we refer the readers to the supplementary analyses (Supplementary section S8) where we discuss this in detail, we chose to keep this aspect unchanged to avoid overcomplicating the main text.

      Reviewer #2 (Public Review):

      We thank the reviewer for their comments - we improved how we report key findings which we hope will clarify matters raised by the reviewer.

      RF positions in a voxel

      The reviewer’s comments suggest that they may have misunderstood the diagram (Figure 1A) illustrating the theoretical basis of the adaptation effect, likely due to us inadvertently putting the small RFs in the middle of the illustration. We changed this figure to avoid such confusion.

      Theoretical explanation of adaptation effect

      The reviewer’s explanation for how adaptation should affect the size of pRF averaging across individual RFs is incorrect. When selecting RFs from a fixed range of semi-uniformly distributed positions (as in an fMRI voxel), the average position of RFs (corresponding to pRF position) is naturally near the center of this range. The average size (corresponding to pRF size) reflects the visual field coverage of these individual RFs. This aggregate visual field coverage thus also reflects the individual sizes. When large RFs have been adapted out, this means the visual field coverage at the boundaries is sparser, and the aggregate pRF is therefore smaller. The opposite happens when adapting out the contribution of small RFs. We demonstrate this with a simple simulation at this OSF link: https://osf.io/ebnky/. The pRF size of the simulated voxels illustrate the adaptation effect should manifest precisely as we hypothesized.

      Figure S2

      It is not actually possible to compare R<sup>2</sup> between regions by looking at Figure S2 because it shows the pRF size change, not R<sup>2</sup>. Therefore, the arguments Reviewer #2 made based on their interpretation of the figure are not valid. Just as the reviewer expected, V1 is one of the brain regions with good pRF model fits. We included normalized and raw R<sup>2</sup> maps to make this more obvious to the readers.

      V1 appeared essentially empty in that plot primarily due to the sigma threshold we selected, which was unintentionally more conservative than those applied in our analyses and other figures. We apologize for this mistake. We corrected it in the revised version by including a plot with the appropriate sigma threshold.

      Thresholding details 

      Thresholding information was included in our original manuscript; however, we included more information in the figure captions to make it more obvious.

      2D plots replaced histograms

      We thank the reviewer for this suggestion. The original manuscript contained histograms showing the distribution of pRF size for both adaptation conditions for each participant and visual area (Figure S1). However, we agree that 2D plots better communicate the difference in pRF parameters between conditions. So we moved the histogram plots to the online repository, and included scatter plots with a color scheme revealing the 2D kernel density.

      We chose to implement 2D kernel density in scatter plots to display the distribution of individual pRF sizes transparently.

      (proportional) pRF size-change map 

      The reviewer requests pRF size difference maps. Figure S2 in fact demonstrates the proportional difference between the pRF sizes of the two adaptation conditions. Instead of simply taking the difference, we believe showing the proportional change map is more sensible because overall pRF size varies considerably between visual regions. We explained this more clearly in our revision. 

      pRF eccentricity plot 

      “I suspect that the difference in PRF size across voxels correlates very strongly with the difference in eccentricity across voxels.”

      Our original manuscript already contained a supplementary plot (Figure S4 B, now Figure S4 C) comparing the eccentricity between adapter conditions, showing no notable shift in eccentricities except in V3A - but that is a small region and the results are generally more variable. In addition, we included participant-wise plots in the online repository, presenting raw comparisons of pRF size, eccentricity, and polar angle estimates between adaptation conditions. These 2D plots provide further evidence that the SF adapters resulted in a change in pRF size, while eccentricity and polar angle estimates did not show consistent differences.  

      To the reviewer’s point, even if there were an appreciable shift in eccentricity between conditions (as they suggest may have happened for the example participant we showed), this does not mean that the pRF size effect is “due [...] to shifts in eccentricity.” Parameters in a complex multi-dimensional model like the pRF are not independent. There is no way of knowing whether a change in one parameter is causally linked with a change in another. We can only report the parameter estimates the model produces. 

      In fact, it is conceivable that adaptation causes both: changes in pRF size and eccentricity. If more central or peripheral RFs tend to have smaller or larger RFs, respectively, then adapting out one part of the distribution will shift the average accordingly. However, as we already established, we find no compelling evidence that pRF eccentricity changes dramatically due to adaptation, while pRF size does.

      Other recommendations

      We have addressed the other recommendations of the reviewer, except for the y-axis alignment. Different regions in the visual hierarchy naturally vary substantially in pRF size. Aligning axes would therefore lead to incorrect visual inferences that (1) the absolute pRF sizes between ROIs are comparable, and (2) higher regions show the effect most

      prominently. However, for clarity, we now note this scale difference in our figure captions. Finally, as mentioned earlier, we also present a proportional pRF size change map to enable comparison of the adaptation effect between regions.

      Reviewer #3 (Public Review):

      We thank the reviewer for their comments.

      pRF model

      Top-up adapters were not modelled in our analyses because they are shared events in all TRs, critically also including the “blank” periods, providing a constant source of signal. Therefore modelling them separately cannot meaningfully change the results. However, the reviewer makes a good suggestion that it would be useful to mention this in the manuscript, so we added a discussion of this point in Section 3.1.5.

      pRF size vs eccentricity

      We added a plot showing pRF size in the two adaptation conditions (in addition to the pRF size difference) as a function of eccentricity.

      Correlation with behavioral effect

      In the original manuscript, we pointed out why the correlation between the magnitude of the behavioral effect and the pRF size change is not an appropriate test for our data. First, the reviewer is right that a larger sample size would be needed to reliably detect such a between-subject correlation. More importantly, as per our recruitment criteria for the fMRI experiment, we did not scan participants showing weak perceptual effects. This limits the variability in the perceptual effect and makes correlation inapplicable.

    1. Author Response:

      Public Reviews:

      Reviewer #1 (Public review):

      Weaknesses:

      (1) It remains unclear how this stimulation protocol is proposed to enhance memory. Memories are believed to be stored by precise inputs to specific neurons and highly tuned changes in synaptic strengths. It remains unclear whether proposed neural activity generated by the stimulation reflects the activation of specific memories or generally increased activity across all classes of neurons.

      Thank you for raising the important issue of the actual neurophysiological effects of non-invasive brain stimulation. Unfortunately, invasive neurophysiological recordings in humans for this type of study are not feasible due to ethical constraints, while studies on cadavers or rodents would not fully resolve our question. Indeed, the authors of the cited study (Mihály Vöröslakos et al., Nature Communications, 2018) highlight the impossibility of drawing definitive conclusions about the exact voltage required in the in-vivo human brain due to significant differences between rats and humans, as well as the in-vivo human brain and cadavers due to alterations in electrical conductivity that occur in postmortem tissue.

      We acknowledge that further exploration of this aspect would be highly valuable, and we agree that it is worth discussing both as a technical limitation and as a potential direction for future research, we therefore modify the manuscript correspondingly. However, to address the challenge of in vivo recordings, we conducted Experiments 3 and 4, which respectively examined the neurophysiological and connectivity changes induced by the stimulation in a non-invasive manner. The observed changes in brain oscillatory activity (increased gamma oscillatory activity), cortical excitability (enhanced posteromedial parietal cortex reactivity), and brain connectivity (strengthened connections between the precuneus and hippocampi) provided evidence of the effects of our non-invasive brain stimulation protocol, further supporting the behavioral data.

      Additionally, we carefully considered the issue of stimulation distribution and, in response, performed a biophysical modeling analysis and E-field calculation using the parameters employed in our study (see Supplementary Materials).

      (2) The claim that effects directly involve the precuneus lacks strong support. The measurements shown in Figure 3 appear to be weak (i.e., Figure 3A top and bottom look similar, and Figure 3C left and right look similar). The figure appears to show a more global brain pattern rather than effects that are limited to the precuneus. Related to this, it would perhaps be useful to show the different positions of the stimulation apparatus. This could perhaps show that the position of the stimulation matters and could perhaps illustrate a range of distances over which position of the stimulation matters.

      Thank you for your feedback. We will improve the clarity of the manuscript to better address this important aspect. Our assumption that the precuneus plays a key role in the observed effects is based on several factors:

      (1) The non-invasive stimulation protocol was applied to an individually identified precuneus for each participant. Given existing evidence on TMS propagation, we can reasonably assume that the precuneus was at least a mediator of the observed effects (Ridding & Rothwell, Nature Reviews Neuroscience 2007). For further details about target identification and TMS and tACS propagation, please refer to the MRI data acquisition section in the main text and Biophysical modeling and E-field calculation section in the supplementary materials.

      (2) To investigate the effects of the neuromodulation protocol on cortical responses, we conducted a whole-brain analysis using multiple paired t-tests comparing each data point between different experimental conditions. To minimize the type I error rate, data were permuted with the Monte Carlo approach and significant p-values were corrected with the false discovery rate method (see the Methods section for details). The results identified the posterior-medial parietal areas as the only regions showing significant differences across conditions.

      (3) To control for potential generalized effects, we included a control condition in which TMS-EEG recordings were performed over the left parietal cortex (adjacent to the precuneus). This condition did not yield any significant results, reinforcing the cortical specificity of the observed effects.

      However, as stated in the Discussion, we do not claim that precuneus activity alone accounts for the observed effects. As shown in Experiment 4, stimulation led to connectivity changes between the precuneus and hippocampus, a network widely recognized as a key contributor to long-term memory formation (Bliss & Collingridge, Nature 1993). These connectivity changes suggest that precuneus stimulation triggered a ripple effect extending beyond the stimulation site, engaging the broader precuneus-hippocampus network.

      Regarding Figure 3A, it represents the overall expression of oscillatory activity detected by TMS-EEG. Since each frequency band has a different optimal scaling, the figure reflects a graphical compromise. A more detailed representation of the significant results is provided in Figure 3B. The effect sizes for gamma oscillatory activity in the delta T1 and T2 conditions were 0.52 and 0.50, respectively, which correspond to a medium effect based on Cohen’s d interpretation.

      (3) Behavioral results showing an effect on memory would substantiate claims that the stimulation approach produces significant changes in brain activity. However, placebo effects can be extremely powerful and useful, and this should probably be mentioned. Also, in the behavioral results that are currently presented, there are several concerns:

      a) There does not appear to be a significant effect on the STMB task.

      b) The FNAT task is minimally described in the supplementary material. Experimental details that would help the reader understand what was done are not described. Experimental details are missing for: the size of the images, the duration of the image presentation, the degree of image repetition, how long the participants studied the images, whether the names and occupations were different, genders of the faces, and whether the same participant saw different faces across the different stimulation conditions. Regarding the latter point, if the same participant saw the same faces across the different stimulation conditions, then there could be memory effects across different conditions that would need to be included in the statistical analyses. If participants saw different faces across the different stimulus conditions, then it would be useful to show that the difficulty was the same across the different stimuli.

      We thank you for signaling the lack in the description of FNAT task. We will add all the information required to the manuscript.

      In the meantime, here we provide the answers to your questions. The size of the images 19x15cm. They were presented in the learning phase and the immediate recall for 8 seconds each, while in the delayed recall they were shown (after the face recognition phase) until the subject answered. The learning phase, where name and occupation were shown together with the faces, lasted around 2 minutes comprising the instructions. We used a different set of stimuli for each stimulation condition, for a total of 3 parallel task forms balanced across the condition and order of sessions. All the parallel forms were composed of 6 male and 6 female faces, for each sex there were 2 young adults (aged around 30 years old), 2 middle adults (aged around 50 years old), and 2 old adults (aged around 70 years old). Before the experiments, we ran a pilot study to ensure there were no differences between the parallel forms of the task. We can provide the task with its parallel form upon request. The chance level in the immediate and delayed recall is not quantifiable since the participants had to freely recall the name and the occupation without a multiple choice. In the recognition, the chance level was around 33% (since the possible answers were 3).

      c) Also, if I understand FNAT correctly, the task is based on just 12 presentations, and each point in Figure 2A represents a different participant. How the performance of individual participants changed across the conditions is unclear with the information provided. Lines joining performance measurements across conditions for each participant would be useful in this regard. Because there are only 12 faces, the results are quantized in multiples of 100/12 % in Figure 3A. While I do not doubt that the authors did their homework in terms of the statistical analyses, it seems as though these 12 measurements do not correspond to a large effect size. For example, in Figure 3A for the immediate condition (total), it seems that, on average, the participants may remember one more face/name/occupation.

      We will add another graph to the manuscript with lines connecting each participant's performance. Unfortunately, we were not able to incorporate it in the box-and-whisker plot.

      We apologize for the lack of clarity in the description of the FNAT. As you correctly pointed out, we used the percentage based on the single association between face, name and occupation (12 in total). However, each association consisted of three items, resulting in a total of 36 items to learn and associate – we will make it more explicit in the manuscript.

      In the example you mentioned, participants were, on average, able to recall three more items compared to the other conditions. While this difference may not seem striking at first glance, it is important to consider that we assessed memory performance after a single, three-minute stimulation session. Similar effects are typically observed only after multiple stimulation sessions (Koch et al., NeuroImage, 2018; Grover et al., Nature Neuroscience, 2022).

      d) Block effects. If I understand correctly, the experiments were conducted in blocks. This is potentially problematic. An example study that articulates potential problems associated with block designs is described in Li et al (TPAMI 2021, https://ieeexplore.ieee.org/document/9264220). It is unclear if potential problems associated with block designs were taken into consideration.

      Thank you for the interesting reference. According to this paper, in a block design, EEG or fMRI recordings are performed in response to different stimuli of a given class presented in succession. If this is the case, it does not correspond to our experimental design where both TMS-EEG and fMRI were conducted in a resting state on different days according to the different stimulation conditions.

      e) In the FNAT portion of the paper, some results are statistically significant, while others are not. The interpretation of this is unclear. In Figure 3A, it seems as though the authors claim that iTBS+gtACS > iTBS+sham-tACS, but iTBS+gtACS ~ sham+sham. The interpretation of such a result is unclear. Results are also unclear when separated by name and occupation. There is only one condition that is statistically significant in Figure 3A in the name condition, and no significant results in the occupation condition. In short, the statistical analyses, and accompanying results that support the authors’ claims, should be explained more clearly.

      Thank you again for your feedback. We will work on making the large amount of data we reported easier to interpret.

      Hoping to have thoroughly addressed your initial concerns in our previous responses, we now move on to your observations regarding the behavioral results, assuming you were referring to Figure 2A. The main finding of this study is the improvement in long-term memory performance, specifically the ability to correctly recall the association between face, name, and occupation (total FNAT), which was significantly enhanced in both Experiments 1 and 2. However, we also aimed to explore the individual contributions of name and occupation separately to gain a deeper understanding of the results. Our analysis revealed that the improvement in total FNAT was primarily driven by an increase in name recall rather than occupation recall. We understand that this may have caused some confusion. Therefore we will clarify this in the manuscript and consider presenting the name and occupation in a separate plot.

      Regarding the stimulation conditions, your concerns about the performance pattern (iTBS+gtACS > iTBS+sham-tACS, but iTBS+gtACS ~ sham+sham) are understandable. However, this new protocol was developed precisely in response to the variability observed in behavioral outcomes following non-invasive brain stimulation, particularly when used to modulate memory functions (Corp et al., 2020; Pabst et al., 2022). As discussed in the manuscript, it is intended as a boost to conventional non-invasive brain stimulation protocols, leveraging the mechanisms outlined in the Discussion section.

      Reviewer #2 (Public review):

      Weaknesses:

      (1) The study did not include a condition where γtACS was applied alone. This was likely because a previous work indicated that a single 3-minute γtACS did not produce significant effects, but this limits the ability to isolate the specific contribution of γtACS in the context of this target and memory function

      Thank you for your comments. As you pointed out, we did not include a condition where γtACS was applied alone. This decision was based on the findings of Guerra et al. (Brain Stimulation 2018), who investigated the same protocol and reported no aftereffects. Given the substantial burden of the experimental design on patients and our primary goal of demonstrating an enhancement of effects compared to the standalone iTBS protocol, we decided to leave out this condition. However, we agree that investigating the effects of γtACS alone is an interesting and relevant aspect worthy of further exploration. In line with these observations, we will expand the discussion on this point in the study’s limitations section.

      (2) The authors applied stimulation for 3 minutes, which seems to be based on prior tACS protocols. It would be helpful to present some rationale for both the duration and timing relative to the learning phase of the memory task. Would you expect additional stimulation prior to recall to benefit long-term associative memory?

      Thank you for your comment and for raising this interesting point. As you correctly noted, the protocol we used has a duration of three minutes, a choice based on previous studies demonstrating its greater efficacy with respect to single stimulation from a neurophysiological point of view. Specifically, these studies have shown that the combined stimulation enhanced gamma-band oscillations and increased cortical plasticity (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022). Given that the precuneus (Brodt et al., Science 2018; Schott et al., Human Brain Mapping 2018), gamma oscillations (Osipova et al., Journal of Neuroscience 2006; Deprés et al., Neurobiology of Aging 2017; Griffiths et al., Trends in Neurosciences 2023), and cortical plasticity (Brodt et al., Science 2018) are all associated with encoding processes, we decided to apply the co-stimulation immediately before it to enhance the efficacy.

      Regarding the question of whether stimulation could also benefit recall, the answer is yes. We can speculate that repeating the stimulation before recall might provide an additional boost. This is supported by evidence showing that both the precuneus and gamma oscillations are involved in recall processes (Flanagin et al., Cerebral Cortex 2023; Griffiths et al., Trends in Neurosciences 2023). Furthermore, previous research suggests that reinstating the same brain state as during encoding can enhance recall performance (Javadi et al., The Journal of Neuroscience 2017).

      We will expand the study rationale and include these considerations in the future directions section.

      (3) How was the burst frequency of theta iTBS and gamma frequency of tACS chosen? Were these also personalized to subjects' endogenous theta and gamma oscillations? If not, were increases in gamma oscillations specific to patients' endogenous gamma oscillation frequencies or the tACS frequency?

      The stimulation protocol was chosen based on previous studies (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022). Gamma tACS sinusoid frequency wave was set at 70 Hz while iTBS consisted of ten bursts of three pulses at 50 Hz lasting 2 s, repeated every 10 s with an 8 s pause between consecutive trains, for a total of 600 pulses total lasting 190 s (see iTBS+γtACS neuromodulation protocol section). In particular, the theta iTBS has been inspired by protocols used in animal models to elicit LTP in the hippocampus (Huang et al., Neuron 2005). Consequently, neither Theta iTBS nor the gamma frequency of tACS were personalized. The increase in gamma oscillations was referred to the patient’s baseline and did not correspond to the administrated tACS frequency.

      (4) The authors do a thorough job of analyzing the increase in gamma oscillations in the precuneus through TMS-EEG; however, the authors may also analyze whether theta oscillations were also enhanced through this protocol due to the iTBS potentially targeting theta oscillations. This may also be more robust than gamma oscillations increases since gamma oscillations detected on the scalp are very low amplitude and susceptible to noise and may reflect activity from multiple overlapping sources, making precise localization difficult without advanced techniques.

      Thank you for the suggestion. We analyzed theta oscillations finding no changes.

      (5) Figure 4: Why are connectivity values pre-stimulation for the iTBS and sham tACS stimulation condition so much higher than the dual stimulation? We would expect baseline values to be more similar.

      We acknowledge that the pre-stimulation connectivity values for the iTBS and sham tACS conditions appear higher than those for the dual stimulation condition. However, as noted in our statistical analyses, there were no significant differences at baseline between conditions (p-FDR= 0.3514), suggesting that any apparent discrepancy is due to natural variability rather than systematic bias. One potential explanation for these differences is individual variability in baseline connectivity measures, which can fluctuate due to factors such as intrinsic neural dynamics, participant state, or measurement noise. Despite these variations, our statistical approach ensures that any observed post-stimulation effects are not confounded by pre-existing differences.

      (6) Figure 2: How are total association scores significantly different between stimulation conditions, but individual name and occupation associations are not? Further clarification of how the total FNAT score is calculated would be helpful.

      We apologize for any lack of clarity. The total FNAT score reflects the ability to correctly recall all the information associated with a person—specifically, the correct pairing of the face, name, and occupation. Participants received one point for each triplet they accurately recalled. The scores were then converted into percentages, as detailed in the Face-Name Associative Task Construction and Scoring section in the supplementary materials.

      Total FNAT was the primary outcome measure. However, we also analyzed name and occupation recall separately to better understand their individual contributions. Our analysis revealed that the improvement in total FNAT was primarily driven by an increase in name recall rather than occupation recall.

      We acknowledge that this distinction may have caused some confusion. To improve clarity, we will revise the manuscript accordingly and consider presenting name and occupation recall in separate plots.

      Reviewer #3 (Public review):

      Weaknesses:

      I want to state clearly that I think the strengths of this study far outweigh the concerns I have. I still list some points that I think should be clarified by the authors or taken into account by readers when interpreting the presented findings.

      I think one of the major weaknesses of this study is the overall low sample size in all of the experiments (between n = 10 and n = 20). This is, as I mentioned when discussing the strengths of the study, partly mitigated by the within-subject design and individualized stimulation parameters. The authors mention that they performed a power analysis but this analysis seemed to be based on electrophysiological readouts similar to those obtained in experiment 3. It is thus unclear whether the other experiments were sufficiently powered to reliably detect the behavioral effects of interest. That being said, the authors do report significant effects, so they were per definition powered to find those. However, the effect sizes reported for their main findings are all relatively large and it is known that significant findings from small samples may represent inflated effect sizes, which may hamper the generalizability of the current results. Ideally, the authors would replicate their main findings in a larger sample. Alternatively, I think running a sensitivity analysis to estimate the smallest effect the authors could have detected with a power of 80% could be very informative for readers to contextualize the findings. At the very least, however, I think it would be necessary to address this point as a potential limitation in the discussion of the paper.

      Thank you for the observation. As you mentioned, our power analysis was based on our previous study investigating the same neuromodulation protocol with a corresponding experimental design. The relatively small sample could be considered a possible limitation of the study which we will add to the discussion. A fundamental future step will be to replay these results on a larger population, however, to strengthen our results we performed the sensitivity analysis you suggested.

      In detail, we performed a sensitivity analysis for repeated-measures ANOVA with α=0.05 and power(1-β)=0.80 with no sphericity correction. For experiment 1, a sensitivity analysis with 1 group and 3 measurements showed a minimal detectable effect size of f=0.524 with 20 participants. In our paper, the ANOVA on total FNAT immediate performance revealed an effect size of η2\=0.274 corresponding to f=0.614; the ANOVA on FNAT delayed performance revealed an effect size of η2 =0.236 corresponding to f=0.556. For experiment 2, a sensitivity analysis for total FNAT immediate performance (1 group and 3 measurements) showed a minimal detectable effect size of f=0.797 with 10 participants. In our paper, the ANOVA on total FNAT immediate performance revealed an effect size of η2 =0.448 corresponding to f=0.901. The sensitivity analysis for total FNAT delayed performance (1 group and 6 measurements) showed a minimal detectable effect size of f=0.378 with 10 participants. In our paper, the ANOVA on total FNAT delayed performance revealed an effect size of η2 =0.484 corresponding to f=0.968. Thus, the sensitivity analysis showed that both experiments were powered enough to detect the minimum effect size computed in the power analysis. We have now added this information to the manuscript and we thank the reviewer for her/his suggestion.

      It seems that the statistical analysis approach differed slightly between studies. In experiment 1, the authors followed up significant effects of their ANOVAs by Bonferroni-adjusted post-hoc tests whereas it seems that in experiment 2, those post-hoc tests where "exploratory", which may suggest those were uncorrected. In experiment 3, the authors use one-tailed t-tests to follow up their ANOVAs. Given some of the reported p-values, these choices suggest that some of the comparisons might have failed to reach significance if properly corrected. This is not a critical issue per se, as the important test in all these cases is the initial ANOVA but non-significant (corrected) post-hoc tests might be another indicator of an underpowered experiment. My assumptions here might be wrong, but even then, I would ask the authors to be more transparent about the reasons for their choices or provide additional justification. Finally, the authors sometimes report exact p-values whereas other times they simply say p < .05. I would ask them to be consistent and recommend using exact p-values for every result where p >= .001.

      Thank you again for the suggestions. Your observations are correct, we used a slightly different statistical depending on our hypothesis. Here are the details:

      In experiment 1, we used a repeated-measure ANOVA with one factor “stimulation condition” (iTBS+γtACS; iTBS+sham-tACS; sham-iTBS+sham-tACS). Following the significant effect of this factor we performed post-hoc analysis with Bonferroni correction.

      In experiment 2, we used a repeated-measures with two factors “stimulation condition” and “time”. As expected, we observed a significant effect of condition, confirming the result of experiment 1, but not of time. Thus, this means that the neuromodulatory effect was present regardless of the time point. However, to explore whether the effects of stimulation condition were present in each time point we performed some explorative t-tests with no correction for multiple comparisons since this was just an explorative analysis.

      In experiment 3, we used the same approach as experiment 1. However, since we had a specific hypothesis on the direction of the effect already observed in our previous study, i.e. increase in spectral power (Maiella et al., Scientific Report 2022), our tests were 1-tailed.

      For the p-values, we will correct the manuscript reporting the exact values for every result.

      While the authors went to great lengths trying to probe the neural changes likely associated with the memory improvement after stimulation, it is impossible from their data to causally relate the findings from experiments 3 and 4 to the behavioral effects in experiments 1 and 2. This is acknowledged by the authors and there are good methodological reasons for why TMS-EEG and fMRI had to be collected in sperate experiments, but it is still worth pointing out to readers that this limits inferences about how exactly dual iTBS and γtACS of the precuneus modulate learning and memory.

      Thank you for your comment. We fully agree with your observation, which is why this aspect has been considered in the study's limitations. To address your concern, we will further emphasize the fact that our findings do not allow precise inferences regarding the specific mechanisms by which dual iTBS and γtACS of the precuneus modulate learning and memory.

      There were no stimulation-related performance differences in the short-term memory task used in experiments 1 and 2. The authors argue that this demonstrates that the intervention specifically targeted long-term associative memory formation. While this is certainly possible, the STM task was a spatial memory task, whereas the LTM task relied (primarily) on verbal material. It is thus also possible that the stimulation effects were specific to a stimulus domain instead of memory type. In other words, could it be possible that the stimulation might have affected STM performance if the task taxed verbal STM instead? This is of course impossible to know without an additional experiment, but the authors could mention this possibility when discussing their findings regarding the lack of change in the STM task.

      Thank you for your insightful observation. We argue that the intervention primarily targeted long-term associative memory formation, as our findings demonstrated effects only on FNAT. However, as you correctly pointed out, we cannot exclude the possibility that the stimulation may also influence short-term verbal associative memory. We will acknowledge this potential effect when discussing the absence of significant findings in the STM task.

      While the authors discuss the potential neural mechanisms by which the combined stimulation conditions might have helped memory formation, the psychological processes are somewhat neglected. For example, do the authors think the stimulation primarily improves the encoding of new information or does it also improve consolidation processes? Interestingly, the beneficial effect of dual iTBS and γtACS on recall performance was very stable across all time points tested in experiments 1 and 2, as was the performance in the other conditions. Do the authors have any explanation as to why there seems to be no further forgetting of information over time in either condition when even at immediate recall, accuracy is below 50%? Further, participants started learning the associations of the FNAT immediately after the stimulation protocol was administered. What would happen if learning started with a delay? In other words, do the authors think there is an ideal time window post-stimulation in which memory formation is enhanced? If so, this might limit the usability of this procedure in real-life applications.

      Thank you for your comment and for raising these important points.

      We hypothesized that co-stimulation would enhance encoding processes. Previous studies have shown that co-stimulation can enhance gamma-band oscillations and increase cortical plasticity (Guerra et al., Brain Stimulation 2018; Maiella et al., Scientific Reports 2022). Given that the precuneus (Brodt et al., Science 2018; Schott et al., Human Brain Mapping 2018), gamma oscillations (Osipova et al., Journal of Neuroscience 2006; Deprés et al., Neurobiology of Aging 2017; Griffiths et al., Trends in Neurosciences 2023), and cortical plasticity (Brodt et al., Science 2018) have all been associated with encoding processes, we decided to apply co-stimulation before the encoding phase, to boost it.

      We applied the co-stimulation immediately before the learning phase to maximize its potential effects. While we observed a significant increase in gamma oscillatory activity lasting up to 20 minutes, we cannot determine whether the behavioral effects we observed would have been the same with a co-stimulation applied 20 minutes before learning. Based on existing literature, a reduction in the efficacy of co-stimulation over time could be expected (Huang et al., Neuron 2005; Thut et al., Brain Topography 2009). However, we hypothesize that multiple stimulation sessions might provide an additional boost, helping to sustain the effects over time (Thut et al., Brain Topography 2009; Koch et al., Neuroimage 2018; Koch et al., Brain 2022).

      Regarding the absence of further forgetting in both stimulation conditions, we think that the clinical and demographical characteristics of the sample (i.e. young and healthy subjects) explain the almost absence of forgetting after one week.

    1. Author response:

      We appreciate the reviewers’ insightful feedback and propose to undertake an extensive revision of the manuscript to strengthen our findings and underscore the significance of this work. We remain convinced that our study offers critical insights into the largely independent dopamine and serotonin neural circuits. Nevertheless, we concur that substantial revisions are warranted, as the current organization may not be ideal to showcase the central findings. In particular, we will increase the number of animals to address data variability and enhance the reproducibility of the observed effects. We also recognize the need to perform additional control experiments and to include complementary anatomical tracing studies. Moreover, we will reformat the manuscript and conduct additional analyses to emphasize that evoked dopamine and serotonin release originate from distinct loci with minimal crosstalk. To address all of these points thoroughly, we estimate that a 12-month revision period will be required.

    1. Author response:

      Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity):

      The study is well-executed and provides many interesting leads for further experimental studies, which makes it very important. One of the significant hypotheses in this context is metazoan Wnt Lipocone domain interactions with lipids, which remain to be explored.

      The manuscript is generally navigable for interesting reading despite being content-rich. Overall, the figures are easy to follow.

      We thank the reviewer for the thoughtful and favorable assessment.

      Major comments:

      I urge the authors to consider creating a first figure summarizing the broad approach and process involved in discovering the lipocone superfamily. This would help the average reader easily follow the manuscript.

      It will be helpful to have the final model/synthesis figure, which provides a take-home message that combines the main deductions from Fig 1c, Fig 4, Fig 5, and Fig 6 to provide an eagle's eye view (also translating the arguments on Page 38 last para into this potential figure).

      We have generated a two-part figure that synthesizes these two requests, also in line with the recommendations made by Reviewer 3. Depending on the accepting Review Commons journal, we plan to either submit this as a graphical abstract/TOC figure (as suggested by Reviewer 3) or as a single figure. We prefer starting with the first approach as it will keep our figure count the same.

      Minor comments:

      Fig 1C: The authors should provide a statistical estimate of the difference in transmembrane tendency scores between the "membrane" and "globular" versions of the Lipocone domains.

      To address this, we calculated group-wise differences using the Kruskal-Wallis nonparametric test, followed by Dunn’s test with Bonferroni correction for a more stringent evaluation. The results of which are presented as a critical difference diagram in the new Supplementary Figure S3. The analysis is explained in the Methods section of the revised manuscript, and the statistically significant difference is mentioned in the text. This analysis identifies three groups of significantly different Lipocone families based on their transmembrane tendency: those predicted (or known) to associate with the prokaryotic membranes, those predicted to be diffusible, and a small number of families residing eukaryotic ER membranes or bacterial outer membranes.

      Reviewer #2 (Evidence, reproducibility and clarity):

      This is a remarkable study, one of a kind. The authors trace the entire huge superfamily containing Wnt proteins which origins remained obscure before this work. Even more amazingly, they show that Wnts originated from transmembrane enzymes. The work is masterfully executed and presented. The conclusions are strongly supported by multiple lines of evidence. Illustrations are beautifully crafted. This is an exemplary work of how modern sequence and structure analysis methods should be used to gain unprecedented insights into protein evolution and origins.

      We thank the reviewer for the positive evaluation of our work.

      Minor comments.

      (1) In fig 1, VanZ structure looks rather different from the rest and is a more tightly packed helical bundle. It might be useful for the readers to learn more about the arguments why authors consider this family to be homologous with the rest, and what caused these structural changes in packing of the helices.

      First, the geometry of an α-helix can be approximated as a cylinder, resulting in contact points that are relatively small. Fewer contact constraints can lead to structural variation in the angular orientations between the helices of an all α-helical domain, resulting in some dispersion in space of the helical axes. As a result, some of the views can be a bit confounding when presented as static 2D images. Second, of the two VanZ clades the characteristic structure similar to the other superfamily members is more easily seen in the VanZ-2 clade (as illustrated in supplementary Figure S2).    

      Importantly, the membership of the VanZ domains was recovered via significant hits in our sequence analysis of the superfamily. Importantly, when the sequence alignments of the active site are compared (Figure 2), VanZ retains the conserved active site residue positions, which are predicted to reside spatially in the same location and project into an equivalent active site pocket as seen in the other families in the superfamily. Further, this sequence relationship is captured by the edges in the network in Figure 1B: multiple members of the superfamily show edges indicating significant relationships with the two VanZ families (e.g., HHSearch hits of probability greater than 90%; p<0.0001 are observed between VanZ-1 and Skillet-DUF2809, Skillet-1, Skillet-4, YfiM-1, YfiM-DUF2279, Wok, pPTDSS, and cpCone-1). Thus, they occupy relatively central locations in the sequence similarity network, indicating a consistent sequence similarity connection to multiple other families.

      (2) Fig. 4 color bars before names show a functional role. How does the blue bar "described for the first time" fits into this logic? Maybe some other way to mark this (an asterisk?) could be better to resolve this sematic inconsistency.

      We have shifted the blue bars into asterisks, which follow family names, now stated in the updated legend.

      Reviewer #3 (Evidence, reproducibility and clarity):

      The manuscript by Burroughs et al. uses informatic sequence analysis and structural modeling to define a very large, new superfamily which they dub the Lipocone superfamily, based on its function on lipid components and cone-shaped structure. The family includes known enzymatic domains as well as previously uncharacterized proteins (30 families in total). Support for the superfamily designation includes conserved residues located on the homologous helical structures within the fold. The findings include analyses that shed light on important evolutionary relationships including a model in which the superfamily originated as membrane proteins where one branch evolved into a soluble version. Their mechanistic proposals suggest possible functions for enzymes currently unassigned. There is also support for the evolutionary connection of this family with the human immune system. The work will be of interest to those in the broad areas of bioinformatics, enzyme mechanisms, and evolution. The work is technically well performed and presented.

      We appreciate the positive evaluation of our work by the reviewer.

      Referees cross-commenting

      All the comments seem useful to me. I like Reviewer 1's suggestion for a flowchart showing the methodology. I think the summarizing figure suggested could be a TOC abstracvt, which many journals request.

      To accommodate this comment (along with Reviewer 1’s comments), we have generated a two-part figure containing the methodology flowchart and the summary of findings. Combining the two provides some before-and-after symmetry to a TOC figure, while also avoiding further inflation of the figure count, which would likely be an issue at one or more of the Review Commons journals.

      The authors may wish to consider the following points (page numbers from PDF for review):

      (1) It would be useful in Fig 1A, either in main text or the supporting information, to also have a an accompanying topology diagram- I like the coloring of the helices to show the homology but the connections between them are hard to follow

      We acknowledge the reviewer’s concern as one shared by ourselves. We have placed such a topology diagram in Figure 1A, and now refer to it at multiple points in the manuscript text.

      (2) Page: 6- In the paragraph marked as an example- please call out Fig1A when the family mentioned is described (I believe SAA is described as one example)

      We have added these pointers in the text, where appropriate.

      (3) Page: 7- The authors state "these 'hydrophobic families' often evince a deeper phyletic distribution pattern than the less-hydrophobic families (Figure S1), implying that the ancestral version of the superfamily was likely a TM domain" there should be more explanation or information here - I am not certain from looking at FigS1 what a deeper phyletic distribution pattern means. Perhaps explaining for a single example? I also see that this important point is discussed in the conclusions- it is useful to point to the conclusion here.

      Our use of the ‘deeper’ in this context is meant to convey the concept that more widely conserved families/clades (both across and within lineages) suggest an earlier emergence. In the Lipocone superfamily, this phylogenetic reasoning supports an evolutionary scenario where the membrane-inserted versions generally emerged early, while the solubilized versions, which are found in relatively fewer lineages, emerged later.

      To address this objectively, we have calculated a simple phyletic distribution metric that combines the phyletic spread of a Lipocone clade with its depth within individual lineages, which is then plotted as a bargraph (Supplemental Figure S1). Briefly, this takes the width of the bar as the phyletic spread across the number of distinct taxonomic lineages and its height as a weighted mean of occurrence within each lineage (depth). The latter helps dampen the effects of sampling bias. In the resulting graph, lineages with a lower height and width are likely to have been derived later than those with a greater height and width. A detailed description clarifying this has been added to the Methods section of the revised manuscript. The results support two statements that are made in the text: 1) that the Wok and VanZ clades are the most widely and deeply represented clades in the superfamily, and 2) that the predicted transmembrane versions tend to be more widely and deeply distributed. We have also added a statement in the results with a pointer to Figure S1 to clarify this point raised by the referee.

      (4) For figure 3 I would suggest instead of coloring by atom type- to color the leaving group red and the group being added blue so the reader can see where the moieties start and end in substrates and products

      We have retained the atom type coloring in the figure for ease of visualizing the atom types. However, to address the reviewer’s concern, we have added dashed colored circles to highlight attacking and leaving groups in the reactions. The legend has been updated accordingly.

      (5) Page: 13- The authors state "While the second copy in these versions is catalytically inactive, the H1' from the second duplicate displaces the H1 from the first copy," So this results in a "sort of domain swap" correct? It may be more clear to label both copies in Figure 3 upper right so it is easier for the reader to follow.

      We have added these labels to the updated Figure S4 (formerly S3).

      (6) The authors state "In addition to the fusion to the OMP β-barrel, the YfiM-DUF2279 family (Figure 5H) shows operonic associations with a secreted MltG-like peptidoglycan lytic transglycosylase (127,128), a lipid anchored cytochrome c heme-binding domain (129), a phosphoglucomutase/phosphomannomutase enzyme (130), a GNAT acyltransferase (131), a diaminopimelate (DAP) epimerase (132), and a lysozyme like enzyme (133). In a distinct operon, YfiM-DUF2279 is combined with a GT-A glycosyltransferase domain (79), a further OMP β-barrel, and a secreted PDZ-like domain fused to a ClpP-like serine protease (134,135) (Figure 5H)." this combination of enzymes sounds like those in the pathways for oligosaccharide synthesis which is cytoplasmic but the flippase acts to bring the product to the periplasm. Please make sure it is clear that these enzymes may act at different faces of the membrane.

      We have made that point explicit in the revised manuscript in the paragraph following the above-quoted statement.

      (7) Page: 21- the authors should remove the unpublished observations on other RDD domain or explain or cite them

      The analysis of the RDD domain is a part of a distinct study whose manuscript we are currently preparing, and explaining its many ramifications would be outside the scope of this manuscript. Moreover, placing even an account of it in this manuscript would break its flow and take the focus away from the Lipocone superfamily. Further, its inclusion of the RDD story would substantially increase the size of the manuscript. However, it is commonly fused to the Lipocone domain; hence, it would be remiss if we entirely remove a reference to it. Accordingly, we retain a brief account of the RDD-fused Lipocone domains in the revised manuscript that is just sufficient to make the relevant functional case”.

      (8) Page: 34- The authors state "For instance, the emergence of the outer membrane in certain bacteria was potentially coupled with the origin of the YfiM and Griddle clades (Figure 4)." I don't see origin point indicated in figure 4 (emergence of outer membrane- this may be helpful to indicate in some way- also I am not certain what the dashed circles in Fig 4 are indicating- its not in the legend?

      This annotation has been added to the revised Figure 4, and the point of recruitment is indicated with a  “X” sign, along with a clarification in the legend regarding the dashed circles.

      (9) In terms of the hydrophobicity analysis, it would be good to mark on the plot (Fig 1C) one or two examples of lipocone members with known structure that are transmembrane proteins as a positive control

      We have added these markers (colored triangles and squares for these families to the plot.

      Grammar, typos

      Page: 3- abstract severance is an odd word to use for hydrolysis or cleavage

      We have changed to “cleavage”.

      Page: 5- "While the structure of Wnt was described over a decade prior" should read "Although the structure of ..."

      Page 7 - "One family did not yield a consistent prediction for orientation"- please state which family

      Page: 8 "While the ancestral pattern is noticeably degraded in the metazoan Wnt (Met-Wnt) family, it is strongly preserved in the prokaryotic Min-Wnt family." Should read "Although the ancestral..."

      throughout- please replace solved with experimentally determined to be clear and avoid jargon

      Please replace "TelC severs the link" with "TelC cleaves the bond "

      We have made the above changes.

      Page: 19- the authors state "a lipobox-containing synaptojanin superfamily phosphoesterase (125) and a secreted R-P phosphatase (126) (see Figure 6, Supplementary Data)" I was uncertain if the authors meant Fig S6 or they meant see Fig 6 and something else in supplementary data. Please fix.

      In this pointer, we intended to flag the relevant gene neighborhoods in both Figures 5H and 6, as well as highlight the additional examples contained in the Supplementary Data. We have updated the point

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This paper concerns mechanisms of foraging behavior in C. elegans. Upon removal from food, C. elegans first executes a stereotypical local search behavior in which it explores a small area by executing many random, undirected reversals and turns called "reorientations." If the worm fails to find food, it transitions to a global search in which it explores larger areas by suppressing reorientations and executing long forward runs (Hills et al., 2004). At the population level, the reorientation rate declines gradually. Nevertheless, about 50% of individual worms appear to exhibit an abrupt transition between local and global search, which is evident as a discrete transition from high to low reorientation rate (Lopez-Cruz et al., 2019). This observation has given rise to the hypothesis that local and global search correspond to separate internal states with the possibility of sudden transitions between them (Calhoun et al., 2014). The main conclusion of the paper is that it is not necessary to posit distinct internal states to account for discrete transitions from high to low reorientation rates. On the contrary, discrete transitions can occur simply because of the stochastic nature of the reorientation behavior itself.

      Strengths:

      The strength of the paper is the demonstration that a more parsimonious model explains abrupt transitions in the reorientation rate.

      Weaknesses:

      (1) Use of the Gillespie algorithm is not well justified. A conventional model with a fixed dt and an exponentially decaying reorientation rate would be adequate and far easier to explain. It would also be sufficiently accurate - given the appropriate choice of dt - to support the main claims of the paper, which are merely qualitative. In some respects, the whole point of the paper - that discrete transitions are an epiphenomenon of stochastic behavior - can be made with the authors' version of the model having a constant reorientation rate (Figure 2f).

      We apologize, but we are not sure what the reviewer means by “fixed dt”. If the reviewer means taking discrete steps in time (dt), and modeling whether a reorientation occurs, we would argue that the Gillespie algorithm is a better way to do this because it provides floating-point precision, rather than a time resolution limited by dt, which we hopefully explain in the updated text (Lines 107-192).

      The reviewer is correct that discrete transitions are an epiphenomenon of stochastic behavior as we show in Figure 2f. However, abrupt stochastic jumps that occur with a constant rate do not produce persistent changes in the observed rate because it is by definition, constant. The theory that there are local and global searches is based on the observation that individual worms often abruptly change their reorientation rates. But this observation is only true for a fraction of worms. We are trying to argue that the reason why this is not observed for all, or even most worms is because these are the result of stochastic sampling, not a sudden change in search strategy.

      (2) In the manuscript, the Gillespie algorithm is very poorly explained, even for readers who already understand the algorithm; for those who do not it will be essentially impossible to comprehend. To take just a few examples: in Equation (1), omega is defined as reorientations instead of cumulative reorientations; it is unclear how (4) follows from (2) and (3); notation in (5), line 133, and (7) is idiosyncratic. Figure 1a does not help, partly because the notation is unexplained. For example, what do the arrows mean, what does "*" mean?

      We apologize for this, you are correct, 𝛀 is cumulative reorientations, and we have edited the text for clarity (Lines 107-192):

      We apologize for the arrow notation confusion. Arrow notation is commonly used in pseudocode to indicate variable assignment, and so we used it to indicate variable assignment updates in the algorithm.

      We added Figure 2a to help explain the Gillespie algorithm for people who are unfamiliar with it, but you are correct, some notation, like probabilities, were left unexplained. We have added more text to the figure legend. Hopefully this additional text, along with lines 105-190, provide better clarification.

      (3) In the model, the reorientation rate dΩ⁄dt declines to zero but the empirical rate clearly does not. This is a major flaw. It would have been easy to fix by adding a constant to the exponentially declining rate in (1). Perhaps fixing this obvious problem would mitigate the discrepancies between the data and the model in Figure 2d.

      You are correct that the model deviates slightly at longer times, but this result is consistent with Klein et al. that show a continuous decline of reorientations. However, we have added a constant to the model (b, Equation 2), since an infinite run length is likely not physiological.

      (4) Evidence that the model fits the data (Figure 2d) is unconvincing. I would like to have seen the proportion of runs in which the model generated one as opposed to multiple or no transitions in reorientation rate; in the real data, the proportion is 50% (Lopez). It is claimed that the "model demonstrated a continuum of switching to non-switching behavior" as seen in the experimental data but no evidence is provided.

      We should clarify that the 50% proportion cited by López-Cruz was based on an arbitrary difference in slopes, and by assessing the data visually (López-Cruz, Figure S2). We added a comment in the text to clarify this (Lines 76 – 78). We sought to avoid this subjective assessment by plotting the distribution of slopes and transition times produced by the method used in López-Cruz. We should also clarify by what we meant by “a continuum of switching and non-switching” behavior. Both the transition time distributions and the slope-difference distributions do not appear to be the result of two distributions (the distributions in Figure 1 are not bimodal). This is unlike roaming and dwelling on food, where two distinct distributions of behavioral metrics can be identified based on speed and angular speed (Flavell et al, 2009, Fig S2a).

      Based on the advice of Reviewer #3, we have also modeled the data using different starting amounts of M (M<sub>0</sub>). By definition, an initial value of M<sub>0</sub> = 1 is a two-state switching strategy; the worm either uses a reorientation rate of a (when M = 1) or b (when M = 0). As expected, this does produce a bimodal distribution of slope differences (Figure 3b), which is significantly different than the experimental distribution (Figure 3c). We have added a new section to explain this in more detail (Lines 253 – 297).

      (5) The explanation for the poor fit between the model and data (lines 166-174) is unclear. Why would externally triggered collisions cause a shift in the transition distribution?

      Thank you, we rewrote the text to clarify this better (Lines 227-233). There were no externally triggered collisions; 10 animals were used per experiment. They would occasionally collide during the experiment, but these collisions were excluded from the data that were provided. However, worms are also known to increase reorientations when they encounter a pheromone trail, and it is unknown (from this dataset) which orientations may have been a result of this phenomenon.

      (6) The discussion of Levy walks and the accompanying figure are off-topic and should be deleted.

      Thank you, we agree that this topic is tangential, and we removed it.

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors build a statistical model that stochastically samples from a timeinterval distribution of reorientation rates. The form of the distribution is extracted from a large array of behavioral data, and is then used to describe not only the dynamics of individual worms (including the inter-individual variability in behavior), but also the aggregate population behavior. The authors note that the model does not require assumptions about behavioral state transitions, or evidence accumulation, as has been done previously, but rather that the stochastic nature of behavior is "simply the product of stochastic sampling from an exponential function".

      Strengths:

      This model provides a strong juxtaposition to other foraging models in the worm. Rather than evoking a behavioral transition function (that might arise from a change in internal state or the activity of a cell type in the network), or evidence accumulation (which again maps onto a cell type, or the activity of a network) - this model explains behavior via the stochastic sampling of a function of an exponential decay. The underlying model and the dynamics being simulated, as well as the process of stochastic sampling, are well described and the model fits the exponential function (Equation 1) to data on a large array of worms exhibiting diverse behaviors (1600+ worms from Lopez-Cruz et al). The work of this study is able to explain or describe the inter-individual diversity of worm behavior across a large population. The model is also able to capture two aspects of the reorientations, including the dynamics (to switch or not to switch) and the kinetics (slow vs fast reorientations). The authors also work to compare their model to a few others including the Levy walk (whose construction arises from a Markov process) to a simple exponential distribution, all of which have been used to study foraging and search behaviors.

      Weaknesses:

      This manuscript has two weaknesses that dampen the enthusiasm for the results. First, in all of the examples the authors cite where a Gillespie algorithm is used to sample from a distribution, be it the kinetics associated with chemical dynamics, or a Lotka-Volterra Competition Model, there are underlying processes that govern the evolution of the dynamics, and thus the sampling from distributions. In one of their references, for instance, the stochasticity arises from the birth and death rates, thereby influencing the genetic drift in the model. In these examples, the process governing the dynamics (and thus generating the distributions from which one samples) is distinct from the behavior being studied. In this manuscript, the distribution being sampled is the exponential decay function of the reorientation rate (lines 100-102). This appears to be tautological - a decay function fitted to the reorientation data is then sampled to generate the distributions of the reorientation data. That the model performs well and matches the data is commendable, but it is unclear how that could not be the case if the underlying function generating the distribution was fit to the data.

      Thank you, we apologize that this was not clearer. In the Lotka-Volterra model, the density of predators and prey are being modeled, with the underlying assumption that rates of birth and death are inherently stochastic. In our model, the number of reorientations are being modeled, with the assumption (based on the experiments), that the occurrence of reorientations is stochastic, just like the occurrence (birth) of a prey animal is stochastic. However, the decay in M is phenomenological, and we speculate about the nature of M later in the manuscript.

      You are absolutely right that the decay function for M was fit to the population average of reorientations and then sampled to generate the distributions of the reorientation data. This was intentional to show that the parameters chosen to match the population average would produce individual trajectories with comparable stochastic “switching” as the experimental data. All we’re trying to show really is that observed sudden changes in reorientation that appear persistent can be produced by a stochastic process without resorting to binary state assignments. In Calhoun, et al 2014 it is reported all animals produced switch-like behavior, but in Klein et al, 2017 it is reported that no animals showed abrupt transitions. López-Cruz et al seem to show a mix of these results, which can easily be explained by an underlying stochastic process.

      The second weakness is somewhat related to the first, in that absent an underlying mechanism or framework, one is left wondering what insight the model provides.

      Stochastic sampling a function generated by fitting the data to produce stochastic behavior is where one ends up in this framework, and the authors indeed point this out: "simple stochastic models should be sufficient to explain observably stochastic behaviors." (Line 233-234). But if that is the case, what do we learn about how the foraging is happening? The authors suggest that the decay parameter M can be considered a memory timescale; which offers some suggestion, but then go on to say that the "physical basis of M can come from multiple sources". Here is where one is left for want: The mechanisms suggested, including loss of sensory stimuli, alternations in motor integration, ionotropic glutamate signaling, dopamine, and neuropeptides are all suggested: these are basically all of the possible biological sources that can govern behavior, and one is left not knowing what insight the model provides. The array of biological processes listed is so variable in dynamics and meaning, that their explanation of what governs M is at best unsatisfying. Molecular dynamics models that generate distributions can point to certain properties of the model, such as the binding kinetics (on and off rates, etc.) as explanations for the mechanisms generating the distributions, and therefore point to how a change in the biology affects the stochasticity of the process. It is unclear how this model provides such a connection, especially taken in aggregate with the previous weakness.

      Providing a roadmap of how to think about the processes generating M, the meaning of those processes in search, and potential frameworks that are more constrained and with more precise biological underpinning (beyond the array of possibilities described) would go a long way to assuaging the weaknesses.

      Thank you, these are all excellent points. We should clarify that in López-Cruz et al, they claim that only 50% of the animals fit a local/global search paradigm. We are simply proposing there is no need for designating local and global searches if the data don’t really support it. The underlying behavior is stochastic, so the sudden switches sometimes observed can be explained by a stochastic process where the underlying rate is slowing down, thus producing the persistently slow reorientation rate when an apparent “switch” occurs. What we hope to convey is that foraging doesn’t appear to follow a decision paradigm, but instead a gradual change in reorientations which for individual worms, can occasionally produce reorientation trajectories that appear switch-like.

      As for M, you are correct, we should be more explicit, and we have added text (Lines 319-359) to expand upon its possible biological origin.

      Reviewer #3 (Public review):

      Summary:

      This intriguing paper addresses a special case of a fundamental statistical question: how to distinguish between stochastic point processes that derive from a single "state" (or single process) and more than one state/process. In the language of the paper, a "state" (perhaps more intuitively called a strategy/process) refers to a set of rules that determine the temporal statistics of the system. The rules give rise to probability distributions (here, the probability for turning events). The difficulty arises when the sampling time is finite, and hence, the empirical data is finite, and affected by the sampling of the underlying distribution(s). The specific problem being tackled is the foraging behavior of C. elegans nematodes, removed from food. Such foraging has been studied for decades, and described by a transition over time from 'local'/'area-restricted' search'(roughly in the initial 10-30 minutes of the experiments, in which animals execute frequent turns) to 'dispersion', or 'global search' (characterized by a low frequency of turns). The authors propose an alternative to this two-state description - a potentially more parsimonious single 'state' with time-changing parameters, which they claim can account for the full-time course of these observations.

      Figure 1a shows the mean rate of turning events as a function of time (averaged across the population). Here, we see a rapid transient, followed by a gradual 4-5 fold decay in the rate, and then levels off. This picture seems consistent with the two-state description. However, the authors demonstrate that individual animals exhibit different "transition" statistics (Figure 1e) and wish to explain this. They do so by fitting this mean with a single function (Equations 1-3).

      Strengths:

      As a qualitative exercise, the paper might have some merit. It demonstrates that apparently discrete states can sometimes be artifacts of sampling from smoothly time-changing dynamics. However, as a generic point, this is not novel, and so without the grounding in C. elegans data, is less interesting.

      Weaknesses:

      (1) The authors claim that only about half the animals tested exhibit discontinuity in turning rates. Can they automatically separate the empirical and model population into these two subpopulations (with the same method), and compare the results?

      Thank you, we should clarify that the observation that about half the animals exhibit discontinuity was not made by us, but by López-Cruz et al. The observed fraction of 50% was based on a visual assessment of the dual regression method we described. We added text (Lines 76-79) to clarify this. To make the process more objective, we decided to simply plot the distributions of the metrics they used for this assessment to see if two distinct populations could be observed. However, the distributions of slope differences and transition times do not produce two distinct populations. Our stochastic approach, which does not assume abrupt state-transitions, also produces comparable distributions. To quantify this, we have added a section varying M<sub>0</sub>, including setting M<sub>0</sub> to 1, so that the model by definition is a switch model. This model performs the worst (Lines 253-296, Figure 3).

      (2) The equations consider an exponentially decaying rate of turning events. If so, Figure 2b should be shown on a semi-logarithmic scale.

      We chose to not do this because this average is based on the number of discrete reorientation events observed within a 2-minute window. The range of events ranges from 0 to 6 (hence a rate of 0.5-3 min<sup>-1</sup>), which does not span one order of magnitude. Instead, we included a heat map (Figure 1a, Figure 2b bottom panel) which shows the density that the average is based on. We hope this provides some clarity to the reader.

      (3) The variables in Equations 1-3 and the methods for simulating them are not well defined, making the method difficult to follow. Assuming my reading is correct, Omega should be defined as the cumulative number of turning events over time (Omega(t)), not as a "turn" or "reorientation", which has no derivative. The relevant entity in Figure 1a is apparently <Omega (t)>, i.e. the mean number of events across a population which can be modelled by an expectation value. The time derivative would then give the expected rate of turning events as a function of time.

      Thank you, you are correct. Please see response to Reviewer #1.

      (4) Equations 1-3 are cryptic. The authors need to spell out up front that they are using a pair of coupled stochastic processes, sampling a hidden state M (to model the dynamic turning rate) and the actual turn events, Omega(t), separately, as described in Figure 2a. In this case, the model no longer appears more parsimonious than the original 2-state model. What then is its benefit or explanatory power (especially since the process involving M is not observable experimentally)?

      Thank you, yes we see how as written this was confusing. In our response to Reviewer #1, and in the text, we added an important detail:

      While reorientations are modeled as discrete events, which is observationally true, the amount of M at time t=0 is chosen to be large (M<sub>0</sub> = 1000), so that over the timescale of 40 minutes, the decay in M is practically continuous. This ensures that sudden changes in reorientations are not due to sudden changes in M, but due to the inherent stochasticity of reorientations.

      However you are correct that if M was chosen to have a binary value of 0 or 1, then this would indeed be the two state model. We added a new section to address this (Lines 253-287, Figure 3). Unlike the experiments, the two-state model produces bimodal distributions in slope and transition times, and these distributions are significantly different than the experimental data (Figure 3).

      (5) Further, as currently stated in the paper, Equations 1-3 are only for the mean rate of events. However, the expectation value is not a complete description of a stochastic system. Instead, the authors need to formulate the equations for the probability of events, from which they can extract any moment (they write something in Figure 2a, but the notation there is unclear, and this needs to be incorporated here).

      Thank you, yes please see our response to Reviewer #1. We have clarified the text in Lines 105-190.

      (6) Equations 1-3 have three constants (alpha and gamma which were fit to the data, and M0 which was presumably set to 1000). How does the choice of M0 affect the results?

      Thank you, this is a good question. We address this in lines 253-296. Briefly, the choice of M<sub>0</sub> does not have a strong effect on the results, unless we set it to M<sub>0</sub>, which by definition, creates a two-state model. This model was significantly different than the experimental data, relative to the other models (Figure 3c).

      (7) M decays to near 0 over 40 minutes, abolishing omega turns by the end of the simulations. Are omega turns entirely abolished in worms after 30-40 minutes off food? How do the authors reconcile this decay with the leveling of the turning rate in Figure 1a?

      Yes, Reviewer #1 recommended adding a baseline reorientation rate which we did for all models (Equation 2). However, we should also note that in Klein et al they observed a continuous decay over 50 minutes. Though realistically, it is likely not plausible that worms will produce infinitely long runs at long time points.

      (8) The fit given in Figure 2b does not look convincing. No statistical test was used to compare the two functions (empirical and fit). No error bars were given (to either). These should be added. In the discussion, the authors explain the discrepancy away as experimental limitations. This is not unreasonable, but on the flip side, makes the argument inconclusive. If the authors could model and simulate these limitations, and show that they account for the discrepancies with the data, the model would be much more compelling.

      To do this, I would imagine that the authors would need to take the output of their model (lists of turning times) and convert them into simulated trajectories over time. These trajectories could be used to detect boundary events (for a given size of arena), collisions between individuals, etc. in their simulations and to see their effects on the turn statistics.

      Thank you, we have added dashed lines to indicate standard deviation to Figures 2b and 3a. After running the models several times, we found that some of the small discrepancies noted (like s<sub>1</sub>-s<sub>2</sub> < 0 for experiments but not the model), were spurious due to these data points being <1% of the data, so we cut this from the text. To compare how similar the continuous (M<sub>0</sub> > 1) and discrete (M<sub>0</sub> = 1) models were to the experimental data, we calculated a Jensen-Shannon distance for the models, and found that the discrete model was significantly more dissimilar to the experimental data than the continuous models (Lines 289-296, Figure 3c).

      (9) The other figures similarly lack any statistical tests and by eye, they do not look convincing. The exception is the 6 anecdotal examples in Figure 2e. Those anecdotal examples match remarkably closely, almost suspiciously so. I'm not sure I understood this though - the caption refers to "different" models of M decay (and at least one of the 6 examples clearly shows a much shallower exponential). If different M models are allowed for each animal, this is no longer parsimonious. Are the results in Figure 2d for a single M model? Can Figure 2e explain the data with a single (stochastic) M model?

      We certainly don’t want the panels in Figure 2e to be suspicious! These comparisons were drawn from calculating the correlations between all model traces and all experimental traces, and then choosing the top hits. Every time we run the simulation, we arrive at a different set of examples. Since it was recommended we add a baseline rate, these examples will be a completely different set when we run the simulation, again.

      We apologize for the confusion regarding M. Since the worms do not all start out with identical reorientation rates, we drew the initial M value from a distribution centered on M<sub>0</sub> to match the initial distribution of observed experimental rates (Lines 206-214). However, the decay in M (γ), as well as α and β, are the same for all in silico animals.

      (10) The left axes of Figure 2e should be reverted to cumulative counts (without the normalization).

      Thank you, we made this change.

      (11) The authors give an alternative model of a Levy flight, but do not give the obvious alternative models:<br /> a) the 1-state model in which P(t) = alpha exp (-gamma t) dt (i.e. a single stochastic process, without a hidden M, collapsing equations 1-3 into a single equation).

      b) the originally proposed 2-state model (with 3 parameters, a high turn rate, a low turn rate, and the local-to-global search transition time, which can be taken from the data, or sampled from the empirical probability distributions). Why not? The former seems necessary to justify the more complicated 2-process model, and the latter seems necessary since it's the model they are trying to replace. Including these two controls would allow them to compare the number of free parameters as well as the model results. I am also surprised by the Levy model since Levy is a family of models. How were the parameters of the Levy walk chosen?

      Thank you, we removed this section completely, as it is tangential to the main point of the paper.

      (12) One point that is entirely missing in the discussion is the individuality of worms. It is by now well known that individual animals have individual behaviors. Some are slow/fast, and similarly, their turn rates vary. This makes this problem even harder. Combined with the tiny number of events concerned (typically 20-40 per experiment), it seems daunting to determine the underlying model from behavioral statistics alone.

      Thank you, yes we should have been more explicit in the reasoning behind drawing the initial M from a distribution (response to comment #9). We assume that not every worm starts out with the same reorientation rate, but that some start out fast (high M) and some start out slow (low M). However, we do assume M decays with the same kinetics, which seems sufficient to produce the observed phenomena. Multiple decay rates are not needed to replicate the experimental data.

      (13) That said, it's well-known which neurons underpin the suppression of turning events (starting already with Gray et al 2005, which, strangely, was not cited here). Some discussion of the neuronal predictions for each of the two (or more) models would be appropriate.

      Thank you, yes we will add Gray et al, but also the more detailed response to Reviewer #2 (Lines 319-359 of manuscript).

      (14) An additional point is the reliance entirely on simulations. A rigorous formulation (of the probability distribution rather than just the mean) should be analytically tractable (at least for the first moment, and possibly higher moments). If higher moments are not obtainable analytically, then the equations should be numerically integrable. It seems strange not to do this.

      Thank you for suggesting this. For the Levy section (which we cut) this would have been an improvement. However, since the distributions of slope differences and transition times are based on a recursive algorithm, rather than an analytical formulation, we decided to use the Jensen-Shannon divergence to compare distributions (Lines 272-296, Figure 3c) since this is a parameter-free approach.

      In summary, while sample simulations do nicely match the examples in the data (of discontinuous vs continuous turning rates), this is not sufficient to demonstrate that the transition from ARS to dispersion in C. elegans is, in fact, likely to be a single 'state', or this (eq 1-3) single state. Of course, the model can be made more complicated to better match the data, but the approach of the authors, seeking an elegant and parsimonious model, is in principle valid, i.e. avoiding a many-parameter model-fitting exercise.

      As a qualitative exercise, the paper might have some merit. It demonstrates that apparently discrete states can sometimes be artifacts of sampling from smoothly time-changing dynamics. However, as a generic point, this is not novel, and so without the grounding in C. elegans data, is less interesting.

      Thank you, we agree that this is a generic phenomenon, which is partly why we did this. The data from López-Cruz seem to agree in part with Calhoun et al, that claim abrupt transitions occur, and Klein et al, which claim they do not occur. Since the underlying phenomenon is stochastic, we propose the mixed observations of sudden and gradual changes in search strategy are simply the result of a stochastic process, which can produce both phenomena for individual observations. We hope this work can help clarify why sudden changes in search strategy are not consistently observed. We propose a simple hypothesis that there is no change in search strategy. The reorientation rate decays in time, and due to the stochastic nature of this behavior, what appears as a sudden change for individual observations is not due to an underlying decision, but rather the result of a stochastic process.

    2. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #2 (Public reviews):

      Weaknesses:

      This manuscript has two weaknesses that dampen the enthusiasm for the results. First, in all of the examples the authors cite where a Gillespie algorithm is used to sample from a distribution, be it the kinetics associated with chemical dynamics, or a Lotka-Volterra Competition Model, there are underlying processes that govern the evolution of the dynamics, and thus the sampling from distributions. In one of their references for instance, the stochasticity arises from the birth and death rates, thereby influencing the genetic drift in the model. In these examples, the process governing the dynamics (and thus generating the distributions from which one samples) are distinct from the behavior being studied. In this manuscript, the distribution being sampled from is the exponential decay function of the reorientation rate (lines 100-102). This appears to be tautological - a decay function fitted to the reorientation data is then sampled to generate the distributions of the reorientation data. That the model performs well, and matches the data is commendable, but it is unclear how that could not be the case if the underlying function generating the distribution was fit to the data.

      To use the Lotka-Volterra model as an analogy, the changing reorientation rate (like a changing rate of prey growth) is tied to the decay in M (like a loss of predators). You could infer the loss of predators by measuring the changing rate of prey growth. In our case, we infer the loss of M by observing the changing reorientation rate. In the LotkaVolterra model, the prey growth rate is negatively associated with predator numbers, but in our model, the reorientation rate is positively associated with M, hence a loss in M leads to a decay in the reorientation rate.

      You are correct that the decay parameters fit to the average should produce a distribution of in silico data that reproduce this average result (Figure 3a). However, this does not necessarily mean that these kinetic parameters should produce the same distributions of switch kinetics observed in Figure 3b. Indeed, a binary model (𝑴 ∈ {𝟎, 𝟏}), which produces an average distribution that matches the average experimental data (Figure 3a) produces a fundamentally different (bimodal) distribution of switch distributions in Figure 3b.

      The second weakness is somewhat related to the first, in that absent an underlying mechanism or framework, one is left wondering what insight the model provides. Stochastic sampling a function generated by fitting the data to produce stochastic behavior is where one ends up in this framework, and the authors indeed point this out: "simple stochastic models should be sufficient to explain observably stochastic behaviors." (Line 233-234). But if that is the case, what do we learn about how the foraging is happening. The authors suggest that the decay parameter M can be considered a memory timescale; which offers some suggestion, but then go on to say that the "physical basis of M can come from multiple sources". Here is where one is left for want: The mechanisms suggested, including loss of sensory stimuli, alternations in motor integration, ionotropic glutamate signaling, dopamine, and neuropeptides are all suggested: this is basically all of the possible biological sources that can govern behavior, and one is left not knowing what insight the model provides. The array of biological processes listed are so variable in dynamics and meaning, that their explanation of what govern M is at best unsatisfying. Molecular dynamics models that generate distributions can point to certain properties of the model, such as the binding kinetics (on and off rates, etc.) as explanations for the mechanisms generating the distributions, and therefore point to how a change in the biology affects the stochasticity of the process. It is unclear how this model provides such a connection, especially taken in aggregate with the previous weakness.

      Providing a roadmap of how to think about the processes generating M, the meaning of those processes in search, and potential frameworks that are more constrained and with more precise biological underpinning (beyond the array of possibilities described) would go a long way to assuaging the weaknesses.

      The insight we (hopefully) are trying to convey is that individual observations of apparent state-switching behavior does not necessarily imply that a state change is actually happening if a large fraction of the population is not producing this behavior. This same observation can be recreated by invoking a stochastic process, which we already know is how reorientation occurrences behave in the first place. Apparent switches to global foraging are simply due to the reorientation rate decaying in time, not necessarily due to a sudden state change. We modeled a stochastic binary switch (when M0=1) which produced a bimodal distribution of switch kinetics (Figure 3b) which was different than the experimental distribution. The biological basis of M is not addressed here, but we clarified the language on lines 342 and 343 to reinforce that it likely represents the timescales of AIA and ADE activities. We reiterated what was described in López-Cruz et al to convey that molecularly, what is governing the timescales of these two neurons is not trivial, and likely multi-faceted.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The presentation of the Gillespie algorithm, though much improved, is tough going and for many biologists will be a barrier to appreciation of what was done and what was achieved. I found the description of the algorithm generated by AI (ChatGTP) to be more accessible and the example given to be better related to the present application of the algorithm. This might provide a template for a more accessible description of the model.

      We are glad the newer draft is clearer, and apologize it is still difficult to read. We made a few changes that hopefully clarify some points (see below).

      It is unclear how instances of >1 transition were automatically distinguished from instances with 1 transition. A related point is how the transition-finding algorithm was kept from detecting too many transitions, as it seems that any quadruplet of points defines a slope change.

      In López-Cruz et al, >1 transitions (and all transitions) were distinguished by eye after running the findchangepts function. We added a clarifying statement on lines 78 and 79 to illuminate this point. As noted on line 72, the function itself only fits two regressions, so by definition, it can only define one transition. This is why we decided to plot the distribution of slope and transition parameters in the first place; to see if there was a clear bimodal distribution (as observed for other observably binary states, like roaming and dwelling). This was not the case for the experimental data, but was observed in the in silico data if we forced the algorithm to be a two-state model (Figure 3b, M0 = 1).

      Line 113-4: I was confused by the distinction between the probability of observing an event and the propensity for it to occur. Are the authors implying that some events occur but are not observed?

      We apologize for this confusion, and added some phrasing in Lines 115-130 to address this. The propensity is analogous to the rate of a reaction. Given this rate, the probability of seeing Ω+1 reorientations in the infinitesimal time interval dt is the product of the propensity and the probability the current state is Ω reorientations.

      Line 120: Shouldn't propensity at t = 0 be alpha + beta?

      Yes, thank you for catching this. We fixed it.

      Why was it necessary to posit two decay processes (equations 2 and 5?). Wouldn't one suffice?

      Thank you, we have added some text to clarify this point (lines 129-132). The Gillespie algorithm models discrete temporal events, which are explicitly dependent on the current state of the system. Since the propensity itself is changing in time, it implies that it is coupled to another state variable that is changing in time, i.e. another propensity. Since an exponential decay is sufficient to model the decay in reorientations, this implies that the reorientation propensity is coupled to a first order decay propensity (equations 4-5).

      Line 145: ...sudden changes in [reorientation rate] are not due to...

      Thank you, we have corrected this (Line 157).

      Fig. 2d: Legend implies (but fails to state) that each dot is a worm, raising the question of how single worms with multiple transitions were plotted in this graph as they would have more than one transition point.

      Thank you, we updated the legend. Multiple transitions are not quantified with the tworegression approach. Prior observations, such as by López-Cruz, were simply done by eye.

      Line 153: Does i denote either process 1 or 2?

      Yes, i is the subscript for each propensity ai. We have added text on line 166 to clarify this.

      Line 159: Confusing. If an "event" is a reorientation event and a "transition" is a discrete change in slope of Omega vs t, then "The probability that no events will occur for ALL transitions in this time interval" makes no sense.

      Thank you, we have reworded this part (Lines 169-172) to be clearer.

      Equation 17:Unclear what index i refers to

      Thank you, we have changed this to index to j, and modified the text on line 228 to reflect this.

      Line 227-9: Unclear how collisions are thought to have caused the shift in experimental distribution.

      We have clarified the text on lines 246 and 250. Collisions are not being referred to here, but instead the crossing of pheromone trails. This is purely speculative.

      Line 310-317. If M rises on food, then worms should reorient more on food than after long times off food, when M has decayed. But worms don't reorient much on food; they behave as though M is low. This seems like a contradiction, unless one supposes instead that M is low on food and after long times off food but spikes when food is removed.

      Thank you, we have added clarifying language on lines 333-336 to address this point. Worm behavior is fundamentally different on food, as worms transition to a dwell/roam behavioral dynamic which is fundamentally different than foraging behavior while off food.

    1. Author Response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      (1) I think the article is a little too immature in its current form. I'd recommend that the authors work on their writing. For example, the objectives of the article are not completely clear to me after reading the manuscript, composed of parts where the authors seem to focus on SGCs, and others where they study "engram" neurons without differentiating the neuronal type (Figure 5). The next version of the manuscript should clearly establish the objectives and sub-aims.

      We now provide clarification for focusing on the labeling status versus the cell types in figure 5. Since figure 5 focuses on inputs to labeled pairs versus Labeledunlabeled pairs the pairs include mixed groups with GCs and SGCs. Since the question pertains to inputs rather than cell types, we did not specifically distinguish the cell types. This is now explained in the text on page 15:  “Note that since the intent was to determine the input correlation depending on labeling status of the cell pairs rather than based on cell type, we do not explicitly consider whether analyzed cell pairs included GCs or SGCs.”

      (2) In addition, some results are not entirely novel (e.g., the disproportionate recruitment as well as the distinctive physiological properties of SGCs), and/or based on correlations that do not fully support the conclusions of the article. In addition to re-writing, I believe that the article would benefit from being enriched with further analyses or even additional experiments before being resubmitted in a more definitive form.

      We now indicate the data comparing labeled versus unlabeled SGCs is novel. Moreover, we also highlight that (1) recruitment of SGCs has not been previously examined in Barnes Maze or Enriched Environment, (2) that our unbiased morphological analysis of SGC recruitment is more robust than subsampling of recorded neurons in prior studies and (3) that our data show that prior may have overestimated SGC recruitment to engrams. Thus, the data characterized as “not novel” are essential for appropriate analysis of behaviorally tagged neurons which is the thrust of our study.  

      Reviewer #2 (Public Review):

      (1) The authors conclude that SGCs are disproportionately recruited into cfos assemblies during the enriched environment and Barnes maze task given that their classifier identifies about 30% of labelled cells as SGCs in both cases and that another study using a different method (Save et al., 2019) identified less than 5% of an unbiased sample of granule cells as SGCs. To make matters worse, the classifier deployed here was itself established on a biased sample of GCs patched in the molecular layer and granule cell layer, respectively, at even numbers (Gupta et al., 2020). The first thing the authors would need to show to make the claim that SGCs are disproportionately recruited into memory ensembles is that the fraction of GCs identified as SGCs with their own classifier is significantly lower than 30% using their own method on a random sample of GCs (e.g. through sparse viral labelling). As the authors correctly state in their discussion, morphological samples from patch-clamp studies are problematic for this purpose because of inherent technical issues (i.e. easier access to scattered GCs in the molecular layer).

      We now clarify, on page 9, that a trained investigator classified cell types based on predefined morphological criteria.  No automated classifiers were used to assign cell types in the current study.

      (2) The authors claim that recurrent excitation from SGCs onto GCs or other SGCs is irrelevant because they did not find any connections in 32 simultaneous recordings (plus 63 in the next experiment). Without a demonstration that other connections from SGCs (e.g. onto mossy cells or interneurons) are preserved in their preparation and if so at what rates, it is unclear whether this experiment is indicative of the underlying biology or the quality of the preparation. The argument that spontaneous EPSCs are observed is not very convincing as these could equally well arise from severed axons (in fact we would expect that the vast majority of inputs are not from local excitatory cells). The argument on line 418 that SGCs have compact axons isn't particularly convincing either given that the morphologies from which they were derived were also obtained in slice preparations and would be subject to the same likelihood of severing the axon. Finally, even in paired slice recordings from CA3 pyramidal cells the experimentally detected connectivity rates are only around 1% (Guzman et al., 2016). The authors would need to record from a lot more than 32 pairs (and show convincing positive controls regarding other connections) to make the claim that connectivity is too low to be relevant.

      We have conducted additional control experiments (detailed in response to Editorial comment #3), in which we replicated the results of Stefanelli et al (2016) identifying that optogenetic activation of a focal cohort of ChR2 expressing granule cells leads to robust feedback inhibition of adjacent granule cells. These control experiments demonstrate that the slice system supports the feedback inhibitory circuit which requires GC/SGC to hilar neuron synapses.

      (3) Another troubling sign is the fact that optogenetic GC stimulation rarely ever evokes feedback inhibition onto other cells which contrasts with both other in vitro (e.g. Braganza et al., 2020) and in vivo studies (Stefanelli et al., 2016) studies. Without a convincing demonstration that monosynaptic connections between SGCs/GCs and interneurons in both directions is preserved at least at the rates previously described in other slice studies (e.g. Geiger et al., 1997, Neuron, Hainmueller et al., 2014, PNAS, Savanthrapadian et al., 2014, J. Neurosci), the notion that this setting could be closer to naturalistic memory processing than the in vivo experiments in Stefanelli et al. (e.g. lines 443-444) strikes me as odd. In any case, the discussion should clearly state that compromised connectivity in the slice preparation is likely a significant confound when comparing these results.

      We have conducted additional control experiments (detailed in response to Editorial comment #3), in which we replicated the results of Stefanelli et al identifying that optogenetic activation of a focal cohort of ChR2 expressing granule cells leads to robust feedback inhibition of adjacent granule cells. These control experiments demonstrate that the slice system in our studies support the feedback inhibitory circuit detailed in prior studies. We also clarify that Stefanelli study labeled random neurons and did not examine natural behavioral engrams and  discuss (on page 20) the correspondence/consistency of our results with that of Braganza et al 2020.

      (4) Probably the most convincing finding in this study is the higher zero-time lag correlation of spontaneous EPSCs in labelled vs. unlabeled pairs. Unfortunately, the fact that the authors use spontaneous EPSCs to begin with, which likely represent a mixture of spontaneous release from severed axons, minis, and coordinated discharge from intact axon segments or entire neurons, makes it very hard to determine the meaning and relevance of this finding. At the bare minimum, the authors need to show if and how strongly differences in baseline spontaneous EPSC rates between different cells and slices are contributing to this phenomenon. I would encourage the authors to use low-intensity extracellular stimulation at multiple foci to determine whether labelled pairs really share higher numbers of input from common presynaptic axons or cells compared to unlabeled pairs as they claim. I would also suggest the authors use conventional Cross correlograms (CCG; see e.g. English et al., 2017, Neuron; Senzai and Buzsaki, 2017, Neuron) instead of their somewhat convoluted interval-selective correlation analysis to illustrate codependencies between the event time series. The references above also illustrate a more robust approach to determining whether peaks in the CCGs exceed chance levels.

      We have included data on sEPSC frequency in the recorded cell pairs (Supplemental Fig 4) and have also conducted additional experiments and present data demonstrating that labeled cell show higher sEPSC frequency and amplitude than corresponding unlabeled cells in both cell types (new Fig 5).  We also include data from new  experiments to show that over 50% of the sEPSCs represent action potential driven events (Supplemental fig 3). 

      We thank the reviewer for the suggestion to explore alternative methods of analyses including CCGs to further strengthen our findings. We have now conducted CCGs on the same data set and report that “The dynamics of the cross-correlograms generated from our data sets using previously established methods to evaluate monosynaptic connectivity (Bartho et al., 2004; Senzai and Buzsaki, 2017) parallelled that of the CCP plots (Supplemental Fig. 6) illustrating that the methods similarly capture co-dependencies between event time series. We note, here, that while the CCG and CCP are qualitatively similar, the magnitude of the peaks were different, due to the sparseness of synaptic events. 

      (5) Finally, one of the biggest caveats of the study is that the ensemble is labelled a full week before the slice experiment and thereby represents a latent state of a memory rather than encoding consolidation, or recall processes. The authors acknowledge that in the discussion but they should also be mindful of this when discussing other (especially in vivo) studies and comparing their results to these. For instance, Pignatelli et al 2018 show drastic changes in GC engram activity and features driven by behavioral memory recall, so the results of the current study may be very different if slices were cut immediately after memory acquisition (if that was possible with a different labelling strategy), or if animals were re-exposed to the enriched environment right before sacrificing the animal.

      As noted by the reviewer, we fully acknowledge and are cognizant of the concern that slices prepared a week after labeling may not reflect ongoing encoding. Although our data show that labeled cells are reactivated in higher proportion during recall, we have discussed this caveat and will include alternative experimental strategies in the discussion.

      Reviewer #3 (Public Review):

      (1) Engram cells are (i) activated by a learning experience, (ii) physically or chemically modified by the learning experience, and (iii) reactivated by subsequent presentation of the stimuli present at the learning experience (or some portion thereof), resulting in memory retrieval. The authors show that exposure to Barnes Maze and the enriched environment-activated semilunar granule cells and granule cells preferentially in the superior blade of the dentate gyrus, and a significant fraction were reactivated on re-exposure. However, physical or chemical modification by experience was not tested. Experience modifies engram cells, and a common modification is the Hebbian, i.e., potentiation of excitatory synapses. The authors recorded EPSCs from labeled and unlabeled GCs and SGCs. Was there a difference in the amplitude or frequency of EPSCs recorded from labeled and unlabeled cells?

      We have included data on sEPSC frequency in the recorded cell pairs (Supplemental Fig 4) and have also conducted additional experiments and report and present data demonstrating that labeled cell show higher sEPSC frequency and amplitude than corresponding unlabeled cells in both cell types (new Fig 5).  We also include data from new  experiments to show that over 50% of the sEPSCs represent action potential driven events (Supplemental fig 3).

      (2) The authors studied five sequential sections, each 250 μm apart across the septotemporal axis, which were immunostained for c-Fos and analyzed for quantification. Is this an adequate sample? Also, it would help to report the dorso-ventral gradient since more engram cells are in the dorsal hippocampus. Slices shown in the figures appear to be from the dorsal hippocampus. 

      We thank the reviewer for the comment. We analyzed sections along the dorsoventral gradient. As explained in the methods, there is considerable animal to animal variability in the number of labeled cells which was why we had to use matched littermate pairs in our experiments This variability could render it difficult to tease apart dorsoventral differences. 

      (3) The authors investigated the role of surround inhibition in establishing memory engram SGCs and GCs. Surprisingly, they found no evidence of lateral inhibition in the slice preparation. Interneurons, e.g., PV interneurons, have large axonal arbors that may be cut during slicing.

      Similarly, the authors point out that some excitatory connections may be lost in slices. This is a limitation of slice electrophysiology.

      We have conducted additional control experiments (detailed in response to Editorial comment #3), in which we replicated the results of Stefanelli et al identifying that optogenetic activation of a focal cohort of ChR2 expressing granule cells leads to robust feedback inhibition of adjacent granule cells. These control experiments demonstrate that the slice system supports the feedback inhibitory circuit detailed in prior studies. 

      We now discuss (page 21) that “the possibility that slice recordings lead to underestimation of feedback dendritic inhibition cannot be ruled out.”

      Reviewer #1 (Recommendations for the authors):

      (1) I struggle to understand the added value of the Barnes Maze data (Figures 1 and S1), since the authors then focus on the EE for practical reasons. In particular, the analysis of mouse performance (presented in supplemental Figure 1) does not seem traditional to me. For example, instead of the 3 classical exploration strategies (i.e., random, serial, direct), the authors describe 6, and assign each of these strategies a score based on vague criteria (why are "long corrected" and "focused research" both assigned a score of 0.5?). Unless I'm mistaken, no other classic parameters are described (e.g., success rate, latency, number of errors). If the authors decide to keep the BM results, I recommend better justifying its existence and adding more details, including in the method section. Otherwise, perhaps they should consider withdrawing it. Even if we had to use two different behavioral contexts, wouldn't it have made sense to use, in addition to the EE, the fear conditioning test, which is widely used in the study of engrams? Under these conditions (Stefanelli et al., 2016), the number of cells recruited after fear conditioning seems sufficient to reproduce the analyses presented in Figures 2-5 and determine whether or not lateral inhibition is dependent on the type of context (Stefanelli and colleagues suggest significant strong lateral inhibition during fear conditioning, whereas the data from Dovek and colleagues suggest quite the opposite after exposure to EE).

      The Barnes Maze data was included to evaluate the DG ensemble activation during a dentate dependent non-fear based behavioral task. This is now introduced and explained in the results. We have now included plots of the primary latency and number of errors in finding the escape hole to confirm the improvement over time (Supplemental Fig. 1). We specifically used the BUNS analysis to evaluate the use of spatial strategy and show that by day 6, day of tamoxifen induction, the mice are using a spatial strategy for navigation. Our approach to evaluate exploration strategy is based on criteria published in Illouz et al 2016. This is now detailed in the methods on page 25. We hope that  the inclusion of the supplemental data and revisions to methods and results address the concerns regarding Barnes Maze experiments. 

      Regarding Stefanelli et al., 2016, please note that the study adopted random labeling of neurons using a CaMKII promotor driven reporter expression which they activated during spatial exploration of fear conditioning behaviors. As such labeled neurons in the Stefanelli study were NOT behaviorally driven, rather they were optically activated. This is now clarified in the text. The main drive for our study was to evaluate behaviorally tagged neurons which is novel, distinct from the Stefanelli study, and, we would argue, more behaviorally realistic and relevant.

      Additionally, the lateral inhibition observed in Stafanelli et al was in response to activation of GCs labeled by virally mediate CAMKII-driven ChR2 expression. Using a similar labeling approach, new control data presented in Supplemental fig. 3 show that we are fully able to replicate the lateral inhibition observed by Stefanalli et al. These control experiments further suggest that the sparse and distributed GC/SGC ensembles activated during non-aversive behavioral tasks may not be sufficient to elicit robust lateral inhibition as has been observed when a random population of adjacent neurons are activated. Our findings are also consistent with observations by Barganza et al., 2020. This is now Discussed on page 21.

      (2) The authors recorded sEPSCs received by recruited and non-recruited GCs and SGCs after EE exposure. However, it appears that they studied them very little, apart (from a temporal correlation analysis (Figure 5). Yet it would be interesting to determine whether or not the four neuronal populations possess different synaptic properties. 

      What is the frequency and amplitude of sEPSCs in GCs and SGCs recruited or not after EE exposure? Similarly, can the author record the sIPSCs received by dentate gyrus engram and non-engram GCs and SGCs? If so, what is their frequency and amplitude?

      As suggested by the editorial comment #2, we how include data on the frequency and amplitude of the sEPSCs in GCs and SGCs used in our analysis of figure 5. Given the low numbers of unlabeled SGCs and labeled GCs in our paired recordings (Supplemental Fig. 5), we choose not to use this data set for analysis of cell-type and labeling based differences in EPSC parameters. However, we have previously reported that sIPSC frequency is higher in SGCs than in GCs. Additionally, we have identified that sEPSC frequency in SGCs is higher than in GC (Dovek et al, in preprint, DOI: 10.1101/2025.03.14.643192).  

      To specifically address reviewer concerns, we have conducted new recorded EPSCs in a cohort of labeled and unlabeled GCs and SGCs and present data demonstrating that labeled cell show higher sEPSC frequency and amplitude than corresponding unlabeled cells in both cell types (new Fig 5). These experiments were conducted in TRAP2-tdT labeled cells which were not stable in cesium based recordings. As such we, we deferred the IPSC analysis for later and restricted analysis to sEPSCs for this study. 

      (3) Previous data showed that dentate gyrus neurons that are recruited or not in a given context could exhibit distinct morphological characteristics (Pléau et al. 2021) and biochemical content (Penk expression, Erwin et al., 2020). In order to enrich the electrophysiological data presented in Figure 2, could the authors take advantage of the biocytin filling to perform a morphological and biochemical comparison of the different neuronal types (i.e., GCs and SGCs recruited or not after EE)?

      Thank you for this suggestion. Unfortunately, detailed morphometry and biochemical analysis on labeled and unlabeled neurons was not conducted as part of this study as our focus was on circuit differences. In our experience, unless the sections are imaged soon after staining, the sections are suboptimal for detailed morphological reconstruction and analysis. Our ongoing studies suggest that PENK is an activity marker and not a selective marker for SGCs and we are undertaking transcriptomic analysis to identify molecular differences between GCs and SGCs. We respectfully submit that these experiments are outside the scope of this study.

      (4) Figures 3 and 4 show only schematic diagrams and representative data. No quantification is shown. Instead of pie charts showing the identity of each pair (which I find unnecessary), I'll use pie charts representing the % of each pair in which an excitatory or inhibitory drive was recorded (with the corresponding n).

      Please note that we did not observe evoked synaptic potentials in any except one pair precluding the possibility of quantification. However, we submit that it is important for the readers to have information on the number of pairs and the types of pre-post synaptic pairs in which the connections were tested.

      (5) Figure 3: Given that GCs form very few recurrences in non-pathological conditions, it hardly surprises me that they form few or no local glutamatergic connections. In contrast, this result surprises me more for SGCs, whose axons form collaterals in the dentate gyrus granular and molecular layers (Williams et al., 2007; Save et al., 2019). To control the reliability of their conditions, could the authors check whether SGCs do indeed form connections with hilar mossy cells, as has been reported in the past? To test whether this lack of interconnectivity is specific to neurons belonging to the same engram (or not), could the authors test whether or not the stimulation of labeled GCs/SGCs (via membrane depolarization or even optogenetics) generates EPSCs in unlabeled GCs?

      As suggested by the reviewer, we have examined whether widefield optical activation of all labeled neurons including GCs and SGCs lead to EPSCs in unlabeled GCs (63 cells tested). However, we did not observe eEPSCs. This data is presented on page 13, (Fig 4F) in the results and discussed on page 20. Since the wide field stimulation should activate terminals and lead to release even if the axon is severed, our data suggest the glutamatergic drive from SGC to GC may be limited.

      As noted above, we have demonstrated the presence of lateral inhibition consistent with data in Stefanelli et al in our new supplementary figure 3. We have also shown that sustained SGC firing upon perforant path stimulations is associated with sustained firing in hilar interneurons (Afrasiabi et al., 2022) indicating presence of the SGC to hilar connectivity in our slice preparation. Therefore, we choose not to undertake challenging 2P guided paired recording of SGCs and mossy cells adjacent to SGC axon terminals reported in Williams et al 2007 to replicate the 9%  SGC to MC synaptic connections. These 2P guided slice physiology studies are outside the technical scope of our study.

      (6) Figure 4: The results are relatively in contradiction with the strong lateral inhibition reported in the past (Stefanelli et al., 2016), but the experimental conditions are different in the two studies. Stimulation of a single labeled GC or SGC may not be sufficient to activate an inhibitory neuron, and for the latter to inhibit an unlabeled GC or SGC. Is it possible to measure the sIPSCs received by unlabelled neurons during optogenetic stimulation of all labelled neurons? Could the authors verify whether under their experimental conditions GCs and SGCs do indeed form connections with interneurons, as reported before? Finally, Stefanelli and colleagues (2016) suggest that lateral inhibition is provided by dendrites- targeting somatostatin interneurons. If the authors are recording in the soma, could they underestimate more distal inhibitory inputs? If so, could they record the dendrites of unlabeled neurons?

      Our new control data (Supplementary Fig. 3) using an AAV mediated CAMKII promotor driven random expression of ChR2 on GCs, similar to Stefanelli et al (2016) demonstrates our ability replicate the lateral inhibition observed by Stefanalli et al. (2016). Thus, our findings more accurately represent lateral inhibition supported by a sparse behaviorally labeled cohort than findings of Stefanelli et al based on randomly labeled neurons. This is now discussed on page 22-23. We respectfully submit that dendritic recordings are outside the scope of the current study.

      We also discuss the possibility that somatic recordings may under sample dendritic inhibitory inputs on page 23 “the possibility that slice recordings lead to underestimation of feedback dendritic inhibition cannot be ruled out.”

      (7) Figure 5: For ease of reading, I would substantially simplify the Results section related to Figure 5, keeping only the main general points of the analysis and the results themselves. The details of the analysis strategy, and the justification for the choices made, are better placed in the Method section (I advise against "data not shown").

      We thank the reviewer for the suggestion to improve accessibility of the results and have moved text related to justification of strategy and controls to the methods. We have also removed references to data not shown.

      (8) Figure 5: why do the authors no longer discriminate between GCs and SGCs?

      Since figure 5 focuses on inputs to labeled pairs versus labeled-unlabeled pairs the pairs include mixed groups with GCs and SGCs. Since the question pertains to inputs rather than cell types, we did not specifically distinguish the cell types. This is now explained in the text on page 15.

      (9) Figure 5: I would like to know more about the temporally connected inputs and their implication in context-dependent recruitment of dentate gyrus neurons. What could be the origin of the shared input received by the neurons recruited after EE exposure? For example, do labeled neurons receive more (temporally correlated or not) inputs from the entorhinal cortex (or any other upstream brain region) than unlabeled neurons? Is there any way (e.g., PP stimulation or any kind of manipulation) to test the causal relationship between temporally correlated input and the context-dependent recruitment of a given neuron?

      We appreciate the reviewer’s comments on the need to examine the source and nature of the correlated inputs to behaviorally labeled neurons. However, the suggested experiments are nontrivial as artificial stimulation of afferent fibers is unlikely to be selective for labeled and unlabeled cells. Given the complexities in design, implementation and interpretation of these experiments we respectfully submit that these are outside the scope of the current study.

      Reviewer #2 (Recommendations for the authors):

      There are a few minor issues limiting the extent of interpretations of the data:

      (1) Only about 7% of the 'engram' cells are re-activated one week after exposure (line 147), it is unclear how meaningful this assembly is given the high number of cells that may either be labelled unrelated to the EE or no longer be part of the memory-related ensemble.

      We now discuss (page 22-23) that the % labeling is consistent with what has been observed in the DG 1 week after fear conditioning (DeNardo et al., 2019) and discuss the caveat that all labeled cells may not represent an engram.  

      (2) Line 215: The wording '32 pairwise connections examined' suggests that there actually were synaptic connections, would recommend altering the wording to 'simultaneously recorded cells examined' to avoid confusion.

      Revised as suggested

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Expressed concern that FOOOF may not be sensitive to peaks located at the edges of the spectrum and suggested using rhythmicity as an alternative measure of oscillatory activity.

      To address this concern, we first conducted a simulation in which we generated power spectra with a single periodic component while varying its parameters. The results confirmed that FOOOF may indeed have reduced sensitivity to low-frequency periodic components. In such cases, periodic activity can be conflated with aperiodic activity, leading to inflated estimates of the aperiodic component. These simulation results are presented in detail at the end of the Supplement.

      To further investigate whether the low-frequency activity in our datasets may be oscillatory, we employed the phase-autocorrelation function (pACF), a measure of rhythmicity developed by Myrov et al. (2024). We compared pACF and FOOOF-derived parameters using linear mixed models at each channel–frequency– time point (see Methods for details). Our analyses showed that pACF activity closely resembles periodic activity across all three datasets, and is dissimilar to aperiodic parameters (see Figures 5, S4, S5, S21, S22, S34, S35). This supports the interpretation that, in our data, aperiodic activity is not conflated with periodic activity.

      I was concerned that “there were no dedicated analyses in the paper to show that the aperiodic changes account for the theta changes.”

      To address this concern, we used linear mixed models to estimate the association between FOOOF parameters and baseline-corrected time-frequency activity. These models were fitted at each channel-frequency-time point. Our results indicate that aperiodic activity is correlated with low-frequency (theta) baseline-corrected activity, while periodic activity is correlated primarily with activity in the alpha/beta range, but not with theta (see Figures 4, S3, S20, S33). Additionally, the exponent parameter exhibited a negative correlation in the gamma frequency range.

      These findings support the reviewer's hypothesis: “I would also like to note that if the theta effect is only the aperiodic shift in disguise, we should see a concomitant increase in delta activity too – maybe even a decrease at high frequencies.” Overall, the results are consistent with our interpretation that low-frequency baseline-corrected activity reflects changes in aperiodic, rather than periodic, activity.

      “On page 7 it is noted that baseline correction might subtract a significant amount of ongoing periodic activity. I would replace the word "subtract" with "remove" as not all baseline correction procedures are subtractive. Furthermore, while this sentence makes it sound like a problem, this is, to my mind, a feature, not a bug - baseline correction is meant to take away whatever is ongoing, be it oscillatory or not, and emphasise changes compared to that, in response to some event.”

      We thank the reviewer for this helpful clarification. We have revised the sentence accordingly to read: “Our results show that classical baseline correction can remove continuous oscillatory activity that is present both during baseline and after stimulus onset, because it treats all baseline signals as 'background' to be removed without distinguishing between transient and continuous oscillations. While this is consistent with the intended purpose of baseline correction---to highlight changes relative to ongoing activity---it may also lead to unintended consequences, such as misinterpreting aperiodic activity as an increase in poststimulus theta oscillations.”

      In addition, we have made several broader revisions throughout the manuscript to improve clarity and accuracy in response to the reviewer’s feedback:

      (1) We have softened our interpretation of changes in the theta range. We no longer claim that these effects are solely due to aperiodic activity; rather, we now state that our findings suggest a potential contribution of aperiodic activity to signals typically interpreted as theta oscillations.

      (2) We have revised our language to avoid suggesting a direct “interplay” between periodic and aperiodic components. Instead, we emphasize the concurrent presence of both components, using more precise and cautious formulations.

      (3) We have clarified our discussion of baseline normalization approaches, explicitly noting that our findings hold regardless of whether a subtractive or divisive baseline correction was applied.

      (4) Finally, we have restructured the introduction to improve readability and address points of potential confusion. Specifically, we have clarified the definition and role of 1/f activity, refined the discussion linking baseline correction to aperiodic activity, and improved transitions between key concepts.

      Reviewer suggested that “it might be good to show that the findings were not driven by the cognitive-complaint subgroup (although the internal replications suggest they were not).”

      We agree that it is important to demonstrate that our findings are not driven solely by the cognitive-complaint subgroup. While we did not include additional figures in the manuscript due to their limited relevance to the primary research question, we have attached figures that explicitly show the comparison between the clinical and control groups here in the response to reviewers. These figures include non-significant effects.

      Author response image 1.

      Results of the linear mixed model analysis of periodic activity for comparison between conditions, including non-significant effect (see also Figure 7 in the paper)

      Author response image 2.

      Results of the linear mixed model analysis of aperiodic exponent for comparison between conditions, including nonsignificant effects (see also Figure 9 in the paper)

      Author response image 3.

      Results of the linear mixed model analysis of aperiodic offset for comparison between conditions, including non-significant effects (see also Figure S11 in the paper)

      “Were lure trials discarded completely, or were they included in the non-target group?”

      Thank you for the question. As described in the Methods section (EEG data preprocessing), lure trials were discarded entirely from further analysis and were not included in the non-target group.

      “Also, just as a side note, while this time-resolved approach is definitely new, it is not novel to this paper, at least two other groups have tried similar approaches, e.g., Wilson, da Silva Castanheira, & Baillet, 2022; Ameen, Jacobs, et al., 2024.”

      Thank you for drawing our attention to these relevant studies. We have now cited both Wilson et al. (2022) and Ameen et al. (2024) in our manuscript. While these papers did indeed use time-resolved approaches, to our knowledge our study is the first to use such an approach within a task-based paradigm.

      noted that it was unclear how the periodic component was reconstructed: “I understand that a Gaussian was recreated based on these parameters, but were frequencies between and around the Gaussians just zeroed out? Or rather, given a value of 1, so that it would be 0 after taking its log10.”

      The periodic component was reconstructed by summing the Gaussians derived from the FOOOF model parameters. Since the Gaussians asymptotically approach, but never reach, zero, there were no explicit zeros between them. We have included this explanation in the manuscript.

      “If my understanding is correct, the periodic and aperiodic analyses were not run on the singletrial level, but on trial-averaged TF representations. Is that correct? In that case, there was only a single observation per participant for each within-subject cell at each TF point. This means that model (4) on p. 15 just simplifies to a repeated-measures ANOVA, does it not? As hinted at later in this section, the model was run at each time point for aperiodic analyses, and at each TF point for periodic analyses, resulting in a series of p-values or a map of p-values, respectively, is that correct?”

      We thank the reviewer for this careful reading and helpful interpretation. The reviewer is correct that analyses were conducted on trial-averaged time-frequency representations. Model presented in equation 7 (as referred to in the current version of the manuscript) is indeed conceptually similar to a repeated-measures ANOVA in that it tests within-subject effects across conditions. However, due to some missing data (i.e., excluded conditions within subjects), we employed linear mixed-effects models (LMER), which can handle unbalanced data without resorting to listwise deletion. This provides more flexibility and preserves statistical power.

      The reviewer is also correct that the models were run at each channel-time point for the aperiodic analyses, and at each channel-time-frequency point for the periodic analyses, resulting in a series or map of p-values, respectively.

      suggested marking the mean response time and contrasting scalp topographies of response-related ERPs with those of aperiodic components.

      We thank the reviewer for this helpful suggestion. In response, we have now marked the mean response time and associated confidence intervals on the relevant figures (Figures 8 and S8). Additionally, we have included a new figure (Figure S13) presenting both stimulus- and response-locked ERP scalp topographies for comparison with aperiodic activity.

      In the previous version of the manuscript, we assessed the relationship between ERPs and aperiodic parameters by computing correlations between their topographies at each time point. However, to maintain consistency with our other analyses and to provide a more fine-grained view, we revised this approach and now compute correlations at each channel–time point. This updated analysis is presented in Figure S14. The results confirm that the correlation between ERPs and aperiodic activity remains low, and we discuss these findings in the manuscript.

      Regardless of the low correlation, we have added the following statement to the manuscript to clarify our conceptual stance: “While contrasting response-related ERPs with aperiodic components can help address potential confounds, we believe that ERPs are not inherently separate from aperiodic or periodic activity. Instead, ERPs may reflect underlying changes in aperiodic and periodic activity. Therefore, different approaches to studying EEG activity should be seen as providing complementary rather than competing perspectives.”

      “On page 3, it is noted that distinct theta peaks were only observed in 2 participants. Was this through visual inspection?”

      Yes, this observation was based on visual inspection of the individual power spectra. We have included this explanation in the text.

      suggested improving the plots by reducing the number of conditions (e.g., averaging across conditions), increasing the size of the colorbars, and using different color scales for different frequency bands, given their differing value ranges. Additionally, the reviewer noted that the theta and alpha results appeared surprising and lacked their expected topographical patterns, possibly due to the color scale.

      We appreciate these thoughtful suggestions and have implemented all of them to improve the clarity and interpretability of the figures. Specifically, we reduced the number of conditions by averaging across them where appropriate, enlarged the colorbars for better readability, and applied separate color scales for different frequency bands to account for variability in dynamic range.

      In the process, we also identified and corrected an error in the code that had affected the topographies of periodic activity in the previous version of the manuscript. With this correction, the resulting topographical patterns are now more consistent with canonical findings and are easier to interpret. For example, activity in the beta range now shows a clear central distribution (see Figure 6B and Figure S5B), and frontal activity in the theta range is more apparent.

      This correction also directly addresses the reviewer’s concern that the “theta and alpha results (where visible) look surprising – the characteristic mid-frontal and posterior topographies, respectively, are not really present.” These unexpected patterns were primarily due to the aforementioned error.

      “Relatedly, why is the mu parameter used here for correlations? Why not simply the RT mean/median, or one of the other ex-Gaussian parameters? Was this an a priori decision?”

      We appreciate the reviewer's thoughtful question. While mean and median RTs are indeed commonly used as summary measures, we chose the mu parameter because it provides a more principled estimate of central tendency that explicitly accounts for the positive skew typically observed in RT distributions. Although we did not directly compare mu, mean and median in this dataset, our experience with similar datasets suggests that differences between them are typically small. We chose not to include other ex-Gaussian parameters (e.g., sigma, tau) to avoid unnecessary model complexity and potential overfitting, especially since our primary interest was not in modelling the full distribution of response variability. This decision was made a priori, although we note that the study was not pre-registered. We have now added a clarification in the manuscript to reflect this rationale.

      “Relatedly, were (some) analyses of the study preregistered?”

      The analyses were not preregistered. Our initial aim was to investigate differences in phaseamplitude coupling (PAC) between the clinical and control groups. However, we did not observe clear PAC in either group—an outcome consistent with recent concerns about the validity of PAC measures in scalp EEG data (see: https://doi.org/10.3390/a16120540). This unexpected finding prompted us to shift our focus toward examining the presence of theta activity and assessing its periodicity.

      The reviewer suggested examining whether there might be differences between trials preceded by a target versus trials preceded by a non-target, potentially reflecting a CNV-like mechanism.

      We appreciate the reviewer’s insightful suggestion. The idea of investigating differences between trials preceded by a target versus a non-target, possibly reflecting a CNV-like mechanism, is indeed compelling. However, this question falls outside the scope of the current study and was not addressed in our analyses. We agree that this represents an interesting direction for future research.

      Reviewer #2 (Public review):

      “For the spectral parameterization, it is recommended to report goodness-of-fit measures, to demonstrate that the models are well fit and the resulting parameters can be interpreted.”

      We thank the reviewer for this suggestion. We have added reports of goodness-of-fit measures in the supplementary material (Fig. S9, S25, S41). However, we would like to note that our simulation results suggest that high goodness-of-fit values are not always indicative of accurate parameter estimation. For example, in our simulations, the R² values remained high even when the periodic component was not detectable or when it was conflated with the aperiodic component (e.g., compare Fig. S48 with Fig. S47). We now mention this limitation in the revised manuscript to clarify the interpretation of the goodness-of-fit metrics.

      “Relatedly, it is typically recommended to set a maximum number of peaks for spectral parameterization (based on the expected number in the analyzed frequency range). Without doing so, the algorithm can potentially overfit an excessive number of peaks. What is the average number of peaks fit in the parameterized spectra? Does anything change significantly in setting a maximum number of peaks? This is worth evaluating and reporting.”

      We report the average number of peaks, which was 1.9—2 (Figure S10). The results were virtually identical when setting number of peaks to 3.

      “In the main text, I think the analyses of 'periodic power' (e.g. section ‘Periodic activity...’ and Figures 4 & 5 could be a little clearer / more explicit on the measure being analyzed. ‘Periodic’ power could in theory refer to the total power across different frequency bands, the parameterized peaks in the spectral models, the aperiodic-removed power across frequencies, etc. Based on the methods, I believe it is either the aperiodic power or an estimate of the total power in the periodic-only model fit. The methods should be clearer on this point, and the results should specify the measure being used.”

      We thank the reviewer for highlighting this point. In our analyses, “periodic power” (or “periodic activity”) refers specifically to the periodic-only model fit. We have added clarifications under Figure 3 and in the Methods section to make this explicit in the revised manuscript.

      “The aperiodic component was further separated into the slope (exponent) and offset components". These two parameters describe the aperiodic component but are not a further decomposition per se - could be rephrased.”

      We thank the reviewer for alerting us to this potential misunderstanding. We have now rephrased the sentence to read: “The aperiodic component was characterised by the aperiodic slope (the negative counterpart of the exponent parameter) and the offset, which together describe the underlying broadband spectral shape.”

      “In the figures (e.g. Figure 5), the channel positions do not appear to be aligned with the head layout (for example - there are channels that extend out in front of the eyes).”

      Corrected.

      “Page 2: aperiodic activity 'can be described by a linear slope when plotted in semi-logarithmic space'. This is incorrect. A 1/f distributed power spectrum has a linear slope in log-log space, not semi-log.”

      Corrected.

      Page 7: "Our results clearly indicate that the classical baseline correction can subtract a significant amount of continuous periodic activity". I am unclear on what this means - it could be rephrased.

      We thank the reviewer to pointing out that the statement is not clear. We have now rephrased is to read: “Our results show that classical baseline correction can remove continuous oscillatory activity that is present both during baseline and after stimulus onset, because it treats all baseline signals as 'background' to be removed without distinguishing between transient and continuous oscillations.”

      ”Page 14: 'the FOOOF algorithm estimates the frequency spectrum in a semi-log space'. This is not quite correct - the algorithm parameterizes the spectrum in semi-log but does not itself estimate the spectrum.”

      Again, we thank the reviewer for alerting us to imprecise description. We have now changed the sentence to: “The FOOOF algorithm parameterises the frequency spectrum in a semi-logarithmic space”.

      We have made refinements to improve clarity, consistency, and flow of the main text. First, we streamlined the introduction by removing redundancies and ensuring a more concise presentation of key concepts. We also clarified our use of terminology, consistently referring to the ‘aperiodic slope’ throughout the manuscript, except where methodological descriptions necessitate the term ‘exponent.’ Additionally, we revised the final section of the introduction to better integrate the discussion of generalisability, ensuring that the inclusion of additional datasets feels more seamlessly connected to the study’s main objectives rather than appearing as an addendum. Finally, we carefully reviewed the entire manuscript to enhance coherence, particularly ensuring that discussions of periodic and aperiodic activity remain precise and do not imply an assumed interplay between the two components. We believe these revisions align with the reviewer’s suggestions and improve the overall readability and logical structure of the manuscript.

      Reviewer #3 (Public review):

      Raised concerns regarding the task's effectiveness in evoking theta power and the ability of our spectral parameterization method (specparam) to adequately quantify background activity around theta bursts.

      We thank Reviewer #3 for their constructive feedback. To address the concerns regarding the task’s effectiveness in evoking theta power and the adequacy of our spectral parameterization method, we have added additional visualizations using a log-y axis ****(Figures S1, S19, S32). These figures demonstrate that, in baseline-corrected data, low-frequency activity during working memory tasks appears as both theta and delta activity. Additionally, we have marked the borders between frequency ranges with dotted lines to facilitate clearer visual differentiation between these bands. We believe these additions help clarify the results and address the reviewer’s concerns.

      The reviewer noted that “aperiodic activity seems specifically ~1–2 Hz.”

      In our data baseline-corrected low-frequency post-stimulus increase in EEG activity spans from approximately 3 to 7 Hz, with no prominent peak observed in the canonical theta band (4–7 Hz). While we did not analyze frequencies below 3 Hz, we agree with the reviewer that some of this activity could potentially fall within the delta range.

      Nonetheless, we would like to emphasize that similar patterns of activity have often been interpreted as theta in the literature,  even  in  the  absence  of a distinct spectral  peak (see: https://doi.org/10.1016/j.neulet.2012.03.076;    https://doi.org/10.1016/j.brainres.2006.12.076; https://doi.org/10.1111/psyp.12500; https://doi.org/10.1038/s42003-023-05448-z — particularly, see the interpretation of State 1 as a “theta prefrontal state”).

      To accommodate both interpretations, we have opted to use the more neutral term “low-frequency activity” where appropriate. However, we also clarify that such activity is frequently referred to as “theta” in prior studies, even in the absence of a clear oscillatory peak.

      “Figure 4 [now Figure 6]: there is no representation of periodic theta.”

      Yes, this is one of the main findings of our study - periodic theta is absent in the vast majority of participants. A similar finding was found in a recent preprint on a working memory task (https://doi.org/10.1101/2024.12.16.628786), which further supports our results.

      “Figure 5 [now Figure 7]: there is some theta here, but it isn't clear that this is different from baseline corrected status-quo activity.”

      This figure shows comparisons of periodic activity between conditions. Although there are differences between conditions in the theta band, this does not indicate the presence of theta oscillations. Instead, the differences between the conditions in the theta band are most likely due to alpha components extending into the theta band (see Figure S6). This is further supported by the large overlap of significant channels between theta and alpha in Figure 7.

      “Figure 8: On the item-recognition task, there appears to be a short-lived burst in the high delta / low theta band, for about 500 ms. This is a short phenomenon, and there is no evidence that specparam techniques can resolve such time-limited activity.”

      We thank the reviewer for their comment. As we noted in our preliminary response, specparam, in the form we used, does not incorporate temporal information; it can be applied to any power spectral density (PSD), regardless of how the PSD is derived. Therefore, the ability of specparam to resolve temporal activity depends on the time-frequency decomposition method used. In particular, the performance of specparam is limited by the underlying time-frequency decomposition method and the data available for it. In fact, Wilson et al. (2022, https://doi.org/10.7554/eLife.77348), who have developed an approach for timeresolved estimation of aperiodic parameters, actually compare two approaches that differ only in their underlying time-frequency estimation method, while the specparam algorithm is the same in both cases. For the time-frequency decomposition we used superlets (https://doi.org/10.1038/s41467-020-20539-9), which have been shown to resolve short bursts of activity more effectively than other methods. To our knowledge, superlets provide the highest resolution in both time and frequency compared to wavelets or STFT.

      To improve the stability of the estimates, we performed spectral parameterisation on trial-averaged power rather than on individual trials (unlike the approach in Wilson et al., 2022). In contrast, Gyurkovics et al. (2022) who also investigated task-related changes in aperiodic activity, estimated power spectra at the single-trial level, but stabilised their estimates by averaging over 1-second time windows; however, this approach reduced their temporal resolution. We have now clarified this point in the manuscript.

      “The authors note in the introduction that ‘We hypothesised that the aperiodic slope would be modulated by the processing demands of the n-back task, and that this modulation would vary according to differences in load and stimulus type.’. This type of parametric variation would be a compelling test of the hypothesis, but these analyses only included alpha and beta power (Main text & Figure 4)”

      We appreciate the reviewer's comment, but would like to clarify that the comparison between conditions was performed separately for both periodic power and aperiodic parameters. The periodic power analyses included all frequencies from 3 to 50 Hz (or 35 Hz in the case of the second dataset). All factors were included in the linear model (see LMM formula in equation 7 - subsection Methods / Comparisons between experimental conditions), but the figures only include fixed effects that were statistically significant. For example, Figure 7 shows the periodic activity and Figure 9 shows the exponent, with further details provided in other supplementary figures.

      “Figure 5 does show some plots with some theta activity, but it is unclear how this representation of periodic activity has anything to do with the major hypothesis that aperiodic slope accounts for taskevoked theta.” /…/ In particular, specparam is a multi-step model fitting procedure and it isn't impressively reliable even in ideal conditions (PMID: 38100367, 36094163, 39017780). To achieve the aim stated in the title, abstract, and discussion, the authors would have to first demonstrate the robustness of this technique applied to these data.

      We acknowledge these concerns and have taken several steps to clarify the relationship between the aperiodic slope and low-frequency activity, and to assess the robustness of the specparam (FOOOF) approach in our data.

      First, we directly compared baseline-corrected activity with periodic and aperiodic components in all three data sets. These analyses showed that low-frequency increases in baseline-corrected signals consistently tracked aperiodic parameters - in particular the aperiodic exponent - rather than periodic theta activity (see Figs 4, S3, S20, S33). Periodic components, on the other hand, were primarily associated with baseline corrected activity in the alpha and beta bands. The aperiodic exponent also showed negative correlations with high beta/gamma baseline-corrected activity, which is exactly what would be expected in the case of a shift in the aperiodic slope (rather than delta/theta oscillations). See also examples at https://doi.org/10.1038/s41593-020-00744-x (Figures 1c-iv) or https://doi.org/10.1111/ejn.15361 (Figures 3c,d).

      Next, because reviewer #1 was concerned that FOOOF might be insensitive to peaks at the edges of the spectrum, we ran a simulation that confirmed this concern. We then applied an alternative phase-based measure of oscillatory activity: the phase-autocorrelation function (pACF; Myrov et al., 2024). This method does not rely on spectral fitting and is sensitive to phase rather than amplitude. Across all datasets, pACF results were in close agreement with periodic estimates from FOOOF and were not correlated with aperiodic parameter estimates (Figs 5, S4, S5, S21, S22, S34, S35).

      Taken together, these complementary analyses suggest that the apparent low-frequency (delta, theta) activity observed in the baseline-corrected data is better explained by changes in the aperiodic slope than by true low-frequency oscillations. While we acknowledge the limitations of any single method, the convergence between the techniques increases our confidence in this interpretation.

      “How did the authors derive time-varying changes in aperiodic slope and exponent in Figure 6 [now Figure 8]?”

      We thank the reviewer for this question. As explained in the Methods section, we first performed a time-frequency decomposition, averaged across trials, and then applied a spectral decomposition to each time point.

      “While these methodological details may seem trivial and surmountable, even if successfully addressed the findings would have to be very strong in order to support the rather profound conclusions that the authors made from these analyses, which I consider unsupported at this time:

      (a) ‘In particular, the similarities observed in the modulation of theta-like activity attributed to aperiodic shifts provide a crucial validation of our conclusions regarding the nature of theta activity and the aperiodic component.’

      (b) ‘where traditional baseline subtraction can obscure significant neural dynamics by misrepresenting aperiodic activity as theta band oscillatory activity’

      (d) ‘our findings suggest that theta dynamics, as measured with scalp EEG, are predominantly a result of aperiodic shifts.’

      (e)  ‘a considerable proportion of the theta activity commonly observed in scalp EEG may actually be due to shifts in the aperiodic slope’.

      (f) ‘It is therefore essential to independently verify whether the observed theta activity is genuinely oscillatory or primarily aperiodic’

      [this would be great, but first we need to know that specparam is capable of reliably doing this].”

      We believe that our claims are now supported by the aforementioned analyses, namely associations between baseline-corrected time-frequency activity and FOOOF parameters and associations between FOOOF parameters and PACF.

      The reviewer found it unclear what low-frequency phase has to do with 1/f spectral changes: ‘Finally, our findings challenge the established methodologies and interpretations of EEG-measured crossfrequency coupling, particularly phase-amplitude coupling’

      We thank the reviewer for their comment. To address this concern, we have added further clarification in the Discussion section. Our results are particularly relevant for phase-amplitude coupling (PAC) based on theta, such as theta-gamma coupling. PAC relies on the assumption that there are distinct oscillations at both frequencies. However, if no clear oscillations are present at these frequencies— specifically, if theta oscillations are absent—then the computation of PAC becomes problematic.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Most studies in sensory neuroscience investigate how individual sensory stimuli are represented in the brain (e.g., the motion or color of a single object). This study starts tackling the more difficult question of how the brain represents multiple stimuli simultaneously and how these representations help to segregate objects from cluttered scenes with overlapping objects.

      Strengths

      The authors first document the ability of humans to segregate two motion patterns based on differences in speed. Then they show that a monkey's performance is largely similar; thus establishing the monkey as a good model to study the underlying neural representations.

      Careful quantification of the neural responses in the middle temporal area during the simultaneous presentation of fast and slow speeds leads to the surprising finding that, at low average speeds, many neurons respond as if the slowest speed is not present, while they show averaged responses at high speeds. This unexpected complexity of the integration of multiple stimuli is key to the model developed in this paper.

      One experiment in which attention is drawn away from the receptive field supports the claim that this is not due to the involuntary capture of attention by fast speeds.

      A classifier using the neuronal response and trained to distinguish single-speed from bi-speed stimuli shows a similar overall performance and dependence on the mean speed as the monkey. This supports the claim that these neurons may indeed underlie the animal's decision process.

      The authors expand the well-established divisive normalization model to capture the responses to bi-speed stimuli. The incremental modeling (eq 9 and 10) clarifies which aspects of the tuning curves are captured by the parameters.

      We thank the Reviewer for the thorough summary of the findings and supportive comments.

      Weaknesses

      While the comparison of the overall pattern of behavioral performance between monkeys and humans is important, some of the detailed comparisons are not well supported by the data. For instance, whether the monkey used the apparent coherence simply wasn't tested and a difference between 4 human subjects and a single monkey subject cannot be tested statistically in a meaningful manner. I recommend removing these observations from the manuscript and leaving it at "The difference between the monkey and human results may be due to species differences or individual variability" (and potentially add that there are differences in the task as well; the monkey received feedback on the correctness of their choice, while the humans did not.)

      Thanks for the suggestion. We agree and have modified the text accordingly. We now state on page 8, lines 189-191, "The difference between the monkey and human results may be due to species differences or individual variability. The differences in behavioral tasks may also play a role – the monkey received feedback on the correctness of the choice, whereas human subjects did not."

      A control experiment aims to show that the "fastest speed takes all" behavior is general by presenting two stimuli that move at fast/slow speeds in orthogonal directions. The claim that these responses also show the "fastest speed takes all" is not well supported by the data. In fact, for directions in which the slow speed leads to the largest response on its own, the population response to the bi-speed stimulus is the average of the response to the components (This is fine. One model can explain all direction tuning curve, which also explain averaging at the slower speed stronger directions). Only for the directions where the fast speed stimulus is the preferred direction is there a bias towards the faster speed (Figure 7A). The quantification of this effect in Figure 7B seems to suggest otherwise, but I suspect that this is driven by the larger amplitude of Rf in Figure 8, and the constraint that ws and wf are constant across directions. The interpretation of this experiment needs to be reconsidered.

      The Reviewer raised a good question. Our model with fixed weights for faster and slower components across stimulus directions provided a parsimonious explanation for the whole tuning curve, regardless of whether the faster component elicited a stronger response than the slower component. Because the model can be well constrained by the measured direction-tuning curves, we did not restrain 𝑤 and 𝑤 to sum to one, which is more general. The linear weighted summation (LWS) model fits the neuronal responses to the bi-speed stimuli very well, accounting for an average of 91.8% (std = 7.2%) of the response variance across neurons. As suggested by the Reviewer, we now use the normalization model to fit the data with fixed weights across all motion directions. The normalization model also provides a good fit, accounting for an average of 90.5% (std = 7.1%) of the response variance across neurons.

      Note that in the new Figure 8A, at the left side of the tuning curve (i.e., at negative vector average (VA) directions), where the slower component moving in a more preferred direction of the neurons than the faster component, the bi-speed response (red curve) is slightly lower than the average of the component response (gray curve), indicating a bias toward the weaker faster component. Therefore, the faster speed bias does not occur only when the faster component moves in the more preferred direction. This can also be seen in the direction-tuning curves of an example neuron that we added to the figure (new Fig. 8B). The peak responses to the slower and faster component were about the same, but the neuron still showed a faster-speed bias. At negative VA directions, the red curve is lower than the response average (gray curve) and is biased toward the weaker (faster) component.  

      The faster-speed bias also occurs when the peak response to the slower component is stronger than the faster component. As a demonstration, Author response image 1 1 shows an example MT neuron that has a slow preferred speed (PS = 1.9 deg/s) and was stimulated by two speeds of 1.2 and 4.8 deg/s. The peak response to the faster component (blue) was weaker than that to the slower component (green). However, this neuron showed a strong bias toward the faster component. A normalization model fit with fixed weights for the faster and slower components (black curve) described the neuronal response to both speeds (red) well. This neuron was not included in the neuron population shown in Figure 8 because it was not tested with stimulus speeds of 2.5 and 10 deg/s.

      Author response image 1.

      An example MT neuron was tested with stimulus speeds of 1.2 and 4.8 deg/s. The preferred speed of this neuron was 1.9 deg/s. Fixed weights of 0.59 for the faster component and 0.12 for the slower component described the responses to the bispeed stimuli well using a normalization model. The neuron showed a faster-speed bias although its peak response to the slower component was higher than that of the faster component.

      We modified the text to clarify these points:

      Page 19, lines 405 – 410, “The bi-speed response was biased toward the faster component regardless of whether the response to the faster component was stronger (in positive VA directions) or weaker (in negative VA directions) than that to slower component (Fig. 8A). The result from an example neuron further demonstrated that, even when the peak firing rates of the faster and slower component responses were similar, the response elicited by the bi-speed stimuli was still biased toward the faster component (Fig. 8B). ”

      Page 19, lines 421 – 427, “Because the model can be well constrained by the measured direction-tuning curves, it is not necessary to require 𝑤 and 𝑤 to sum to one, which is more general. An implicit assumption of the model is that, at a given pair of stimulus speeds, the response weights for the slower and faster components are fixed across motion directions. The model fitted MT responses very well, accounting for an average of 91.8% of the response variance (std = 7.2%, N = 21) (see Methods). The success of the model supports the assumption that the response weights are fixed across motion directions.”

      Reviewer #2 (Public Review):

      Summary:

      This is a paper about the segmentation of visual stimuli based on speed cues. The experimental stimuli are random dot fields in which each dot moves at one of two velocities. By varying the difference between the two speeds, as well as the mean of the two speeds, the authors estimate the capacity of observers (human and non-human primates) to segment overlapping motion stimuli. Consistent with previous work, perceptual segmentation ability depends on the mean of the two speeds. Recordings from area MT in monkeys show that the neuronal population to compound stimuli often shows a bias towards the faster-speed stimuli. This bias can be accounted for with a computational model that modulates single-neuron firing rates by the speed preferences of the population. The authors also test the capacity of a linear classifier to produce the psychophysical results from the MT data.

      Strengths:

      Overall, this is a thorough treatment of the question of visual segmentation with speed cues. Previous work has mostly focused on other kinds of cues (direction, disparity, color), so the neurophysiological results are novel. The connection between MT activity and perceptual segmentation is potentially interesting, particularly as it relates to existing hypotheses about population coding.

      We thank the Reviewer for the summary and comments.

      Weaknesses:

      Page 10: The relationship between (R-Rs) and (Rf-Rs) is described as "remarkably linear". I don't actually find this surprising, as the same term (Rs) appears on both the x- and y-axes. The R^2 values are a bit misleading for this reason.

      The Reviewer is correct that subtracting a common term Rs from R and Rf would introduce correlation between (R-Rs) and (Rf-Rs). To address this concern, we conducted an additional analysis. We showed that, at most speed pairs, the R^2 values between (R-Rs) and (Rf-Rs) based on the data are significantly higher than the R^2 values between (R’-Rs) and (RfRs), in which R’ was a random combination of Rs and Rf. Since the same Rs was commonly subtracted in calculating R^2 (data) and R^2 (simulation), the difference between R^2 (data) and R^2 (simulation) suggests that the response pattern of R contributes to the additional correlation.

      We now acknowledge this confounding factor and describe the new analysis results on page 14, lines 309 – 326. Please also see the response to Reviewer 3 about a similar concern.

      Figure 9: I'm confused about the linear classifier section of the paper. The idea makes sense - the goal is to relate the neuronal recordings to the psychophysical data. However the results generally provide a poor quantitative match to the psychophysical data. There is mention of a "different paper" (page 26) involving a separate decoding study, as well as a preprint by Huang et al. (2023) that has better decoding results. But the Huang et al. preprint appears to be identical to the current manuscript, in that neither has a Figure 12, 13, or 14. The text also says (page 26) that the current paper is not really a decoding study, but the linear classifier (Figure 9F) is a decoder, as noted on page 10. It sounds like something got mixed up in the production of two or more papers from the same dataset.

      We apologize for the confusion regarding the reference of Huang et al. (2023, bioRxiv). We referred to an earlier version of this bioRxiv manuscript (version 1), which included decoding analysis. In the bibliography, we provided two URLs for this pre-print. While the second link was correct, the first URL automatically links to the latest version (version 2), which did not have the abovementioned decoding analysis.

      The analysis in Figure 9 is to apply a classifier to discriminate two-speed from singlespeed stimuli, which is a decoding analysis as the Reviewer pointed out. We revised the result section about the classifier to make it clear what the classifier can and cannot explain (pages 2223, lines 516-534). We also included a sentence at the end of this section that leads to additional decoding analysis to extract motion speed(s) from MT population responses (page 23, lines 541543), “To directly evaluate whether the population neural responses elicited by the bi-speed stimulus carry information about two speeds, it is important to conduct a decoding analysis to extract speed(s) from MT population responses.”

      In any case, I think that some kind of decoding analysis would really strengthen the current paper by linking the physiology to the psychophysics, but given the limitations of the linear classifier, a more sophisticated approach might be necessary -- see for example Zemel, Dayan, and Pouget, 1998. The authors might also want to check out closely related work by Treue et al. (Nature Neuroscience 2000) and Watamaniuk and Duchon (1992).

      We thank the Reviewer for the suggestion and agree that it is useful to incorporate additional decoding analysis that can better link physiology results to psychophysics. The decoding analysis we conducted was motivated by the framework proposed by Zemel, Dayan, and Pouget (1998), and also similar to the idea briefly mentioned in the Discussion of Treue et al. (2000). We have added the decoding analysis to this paper on pages 25-32.  

      What do we learn from the normalization model? Its formulation is mostly a restatement of the results - that the faster and slower speeds differentially affect the combined response. This hypothesis is stated quantitatively in equation 8, which seems to provide a perfectly adequate account of the data. The normalization model in equation 10 is effectively the same hypothesis, with the mean population response interposed - it's not clear how much the actual tuning curve in Figure 10A even matters, since the main effect of the model is to flatten it out by averaging the functions in Figure 10B. Although the fit to the data is reasonable, the model uses 4 parameters to fit 5 data points and is likely underconstrained; the parameters other than alpha should at least be reported, as it would seem that sigma is actually the most important one. And I think it would help to examine how robust the statistical results are to different assumptions about the normalization pool.

      In the linear weighted summation model (LWS) model (Eq. 8), the weights Ws and Wf are free parameters. We think the value of the normalization model (Eq. 9) is that it provides an explanation of what determines the response weights. We agree with the Reviewer that using the normalization model (Eq. 9) with 4 parameters to fit 5 data points of the tuning curves to bispeed stimuli of individual neurons is under-constrained. We, therefore, removed the section using the normalization model to fit overlapping stimuli moving in the same direction at different speeds.

      A better way to constrain the normalization model is to use the full direction-tuning curves of MT neurons in response to two stimulus components moving in different directions at different speeds, as shown in Figure 8. We now use the normalization model (Eq. 9) to fit this data set (also suggested by Reviewer 1), in addition to the LWS model. We now report the median values of the model parameters of the normalization model, including the exponent n, sigma, alpha, and the constant c. We also compared the normalization model fit with the linear summation (LWS) model. We discuss the limitations of our data set and what needs to be done in future studies. The revisions are on page 20, lines 434-467 in the Results, and pages 34-35, lines 818-829 in Discussion.

      Reviewer #3 (Public Review):

      Summary:

      This study concerns how macaque visual cortical area MT represents stimuli composed of more than one speed of motion.

      Strengths:

      The study is valuable because little is known about how the visual pathway segments and preserves information about multiple stimuli. The study presents compelling evidence that (on average) MT neurons represent the average of the two speeds, with a bias that accentuates the faster of the two speeds. An additional strength of the study is the inclusion of perceptual reports from both humans and one monkey participant performing a task in which they judged whether the stimuli involved one vs two different speeds. Ultimately, this study raises intriguing questions about how exactly the response patterns in visual cortical area MT might preserve information about each speed, since such information could potentially be lost in an average response as described here, depending on assumptions about how MT activity is evaluated by other visual areas.

      Weaknesses:

      My main concern is that the authors are missing an opportunity to make clear that the divisive normalization, while commonly used to describe neural response patterns in visual areas (and which fits the data here), fails on the theoretical front as an explanation for how information about multiple stimuli can be preserved. Thus, there is a bit of a disconnect between the goal of the paper - how does MT represent multiple stimuli? - and the results: mostly averaging responses which, while consistent with divisive normalization, would seem to correspond to the perception of a single intermediate speed. This is in contrast to the psychophysical results which show that subjects can at least distinguish one from two speeds. The paper would be strengthened by grappling with this conundrum in a head-on manner.

      We thank the Reviewer for the constructive comments. We agree with the Reviewer that it is important to connect the encoding of multiple speeds with the perception. The Reviewer also raised an important question regarding whether multiple speeds can be extracted from population neural responses, given the encoding rules characterized in this study.

      It is a hard problem to extract multiple stimulus values from the population neural response. Inspired by the theoretical framework proposed by Zemel et al. (1998), we conducted a detailed decoding study to extract motion speed(s) from MT population responses. We used the decoded speed(s) to perform a discrimination task similar to our psychophysics task and compared the decoder's performance with perception. We found that, at X4 speed difference, we could decode two speeds based on MT response, and the decoder's performance was similar to that of perception. However, at X2 speed difference, except at the slowest speeds of 1.25 and 2.5 deg/s, the decoder cannot extract two speeds and cannot differentiate between a bi-speed stimulus and a single log-mean speed stimulus. We have added the decoding analysis to this paper on pages 25-32. We also discuss the implications and limitations of these results (pages 35-36, lines 852-884).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Classifier:

      One question I have is how the classifier's performance scales with the number of neurons used in the analysis. Here that number is set to the number that was recorded, but it is a free parameter in this analysis. Why does the arbitrary choice of 100 neurons match the animals' performance?

      We apologize for the unclearness of this point. The decoding using the classifier was based on the neural responses of 100 recorded MT neurons in our data set. The number of 100 neurons was not a free parameter. We need to reconstruct the population neural response based on the responses of the recorded neurons and their preferred speeds (red and black dots in Figure 9A-E).  

      We spline-fitted the reconstructed population neural responses (red and black curves in Figure 9-E). One way to change the number of neurons used for the decoding is to resample N points along the spline-fitted population responses, using N as a free parameter. However, we think it is better to conduct decoding based on the responses from the recorded neurons rather than based on interpolated responses. We now clarify on page 22, lines 520-522, that we based on the responses of the 100 recorded neurons in our dataset to do the classification (decoding).

      Normalization Model:

      Although the model is phenomenological, a schematic circuit diagram could help the reader understand how this could work (I think this is worthwhile even though the data cannot distinguish among different implementations of divisive normalization).

      Thanks for this suggestion. We agree that a circuit diagram would help the readers understand how the model works. However, as the Reviewer pointed out, our data cannot distinguish between different implementations of the model. For example, divisive normalization can occur on the inputs to MT neurons or on MT neurons themselves. The circuit mechanism of weighting the component responses is not clear either. A schematic circuit diagram then mainly serves to recapitulate the normalization model in Equation 9. We, therefore, choose not to add a schematic circuit diagram at this time. We are interested in developing a circuit model to account for how visual neurons represent multiple stimuli in future studies.

      Another suggestion is that the time courses could be used to constrain the model; the fact that it takes a while after the onset of the slow-speed response for averaging to reveal itself suggests the presence of inertia/hysteresis in the circuit).

      We agree that the time course of MT responses could be used to constrain the model. This is also why we think it is important to document the time course in this paper. We now state in the Results, page 17, lines 354-357:

      “At slow speeds, the very early faster-speed bias suggests a likely role of feedforward inputs to MT on the faster-speed bias. The slightly delayed reduction (normalization) in the bispeed response relative to the stronger component response also helps constrain the circuit model for divisive normalization.”

      Two-Direction Experiment:

      Applying the normalization model to this dataset could help determine its generality.

      This is a good point. We now apply the normalization model (Eq. 9) to fit this data set with the full direction tuning curves in response to two stimuli moving in different directions at different speeds. Please also see the response to Reviewer 2 about the normalization model fit.

      The results of the normalization model fit are now described on page 20 and Figure 8A, B, D.

      Reviewer #2 (Recommendations For The Authors):

      In terms of impact, I would say that the presentation is geared largely toward people who go to VSS. To broaden the appeal, the authors might consider a more general formulation of the four hypotheses stated at the bottom of page 3. These are prominent ideas in systems neuroscience - population encoding, Bayesian inference, etc.

      We thank the Reviewer for the suggestion. We have revised the Introduction accordingly on pages 3-4, lines 43-69. Please also see the response to Reviewer 3 about the Introduction.

      Figure 5: It might be helpful to show the predictions for different hypotheses. If the response to the transparent stimulus is equal to that of the faster stimulus, you will have a line with slope 1. If it is equal to the response to the slow stimulus, all points will lie on the x-axis. In between you get lines with slopes less than 1.

      In Figures 5F1 and 5F2, we show dotted lines indicating faster-all (i.e., faster-componenttake-all), response averaging, and slower-all (i.e., slower-component-take-all) on the X-axis. We show those labels in between Figs. 5F1 and F2.

      Figure 6: The analysis is not motivated by any particular question, and the results are presented without any quantitation. This section could be better motivated or else removed.

      We now better motivate the section about the response time course on page 16, lines 336 – 339: “The temporal dynamics of the response bias toward the faster component may provide a useful constraint on the neural model that accounts for this phenomenon. We therefore examined the timecourse of MT response to the bi-speed stimuli. We asked whether the faster-speed bias occurred early in the neuronal response or developed gradually.”

      On page 17, lines 354-357, we also state that “At slow speeds, the very early faster-speed bias suggests a likely role of feedforward inputs to MT on the faster-speed bias. The slightly delayed reduction (normalization) in the bi-speed response relative to the stronger component response also helps constrain the circuit model for divisive normalization.”

      Equation (9): There appears to be an "S" missing in the denominator.

      We double-checked and did not see a missing "S" in Equation 9, on page 20.  

      Reviewer #3 (Recommendations For The Authors):

      This is an impressive study, with the chief strengths being the computational/theoretical motivation and analyses and the inclusion of psychophysics together with primate neurophysiology. The manuscript is well-written and the figures are clear and convincing (with a couple of suggestions detailed below).

      We thank the Reviewer for the comments.

      Specific suggestions:

      (1) Intro para 3

      "It is conceivable that the responses of MT neurons elicited by two motion speeds may follow one of the following rules: (1) averaging the responses elicited by the individual speed components; (2) bias toward the speed component that elicits a stronger response, i.e. "soft-max operation" (Riesenhuber and Poggio, 1999); (3) bias toward the slower speed component, which may better represent the more probable slower speeds in nature scenes (Weiss et al., 2002); (4) bias toward the faster speed component, which may benefit the segmentation of a faster-moving stimulus from a slower background."

      This would be a good place to point out which of these options is likely to preserve vs. lose information and how.

      It seems to me that only #2 is clearly information-preserving, assuming that there are neurons with a variety of different speed preferences such that different neurons will exhibit different "winners". #1 would predict subjects would perceive only an intermediate speed, whereas #3 would predict perceiving only/primarily the slower speed and #4 would predict only/primarily perceiving the faster speed.

      The difference between "only" and "primarily" would depend on whether the biases are complete or only partial. I acknowledge that the behavioral task in the study is not a "report all perceived speeds" task, but rather a 1 vs 2 speeds task, so the behavioral assay is not a direct assessment of the question I'm raising here, but I think it should still be possible to write about the perceptual implications of these different possibilities for encoding in an informative way.

      Thanks for the suggestions. We have revised this paragraph in the Introduction on pages 3 – 4, lines 43 – 69.

      (2) Analysis clarifications

      The section "Relationship between the responses to bi-speed stimuli and constituent stimulus components" could use some clarification/rearrangement/polish. I had to read it several times. Possibly, rearrangement, simplification/explanation of nomenclature, and building up from a simpler to a more complex case would help. If I understand correctly, the outcome of the analysis is to obtain a weight value for every combination of slow and fast speeds used. The R's in equation 5 are measured responses, observed on the single stimulus and combined stimulus trials. It was not clear to me if the R's reflect average responses or individual trial responses; this should be clarified. Ws = 1- wf so in essence only 1 weight is computed for each combination. Then, in the subsequent sections of the manuscript, the authors explore whether the weight computed for each stimulus combination is the same or does it vary across conditions. If I have this right, then walking through these steps will aid the reader.

      The Reviewer is correct. We now walk through these steps and better state the rationale for this approach. The R's in Equation 5 are trial-averaged responses, not trial-by-trial responses.

      We have clarified these points on page 13.

      To take a particular example, the sentence "Using this approach to estimate the response weights for individual neurons can be inaccurate because, at each speed pair, the weights are determined only by three data points" struck me as a rather backdoor way to get at the question. Is the estimate noisy? Or does the weighting vary systematically across speeds? I think the authors are arguing the latter; if so, it would be valuable to say so.

      We wanted to estimate the weighting for each speed pair and determine whether the weights change with the stimulus speeds. Indeed, we found that the weights change systematically across speed pairs. The issue was not because the estimate was noisy (see below in response to the second paragraph for point 3.  

      We have clarified this point in the text, on page 13, lines 273 – 280: “Our goal was to estimate the weights for each speed pair and determine whether the weights change with the stimulus speeds. In our main data set, the two speed components moved in the same direction. To determine the weights of 𝑤 and w<sub>f</sub> for each neuron at each speed pair, we have three data points R, R<sub>s</sub>, and R<sub>f</sub>, which are trial-averaged responses. Since it is not possible to solve for both variables, 𝑤 and w<sub>f</sub>, from a single equation (Eq. 5) with three data values, we introduced an additional constraint: 𝑤 + w<sub>f</sub> =1. While this constraint may not yield the exact weights that would be obtained with a fully determined system, it nevertheless allows us to characterize how the relative weights vary with stimulus speed.”

      (3) Figure 5

      Related to the previous point, Figures 5A-E are subject to a possible confound. When plotting x vs y values, it is critical that the x and y not depend trivially on the same value. Here, the plots are R-Rs and Rf-Rs. Rs, therefore, is contained in both the x and y values. Assume, for the sake of argument, that R and Rf are constants, whereas Rs is drawn from a distribution of random noise. When Rs, by chance, has an extreme negative value, R-Rs and Rf-Rs will be large positive values. The solution to this artificial confound is to split the trials that generate Rs into two halves and subtract one half from R and the other half from Rf. Then, the same noisy draw will not be contributing to both x and y. The above is what is needed if the authors feel strongly about including this analysis.

      The Reviewer is correct that subtracting a common term (Rs) would introduce a correlation between (R-Rs) and (Rf-Rs) (Reviewer 2 also raised this point). R's in Equations 5, 6, 7 (and Figure 5A-E) are trial-averaged responses. So, we cannot address the issue by dividing R’s into two halves. Our results showed that the regression slope (W<sub>f</sub>) changed from near 1 to about 0.5 as the stimulus speeds increased, and the correlation coefficient between (R – Rs) and (R<sub>f</sub> – Rs) was high at slow stimulus speeds. To determine whether these results can be explained by the confounding factor of subtracting a common term Rs, rather than by the pattern of R in representing two speeds, we did an additional analysis. We acknowledged the issue and described the new analysis on page 13, lines 303 – 326:

      “Our results showed that the bi-speed response showed a strong bias toward the faster component when the speeds were slow and changed progressively from a scheme of ‘fastercomponent-take-all’ to ‘response-averaging’ as the speeds of the two stimulus components increased (Fig. 5F1). We found similar results when the speed separation between the stimulus components was small (×2), although the bias toward the faster component at low stimulus speeds was not as strong as x4 speed separation (Fig. 5A2-F2 and Table 1).  

      In the regression between (𝑅 – 𝑅<sub>s</sub>) and (𝑅<sub>f</sub> – 𝑅<sub>s</sub>), 𝑅<sub>s</sub> was a common term and therefore could artificially introduce correlations. We wanted to determine whether our estimates of the regression slope (𝑤<sub>f</sub>) and the coefficient of determination (𝑅<sup>2</sup>) can be explained by this confounding factor. At each speed pair and for each neuron from the data sample of the 100 neurons shown in Figure 5, we simulated the response to the bi-speed stimuli (𝑅 <sub>e</sub>) as a randomly weighted sum of 𝑅<sub>f</sub> and 𝑅<sub>s</sub> of the same neuron.

      𝑅<sub>e</sub> = 𝑎𝑅<sub>f</sub> + (1 − 𝑎)𝑅<sub>s</sub>,

      in which 𝑎 was a randomly generated weight (between 0 and 1) for 𝑅<sub>f</sub>, and the weights for 𝑅<sub>f</sub> and 𝑅<sub>s</sub> summed to one. We then calculated the regression slope and the correlation coefficient between the simulated 𝑅<sub>e</sub> - 𝑅<sub>s</sub> and 𝑅<sub>f</sub> - 𝑅<sub>s</sub> across the 100 neurons. We repeated the process 1000 times and obtained the mean and 95% confidence interval (CI) of the regression slope and the 𝑅<sup>2</sup>. The mean slope based on the simulated responses was 0.5 across all speed pairs. The estimated slope (𝑤<sub>f</sub>) based on the data was significantly greater than the simulated slope at slow speeds of 1.25/5, 2.5/10 (Fig. 5F1), and 1.25/2.5, 2.5/5, and 5/10 degrees/s (Fig. 5F2) (bootstrap test, see p values in Table 1). The estimated 𝑅<sup>2</sup> based on the data was also significantly higher than the simulated 𝑅<sup>2</sup> for most of the speed pairs (Table 1). These results suggest that the faster-speed bias at the slow stimulus speeds and the consistent response weights across the neuron population at each speed pair are not analysis artifacts.”

      However, I don't see why the analysis is needed at all. Can't Figure 5F be computed on its own? Rather than computing weights from the slopes in 5A-E, just compute the weights from each combination of stimulus conditions for each neuron, subject to the constraint ws=1-wf. I think this would be simpler to follow, not subject to the noise confound described in the previous point, and likely would make writing about the analysis easier.

      We initially tried the suggested approach to determine the weights of the individual neurons. The weights from each speed combination for each neuron are calculated by:  𝑤<sub>s</sub> = , 𝑤<sub>f</sub> , and 𝑤<sub>s</sub> and 𝑤<sub>f</sub> sum to 1. 𝑅, 𝑅<sub>f</sub> and  𝑅<sub>s</sub> are the responses to the same motion direction. Using this approach to estimate response weights for individual neurons can be unreliable, particularly when 𝑅<sub>f</sub> and 𝑅<sub>s</sub> are similar. This situation often arises when the two speeds fall on opposite sides of the neuron's preferred speed, resulting in a small denominator (𝑅<sub>f</sub> - 𝑅<sub>s</sub>) and, consequently, an artificially inflated weight estimate. We therefore used an alternative approach. We estimated the response weights for the neuronal population at each speed pair (𝑅<sub>f</sub> - 𝑅<sub>s</sub>) using linear regression of (𝑅 - 𝑅<sub>s</sub>) against (𝑅<sub>f</sub> - 𝑅<sub>s</sub>). The slope is the weight for the faster component for the population. This approach overcame the difficulty of determining the response weights for single neurons.

      Nevertheless, if the data provide better constraints, it is possible to estimate the response weights for each speed pair for individual neurons. For example, we can calculate the weights for single neurons by using stimuli that move in different directions at two speeds. By characterizing the full direction tuning curves for R, R<sub>f</sub>, and Rs, we have sufficient data to constrain the response weights for single neurons, as we did for the speed pair of 2.5 and 10º/s in Figure 8. In future studies, we can use this approach to measure the response weights for single neurons at different speed pairs and average the weights across the neuron population.  

      We explain these considerations in the Results (pages 13–14, lines 265-326) and Discussion (pages 34-35, lines 818-829).

      (4) Figure 7

      Bidirectional analysis. It would be helpful to have a bit more explanation for why this analysis is not subject to the ws=1-wf constraint. In Figure 7B, a line could be added to show what ws + wf =1 would look like (i.e. a line with slope -1 going from (0,1) to (1,0); it looks like these weights are a little outside that line but there is still a negative trend suggesting competition.

      For the data set when visual stimuli move in the same direction at different speeds, we included a constraint that W<sub>s</sub> and W<sub>f</sub> sum to 1. This is because one cannot solve two independent variables (Ws and Wf) using one equation R = W<sub>s</sub> · R<sub>s</sub> + W<sub>f</sub> R<sub>f</sub>, with three data values (R, Rs, Rf).

      In the dataset using bi-directional stimuli (now Fig. 8), we can use the full direction tuning curves to constrain the linear weighted (LWS) summation model and the normalization model. So, we did not need to impose the additional constraint that Ws and Wf sum to one, which is more general. We now clarify this in the text, on page 19, lines 421-423.

      As suggested, we added a line showing Ws + Wf = 1 for the LWS model fit (Fig. 8C) and the normalization model fit (Fig. 8D) (also see page 21, lines 482-484). Although 𝑤 and 𝑤 are not constrained to sum to one in the model fits, the fitted weights are roughly aligned with the dashed lines of Ws + Wf = 1.

      (5) Attention task

      General wording suggestions - a caution against using "attention" as a causal/mechanistic explanation as opposed to a hypothesized cognitive state. For example, "We asked whether the faster-speed bias was due to bottom-attention being drawn toward the faster stimulus component". This could be worded more conservatively as whether the bias is "still present if attention is directed elsewhere" - i.e. a description of the experimental manipulation.

      We intended to test the hypothesis of whether the faster-speed bias can be explained by attention automatically drawn to the faster component and therefore enhance the contribution of the faster component to the bi-speed response. We now state it as a possible explanation to be tested. We changed the subtitle of this section to be more conservative: “Faster-speed bias still present when attention was directed away from the RFs”, on page 18, line 363.

      We also modified the text on page 18, lines 364-367: “One possible explanation for the faster-speed bias may be that bottom-up attention is drawn toward the faster stimulus component, enhancing the response to the faster component. To address this question, we asked whether the faster-speed bias was still present if attention was directed away from the RFs.”

      Relatedly, in the Discussion, the section on "Neural mechanisms", the sentence "The faster-speed bias was not due to an attentional modulation" should be rephrased as something like 'the bias survived or was still present despite an attentional modulation requiring the monkey to attend elsewhere'.

      Our motivation for doing the attention-away experiment was to determine whether a bottom-up attentional modulation can explain the faster-speed bias. We now describe the results as suggested by the Reviewer. But we’d also like to interpret the implications of the results. In Discussion, page 34, lines 789-790, we now state: “We found that the faster-speed bias was still present when attention was directed away from the RFs, suggesting that the faster-speed bias cannot be explained by an attentional modulation.”  

      (6) "A model that accounts for the neuronal responses to bi-speed stimuli". This section opens with: "We showed that the neuronal response in MT to a bi-speed stimulus can be described by a weighted sum of the neuron's responses to the individual speed components". "Weighted average" would be more appropriate here, given that ws = 1-wf.

      As mentioned above, the added constraint of Ws+Wf = 1 was only a practical solution for determining the weights for the data set using visual stimuli moving in the same direction. More generally, Ws and Wf do not need to sum to one. As such, we prefer the wording of weighted sum.

      (7) "As we have shown previously using visual stimuli moving transparently in different directions, a classifier's performance of discriminating a bi-directional stimulus from a singledirection stimulus is worse when the encoding rule is response-averaging than biased toward one of the stimulus components" - this is important! Can this be worked into the Introduction?

      Yes, we now also mention this point in the Introduction regarding response averaging on page 4, lines 54-57: “While decoding two stimuli from a unimodal response is theoretically possible (Zemel et al., 1998; Treue et al., 2000), response averaging may result in poorer segmentation compared to encoding schemes that emphasize individual components, as demonstrated in neural coding of overlapping motion directions (Xiao and Huang, 2015).” Also, please see the response to point 1 above.

      (8) Minor, but worth catching now - is the use of initials for human participants consistent with best practices approved at your institution?

      Thanks for checking. The letters are not the initials of the human subjects. They are coded characters. We have clarified it in the legend of Figure 1, on page 7, line 168.

    1. Author Response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      Summary

      While DNA sequence divergence, differential expression, and differential methylation analysis have been conducted between humans and the great apes to study changes that "make us human", the role of lncRNAs and their impact on the human genome and biology has not been fully explored. In this study, the authors computationally predict HSlncRNAs as well as their DNA Binding sites using a method they have developed previously and then examine these predicted regions with different types of enrichment analyses. Broadly, the analysis is straightforward and after identifying these regions/HSlncRNAs the authors examined their effects using different external datasets.

      I no longer have any concerns about the manuscript as the authors have addressed my comments in the first round of review.

      We thank the reviewer for the valuable comments, which have helped us improve the manuscript.

      Reviewer #2 (Public Review):

      Lin et al attempt to examine the role of lncRNAs in human evolution in this manuscript. They apply a suite of population genetics and functional genomics analyses that leverage existing data sets and public tools, some of which were previously built by the authors, who clearly have experience with lncRNA binding prediction. However, I worry that there is a lack of suitable methods and/or relevant controls at many points and that the interpretation is too quick to infer selection. While I don't doubt that lncRNAs contribute to the evolution of modern humans, and certainly agree that this is a question worth asking, I think this paper would benefit from a more rigorous approach to tackling it.

      I thank the authors for their revisions to the manuscript; however, I find that the bulk of my comments have not been addressed to my satisfaction. As such, I am afraid I cannot say much more than what I said last time, emphasising some of my concerns with regards to the robustness of some of the analyses presented. I appreciate the new data generated to address some questions, but think it could be better incorporated into the text - not in the discussion, but in the results.

      We thank the reviewer for the careful reading and valuable comments. In this round of revision, we address the two main concerns: (1) there is a lack of suitable methods and/or relevant controls at many points, and (2) the interpretation is too quick to infer selection. Based on these comments, we have carefully revised all sections of the manuscript, including the Introduction, Results, Discussion, and Materials and Methods.

      In addition, we have performed two new analyses. Based on the two analyses, we have added one figure and two sections to Results, two sections to Materials and Methods, one figure to Supplementary Notes, and two tables to Supplementary Tables. These results were obtained using new methods and provided more support to the main conclusion.

      To be more responsible, we re-look into the comments made in the first round and respond to them further. The following are point-to-point responses to comments.

      Since many of the details in the Responses-To-Comments are available in published papers and eLife publishes Responses-To-Comments, we do not greatly revise supplementary notes to avoid ostensibly repeating published materials.

      “lack of suitable methods and/or relevant controls”.

      We carefully chose the methods, thresholds, and controls in the study; now, we provide clearer descriptions and explanations.

      (1) We have expanded the last paragraph in Introduction to briefly introduce the methods, thresholds, and controls.

      (2) In many places in Results and Materials and Methods, revisions are made to describe and justify methods, thresholds, and controls.

      (3) Some methods, thresholds, and controls have good consensus, such as FDR and genome-wide background, but others may not, such as the number of genes that greatly differ between humans and chimpanzees. Now, we describe our reasons for the latter situation. For example, we explain that “About 5% of genes have significant sequence differences in humans and chimpanzees, but more show expression differences due to regulatory sequences. We sorted target genes by their DBS affinity and, to be prudential, chose the top 2000 genes (DBS length>252 bp and binding affinity>151) and bottom 2000 genes (DBS length<60 bp but binding affinity>36) to conduct over-representation analysis”.

      (4) We also carefully choose proper words to make descriptions more accurate.

      Responses to the suggestion “new data generated could be better incorporated into the text”.

      (1) We think that this sentence “The occurrence of HS lncRNAs and their DBSs may have three situations – (a) HS lncRNAs preceded their DBSs, (b) HS lncRNAs and their DBSs co-occurred, (c) HS lncRNAs succeeded their DBSs. Our results support the third situation and the rewiring hypothesis”, previously in Discussion, should be better in section 2.3. We have revised it and moved it into the second paragraph of section 2.3.

      (2) Our two new analyses generated new data, and we describe them in Results.

      (3) It is possible to move more materials from Supplementary Notes to the main text, but it is probably unnecessary because the main text currently has eight sub-sections, two tables, and four figures.

      Responses to the comment “the interpretation is too quick to infer selection”.

      (1) When using XP-CLR, iSAFE, Tajima's D, Fay-Wu's H, the fixation index (Fst), and linkage disequilibrium (LD) to detect selection signals, we used the widely adopted parameters and thresholds but did not mention this clearly in the original manuscript. Now, in the first sentence of the second paragraph of section 2.4, we add the phrase “with widely-used parameters and thresholds” (more details are available in section 4.7 and Supplementary Notes).

      (2) It is not the first time we used these tests. Actually, we used these tests in two other studies (Tang et al. Uncovering the extensive trade-off between adaptive evolution and disease susceptibility. Cell Rep. 2022; Tang et al. PopTradeOff: A database for exploring population-specificity of adaptive evolution, disease susceptibility, and drug responsiveness. Comput Struct Biotechnol J. 2023). In this manuscript, section 2.5 and section 4.12 describe how we use these tests to detect signals and infer selection. We also cite the above two published papers from which the reader can obtain more details.

      (3) Also, in section 2.4, we stress that “Signals in considerable DBSs were detected by multiple tests, indicating the reliability of the analysis”.

      To further respond to the comments of “lack of suitable methods” and “this paper would benefit from a more rigorous approach to tackling it”, we have performed two new analyses. The results of the new analyses agree well with previous results and provide new support for the main conclusion. The result of section 2.5 is novel and interesting.

      We write in Discussion “Two questions are how mouse-specific lncRNAs specifically rewire gene expression in mice and how human- and mouse-specific rewiring influences the cross-species transcriptional differences”. To investigate whether the rewiring of gene expression by HS lncRNA in humans is accidental in evolution, we have made further genomic and transcriptomic analyses (Lin et al. Intrinsically linked lineage-specificity of transposable elements and lncRNAs reshapes transcriptional regulation species- and tissue-specifically. doi: https://doi.org/10.1101/2024.03.04.583292). To verify the obtained conclusions, we analyzed the spermatogenesis data from multiple species and obtained supporting evidence (not published).

      I note some specific points that I think would benefit from more rigorous approaches, and suggest possible ways forward for these.

      Much of this work is focused on comparing DNA binding domains in human-unique long-noncoding RNAs and DNA binding sites across the promoters of genes in the human genome, and I think the authors can afford to be a bit more methodical/selective in their processing and filtering steps here. The article begins by searching for orthologues of human lncRNAs to arrive at a set of 66 human-specific lncRNAs, which are then characterised further through the rest of the manuscript. Line 99 describes a binding affinity metric used to separate strong DBS from weak DBS; the methods (line 432) describe this as being the product of the DBS or lncRNA length times the average Identity of the underlying TTSs. This multiplication, in fact, undoes the standardising value of averaging and introduces a clear relationship between the length of a region being tested and its overall score, which in turn is likely to bias all downstream inference, since a long lncRNA with poor average affinity can end up with a higher score than a short one with higher average affinity, and it's not quite clear to me what the biological interpretation of that should be. Why was this metric defined in this way?

      (1) Using RNA:DNA base-pairing rules, other DBS prediction programs return just DBSs with lengths. Using RNA:DNA base-pairing rules and a variant of Smith-Waterman local alignment, LongTarget returns DBSs with lengths and identity values together with DBDs (local alignment makes DBDs and DBSs predicted simultaneously). Thus, instead of measuring lncRNA/DNA binding based on DBS length, we measure lncRNA/DNA binding based on both DBS length and DBD/DBS identity (simply called identity, which is the percentage of paired nucleotides in the RNA and DNA sequences). This allows us to define “binding affinity”. One may think that binding affinity is a more complex function of length and identity. But, according to in vitro studies (see the review Abu Almakarem et al. 2012 and citations therein, and see He et al. 2015 and citations therein), the strength of a triplex is determined by all paired nucleotides (i.e., triplet). Thus, binding affinity=length * identity is biologically reasonable.

      (2) Further, different from predicting DBS upon individual base-pairing rules such as AT-G and CG-C, LongTarget integrates base-pairing rules into rulesets, each covering A, T, C, and G (see the two figures below, which are from He et al 2015). This makes every nucleotide in the RNA and DNA sequences comparable and allows the computation of identity.

      (3) On whether LongTarget may predict unreasonably long DBSs. Three technical features of LongTarget make this highly unlikely (and more unlikely than other programs). The three features are (a) local alignment, (b) gap penalty, and (c) TT penalty (He et al. 2015).

      (4) Some researchers may think that a higher identity threshold (e.g., 0.8 or even higher) makes the predicted DBSs more reliable. This is not true. To explore plausible identity values, we analyzed the distribution of Kcnq1ot1’s DBSs in the large Kcnq1 imprinting region (which contains many known imprinted genes). We found that a high threshold for identity (e.g., 0.8) will make DBSs in many known imprinted genes fail to be predicted. Upon our analysis of many lncRNAs and upon early in vitro experiments, plausible identity values range from 0.4 to 0.8.

      (5) Is it necessary or advisable to define an identity threshold? Since identity values from 0.4 to 0.8 are plausible and identity is a property of a DBS but does not reflect the strength of the whole triplex, it is more reasonable to define a threshold for binding affinity to control predicted DBSs. As explained above, binding affinity = length*identity is a reasonable measure of the strength of a triplex. The default threshold is 60, and given an identity of 0.6 in many triplexes, a DBS with affinity=60 is about 100 bp. Compared with TF binding sites (TFBS), 100 bp is quite long. As we explain in the main text, “taking a DBS of 147 bp as an example, it is extremely unlikely to be generated by chance (p < 8.2e-19 to 1.5e-48)”.

      (6) How to validate predicted DBSs? Validation faces these issues. (a) DBDs are predicted on the genome level, but target transcripts are expressed in different tissues and cells. So, no single transcriptomic dataset can validate all predicted DBSs of a lncRNA. No matter using what techniques and what cells, only a small portion of predicted DBSs can be experimentally captured (validated). (b) The resolution of current experimental techniques is limited; thus, experimentally identified DBSs (i.e., “peaks”) are much longer than computationally predicted DBSs. (c) Experimental results contain false positives and false negatives. So, validation (or performance evaluation) should also consider the ROC curves (Wen et al. 2022).

      (7) As explained above, a long DBS may have a lower binding affinity than a short DBS. A biological interpretation is that the long DBS may accumulate mutations that decrease its binding ability gradually.

      There is also a strong assumption that identified sites will always be bound (line 100), which I disagree is well-supported by additional evidence (lines 109-125). The authors show that predicted NEAT1 and MALAT1 DBS overlap experimentally validated sites for NEAT1, MALAT1, and MEG3, but this is not done systematically, or genome-wide, so it's hard to know if the examples shown are representative, or a best-case scenario.

      (1) We did not make this assumption. Apparently, binding depends on multiple factors, including co-expression of genes and specific cellular context.

      (2) On the second issue, “this is not done systematically, or genome-wide”. We did genome-wide but did not show all results (supplementary fig 2 shows three genomic regions, which are impressively good). In Wen et al. 2022, we describe the overall results.

      It's also not quite clear how overlapping promoters or TSS are treated - are these collapsed into a single instance when calculating genome-wide significance? If, eg, a gene has five isoforms, and these differ in the 3' UTR but their promoter region contains a DBS, is this counted five times, or one? Since the interaction between the lncRNA and the DBS happens at the DNA level, it seems like not correcting for this uneven distribution of transcripts is likely to skew results, especially when testing against genome-wide distributions, eg in the results presented in sections 5 and 6. I do not think that comparing genes and transcripts putatively bound by the 40 HS lncRNAs to a random draw of 10,000 lncRNA/gene pairs drawn from the remaining ~13500 lncRNAs that are not HS is a fair comparison. Rather, it would be better to do many draws of 40 non-HS lncRNAs and determine an empirical null distribution that way, if possible actively controlling for the overall number of transcripts (also see the following point).

      (1) We predicted DBSs in the promoter region of 179128 Ensembl-annotated transcripts and did not merge DBSs (there is no need to merge them). If multiple transcripts share the same TSS, they may share the same DBS, which is natural.

      (2) If the DBSs of multiple transcripts of a gene overlap, the overlap does not raise a problem for lncRNA/DNA binding analysis in specific tissues because usually only one transcript is expressed in a tissue. Therefore, there is no such situation “If, e.g., a gene has five isoforms, and these differ in the 3' UTR but their promoter region contains a DBS, is this counted five times, or one?”

      (3) It is unclear to us what “it seems like not correcting for this uneven distribution of transcripts is likely to skew results” means. Regarding testing against genome-wide distributions, statistically, it is beneficial to make many rounds of random draws genome-wide, but this will take a huge amount of time. Since more variables demand more rounds of drawing, to our knowledge, this is not widely practiced in large-scale transcriptomic data analyses.

      (4) If the difference (result) is small thus calls for rigorous statistical testing, making many rounds of random draws genome-wide is necessary. In our results, “45% of these pairs show a significant expression correlation in specific tissues (Spearman's |rho| >0.3 and FDR <0.05). In contrast, when randomly sampling 10000 pairs of lncRNAs and protein-coding transcripts genome-wide, the percent of pairs showing this level of expression correlation (Spearman's |rho| >0.3 and FDR <0.05) is only 2.3%”.

      Thresholds for statistical testing are not consistent, or always well justified. For instance, in line 142 GO testing is performed on the top 2000 genes (according to different rankings), but there's no description of the background regions used as controls anywhere, or of why 2000 genes were chosen as a good number to test? Why not 1000, or 500? Are the results overall robust to these (and other) thresholds? Then line 190 the threshold for downstream testing is now the top 20% of genes, etc. I am not opposed to different thresholds in principle, but they should be justified.

      (1) We used the g:Profiler program to perform over-representation analysis to identify enriched GO terms. This analysis is used to determine what pre-defined gene sets (GO terms) are more present (over-represented) in a list of “interesting” genes than what would be expected by chance. Specifically, this analysis is often used to examine whether the majority of genes in a pre-defined gene set fall in the extremes of a list: the top and bottom of the list, for example, may correspond to the largest differences in expression between the two cell types. g:Profiler always takes the whole genome as the reference; that is why we did not mention the whole genome reference. We now add in section 2.2 “(with the whole genome as the reference)”.

      (2) Why choosing 2000 but not 2500 genes is somewhat subjective. We now explain that “About 5% of genes have significant sequence differences in humans and chimpanzees, but more show expression differences due to regulatory sequences. We sorted target genes by their DBS affinity and, to be prudential, chose the top 2000 genes (DBS length>252 bp and binding affinity>151) and bottom 2000 genes (DBS length<60 bp but binding affinity>36) to conduct over-representation analysis”.

      Likewise, comparing Tajima's D values near promoters to genome-wide values is unfair, because promoters are known to be under strong evolutionary constraints relative to background regions; as such it is not surprising that the results of this comparison are significant. A fairer comparison would attempt to better match controls (eg to promoters without HS lncRNA DBS, which I realise may be nearly impossible), or generate empirical p-values via permutation or simulation.

      We used these tests to detect selection signals in DBSs but not in the whole promoter regions. Using promoters without HS lncRNA DBS as the control also has risks because promoter regions contain other kinds of regulatory sequences.

      There are huge differences in the comparisons between the Vindija and Altai Neanderthal genomes that to me suggest some sort of technical bias or the such is at play here. e.g. line 190 reports 1256 genes to have a high distance between the Altai Neanderthal and modern humans, but only 134 Vindija genes reach the same threshold of 0.034. The temporal separation between the two specimens does not seem sufficient to explain this difference, nor the difference between the Altai Denisovan and Neanderthal results (2514 genes for Denisovan), which makes me wonder if it is a technical artefact relating to the quality of the genome builds? It would be worth checking.

      We feel it is hard to know whether or not the temporal separation between these specimens is sufficient to explain the differences because many details of archaic humans and their genomes remain unknown and because mechanisms determining genotype-phenotype relationships remain poorly known. After 0.034 was determined, these numbers of genes were determined accordingly. We chose parameters and thresholds that best suit the most important requirements, but these parameters and thresholds may not best suit other requirements; this is a problem for all large-scale studies.     

      Inferring evolution: There are some points of the manuscript where the authors are quick to infer positive selection. I would caution that GTEx contains a lot of different brain tissues, thus finding a brain eQTL is a lot easier than finding a liver eQTL, just because there are more opportunities for it. Likewise, claims in the text and in Tables 1 and 2 about the evolutionary pressures underlying specific genes should be more carefully stated. The same is true when the authors observe high Fst between groups (line 515), which is only one possible cause of high Fst - population differentiation and drift are just as capable of giving rise to it, especially at small sample sizes.

      (1) We add in Discussion that “Finally, not all detected signals reliably indicate positive selection”.

      (2) Our results are that more signals are detected in CEU and CHB than in YRI; this agrees all population genetics studies and implies that our results are not wrongly biased because more samples and larger samples were obtained from CEU and CHB.

    1. Author Response:

      We thank the reviewers for their insightful comments on our manuscript. We are encouraged by their positive assessment of our multiscale simulation approach and segment-capture mechanism.

      In our revision, we will address the reviewers' primary concerns, which are summarized into three key points: (1) providing a more comprehensive discussion of the validity, robustness, and limitations of our model; (2) improving contextualization with alternative mechanisms; and (3) enhancing the clarity of our results, figures, and terminology.

      1) Model Validity, Robustness, and Limitations:

      As suggested by Reviewers #1 and #3, we will provide a more thorough discussion of our model's assumptions and limitations.[tt1]  This is essential to evaluate the generalizability and reliability of our conclusions. We will clarify which aspects of the dynamics we believe to be robust, elaborate on the rationale behind key parameter choices, such as the selection criteria for hydrogen-bonding residues and the calibration of their interaction strength, and discuss how these choices may influence the simulation outcomes. Furthermore, we will mention the potential impact of our choices regarding DNA sequence, DNA length, and the high-salt concentration, explaining why we opted for this simulation strategy over alternative enhanced-sampling techniques.

      2) Contextualization with Alternative Mechanisms:

      Following the comments by Reviewer #2, we will expand our discussion to better contextualize our work. We will provide a more detailed comparison between our segment-capture model and alternative mechanisms, particularly the 'scrunching' model (e.g., the theoretical work by Takaki et al. Nat. Commun. 2021,). This will help clarify how our high-resolution mechanistic view that reveals stepwise conformational transitions underlying segment capture fits into the broader landscape of SMC loop extrusion research. We believe this will contribute to the ongoing scientific discourse.

      3) Clarity of Results, Figures, and Terminology:

      Based on valuable suggestions from Reviewers #2 and #3, we will revise our manuscript to improve the clarity and accessibility of our findings. We will update figures and their descriptions (e.g., Figure 4I, J), providing a clearer step-by-step explanation of the translocation process within the ATP cycle (related to Figure 2), clarifying the role of each conformational state, elucidating how these transitions contribute to the loop extrusion mechanism, and defining key terms such as "pumping" more precisely.

      We are confident that these revisions will substantially strengthen the mechanistic clarity and scientific contribution of our work.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The manuscript of Odermatt et al. investigates the volatiles released by two species of Desmodium plants and the response of herbivores to maize plants alone or in combination with these species. The results show that Desmodium releases volatiles in both the laboratory and the field. Maize grown in the laboratory also released volatiles, in a similar range. While female moths preferred to oviposit on maize, the authors found no evidence that Desmodium volatiles played a role in lowering attraction to or oviposition on maize.

      Strengths:

      The manuscript is a response to recently published papers that presented conflicting results with respect to whether Desmodium releases volatiles constitutively or in response to biotic stress, the level at which such volatiles are released, and the behavioral effect it has on the fall armyworm. These questions are relevant as Desmodium is used in a textbook example of pest-suppressive sustainable intercropping technology called push-pull, which has supported tens of thousands of smallholder farmers in suppressing moth pests in maize. A large number of research papers over more than two decades have implied that Desmodium suppresses herbivores in push-pull intercropping through the release of large amounts of volatiles that repel herbivores. This premise has been questioned in recent papers. Odermatt et al. thus contribute to this discussion by testing the role of odors in oviposition choice. The paper confirms that ovipositing FAW preferred maize, and also confirmed that odors released from Desmodium appeared not important in their bioassays.

      The paper is a welcome addition to the literature and adds quality headspace analyses of Desmodium from the laboratory and the field. Furthermore, the authors, some of whom have since long contributed to developing push-pull, also find that Desmodium odors are not significant in their choice between maize plants. This advances our knowledge of the mechanisms through which push-pull suppresses herbivores, which is critically important to evolving the technique to fit different farming systems and translating this mechanism to fit with other crops and in other geographical areas.

      Thank you for your careful assessment of our manuscript.

      Weaknesses:

      Below I outline the major concerns:

      (1) Clear induction of the experimental plants, and lack of reflective discussion around this: from literature data and previous studies of maize and Desmodium, it is clear that the plants used in this study, particularly the Desmodium, were induced. Maize appeared to be primarily manually damaged, possibly due to sampling (release of GLV, but little to no terpenoids, which is indicative of mostly physical stress and damage, for example, one of the coauthor's own paper Tamiru et al. 2011), whereas Desmodium releases a blend of many compounds (many terpenoids indicative of herbivore induction). Erdei et al. also clearly show that under controlled conditions maize, silver leaf and green leaf Desmodium release volatiles in very low amounts. While the condition of the plants in Odermatt et al. may be reflective of situations in push-pull fields, the authors should elaborate on the above in the discussion (see comments) such that the readers understand that the plant's condition during the experiments. This is particularly important because it has been assumed that Desmodium releases typical herbivore-induced volatiles constitutively, which is not the case (see Erdei et al. 2024). This reflection is currently lacking in the manuscript.

      We acknowledge the need for a more reflective discussion on the possible causes of volatile emission due to physical damage. Although the field plants were carefully handled, it is possible that some physical stress may have contributed to the release of volatiles, such as green leaf volatiles (GLVs). We ensured the revised manuscript reflects this nuanced interpretation (lines 282 – 286). However, we also explained more clearly that our aim was to capture the volatile emission of plants used by farmers under realistic conditions and moth responses to these plants, not to be able to attribute the volatile emission to a specific cause (lines 115 – 117). We revised relevant passages throughout the results and discussion to ensure that we do not make any claims about the reason for volatile emissions, and that our claims regarding these plants and their headspace being representative of the system as practiced by farmers are supported. In the revised manuscript we provide a new supplementary table S2 that additionally shows the classification of the identified substances, which also shows that the majority of the substances that were found in the headspace of the sampled plants of Desmodium intortum or Desmodium incanum are monoterpenes, sesquiterpenes, or aromatic compounds, and not GLVs (that are typically emitted following damage).

      (2) Lack of controls that would have provided context to the data: The experiments lack important controls that would have helped in the interpretation:

      2a The authors did not control the conditions of the plants. To understand the release of volatiles and their importance in the field, the authors should have included controlled herbivory in both maize and Desmodium. This would have placed the current volatile profiles in a herbivory context. Now the volatile measurements hang in midair, leading to discussions that are not well anchored (and should be rephrased thoroughly, see eg lines 183-188). It is well known that maize releases only very low levels of volatiles without abiotic and biotic stressors. However, this changes upon stress (GLVs by direct, physical damage and eg terpenoids upon herbivory, see above). Erdei et al. confirm this pattern in Desmodium. Not having these controls, means that the authors need to put the data in the context of what has been published (see above).

      We appreciate this concern. Our study aimed to capture the real-world conditions of push-pull fields, where Desmodium and maize grow in natural environments without the direct induction of herbivory for experimental purposes (lines 115 – 117). We agree that in further studies it would be important to carry out experiments under different environmental conditions, including herbivore damage. However, this was not within the scope of the present study.

      2b It would also have been better if the authors had sampled maize from the field while sampling Desmodium. Together with the above point (inclusion of herbivore-induced maize and Desmodium), the levels of volatile release by Desmodium would have been placed into context.

      We acknowledge that sampling maize and other intercrop plants, such as edible legumes, alongside Desmodium in the push-pull field would have allowed us to make direct comparisons of the volatile profiles of different plants in the push-pull system under shared field conditions. Again, this should be done in future experiments but was beyond the scope of the present study. Due to the amount of samples we could handle given cost and workload, we chose to focus on Desmodium because there is much less literature on the volatile profiles of field-grown Desmodium than maize plants in the field: we are aware of one study attempting to measure field volatile profiles from Desmodium intortum (Erdei et al. 2024) and no study attempting this for Desmodium incanum. We pointed out this justification for our focus on Desmodium in the manuscript (lines 435 - 439). Additionally, we suggested in the discussion that future studies should measure volatile profiles from all plants commonly used in push-pull systems alongside Desmodium (lines 267 – 269).

      2c To put the volatiles release in the context of push-pull, it would have been important to sample other plants which are frequently used as intercrop by smallholder farmers, but which are not considered effective as push crops, particularly edible legumes. Sampling the headspace of these plants, both 'clean' and herbivore-induced, would have provided a context to the volatiles that Desmodium (induced) releases in the field - one would expect unsuccessful push crops to not release any of these 'bioactive' volatiles (although 'bioactive' should be avoided) if these odors are responsible for the pest suppressive effect of Desmodium. Many edible intercrops have been tested to increase the adoption of push-pull technology but with little success.

      We very much agree that such measurements are important for the longer-term research program in this field. But again, for the current study this would have exploded the size of the required experiment. Regarding bioactivity, we have been careful to use the phrase "potentially bioactive" solely when referring to findings from the literature (lines 99–103), in order to avoid making any definitive claims about our own results.

      Because of the lack of the above, the conclusions the authors can draw from their data are weakened. The data are still valuable in the current discussion around push-pull, provided that a proper context is given in the discussion along the points above.

      We think our revisions made the specific aims of this study more explicit and help to avoid misleading claims.

      (3) 'Tendency' of the authors to accept the odor hypothesis (i.e. that Desmodium odors are responsible for repelling FAW and thereby reduce infestation in maize under push-pull management) in spite of their own data: The authors tested the effects of odor in oviposition choice, both in a cage assay and in a 'wind tunnel'. From the cage experiments, it is clear that FAW preferred maize over Desmodium, confirming other reports (including Erdei et al. 2024). However, when choosing between two maize plants, one of which was placed next to Desmodium to which FAW has no tactile (taste, structure, etc), FAW chose equally. Similarly in their wind tunnel setup (this term should not be used to describe the assay, see below), no preference was found either between maize odor in the presence or absence of Desmodium. This too confirms results obtained by Erdei et al. (but add an important element to it by using Desmodium plants that had been induced and released volatiles, contrary to Erdei et al. 2024). Even though no support was found for repellency by Desmodium odors, the authors in many instances in the manuscript (lines 30-33, 164-169, 202, 279, 284, 304-307, 311-312, 320) appear to elevate non-significant tendencies as being important. This is misleading readers into thinking that these interactions were significant and in fact confirming this in the discussion. The authors should stay true to their own data obtained when testing the hypothesis of whether odors play a role in the pest-suppressive effect of push-pull.

      We appreciate this feedback and agree that we may have overstated claims that could not be supported by strict significance tests. However, we believe that non-significant tendencies can still provide valuable insights. In the revised version of the manuscript, we ensured a clear distinction between statistically significant findings and non-significant trends and remove any language that may imply stronger support for the odor hypothesis than what the data show in all the lines that were mentioned.

      (4) Oviposition bioassay: with so many assays in close proximity, it is hard to certify that the experiments are independent. Please discuss this in the appropriate place in the discussion.

      We have pointed this out in the submitted manuscript in lines 275 – 279. Furthermore, we included detailed captions to figure 4 - supporting figure 3 & figure 4 - supporting figure 4. We are aware that in all such experiments there is a danger of between-treatment interference, which we pointed out for our specific case. We stated that with our experimental setup we tried to minimize interference between treatments by spacing and temporal staggering. We would like to point out that this common caveat does not invalidate experimental designs when practicing replication and randomization. We assume that insects are able to select suitable oviposition sites in the background of such confounding factors under realistic conditions.

      (5) The wind tunnel has a number of issues (besides being poorly detailed):

      5a. The setup which the authors refer to as a 'wind tunnel' does not qualify as a wind tunnel. First, there is no directional flow: there are two flows entering the setup at opposite sides. Second, the flow is way too low for moths to orient in (in a wind tunnel wind should be presented as a directional cue. Only around 1.5 l/min enters the wind tunnel in a volume of 90 l approximately, which does not create any directional flow. Solution: change 'wind tunnel' throughout the text to a dual choice setup /assay.)

      We agree with these criticisms and changed the terminology accordingly from ‘wind tunnel’ to ‘dual choice assay’. We have now conducted an additional experiment which we called ‘no-choice assay’ that provides conditions closer to a true wind tunnel. The setup of the added experiment features an odor entry point at only one side of the chamber to create a more directional airflow. Each treatment (maize alone, maize + D. intortum, maize + D. incanum, and a control with no plants) was tested separately, with only one treatment conducted per evening to avoid cross-contamination, as described in the methods section of the no-choice assay.

      5b. There is no control over the flows in the flight section of the setup. It is very well possible that moths at the release point may only sense one of the 'options'. Please discuss this.

      We added this to the discussion (lines 369 – 374). The new no-choice assays also address this concern by using a setup with laminar flow.

      5c. Too low a flow (1,5 l per minute) implies a largely stagnant air, which means cross-contamination between experiments. An experiment takes 5 minutes, but it takes minimally 1.5 hours at these flows to replace the flight chamber air (but in reality much longer as the fresh air does not replace the old air, but mixes with it). The setup does not seem to be equipped with e.g. fans to quickly vent the air out of the setup. See comments in the text. Please discuss the limitations of the experimental setup at the appropriate place in the discussion.

      We added these limitations to the discussion and addressed these concerns with new experiments (see answer 5a).

      5d. The stimulus air enters through a tube (what type of tube, diameter, length, etc) containing pressurized air (how was the air obtained into bags (type of bag, how is it sealed?), and the efflux directly into the flight chamber (how, nozzle?). However, it seems that there is no control of the efflux. How was leakage prevented, particularly how the bags were airtight sealed around the plants? 

      We added the missing information to the methods and provided details about types of bags, manufacturers, and pre-treatments in the method section. In short, PTFE tubes connected bagged plants to the bioassay setup and air was pumped in at an overpressure, so leakage was not eliminated but contamination from ambient air was avoided.

      5e. The plants were bagged in very narrowly fitting bags. The maize plants look bent and damaged, which probably explains the GLVs found in the samples. The Desmodium in the picture (Figure 5 supplement), which we should assume is at least a representative picture?) appears to be rather crammed into the bag with maize and looks in rather poor condition to start with (perhaps also indicating why they release these volatiles?). It would be good to describe the sampling of the plants in detail and explain that the way they were handled may have caused the release of GLVs.

      We included a more detailed description of the plant handling and bagging processes to the methods to clarify how the plants were treated during the dual-choice and the no-choice assays reported in the revised manuscript. We politely disagree that the maize plants were damaged and the Desmodium plants not representative of those encountered in the field. The plants were grown in insect-proof screen houses to prevent damage by insects and carefully curved without damaging them to fit into the bag. The Desmodium plant pictured was D. incanum, which has sparser foliage and smaller leaves than D. intortum.

      (6) Figure 1 seems redundant as a main figure in the text. Much of the information is not pertinent to the paper. It can be used in a review on the topic. Or perhaps if the authors strongly wish to keep it, it could be placed in the supplemental material.

      We think that Figure 1 provides essential information about the push-pull system and the FAW. To our knowledge, this partly contradictory evidence so far has not been synthesized in the literature. We realize that such a figure would more commonly be provided in a review article, but we do not think that the small number of studies on this topic so far justify a stand-alone review. Instead, the introduction to our manuscript includes a brief review of these few studies, complemented by the visual summary provided in Figure 1 and a detailed supplementary table.

      Reviewer #2 (Public review):

      Based on the controversy of whether the Desmodium intercrop emits bioactive volatiles that repel the fall armyworm, the authors conducted this study to assess the effects of the volatiles from Desmodium plants in the push-pull system on behavior of FAW oviposition. This topic is interesting and the results are valuable for understanding the push-pull system for the management of FAW, the serious pest. The methodology used in this study is valid, leading to reliable results and conclusions. I just have a few concerns and suggestions for improvement of this paper:

      (1) The volatiles emitted from D. incanum were analyzed and their effects on the oviposition behavior of FAW moth were confirmed. However, it would be better and useful to identify the specific compounds that are crucial for the success of the push-pull system.

      We fully agree that identifying specific volatile compounds responsible for the push-pull effect would provide valuable insights into the underlying mechanisms of the system. However, the primary focus of this study was to address the still unresolved question whether Desmodium emits detectable or “significant” amounts of volatiles at all under field conditions, and the secondary aim was to test whether we could demonstrate a behavioral effect of Desmodium headspace on FAW moths. Before conducting our experiments, we carefully considered the option of using single volatile compounds and synthetic blends in bioassays. We decided against this because we judged that the contradictory evidence in the literature was not a sufficient basis for composing representative blends. Furthermore, we think it is an important first step to test f. or behavioral responses to the headspaces of real plants. We consider bioassays with pure compounds to be important for confirmation and more detailed investigation in future studies. There was also contradictory evidence in the literature regarding moth responses to plants. We thus opted to focus on experiments with whole plants to maintain ecological relevance.

      (2) That would be good to add "symbols" of significance in Figure 4 (D).

      We report the statistical significance of the parameters in Figure 4 (D) in Table 3, which shows the mixed model applied for oviposition bioassays. While testing significance between groups is a standard approach, we used a more robust model-based analysis to assess the effects of multiple factors simultaneously. We provided a cross-reference to Table 3 from the figure description of Figure 4 (D) for readers to easily find the statistical details.

      (3) Figure A is difficult for readers to understand.

      Unfortunately, it is not entirely clear which specific figure is being referred to as "Figure A" in this comment. We tried to keep our figures as clear as possible.

      (4) It will be good to deeply discuss the functions of important volatile compounds identified here with comparison with results in previous studies in the discussion better.

      Our study does not provide strong evidence that specific volatiles from Desmodium plants are important determinants of FAW oviposition or choice in the push-pull system. Therefore, we prefer to refrain from detailed discussions of the potential importance of individual compounds. However, in the revised version, we provide an additional table S2 which identifies the overlap with volatiles previously reported from Desmodium, as only the total numbers are summarized in the discussion of the submitted paper.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The points raised are largely self-explanatory as to what needs to be done to fully resolve them. At a minimum the text needs to be seriously revised to:

      (1) reflect the data obtained.

      (2) reflect on the limitations of their experimental setup and data obtained.

      (3) put the data obtained and its limitations in what these tell us and particularly what not. Ideally, additional headspace measurements are taken, including from herbivory and 'clean' maize and Desmodium (in which there is better control of biotic and abiotic stress), as well as other crops commonly planted as companion crops with maize (but none of them reducing pest pressure).

      Thank you for this summary. Please see our detailed responses above.

      In addition to the main points of critique provided above, I have provided additional comments in the text (https://elife-rp.msubmit.net/elife-rp_files/2024/07/18/00134767/00/134767_0_attach_28_25795_convrt.pdf). These elaborate on the above points and include some new ones too. These are the major points of critique, which I hope the authors can address.

      Thank you very much for these detailed comments.

      Reviewer #2 (Recommendations for the authors):

      It is important to note that the original push-pull system was developed against stemborers and involved Napier grass (still used) around the field, which attracts stemborer moths, and Molasses grass as the intercrop that repels the moths and attracts parasitoids. Later, Molasses grass was replaced by desmodiums because it is a legume that fixes nitrogen and therefore can increase nitrate levels in the soil, but most importantly because it prevents germination of the parasitic Striga weed. The possible repellent effect of desmodium on pests and attraction of natural enemies was never properly tested but assumed, probably to still be able to use the push-pull terminology. This "mistake" should be recognized here and in future publications. It is a real pity that the controversy over the repellent effect of desmodium distracts from the amazing success of the push-pull system, also against the fall armyworm.

      We thank the reviewer for pointing out these issues, which are part of the reason for our Figure 1 and why we would like to keep it. We have described this development of the system in the introduction to better present the push-pull system. Our aim in Figure 1 and Table S1 is to highlight both the evidence of the system's success, and the gaps in our understanding, regarding specifically control of damage from the FAW.

    1. Author Response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review): 

      This study is focused on identifying unique, innovative surface markers for mature Achilles tendons by combining the latest multi-omics approaches and in vitro evaluation, which would address the knowledge gap of the controversial identity of TPSCs with unspecific surface markers. The use of multi-omics technologies, in vivo characterization, in vitro standard assays of stem cells, and in vitro tissue formation is a strength of this work and could be applied for other stem cell quantification in musculoskeletal research. The evaluation and identification of Cd55 and Cd248 in TPSCs have not been conducted in tendons, which is considered innovative. Additionally, the study provided solid sequencing data to confirm co-expressions of Cd55 and Cd248 with other well-described surface markers such as Ly6a, Tpp3, Pdgfra, and Cd34. Generally, the data shown in the manuscript support the claims that the identified surface antigens mark TPSCs in juvenile tendons.

      However, there are missing links between scientific questions aimed to be addressed in Introduction and Methodology/Results. If the study focuses on unsatisfactory healing responses of mature tendons and understanding of mature TPSCs, at least mature Achilles tendons from more than 12-week-old mice and their comparison with tendons from juvenile/neonatal mice should be conducted. However, either 2-week or 6-weekold mice, used for characterization here, are not skeletally mature, Additionally, there is a lack of complete comparison of TPSCs between 2-week and 6-week-old mice in the transcriptional and epigenetic levels.

      In order to distinguish TPSCs and characterize their epigenetic activities, the authors used scRNA-seq, snRNA-seq, and snATAC-seq approaches. The integration, analysis, and comparison of sequencing data across assays and/or time points is confusing and incomplete. For example, it should be more comprehensive to integrate both scRNA-seq and snRNA-seq data (if not, why both assays were used for Achilles tendons of both 2-week and 6-week timepoints). snRNA-seq and snATAC-seq data of 6-week-old mice were separately analyzed. No comparison of difference and similarity of TPSCs of 2-week and 6-week-old mice was conducted.

      Given the goal of this work to identify specific TPSC markers, the specificity of Cd55 and Cd248 for TPSCs is not clear. First, based on the data shown here, Cd55 and Cd248 mark the same cell population which is identified by Ly6a, TPPP3, and Pdgfra. Although, for instance, Cd34 is expressed by other tissues as discussed here, no data/evidence is provided by this work showing that Cd55 and Cd248 are not expressed by other musculoskeletal tissues/cells. Second, the immunostaining of Cd55 and Cd248 doesn't support their specificity. What is the advantage of using Cd55 and Cd248 for TPSCs compared to using other markers?

      Reviewer #2 (Public review): 

      Summary: 

      The molecular signature of tendon stem cells is not fully identified. The endogenous location of tendon stem cells within the native tendon is also not fully elucidated. Several molecular markers have been identified to isolate tendon stem cells but they lack tendon specificity. Using the declining tendon repair capacity of mature mice, the authors compared the transcriptome landscape and activity of juvenile (2 weeks) and mature (6 weeks) tendon cells of mouse Achilles tendons and identified CD55 and CD248 as novel surface markers for tendon stem cells. CD55+ CD248+ FACS-sorted cells display a preferential tendency to differentiate into tendon cells compared to CD55neg CD248neg cells.

      Strengths: 

      The authors generated a lot of data on juvenile and mature Achilles tendons, using scRNAseq, snRNAseq, and ATACseq strategies. This constitutes a resource dataset.

      Weaknesses: 

      The analyses and validation of identified genes are not complete and could be pushed further. The endogenous expression of newly identified genes in native tendons would be informative. The comparison of scRNAseq and snRNAseq datasets for tendon cell populations would strengthen the identification of tendon cell populations. 

      Reviewer #3 (Public review): 

      Summary: 

      In their report, Tsutsumi et al., use single nucleus transcriptional and chromatin accessibility analyses of mouse achilles tendon in an attempt to uncover new markers of tendon stem/progenitor cells. They propose CD55 and CD248 as novel markers of tendon stem/progenitor cells. 

      Strengths: 

      This is an interesting and important research area. The paper is overall well written.

      Weaknesses: 

      Major problems: 

      (1) It is not clear what tissue exactly is being analyzed. The authors build a story on tendons, but there is little description of the dissection. The authors claim to detect MTJ and cartilage cells, but not bone or muscle cells. The tendon sheath is known to express CD55, so the population of "progenitors" may not be of tendon origin.

      (2) Cluster annotations are seemingly done with a single gene. Names are given to cells without functional or spatial validation. For example, MTJ cells are annotated based on Postn, but it is never shown that Postn is only expressed at the MTJ, and not in other anatomical locations in the tendon. 

      (3) The authors compare their data to public data based on interrogating single genes in their dataset. It is now standard practice to integrate datasets (eg, using harmony), or at a minimum using gene signatures built into Seurat (eg AddModuleScore).

      (4) Progenitor populations (SP1, SP2). The authors claim these are progenitors but show very clearly that they express macrophage genes. What are they, macrophages or fibroblasts?

      (5) All omics analysis is done on single data points (from many mice pooled). The authors make many claims on n=1 per group for readouts dependent on sample number (eg frequency of clusters).

      (6) The scRNAseq atlas in Figure 1 is made by analyzing 2W and 6W tendons at the same time. The snRNAseq and ATACseq atlas are built first on 2W data, after which the 6W data is compared. Why use the 2W data as a reference?

      Why not analyze the two-time points together as done with the scRNAseq? 

      (7) Figure 5: The authors should show the gating strategy for FACS. Were non-fibroblasts excluded (eg, immune cells, endothelia...etc). Was a dead cell marker used? If not, it is not surprising that fibroblasts form colonies and express fibroblast genes when compared to CD55-CD248- immune cells, dead cells, or debris. Can control genes such as Ptprc or Pecam1 be tested to rule out contamination with other cell types?

      Minor problems: 

      (1) Report the important tissue processing details: type of collagenase used. Viability before loading into 10x machine.

      Reviewer #1 (Recommendations for the authors): 

      (1) Better healing responses in neonatal mice than mature mice have been well appreciated in the field and differences in ECM environment, immune responses, and cell function might account for varied injury results. However, direct evidence/data between better healing and abundant TSPCs needs to be discussed in the Introduction. 

      We agree with this insightful comment. We have now enhanced our introduction to include a more direct discussion of the relationship between better healing responses in neonatal mice and the abundance of TSPCs. We specifically highlighted how Howell et al. (2017) demonstrated that tendons in juvenile mice can regenerate functional tissue after injury, while this ability is lost in mature mice. Based on this observation, we articulated our hypothesis that juvenile mouse tendons likely contain abundant TSPCs, which potentially explains their superior healing capacity. Additionally, we have added a statement emphasizing that "investigating TSPCs biology is important for understanding tendon regeneration and homeostasis" (lines 61-62), which clearly articulates the central role that TSPCs play in tendon repair processes and tissue maintenance.

      (2) 6-week-old mouse Achilles tendons are not mature enough and clinically relevant to understand the deficiency of regenerative capacity of TPSCs for undesired healing. If the goal of this study is to identify TSPCs of mature tendons, evaluation of Achilles tendons from at least 12-week-old mice is more reasonable. 

      We agree with this insightful comment. We have now enhanced our introduction to include a more direct discussion of the relationship between better healing responses in neonatal mice and the abundance of TSPCs. We specifically highlighted how Howell et al. (2017) demonstrated that tendons in juvenile mice can regenerate functional tissue after injury, while this ability is lost in mature mice. Based on this observation, we articulated our hypothesis that juvenile mouse tendons likely contain abundant TSPCs, which potentially explains their superior healing capacity. Additionally, we have added a statement emphasizing that "investigating TSPCs biology is important for understanding tendon regeneration and homeostasis" (lines 61-62), which clearly articulates the central role that TSPCs play in tendon repair processes and tissue maintenance.

      (3) 40-60 mouse Achilles tendons pooled for one sample seems a lot and there is mixed/missed information about how many total cells were collected for each sample and how they were used for different sequencing assays. This could raise the concern that cell digestion was not complete and possibly abundant resident cells might be missed for sequencing analysis.

      We agree with this insightful comment. We have now enhanced our introduction to include a more direct discussion of the relationship between better healing responses in neonatal mice and the abundance of TSPCs. We specifically highlighted how Howell et al. (2017) demonstrated that tendons in juvenile mice can regenerate functional tissue after injury, while this ability is lost in mature mice. Based on this observation, we articulated our hypothesis that juvenile mouse tendons likely contain abundant TSPCs, which potentially explains their superior healing capacity. Additionally, we have added a statement emphasizing that "investigating TSPCs biology is important for understanding tendon regeneration and homeostasis" (lines 61-62), which clearly articulates the central role that TSPCs play in tendon repair processes and tissue maintenance.

      (4) The methods section has necessary information missing, which could create confusion for readers. Which time points are used for scRNA-seq and snATAC-seq? Which time points of cells are integrated and analyzed regarding each assay/combined assays? Why is transcriptional expression evaluated by both scRNA-seq and snRNA-seq and is there any technological difference between the two assays?

      We have thoroughly revised the Methods section to clearly specify which time points were used for each assay (line 132-133 and line 148-149). We have also clarified how cells from different time points were integrated and analyzed (lines 167-170, 179-184 and 494-502). Regarding the use of both scRNA-seq and snRNA-seq, we have explained that this complementary approach allowed us to capture both cytoplasmic and nuclear transcripts, providing a more comprehensive view of gene expression profiles while also enabling direct integration with snATAC-seq data. Comparison of similarity between scRNA-seq integration data (2-week and 6-week) and snRNA-seq (2-week) clusters confirmed that the clusters in each data set are almost correlated. We added the dot plot and correlation data in supplemental figure 5. Additionally, we have included comprehensive lists of differentially expressed genes (DEGs) for each identified cluster across all datasets (supplementary tables 1-15), which provide detailed molecular signatures for each cell population and facilitate cross-dataset comparisons.

      (5) snATAC-sequencing data seems to be used to only confirm the findings by snRNA-seq and snATAC-sequencing data is not well explored. This assay directly measures/predicts transcription factor activities and epigenetic changes, which might be more accurate in inferring transcription factors from RNA sequencing data using the R package SCENIC.

      We appreciate the reviewer's insightful comment regarding the utilization of our snATAC-seq data. We agree that snATAC-seq provides valuable direct measurements of chromatin accessibility and transcription factor binding sites that can complement inference-based approaches like SCENIC. To address this concern, we have revised our manuscript to better emphasize the value of our snATAC-seq data in transcription factor activity evaluation. We have modified our text (lines 570-574). This modification emphasizes that our integrated approach leverages the strengths of both methodologies, with snATAC-seq providing direct measurements of chromatin accessibility and transcription factor binding sites that can validate and enhance the inference-based predictions from SCENIC analysis of RNA-seq data.

      (6) The image quality of immunostaining of Cd55 and Cd248 is low. The images show that only part of the tendon sheath has positive staining. Co-localization of Cd55 and Cd248 can't be found.

      We agree with the reviewer regarding the limitations of our immunostaining images. To obtain clearer images, we used paraffin sections for our analysis. Additionally, the antibodies for CD55 and CD248 required different antigen retrieval conditions to work effectively, which unfortunately prevented us from performing co-immunostaining to directly demonstrate co-localization. Despite these technical limitations, we have optimized the processing and imaging parameters to improve the quality of the immunostaining images in Figure 5A. These improved images more clearly demonstrate the expression of CD55 and CD248 in the tendon sheath, although in separate sections. The consistent localization patterns observed in these separate stainings, together with our FACS and functional analyses of double-positive cells, strongly support their co-expression in the same cell population. We have also updated the corresponding Methods section (lines 260-272) to include these optimized immunostaining protocols for better reproducibility.

      (7) Only TEM data of tendon construct formed by sorted cells are shown. Results of mechanical tests will be super helpful to show the capacity of these TPSCs for tendon assembly.

      We appreciate the reviewer's suggestion regarding mechanical testing. We would like to direct the reviewer's attention to Figure 5I in our manuscript, where we have already included tensile strength measurements of the tendon construct. These mechanical test results demonstrate the functional capacity of CD55/CD248+ cells to form tendon-like tissue with appropriate mechanical properties, providing quantitative evidence of their ability for tendon assembly.

      (8) Cells negative for CD55/CD248 could be mixed cell populations, including hematopoietic lineages, cells from tendon mid substance, immune cells, and/or endothelial cells. Under induction of tri-lineage media, these mixed cell populations could process different, unpredicted phenotypes (shown by no increased gene expression of tenogenic, chondrogenic, and osteogenic markers after induction). Higher tenogenic gene expressions of TPSCs after induction don't mean that TPSCs are induced into tenocytes if compared to unknown cell populations with/without similar induction. Additionally, PCR data in Figure 5 presented as ΔΔCT, with unclear biological meanings, is challenging to interpret.

      We appreciate the reviewer's suggestion regarding mechanical testing. We would like to direct the reviewer's attention to Figure 5I in our manuscript, where we have already included tensile strength measurements of the tendon construct. These mechanical test results demonstrate the functional capacity of CD55/CD248+ cells to form tendon-like tissue with appropriate mechanical properties, providing quantitative evidence of their ability for tendon assembly.

      Reviewer #2 (Recommendations for the authors): 

      The aim of this study was to identify novel markers for tendon stem cells. The authors used the fact that tendon cells of juvenile tendons have a greater ability to regenerate versus mature tendons. scRNAseq, snRNAseq, and snATACseq datasets were generated and analyzed in juvenile and mature Achilles tendons (mice). 

      The authors generated a lot of data that could be exploited further to show that these two novel surface tendon markers are more tendon-specific than those previously identified. Another concern is that there is no robust data indicative of the endogenous location of CD55+ CD248+ cells in the native tendon. Same comments for the transcription factors regulating the transcription of CD55 and CD248 and that of Scx and Mkx. A validation of the ATACseq data with a location in native tendons would be pertinent.

      The analysis was performed by comparing 2 sub-clusters of the same datasets and not between the two stages. Given the introduction highlighting the differential ability to regenerate between the two stages, the comparison between the two stages was somehow expected. I wonder if there is an explanation for the absence of analysis between the two stages.

      The authors have all the datasets to (bioinformatically) compare scRNAseq and snRNAseq datasets. This comparative analysis would strengthen the clustering of tendon cell populations at both stages. The labeling/identification of clusters associated with tendon cell populations is not obvious. I am surprised that there is no tendon sheath cluster such as endotenon or peritenon. A discussion on the different tendon cell populations (tendon clusters) is lacking.

      (1) Choice of the three markers 

      The authors chose three genes known to be markers for tendon stem cells, Tppp3, PdgfRa, and Ly6a, and investigated clusters (or subclusters) that co-express these three genes. Except for Tppp3, the other two genes lack tendonspecificity. Ly6a is a stem cell marker and is recognized to be a marker of epi/perimysium in fetal and perinatal stages in mouse limbs (PMID: 39636726). Pdgfra is a generic marker of all connective tissue fibroblasts. Could it be that the identification of the two novel surface markers was biased with this choice? The identification of CD55 and CD248 has been done by comparing DEGs between cluster 4 (SP2) and cluster 1 (SP1). What about an unbiased comparison of both clusters 4 and 1 (or individual clusters) between mature and juvenile samples? The reader expected such a comparison since it was introduced as the rationale of the paper to compare juvenile and mature tendon cells.

      We selected Tppp3, PdgfRa, and Ly6a based on established literature identifying them as TSPC markers (Harvey et al., 2019; Tachibana et al., 2022). While only Tppp3 has tendon specificity, these genes collectively represent reliable TSPC markers currently available.

      Our identification of CD55 and CD248 came from comparing SP2 and SP1 clusters that showed these three markers plus tendon development genes. We did compare juvenile and mature samples as shown in Figure 1G, revealing decreased stem/progenitor marker expression with maturation. Additionally, we performed a comprehensive comparison between 2-week and 6-week samples visualized as a heatmap in Supplemental Figure 3, which clearly demonstrates the transcriptional changes that occur during tendon maturation. We have also provided the complete lists of differentially expressed genes for each identified cluster

      (supplementary tables 1-15), allowing for unbiased examination of cluster-specific gene signatures across developmental stages.

      Our functional validation confirmed CD55/CD248 positive cells express Tppp3, PdgfRa, and Ly6a while demonstrating high clonogenicity and tenogenic differentiation capacity, confirming their TSPC identity.

      (2) Concerns with cluster identification 

      The cluster11, named as MTJ cluster, in 2-week scRNAseq datasets was not detected in 6-week scRNAseq datasets (Figure 1A). Does it mean that MTJ disappears at 6 weeks in Achilles tendons? In the snRNAseq MTJ cluster was defined on the basis of Postn expression. «Cluster 11, with high Periostin (Postn) expression, was classified as a myotendinous junction (MTJ).» Line 379.

      What is the basis/reference to set a link between Postn and MTJ? 

      Could the CA clusters be enthesis clusters? Is there any cartilage in the Achilles tendon?

      If there are MTJ clusters, one could expect to see clusters reflecting tendon attachment to cartilage/bone.

      I am surprised to see no cluster reflecting tendon attachments (endotenon or peritenon).

      Cluster 9 was identified as a proliferating cluster in scRNAseq datasets. Does the Cell Cycle Regression step have been performed?

      Thank you for highlighting these important questions about our cluster identification. The MTJ cluster (cluster 11) appears reduced but not absent in 6-week samples. We based our MTJ classification on Postn expression, which is enriched at the myotendinous junction, as documented by Jacobson et al. (2020) in their proteome analysis of myotendinous junctions. We have added this reference to the manuscript to provide clear support for our cluster annotation (lines 400-401).

      Regarding the CA cluster, these cells express chondrogenic markers but are not enthesis clusters. We have revised our manuscript to acknowledge that these could potentially represent enthesis cells, as you suggested (lines 412-414). While Achilles tendons themselves don't contain cartilage, our digestion process likely captured some adjacent cartilaginous tissues from the calcaneus insertion site.

      We acknowledge the absence of clearly defined endotenon/epitenon clusters. We have added more comprehensive explanations about peritenon tissues in our manuscript (lines 431-433 and 584-585), noting that previous studies (Harvey et al., 2019) have reported that Tppp3-positive populations are localized to the peritenon, and our SP clusters might also reflect peritenon-derived cells. This additional context helps clarify the potential tissue origins of our identified cell populations.

      For the proliferating cluster (cluster 9), we confirmed high expression of cell cycle markers (Mki67, Stmn1) but did not perform cell cycle regression to maintain biological relevance of proliferation status in our analysis. We have clarified this methodological decision in the revised Methods section.

      (3) What is the meaning of all these tendon clusters in scRNAseq snRNAseq and snATACseq? The authors described 2 or 3 SP clusters (depending on the scRNAseq or snRNAseq datasets), 2 CT clusters, 1 MTJ cluster, and 1CA cluster. Do genes with enriched expression in these different clusters correspond to different anatomical locations in native tendons? Are there endotenon and peritenon clusters? Is there a correlation between clusters (or subclusters) expressing stem cell markers and peritenon as described for Tppp3

      Thank you for this important question about the biological significance of our identified clusters. The multiple tendon-related clusters we identified likely represent distinct cellular states and differentiation stages rather than strictly discrete anatomical locations. The SP clusters (stem/progenitor cells) express markers consistent with tendon progenitors reported in the literature, including Tppp3, which has been described in the peritenon. As we mentioned in our response to the previous question, we have added more comprehensive explanations about peritenon tissues in our manuscript (Lines 432-433 and 584-585), noting that previous studies (Harvey et al., 2019) have reported that Tppp3-positive populations are localized to the peritenon, and our SP clusters might reflect peritenon-derived cells. Our immunohistochemistry data in Figure 5A further confirms that CD55/CD248 positive cells are localized primarily to the tendon sheath region, similar to the localization pattern of Tppp3 reported by Harvey et al. (2019). The tenocyte clusters (TC) represent mature tendon cells within the fascicles, and their distinct transcriptional profiles suggest heterogeneity even within mature tenocytes. The MTJ cluster specifically expresses genes enriched at the myotendinous junction, while the CA cluster likely represents cells from the enthesis region, as you suggested. In the revised manuscript, we have clarified this interpretation and added additional discussion about the relationship between cluster identity and anatomical localization, particularly regarding the SP clusters and their correlation with peritenon regions.

      (4) The use of single-cell and single-nuclei RNAseq strategies to analyze tendon cell populations in juvenile and mature tendons is powerful, but the authors do not exploit these double analyses. A comparison between scRNAseq and snRNAseq datasets (2 weeks and 6 weeks) is missing. The similar or different features at the level of the clustering or at the level of gene expression should be explained/shown and discussed. This analysis should strengthen the clustering of tendon cell populations at both stages. In the same line, why are there 3 SP clusters in snRNAseq versus 2 SP clusters in scRNAseq? The MTJ cluster R2-5 expressing Sox9 should be discussed.

      Thank you for highlighting this important gap. We have conducted a comprehensive comparison between scRNA-seq and snRNA-seq datasets, revealing substantial correlation between cell populations identified by both methodologies. We've added a detailed dot plot visualization and correlation heatmap in Supplemental Figure 5 that demonstrates the relationships between clusters across datasets. The additional SP cluster in snRNA-seq likely reflects the greater sensitivity of nuclear RNA sequencing in capturing certain cell states that might be missed during whole-cell isolation. Our analysis shows this SP3 cluster represents a transitional state between stem/progenitor cells and differentiating tenocytes. Regarding the Sox9-expressing MTJ cluster R2-5, we have expanded our discussion in the revised manuscript (lines 500502) to address this finding, incorporating relevant references (Nagakura et al., 2020) that describe Sox9 expression at the myotendinous junction. This expression pattern suggests that cells at this specialized interface may maintain developmental plasticity between tendon and cartilage fates, which is consistent with the transitional nature of this anatomical region.

      (5) The claim of "high expression of CD55 and CD248 in the tendon sheath" is not supported by the experiments. The images of immunostaining (Figure 5A) are not very convincing. It is not explained if these are sections of 3Dtendon constructs or native tendons. The expression in 3D-tendon constructs is not informative, since tendon sheaths are not present. The endogenous expression of the transcription factors regulating tendon gene expression would be informative to localize tendon stem cells in native tendons.

      Thank you for this important critique. We agree that the original immunostaining images were not sufficiently convincing. To address this, we have used paraffin sections and optimized our staining protocols to improve image quality. It's worth noting that CD55 and CD248 antibodies required different antigen retrieval conditions to work effectively, which unfortunately prevented us from performing coimmunostaining to directly demonstrate co-localization in the same section. Despite these technical limitations, we have significantly improved the quality of the immunostaining images in Figure 5A with enhanced processing and imaging parameters 

      The improved images more clearly demonstrate the preferential expression of CD55 and CD248 in the tendon sheath/peritenon regions. The consistent localization patterns observed in these separate stainings, together with our FACS and functional analyses of double-positive cells, strongly support their coexpression in the same cell population.

      In the revised manuscript, we have also improved the figure legends to clearly indicate the nature of the tissue samples and updated the methods section to provide more detailed protocols for the immunostaining procedures used.

      Your suggestion regarding transcription factor visualization is valuable. While beyond the scope of our current study, we agree that examining the endogenous expression of regulatory transcription factors like Klf3 and Klf4 would provide additional insights into tendon stem cell localization in native tendons, and we plan to pursue this in future work

      Minor concerns:

      (1) Lines 392-397 « To identify progenitor populations within these clusters, we analyzed expression patterns of previously reported markers Tppp3 and Pdgfra (Harvey et al., 2019; Tachibana, et al., 2022), along with the known stem/progenitor cell marker Ly6a (Holmes et al., 2007; Sung et al., 2008; Hittinger et al., 2013; Sidney et al., 2014; Fang et al., 2022). We identified subclusters within clusters 1 and 4 showing high expression of these genes, which we defined as SP1 and SP2. SP2 exhibited the highest expression of these genes, suggesting it had the strongest progenitor characteristics.» Please cite relevant Figures. Feature and violin plots (scRNAseq) across all cells (not for the only 2 SP1 and SP2 clusters) of Tppp3, Pdgfra and Ly6a are missing.

      Thank you for pointing out this important oversight. We have modified the manuscript to clarify that the text in question describes Figure 1B. Additionally, we have added new feature plots showing the expression of Tppp3, Pdgfra, and Ly6a across all cells in supplymental figure 1B

      (2) The labeling of clusters with numbers in single-cell, single nuclei RNAseq, and ATACseq is difficult to follow.

      We appreciate your feedback on this issue. We recognize that the numerical labeling system across different datasets (scRNA-seq, snRNA-seq, and snATAC-seq) makes it difficult to track the same cell populations. To address this, we have added Supplemental Figure 5, which clearly shows the correspondence between cell populations in single-cell and single-nucleus RNA-seq datasets.

      (3) Figure 1C. It is not clear from the text and Figure legend if the DEGs are for the merged 2 and 6 weeks. If yes, an UMAP of the merged datasets of 2 and 6 weeks would be useful.

      We appreciate your feedback on this issue. We recognize that the numerical labeling system across different datasets (scRNA-seq, snRNA-seq, and snATAC-seq) makes it difficult to track the same cell populations. To address this, we have added Supplemental Figure 5, which clearly shows the correspondence between cell populations in single-cell and single-nucleus RNA-seq datasets.

      (4) Along the Text, there are a few sentences with obscure rationale. Here are a few examples (not exhaustive):

      Abstract 

      “Combining single-nucleus ATAC and RNA sequencing analyses revealed that Cd55 and Cd248 positive fractions in tendon tissue are TSPCs, with this population decreasing at 6 weeks.”

      The rationale of this sentence is not clear. How can single-nucleus ATAC and RNA sequencing analyses identify Cd55 and Cd248 positive fractions as tendon stem cells?

      Thank you for highlighting this unclear statement in our abstract. We agree that the previous wording did not adequately explain how our sequencing analyses identified CD55 and CD248 positive cells as TSPCs. We have revised this sentence to clarify that our multi-modal approach (combining scRNA-seq, snRNA-seq, and snATAC-seq) enabled us to identify Cd55 and Cd248 positive populations as TSPCs based on their co-expression with established TSPC markers such as Tppp3, Pdgfra, and Ly6a. This comprehensive analysis across different sequencing modalities provided strong evidence for their identity as tendon stem/progenitor cells, which we further validated through functional assays. The revised abstract now more clearly communicates the logical progression of our analysis and findings

      Line 80-82 

      “Cd34 is known to be highly expressed in mouse embryonic limb buds at E14.5 compared to E11.5 (Havis et al., 2014), making it a potential marker for TSPCs.”

      The rationale of this sentence is not clear. How can "the fact to be expressed in E14.5 mouse limbs" be an indicator of being a "potential marker of tendon stem cells"?

      Thank you for highlighting this unclear statement in our abstract. We agree that the previous wording did not adequately explain how our sequencing analyses identified CD55 and CD248 positive cells as TSPCs. We have revised this sentence to clarify that our multi-modal approach (combining scRNA-seq, snRNA-seq, and snATAC-seq) enabled us to identify Cd55 and Cd248 positive populations as TSPCs based on their co-expression with established TSPC markers such as Tppp3, Pdgfra, and Ly6a. This comprehensive analysis across different sequencing modalities provided strong evidence for their identity as tendon stem/progenitor cells, which we further validated through functional assays. The revised abstract now more clearly communicates the logical progression of our analysis and findings

      Line 611 

      “Recent reports have highlighted the role of the Klf family in limb development (Kult et al., 2021), suggesting its potential importance in tendon differentiation”

      Why does the "role of Klf family in limb development" suggest an "importance in tendon differentiation"?

      Thank you for highlighting this logical gap in our manuscript. You're right that involvement in limb development doesn't necessarily indicate specific importance in tendon differentiation. We've revised this statement to more accurately reflect current knowledge, noting that while Klf factors are involved in limb development, their specific role in tendon differentiation requires further investigation (lines 658-659). This revised text better aligns with our findings of Klf3 and Klf4 expression in tendon progenitor cells without making unsupported claims about their functional significance

      Reviewer #3 (Recommendations for the authors): 

      In addition to the points highlighted above some additional points are listed below.

      (1) Case in point: the authors claim CD55 and CD248 are found at the tendon sheath (line 541), which is not part of the tendon proper (although the IHC seems to show green in the epi/endotenon).

      Thank you for highlighting this logical gap in our manuscript. You're right that involvement in limb development doesn't necessarily indicate specific importance in tendon differentiation. We've revised this statement to more accurately reflect current knowledge, noting that while Klf factors are involved in limb development, their specific role in tendon differentiation requires further investigation (lines 658-659). This revised text better aligns with our findings of Klf3 and Klf4 expression in tendon progenitor cells without making unsupported claims about their functional significance

      (2) All cell types seem to express collagen based on Figure 1B, so either there is serious background contamination (eg, ambient RNA), or an error in data analysis.

      Thank you for highlighting this logical gap in our manuscript. You're right that involvement in limb development doesn't necessarily indicate specific importance in tendon differentiation. We've revised this statement to more accurately reflect current knowledge, noting that while Klf factors are involved in limb development, their specific role in tendon differentiation requires further investigation (lines 658-659). This revised text better aligns with our findings of Klf3 and Klf4 expression in tendon progenitor cells without making unsupported claims about their functional significance

      Minor problems: 

      (1) The figures are confusingly formatted. It is hard to go between cluster numbers and names. Clusters of similar cell types (eg progenitors) are not grouped to facilitate comparison, as ordering is based on cluster number).

      Thank you for highlighting this logical gap in our manuscript. You're right that involvement in limb development doesn't necessarily indicate specific importance in tendon differentiation. We've revised this statement to more accurately reflect current knowledge, noting that while Klf factors are involved in limb development, their specific role in tendon differentiation requires further investigation (lines 658-659). This revised text better aligns with our findings of Klf3 and Klf4 expression in tendon progenitor cells without making unsupported claims about their functional significance

      (2) The introduction does not distinguish between findings in mice and man. A lot of confusion in the tendon literature probably arises from interspecies differences, which are rarely addressed. 

      We appreciate this important point about species distinctions. We have revised our introduction to clearly identify species-specific findings by adding the term "murine" before TSPC references when discussing mouse studies (lines 64, 66, 70, 75, 100, and 108). We agree that interspecies differences are important considerations in tendon biology research, particularly when translating findings between animal models and humans. Our study focuses specifically on mouse models, and we have been careful not to overgeneralize our conclusions to human tendon biology without appropriate evidence. This clarification helps readers better contextualize our findings within the broader tendon literature landscape.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      (1) The use of single-cell RNA and TCR sequencing is appropriate for addressing potential relationships between gene expression and dual TCR.

      Thank you for your detailed review and suggestions. The main advantages of scRNA+TCR-seq are as follows: (1) It enables comparative analysis of features such as the ratio of single TCR paired T cells to dual TCR paired T cells at the level of a large number of individual T cells, through mRNA expression of the α and β chains. In the past, this analysis was limited to a small number of T cells, requiring isolation of single T cells, PCR amplification of the α and β chains, and Sanger sequencing; (2) While analyzing TCR paired T cell characteristics, it also allows examination of mRNA expression levels of transcription factors in corresponding T cells through scRNA-seq.

      (2) The data confirm the presence of dual TCR Tregs in various tissues, with proportions ranging from 10.1% to 21.4%, aligning with earlier observations in αβ T cells.

      Thank you very much for your detailed review and suggestions. Early studies on dual TCR αβ T cells have been very limited in number, with reported proportions of dual TCR T cells ranging widely from 0.1% to over 30%. In contrast, scRNA+TCR-seq can monitor over 5,000 single and paired TCRs, including dual paired TCRs, in each sample, enabling more precise examination of the overall proportion of dual TCR αβ T cells. It is important to note that our analysis focuses on T cells paired with functional α and β chains, while T cells with non-functional chain pairings and those with a single functional chain without pairing were excluded from the total cell proportion analysis. Previous studies generally lacked the ability to determine expression levels of specific chains in T cells without dual TCR pairings.

      (3) Tissue-specific patterns of TCR gene usage are reported, which could be of interest to researchers studying T cell adaptation, although these were more rigorously analyzed in the original works.

      Thank you very much for your detailed review and suggestions. T cell subpopulations exhibit tissue specificity; thus, we conducted a thorough investigation into Treg cells from different tissue sites. This study builds upon the original by innovatively analyzing the differences in VDJ rearrangement and CDR3 characteristics of dual TCR Treg cells across various tissues. This provides new insights and directions for the potential existence of “new Treg cell subpopulations” in different tissue locations. The results of this analysis suggest the necessity of conducting functional experiments on dual TCR Treg cells at both the TCR protein level and the level of effector functional molecules.

      (4) Lack of Novelty: The primary findings do not substantially advance our understanding of dual TCR expression, as similar results have been reported previously in other contexts.

      Thank you for your detailed review and suggestions. Early research on dual TCR T cells primarily relied on transgenic mouse models and in vitro experiments, using limited TCR alpha chain or TCR beta chain antibody pairings. Flow cytometry was used to analyze a small number of T cells to estimate dual TCR T cell proportion. No studies have yet analyzed dual TCR Treg cell proportion, V(D)J recombination, and CDR3 characteristics at high throughput in physiological conditions. The scRNA+TCR-seq approach offers an opportunity to conduct extensive studies from an mRNA perspective. With high-throughput advantages of single-cell sequencing technology, researchers can analyze transcriptomic and TCR sequence characteristics of all dual TCR Treg cells within a study sample, providing new ideas and technical means for investigating dual TCR T cell proportions, characteristics, and origins under different physiological and pathological states.

      (5) Incomplete Evidence: The claims about tissue-specific differences lack sufficient controls (e.g., comparison with conventional T cells) and functional validation (e.g., cell surface expression of dual TCRs).

      Thank you for your detailed review and suggestions. This study indeed only analyzed dual TCR Treg cells from different tissue locations based on the original manuscript, without a comparative analysis of other dual TCR T cell subsets corresponding to these tissue locations. The main reason for this is that, in current scRNA+TCR-seq studies of different tissue locations, unless specific T cell subsets are sorted and enriched, the number of T cells obtained from each subset is very low, making a detailed comparative analysis impossible. In the results of the original manuscript, we observed a relatively high proportion of dual TCR Treg cell populations in various tissues, with differences in TCR composition and transcription factor expression. Following the suggestions, we have included additional descriptions in R1, citing the study by Tuovinen et al., which indicates that the proportion of dual TCR Tregs in lymphoid tissues is higher than other T cell types. This will help understand the distribution characteristics of dual TCR Treg cells in different tissues and provide a basis for mRNA expression levels to conduct functional experiments on dual TCR Treg cells in different tissue locations.

      (6) Methodological Weaknesses: The diversity analysis does not account for sample size differences, and the clonal analysis conflates counts and clonotypes, leading to potential misinterpretation.

      We thank you for your review and suggestions. In response to your question about whether the diversity analysis considered the sample size issue, we conducted a detailed review and analysis. This study utilized the inverse Simpson index to evaluate TCR diversity of Treg cells. A preliminary analysis compared the richness and evenness of single TCR Treg cell and dual TCR Treg cell repertoires. The two datasets analyzed were from four mouse samples with consistent processing and sequencing conditions. However, when analyzing single TCR Tregs and dual TCR Tregs from various tissues, differences in detected T cell numbers by sequencing cannot be excluded from the diversity analysis. Following recommendations, we provided additional explanations in R1: CDR3 diversity analysis indicates TCR composition of dual TCR Treg cells exhibits diversity, similar to single TCR Treg cells; however, diversity indices of single TCR Tregs and dual TCR Tregs are not suitable for statistical comparison. Regarding the "clonal analysis" you mentioned, we define clonality based on unique TCR sequences; cells with identical TCR sequences are part of the same clone, with ≥2 counts defined as expansion. For example, in Blood, there are 958 clonal types and 1,228 cells, of which 449 are expansion cells. In R1, we systematically verified and revised clonal expansion cells across all tissue samples according to a unified standard.

      (7) Insufficient Transparency: The sequence analysis pipeline is inadequately described, and the study lacks reproducibility features such as shared code and data.

      Thank you for your review and suggestions. Based on the original manuscript, we have made corresponding detailed additions in R1, providing further elaboration on the analysis process of shared data, screening methods, research codes, and tools. This aims to offer readers a comprehensive understanding of the analytical procedures and results.

      (8) Weak Gene Expression Analysis: No statistical validation is provided for differential gene expression, and the UMAP plots fail to reveal meaningful clustering patterns.

      Thank you very much for your review and suggestions. Based on your recommendations, we conducted an initial differential expression analysis of the top 10 mRNA molecules in single TCR Treg and dual TCR Treg cells using the DESeq2 R package in R1, with statistical significance determined by Padj < 0.05. Regarding the clustering patterns in the UMAP plots, since the analyzed samples consisted of isolated Treg cell subpopulations that highly express immune suppression-related genes, we did not perform a more detailed analysis of subtypes and expression gene differences. This study primarily aims to explore the proportions of single TCR and dual TCR Treg cells from different tissue sources, as well as the characteristics of CDR3 composition, with a focus on showcasing the clustering patterns of samples from different tissue origins and various TCR pairing types.

      (9) A quick online search reveals that the same authors have repeated their approach of reanalysing other scientists' publicly available scRNA-VDJ-seq data in six other publications,In other words, the approach used here seems to be focused on quick re-analyses of publicly available data without further validation and/or exploration.

      Thank you for your review and suggestions. Most current studies utilizing scRNA+TCR-seq overlook analysis of TCR pairing types and related research on single TCR and dual TCR T cell characteristics. Through in-depth analysis of shared scRNA+TCR-seq data from multiple laboratories, we discovered a significant presence of dual TCR T cells in high-throughput T cell research results that cannot be ignored. In this study, we highlight the higher proportion of dual TCR Tregs in different tissue locations, which exhibits a certain degree of tissue specificity, suggesting these cells may participate in complex functional regulation of Tregs. This finding provides new ideas and a foundation for further research into dual TCR Treg functions. However, as reviewers pointed out, findings from scRNA+TCR-seq at the mRNA level require additional functional experiments on dual TCR T cells at the protein level. We have supplemented our discussion in R1 based on these suggestions.

      Reviewer #2 (Public review):

      (1)The existence of dual TCR expression by Tregs has previously been demonstrated in mice and humans (Reference #18 and Tuovinen. 2006. Blood. 108:4063; Schuldt. 2017. J Immunol. 199:33, both omitted from references). The presented results should be considered in the context of these prior important findings.

      Thank you very much for your review and suggestions. Based on the original manuscript, we have supplemented our reading, understanding, and citation of closely related literature (Tuovinen, 2006, Blood, 108:4063 (line 44,line175 in R1); Schuldt, 2017, J Immunol, 199:33 (line 44,line178 in R1)). We once again appreciate the valuable comments from the reviewers, and we will refer to these in our subsequent dual TCR T cell research.

      (2) This demonstration of dual TCR Tregs is notable, though the authors do not compare the frequency of dual TCR co-expression by Tregs with non-Tregs. This limits interpreting the findings in the context of what is known about dual TCR co-expression in T cells.

      Thank you very much for your review and suggestions. This analysis is primarily based on the scRNA+TCR-seq study of sorted Treg cells, where we found the proportions and distinguishing features of dual TCR Treg cells in different tissue sites. Given the diversity and complexity of Treg function, conducting a comparative analysis of the origins of dual TCR Treg cells and non-T cells with dual TCRs will be a meaningful direction. Currently, peripheral induced Treg cells can originate from the conversion of non-Treg cells; however, little is known about the sources and functions of dual TCR Treg cell subsets in both central and peripheral sites. In R1, we have supplemented the discussion regarding the possible origins and potential applications of the "novel dual TCR Treg" subsets.

      (3) Comparison of gene expression by single- and dual TCR Tregs is of interest, but as presented is difficult to interpret. Statistical analyses need to be performed to provide statistical confidence that the observed differences are true.

      Thank you very much for your review and suggestions. Based on your recommendations, we performed an initial differential expression analysis of the top 10 mRNA molecules in single TCR Treg and dual TCR Treg cells using the DESeq2 R package in R1, with a statistical significance threshold of Padj<0.05 for comparisons.

      (4) The interpretations of the gene expression analyses are somewhat simplistic, focusing on the single-gene expression of some genes known to have a function in Tregs. However, the investigators miss an opportunity to examine larger patterns of coordinated gene expression associated with developmental pathways and differential function in Tregs (Yang. 2015. Science. 348:589; Li. 2016. Nat Rev Immunol. Wyss. 2016. 16:220; Nat Immunol. 17:1093; Zenmour. 2018. Nat Immunol. 19:291).

      Thank you for your review and suggestions. This study is based on publicly available scRNA+TCR-seq data from different organ sites generated by the original authors, focusing on sorted and enriched Treg cells within each tissue sample. However, there was no corresponding research on other cell types in each tissue sample, preventing analysis of other cells and factors involved in development and differentiation of single TCR Treg and dual TCR Treg. The literature suggested by the reviewer indicates that development, differentiation, and function of Treg cells have been extensively studied, resulting in significant advances. It also highlights complexity and diversity of Treg origins and functions. This research aims to investigate "novel dual TCR Treg cell subpopulations" that may exhibit tissuespecific differences found in the original authors' studies of Treg cells across different organ sites. This suggests further experimental research into their development, differentiation, origin, and functional gene expression as an important direction, which we have supplemented in the discussion section of R1.

      Reviewer #3 (Public review):

      (1) Definition of Dual TCR and Validity of Doublet Removal:This study analyzes Treg cells with Dual TCR, but it is not clearly stated how the possibility of doublet cells was eliminated. The authors mention using DoubletFinder for detecting doublets in scRNA-seq data, but is this method alone sufficient?We strongly recommend reporting the details of doublet removal and data quality assessment in the Supplementary Data.

      Thank you very much for your review and suggestions. In the analysis of the shared scRNA+TCR-seq data across multiple laboratories, as you mentioned, this study employed the DoubletFinder R package to exclude suspected doublets. Additionally, we used the nCount values of individual cells (i.e., the total sequencing reads or UMI counts for each cell) as auxiliary parameters to further optimize the assessment of cell quality. Generally, due to the possibility that doublet cells may contain gene expression information from two or more cells, their nCount values are often abnormally high. In this study, all cells included in the analysis had nCount values not exceeding 20,000. Among the five tissue sample datasets, we further utilized hashtag oligonucleotide (HTO) labeling (where HTO labeling provides each cell with a unique barcode to differentiate cells from different tissue sources. By analyzing HTO labels, doublets and negative cells can be accurately identified) to eliminate doublets and negative cells.After the removal of chimeric cells, all samples exhibited T cells that possessed two or more TCR clones. This phenomenon validates the reliability of the methodological approach employed in this study and indicates that the analytical results accurately reflect the proportion of dual TCR T cells. Based on the recommendations of the reviewers, we have supplemented and clarified the methods and discussion sections in the manuscript. It is particularly noteworthy that in our analysis, the discussed dual TCR Treg cells and single TCR Treg cells specifically refer to those T cells that possess both functional α and β chains, which are capable of forming TCR. We have excluded from this analysis any Treg cells that possess only a single functional α or β chain and do not form TCR pairs, as well as those Treg cells in which the α or β chains involved in TCR pairing are non-functional.

      (2) In Figure 3D, the proportion of Dual TCR T cells (A1+A2+B1+B2) in the skin is reported to be very high compared to other tissues. However, in Figure 4C, the proportion appears lower than in other tissues, which may be due to contamination by non-Tregs. The authors should clarify why it was necessary to include non-Tregs as a target for analysis in this study. Additionally, the sensitivity of scRNA-seq and TCR-seq may vary between tissues and may also be affected by RNA quality and sequencing depth in skin samples, so the impact of measurement bias should be assessed.

      We deeply appreciate your review and constructive comments. Based on the original manuscript, we have further supplemented and elaborated on the uniqueness and relative proportions of double TCR T cell pairs in skin tissue samples in Section R1. Due to the scarcity of T cells in skin samples, we included some non-Treg cells during single-cell RNA sequencing and TCR sequencing to obtain a sufficient number of cells for effective analysis. The presence of non-regulatory T cells may indeed impact the statistical representation of double TCR T cells as well as the related comparative analyses, as noted by the reviewer. T cells with A1+A2+B1+B2 type double TCR pairings are primarily found within the non-regulatory T cell population in the skin. In response to this point, we have provided a detailed explanation of this analytical result in the revised manuscript R1. Furthermore, concerning the two datasets included in the study, we conducted a comparative analysis in R1, exploring how factors such as sequencing depth at different tissue sites might introduce biases in our findings, which we have thoroughly elaborated upon in the discussion section. We thank you once again for your valuable suggestions.

      (3) Issue of Cell Contamination:In Figure 2A, the data suggest a high overlap between blood, kidney, and liver samples, likely due to contamination. Can the authors effectively remove this effect? If the dataset allows, distinguishing between blood-derived and tissue-resident Tregs would significantly enhance the reliability of the findings. Otherwise, it would be difficult to separate biological signals from contamination noise, making interpretation challenging.

      We thank you for your review and suggestions. We have carefully verified data sources for tissues such as blood, kidneys, and liver. In the study by Oliver T et al., various techniques were employed to differentiate between leukocytes from blood and those from tissues, ensuring accurate identification of leukocytes from tissue samples. First, anti-CD45 antibody was injected intravenously to label cells in the vasculature, verifying that analyzed cells were indeed resident in the tissue. Second, prior to dissection and cell collection, authors performed perfusion on anesthetized mice to reduce contamination of tissue samples by leukocytes from the vasculature. Additionally, during single-cell sequencing, authors utilized HTO technology to avoid overlap between cells from different tissues.

      Analysis of the scRNA+TCR-seq data shared by the original authors revealed highly overlapping TCR sequences in blood, kidney, and liver, despite distinct cell labels associated with each tissue. While these techniques minimize overlap of cells from different sources, they cannot completely rule out the potential impact of this technical issue. As suggested, we have provided additional clarification in R1 of the manuscript regarding this phenomenon of high overlap in the kidney, liver, and blood, indicating that the possibility of Treg migration from blood to kidney and liver cannot be entirely excluded.

      (4) Inconsistency Between CDR3 Overlap and TCR Diversity:The manuscript states that Single TCR Tregs have a higher CDR3 overlap, but this contradicts the reported data that Dual TCR Tregs exhibit lower TCR diversity (higher 1/DS score). Typically, when TCR diversity is low (i.e., specific clones are concentrated), CDR3 overlap is expected to increase. The authors should carefully address this discrepancy and discuss possible explanations.

      Thank you for your review and suggestions. Regarding the potential relationship between CDR3 overlap and TCR diversity, in samples with consistent sequencing depth, lower diversity indeed corresponds to a higher proportion of CDR3 overlap. In our analysis of scRNA+TCR-seq data, we found that single TCR Tregs exhibit both higher diversity and CDR3 overlap, seemingly presenting contradictory analytical results (i.e., dual TCR Tregs show lower TCR diversity and CDR3 overlap). In R1, we supplemented the analysis of possible reasons: the presence of multiple TCR chains in dual TCR Treg cells may lead to a higher uniqueness of CDR3 due to multiple rearrangements and selections, resulting in lower CDR3 overlap; the lower diversity of dual TCR Tregs may be related to the number of T cells sequenced in each sample. The CDR3 diversity analysis in this study merely suggests that the TCR composition of dual TCR Treg cells is diverse, similar to that of single TCR Tregs. However, the diversity indices of single TCR Tregs and dual TCR Tregs are not suitable for statistical comparative analysis. A more in-depth and specific analysis of the diversity and overlap of the VDJ recombination mechanisms and CDR3 composition in dual TCR Tregs during development will be an important technical means to elucidate the function of dual TCR Treg cells.

      (5) Functional Evaluation of Dual TCR Tregs:This study indicates gene expression differences among tissue-resident Dual TCR T cells, but there is no experimental validation of their functional significance. Including functional assays, such as suppression assays or cytokine secretion analysis, would greatly enhance the study's impact.

      We sincerely appreciate your review and suggestions: In this analysis of scRNA+TCR-seq data, we innovatively discovered a higher proportion of dual TCR Treg cells in different tissue sites, which exhibited differences in tissue characteristics. Furthermore, we conducted a comparative analysis of the homogeneity and heterogeneity between single TCR Treg and dual TCR Treg cells. This result provides a foundation for further research on the origin and characteristics of dual TCR Treg cells in different tissue sites, offering new insights for understanding the complexity and functional diversity of Treg cells. Based on your suggestions, we have supplemented R1 with the feasibility of further exploring the functions of tissue-resident dual TCR T cells and the necessity for potential application research.

      (6) Appropriateness of Statistical Analysis:When discussing increases or decreases in gene expression and cell proportions (e.g., Figure 2D), the statistical methods used (e.g., t-test, Wilcoxon, FDR correction) should be explicitly described. They should provide detailed information on the statistical tests applied to each analysis.

      Thank you for your review and suggestions: Based on the original manuscript, we have supplemented the specific statistical methods for the differences in cell proportions and gene expression in R1.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1:

      (1) Developmental time series:

      It was not entirely clear how this experiment relates to the rest of the manuscript, as it does not compare any effects of transport within or across species.

      Implemented Changes:  

      The importance of species arrival timing for community assembly is addressed in both the introduction and discussion. To accommodate the reviewer’s concerns and further emphasize this point, we have added a clarifying sentence to the results section and included an illustrative example with supporting literature in the discussion.

      Results: Clarifying the timing of initial microbial colonization is essential for determining whether and how priority effects mediate community assembly of vertically transmitted microbes in early life, or whether these microbes arrive into an already established microbial landscape. We used non-sterile frogs of our captive laboratory colony (…)

      Discussion: For example, early microbial inoculation has been shown to increase the relative abundance of beneficial taxa such as Janthinobacterium lividum (Jones et al., 2024), whereas efforts to introduce the same probiotic into established adult communities have not led to long-term persistence (Bletz, 2013; Woodhams et al., 2016).  

      (2) Cross-foster experiment:

      The "heterospecific transport" tadpoles were manually brushed onto the back of the surrogate frog, while the "biological transport" tadpoles were picked up naturally by the parent. It is a little challenging to interpret the effect of caregiver species since it is conflated with the method of attachment to the parent. I noticed that the uptake of Os-associated microbes by Os-transported tadpoles seemed to be higher than the uptake of Rv-associated microbes by Rv-associated tadpoles (comparing the second box from the left to the rightmost boxplot in panel S2C). Perhaps this could be a technical artifact if manual attachment to Os frogs was more efficient than natural attachment to Rv frogs.

      I was also surprised to see so much of the tadpole microbiome attributed to Os in tadpoles that were not transported by Os frogs (25-50% in many cases). It suggests that SourceTracker may not be effectively classifying the taxa.

      Implemented Changes:  

      Methods (Study species, reproductive strategies and life history): Oophaga sylvatica (Os) (Funkhouser, 1956; CITES Appendix II, IUCN Conservation status: Near Threatened) is a large, diurnal poison frog (family Dendrobatidae) inhabiting lowland and submontane rainforests in Colombia and Ecuador. While male Os care for the clutch of up to seven eggs, females transport 1-2 tadpoles at a time to water-filled leaf axils where tadpoles complete their development (Pašukonis et al., 2022; Silverstone, 1973; Summers, 1992). Notably, females return regularly to these deposition sites to provision their offspring with unfertilized eggs.

      Discussion: Most poison frogs transport tadpoles on their backs, but the mechanism of adherence remains unclear. Similar to natural conditions, tadpoles that are experimentally placed onto a caregiver’s back also gradually adhere to the dorsal skin, where they remain firmly attached for several hours as the adult navigates dense terrain. Although transport durations were standardized, species-specific factors- such as microbial density at the contact site, microbial taxa identity, and skin physiology such as moisture -could influence microbial transmission between the transporting frog and the tadpole. While these differences may have contributed to varying transmission efficacies observed between the two frog species in our experiment, none of these factors should compromise the correct microbial source assignment. We thus conclude that transporting frogs serve as a source of microbiota for transported tadpoles. However, further studies on species-specific physiological traits and adherence mechanisms are needed to clarify what modulates the efficacy of microbial transmission during transport, both under experimental and natural conditions.  

      Methods (Vertical transmission): Cross-fostering tadpoles onto non-parental frogs has been used previously to study navigation in poison frogs (Pašukonis et al., 2017). According to our experience, successful adherence to both parent and heterospecific frogs depends on the developmental readiness of tadpoles, which must have retracted their gills and be capable of hatching from the vitelline envelope through vigorous movement. Another factor influencing cross-fostering success is the docility of the frog during initial attachment, as erratic movements easily dislodge tadpoles before adherence is established. Rv are small, jumpy frogs that are easily stressed by handling, making experimental fostering of tadpoles—even their own— impractical. Therefore, we favored an experimental design where tadpoles initiate natural transport and parental frogs pick them up with a 100% success rate. We chose the poison frog Os as foster frogs because adults are docile, parental care in this species involves transporting tadpoles, and skin microbial communities differ from Rv- a critical prerequisite for our SourceTracker analysis. The use of the docile Os as the foster species enabled a 100% cross-fostering success rate, with no notable differences in adherence strength after six hours.

      Methods (Sourcetracker Analysis): To assess training quality, we evaluated model selfassignment using source samples. We selected the model trained on a dataset rarefied to the read depth of the adult frog sample with the lowest read count (48162 reads), as it showed the best overall self-assignment performance, whereas models trained on datasets rarefied to the lowest overall read depth performed worse. Unlike studies using technical replicates, our source samples represent distinct biological individuals and sampling timepoints, where natural microbiome variability is expected within each source category. Consequently, we considered self-assignment rates above 70% acceptable. All source samples were correctly assigned to their respective categories (Rv, Os, or control), but with varying proportions of reads assigned as 'Unknown'. Adult frog sources were reliably selfidentified with high confidence (Os: 97.2% median, IQR = 1.4; Rv: 76.3% median, IQR = 38.1). Adult R. variabilis frogs displayed a higher proportion of 'Unknown' assignments compared to O. sylvatica, likely reflecting greater biological variability among individuals and/or a higher proportion of rare taxa not well captured in the training set. The control tadpole source showed lower self-assignment accuracy (median = 30.5%, IQR = 17.1), as expected given the low microbial biomass of these samples, which resulted in low read depth. Low readdepth limits the information available to inform the iterative updating steps in Gibbs sampling and reduces confidence in source assignments. We therefore verified the robustness of our results by performing the second Sourcetracker analysis as described above, training the model only on adult sources and assigning all tadpoles, including lowbiomass controls, as sinks (as described above). Self-assignment rates for the second training set varied (O. sylvatica: 79.2% median, IQR = 29; R. variabilis: 96.6% median, IQR = 3.7), while results remained consistent across analyses, supporting the reliability of our findings.

      (3) Cross-species analysis:

      Like the developmental time series, this analysis doesn't really address the central question of the manuscript. I don't think it is fair for the authors to attribute the difference in diversity to parental care behavior, since the comparison only includes n=2 transporting species and n=1 non-transporting species that differ in many other ways. I would also add that increased diversity is not necessarily an expectation of vertical transmission. The similarity between adults and tadpoles is likely a more relevant outcome for vertical transmission, but the authors did not find any evidence that tadpole-adult similarity was any higher in species with tadpole transport. In fact, tadpoles and adults were more similar in the non-transporting species than in one of the transporting species (lines 296-298), which seems to directly contradict the authors' hypothesis. I don't see this result explained or addressed in the Discussion.

      To address the reviewer’s concerns, we implemented the following changes:  

      Results:

      We rephrased the following sentence from the results part:  

      “These variations may therefore be linked to differing reproductive traits: Af and Rv lay terrestrial egg clutches and transport hatchlings to water, whereas Ll, a non-transporting species, lays eggs directly in water.”

      To read

      “These variations may therefore reflect differences in life history traits among the three species.”

      We moved the information on differing reproductive strategies into the Discussion, where it contributes to a broader context alongside other life history traits that may influence community diversity.

      Discussion (1): We added to our discussion that increased microbial diversity was not an expected outcome of vertical transmission.

      “However, increased microbial diversity is not a known outcome of vertical transmission, and further studies across a broader range of transporting and non-transporting species are needed to assess the role of transport in shaping diversity of tadpole-associated microbial communities.”

      Discussion (2): Likewise, communities associated with adults and tadpoles of transporting species were no more similar than those of non-transporting species. While poison frog tadpoles do acquire caregiver-specific microbes during transport, most of these microbes do not persist on the tadpoles' skin long-term. This pattern can likely be attributed to the capacity of tadpole skin- and gut microbiota to flexibly adapt to environmental changes (Emerson & Woodley, 2024; Santos et al., 2023; Scarberry et al., 2024). It may also reflect the limited compatibility of skin microbiota from terrestrial adults with aquatic habitats or tadpole skin, which differs structurally from that of adults (Faszewski et al., 2008). As a result, many transmitted microbes are probably outcompeted by microbial taxa continuously supplied by the aquatic environment. Interestingly, microbial communities of the non-transporting Ll were more similar to their adult counterparts than those of poison frogs. This pattern might reflect differences in life history among the species. While adult Ll commonly inhabit the rock pools where their tadpoles develop, adults of the two poison frog species visit tadpole nurseries only sporadically for deposition. These differences in habitat use may result in adult Ll hosting skin microbiota that are better adapted to aquatic environments as compared to Rv and Af. Additionally, their presence in the tadpoles’ habitat could make Ll a more consistent source of microbiota for developing tadpoles.

      (4) Field experiment: The rationale and interpretation of the genus-level network are not clear, and the figure is not legible. What does it mean to "visualize the microbial interconnectedness" or to be a "central part of the community"? The previous sentences in this paragraph (lines 337-343) seem to imply that transfer is parent-specific, but the genuslevel network is based on the current adult frogs, not the previous generation of parents that transported them. So it is not clear that the distribution or co-distribution of these taxa provides any insight into vertical transmission dynamics.

      Implemented Changes:  

      We appreciate the reviewer’s close reading and understand how the inclusion of the network visualization without further clarification may have led to confusion. To clarify, the network was constructed from all adult frogs in the population, including—but not limited to—the parental frogs examined in the field experiment. We do not make any claims about the origin of the microbial taxa found on parental frogs. Rather, our aim was to illustrate how genera retained on tadpoles (following potential vertical transmission) contribute to the skin microbial communities of adult frogs of this population beyond just the parental individuals. This finding supports the observation that these retained taxa are generally among the most abundant in adult frogs. However, since this information is already presented in Table S8 and the figure is not essential to the main conclusions, we have removed Supplementary Figure S5 and the accompanying sentence: “A genus-level network constructed from 44 adult frogs shows that the retained genera make up a central part of the community of adult Rv in wild populations (Fig. S5).” We have adjusted the Methods section accordingly.

      Reviewer #2:

      I did not find any major weaknesses in my review of this paper. The work here could potentially benefit from absolute abundance levels for shared ASVs between adults and tadpoles to more thoroughly understand the influences of vertical transmission that might be masked by relative abundance counts. This would only be a minor improvement as I think the conclusions from this work would likely remain the same, however.

      In response to the reviewer’s suggestion, we estimated the absolute abundance of specific ASVs for all samples of tadpoles in which Sourcetracker identified shared ASVs between adults and tadpoles. The resulting scaled absolute abundance values (in copies/μL and copies per tadpole) are provided in Table S10, and a description of the method has been incorporated into the revised Methods section of the manuscript. To support the robustness of this approach in our dataset, we additionally designed an ASV-specific system for ASV24902-Methylocella. Candidate primers were assessed for specificity by performing local BLASTn alignments against the full set of ASV sequences identified in the respective microbial communities of tadpoles. We optimized the annealing temperature via gradient PCR and confirmed primer specificity through Sanger sequencing of the PCR product (Forward: 5′–GAGCACGTAGGCGGATCT–3′ Reverse: 5′–GGACTACNVGGGTWTCTAAT–3′). Using this approach, we confirmed that the relative abundance of ASV24902 (18.05% in the amplicon sequencing data) closely matched its proportion of the absolute 16S rRNA copy number in transported tadpole 6 (18.01%). While we intended to quantify all shared ASVs, we were limited to this single target due to insufficient material for optimizing the assays. As this particular ASV was also detected in the water associated with the same tadpole, we chose not to include this confirmation in the manuscript. Nevertheless, the close match supports the reliability of our approach for scaling absolute abundances in this dataset.

      Results: Absolute abundances of shared ASVs likely originating from the parental source pool (as identified by Sourcetracker) after one month of growth ranged from 7804 to 172326 copies per tadpole (Table S10).

      Methods: Quantitative analysis of 16S rRNA copy numbers with digital PCR (dPCR)

      Absolute abundances were estimated for ASVs that were shared between tadpoles after a one-month growth period and their respective caregivers, and for which Sourcetracker analysis identified the caregiver as a likely source of microbiota. We followed the quantitative sequencing framework described by Barlow et al. (2020), measuring total microbial load via digital PCR (dPCR) with the same universal 16S rRNA primers used to amplify the v4 region in our sequencing dataset. Absolute 16S rRNA copy numbers obtained from dPCR were then multiplied by the relative abundances from our amplicon sequencing dataset to calculate ASV-specific scaled absolute abundances. All dPCR reactions were carried out on a QIAcuity Digital PCR System (Qiagen) using Nanoplates with a 8.5K partition configuration, using the following cycling program: 95°C for 2 minutes, 40 cycles of 95°C for 30 seconds and 52°C for 30 seconds and 72°C for 1 minute, followed by 1 cycle of 40°C for 5 minutes. Reactions were prepared using the QIAcuity EvaGreen PCR Kit (Qiagen, Cat. No. 250111) with 2 µL of DNA template per reaction, following the manufacturer's protocol, and included a negative no-template control and a cleaned and sequenced PCR product as positive control. Samples were measured in triplicates and serial dilutions were performed to ensure accurate quantification. Data were processed with the QIAcuity Software Suite (v3.1.0.0). The threshold was set based on the negative and positive controls in 1D scatterplots. We report mean copy numbers per microliter with standard deviations, correcting for template input, dPCR reaction volume, and dilution factor. Mean copy numbers per tadpole were additionally calculated by accounting for the DNA extraction (elution) volume.  

      Recommendations for the authors:

      Reviewer #1:

      (1) Figure 1b summarizes the ddPCR data as a binary (detected/not detected), but this contradicts the main text associated with this figure, which describes bacteria as present, albeit in low abundances, in unhatched embryos (lines 145-147). Could the authors keep the diagram of tadpole development, which I find very useful, but add the ddPCR data from Figure S1c instead of simply binarizing it as present/absent?

      We appreciate the reviewer’s positive feedback on the clarity of the figure. We agree that presenting the ddPCR data in a more quantitative manner provides a more accurate representation of bacterial abundance across developmental stages. In response, we have retained the developmental diagram, as suggested, and replaced the binary (detected/not detected) information in Figure 1B with rounded mean values for each stage. To complement this, we have included mean values and standard deviations in Table S1. The corresponding text in the main manuscript and legends has been revised accordingly to reflect these changes.  

      (2) More information about the foster species, Oophaga sylvatica, would be helpful. Are they sympatric with Rv? Is their transporting behavior similar to that of Rv?

      We thank the reviewer for this helpful comment. In response, we have added further details on the biology and parental care behavior of Oophaga sylvatica, including information on its distribution range. The species does not overlap with Ranitomeya variabilis at the specific study site where the field work was conducted, although the species are sympatric in other countries. These additions have been incorporated into the Methods section under "Study species, reproductive strategies, and life history."  

      (3) Plotting the proportion of each tadpole microbiome attributed to R. variabilis and the proportion attributed to O. sylvatica on the same plot is confusing, as these points are nonindependent and there is no way for the reader to figure out which points originated from the same tadpole. I would suggest replacing Figure 1D with Figure S2C, which (if I understand correctly) displays the same data, but is separated according to source.

      We agree with the reviewer that Figure S2C allows for clearer interpretation of our results. In response, we implemented the suggested change and replaced Figure 1D with the alternative visualization previously shown in Figure S2C, which displays the same data separated by source. To provide readers with a complementary overview of the full dataset, we have retained the original combined plot in the supplementary material as Figure S2D.

      (4) On the first read, I found the use of "transport" in the cross-fostering experiment confusing until I understood that they weren't being transported "to" anywhere in particular, just carried for 6 hours. A change of phrasing might help readers here.

      We acknowledge the reviewer’s concern and have replaced “transported” with “carried” to avoid confusion for readers who may be unfamiliar with the behavioral terminology. However, because “transport” is the term widely used by specialists to describe this behavior, we now introduce it in the context of the experimental design with the following phrasing:

      “For this design, sequence-based surveys of amplified 16S rRNA genes were used to assess the composition of skin-associated microbial communities on tadpoles and their adult caregivers (i.e., the frogs carrying the tadpoles, typically referred to as ‘transporting’ frogs).”

      (5) "Horizontal transfer" typically refers to bacteria acquired from other hosts, not environmental source pools (line 394).

      We addressed this concern by rephrasing the sentence in the Discussion to avoid potential confusion. The revised text now reads:

      “Across species, newborns might acquire bacteria not only through transfer from environmental source pools and other hosts (…)”  

      (6) The authors suggest that tadpole transport may have evolved in Rv and Af to promote microbial diversity because "increased microbial diversity is linked to better health outcomes" (lines 477-479). It is often tempting to assume that more diversity is always better/more adaptive, but this is not universally true. The fact that the Ll frogs seem to be doing fine in the same environment despite their lower microbiome diversity suggests that this interpretation might be too far of a reach based on the data here.

      We appreciate the reviewer’s concern, agree that increased microbial diversity is not inherently advantageous and have revised the paragraph to make this clearer.  

      “While increased microbial diversity is not inherently advantageous, it has been associated with beneficial outcomes such as improved immune function, lower disease risk, and enhanced fitness in multiple other vertebrate systems.”

      However, rather than claiming that greater diversity is always advantageous, we suggest that this possibility should not be excluded and consider it a relevant aspect of a comprehensive discussion. We also note that whether poison frog tadpoles perform equally well with lower microbial diversity remains an open question. Drawing such conclusions would require experimental validation and cannot be inferred from comparisons with an evolutionarily distant species that differs in life history.

      Reviewer #2:

      (1) Figure 2: Are the data points in C a subset (just the tadpoles for each species) of B? The numbers look a little different between them. The number of observed ASVs in panel B for Rv look a bit higher than the observed ASVs in panel C.

      The data shown in panel C are indeed a subset of the samples presented in panel B, focusing specifically on tadpoles of each species. The slight differences in the number of observed ASVs between panels result from differences in rarefaction depth between comparisons: due to variation in sequencing depth across species and life stages, we performed rarefaction separately for each comparison in order to retain the highest number of taxa while ensuring comparability within each group. Although we acknowledge that this is not a standard approach, we found that results were consistent when rarefying across the full dataset, but chose the presented approach to better accommodate variation in our sample structure. This methodological detail is described in the Methods section:

      “All alpha diversity analyses were conducted with datasets rarefied to 90% of the read number of the sample with the fewest reads in each comparison and visualized with boxplots.”

      It is also noted in the figure legend: “The dataset was separately rarefied to the lowest read depth f each comparison.” We hope this clarification adequately addresses the reviewer’s concern and therefore have not made additional changes.

      (2) Lines 304-305: in the Figure 4B plot, there appear to be 12 transported tadpoles and 8 non-transported tadpoles.

      Thank you for catching this. We have corrected the plot and the associated statistics (alpha and beta diversity) in the results section as well as in the figure. Importantly, the correction did not affect any other results, and the overall findings and interpretations remain unchanged.  

      (3) Line 311: I think this should be Figure 4B.

      (4) Line 430: tadpole transport.

      (5) Line 431: I believe commas need to surround this phrase "which range from a few hours to several days depending on the species (Lötters et al., 2007; McDiarmid & Altig, 1999; Pašukonis et al., 2019)".

      We thank the reviewer for the thorough review and have corrected all typographical and formatting errors noted in comments (3) – (5).

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors): 

      One minor question would be whether the authors could expand more on the application of END-Seq to examine the processive steps of the ALT mechanism? Can they speculate if the ssDNA detected in ALT cells might be an intermediate generated during BIR (i.e., is the ssDNA displaced strand during BIR) or a lesion? Furthermore, have the authors assessed whether ssDNA lesions are due to the loss of ATRX or DAXX, either of which can be mutated in the ALT setting?

      We appreciate the reviewer’s insightful questions regarding the application of our assays to investigate the nature of the ssDNA detected in ALT telomeres. Our primary aim in this study was to establish the utility of END-seq and S1-END-seq in telomere biology and to demonstrate their applicability across both ALT-positive and -negative contexts. We agree that exploring the mechanistic origins of ssDNA would be highly informative, and we anticipate that END-seq–based approaches will be well suited for such future studies. However, it remains unclear whether the resolution of S1-END-seq is sufficient to capture transient intermediates such as those generated during BIR. We have now included a brief speculative statement in the revised discussion addressing the potential nature of ssDNA at telomeres in ALT cells.

      Reviewer #2 (Recommendations for the authors):

      How can we be sure that all telomeres are equally represented? The authors seem to assume that END-seq captures all chromosome ends equally, but can we be certain of this? While I do not see an obvious way to resolve this experimentally, I recommend discussing this potential bias more extensively in the manuscript.

      We thank the reviewer for raising this important point. END-seq and S1-END-seq are unbiased methods designed to capture either double-stranded or single-stranded DNA that can be converted into blunt-ended double-stranded DNA and ligated to a capture oligo. As such, if a subset of telomeres cannot be processed using this approach, it is possible that these telomeres may be underrepresented or lost. However, to our knowledge, there are no proposed telomeric structures that would prevent capture using this method. For example, even if a subset of telomeres possesses a 5′ overhang, it would still be captured by END-seq. Indeed, we observed the consistent presence of the 5′-ATC motif across multiple cell lines and species (human, mouse, and dog). More importantly, we detected predictable and significant changes in sequence composition when telomere ends were experimentally altered, either in vivo (via POT1 depletion) or in vitro (via T7 exonuclease treatment). Together, these findings support the robustness of the method in capturing a representative and dynamic view of telomeres across different systems.

      That said, we have now included a brief statement in the revised discussion acknowledging that we cannot fully exclude the possibility that a subset of telomeres may be missed due to unusual or uncharacterized structures

      I believe Figures 1 and 2 should be merged.

      We appreciate the reviewer’s suggestion to merge Figures 1 and 2. However, we feel that keeping them as separate figures better preserves the logical flow of the manuscript and allows the validation of END-seq and its application to be presented with appropriate clarity and focus. We hope the reviewer agrees that this layout enhances the clarity and interpretability of the data.

      Scale bars should be added to all microscopy figures.

      We thank the reviewer for pointing this out. We have now added scale bars to all the microscopy panels in the figures and included the scale details in the figure legends.

      Reviewer #3 (Recommendations for the authors):

      Overall, the discussion section is lacking depth and should be expanded and a few additional experiments should be performed to clarify the results.

      We thank the reviewer for the suggestions. Based on this reviewer’s comments and comments for the other reviewers, we incorporated several points into the discussion. As a result, we hope that we provide additional depth to our conclusions.

      (1) The finding that the abundance of variant telomeric repeats (VTRs) within the final 30 nucleotides of the telomeric 5' ends is similar in both telomerase-expressing and ALT cells is intriguing, but the authors do not address this result. Could the authors provide more insight into this observation and suggest potential explanations? As the frequency of VTRs does not seem to be upregulated in POT1-depleted cells, what then drives the appearance of VTRs on the C-strand at the very end of telomeres? Is CST-Pola complex responsible?

      The reviewer raises a very interesting and relevant point. We are hesitant at this point to speculate on why we do not see a difference in variant repeats in ALT versus non-ALT cells, since additional data would be needed. One possibility is that variant repeats in ALT cells accumulate stochastically within telomeres but are selected against when they are present at the terminal portion of chromosome ends. However, to prove this hypothesis, we would need error-free long-read technology combined with END-seq. We feel that developing this approach would be beyond the scope of this manuscript.

      (2) The authors also note that, in ALT cells, the frequency of VTRs in the first 30 nucleotides of the S1-END-SEQ reads is higher compared to END-SEQ, but this finding is not discussed either. Do the authors think that the presence of ssDNA regions is associated with the VTRs? Along this line, what is the frequency of VTRs in the END-SEQ analysis of TRF1-FokI-expressing ALT cells? Is it also increased? Has TRF1-FokI been applied to telomerase-expressing cells to compare VTR frequencies at internal sites between ALT and telomerase-expressing cells?

      Similarly to what is discussed above, short reads have the advantage of being very accurate but do not provide sufficient length to establish the relative frequency of VTRs across the whole telomere sequence. The TRF1-FokI experiment is a good suggestion, but it would still be biased toward non-variant repeats due to the TRF1-binding properties. We plan to address these questions in a future study involving long-read sequencing and END-seq capture of telomeres.

      Finally, in these experiments (S1-END-SEQ or END-SEQ in TRF1-Fok1), is the frequency of VTRs the same on both the C- and the G-rich strands? It is possible that the sequences are not fully complementary in regions where G4 structures form.

      We thank the reviewer for this observation. While we do observe a higher frequency of variant telomeric repeats (VTRs) in the first 30 nucleotides of S1-END-seq reads compared to END-seq in ALT cells, we are currently unable to determine whether this difference is significant, as an appropriate control or matched normalization strategy for this comparison is lacking. Therefore, we refrain from overinterpreting the biological relevance of this observation.

      The reviewer is absolutely correct. Our calculation did not exclude the possibility of extrachromosomal DNA as a source of telomeric ssDNA. We have now addressed this point in our discussion.

      The reviewer is correct in pointing out that we still do not know what causes ssDNA at telomeres in ALT cells. Replication stress seems the most logical explanation based on the work of many labs in the field. However, our data did not reveal any significant difference in the levels of ssDNA at telomeres in non-ALT cells based on telomere length. We used the HeLa1.2.11 cell line (now clarified in the Materials section), which is the parental line of HeLa1.3 and has similarly long telomeres (~20 kb vs. ~23 kb). Despite their long telomeres and potential for replication-associated challenges such as G-quadruplex formation, HeLa1.2.11 cells did not exhibit the elevated levels of telomeric ssDNA that we observed in ALT cells (Figure 4B). Additional experiments are needed to map the occurrence of ssDNA at telomeres in relation to progression toward ALT.

      (3) Based on the ratio of C-rich to G-rich reads in the S1-END-SEQ experiment, the authors estimate that ALT cells contain at least 3-5 ssDNA regions per chromosome end. While the calculation is understandable, this number could be discussed further to consider the possibility that the observed ratios (of roughly 0.5) might result from the presence of extrachromosomal DNA species, such as C-circles. The observed increase in the ratio of C-rich to G-rich reads in BLM-depleted cells supports this hypothesis, as BLM depletion suppresses C-circle formation in U2OS cells. To test this, the authors should examine the impact of POLD3 depletion on the C-rich/G-rich read ratio. Alternatively, they could separate high-molecular-weight (HMW) DNA from low-molecular-weight DNA in ALT cells and repeat the S1-END-SEQ in the HMW fraction.

      The reviewer is absolutely correct. Our calculation did not exclude the possibility of extrachromosomal DNA as a source of telomeric ssDNA. We have now addressed this point in our discussion.

      (4) What is the authors' perspective on the presence of ssDNA at ALT telomeres? Do they attribute this to replication stress? It would be helpful for the authors to repeat the S1-END-SEQ in telomerase-expressing cells with very long telomeres, such as HeLa1.3 cells, to determine if ssDNA is a specific feature of ALT cells or a result of replication stress. The increased abundance of G4 structures at telomeres in HeLa1.3 cells (as shown in J. Wong's lab) may indicate that replication stress is a factor. Similar to Wong's work, it would be valuable to compare the C-rich/G-rich read ratios in HeLa1.3 cells to those in ALT cells with similar telomeric DNA content.

      The reviewer is correct in pointing out that we still do not know what causes ssDNA at telomeres in ALT cells. Replication stress seems the most logical explanation based on the work of many labs in the field. However, our data did not reveal any significant difference in the levels of ssDNA at telomeres in non-ALT cells based on telomere length. We used the HeLa1.2.11 cell line (now clarified in the Materials section), which is the parental line of HeLa1.3 and has similarly long telomeres (~20 kb vs. ~23 kb). Despite their long telomeres and potential for replication-associated challenges such as G-quadruplex formation, HeLa1.2.11 cells did not exhibit the elevated levels of telomeric ssDNA that we observed in ALT cells (Figure 4B). Additional experiments are needed to map the occurrence of ssDNA at telomeres in relation to progression toward ALT.

      Finally, Reviewer #3 raises a list of minor points:

      (1) The Y-axes of Figure 4 have been relabeled to account for the G-strand reads.

      (2) Statistical analyses have been added to the figures where applicable.

      (3) The manuscript has been carefully proofread to improve clarity and consistency throughout the text and figure legends

      (4) We have revised the text to address issues related to the lack of cross-referencing between the supplementary figures and their corresponding legends.

    1. Author Response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review): 

      Summary: 

      Genome-wide association studies have been an important approach to identifying the genetic basis of human traits and diseases. Despite their successes, for many traits, a substantial amount of variation cannot be explained by genetic factors, indicating that environmental variation and individual 'noise' (stochastic differences as well as unaccounted for environmental variation) also play important roles. The authors' goal was to address whether gene expression variation in genetically identical individuals, driven by historical environmental differences and 'noise', could be used to predict reproductive trait differences. 

      Strengths: 

      To address this question, the authors took advantage of genetically identical C. elegans individuals to transcriptionally profile 180 adult hermaphrodite individuals that were also measured for two reproductive traits. A major strength of the paper is its experimental design. While experimenters aim to control the environment that each worm experiences, it is known that there are small differences that each worm experiences even when they are grown together on the same agar plate - e.g. the age of their mother, their temperature, the amount of food they eat, and the oxygen and carbon dioxide levels depending on where they roam on the plate. Instead of neglecting this unknown variation, the authors design the experiment up front to create two differences in the historical environment experienced by each worm: 1) the age of its mother and 2) 8 8-hour temperature difference, either 20 or 25 {degree sign}C. This helped the authors interpret the gene expression differences and trait expression differences that they observed. 

      Using two statistical models, the authors measured the association of gene expression for 8824 genes with the two reproductive traits, considering both the level of expression and the historical environment experienced by each worm. Their data supports several conclusions. They convincingly show that gene expression differences are useful for predicting reproductive trait differences, predicting ~25-50% of the trait differences depending on the trait. Using RNAi, they also show that the genes they identify play a causal role in trait differences. Finally, they demonstrate an association with trait variation and the H3K27 trimethylation mark, suggesting that chromatin structure can be an important causal determinant of gene expression and trait variation. 

      Overall, this work supports the use of gene expression data as an important intermediate for understanding complex traits. This approach is also useful as a starting point for other labs in studying their trait of interest. 

      We thank the reviewer for their thorough articulation of the strengths of our study.  

      Weaknesses: 

      There are no major weaknesses that I have noted. Some important limitations of the work (that I believe the authors would agree with) are worth highlighting, however: 

      (1) A large remaining question in the field of complex traits remains in splitting the role of non-genetic factors between environmental variation and stochastic noise. It is still an open question which role each of these factors plays in controlling the gene expression differences they measured between the individual worms. 

      Yes, we agree that this is a major question in the field. In our study, we parse out differences driven between known historical environmental factors and unknown factors, but the ‘unknown factors’ could encompass both unknown environmental factors and stochastic noise.

      (2) The ability of the authors to use gene expression to predict trait variation was strikingly different between the two traits they measured. For the early brood trait, 448 genes were statistically linked to the trait difference, while for egg-laying onset, only 11 genes were found. Similarly, the total R2 in the test set was ~50% vs. 25%. It is unclear why the differences occur, but this somewhat limits the generalizability of this approach to other traits. 

      We agree that the difference in predictability between the two traits is interesting. A previous study from the Phillips lab measured developmental rate and fertility across Caenorhabditis species and parsed sources of variation (1). Results indicated that 83.3% of variation in developmental rate was explained by genetic variation, while only 4.8% was explained by individual variation. In contrast, for fertility, 63.3% of variation was driven by genetic variation and 23.3% was explained by individual variation. Our results, of course, focus only on predicting the individual differences, but not genetic differences, for these two traits using gene expression data. Considering both sets of results, one hypothesis is that we have more power to explain nongenetic phenotypic differences with molecular data if the trait is less heritable, which is something that could be formally interrogated with more traits across more strains.

      (3) For technical reasons, this approach was limited to whole worm transcription. The role of tissue and celltype expression differences is important to the field, so this limitation is important. 

      We agree with this assessment, and it is something we hope to address with future work.

      Reviewer #2 (Public review): 

      Summary: 

      This paper measures associations between RNA transcript levels and important reproductive traits in the model organism C. elegans. The authors go beyond determining which gene expression differences underlie reproductive traits, but also (1) build a model that predicts these traits based on gene expression and (2) perform experiments to confirm that some transcript levels indeed affect reproductive traits. The clever study design allows the authors to determine which transcript levels impact reproductive traits, and also which transcriptional differences are driven by stochastic vs environmental differences. In sum, this is a rather comprehensive study that highlights the power of gene expression as a driver of phenotype, and also teases apart the various factors that affect the expression levels of important genes. 

      Strengths: 

      Overall, this study has many strengths, is very clearly communicated, and has no substantial weaknesses that I can point to. One question that emerges for me is about the extent to which these findings apply broadly. In other words, I wonder whether gene expression levels are predictive of other phenotypes in other organisms. I

      think this question has largely been explored in microbes, where some studies (PMID: 17959824) but not others (PMID: 38895328) find that differences in gene expression are predictive of phenotypes like growth rate. Microbes are not the primary focus here, and instead, the discussion is mainly focused on using gene expression to predict health and disease phenotypes in humans. This feels a little complicated since humans have so many different tissues. Perhaps an area where this approach might be useful is in examining infectious single-cell populations (bacteria, tumors, fungi). But I suppose this idea might still work in humans, assuming the authors are thinking about targeting specific tissues for RNAseq. 

      In sum, this is a great paper that really got me thinking about the predictive power of gene expression and where/when it could inform about (health-related) phenotypes. 

      We thank the reviewer for recognizing the strengths of our study. We are also interested in determining the extent to which predictive gene expression differences operate in specific tissues.

      Reviewer #3 (Public review): 

      Summary: 

      Webster et al. sought to understand if phenotypic variation in the absence of genetic variation can be predicted by variation in gene expression. To this end they quantified two reproductive traits, the onset of egg laying and early brood size in cohorts of genetically identical nematodes exposed to alternative ancestral (two maternal ages) and same generation life histories (either constant 20C temperature or 8-hour temperature shift to 25C upon hatching) in a two-factor design; then they profiled genome-wide gene expression in each individual. 

      Using multiple statistical and machine learning approaches, they showed that, at least for early brood size, phenotypic variation can be quite well predicted by molecular variation, beyond what can be predicted by life history alone. 

      Moreover, they provide some evidence that expression variation in some genes might be causally linked to phenotypic variation. 

      Strengths: 

      (1) Cleverly designed and carefully performed experiments that provide high-quality datasets useful for the community. 

      (2) Good evidence that phenotypic variation can be predicted by molecular variation. 

      We thank the reviewer for recognizing the strengths of our study.

      Weaknesses:  

      What drives the molecular variation that impacts phenotypic variation remains unknown. While the authors show that variation in expression of some genes might indeed be causal, it is still not clear how much of the molecular variation is a cause rather than a consequence of phenotypic variation. 

      We agree that the drivers of molecular variation remain unknown. While we addressed one potential candidate (histone modifications), there is much to be done in this area of research. We agree that, while some gene expression differences cause phenotypic changes, other gene expression differences could in principle be downstream of phenotypic differences.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      I have a number of suggestions that I believe will improve the Methods section. 

      (1) Strain N2-PD1073 will probably be confusing to some readers. I recommend spelling out that this is the Phillips lab version of N2.

      Thank you for this suggestion; we have added additional explanation of this strain in the Methods.

      (2) I found the details of the experimental design confusing, and I believe a supplemental figure will help. I have listed the following points that could be clarified: 

      a. What were the biological replicates? How many worms per replicate?

      Biological replicates were defined as experiments set up on different days (in this case, all biological replicates were at least a week apart), and the biological replicate of each worm can be found in Supplementary File 1 on the Phenotypic Data tab.

      b. I believe that embryos and L4s were picked to create different aged P0s, and eggs and L4s were picked to separate plates? Is this correct?

      Yes, this is correct.

      c. What was the spread in the embryo age?

      We assume this is asking about the age of the F1 embryos, and these were laid over the course of a 2-hour window.  

      d. While the age of the parents is different, there are also features about their growth plates that will be impacted by the experimental design. For example, their pheromone exposure is different due to the role that age plays in the combination of ascarosides that are released. It is worth noting as my reading of the paper makes it seem that parental age is the only thing that matters.

      The parents (P0) of different ages likely have differential ascaroside exposure because they are in the vicinity of other similarly aged worms, but the F1 progeny were exposed to their parents for only the 2-hour egg-laying window, in an attempt to minimize this type of effect as much as possible.  

      e. Were incubators used for each temperature?

      Yes.

      f. In line 443, why approximately for the 18 hours? How much spread?

      The approximation was based on the time interval between the 2-hour egg-laying window on Day 4 and the temperature shift on Day 5 the following morning. The timing was within 30 minutes of 18 hours either direction.

      g.  In line 444, "continually left" is confusing. Does this mean left in the original incubator?

      Yes, this means left in the incubator while the worms shifted to 25°C were moved. To avoid confusion, we re-worded this to state they “remained at 20°C while the other half were shifted to 25°C”.

      h. In line 445, "all worms remained at 20 {degree sign}C" was confusing to me as to what it indicated. I assume, unless otherwise noted, the animals would not be moved to a new temperature.

      This was an attempt to avoid confusion and emphasize that all worms were experiencing the same conditions for this part of the experiment.  

      i. What size plates were the worms singled onto?

      They were singled onto 6-cm plates.

      j. If a figure were to be made, having two timelines (with respect to the P0 and F1) might be useful.

      We believe the methods should be sufficient for someone who hopes to repeat the experiment, and we believe the schematic in Figure 1A labeling P0 and F1 generations is sufficient to illustrate the key features of the experimental design.

      k. Not all eggs that are laid end up hatching. Are these censored from the number of progeny calculations?

      Yes, only progeny that hatched and developed were counted for early brood.

      (3) For the lysis, was the second transfer to dH20 also a wash step?

      Yes.

      (4) What was used for the Elution buffer?

      We used elution buffer consisting of 10 mM Tris, 0.1 mM EDTA. We have added this to the “Cell lysate generation” section of the methods

      (5) The company that produced the KAPA mRNA-seq prep kit should be listed.

      We added that the kit was from Roche Sequencing Solutions.

      (6) For the GO analysis - one potential issue is that the set of 8824 genes might also be restricted to specific GO categories. Was this controlled for?

      We originally did not explicitly control for this and used the default enrichGO settings with OrgDB = org.Ce.eg.db as the background set for C. elegans. We have now repeated the analysis with the “universe” set to the 8824-gene background set. This did not qualitatively change the significant GO terms, though some have slightly higher or lower p-values. For comparison purposes, we have added the background-corrected sets to the GO_Terms tab of Supplementary File 1 with each of the three main gene groups appended with “BackgroundOf8824”.

      Reviewer #2 (Recommendations for the authors): 

      (1) The abstract, introduction, and experimental design are well thought through and very clear.

      Thank you.

      (2) Figure 1B could use a clearer or more intuitive label on the horizontal axis. The two examples help. Maybe the genes (points) on the left side should be blue to match Figure 1C, where the genes with a negative correlation are in the blue cluster.

      Thank you for these suggestions. We re-labeled the x-axis as “Slope of early brood vs. gene expression (normalized by CPM)”, which we hope gives readers a better intuition of what the coefficient from the model is measuring. We also re-colored the points previously colored red in Figure 1B to be color-coded depending on the direction of association to match Figure 1C, so these points are now color-coded as pink and purple.  

      (3) If red/blue are pos/neg correlated genes in 1C, perhaps different colors should be used to label ELO and brood in Figures 2 and 3. Green/purple?

      We appreciate this point, but since we ended up using the cluster colors of pink and purple in Figure 1, we opted to leave Figures 2 and 3 alone with the early brood and ELO colorcoding of red and blue.

      (4) I am unfamiliar with this type of beta values, but I thought the explanation and figure were very clear. It could be helpful to bold beta1 and beta2 in the top panels of Figure 2, so the readers are not searching around for those among all the other betas. It could also be helpful to add an English phrase to the vertical axes inFigures 2C and 2D, in addition to the beta1 and beta2. Something like "overall effect (beta1)" and"environment-controlled effect (beta2)". Or maybe "effect of environment + stochastic expression differences

      (beta1)" and "effect of stochastic expression differences alone (beta2)". I guess those are probably too big to fit on the figure, but it might be nice to have a label somewhere on this figure connecting them to the key thing you are trying to measure - the effect of gene expression and environment.

      Thank you for these suggestions. We increased the font sizes and bolded β1 and β2 in Figure 2A-B. In Figure 2C-D, we added a parenthetical under β1 to say “(env + noise)” and β2 to say “(noise)”. We agree that this should give the reader more intuition about what the β values are measuring.  

      Reviewer #3 (Recommendations for the authors): 

      The authors collected individuals 24 hours after the onset of egg laying for transcriptomic profiling. This is a well-designed experiment to control for the physiological age of the germline. However, this does not properly control for somatic physiological age. Somatic age can be partially uncoupled from germline age across individuals, and indeed, this can be due to differences in maternal age (Perez et al, 2017). This is because maternal age is associated with increased pheromone exposure (unless you properly controlled for it by moving worms to fresh plates), which causes a germline-specific developmental delay in the progeny, resulting in a delayed onset of egg production compared to somatic development (Perez et al. 2021). You control for germline age, therefore, it is likely that the progeny of day 1 mothers are actually somatically older than the progeny of day 3 mothers. This would predict that many genes identified in these analyses might just be somatic genes that increase or decrease their expression during the young adult stage. 

      For example, the abundance of collagen genes among the genes negatively associated (including col-20, which is the gene most significantly associated with early brood) is a big red flag, as collagen genes are known to be changing dynamically with age. If variation in somatic vs germline age is indeed what is driving the expression variation of these genes, then the expectation is that their expression should decrease with age. Vice versa, genes positively associated with early brood that are simply explained by age should be increasing.  So I would suggest that the authors first check this using time series transcriptomic data covering the young adult stage they profiled. If this is indeed the case, I would then suggest using RAPToR ( https://github.com/LBMC/RAPToR ), a method that, using reference time series data, can estimate physiological age (including tissue-specific one) from gene expression. Using this method they can estimate the somatic physiological age of their samples, quantify the extent of variation in somatic age across individuals, quantify how much of the observed differences in expressions are explained just by differences in somatic age and correct for them during their transcriptomic analysis using the estimated soma age as a covariate (https://github.com/LBMC/RAPToR/blob/master/vignettes/RAPToR-DEcorrection-pdf.pdf). 

      This should help enrich a molecular variation that is not simply driven by hidden differences between somatic and germline age. 

      To first address some of the experimental details mentioned for our paper, parents were indeed moved to fresh plates where they were allowed to lay embryos for two hours and then removed. Thus, we believe this minimizes the effects of ascarosides as much as possible within our design. As shown in the paper, we also identified genes that were not driven by parental age and for all genes quantified to what extent each gene’s association was driven by parental age. Thus, it is unlikely that differences in somatic and germline age is the sole explanatory factor, even if it plays some role. We also note that we accounted for egg-laying onset timing in our experimental design, and early brood was calculated as the number of progeny laid in the first 24 hours of egg-laying, where egg-laying onset was scored for each individual worm to the hour. The plot of each worm’s ELO and early brood traits is in Figure S1. Nonetheless, we read the RAPToR paper with interest, as we highlighted in the paper that germline genes tend to be positively associated with early brood while somatic genes tend to be negatively associated. While the RAPToR paper discusses using tissue-specific gene sets to stage genetically diverse C. elegans RILs, the RAPToR reference itself was not built using gene expression data acquired from different C. elegans tissues and is based on whole worms, typically collected in bulk. I.e., age estimates in RILs differ depending on whether germline or somatic gene sets are used to estimate age when the the aging clock is based on N2 samples. Thus, it is unclear whether such an approach would work similarly to estimate age in single worm N2 samples. In addition, from what we can tell, the RAPToR R package appears to implement the overall age estimate, rather than using the tissue-specific gene sets used for RILs in the paper. Because RAPToR would be estimating the overall age of our samples using a reference that is based on fewer samples than we collected here, and because we already know the overall age of our samples measured using standard approaches, we believe that estimating the age with the package would not give very much additional insight.  

      Bonferroni correction: 

      First, I think there is some confusion in how the author report their p-values: I don't think the authors are using a cut-off of Bonferroni corrected p-value of 5.7 x 10-6 (it wouldn't make sense). It's more likely that they are using a Bonferroni corrected p of 0.05 or 0.1, which corresponds to a nominal p value of 5.7 x 10-6, am I right?

      Yes, we used a nominal p-value of 5.7 x 10-6 to correspond to a Bonferroni-corrected p-value of 0.05, calculated as 0.05/8824. We have re-worded this wherever Bonferroni correction was mentioned.

      Second, Bonferroni is an overly stringent correction method that has now been substituted by the more powerful Benjamini Hochberg method to control the false discovery rate. Using this might help find more genes and better characterize the molecular variation, especially the one associated with ELO?

      We agree that Bonferroni is quite stringent and because we were focused on identifying true positives, we may have some false negatives. Because all nominal p-values are included in the supplement, it is straightforward for an interested reader to search the data to determine if a gene is significant at any other threshold.   

      Minor comments: 

      (1) "In our experiment, isogenic adult worms in a common environment (with distinct historical environments) exhibited a range of both ELO and early brood trait values (Fig S1A)" I think this and the figure is not really needed, Figure S1B is already enough to show the range of the phenotypes and how much variation is driven by the life history traits.

      We agree that the information in S1A is also included in S1B, but we think it is a little more straightforward if one is primarily interested in viewing the distribution for a single trait.

      (2) Line 105 It should be Figure S2, not S3.

      Thank you for catching this mistake.

      (3) Gene Ontology on positive and negatively associated genes together: what about splitting the positive and negative?

      We have added a split of positive and negative GO terms to the GO_Terms tab of Supplement File 1. Broadly speaking, the most enriched positively associated genes have many of the same GO terms found on the combined list that are germline related (e.g., involved in oogenesis and gamete generation), whereas the most enriched negatively associated genes have GO terms found on the combined list that are related to somatic tissues (e.g., actin cytoskeleton organization, muscle cell development). This is consistent with the pattern we see for somatic and germline genes shown in Figure 4.

      (4) A lot of muscle-related GOs, can you elaborate on that?

      Yes, there are several muscle-related GOs in addition to germline and epidermis. While we do not know exactly why from a mechanistic perspective these muscle-related terms are enriched, it may be important to note that many of these terms have highly overlapping sets of genes which are listed in Supplementary File 1. For example, “muscle system process” and “muscle contraction” have the exact same set of 15 genes causing the term to be significantly enriched. Thus, we tend to not interpret having many GO terms on a given tissue as indicating that the tissue is more important than others for a given biological process. While it is clear there are genes related to muscle that are associated with early brood, it is not yet clear that the tissue is more important than others.  

      (5) "consistent with maternal age affecting mitochondrial gene expression in progeny " - has this been previously reported?

      We do not believe this particular observation has been reported. It is important to note that these genes are involved in mitochondrial processes, but are expressed from the nuclear rather than mitochondrial genome. We re-worded the quoted portion of the sentence to say “consistent with parental age affecting mitochondria-related gene expression in progeny”.

      (6) PCA: "Therefore, the optimal number of PCs occurs at the inflection points of the graph, which is after only7 PCs for early brood (R2 of 0.55) but 28 PCs for ELO (R2 of 0.56)." 

      Not clear how this is determined: just graphically? If yes, there are several inflection points in the plot. How did you choose which one to consider? Also, a smaller component is not necessarily less predictive of phenotypic variation (as you can see from the graph), so instead of subsequently adding components based on the variance, they explain the transcriptomic data, you might add them based on the variance they explain in the phenotypic data? To this end, have you tried partial least square regression instead of PCA? This should give gene expression components that are ranked based on how much phenotypic variance they explain.  

      Thank you for this thoughtful comment. We agree that, unlike for Figure 3B, there is some interpretation involved on how many PCs is optimal because additional variance explained with each PC is not strictly decreasing beyond a certain number of PCs. Our assessment was therefore made both graphically and by looking at the additional variance explained with each additional PC. For example, for early brood, there was no PC after PC7 that added more than 0.04 to the R2. We could also have plotted early brood and ELO separately and had a different ordering of PCs on the x-axis. By plotting the data this way, we emphasized that the factors that explain the most variation in the gene expression data typically explain most variation in the phenotypic data.  

      (7) The fact that there are 7 PC of molecular variation that explain early brood is interesting. I think the authors can analyze this further. For example, could you perform separate GO enrichment for each component that explains a sizable amount of phenotypic variance? Same for the ELO.  

      Because each gene has a PC loading in for each PC, and each PC lacks the explanatory power of combined PCs, we believe doing GO Terms on the list of genes that contribute most to each PC is of minimal utility. The power of the PCA prediction approach is that it uses the entire transcriptome, but the other side of the coin is that it is perhaps less useful to do a gene-bygene based analysis with PCA. This is why we separately performed individual gene associations and 10-gene predictive analyses. However, we have added the PC loadings for all genes and all PCs to Supplementary File 1.

      (8) Avoid acronyms when possible (i.e. ELO in figures and figure legends could be spelled out to improve readability).

      We appreciate this point, but because we introduced the acronym both in Figure 1 and the text and use it frequently, we believe the reader will understand this acronym. Because it is sometimes needed (especially in dense figures), we think it is best to use it consistently throughout the paper.

      (9) Multiple regression: I see the most selected gene is col-20, which is also the most significantly differentially expressed from the linear mixed model (LMM). But what is the overlap between the top 300 genes in Figure 3F and the 448 identified by the LMM? And how much is the overlap in GO enrichment?

      Genes that showed up in at least 4 out of 500 iterations were selected more often than expected by chance, which includes 246 genes (as indicated by the red line in Figure 3F). Of these genes, 66 genes (27%) are found in the set of 448 early brood genes. The proportion of overlap increases as the number of iterations required to consider a gene predictive increases, e.g., 34% of genes found in 5 of 500 iterations and 59% of genes found in 10 of 500 iterations overlap with the 448 early brood genes. However, likely because of the approach to identify groups of 10 genes that are predictive, we do not find significant GO terms among the 246 genes identified with this approach after multiple test correction. We think this makes sense because the LMM identifies genes that are individually associated with early brood, whereas each subsequent gene included in multiple regression affects early brood after controlling for all previous genes. These additional genes added to the multiple regression are unlikely to have similar patterns as genes that are individually correlated with early brood.  

      (10) Elastic nets: prediction power is similar or better than multiple regression, but what is the overlap between genes selected by the elastic net (not presented if I am not mistaken) and multiple regression and the linear mixed model?

      For the elastic net models, we used a leave-one-out cross validation approach, meaning there were separate models fit by leaving out the trait data for each worm, training a model using the trait data and transcriptomic data for the other worms, and using the transcriptomic data of the remaining worm to predict the trait data. By repeating this for each worm, the regressions shown in the paper were obtained. Each of these models therefore has its own set of genes. Of the 180 models for early brood, the median model selects 83 genes (range from 72 to 114 genes). Across all models, 217 genes were selected at least once. Interestingly, there was a clear bimodal distribution in terms of how many models a given gene was selected for: 68 genes were selected in over 160 out of 180 models, while 114 genes were selected in fewer than 20 models (and 45 genes were selected only once). Therefore, we consider the set of 68 genes as highly robustly selected, since they were selected in the vast majority of models. This set of 68 exhibits substantial overlap with both the set of 448 early brood-associated genes (43 genes or 63% overlap) and the multiple regression set of 246 genes (54 genes or 79% overlap). For ELO, the median model selected 136 genes (range of 96 to 249 genes) and a total of 514 genes were selected at least once. The distribution for ELO was also bimodal with 78 genes selected over 160 times and 255 genes selected fewer than 20 times. This set of 78 included 6 of the 11 significant ELO genes identified in the LMM.  We have added tabs to Supplementary File 1 that include the list of genes selected for the elastic net models as well as a count of how many times they were selected out of 180 models.

      (11) In other words, do these different approaches yield similar sets of genes, or are there some differences?

      In the end, which approach is actually giving the best predictive power? From the perspective of R2, both the multiple regression and elastic net models are similarly predictive for early brood, but elastic net is more predictive for ELO. However, in presenting multiple approaches, part of our goal was identifying predictive genes that could be considered the ‘best’ in different contexts. The multiple regression was set to identify exactly 10 genes, whereas the elastic net model determined the optimal number of genes to include, which was always over 70 genes. Thus, the elastic net model is likely better if one has gene expression data for the entire transcriptome, whereas the multiple regression genes are likely more useful if one were to use reporters or qRTPCR to measure a more limited number of genes.  

      (12) Line 252: "Within this curated set, genes causally affected early brood in 5 of 7 cases compared to empty vector (Figure 4A).

      " It seems to me 4 out of 7 from Figure 4A. In Figure 4A the five genes are (1) cin-4, (2) puf5; puf-7, (3) eef-1A.2, (4) C34C12.8, and (5) tir-1. We did not count nex-2 (p = 0.10) or gly-13 (p = 0.07), and empty vector is the control.

      (13) Do puf-5 and -7 affect total brood size or only early brood size? Not clear. What's the effect of single puf-5 and puf-7 RNAi on brood?

      We only measured early brood in this paper, but a previous report found that puf-5 and puf-7 act redundantly to affect oogenesis, and RNAi is only effective if both are knocked down together(2). We performed pilot experiments to confirm that this was the case in our hands as well.  

      (14)  To truly understand if the noise in expression of Puf-5 and /or -7 really causes some of the observed difference in early brood, could the author use a reporter and dose response RNAi to reduce the level of puf-5/7 to match the lower physiological noise range and observe if the magnitude of the reduction of early brood by the right amount of RNAi indeed matches the observed physiological "noise" effect of puf-5/7 on early brood?

      We agree that it would be interesting to do the dose response of RNAi, measure early brood, and get a readout of mRNA levels to determine the true extent of gene knockdown in each worm (since RNAi can be noisy) and whether this corresponds to early brood when the knockdown is at physiological levels. While we believe we have shown that a dose response of gene knockdown results in a dose response of early brood, this additional analysis would be of interest for future experiments.

      (15) Regulated soma genes (enriched in H3K27me3) are negatively correlated with early brood. What would be the mechanism there? As mentioned before, it is more likely that these genes are just indicative of variation in somatic vs germline age (maybe due to latent differences in parental perception of pheromone).

      We can think of a few potential mechanisms/explanations, but at this point we do not have a decisive answer. Regulated somatic genes marked with H3K27me3 (facultative heterochromatin) are expressed in particular tissues and/or at particular times in development. In this study and others, genes marked with H3K27me3 exhibit more gene expression noise than genes with other marks. This could suggest that there are negative consequences for the animal if genes are expressed at higher levels at the wrong time or place, and one interpretation of the negative association is that higher expressed somatic genes results in lower fitness (where early brood is a proxy for fitness). Another related interpretation is that there are tradeoffs between somatic and germline development and each individual animal lands somewhere on a continuum between prioritizing germline or somatic development, where prioritizing somatic integrity (e.g. higher expression of somatic genes) comes at a cost to the germline resulting in fewer progeny. Additional experiments, including measurements of histone marks in worms measured for the early brood trait, would likely be required to more decisively answer this question.  

      (16) Line 151: "Among significant genes for both traits, β2 values were consistently lower than β1 (Figures 2CD), suggesting some of the total effect size was driven by environmental history rather than pure noise".

      We are interpreting this quote as part of point 17 below.

      (17) It looks like most of the genes associated with phenotypes from the univariate model have a decreased effect once you account for life history, but have you checked for cases where the life history actually masks the effect of a gene? In other words, do you have cases where the effect of gene expression on a phenotype is only (or more) significant after you account for the effect of life history (β2 values higher than β1)?

      This is a good question and one that we did not explicitly address in the paper because we focused on beta values for genes that were significant in the univariate analysis. Indeed, for the sets of 448 early brood genes ad 11 ELO genes, there are no genes for which β2 is larger than β1. In looking at the larger dataset of 8824 genes, with a Bonferroni-corrected p-value of 0.05, there are 306 genes with a significant β2 for early brood. The majority (157 genes) overlap with the 448 genes significant in the univariate analysis and do not have a higher β2 than β1. Of the remaining genes, 72 of these have a larger β2 than β1. However, in most cases, this difference is relatively small (median difference of 0.025) and likely insignificant. There are only three genes in which β1 is not nominally significant, and these are the three genes with the largest difference between β1 and β2 with β2 being larger (differences of 0.166, 0.155, and 0.12). In contrast, the median difference between β1 and β2 the 448 genes (in which β1 is larger) is 0.17, highlighting the most extreme examples of β2 > β1 are smaller in magnitude than the typical case of β1 > β2. For ELO, there are no notable cases where β2 > β1. There are eight genes with a significant β2 value, and all of these have a β1 value that is nominally significant. Therefore, while this phenomenon does occur, we find it to be relatively rare overall. For completeness, we have added the β1 and β2 values for all 8824 genes as a tab in Supplementary File 1.

    1. Author Response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review): 

      Summary: 

      The authors address a fundamental question for cell and tissue biology using the skin epidermis as a paradigm and ask how stratifying self-renewing epithelia induce differentiation and upward migration in basal dividing progenitor cells to generate suprabasal barrier-forming cells that are essential for a functional barrier formed by such an epithelium. The authors show for the first time that an increase in intracellular actomyosin contractility, a hallmark of barrier-forming keratinocytes, is sufficient to trigger terminal differentiation. Hence the data provide in vivo evidence of the more general interdependency of cell mechanics and differentiation. The data appear to be of high quality and the evidences are strengthened through a combination of different genetic mouse models, RNA sequencing, and immunofluorescence analysis. 

      To generate and maintain the multilayered, barrier-forming epidermis, keratinocytes of the basal stem cell layer differentiate and move suprabasally accompanied by stepwise changes not only in gene expression but also in cell morphology, mechanics, and cell position. Whether any of these changes is instructive for differentiation itself and whether consecutive changes in differentiation are required remains unclear. Also, there are few comprehensive data sets on the exact changes in gene expression between different states of keratinocyte differentiation. In this study, through genetic fluorescence labeling of cell states at different developmental time points the authors were able to analyze gene expression of basal stem cells and suprabasal differentiated cells at two different stages of maturation: E14 (embryonic day 14) when the epidermis comprises mostly two functional compartments (basal stem cells and suprabasal socalled intermediate cells) and E16 when the epidermis comprise three (living) compartments where the spinous layer separates basal stem cells from the barrier-forming granular layer, as is the case in adult epidermis. Using RNA bulk sequencing, the authors developed useful new markers for suprabasal stages of differentiation like MafB and Cox1. The transcription factor MafB was then shown to inhibit suprabasal proliferation in a MafB transgenic model. 

      The data indicate that early in development at E14 the suprabasal intermediate cells resemble in terms of RNA expression, the barrier-forming granular layer at E16, suggesting that keratinocytes can undergo either stepwise (E16) or more direct (E14) terminal differentiation. 

      Previous studies by several groups found an increased actomyosin contractility in the barrierforming granular layer and showed that this increase in tension is important for epidermal barrier formation and function. However, it was not clear whether contractility itself serves as an instructive signal for differentiation. To address this question, the authors use a previously published model to induce premature hypercontractility in the spinous layer by using spastin overexpression (K10-Spastin) to disrupt microtubules (MT) thereby indirectly inducing actomyosin contractility. A second model activates myosin contractility more directly through overexpression of a constitutively active RhoA GEF (K10-Arhgef11CA). Both models induce late differentiation of suprabasal keratinocytes regardless of the suprabasal position in either spinous or granular layer indicating that increased contractility is key to induce late differentiation of granular cells. A potential weakness of the K10-spastin model is the disruption of MT as the primary effect which secondarily causes hypercontractility. However, their previous publications provided some evidence that the effect on differentiation is driven by the increase in contractility (Ning et al. cell stem cell 2021). Moreover, the data are confirmed by the second model directly activating myosin through RhoA. These previous publications already indicated a role for contractility in differentiation but were focused on early differentiation. The data in this manuscript focus on the regulation of late differentiation in barrier-forming cells. These important data help to unravel the interdependencies of cell position, mechanical state, and differentiation in the epidermis, suggesting that an increase in cellular contractility in most apical positions within the epidermis can induce terminal differentiation. Importantly the authors show that despite contractility-induced nuclear localization of the mechanoresponsive transcription factor YAP in the barrier-forming granular layer, YAP nuclear localization is not sufficient to drive premature differentiation when forced to the nucleus in the spinous layer. 

      Overall, this is a well-written manuscript and a comprehensive dataset. Only the RNA sequencing result should be presented more transparently providing the full lists of regulated genes instead of presenting just the GO analysis and selected target genes so that this analysis can serve as a useful repository. The authors themselves have profited from and used published datasets of gene expression of the granular cells. Moreover, some of the previous data should be better discussed though. The authors state that forced suprabasal contractility in their mouse models induces the expression of some genes of the epidermal differentiation complex (EDC). However, in their previous publication, the authors showed that major classical EDC genes are actually not regulated like filaggrin and loricrin (Muroyama and Lechler eLife 2017). This should be discussed better and necessitates including the full list of regulated genes to show what exactly is regulated. 

      We thank the reviewers for their suggestions and comments.

      Thank you for the suggestion to include gene lists. We had an excel document with all this data but neglected to upload it with the initial manuscript. This includes all the gene signatures for the different cell compartments across development. We also include a tab that lists all EDC genes and whether they were up-regulated in intermediate cells and cells in which contractility was induced. Further, we note that all the RNA-Seq datasets are available for use on GEO (GSE295753).  

      In our previous publication, we indeed included images showing that loricrin and filaggrin were both still expressed in the differentiated epidermis in the spastin mutant. Both Flg and Lor mRNA were up in the RNA-Seq (although only Flg was statistically significant), though we didn’t see a notable change in protein levels. It is unclear whether this is just difficult to see on top of the normal expression, or whether there are additional levels of regulation where mRNA levels are increased but protein isn’t. That said, our data clearly show that other genes associated with granular fate were increased in the contractile skin. 

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript from Prado-Mantilla and co-workers addresses mechanisms of embryonic epidermis development, focusing on the intermediate layer cells, a transient population of suprabasal cells that contributes to the expansion of the epidermis through proliferation. Using bulk-RNA they show that these cells are transcriptionally distinct from the suprabasal spinous cells and identify specific marker genes for these populations. They then use transgenesis to demonstrate that one of these selected spinous layer-specific markers, the transcription factor MafB is capable of suppressing proliferation in the intermediate layers, providing a potential explanation for the shift of suprabasal cells into a non-proliferative state during development. Further, lineage tracing experiments show that the intermediate cells become granular cells without a spinous layer intermediate. Finally, the authors show that the intermediate layer cells express higher levels of contractility-related genes than spinous layers and overexpression of cytoskeletal regulators accelerates the differentiation of spinous layer cells into granular cells. 

      Overall the manuscript presents a number of interesting observations on the developmental stage-specific identities of suprabasal cells and their differentiation trajectories and points to a potential role of contractility in promoting differentiation of suprabasal cells into granular cells. The precise mechanisms by which MafB suppresses proliferation, how the intermediate cells bypass the spinous layer stage to differentiate into granular cells, and how contractility feeds into these mechanisms remain open. Interestingly, while the mechanosensitive transcription factor YAP appears deferentially active in the two states, it is shown to be downstream rather than upstream of the observed differences in mechanics. 

      Strengths: 

      The authors use a nice combination of RNA sequencing, imaging, lineage tracing, and transgenesis to address the suprabasal to granular layer transition. The imaging is convincing and the biological effects appear robust. The manuscript is clearly written and logical to follow. 

      Weaknesses: 

      While the data overall supports the authors' claims, there are a few minor weaknesses that pertain to the aspect of the role of contractility, The choice of spastin overexpression to modulate contractility is not ideal as spastin has multiple roles in regulating microtubule dynamics and membrane transport which could also be potential mechanisms explaining some of the phenotypes. Use of Arghap11 overexpression mitigates this effect to some extent but overall it would have been more convincing to manipulate myosin activity directly. It would also be important to show that these manipulations increase the levels of F-actin and myosin II as shown for the intermediate layer. It would also be logical to address if further increasing contractility in the intermediate layer would enhance the differentiation of these cells. 

      We agree with the reviewer that the development of additional tools to precisely control myosin activity will be of great use to the field. That said, our series of publications has clearly demonstrated that ablating microtubules results in increased contractility and that this phenocopies the effects of Arhgef11 induced contractility. Further, we showed that these phenotypes were rescued by myosin inhibition with blebbistatin. Our prior publications also showed a clear increase in junctional acto-myosin through expression of either spastin or Arhgef11, as well as increased staining for the tension sensitive epitope of alpha-catenin (alpha18).  We are not aware of tools that allow direct manipulation of myosin activity that currently exist in mouse models.  

      The gene expression analyses are relatively superficial and rely heavily on GO term analyses which are of course informative but do not give the reader a good sense of what kind of genes and transcriptional programs are regulated. It would be useful to show volcano plots or heatmaps of actual gene expression changes as well as to perform additional analyses of for example gene set enrichment and/or transcription factor enrichment analyses to better describe the transcriptional programs 

      We have included an excel document that lists all the gene signatures. In addition, a volcano plot is included in the new Fig 2, Supplement 1. All our NGS data are deposited in GEO for others to perform these analyses. As the paper does not delve further into transcriptional regulation, we do not specifically present this information in the paper.  

      Claims of changes in cell division/proliferation changes are made exclusively by quantifying EdU incorporation. It would be useful to more directly look at mitosis. At minimum Y-axis labels should be changed from "% Dividing cells" to % EdU+ cells to more accurately represent findings 

      We changed the axis label to precisely match our analysis. We note that Figure 1, Supplement 1 also contains data on mitosis.  

      Despite these minor weaknesses the manuscript is overall of high quality, sheds new light on the fundamental mechanisms of epidermal stratification during embryogenesis, and will likely be of interest to the skin research community. 

      Reviewer #3 (Public review): 

      Summary: 

      This is an interesting paper by Lechler and colleagues describing the transcriptomic signature and fate of intermediate cells (ICs), a transient and poorly defined embryonic cell type in the skin. ICs are the first suprabasal cells in the stratifying skin and unlike later-developing suprabasal cells, ICs continue to divide. Using bulk RNA seq to compare ICs to spinous and granular transcriptomes, the authors find that IC-specific gene signatures include hallmarks of granular cells, such as genes involved in lipid metabolism and skin barrier function that are not expressed in spinous cells. ICs were assumed to differentiate into spinous cells, but lineage tracing convincingly shows ICs differentiate directly into granular cells without passing through a spinous intermediate. Rather, basal cells give rise to the first spinous cells. They further show that transcripts associated with contractility are also shared signatures of ICs and granular cells, and overexpression of two contractility inducers (Spastin and ArhGEF-CA) can induce granular and repress spinous gene expression. This contractility-induced granular gene expression does not appear to be mediated by the mechanosensitive transcription factor, Yap. The paper also identifies new markers that distinguish IC and spinous layers and shows the spinous signature gene, MafB, is sufficient to repress proliferation when prematurely expressed in ICs. 

      Strengths: 

      Overall this is a well-executed study, and the data are clearly presented and the findings convincing. It provides an important contribution to the skin field by characterizing the features and fate of ICs, a much-understudied cell type, at high levels of spatial and transcriptomic detail. The conclusions challenge the assumption that ICs are spinous precursors through compelling lineage tracing data. The demonstration that differentiation can be induced by cell contractility is an intriguing finding and adds a growing list of examples where cell mechanics influence gene expression and differentiation. 

      Weaknesses: 

      A weakness of the study is an over-reliance on overexpression and sufficiency experiments to test the contributions of MafB, Yap, and contractility in differentiation. The inclusion of loss-offunction approaches would enable one to determine if, for example, contractility is required for the transition of ICs to granular fate, and whether MafB is required for spinous fate. Second, whether the induction of contractility-associated genes is accompanied by measurable changes in the physical properties or mechanics of the IC and granular layers is not directly shown. The inclusion of physical measurements would bolster the conclusion that mechanics lies upstream of differentiation. 

      We agree that loss of function studies would be useful. For MafB, these have been performed in cultured human keratinocytes, where loss of MafB and its ortholog cMaf results in a phenotype consistent with loss of spinous differentiation (Pajares-Lopez et al, 2015). Due to the complex genetics involved, generating these double mutant mice is beyond the scope of this study. Loss of function studies of myosin are also complicated by genetic redundancy of the non-muscle type II myosin genes, as well as the role for these myosins in cell division and in actin cross linking in addition to contractility. In addition, we have found that these myosins are quite stable in the embryonic intestine, with loss of protein delayed by several days from the induction of recombination. Therefore, elimination of myosins by embryonic day e14.5 with our current drivers is not likely possible. Generation of inducible inhibitors of contractility is therefore a valuable future goal. 

      Several recent papers have used AFM of skin sections to probe tissue stiffness. We have not attempted these studies and are unclear about the spatial resolution and whether, in the very thin epidermis at these stages, we could spatially resolve differences. That said, we previously assessed the macro-contractility of tissues in which myosin activity was induced and demonstrated that there was a significant increase in this over a tissue-wide scale (Ning et al, Cell Stem Cell, 2021).  

      Finally, whether the expression of granular-associated genes in ICs provides them with some sort of barrier function in the embryo is not addressed, so the role of ICs in epidermal development remains unclear. Although not essential to support the conclusions of this study, insights into the function of this transient cell layer would strengthen the overall impact.  

      By traditional dye penetration assays, there is no epidermal barrier at the time that intermediate cells exist. One interpretation of the data is that cells are beginning to express mRNAs (and in some cases, proteins) so that they are able to rapidly generate a barrier as they become granular cells. In addition, many EDC genes, important for keratinocyte cornification and barrier formation, are not upregulated in ICs at E14.5. We have attempted experiments to ablate intermediate cells with DTA expression - these resulted in inefficient and delayed death and thus did not yield strong conclusions about the role of intermediate cells. Our findings that transcriptional regulators of granular differentiation (such as Grhl3 and Hopx) are also present in intermediate cells, should allow future analysis of the effects of their ablation on the earliest stages of granular differentiation from intermediate cells. In fact, previous studies have shown that Grhl3 null mice have disrupted barrier function at embryonic stages (Ting et al, 2005), supporting the role of ICs in being important for barrier formation. (?)

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      Overall, this is a well-written manuscript and a comprehensive dataset. Only the RNA sequencing result should be presented more transparently providing the full lists of regulated genes instead of presenting just the GO analysis and selected target genes so that this analysis can serve as a useful repository. The authors themselves have profited from and used the published dataset of gene expression of the granular cells. Moreover, some of the previous data should be better discussed though. The authors state that forced suprabasal contractility in their mouse models induces the expression of some genes of the epidermal differentiation complex (EDC). However, in their previous publication, the authors showed that major classical EDC genes are actually not regulated like filaggrin and loricrin (Muroyama and Lechler eLife 2017). This should be discussed better and necessitates including the full list of regulated genes to show what exactly is regulated. 

      A general point regarding statistics throughout the manuscript. It seems like regular T-tests or ANOVAs have been used assuming Gaussian distribution for sample sizes below N=5 which is technically not correct. Instead, non-parametric tests like e.g. the Mann-Whitney test should be used. Since Graph-Pad was used for statistics according to the methods this is easy to change. 

      Figure 1: It would be good to show the FACS plot of the analyzed and sorted population in the supplementary figures. 

      If granular cells can be analyzed and detected by FACS, why were they not included in the RNA sequencing analysis? 

      Figure 1 supplement 1c: cell division numbers are analyzed from only 2 mice and the combined 5 or 4 fields of view are used for statistics using a test assuming normal distribution which is not really appropriate. Means per mice should be used or if accumulated field of views are used, the number should be increased using more stringent tests. Otherwise, the p-values here clearly overstate the significance. 

      Granular cells could not be specifically isolated in the approach we used. The lectin binds to both upper spinous and granular cells. For this reason, we relied on a separate granular gene list as described.

      For Figure 1 Supplement 1, we removed the statistical analysis and use it simply as a validation of the data in Figure 1.  

      Figure 2: It is not completely clear on which basis the candidate genes were picked. They are described to be the most enriched but how do they compare to the rest of the enriched genes. The full list of regulated genes should be provided. 

      Some markers for IC or granular layer are verified either by RNA scope or immunofluorescence. Is there a technical reason for that? It would be good to compare protein levels for all markers.  Figure 2-Supplement 1: There is no statement about the number of animals that these images are representative for. 

      We have included a volcano plot to show where the genes picked reside. We have also included the full gene lists for interested readers. 

      When validated antibodies were available, we used them. When they were not, we performed RNA-Scope to validate the RNA-Seq dataset. 

      We have included animal numbers in the revised Fig 2-Supplement 2 legend (previously Fig 2Supplement 1).  

      Figure 4b: It would be good to include the E16 spinous cells to get an idea of how much closer ICs are to the granular population. 

      We have included a new Venn diagram showing the overlap between each of the IC and spinous signatures with the granular cell signature in Fig 4B. Overall, 36% of IC signature genes are in common with granular cells, while just 20% of spinous genes overlap.  

      Reviewer #2 (Recommendations for the authors): 

      (1)  Figure 6B is confusing as y-axis is labeled as EdU+ suprabasal cells whereas basal cells are also quantified. 

      We have altered the y-axis title to make it clearer.  

      (2)  Not clear why HA-control is sometimes included and sometimes not. 

      We include the HA when it did not disrupt visualization of the loss of fluorescence. As it was uniform in most cases, we excluded it for clarity in some images. HA staining is now included in Fig 3C.

      (3)  The authors might reconsider the title as it currently is somewhat vague, to more precisely represent the content of the manuscript. 

      We thank the reviewer for the suggestion. We considered other options but felt that this gave an overview of the breadth of the paper.  

      Reviewer #3 (Recommendations for the authors): 

      (1)  ICs are shown to express Tgm1 and Abca12, important for cornified envelope function and formation of lamellar bodies. Do ICs provide any barrier function at E14.5? 

      By traditional dye penetration assays, there is no epidermal barrier at the time that intermediate cells exist. One interpretation of the data is that cells are beginning to express mRNAs (and in some cases, proteins) so that they are able to rapidly generate a barrier as they become granular cells.  

      (2)  Genes associated with contractility are upregulated in ICs and granular cells. And ICs have higher levels of F-actin, MyoIIA, alpha-18, and nuclear Yap. Does this correspond to a measurable difference in stiffness? Can you use AFM to compare to physical properties of ICs, spinous, and granular cells? 

      Several recent papers have used AFM of skin sections to probe tissue stiDness. We have not attempted these studies and are unclear about the spatial resolution and whether in the very thin epidermis at these stages whether we could spatially resolve diDerences. It is also important to note that this tissue rigidity is influenced by factors other than contractility. That said, we previously assessed the macro-contractility of tissues in which myosin activity was induced and demonstrated that there was a significant increase in this over a tissue-wide scale (Ning et al, Cell Stem Cell, 2021).

      (3)  Overexpression of two contractility inducers (spastin and ArhGEF-CA) can induce granular gene expression and repress spinous gene expression, suggesting differentiation lies downstream of contractility. Is contractility required for granular differentiation? 

      This is an important question and one that we hope to directly address in the future. Published studies have shown defects in tight junction formation and barrier function in myosin II mutants. However, a thorough characterization of differentiation was not performed.  

      (4)  ICs are a transient cell type, and it would be important to know what is the consequence of the epidermis never developing this layer. Does it perform an important temporary structural/barrier role, or patterning information for the skin?

      We have attempted experiments to ablate intermediate cells with DTA expression - this resulted in ineDicient and delayed death and thus did not yield strong conclusions. Our findings that transcriptional regulators of granular diDerentiation (such as Grhl3 and Hopx) are also present in intermediate cells, should allow future analysis of the eDects of their ablation on the earliest stages of granular diDerentiation from intermediate cells.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      General response

      (1) Evaluation of mitochondrial activity in mox-YG overexpression cells

      To determine whether the observed “mitochondrial development” seen in transcriptomic, proteomic, and microscopic analyses corresponds to an actual phenotypic shift toward respiration, we measured oxygen consumption in mox-YG overexpression cells. The results showed that oxygen consumption rates were indeed elevated in these cells, suggesting a metabolic shift from fermentation toward respiration. These findings have been incorporated into the revised manuscript as new Figure 4E and Figure 4—figure supplement 9, along with the corresponding descriptions in the Results section.

      (2) Evaluation of TORC1 Pathway Inactivation in mox-YG Overexpression Cells

      While the proteomic response in mox-YG overexpression cells overlapped with known responses to TORC1 pathway inactivation, we had not obtained direct evidence that TORC1 activity was indeed reduced. To address this, we assessed TORC1 activity by testing the effect of rapamycin, a TORC1 inhibitor, and by attempting to detect the phosphorylation state of known TORC1 targets. Our results showed that mox-YG overexpressing cells exhibited reduced sensitivity to rapamycin compared to vector control cells, supporting the idea that TORC1 is already inactivated in the mox-YG overexpression condition.

      In parallel, we attempted to detect phosphorylation of TORC1 targets Sch9 and Atg13 by Western blotting. Specifically, we tested several approaches: detecting phospho-Sch9 using a phospho-specific antibody, assessing the band shift of HA-tagged Sch9, and monitoring Atg13 band shift using an anti-Atg13 antibody. While we were unable to detect Sch9 phosphorylation, likely due to technical limitations, we finally succeeded in detecting Atg13 with the help of our new co-author, Dr. Kamada. However, we observed a marked reduction in Atg13 protein levels in mox-YG overexpression cells, making it difficult to interpret the biological significance of any apparent decrease in phosphorylation. Therefore, we decided not to pursue further experiments on TORC1 phosphorylation within the current revision period.

      These findings have been summarized in new Figure 4—figure supplement 7, and the relevant description has been added to the Results section.

      (3) Phenotypes of Gpm1-CCmut

      We focused our initial analysis on the phenotypes of cells overexpressing mox-YG, the protein with the lowest Neutrality Index (NI) in our dataset, as a model of protein burden. However, it remained unclear to what extent the phenotypes observed in mox-YG overexpression cells are generalizable to protein burden as a whole. We agree with the reviewers’ suggestion that it is important to examine whether similar phenotypes are also observed in cells overexpressing Gpm1-CCmut, which was newly identified in this study as having a similarly low NI. We therefore performed validation experiments using Gpm1-CCmut overexpression cells to assess whether they exhibit the characteristic phenotypes observed in mox-YG overexpression cells. These phenotypes included: transcriptional responses, mitochondrial development, metabolic shift toward respiration, and nucleolar shrinkage.

      As a result, mitochondrial development and nucleolar shrinkage were also observed in Gpm1-CCmut overexpression cells, consistent with mox-YG. In contrast, the transcriptional response associated with amino acid starvation and the metabolic shift toward respiration were not observed. Furthermore, an abnormal rounding of cell morphology—absent in mox-YG overexpression cells—was uniquely observed in Gpm1-CCmut cells. These results suggest that the phenotypes observed under mox-YG overexpression may comprise both general effects of protein burden and effects specific to the mox-YG protein. Alternatively, it is possible that Gpm1-CCmut imposes a different kind of constraint or toxicity not shared with mox-YG. In any case, these findings highlight that the full range of phenotypes associated with protein burden cannot yet be clearly defined and underscore the need for future analyses using a variety of “non-toxic” proteins.

      Given that these results form a coherent set, we have relocated original Figure 3—which previously presented the NI values of Gpm1 and Tdh3 in the original version—to new Figure 6, which now includes all related phenotypic analyses. Correspondingly, we have added new Figures 6—figure supplement 1 through 6—figure supplement 7. The associated results have been incorporated into the Results section, and we have expanded the Discussion to address this point

      As a result of these revisions, the order of figures has changed from the original version. The correspondence between the original and revised versions is as follows:

      original→ Revised

      Figure 1 → Figure 1<br />  Figure 2 → Figure 2<br />  Figure 3 → Figure 6<br />  Figure 4 → Figure 3<br />  Figure 5 → Figure 4<br />  Figure 6 → Figure 5

      Public Reviews:

      Reviewer #1 (Public Review):

      Weaknesses:

      While the introduction of the neutrality index seems useful to differentiate between cytotoxicity and protein burden, the biological relevance of the effects of overexpression of the model proteins is unclear.

      Thank you for your comment. This point is in fact the core message we wished to convey in this study. We believe that every protein possesses some degree of what can be described as “cytotoxicity,” and that this should be defined by the expression limit—specifically, the threshold level at which growth inhibition occurs. This index corresponds to what we term the neutrality index. We further argue that protein cytotoxicity arises from a variety of constraints inherent to each protein. These constraints act in a stepwise manner to determine the expression limit (i.e., the neutrality) of a given protein (Figure 1A). To demonstrate the real existence of such constraints, there are two complementary approaches: an inductive one that involves large-scale, systematic investigation of naturally occurring proteins, and a deductive one that tests hypotheses using selected model proteins. Our current study follows the latter approach. In addition, we define protein burden as a phenomenon that can only be elicited by proteins that are ultimately harmless (Figure 1B). We assume that such burden results in a shared physiological state, such as depletion of cellular resources. Through continued efforts to identify a protein suitable for investigating this phenomenon, we eventually arrived at mox-YG. As the reviewer rightly pointed out, examining only mox-YG does not reveal the full picture of protein burden. In fact, in response to the reviewer’s suggestion, we investigated the physiological consequences of overexpressing a mutant glycolytic protein, Gpm1-CCmut (General Response 3). We found that the resulting phenotype was notably different from that observed in cells overexpressing mox-YG. Going forward, we believe that our study provides a foundation for further systematic exploration of “harmless proteins” and the cellular impacts of their overexpression.

      Reviewer #2 (Public Review):

      Weaknesses:

      The authors concluded from their RNA-seq and proteomics results that cells with excess mox-YG expression showed increased respiration and TORC1 inactivation. I think it will be more convincing if the authors can show some characterization of mitochondrial respiration/membrane potential and the TOR responses to further verify their -omic results.

      These points are addressed in General Response 1 and 2.

      In addition, the authors only investigated how overexpression of mox-YG affects cells. It would be interesting to see whether overexpressing other non-toxic proteins causes similar effects, or if there are protein-specific effects. It would be good if the authors could at least discuss this point considering the workload of doing another RNA-seq or mass-spectrum analysis might be too heavy.

      These points are addressed in General Response 3.

      Reviewer #3 (Public Review):

      Weaknesses:

      The data are generally convincing, however in order to back up the major claim of this work - that the observed changes are due to general protein burden and not to the specific protein or condition - a broader analysis of different conditions would be highly beneficial.

      These points are addressed in General Response 3.

      Major points:

      (1) The authors identify several proteins with high neutrality scores but only analyze the effects of mox/mox-YG overexpression in depth. Hence, it remains unclear which molecular phenotypes they observe are general effects of protein burden or more specific effects of these specific proteins. To address this point, a proteome (and/or transcriptome) of at least a Gpm1-CCmut expressing strain should be obtained and compared to the mox-YG proteome. Ideally, this analysis should be done simultaneously on all strains to achieve a good comparability of samples, e.g. using TMT multiplexing (for a proteome) or multiplexed sequencing (for a transcriptome). If feasible, the more strains that can be included in this comparison, the more powerful this analysis will be and can be prioritized over depth of sequencing/proteome coverage.

      This comment has been addressed in General Response 3. Gpm1-CCmut overexpression cells exhibited both phenotypes that were shared with, and distinct from, those observed in mox-YG overexpression cells. To define a unified set of phenotypes associated with "protein burden," we believe that extensive omics analyses targeting multiple "non-toxic" protein overexpression strains will be necessary. However, such an effort goes beyond the scope of the current study, and we would like to leave it as an important subject for future investigation.

      (2) The genetic tug-of-war system is elegant but comes at the cost of requiring specific media conditions (synthetic minimal media lacking uracil and leucine), which could be a potential confound, given that metabolic rewiring, and especially nitrogen starvation are among the observed phenotypes. I wonder if some of the changes might be specific to these conditions. The authors should corroborate their findings under different conditions. Ideally, this would be done using an orthogonal expression system that does not rely on auxotrophy (e.g. using antibiotic resistance instead) and can be used in rich, complex mediums like YPD. Minimally, using different conditions (media with excess or more limited nitrogen source, amino acids, different carbon source, etc.) would be useful to test the robustness of the findings towards changes in media composition.

      We appreciate the reviewer’s clear understanding of both the advantages and limitations of the gTOW system. As rightly pointed out, since our system relies on leucine depletion, it is essential to carefully consider the potential impact this may have on cellular metabolism. Another limitation—though it also serves as one of the strengths—of the gTOW system is its reliance on copy number variation to achieve protein overexpression. This feature limits the possibility of observing rapid responses, as immediate induction is not feasible. To address this issue, we have recently developed a strong and inducible promoter that minimizes effects on other metabolic systems (Higuchi et al., 2024), and we believe this tool will be essential in future experiments.

      In response to the reviewer’s comments, we conducted two additional sets of experiments. First, we established a new overexpression system in nutrient-rich conditions (YPD medium) that is conceptually similar to gTOW but uses aureobasidin A and the AUR1d resistance gene to promote gene amplification (new Figure 4—figure supplement 2). Using this system, we observed that non-fluorescent YG mutants led to increased expression of mox. Total protein levels appeared to rise correspondingly, suggesting that the overall synthetic capacity of cells might be higher in YPD compared to SC medium. However, the degree of overexpression achieved in this system was insufficient to strongly inhibit growth, meaning we could not replicate the stress conditions observed with the original gTOW system. Further studies will be needed to determine whether stronger induction under these nutrient-rich conditions will yield comparable responses.

      Second, we performed a control experiment to examine whether the amino acid starvation response observed in mox-YG overexpressing cells could be attributed to leucine depletion from the medium (new Figure 3—figure supplement 3). By titrating leucine concentrations in SC medium, we confirmed that lower leucine levels reduced the growth rate of vector control cells, indicating leucine limitation. However, GAP1 induction was not observed under these conditions. In contrast, mox-YG overexpression led to strong GAP1 induction under similar growth-inhibitory conditions, suggesting that the amino acid starvation response is not simply due to environmental leucine depletion, but rather a consequence of the cellular burden imposed by mox-YG overexpression.

      These findings have been incorporated into the manuscript, along with the corresponding figures (new Figure 4—figure supplement 2, Figure 3—figure supplement 3), and relevant descriptions have been added to the Results and Discussion sections.

      (3) The authors suggest that the TORC1 pathway is involved in regulating some of the changes they observed. This is likely true, but it would be great if the hypothesis could be directly tested using an established TORC1 assay.

      This comment has been addressed in General Response 2. We assessed the rapamycin sensitivity of mox-YG overexpression cells—which was found to be reduced—and attempted to detect phosphorylation of the TORC1 target Atg13, although the latter was only partially successful. These findings have been incorporated into the Results section.

      (4) The finding that the nucleolus appears to be virtually missing in mox-YG-expressing cells (Figure 6B) is surprising and interesting. The authors suggest possible mechanisms to explain this and partially rescue the phenotype by a reduction-of-function mutation in an exosome subunit. I wonder if this is specific to the mox-YG protein or a general protein burden effect, which the experiments suggested in point 1 should address. Additionally, could a mox-YG variant with a nuclear export signal be expressed that stays exclusively in the cytosol to rule out that mox-YG itself interferes with phase separation in the nucleus?

      As also described in our General Response 3, we observed nucleolar shrinkage upon Gpm1-CCmut overexpression as well (new Figure 6E and 6—figure supplement 7), suggesting that this phenomenon may represent a general feature of protein burden. The reviewer’s suggestion to test whether this effect persists when mox-YG is excluded from the nucleus is indeed intriguing. However, based on our previous work, we have shown that overexpression of NES-tagged proteins (e.g., NES-EGFP) causes severe growth inhibition due to depletion of nuclear export factors (Kintaka et al., 2020). Unfortunately, this technical limitation makes it difficult for us to carry out the proposed experiment as suggested.

      Minor points:

      (5) It would be great if the authors could directly compare the changes they observed at the transcriptome and proteome levels. This can help distinguish between changes that are transcriptionally regulated versus more downstream processes (like protein degradation, as proposed for ribosome components).

      We also considered this point to be important, and therefore compared the transcriptomic and proteomic changes associated with mox-YG overexpression. However, somewhat unexpectedly, we found little correlation between these two layers of response. As shown in new Figure 3 and 4 (original Figures 4 and 5), while genes related to oxidative phosphorylation were consistently upregulated at both the mRNA and protein levels in mox-YG overexpressing cells, ribosomal proteins showed a discordant pattern: their mRNA levels were significantly increased, whereas their protein levels were significantly decreased.

      Several factors may explain this discrepancy: (1) differences in analytical methods between transcriptomics and proteomics; (2) temporal mismatches arising from the dynamic changes in mRNA and protein expression during batch culture; and (3) the possibility that, under protein burden conditions, specific regulatory mechanisms may govern the selective translation or targeted degradation of certain proteins. However, at this point, we were unable to clearly determine which of these factors account for the observed differences.

      For this reason, we did not originally include a global transcriptome–proteome comparison in the manuscript. In response to the reviewer’s comment, however, we have now included the comparison data (new Figure 4—figure supplement 3D).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Major points:

      (1) While the study provides a detailed description of physiological changes, the underlying mechanisms remain speculative. For example, the exact reasons for nitrogen source depletion or increased respiration are unclear. The transcriptomic and proteomic data should be complemented by basic growth assay tests on rapamycin or glycerol to strengthen these observations.

      This comment has been addressed in General Responses 1 and 2. We conducted oxygen consumption assays and growth assays in the presence of rapamycin, and incorporated these results into the revised version of the manuscript.

      We also performed culture experiments using glycerol as a carbon source. However, both the vector control and mox-YG overexpression cells showed extremely poor growth. Although there was a slight difference between the two, we judged that it would be difficult to draw any meaningful conclusions from these results. Therefore, we have chosen not to include them in the main text (the data are attached below for reference).

      Author response image 1.

      (2) The study mainly focuses on two proteins, mox-YG/ FP proteins and Gpm1-CCmut. Did the authors look also at a broader range of proteins with varying degrees of cytotoxicity to validate the neutrality index and generalize their findings? Such as known cytotoxic proteins.

      In our calculation of the Neutrality Index (NI), we use two parameters: the maximum growth rate (expressed as %MGR relative to the control) and the protein expression level. For the latter, we measure the abundance of the overexpressed protein as a percentage of total cellular protein, based on the assumption that the protein is expressed at a sufficiently high level to be detectable by SDS-PAGE. In our view, proteins typically regarded as “cytotoxic” cannot be overexpressed to levels detectable by SDS-PAGE without the use of more sensitive techniques such as Western blotting. This limitation in expression itself is an indication of their high cytotoxicity. Consequently, for such proteins, NI is determined solely by the MGR value, and will inherently fall below 100.

      To test whether this interpretation is valid, we re-evaluated a group of EGFP variants previously reported by us to exhibit higher cytotoxicity than EGFP (Kintaka et al., 2016), due to overloading of specific cellular transport pathways. These include EGFPs tagged with localization signals. At the time of the original study, we had not calculated their NI values. Upon re-analysis, we found that all of these localization-tagged EGFP variants indeed have NI values below 100.

      This result has been included as a new Figure 2—figure supplement 3, and the relevant descriptions have been added to the Results section.

      (3) The partial rescue of ribosomal biosynthesis defects by a mutation in the nuclear exosome is intriguing but not fully explored. The specific role of the nuclear exosome in managing protein burden remains unclear. This result could be supported by alternative experiments. For example, would tom1 deletion or proteasome inhibition (degradation of ribosomal proteins in the nucleus) partially rescue the nuclear formation?

      As described in the main text, our interest in exosome mutants was prompted by our previous SGA (Synthetic Genetic Array) analysis, in which these mutants exhibited positive genetic interactions with GFP overexpression—namely, they acted in a rescuing manner (Kintaka et al., 2020). In contrast, proteasome mutants did not show such positive interactions in the same screening. On the contrary, proteasome mutants that displayed negative genetic interactions have been identified, such as the pre7ts mutant. Furthermore, the proteasome is involved in various aspects of proteostasis beyond just orphan ribosomal proteins, making the interpretation of its effects potentially quite complex.

      Regarding the TOM1 mutant raised by the reviewer, we attempted to observe nucleolar morphology using the NSR1-mScarlet-I marker in the tom1Δ deletion strain. However, we were unsuccessful in constructing the strain. This failure may be due to the strong detrimental effects of this perturbation in the tom1Δ background. As we were unable to complete this experiment within the revision period, we would like to address this issue in future work.

      Minor comments:

      (1) It would be interesting to include long-term cellular and evolutionary responses to protein overexpression to understand how cells adapt to chronic protein burden.

      Thank you for the suggestion. We are currently conducting experiments related to these points. However, as they fall outside the scope of the present study, we would like to refrain from including the data in this manuscript.

      (2) The microscopy of Nsr1 in Figure 6G does not clearly demonstrate the restored formation of the nucleolus in the mrt4-1 mutant. Electron microscopy images would be a better demonstration.

      The restoration of nucleolar size in the mtr4-1 mutant, as shown in Figure 5—figure supplement 5 (original Figure 6_S5), is statistically significant. However, as described in the main text, the degree of rescue by the mutation is partial, and, as the reviewer notes, not clearly distinguishable by eye. It becomes apparent only when analyzing a large number of cells, allowing for detection as a statistically significant difference. Given that electron microscopy images are inherently limited in the number of cells that can be analyzed and pose challenges for statistical evaluation, we believe it would be difficult to detect such a subtle difference using this method. Therefore, we respectfully ask for your understanding that we will not include additional EM experiments in this revision.

      (3) On page 24, line 451 it says that of the 84 ribosomal proteins... latest reviews and structures described/ identified 79 ribosomal proteins in budding yeast of which the majority are incorporated into the pre-ribosomal particles in the nucleolus. We could not find this information in the provided reference. Please align with the literature.

      Thank you for the comment. In S. cerevisiae, many ribosomal protein genes are duplicated due to gene duplication events, resulting in a total of 136 ribosomal proteins (http://ribosome.med.miyazaki-u.ac.jp/rpg.cgi?mode=genetable). However, not all of them are duplicated, and among the duplicated pairs, some can be distinguished by proteomic analysis based on differences in amino acid sequences, while others cannot. As a result, we report that 84 ribosomal proteins were “detected” in our proteomic analysis. To avoid confusion, we have added the following explanation to the legend of Figure 5—figure supplement 1 (original Figure 6_S1), as follows.

      “Note that when the amino acid sequences of paralogs are identical, they cannot be distinguished by proteomic analysis, and the protein abundance of both members of the paralog pair is represented under the name of only one.”

      Reviewer #2 (Recommendations for the authors):

      (1) The authors mentioned that based on their proteomics results, overexpressing mox-YG appears to increase respiration. I think it is worth doing some quick verification, such as oxygen consumption experiments or mitochondrial membrane potential staining to provide some verification on that.

      This comment has been addressed in General Response 1. We measured oxygen consumption in mox-YG overexpression cells and found that it was indeed elevated, suggesting a metabolic shift from fermentation toward aerobic respiration.

      (2) Similar to point 1, the authors concluded from their proteomics data that the mox-YG overexpression induced responses that are similar to TORC1 inactivation. It might be worth testing whether there is any actual TORC1 inactivation, e.g. by detecting whether there is reduced Sch9 phosphorylation by western blot.

      This comment has been addressed in General Response 2. We assessed the rapamycin sensitivity of mox-YG overexpression cells—which was found to be reduced—and attempted to detect phosphorylation of the TORC1 target Atg13, although the latter was only partially successful. These findings have been incorporated into the Results section.

      (3) The authors showed that overexpressing excess mox-YG caused downregulated glycolysis pathways. It is worth discussing whether overexpressing glycolysis-related non-toxic proteins such as Gpm1-CCmut will also lead to similar results.

      This comment has been addressed in General Response 3. Gpm1-CCmut overexpression cells exhibited both phenotypes shared with mox-YG overexpression and distinct ones. These findings suggest that a unified set of phenotypes associated with "protein burden" has yet to be clearly defined, and further investigation will be necessary to elucidate this.

      Reviewer #3 (Recommendations for the authors):

      (1) The authors identify several proteins with high neutrality scores but only analyze the effects of mox/mox-YG overexpression in depth. Hence, it remains unclear which molecular phenotypes they observe are general effects of protein burden or more specific effects of these specific proteins. To address this point, a proteome (and/or transcriptome) of at least a Gpm1-CCmut expressing strain should be obtained and compared to the mox-YG proteome. Ideally, this analysis should be done simultaneously on all strains to achieve a good comparability of samples, e.g. using TMT multiplexing (for a proteome) or multiplexed sequencing (for a transcriptome). If feasible, the more strains that can be included in this comparison, the more powerful this analysis will be and can be prioritized over depth of sequencing/proteome coverage.

      This comment has been addressed in General Response 3. Gpm1-CCmut overexpression cells exhibited both phenotypes that were shared with, and distinct from, those observed in mox-YG overexpression cells. To define a unified set of phenotypes associated with "protein burden," we believe that extensive omics analyses targeting multiple "non-toxic" protein overexpression strains will be necessary. However, such an effort goes beyond the scope of the current study, and we would like to leave it as an important subject for future investigation.

      (2) The genetic tug-of-war system is elegant but comes at the cost of requiring specific media conditions (synthetic minimal media lacking uracil and leucine), which could be a potential confound, given that metabolic rewiring, and especially nitrogen starvation are among the observed phenotypes. I wonder if some of the changes might be specific to these conditions. The authors should corroborate their findings under different conditions. Ideally, this would be done using an orthogonal expression system that does not rely on auxotrophy (e.g. using antibiotic resistance instead) and can be used in rich, complex mediums like YPD. Minimally, using different conditions (media with excess or more limited nitrogen source, amino acids, different carbon source, etc.) would be useful to test the robustness of the findings towards changes in media composition.

      We appreciate the reviewer’s clear understanding of both the advantages and limitations of the gTOW system. As rightly pointed out, since our system relies on leucine depletion, it is essential to carefully consider the potential impact this may have on cellular metabolism. Another limitation—though it also serves as one of the strengths—of the gTOW system is its reliance on copy number variation to achieve protein overexpression. This feature limits the possibility of observing rapid responses, as immediate induction is not feasible. To address this issue, we have recently developed a strong and inducible promoter that minimizes effects on other metabolic systems (Higuchi et al., 2024), and we believe this tool will be essential in future experiments.

      In response to the reviewer’s comments, we conducted two additional sets of experiments. First, we established a new overexpression system in nutrient-rich conditions (YPD medium) that is conceptually similar to gTOW but uses aureobasidin A and the AUR1d resistance gene to promote gene amplification (new Figure 4—figure supplement 2). Using this system, we observed that non-fluorescent YG mutants led to increased expression of mox. Total protein levels appeared to rise correspondingly, suggesting that the overall synthetic capacity of cells might be higher in YPD compared to SC medium. However, the degree of overexpression achieved in this system was insufficient to strongly inhibit growth, meaning we could not replicate the stress conditions observed with the original gTOW system. Further studies will be needed to determine whether stronger induction under these nutrient-rich conditions will yield comparable responses.

      Second, we performed a control experiment to examine whether the amino acid starvation response observed in mox-YG overexpressing cells could be attributed to leucine depletion from the medium (new Figure 3—figure supplement 3). By titrating leucine concentrations in SC medium, we confirmed that lower leucine levels reduced the growth rate of vector control cells, indicating leucine limitation. However, GAP1 induction was not observed under these conditions. In contrast, mox-YG overexpression led to strong GAP1 induction under similar growth-inhibitory conditions, suggesting that the amino acid starvation response is not simply due to environmental leucine depletion, but rather a consequence of the cellular burden imposed by mox-YG overexpression.

      These findings have been incorporated into the manuscript, along with the corresponding figures (new Figure 4—figure supplement 2, Figure 3—figure supplement 3), and relevant descriptions have been added to the Results and Discussion sections.

      (3) The authors suggest that the TORC1 pathway is involved in regulating some of the changes they observed. This is likely true, but it would be great if the hypothesis could be directly tested using an established TORC1 assay.

      This comment has been addressed in General Response 2. We assessed the rapamycin sensitivity of mox-YG overexpression cells—which was found to be reduced—and attempted to detect phosphorylation of the TORC1 target Atg13, although the latter was only partially successful. These findings have been incorporated into the Results section.

      (4) The finding that the nucleolus appears to be virtually missing in mox-YG-expressing cells (Figure 6B) is surprising and interesting. The authors suggest possible mechanisms to explain this and partially rescue the phenotype by a reduction-of-function mutation in an exosome subunit. I wonder if this is specific to the mox-YG protein or a general protein burden effect, which the experiments suggested in point 1 should address. Additionally, could a mox-YG variant with a nuclear export signal be expressed that stays exclusively in the cytosol to rule out that mox-YG itself interferes with phase separation in the nucleus?

      As also described in our General Response 3, we observed nucleolar shrinkage upon Gpm1-CCmut overexpression as well (new Figure 6E and 6—figure supplement 7), suggesting that this phenomenon may represent a general feature of protein burden. The reviewer’s suggestion to test whether this effect persists when mox-YG is excluded from the nucleus is indeed intriguing. However, based on our previous work, we have shown that overexpression of NES-tagged proteins (e.g., NES-EGFP) causes severe growth inhibition due to depletion of nuclear export factors (Kintaka et al., 2020). Unfortunately, this technical limitation makes it difficult for us to carry out the proposed experiment as suggested.

      (5) It would be great if the authors could directly compare the changes they observed at the transcriptome and proteome levels. This can help distinguish between changes that are transcriptionally regulated versus more downstream processes (like protein degradation, as proposed for ribosome components).

      We also considered this point to be important, and therefore compared the transcriptomic and proteomic changes associated with mox-YG overexpression. However, somewhat unexpectedly, we found little correlation between these two layers of response. As shown in new Figure 3 and 4 (original Figures 4 and 5), while genes related to oxidative phosphorylation were consistently upregulated at both the mRNA and protein levels in mox-YG overexpressing cells, ribosomal proteins showed a discordant pattern: their mRNA levels were significantly increased, whereas their protein levels were significantly decreased.

      Several factors may explain this discrepancy: (1) differences in analytical methods between transcriptomics and proteomics; (2) temporal mismatches arising from the dynamic changes in mRNA and protein expression during batch culture; and (3) the possibility that, under protein burden conditions, specific regulatory mechanisms may govern the selective translation or targeted degradation of certain proteins. However, at this point, we were unable to clearly determine which of these factors account for the observed differences.

      For this reason, we did not originally include a global transcriptome–proteome comparison in the manuscript. In response to the reviewer’s comment, however, we have now included the comparison data (new Figure 4—figure supplement 3D).

      Minor points:

      (1) The authors repeatedly state that 'mitochondrial function' is increased. This is inaccurate in two ways: first, mitochondria have multiple functions, and it should be specified which one is referred to (probably mitochondrial respiration); second, the claim is based solely on the abundance of transcripts/proteins, which may or may not reflect increased activity.

      The authors should either perform functional tests (e.g. measure oxygen consumption or extracellular acidification), or change their wording to more accurately reflect the findings.

      To more directly reflect our findings, we revised two instances of the phrase “mitochondrial function” to “mitochondrial proteins” in the manuscript. Furthermore, as described in General Response 1, we confirmed that oxygen consumption is elevated in mox-YG overexpression cells. This observation suggests that mitochondrial respiratory activity is indeed enhanced under these conditions.

      (2) Similarly, the authors state that FPs are 'not localized' (e.g. line 137). This should be specified (e.g. 'not actively sorted into cellular compartments other than the cytosol').

      As pointed out by the reviewer, we have revised the relevant sections accordingly.

      (3) In Figure 4D, some of the reporter assays don't fully recapitulate the RNAseq findings (e.g. for PHO84 and ZPS1, where mox-FS and mox-YG behave differently in the reporter assay, but not in the RNAseq data). This may stem from technical limitations given that the reporter assay relies on RFP expression which could generally be affected by protein overexpression (cf. ACT1pro in mox-FS), but it should be mentioned in the text.

      We apologize for the confusion caused by our insufficient explanation of "moxFS" in new Figure 3D (original Figure 4D). As clarified here, "moxFS" refers to a frameshift mutant in which the mRNA is transcribed but the protein is not translated due to an early frameshift mutation. This is not a functional mox protein. The behavior of this mutant is nearly identical to that of the vector control, indicating that the transcriptional response observed in this assay is not triggered by mRNA expression itself, but rather by events occurring after protein synthesis begins. Importantly, the transcriptional responses identified by RNA-seq in mox-YG overexpression cells are largely recapitulated by this reporter assay, supporting the reliability of our experimental design.

      We appreciate the reviewer’s comment, which helped us recognize the lack of clarity in our original description. In response, we have added an explanation of the FS mutation to the figure legend (new Figure 3D), and we have also expanded the description of the moxFS experimental results in the Results section.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Shi et al, has utilized multiple imaging datasets and one set of samples for analyzing serum EV-miRNAs & EV-RNAs to develop an EV miRNA signature associated with disease-relevant radiomics features for early diagnosis of pancreatic cancer. CT imaging features (in two datasets (UMMD & JHC and WUH) were derived from pancreatic benign disease patients vs pancreatic cancer cases), while circulating EV miRNAs were profiled from samples obtained from a different center (DUH). The EV RNA signature from external public datasets (GSE106817, GSE109319, GSE113486, GSE112264) were analyzed for differences in healthy controls vs pancreatic cancer cases. The miRNAs were also analyzed in the TCGA tissue miRNA data from normal adjacent tissue vs pancreatic cancer.

      Strengths:

      The concept of developing EV miRNA signatures associated with disease relevant radiomics features is a strength.

      Weaknesses:

      While the overall concept of developing EV miRNA signature associated with radiomics features is interesting, the findings reported are not convincing for the reasons outlined below:

      (1) Discrepant datasets for analyzing radiomic features with EV-miRNAs: It is not justified how CT images (UMMD & JHC and WUH) and EV-miRNAs (DUH) on different subjects and centers/cohorts shown in Figures 1 &2 were analyzed for association. It is stated that the samples were matched according to age but there is no information provided for the stages of pancreatic cancer and the kind of benign lesions analyzed in each instance.

      Thank you to the reviewer for the valuable comments. We acknowledge that the radiomics data and EV-miRNA data were derived from different patient cohorts. The primary aim of this study was to explore the integration of data from different omics sources in an exploratory manner to identify potential shared biological features.

      We have revised the Methods section accordingly. Regarding the imaging data, we mainly performed batch effect correction on CT images from different centers to eliminate variability. As you correctly pointed out, the EV-miRNA data and CT images from DUH were matched by age. Since all the patients we included had early-stage pancreatic cancer, and the benign pancreatic lesions were predominantly IPMN, we did not specifically highlight this aspect. However, we have now clarified this approach in the data collection section. Thank you for your attention.

      (2) The study is focused on low-abundance miRNAs with no adequate explanation of the selection criteria for the miRNAs analyzed.

      We used MAD (Median Absolute Deviation) to filter low-abundance miRNAs in the manuscript, as this concept was introduced by us for the first time in this context, and we acknowledge that there is still considerable room for refinement and improvement.

      (3) While EV-miRNAs were profiled or sequenced (not well described in the Methods section) with two different EV isolation methods, the authors used four public datasets of serum circulating miRNAs to validate the findings. It would be better to show the expression of the three miRNAs in the additional dataset(s) of EV-miRNAs and compare the expressions of the three EV-miRNAs in pancreatic cancer with healthy and benign disease controls.

      Thank you for your suggestion. We have attempted to identify available EV-miRNA datasets; however, due to current limitations in data access, we opted to use serum samples for validation. In our follow-up studies, we are already in the process of collecting relevant EV samples for further validation.

      (4) It is not clear how the 12 EV-miRNAs in Figure 4C were identified.

      These 12 EV-miRNAs were identified through WGCNA analysis and are associated with the high-risk group.

      (5) Box plots in Figures 4D-F and G-I of three miRNAs in serum and tissue should show all quantitative data points.

      We have completed the revisions. Kindly review them at your convenience.

      (6) What is the GBM model in Figure 5?

      Thank you to the reviewer for raising this question. The "GBM model" referred to in Figure 5 is a classification model built using the Gradient Boosting Machine (GBM) algorithm, designed to predict the diagnostic status of pancreatic cancer by integrating EV-miRNA expression and radiomics features. We implemented the model using the `GradientBoostingClassifier` from the scikit-learn library (version 1.2.2), and optimized the model’s hyperparameters—including learning rate, maximum depth, and number of trees—within a five-fold cross-validation framework. The training process and performance evaluation of the model, including the ROC curve and AUC values, are presented in Figure 5.

      (7) What are the AUCs of individual EV-miRNAs integrated as a panel of three EV-miRNAs?

      Thanks for your comments, Our GBM model integrates the panel of these three EV-miRNAs.

      (8) The authors could have compared the performance of CA19-9 with that of the three EV-miRNAs.

      Since our main focus is on the panel of three EV-miRNAs, we did not present the AUC for each individual miRNA separately. However, we have included the performance of CA19-9 in our dataset as a reference. The predictive AUC for CA19-9 is 0.843 (95% CI, 0.762–0.924).

      (9) How was the diagnostic performance of the three EV-miRNAs in the two molecular subtypes identified in Figure 6&7? Do the C1 & C2 clusters correlate with the classical/basal subtypes, staging, and imaging features?

      Thank you to the reviewer for raising this important question. In fact, our EV panel is primarily designed to distinguish between normal and tumor samples, whereas both C1 and C2 represent tumor subtypes, and thus the panel is not applicable for diagnostic purposes in this context. Additionally, our subtypes are novel and do not align with the conventional classical and basal-like gene expression profiles. Furthermore, the C1 subtype is more frequently observed in stage III tumors (Figure 6J) and is associated with distinct imaging features such as higher texture heterogeneity and lower CT density.

      Reviewer #2 (Public review):

      Summary:

      This study investigates a low abundance microRNA signature in extracellular vesicles to subtype pancreatic cancer and for early diagnosis. There are several major questions that need to be addressed. Numerous minor issues are also present.

      Strengths:

      The authors did a comprehensive job with numerous analyses of moderately sized cohorts to describe the clinical and translational significance of their miRNA signature.

      Weaknesses:

      There are multiple weaknesses of this study that should be addressed:

      (1) The description of the datasets in the Materials and Methods lacks details. What were the benign lesions from the various hospital datasets? What were the healthy controls from the public datasets? No pancreatic lesions? No pancreatic cancer? Any cancer history or other comorbid conditions? Please define these better.

      We sincerely thank the reviewer for the detailed and important suggestions regarding sample definition. Indeed, the source of the datasets and the definition of control groups are critical for ensuring the rigor and interpretability of the study. In response to this comment, we have added clarifications in the revised "Materials and Methods" section.

      First, for the benign lesion group derived from various clinical centers (DUH, UMMD, WUH, etc.), we have carefully reviewed the pathological and clinical records and defined these samples as histologically confirmed non-malignant pancreatic lesions, primarily IPMN. All patients in the benign lesion group had no diagnosis of pancreatic cancer at the time of sample collection, and for cohorts with available follow-up data, no evidence of malignant progression was observed within at least six months.

      Second, the healthy control group from public databases was derived from healthy individuals.

      Finally, to eliminate potential confounding factors, we excluded any samples with a history of other malignancies (e.g., breast cancer, colorectal cancer, etc.) from all datasets with available clinical information, to ensure the specificity of the EV-miRNA expression analysis.

      (2) It is unclear how many of the controls and cases had both imaging for radiomics and blood for biomarkers.

      Due to limitations in resource availability, our study does not include samples with both CT imaging and serological data from the same individuals. Instead, we integrated blood samples and CT imaging data collected from different clinical centers.

      (3) The authors should define the imaging methods and protocols used in more detail. For the CT scans, what slice thickness? Was a pancreatic protocol used? What phase of contrast is used (arterial, portal venous, non-contrast)? Any normalization or pre-processing?

      Thank you to the reviewer for the professional suggestions regarding the imaging section. We have added detailed technical information on CT imaging in the revised Materials and Methods section. All CT images were acquired using a 64-slice multidetector spiral CT scanner, with a standard slice thickness of 1.0–1.5 mm and a reconstruction interval of 1 mm. All pancreatic cancer patients underwent a standard pancreatic protocol triphasic contrast-enhanced CT examination, which included non-contrast, arterial phase (approximately 25–30 seconds), and portal venous phase (approximately 65–70 seconds) imaging.

      For the radiomics analysis, images from the portal venous phase were selected, as this phase provides consistent clarity in delineating tumor boundaries and surrounding vasculature. To ensure data consistency, all imaging data underwent preprocessing, including resampling, intensity normalization of grayscale values (standardized using z-score normalization to a mean of 0 and a standard deviation of 1), and N4 bias field correction to address potential low-frequency signal inhomogeneities.

      (4) Who performed the segmentation of the lesions? An experienced pancreatic radiologist? A student? How did the investigators ensure that the definition of the lesions was performed correctly? Raidomics features are often sensitive to the segmentation definitions.

      All lesion segmentations were performed on portal venous phase contrast-enhanced CT images. Manual delineation was conducted using 3D Slicer (version 4.11) by two radiologists with extensive experience in pancreatic tumor diagnosis. A consensus was reached between the two radiologists on the ROI definition criteria prior to analysis.

      To further assess the robustness of radiomic features to segmentation boundary variations, we selected a subset of representative cases and created “expanded/shrunk ROIs” by adding or subtracting a 2-pixel margin at the lesion boundary. Feature extraction was then repeated, and the coefficient of variation (CV) for the main features included in the model was found to be below 10%, indicating that the model is stable with respect to minor boundary fluctuations.

      (5) Figure 1 is full of vague images that do not convey the study design well. Numbers from each of the datasets, a summary of what data was used for training and for validation, definitions of all of the abbreviations, references to the Roman numerals embedded within the figure, and better labeling of the various embedded graphs are needed. It is not clear whether the graphs are real results or just artwork to convey a concept. I suspect that they are just artwork, but this remains unclear.

      We thank the reviewer for the detailed feedback on Figure 1. We would like to clarify that Figure 1 is a conceptual schematic intended to visually illustrate the overall design of the study, the relationships among different data modules, and the logical sequence of the analytical strategy. It is not meant to present actual results or quantitative details.

      Regarding the reviewer’s concerns about sample sizes, the division between training and validation cohorts, explanations of specific abbreviations, and the precise meaning of each panel, we have provided comprehensive and detailed clarifications in Figure 2.

      (6) The DF selection process lacks important details. Please reference your methods with the Boruta and Lasso models. Please explain what machine learning algorithms were used. There is a reference in the "Feature selection.." section of "the model formula listed below" but I do not see a model formula below this paragraph.

      We thank the reviewer for the thoughtful and detailed comments on the feature selection strategy. We first applied the Boruta algorithm (based on random forests, implemented using the Boruta R package) to the original feature set—which included both radiomics and EV-miRNA features—to identify variables that consistently demonstrated importance across multiple rounds of random resampling.

      Subsequently, we used LASSO regression with five-fold cross-validation to further reduce the dimensionality of the Boruta-selected features and to construct the final feature set used for modeling. The formula for the model is as follows: each regression coefficient is multiplied by the corresponding feature expression level, and the resulting products are summed to generate the Risk Score.

      (7) In Figure 2, more quantitative details are needed. How are patients dichotomized into non-obese and obese? What does alcohol/smoking mean? Is it simply no to both versus one or the other as yes? These two risk factors should be separated and pack years of smoking should be reported. The details of alcohol use should also be provided. Is it an alcohol abuse history? Any alcohol use, including social drinking? Similarly, "diabetes" needs to be better explained. Type I, type II, type 3c? P values should be shown to demonstrate any statistically significant differences in the proportions of the patients from one dataset to another.

      Our definition of obesity was based on the standard BMI threshold (30 kg/m²). A history of smoking or alcohol consumption was defined as continuous use for more than one year. Specific details regarding smoking and alcohol use were recorded at baseline under the category of “smoking/alcohol history”; unfortunately, we did not collect follow-up data on these variables. As for diabetes, only type II diabetes was documented. Statistically significant p-values have been added. Thank you.

      (8) In the section "Different expression radiomic features between pancreatic benign lesions and aggressive tumors", there is a reference to "MUJH" for the first time. What is this? There is also the first reference to "aggressive tumors" in the section. Do the authors just mean the cases? Otherwise there is no clear definition of "aggressive" (vs. indolent) pancreatic cancer. This terminology of tumor "aggressiveness" either needs to be removed or better defined.

      We have corrected the abbreviation (MUJH); it should in fact be JHC. Additionally, regarding the term "aggressive," we have reviewed the literature and used it to convey the highly malignant nature of pancreatic cancer.

      (9) Figure 3 needs to have the specific radiomic features defined and how these features were calculated. Labeling them as just f1, f2, etc is not sufficient for another group to replicate the results independently.

      We have presented these features in Supplementary Table 1. Kindly refer to it for details.

      (10) It is not clear what Figure 4A illustrates as regards model performance. What do the different colors represent, and what are the models used here? This is very confusing.

      This represents the correlation between WGCNA modules and miRNAs. Different module colors indicate distinct miRNA clusters—for example, the green module contains 12 miRNAs grouped together. The colors themselves do not carry any intrinsic meaning.

      (11) Figure 5 shows results for many more model runs than the described 10, please explain what you are trying to convey with each row. What are "Test A" and "Test B"? There is no description in the manuscript of what these represent. In the figure caption, there is a reference to "our center data" which is not clear. Be more specific about what that data is.

      We have indicated this using arrows in Figure 5 from Test A/B/C. Please check.

      (12) Figure 6 describes the subtypes identified in this study, but the authors do not show a multi-variable cox proportional hazards model to show that this subtype classification independently predicts DFS and OS when incorporating confounding variables. This is essential to show the subtypes are clinically relevant. In particular, the authors need to account for the stage of the patients, and receipt of chemotherapy, surgery, and radiation. If surgery was done, we need to know whether they had R1 or R0 resection. The details about the years in which patients were included is also important.

      We sincerely thank the reviewer for this critical comment. We fully agree that incorporating a multivariate Cox proportional hazards model to control for potential confounding factors would provide a more robust validation of the independent prognostic value of our proposed subtypes for DFS and OS.

      However, as the clinical data used in this study were retrospectively collected and access to certain variables is currently restricted, we were only able to obtain limited clinical information. At this stage, we are unable to systematically include key variables such as tumor staging, adjuvant chemoradiotherapy regimens, and resection margin status (R0 vs. R1), which prevents us from performing a rigorous multivariate Cox analysis.

      Similarly, regarding the postoperative resection status, after reviewing the original surgical reports and pathology records, we regret to confirm that margin status (R0 vs. R1) is missing in a substantial portion of cases, making it unsuitable for reliable statistical analysis.

      We fully acknowledge this as a limitation of the current study and have explicitly addressed it in the Discussion section. To address this gap, we are currently designing a more comprehensive prospective cohort study, which will allow us to validate the clinical independence and utility of the proposed subtypes in future research.

      (13) How do these subtypes compare to other published subtypes?

      We sincerely thank the reviewer for raising this important point. Clusters 1 and 2 represent a novel molecular classification proposed for the first time in this study, driven by EV-miRNA profiles. This classification approach is conceptually independent from traditional transcriptome-based subtyping systems, such as the classical/basal-like subtypes, as well as other existing classification schemes. Comparisons with previously reported subtypes and validation of clinical relevance will require further investigation in future studies.

      Reviewer #3 (Public review):

      Summary:

      The authors appear to be attempting to identify which patients with benign lesions will progress to cancer using a liquid biomarker. They used radiomics and EV miRNAs in order to assess this.

      Strengths:

      It is a strength that there are multiple test datasets. Data is batch-corrected. A relatively large number of patients is included. Only 3 miRNAs are needed to obtain their sensitivity and specificity scores.

      Weaknesses:

      This manuscript is not clearly written, making interpretation of the quality and rigor of the data very difficult. There is no indication from the methods that the patients in their cohorts who are pancreatic cancer patients (from the CT images) had prior benign lesions, limiting the power of their analysis. The data regarding the cluster subtypes is very confusing. There is no discussion or comparison if these two clusters are just representing classical and basal subtypes (which have been well described).

      Sorry,we don’t have the data of record from patients, in addition, Regarding the relationship between Cluster 1/Cluster 2 and classical subtypes:We are very grateful for the reviewer’s insightful question. We would like to clarify that Clusters 1 and 2, as shown in Figures 6 and 7, are derived from a novel EV-miRNA–driven molecular classification proposed for the first time in this study. This classification system is constructed independently of the traditional transcriptome-based classical/basal-like subtypes.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      There are errors in reference citations and several typos, misspellings, and grammatical errors throughout the manuscript.

      We have made the necessary revisions.

      Reviewer #2 (Recommendations for the authors):

      (1) Were the radiomic features associated with the subtypes and prognostic in the subset of patients who had CT scans?

      Unfortunately, there are no corresponding CT imaging results available for these cases, as the genes were identified based on predicted miRNA targets and were not derived from patients who had undergone CT scans.

      (2) There is a whole body of literature on prognostic imaging-based subtypes of pancreatic cancer that needs to be cited.

      Thank you for your suggestion. We have cited the relevant references accordingly in the manuscript.

      (3) Similarly, the authors should be more comprehensive about prognostic and early detection markers for miRNAs for pancreatic cancer. Early detection markers really should be described separately from prognostic markers. The authors did not do a PROBE phase 3 study, so early detection is not really relevant. Please see https://edrn.nci.nih.gov/about-edrn/five-phase-approach-and-prospective-specimen-collection-retrospective-blinded-evaluation-study-design/

      The primary objective of our study is early detection. We acknowledge the absence of third-phase validation results, which we will address in the limitations section. Additionally, the subtype classification represents our secondary objective.

      (4) If they want to couch this as a PROBE phase 2 study, then they should review the PROBE guidelines and ensure they are meeting standards. Many of the comments above regarding methodologies, definitions, and patient cohort descriptions would address this concern.

      We have revised the Methods section accordingly. Please kindly review the updated version.

      (5) The entire manuscript needs to have a review for the use of the English language. There are numerous typos and grammatical errors that make this manuscript difficult to follow and hard to interpret.

      We have revised the Methods section accordingly. Please kindly review the updated version.

      (6) In the section on "Definition and identification of low abundance EV-derived miRNA transcripts", provide a reference for the "edger" function.

      We have revised the Methods section accordingly. Please kindly review the updated version.

      (7) In the Abstract: The purpose section only mentions early diagnosis as the goal of this study. It seems subtyping is also a major goal, but it is not mentioned.

      The primary objective of our study is early detection.Additionally, the subtype classification represents our secondary objective.so,we didn’t add it in the purpose.

      (8) The experimental design fails to describe any of the 8 datasets that were used. How many patients? What were the ethnic and racial backgrounds, which is one of the key aspects of this study and mentioned in the title? What range of stages? When were the images and the blood collected in relation to diagnosis? Over what time frame were the patients included? What patients were excluded, if any? These details are important to understand the materials used, along with the methods to design the signatures and models.

      We have revised the Methods section accordingly. Please kindly review the updated version.

      (9) Again, the purpose section of the abstract does not align with the rest of the study, including the description of the experimental design. The last sentence of the experimental design section mentions predicting drug sensitivity and survival, which is unrelated to the aim of early diagnosis.

      We have revised the Methods section accordingly. Please kindly review the updated version.

      (10) The results section lacks key details to indicate the impact of the work. Vague descriptions of the findings are not sufficient. The performance of the biomarkers to differentiate benign from malignant lesions, hazard ratios, survival times, and p values should be reported for key results.

      Our aim was to develop an integrated panel for diagnostic purposes; therefore, we provided the AUC to evaluate its performance. However, since this is a diagnostic model, we did not include hazard ratios or survival time data.

      (11) What are "tow" molecular subtypes of pancreatic cancer? Did you mean "two"? What system was used to subtype the pancreatic cancers? Is some new subtyping or a previously published method to subtype the disease?

      Yes, it means two, previously published method.In method part, we have describe it.

      Reviewer #3 (Recommendations for the authors):

      The writing of this manuscript needs extensive re-wording and clarification to increase the readability and interpretability of the data presented. The authors could include a dataset of pancreatic cancer patient imaging data where the status of prior benign lesions was detected (as opposed to patients with benign lesions that do not develop pancreatic cancer). The authors could also address if their clusters 1 and 2 are representing (or are correlated with) the classical and basal subtypes that have been well described for pancreatic cancer.

      Thank you to the reviewer for the constructive comments. We sincerely appreciate your careful review, particularly regarding language clarity, data interpretability, and subtype correlation. To enhance the readability and scientific precision of the manuscript, we have conducted a thorough revision and language polishing throughout the text, improving logical structure, terminology consistency, and clarity in result descriptions. We have especially reinforced the Methods and Discussion sections to better explain key analytical steps and data interpretation.

      We fully understand the reviewer’s suggestion to include information on “the presence of benign lesions prior to pancreatic cancer diagnosis.” However, due to the retrospective nature of our study, the current imaging and EV-miRNA datasets do not contain systematically collected follow-up annotations of this type. Therefore, it is not feasible to incorporate such data into the present manuscript.

      That said, we fully recognize the importance of this direction. In future studies, we plan to evaluate longitudinal samples to investigate the dynamic changes in EV-miRNAs and imaging features during the progression from premalignant to malignant states, aiming to clarify their potential value for early cancer warning.

      Regarding the relationship between Cluster 1/Cluster 2 and classical subtypes:We are very grateful for the reviewer’s insightful question. We would like to clarify that Clusters 1 and 2, as shown in Figures 6 and 7, are derived from a novel EV-miRNA–driven molecular classification proposed for the first time in this study. This classification system is constructed independently of the traditional transcriptome-based classical/basal-like subtypes.

      Although we attempted a cross-comparison with existing TCGA subtypes, differences in data origin, analysis modality (EV-miRNA vs. tissue transcriptome), and limitations in sample matching prevent us from establishing a direct correspondence. In the revised Discussion, we have emphasized that these two classification approaches are complementary rather than equivalent, reflecting different dimensions of tumor heterogeneity. Further integrative multi-omics studies will be needed to validate their biological significance and clinical utility.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary: Zhu et al., investigate the cellular defects in glia as a result of loss in DEGS1/ifc encoding the dihydroceramide desaturase. Using the strength of Drosophila and its vast genetic toolkit, they find that DEGS1/ifc is mainly expressed in glia and its loss leads to profound neurodegeneration. This supports a role for DEGS1 in the developing larval brain as it safeguards proper CNS development. Loss of DEGS1/ifc leads to dihydroceramide accumulation in the CNS and induces alteration in the morphology of glial subtypes and a reduction in glial number. Cortex and ensheathing glia appeared swollen and accumulated internal membranes. Astrocyte-glia on the other hand displayed small cell bodies, reduced membrane extension and disrupted organization in the dorsal ventral nerve cord. They also found that DEGS1/ifc localizes primarily to the ER. Interestingly, the authors observed that loss of DEGS1/ifc drives ER expansion and reduced TGs and lipid droplet numbers. No effect on PC and PE and a slight increase in PS.

      The conclusions of this paper are well supported by the data. The study could be further strengthened by a few additional controls and/or analyses.

      Strengths:

      This is an interesting study that provides new insight into the role of ceramide metabolism in neurodegeneration.

      The strength of the paper is the generation of LOF lines, the insertion of transgenes and the use of the UAS-GAL4/GAL80 system to assess the cell-autonomous effect of DEGS1/ifc loss in neurons and different glial subtypes during CNS development.

      The imaging, immunofluorescence staining and EM of the larval brain and the use of the optical lobe and the nerve cord as a readout are very robust and nicely done.

      Drosophila is a difficult model to perform core biochemistry and lipidomics but the authors used the whole larvae and CNS to uncover global changes in mRNA levels related to lipogenesis and the unfolded protein responses as well as specific lipid alterations upon DEGS1/ifc loss.

      Weaknesses:

      (1) The authors performed lipidomics and RTqPCR on whole larvae and larval CNS from which it is impossible to define the cell type-specific effects. Ideally, this could be further supported by performing single cell RNAseq on larval brains to tease apart the cell-type specific effect of DEGS1/ifc loss.

      We agree that using scRNAseq or pairing FACS-sorting of individual glial subtypes with bulk RNAseq would help tease apart the cell-type specific effects of DEGS1/ifc loss on glial cells. At this time, however, this approach extends beyond the scope of the current paper and means of the lab. 

      (2) It's clear from the data that the accumulation of dihydroceramide in the ER triggers ER expansion but it remains unclear how or why this happens. Additionally, the authors assume that, because of the reduction in LD numbers, that the source of fatty acids comes from the LDs. But there is no data testing this directly.

      As CERT, the protein that transports ceramide from the ER to the Golgi, is far more efficient at transporting ceramide than dihydroceramide, we speculate that dihydroceramide accumulates in the ER due to inefficient transport from the ER to the Golgi by CERT. We state this model more explicitly in the results under the subheading “Reduction of dihydroceramide synthesis suppresses the ifc CNS phenotype”.

      We agree with the point on lipid droplet. We observe a correlation, not a causation, between reduction of lipid droplets and a large expansion of ER membrane. We have tried to clarify the text in the last paragraph of the discussion to make this point more clearly. See also response to reviewer 2 point 3. 

      (3) The authors performed a beautiful EMS screen identifying several LOF alleles in ifc. However, the authors decided to only use KO/ifcJS3. The paper could be strengthened if the authors could replicate some of the key findings in additional fly lines.

      We agree. We replicated the observed cortex glia swelling, ER expansion in cortex glia, and observed increase in neuronal cell death markers in late-third instar larvae mutant for either the ifcjs1 or ifcjs2 allele. These data are now provided as Supplementary Figure 7.

      (4) The authors use M{3xP3-RFP.attP}ZH-51D transgene as a general glial marker. However, it would be advised to show the % overlap between the glial marker and the RFP since a lot of cells are green positive but not per se RFP positive and vice versa.

      We visually reexamined the expression of the 3xP3 RFP transgene relative to FABP labeling for cortex glia, Ebony for astrocyte-like glia, and the Myr-GFP transgene driven by glial-subtype specific GAL4 driver lines for perineurial, subperineurial, and ensheathing glia. We note that RFP localizes to the nucleus cytoplasm while FABP and Ebony localize to the cytoplasm and Myr-GFP to the cell membrane. Thus, an observed lack of overlap of expression between RFP and the other markers can arise to differential localization of the two markers in the same cells (see, for example, Fig. S2D where Myr-GFP expression in the nuclear envelope encircles that of RFP in the nucleus. Through visual inspection of five larval-brain complexes for each glial subtype marker, we found that essentially all cortex, SPG, and ensheathing glia expressed RFP. Similarly, nearly all astrocyte-like glia also expressed RFP, but they expressed RFP at significantly lower levels than that observed for cortex, SPG, or ensheathing glia. This analysis also confirmed that most perineurial glia do not express RFP. The 3xP3 M{3xP3-RFP.attP}ZH-51D transgene then labels most glia in the Drosophila CNS. We have added text to Supplementary Figure 2 noting the above observations as to which glial cells express RFP. 

      (5) The authors indicate that other 3xP3 RFP and GFP transgenes at other genomic locations also label most glia in the CNS. Do they have a preferential overlap with the different glial subtypes?

      We assessed three different types of 3xP3 RFP and GFP transgenes: M{3xP3RFP.attp} transgenes (n=4), Mi{GFP[E.3xP3]=ET1} transgenes (n=3), and

      Tl{GFP[3xP3.cLa]=CRIMIC.TG4} transgenes (n>6). All labeled cortex glia, but different lines exhibited differential labeling of astrocyte and ensheathing glia. These data are now included as Supplementary Figure 3.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Zhu et al. describes phenotypes associated with the loss of the gene ifc using a Drosophila model. The authors suggest their findings are relevant to understanding the molecular underpinnings of a neurodegenerative disorder, HLD-18, which is caused by mutations in the human ortholog of ifc, DEGS1.

      The work begins with the authors describing the role for ifc during fly larval brain development, demonstrating its function in regulating developmental timing, brain size, and ventral nerve cord elongation. Further mechanistic examination revealed that loss of ifc leads to depleted cellular ceramide levels as well as dihydroceramide accumulation, eventually causing defects in ER morphology and function. Importantly, the authors showed that ifc is predominantly expressed in glia and is critical for maintaining appropriate glial cell numbers and morphology. Many of the key phenotypes caused by the loss of fly ifc can be rescued by overexpression of human DEGS1 in glia, demonstrating the conserved nature of these proteins as well as the pathways they regulate. Interestingly, the authors discovered that the loss of lipid droplet formation in ifc mutant larvae within the cortex glia, presumably driving the deficits in glial wrapping around axons and subsequent neurodegeneration, potentially shedding light on mechanisms of HLD-18 and related disorders.

      Strengths:

      Overall, the manuscript is thorough in its analysis of ifc function and mechanism. The data images are high quality, the experiments are well controlled, and the writing is clear.

      Weaknesses:

      (1) The authors clearly demonstrated a reduction in number of glia in the larval brains of ifc mutant flies. What remains unclear is whether ifc loss leads to glial apoptosis or a failure for glia to proliferate during development. The authors should distinguish between these two hypotheses using apoptotic markers and cell proliferation markers in glia.

      To address this point, we used phospho-histone H3 to assess mitotic index in the thoracic CNS of wild-type versus ifc mutant late third instar larvae and found a mild, but significant reduction in mitotic index in ifc mutant relative to wild-type nerve cords. We also assessed the ability of glial-specific expression of the potent anti-apoptotic gene p35 to rescue the observed loss of cortex glia phenotype in the thoracic region of the CNS of otherwise ifc mutant larvae and observed a clear increase in cortex glia in the presence versus the absence of glial-specific p35 expression (p<3 x 10-4). These data are now provided as Supplementary Figure S8 in the paper and referred to on page 8.

      (2) It is surprising that human DEGS1 expression in glia rescues the noted phenotypes despite the different preference for sphingoid backbone between flies and mammals. Though human DEGS1 rescued the glial phenotypes described, can animal lethality be rescued by glial expression of human DEGS1? Are there longer-term effects of loss of ifc that cannot be compensated by the overexpression of human DEGS1 in glia (age-dependent neurodegeneration, etc.)?

      We note explicitly that while glial expression of human DEGS1 does provide rescuing activity, it only partially rescues the ifc mutant CNS phenotype in contrast to glial expression of Drosophila ifc, which fully rescues this phenotype. Thus, the relative activity of human DEGS1 is far below that of Drosophila ifc when assayed in flies. To quantify the functional difference between the two transgenes, we assessed the ability of glial expression of fly ifc or of human DEGS1 to rescue the lethality of otherwise ifc mutant larvae: Glial expression of ifc was sufficient to rescue the adult viability of 57.9% of ifc mutant flies based on expected Mendelian ratios (n=2452), whereas glial expression of DEGS1 was sufficient to rescue just 3.9% of ifc mutant flies (n=1303), uncovering a ~15-fold difference in the ability of the two transgenes to rescue the lethality of otherwise ifc mutant flies. In the absence of either transgene, no ifc mutant larvae reached adulthood (n=1030). These data are now provided in the text on page 9 of the revised manuscript. 

      (3) The mechanistic link between the loss of ifc and lipid droplet defects is missing. How do defects in ceramide metabolism alter triglyceride utilization and storage? While the author's argument that the loss of lipid droplets in larval glia will lead to defects in neuronal ensheathment, a discussion of how this is linked to ceramides needs to be added.

      We have revised the text to address this point. We speculate that the apparent increased demand for membrane phospholipid synthesis may drive the depletion of lipid droplets, providing a link to ifc function and ceramides. Below we provide the rewritten last paragraph; the underlined section is the new text.  

      “The expansion of ER membranes coupled with loss of lipid droplets in ifc mutant larvae suggests that the apparent demand for increased membrane phospholipid synthesis may drive lipid droplet depletion, as lipid droplet catabolism can release free fatty acids to serve as substrates for lipid synthesis. At some point, the depletion of lipid droplets, and perhaps free fatty acids as well, would be expected to exhaust the ability of cortex glia to produce additional membrane phospholipids required for fully enwrapping neuronal cell bodies. Under wild-type conditions, many lipid droplets are present in cortex glia during the rapid phase of neurogenesis that occurs in larvae. During this phase, lipid droplets likely support the ability of cortex glia to generate large quantities of membrane lipids to drive membrane growth needed to ensheathe newly born neurons. Supporting this idea, lipid droplets disappear in the adult Drosophila CNS when neurogenesis is complete and cortex glia remodeling stops. We speculate that lipid droplet loss in ifc mutant larvae contributes to the inability of cortex glia to enwrap neuronal cell bodies. Prior work on lipid droplets in flies has focused on stress-induced lipid droplets generated in glia and their protective or deleterious roles in the nervous system. Work in mice and humans has found that more lipid droplets are often associated with the pathogenesis of neurodegenerative diseases, but our work correlates lipid droplet loss with CNS defects. In the future, it will be important to determine how lipid droplets impact nervous system development and disease.”

      (4) On page 10, the authors use the words "strong" and "weak" to describe where ifc is expressed. Since the use of T2A-GAL4 alleles in examining gene expression is unable to delineate the amount of gene expression from a locus, the terms "broad" and "sparse" labeling (or similar terms) should be used instead.

      The ifc T2A-GAL4 insert in the ifc locus reports on the transcription of the gene. We agree that GAL4 system will not reflect amount of gene expression differences when the expression levels are not dramatically different. However, when the expression levels differ dramatically, as in our case, GAL4 system can reflect this difference in the expression of a reporter gene.  We reworded this section to suggest that ifc is transcribed at higher levels in glia as compared to neurons. We can’t use sparse or broad, as ifc is expressed in all, or at least in most, glia and neurons. The new text is as follows:” Using this approach, we observed strong nRFP expression in all glial cells (Figures 4D and S10A) and modest nRFP expression in all neurons (Figures 4E and S10B), suggesting ifc is transcribed at higher levels in glial cells than neurons in the larval CNS.”  

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors report three novel ifc alleles: ifc[js1], ifc[js2], and ifc[js3]. ifc[js1] and ifc[js2] encode missense mutations, V276D and G257S, respectively. ifc[js3] encodes a nonsense mutation, W162*. These alleles exhibit multiple phenotypes, including delayed progression to the late-third larval instar stage, reduced brain size, elongation of the ventral nerve cord, axonal swelling, and lethality during late larval or early pupal stages.

      Further characterization of these alleles the authors reveals that ifc is predominantly expressed in glia and localizes to the endoplasmic reticulum (ER). The expression of ifc gene governs glial morphology and survival. Expression of fly ifc cDNA or human DEGS1 cDNA specifically in glia, but not neurons, rescues the CNS phenotypes of ifc mutants, indicating a crucial role for ifc in glial cells and its evolutionary conservation. Loss of ifc results in ER expansion and loss of lipid droplets in cortex glia. Additionally, loss of ifc leads to ceramide depletion and accumulation of dihydroceramide. Moreover, it increases the saturation levels of triacylglycerols and membrane phospholipids. Finally, the reduction of dihydroceramide synthesis suppresses the CNS phenotypes associated with ifc mutations, indicating the key role of dihydroceramide in causing ifc LOF defects.

      Strengths:

      This manuscript unveils several intriguing and novel phenotypes of ifc loss-of-function in glia. The experiments are meticulously planned and executed, with the data strongly supporting their conclusions.

      Weaknesses:

      I didn't find any obvious weakness.

      Reviewer #1 (Recommendations For The Authors):

      Additional minor comments below:

      (1) The authors state that TGs are the building blocks of membrane phospholipids. This is not exactly true. The breakdown of TGs can result in free FAs which can be used for membrane phospholipid synthesis. Also, membrane phospholipids can also be generated from free FAs that were never in TGs.

      To address this point, we have reworked a number of sentences in the text. On page 12 we reworded two small sections to the following: 

      “In the CNS, lipid droplets form primarily in cortex glia[29] and are thought to contribute to membrane lipid synthesis through their catabolism into free fatty acids versus acting as an energy source in the brain.[41] Consistent with the possibility that increased membrane lipid synthesis drives lipid droplet reduction, RNA-seq assays of dissected nerve cords revealed that loss of ifc drove transcriptional upregulation of genes that promote membrane lipid biogenesis”

      As TG breakdown results in free fatty acids that can be used for membrane phospholipid synthesis, we asked if changes in TG levels and saturation were reflected in the levels or saturation of the membrane phospholipids phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS).

      (2) Figure 5J what does the dotted line indicate? Please specify in the figure legend or remove it.

      We have added the following text in the figure legend: Dotted line indicates a log2 fold change of 0.5 in the treatment group compared to the control group.

      (3) The text for your graphs is hard to read. Please make the font larger.

      We have increased font size to enhance the readability of the figures.

      (4) The authors mentioned that driving ifc expression in neurons rescues the phenotypes (ref 17). While the glial-specific role presented in this study is robust. I think some readers would appreciate some discussion of this study in light of the data presented here.

      We have added the below text on page 10 to address this point.

      “Results of our gene rescue experiments conflict with a prior study on ifc in which expression of ifc in neurons was found to rescue the ifc phenotype. In this context, we note that elav-GAL4 drives UASlinked transgene expression not just in neurons, but also in glia at appreciable levels, and thus needs to be paired with repo-GAL80 to restrict GAL4-mediated gene expression to neurons. Thus, “off-target” expression in glial cells may account for the discrepant results. It is, however, more difficult to reconcile how neuronal or glial expression of ifc would rescue the observed lethality of the ifc-KO chromosome given the presence additional lethal mutations in the 21E2 region of the second chromosome.”

      (5) While the analysis of fatty acid saturation is experimentally well done. I'm not really sure what the significance of this data is.

      We included this information as a reference for future analysis of additional genes in the ceramide biogenesis pathway, as we expect that alteration of the levels and saturation levels of PE, PC, and PS in cell membranes may underlie key changes in the biophysical properties of glial cell membranes and their ability to enwrap or infiltrate their targets. Thus, we expect the significance of these data to grow as more work is done on additional members of the ceramide pathway in the nervous system in flies and other systems.  

      Reviewer #2 (Recommendations For The Authors):

      (1) There is a typo at the top of page 11: "internal membranes and fail enwrap neurons" is missing the word "to" before "enwrap"

      The typo was fixed.

      (2)  PMID: 36718090 should be included in the discussion of SPT and ORMDL complex in human disease.

      The reference was added.

      Reviewer #3 (Recommendations For The Authors):

      In this manuscript, the authors report three novel ifc alleles: ifc[js1], ifc[js2], and ifc[js3]. ifc[js1] and ifc[js2] encode missense mutations, V276D and G257S, respectively. ifc[js3] encodes a nonsense mutation, W162*. These alleles exhibit multiple phenotypes, including delayed progression to the late-third larval instar stage, reduced brain size, elongation of the ventral nerve cord, axonal swelling, and lethality during late larval or early pupal stages.

      Further characterization of these alleles the authors reveals that ifc is predominantly expressed in glia and localizes to the endoplasmic reticulum (ER). The expression of ifc gene governs glial morphology and survival. Expression of fly ifc cDNA or human DEGS1 cDNA specifically in glia, but not neurons, rescues the CNS phenotypes of ifc mutants, indicating a crucial role for ifc in glial cells and its evolutionary conservation. Loss of ifc results in ER expansion and loss of lipid droplets in cortex glia. Additionally, loss of ifc leads to ceramide depletion and accumulation of dihydroceramide. Moreover, it increases the saturation levels of triacylglycerols and membrane phospholipids. Finally, the reduction of dihydroceramide synthesis suppresses the CNS phenotypes associated with ifc mutations, indicating the key role of dihydroceramide in causing ifc LOF defects.

      In summary, this manuscript unveils several intriguing and novel phenotypes of ifc loss-of-function in glia. The experiments are meticulously planned and executed, with the data strongly supporting their conclusions. I have no additional comments and fully support the publication of this manuscript in eLife.

      The authors also note that they added one paragraph to the discussion that addresses the possibility that the increased detection of cell death markers could arise due to the inability of glial cells to remove cellular debris. The text of this paragraph is provided below:

      We note that cortex glia are the major phagocytic cell of the CNS and phagocytose neurons targeted for apoptosis as part of the normal developmental process.23-26  Thus, while we favor the model that ifc triggers neuronal cell death due to glial dysfunction, it is also possible that increased detection of dying neurons arises due at least in part to a decreased ability of cortex glia to clear dying neurons from the CNS. At present, the large number of neurons that undergo developmentally programmed cell death combined with the significant disruption to brain and ventral nerve cord morphology caused by loss of ifc function render this question difficult to address.Additional evidence does, however, support the idea that loss of ifc function drives excess neuronal cell death: Clonal analysis in the fly eye reveals that loss of ifc drives photoreceptor neuron degeneration17, indicating that loss of ifc function drives neuronal cell death; cortex-glia specific depletion of CPES, which acts downstream of ifc, disrupts neuronal function and induces photosensitive epilepsy in flies59, indicating that genes in the ceramide pathway can act nonautonomously in glia to regulate neuronal function; recent genetic studies reveal that other glial cells can compensate for impaired cortex glial cell function by phagocytosing dying neurons62, and we observe that the cell membranes of subperineurial glia enwrap dying neurons in ifc mutant larvae (Fig. S14), consistent with similar compensation occurring in this background, and in humans, loss of function mutations in DEGS1 cause neurodegeneration.7-9 Clearly, future work is required to address this question for ifc/DEGS1 and perhaps other members of the ceramide biogenesis pathway.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):  

      Summary: 

      Kohno et al. examined whether the anti-inflammatory cytokine IL-4 attenuates neuropathic pain by promoting the emergence of antinociceptive microglia in the dorsal horn of the spinal cord. In two models of neuropathic pain following peripheral nerve injury, intrathecal administration of IL-4 once a day for 3 days from day 14 to day 17 after injury, attenuates hypersensitivity to mechanical stimuli in the hind paw ipsilateral to nerve injury. Such an antinociceptive effect correlates with a higher number of CD11c+microglia in the dorsal horn of the spinal cord which is the termination area for primary afferent fibres injured in the periphery. Interestingly, CD11c+ microglia emerge spontaneously in the dorsal horn in concomitance with the resolution of pain in the spinal nerve model of pain, but not in the spared nerve injury model where pain does not resolve, confirming that this cluster of microglia is involved in resolution pain. 

      Based on existing evidence that the receptor for IL-4, namely IL-4R, is expressed by microglia, the authors suggest that IL-4R mediates IL-4 effect in microglia including up-regulation of Igf1 mRNA. They have previously reported that IGF-1 can attenuate pain neuron activity in the spinal cord. 

      Strengths:

      This study includes cutting-edge techniques such as flow cytometry analysis of microglia and transgenic mouse models. 

      Weaknesses:

      The conclusion of this paper is supported by data, but the interpretation of some data requires clarification.  

      We appreciate the reviewer's careful reading of our paper.  According to the reviewer's comments, we have performed new immunohistochemical experiments and added some discussion in the revised manuscript (please see the point-by-point responses below).

      Reviewer #2 (Public review):

      Summary:

      The authors aimed to investigate how IL-4 modulates the reactive state of microglia in the context of neuropathic pain. Specifically, they sought to determine whether IL-4 drives an increase in CD11c+ microglial cells, a population associated with anti-inflammatory responses and whether this change is linked to the suppression of neuropathic pain. The study employs a combination of behavioral assays, pharmacogenetic manipulation of microglial populations, and characterization of microglial markers to address these questions. 

      Strengths: 

      The methodological approach in this study is robust, providing convincing evidence for the proposed mechanism of IL-4-mediated microglial regulation in neuropathic pain. The experimental design is well thought out, utilizing two distinct neuropathic pain models (SpNT and SNI), each yielding different outcomes. The SpNT model demonstrates spontaneous pain remission and an increase in the CD11c+ microglial population, which correlates with pain suppression. In contrast, the SNI model, which does not show spontaneous pain remission, lacks a significant increase in CD11c+ microglia, underscoring the specificity of the observed phenomenon. This design effectively highlights the role of the CD11c+ microglial population in pain modulation. The use of behavioral tests provides a clear functional assessment of IL-4 manipulation, and pharmacogenetic tools allow for precise control of microglial populations, minimizing off-target effects. Notably, the manipulation targets the CD11c promoter, which presumably reduces the risk of non-specific ablation of other microglial populations, strengthening the experimental precision. Moreover, the thorough characterization of microglial markers adds depth to the analysis, ensuring that the changes in microglial populations are accurately linked to the behavioral outcomes. 

      Weaknesses: 

      One potential limitation of the study is that the mechanistic details of how IL-4 induces the observed shift in microglial populations are not fully explored. While the study demonstrates a correlation between IL-4 and CD11c+ microglial cells, a deeper investigation into the specific signaling pathways and molecular processes driving this population shift would greatly strengthen the conclusions. Additionally, the paper does not clearly integrate the findings into the broader context of microglial reactive state regulation in neuropathic pain.  

      We thank the reviewer for these insightful comments on our paper.  As the reviewer's suggested, further investigation of the specific signaling pathways and molecular processes by which IL-4 induces a transition of spinal microglia to the CD11c+ state would strengthen our conclusion and also provide important clues to discovering new therapeutic targets.  In revising the manuscript, we have included this in the Discussion section (line 264-267), and we hope that future studies clarify these points.  As for the additional comment, we have added a brief summary of existing research on microglial function in neuropathic pain at the beginning of the Discussion section (line 188–196).

      Reviewer #1 (Recommendations for the authors):

      The conclusions of this paper are supported by data, but the interpretation of some data requires clarification. 

      (1) In Figure 1D and Figure 7 C, CD11c+ microglia numbers are higher in contralateral dorsal horns after IL-4 administration despite IL-4 having no effect on pain thresholds. The authors should discuss these findings.  

      As the reviewer pointed out, IL-4 increased the number of CD11c<sup>+</sup> microglia in the contralateral spinal dorsal horn (SDH) but did not affect pain thresholds in the contralateral hindpaw.  The data seem to be related to the selective effect of CD11c+ microglia and their factors (especially IGF1) on nerve injury-induced pain hypersensitivity.  In fact, depletion of CD11c+ spinal microglia and intrathecal administration of IGF1 do not elevate pain threshold of the contralateral hindpaw (Science 376: 86–90, 2022).  We have added above statement in the Discussion section (line 208– 213).

      (2)  Do monocytes infiltrate the dorsal horn and DRG after intrathecal injections?

      To address this reviewer's comment, we performed new immunohistochemical experiments to analyze monocytes in the SDH using an antibody for CD169 (a marker for bone marrow-derived monocytes/macrophages, but not for resident microglia) (J Clin Invest 122: 3063– 3087, 2012; Cell Rep 3: 605–614, 2016) and found no CD169+ monocytes in the SDH parenchyma after SpNT.  Consistent with this data, we have previously demonstrated that few bone marrow-derived monocytes/macrophages are recruited to the SDH after SpNT (Sci Rep 6: 23701, 2016).  Similarly, no CD169+ monocytes in the SDH parenchyma were observed in SpNT mice treated intrathecally with PBS or IL-4 (Figure 1—figure supplement 1A).

      In the DRG, CD169 is constitutively expressed in macrophages.  Thus, in accordance with a recent report showing that monocytes infiltrating the DRG are positive for chemokine (C-C motif) receptor 2 (CCR2) (J Exp Med 221: e20230675, 2024), we analyzed CCR2+ cells and found that CCR2+ IBA1dim monocytes were observed in the capsule and parenchyma of the DRG of naive mice (Figure 1—figure supplement 1B).  After SpNT, CCR2+ IBA1dim monocytes in the DRG parenchyma increased.  Intrathecal treatment of IL-4 increased CCR2+ IBA1dim cells in the DRG capsule.  However, the involvement of these monocytes in the DRG in IL-4-induced alleviation of neuropathic pain is unclear and warrants further investigation.  In revising the manuscript, we have included additional data (Figure 1—figure supplement 1) and corresponding text in the Results (line 112–114) and Discussion section (line 218–222).

      (3) In Figure 4, depletion of CD11c+ cells in dorsal root ganglia (DRG) ameliorates neuropathic thresholds but does not alter the anti-nociceptive effect of IL-4 injected intrathecal. It appears that CD11c+ macrophages in DRG have an opposite role to CD11c+ microglia in the spinal cord. Please discuss this result. 

      We apologize for the confusion.  The aim of the experiments in Figure 4 was to examine the contribution of CD11c+ cells in the DRG to the pain-alleviating effect of intrathecal IL-4.  For this aim, we depleted CD11c+ cells in the DRG (but not in the SDH) by intraperitoneal injection of diphtheria toxin (DTX) immediately after the behavioral measurements performed on day 17 (Fig. 4A, B).  On day 18, the paw withdrawal threshold of DTX-treated mice was almost similar to that of PBS-treated mice, indicating that the depletion of CD11c+ cells in the DRG does not affect the pain-alleviating effect of IL-4.  These data are in stark contrast to those obtained from mice with depletion of CD11c+ cells in the SDH by intrathecal DTX (the depletion canceled the IL-4's effect) (Figure 2A).  Thus, it is conceivable that CD11c+ cells in the DRG are not involved in the IL-4-induced alleviating effect on neuropathic pain.  Because the confusion might be related to the statement in this paragraph of the initial version, we thus modified our statements to make this point more clearly (line 133–139).

      Reviewer #2 (Recommendations for the authors):

      A discussion addressing how these results fit into existing research on microglial function in pain would enhance the study's impact.

      A brief summary of existing research on microglial function in neuropathic pain has been included at the beginning of the Discussion section (line 188–196).

      It would be helpful for the authors to elaborate on the implications of their findings within the larger landscape of immune regulation in neuropathic pain.

      Our present findings showed an ability of IL-4, known as a T-cell-derived factor, to increase CD11c+ microglia and to control neuropathic pain.  Furthermore, recent studies have also indicated that immune cells such as CD8+ T cells infiltrating into the spinal cord (Neuron 113: 896-911.e9, 2025), and regulatory T cells (eLife 10: e69056, 2021; Science 388: 96–104, 2025) and MRC1+ macrophages in the spinal meninges (Neuron 109: 1274–1282, 2021) have important roles in regulating microglial states and neuropathic pain.  Thus, these findings provide new insights into the mechanisms of the neuro-immune interactions that regulate neuropathic pain.  In revising the manuscript, we have added above statement in the Discussion section (line 254–260).

      Furthermore, a discussion on how these findings could inform the development of targeted therapies that modulate microglial populations in a controlled, disease-specific manner would be valuable. Exploring how these insights could lead to novel treatment strategies for neuropathic pain could provide important future directions for the research and broader clinical applications.

      We appreciate the reviewer's valuable suggestion.  Our current data, demonstrating that IL-4 increases CD11c+ microglia without affecting the total number of microglia, could open a new avenue for developing strategies to modulate microglial subpopulations through molecular targeting, which may lead to new analgesics.  However, given IL-4's association with allergic responses, targeting microglia-selective molecules involved in shifting microglia toward the CD11c+ state—such as intracellular signaling molecules downstream of IL-4 receptors—may offer a more selective and safer therapeutic approach.  Moreover, since CD11c+ microglia have been implicated in other CNS diseases [e.g., Alzheimer disease (Cell 169: 1276–1290, 2017), amyotrophic lateral sclerosis (Nat Neurosci 25: 26–38, 2022), and multiple sclerosis (Front Cell Neurosci 12: 523, 2019)], further investigations into the mechanisms driving CD11c+ microglia induction could provide insights into novel therapeutic strategies not only for neuropathic pain but also for other CNS diseases.  In revising the manuscript, we have added above statement in the Discussion section (line 260–271).

    1. Author Response:

      Reviewer #1 (Public review):

      The study by Lotonin et al. investigates correlates of protection against African swine fever virus (ASFV) infection. The study is based on a comprehensive work, including the measurement of immune parameters using complementary methodologies. An important aspect of the work is the temporal analysis of the immune events, allowing for the capture of the dynamics of the immune responses induced after infection. Also, the work compares responses induced in farm and SPF pigs, showing the latter an enhanced capacity to induce a protective immunity. Overall, the results obtained are interesting and relevant for the field. The findings described in the study further validate work from previous studies (critical role of virus-specific T cell responses) and provide new evidence on the importance of a balanced innate immune response during the immunization process. This information increases our knowledge on basic ASF immunology, one of the important gaps in ASF research that needs to be addressed for a more rational design of effective vaccines. Further studies will be required to corroborate that the results obtained based on the immunization of pigs by a not completely attenuated virus strain are also valid in other models, such as immunization using live attenuated vaccines.

      While overall the conclusions of the work are well supported by the results, I consider that the following issues should be addressed to improve the interpretation of the results:

      We thank Reviewer #1 for their thoughtful and constructive feedback, which will significantly contribute to improving the clarity and quality of our manuscript. Below, we respond to each of the reviewer’s comments and outline the revisions we plan to incorporate.

      (1) An important issue in the study is the characterization of the infection outcome observed upon Estonia 2014 inoculation. Infected pigs show a long period of viremia, which is not linked to clinical signs. Indeed, animals are recovered by 20 days post-infection (dpi), but virus levels in blood remain high until 141 dpi. This is uncommon for ASF acute infections and rather indicates a potential induction of a chronic infection. Have the authors analysed this possibility deeply? Are there lesions indicative of chronic ASF in infected pigs at 17 dpi (when they have sacrificed some animals) or, more importantly, at later time points? Does the virus persist in some tissues at late time points, once clinical signs are not observed? Has all this been tested in previous studies?

      Tissue samples were tested for viral loads only at 17 dpi during the immunization phase, and long-term persistence of the virus in tissues has not been assessed in our previous studies. At 17 dpi, lesions were most prominently observed in the lymph nodes of both farm and SPF pigs. In a previous study using the Estonia 2014 strain (doi: 10.1371/journal.ppat.1010522), organs were analyzed at 28 dpi, and no pathological signs were detected. This finding calls into question the likelihood of chronic infection being induced by this strain.

      (2) Virus loads post-Estonia infection significantly differ from whole blood and serum (Figure 1C), while they are very similar in the same samples post-challenge. Have the authors validated these results using methods to quantify infectious particles, such as Hemadsorption or Immunoperoxidase assays? This is important, since it would determine the duration of virus replication post-Estonia inoculation, which is a very relevant parameter of the model.

      We did not perform virus titration but instead used qPCR as a sensitive and standardized method to assess viral genome loads. Although qPCR does not distinguish between infectious and non-infectious virus, it provides a reliable proxy for relative viral replication and clearance dynamics in this model. Unfortunately, no sample material remains from this experiment, but we agree that subsequent studies employing infectious virus quantification would be valuable for further refining our understanding of viral persistence and replication following Estonia 2014 infection.

      (3) Related to the previous points, do the authors consider it expected that the induction of immunosuppressive mechanisms during such a prolonged virus persistence, as described in humans and mouse models? Have the authors analysed the presence of immunosuppressive mechanisms during the virus persistence phase (IL10, myeloid-derived suppressor cells)? Have the authors used T cell exhausting markers to immunophenotype ASFV Estonia-induced T cells?

      We agree with the reviewer that the lack of long-term protection can be linked to immunosuppressive mechanisms, as demonstrated for genotype I strains (doi: 10.1128/JVI.00350-20). The proposed markers were not analyzed in this study but represent important targets for future investigation. We will address this point in the discussion.

      (4) A broader analysis of inflammatory mediators during the persistence phase would also be very informative. Is the presence of high VLs at late time points linked to a systemic inflammatory response? For instance, levels of IFNa are still higher at 11 dpi than at baseline, but they are not analysed at later time points.

      While IFN-α levels remain elevated at 11 dpi, this response is typically transient in ASFV infection and likely not linked to persistent viremia. We agree that analyzing additional inflammatory markers at later time points would be valuable, and future studies should be designed to further understand viral persistence.

      (5) The authors observed a correlation between IL1b in serum before challenge and protection. The authors also nicely discuss the potential role of this cytokine in promoting memory CD4 T cell functionality, as demonstrated in mice previously. However, the cells producing IL1b before ASFV challenge are not identified. Might it be linked to virus persistence in some organs? This important issue should be discussed in the manuscript.

      We agree that identifying the cellular source of IL-1β prior to challenge is important, and this should be addressed in subsequent studies. We will include a discussion on the potential link between elevated IL-1β levels and virus persistence in certain organs.

      (6) The lack of non-immunized controls during the challenge makes the interpretation of the results difficult. Has this challenge dose been previously tested in pigs of the age to demonstrate its 100% lethality? Can the low percentage of protected farm pigs be due to a modulation of memory T and B cell development by the persistence of the virus, or might it be related to the duration of the immunity, which in this model is tested at a very late time point? Related to this, how has the challenge day been selected? Have the authors analysed ASFV Estonia-induced immune responses over time to select it?

      In our previous study, intramuscular infection with ~3–6 × 10² TCID₅₀/mL led to 100% lethality (doi: 10.1371/journal.ppat.1010522), which is notably lower than the dose used in the present study, although the route here was oronasal. The modulation of memory responses could be more thoroughly assessed in future studies using exhaustion markers. The challenge time point was selected based on the clearance of the virus from blood and serum. We agree that the lack of protection in some animals is puzzling and warrants further investigation, particularly to assess the role of immune duration, potential T cell exhaustion caused by viral persistence, or other immunological factors that may influence protection. Based on our experience, vaccine virus persistence alone does not sufficiently explain the lack-of-protection phenomenon. We will incorporate these important aspects into the revised discussion.

      (7) Also, non-immunized controls at 0 dpc would help in the interpretation of the results from Figure 2C. Do the authors consider that the pig's age might influence the immune status (cytokine levels) at the time of challenge and thus the infection outcome?

      We support the view that including non-immunized controls at 0 dpc would strengthen the interpretation of cytokine dynamics and will consider this in future experimental designs. Regarding age, while all animals were within a similar age range at the time of challenge, we acknowledge that age-related differences in immune status could influence baseline cytokine levels and infection outcomes, and this is an important factor to consider.

      (8) Besides anti-CD2v antibodies, anti-C-type lectin antibodies can also inhibit hemadsorption (DOI: 10.1099/jgv.0.000024). Please correct the corresponding text in the results and discussion sections related to humoral responses as correlates of protection. Also, a more extended discussion on the controversial role of neutralizing antibodies (which have not been analysed in this study), or other functional mechanisms such as ADCC against ASFV would improve the discussion.

      The relevant text in the Results and Discussion sections will be revised accordingly, and the discussion will be extended to more thoroughly address the roles of antibodies.

      Reviewer #2 (Public review):

      Summary:

      In the current study, the authors attempt to identify correlates of protection for improved outcomes following re-challenge with ASFV. An advantage is the study design, which compares the responses to a vaccine-like mild challenge and during a virulent challenge months later. It is a fairly thorough description of the immune status of animals in terms of T cell responses, antibody responses, cytokines, and transcriptional responses, and the methods appear largely standard. The comparison between SPF and farm animals is interesting and probably useful for the field in that it suggests that SPF conditions might not fully recapitulate immune protection in the real world. I thought some of the conclusions were over-stated, and there are several locations where the data could be presented more clearly.

      Strengths:

      The study is fairly comprehensive in the depth of immune read-outs interrogated. The potential pathways are systematically explored. Comparison of farm animals and SPF animals gives insights into how baseline immune function can differ based on hygiene, which would also likely inform interpretation of vaccination studies going forward.

      Weaknesses:

      Some of the conclusions are over-interpreted and should be more robustly shown or toned down. There are also some issues with data presentation that need to be resolved and data that aren't provided that should be, like flow cytometry plots.

      We appreciate the feedback from the Reviewer #2 and acknowledge the concerns raised regarding data presentation. In the revised manuscript, we will clarify our conclusions where needed and ensure that interpretations are better aligned with the data shown.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Li et al describe a novel form of melanosome based iridescence in the crest of an Early Cretaceous enantiornithine avialan bird from the Jehol Group.

      Strengths:

      Novel set of methods applied to the study of fossil melanosomes.

      Weaknesses:

      (1) Firstly, several studies have argued that these structures are in fact not a crest, but rather the result of compression. Otherwise, it would seem that a large number of Jehol birds have crests that extend not only along the head but the neck and hindlimb. It is more parsimonious to interpret this as compression as has been demonstrated using actuopaleontology (Foth 2011).

      Firstly, we respectfully acknowledge the reviewer’s interpretation.

      However, the new specimen we report here is distinct as preserved from Confuciusornis (Foth 2011), which belongs to a different clade and exhibits a differently preserved feather crest of a different shape compared to the species described in this study. Figure 3a Foth 2011, Paläontologische Zeitschrift;the cervical feather is much longer than feather from head region in the specimen the referee talked about; It is quite incompletely preserved and much shorter in proportional length (relative to the skull) than the specimen we sampled (see picture below).

      Author response image 1.

      Our new specimen with well-preserved and the feather crest were interpretated as the originally shaped;the cervical feather is largely absent or very short

      In the new specimen there is a large feather crest that gradually extends from the cranial region of the fossil bird, rather than the cervical region, as observed in the previously proposed Confuciusornis crest. The feather crest extends in a consistent direction (caudodistally), and the feathers in the head region of the bird are exceptionally well-preserved, retaining their original shape. The feathers are measured about 1- 2cm at their longest barb. Feathers in the neck are much shorter (see Confuciusornis  picture above).

      (2) The primitive morphology of the feather with their long and possibly not interlocking barbs also questions the ability of such feathers to be erected without geologic compression.

      We acknowledge that the specimen must have undergone some degree of compression during diagenesis and fossilization. Given that the rachis itself is already sufficiently thick (that the ligaments everting a crest would attach to), we conclude that it had the structural integrity to remain erect on the skull.

      (3) The feather is not in situ and therefore there is no way to demonstrate unequivocally that it is indeed from the head (it could just as easily be a neck feather)

      We conclude that it belongs to the head based on the similar suture, overall length, and its close position to the caudal part of the head. There are no similar types of feathers nearby, such as those found on the neck or other areas, which is why we reason that it is a head crest feather. Besides, the shape of the feather we sampled is dramatically different from the much softer and shorter ones detected on the neck.

      In addition, we further sampled the crest feather barb from in situ preserved feather crest. We also detected a similar pattern to what we originally found regarding the packing of melanosomes. This is now added to the text.

      (4) Melanosome density may be taphonomic; in fact, in an important paper that is notably not cited here (Pan et al. 2019) the authors note dense melanosome packing and attribute it to taphonomy. This paper describes densely packed (taphonomic) melanosomes in non-avian avialans, specifically stating, "Notably, we propose that the very dense arrangement of melanosomes in the fossil feathers (Fig. 2 B, C, and G-I, yellow arrows) does not reflect in-life distribution, but is, rather, a taphonomic response to postmortem or postburial compression" and if this paper was taken into account it seems the conclusions would have to change drastically. If in this case the density is not taphonomic, this needs to be justified explicitly (although clearly these Jehol and Yanliao fossils are heavily compressed).

      We have added a line acknowledging this possibility. We have accounted for the shrinkage effects caused by heat and compression, as detailed in our Supplementary Information (SI) file. Even when these changes are considered, they do not alter the main conclusions of our study. Besides given most melanosomes we used for simulation are mostly complete and well preserved,we consider the distortion is rather limited or at least minor compared to changes seen in taxonomic experiment shown.

      (5) Color in modern birds is affected by the outer keratin cortex thickness which is not preserved but the authors note the barbs are much thicker (10um) than extant birds; this surely would have affected color so how can the authors be sure about the color in this feather?

      In extant birds, feather barbs of similar size are primarily composed of air spaces and quasi-ordered keratin structures, largely lacking dense melanosomes. The color-producing barb we have described here does not directly correspond to a feather type in modern birds for comparison. Since there is no direct extant analog to inform the keratin thickness and similar melanosome density, we utilize advanced 3-D FDTD modeling approach to the question of coloration reconstruction, rather than relying on statistical DFA approaches. In additional to packed melanosomes, the external thin keratin cortex layer is also considered for the simulation.

      Additionally, even in the thinner melanosome-packed layers of barbules in living birds, iridescent coloration often is observed (e.g., Rafael Maia J. R. Soc. Interface 2009). This further supports the plausibility of our modeling approach and its relevance to understanding coloration in both extinct and extant species.

      (6) Authors describe very strange shapes that are not present in extant birds: "...different from all other known feather melanosomes from both extant and extinct taxa in having some extra hooks and an oblique ellipse shape in cross and longitudinal sections of individual melanosome" but again, how can it be determined that this is not the result of taphonomic distortion?

      We consistently observed similar hook-like structures not only in this feather but also in feathers from different positions of the crest. We do not believe that distortion would produce such a regular and consistent pattern; instead, distortion likely would result in random alterations, as demonstrated by prior taphonomic experiments.

      (7) The authors describe the melanosomes as hexagonally packed but this does not appear to be in fact the case, rather appearing quasi-periodic at best, or random. If the authors could provide some figures to justify this hexagonal interpretation?

      To further validate the regional hexagonal pattern, we expanded our sampling to additional sites. We observed similar patterns not only in various regions of the same barb but also across different feathers (see added SI Figures below). This extensive sampling supports the validity of the melanosome patterns identified in our original analysis.

      (8) One way to address these concerns would be to sample some additional fossil feathers to see if this is unique or rather due to taphonomy

      We sampled additional areas from the same feather as well as feathers from other regions of the head crest. The packing patterns are generally similar with slight variations in size (figure S6).

      (9) On a side, why are the feet absent in the CT scan image? "

      To achieve better image resolution, the field of view was adjusted, resulting in part of the feet being excluded from the CT scan.

      Reviewer #2 (Public review):

      Summary:

      The authors reconstructed the three-dimensional organization of melanosomes in fossilized feathers belonging to a spectacular specimen of a stem avialan from China. The authors then proceed to infer the original coloration and related ecological implications.

      Strengths:

      I believe the study is well executed and well explained. The methods are appropriate to support the main conclusions. I particularly appreciate how the authors went beyond the simple morphological inference and interrogated the structural implications of melanosome organization in three dimensions. I also appreciate how the authors were upfront with the reliability of their methods, results, and limitations of their study. I believe this will be a landmark study for the inference of coloration in extinct species and how to interrogate its significance in the future.

      We thank the referee for these positive comments.

      Weaknesses:

      I have a few minor comments.

      Introduction: I would suggest the authors move the paragraph on coloration in modern birds (lines 75-97) before line 64, as this is part of the reasoning behind the study. I believe this change would improve the flow of the introduction for the general reader.

      We thank the referee for the suggestion, and we made changes accordingly to improve the flow of introduction.

      Melanosome organization: I was surprised to find little information in the main text regarding this topic. As this is one of the major findings of the study, I would suggest the authors include more information regarding the general geometry/morphology of the single melanosomes and their arrangement in three dimensions.

      We thank the referee for this suggestion. We elaborated on the details of the melanosomes in the results as follows:

      Hooks are commonly observed on the oval-shaped melanosomes in cross-sectional views, with two dominant types identified on the dorsal and ventral sides (Figure 3c-d, red arrows). These hooks are deflected in opposing directions, linking melanosomes from different arrays (dorsal-ventral) together. The major axis(y) of the oval-shaped melanosomes (mean = 283 nm) is oriented toward the left side in cross-section, while the shorter axis(x) measures approximately 186 nm (Table S2). In oblique or near-longitudinal sections (Figure 3e-f), the hooked structures’ connections to the distal and proximal sides of neighboring melanosomes are clearly visible (blue arrows, Figure 3f). A similar pattern occurs in two additional regions of interest within the same feather (figure S5). Although the smaller proximal hooks in these sections are less distinct, this may reflect developmental variation during melanosome formation along the feather barb. Significantly smaller hooks were also observed in cross-sections of in-situ feather barbs from the anterior side of the feather crest (figure S6). The mean long axis (z) of the melanosomes is approximately 1774 nm (Table S2). Based on these observations, we propose that the hooked structures—particularly those on the dorsal, ventral, proximal, and distal sides of the melanosomes—enhance the structural integrity of the barb (figure S7). However, these features may be teratological and unique to this individual, as no similar structures have been reported in other sampled feathers. These hooks may stabilize the stacked melanosome rods and contribute to increased barb dimensions, such as diameter and length. The sections exhibit modified (or asymmetric) hexagonally packed melanosomes with presence of extra hooked linkages (Figure 3c-d and e-f). The long rod-like melanosomes are different from all other known feather melanosomes from both extant and extinct taxa in having some extra hooks and an oblique ellipse shape in cross and longitudinal sections of individual melanosomes (Durrer 1986, Zhang, Kearns et al. 2010). The asymmetric packing of the melanosomes (the major axis leans leftward) played a major role in the reduction of fossilized keratinous matrix within the barbs, which may correspond to a novel structural coloration in this extinct bird. The close packed hexagonal melanosome pattern found in extant avian feathers yield rounded melanosome outlines in contrast to the oval-shaped melanosomes (see figure S8, x<y) in the perpendicular section here. The asymmetric compact hexagonal packing (ACHP) of the melanosomes is different from the known pattern of melanosomes formed in the structure of barbules among extant birds (Eliason and Shawkey 2012), which has been seen as a regular hexagonal organization. The packing of the melanosomes in an asymmetric pattern, on the microscopic level, might be related to the asymmetrical path of the barb extension direction observed at the macroscopic level (figure S5).

      Added Supplemental figure S5. STEM images of cross-sections taken from three different positions (indicated by white dashed lines in a) demonstrate similar melanosome packing styles. Dashed-lines labeled in (a) indicate where the corresponding position of these sections were taken, black arrows indicate the individual barbs that accumulated together in this long crest father. One distinct feature of these sections is the hooked-link structure that aligns the melanosomes into a modified hexagonal, packed arrangement. White arrows (in c, e, g) indicate the hooked structures observed in the selected melanosomes.

      Added Supplemental figure S6. STEM images showing melanosome structure from three fragments of the feather crest (indicated by dashed lines and white box in a) reveal the hooked linkages between melanosomes and their surrounding melanosomes structures in (b), (c) and (d). Due to the shorter length of these feather barbs, the hook structures are not as well-defined as those in the longer feather samples shown in the main text.

      Keratin: the authors use such a term pretty often in the text, but how is this inference justified in the fossil? Can the authors extend on this? Previous studies suggested the presence of degradation products deriving from keratin, rather than immaculated keratin per se.

      We changed to keratinous matrix and material instead. We observed matrix/material in between these melanosomes were filled by organic rich tissue that is proposed to possibly be taphonomically altered keratin.

      Ontogenetic assessment: the authors infer a sub-adult stage for the specimen, but no evidence or discussion is reported in the SI. Can the authors describe and discuss their interpretations?

      Thanks for the suggestion. We made an osteo-histological section and add our evaluation of the histology of the femoral bone tissue sampled from the specimen to justify assessment of its ontogenetic stage.

      See Supplemental figure S2 for Femur Osteo-Histology

      SI file Femur Osteo-Histology

      Ground sections were acquired from the right side of the femur to assess the osteo-histological features of the bone and its ontogenetic stage. As shown in figure S2, long, flat-shaped lacunae are widely present and densely packed throughout the major part of the bone section. Very few secondary osteocytes are present, and parallel-fibered bone tissue is underdeveloped. The flattened osteocyte lacunae dominate the cellular shape, with observable vascular canals connecting different lacunae. Overall, the osteo-histology indicates that the bird was still in an active growth stage at the time of death, suggesting it was in its sub-adult growth phase.

      CT scan data: these data should be made freely available upon publication of the study.

      We will release our CT scanning on an open server (https://osf.io/kw7sd/) along with the final version of the manuscript.

      Reviewer #3 (Public review):

      Summary:

      The paper presents an in-depth analysis of the original colour of a fossil feather from the crest of a 125-million-year-old enantiornithine bird. From its shape and location, it would be predicted that such a feather might well have shown some striking colour and pattern. The authors apply sophisticated microscopic and numerical methods to determine that the feather was iridescent and brightly coloured and possibly indicates this was a male bird that used its crest in sexual displays.

      Strengths:

      The 3D micro-thin-sectioning techniques and the numerical analyses of light transmission are novel and state-of-the-art. The example chosen is a good one, as a crest feather is likely to have carried complex and vivid colours as a warning or for use in sexual display. The authors correctly warn that without such 3D study feather colours might be given simply as black from regular 2D analysis, and the alignment evidence for iridescence could be missed.

      Weaknesses: Trivial.

      Recommendations for the authors:

      Reviewer #3 (Recommendations for the authors):

      In a few places, the paper can be strengthened:

      Dimensionality of study method: In the first paragraph, you set things up (lines 60-62) to say that studies hitherto have been of melanosomes and packing in two dimensions... and I then expect you to say soon after, in the next paragraph, 'Here, we investigate a fossil feather in three dimensions...' or some such, but you don't.

      You come back to Methods at the end of the Introduction (lines 97-101), but again do not say whether you model the feather in three dimensions or not. Yes, you did - I finally learned at line 104 - you did micro serial sectioning. This needs to shift a long forward into the Introduction.

      Thanks for the suggestions, we utilize serial sectioning to get a different view of the microbodies that are proposed to be melanosomes and reconstructed the three-dimensional volume of the melanosomes, as well as the intercalated keratin.

      We restructured the introduction and make clear that the three-dimensional data obtained in this study also was used for modeling and in a more anterior position in the text.

      In the Results, there are not enough references to images. It's not enough to refer generally to 'Figures 3c-f' [line 133] and then go on to rapidly step through some amazing imagery (text lines 133-146) - you need to add an image citation to each observation so readers can know exactly which image is being described each time.

      We elaborated our description of imaging to better describe the melanosomes in our results section. We add the description of the stack of melanosomes as IN Above (reply of Reviewer #2).

      The 3D data in Figures 3 and 4 is great and based on huge technical wizardry. The sketch model in Figure 4a is excellent, but could you not attempt an actual 3D block diagram showing the hexagonal arrangement of clusters of aligned melanosomes?

      We have also tried FIB -SEM in an additional place for validation of our ultrathin sections data. See the SI file.

      Added figure S7. Targeted feather barb block prepared in FIB-SEM, with volume rendering reconstruction based on the acquired sequential cross-sectional images; the volume reconstruction is visualized in the x-y plane (c-cross section view) and in x-z plane (d-sagittal section view).

      Modified Figure S8d shows the 3D model of aligned melanosomes. To show the arrangement more clearly, the schematic XY cross-section of the melanosomes 3D model is shown below (also shown in Supplementary Figure S8d).

      35: delete 'yield'

      Changed

      73: 'feather fell' ? = 'feather that has fallen'

      Changed

      305: excises ?= exercises

      Changed

    1. Author response:

      We would like to thank the three reviewers for the careful review and thoughtful comments on our manuscript. In addition to providing useful suggestions, they uncovered some embarrassing oversights on our part, related to experimental details including number of embryos, and quantification of variance in the observed changes for some of the experiments, which were inadvertently omitted in the submission. We provide below an initial response to the reviewer’s public reviews and expect to submit a revised manuscript comprehensively addressing all their concerns.

      I would like to start by addressing some of their most critical comments related to validation of the tools used to reduce soxB1 gene family function in the embryo.  In the absence of the critical supplementary data that we inadvertently failed to include, the reviewers were left with an understandable, but we feel erroneous impression, that there was insufficient validation of mutant and knockdown tools. 

      Reviewer #2 says “The sox2y589 mutant line is not properly verified in this manuscript, which could be done by examining ant-Sox2 antibody labeling, Western blot analysis or…”

      This validation, which had been performed previously both with antibody staining and with western blot analysis, was inadvertently omitted from the supplementary data submitted with the paper. The western blot data is shown here.

      Author response image 1.

      Validation of sox2 mutant phenotype with Western blot.

      Lysates were prepared from 25 embryos selected as wild type or potentially mutant based on the “loss of L1” phenotype at 6 dpf. This polyclonal antibody recognizes within the last 16 amino acids of the C-terminal.

      Author response image 2.

      Validation of sox2 mutant phenotype with antibody staining.

      Though in this experiment there was considerable background in the red channel, and it shows the lateral line nerve, loss of nuclear Sox2 expression is evident in the deposited neuromast of an embryo identified as a mutant based on its delayed deposition of the L1 neuromast.

      This data and a repeat of the antibody staining showing the primordium with loss of Sox2 will be included in a revised manuscript.

      Furthermore, Reviewer #2 comments “the authors show that the anti-Sox2 and antiSox3 antibody labeling is reduced but not absent in sox2 MO1 and sox3 MO-injected embryos, but do not show antibody labeling of the sox2 MO and sox3 MO-double injected embryos to determine if there is an additional knockdown”

      This will be included in a revised manuscript.

      Reviewer #2:

      The authors acknowledge that the sox2 MO1 used in this manuscript also alters sox3 function, but do not redo the experiments with a specific sox2 MO

      This is not exactly true. Having discovered sox2 MO1 simultaneously reduces sox2 and sox3 function, three new morpholinos were obtained based on another paper (Kamachi et al 2008), which had quantitatively assessed efficacy of three sox2 specific morpholinos (sox2 MO2, sox2 MO3, and sox2 MO4). The effects of these morpholinos on the pattern of L1 deposition was compared to that of sox2 MO1. This comparison was shown in supplementary Figure 2 and is included below. It shows that the sox2 specific morpholinos resulted in a poorly penetrant delay in deposition of L1, comparable to that of a sox2 mutant, which was quantified in supplementary Figure 3B. The observations with these three sox2 specific morpholinos independently supported the observations made with the sox2 mutant that reduction of sox2 on its own results in a delay in deposition of the first neuromast with low penetrance and that to effectively examine the role of these SoxB1 genes in the primordium their function needs to be compromised in a combinatorial manner. A conclusion that was independently supported by observations made by crossing sox1a, sox2 and sox3 mutants (Figure 3 and Supplementary Figure 3). Therefore, even though the initial use of a sox2 morpholino, which simultaneously knocks down sox3, was unintentional, its use turned out to be useful. It allowed us to examine effects of knocking down sox2 and sox3 with a single morpholino. Furthermore, though this project was initiated more than 15 years ago to specifically understand sox2 function, our focus had shifted to understanding the role of soxB1 family members sox1a, sox2 and sox3 functioning together as an interacting system that regulates Wnt activity in the primordium. Considering this broader focus, reflected in the title of the paper, it was not a priority to repeat every experiment previously done with the sox2MO1 with the new sox2 specific morpholinos. Instead, having acknowledged the “limitations” of sox2MO1, we used it to better understand effects of combinatorial reduction of SoxB1 function.

      Reviewer #1:

      It is not exactly clear what underlies the apparent redundancy. It would be helpful if the soxb gene family member expression was reported after loss of each.

      As suggested by reviewer #1, we had previously looked changes in expression of each of the soxB1 factors following loss of individual soxB1 factors but not included it in the supplementary data with the original submission. Independent of a reproducible and consistent expansion sox1a expression into the trailing zone, following loss of sox2 function, which is reported in the paper and quantified here where 10/10 mutant embryos showed the expansion (compare region within bracket in WT and sox2<sup>-/-</sup>), no consistent changes in the expression of other soxB1 family members was observed as part of a mechanism that might account for compensation when function of a particular soxB1 factor is soxB1 factor is lost. The data shown above together with more extensive quantification of changes will be included in a revised version of the manuscript. At this time the only consistent change was the expansion of sox1a to the trailing zone when lost. The data trailing zone when sox2 function is lost. This change reflects dependence of sox1a on Wnt activity and the fact that Wnt activity expands into the trailing zone when sox2 function is lost.  

      Author response image 3.

      Reviewer #3:

      Given that the expression patterns of Sox1a and Sox3 are not merely different but are largely reciprocal, the mechanistic basis of their very similar double mutant phenotypes with Sox2 remains opaque.

      The simplest way to think about compensation for gene function in a network is to think of it being determined by expression of a homolog or another gene with a similar function being expressed in a similar or overlapping domain.  However, it is more useful to think of Sox2 function in the primordium as part of a interacting network of SoxB1 factors whose differential regulatory mechanisms create a robust system that simultaneously regulates two key aspects of Wnt activity in the primordium; how high Wnt activity is allowed to get in the leading zone and how effectively it is shut off to facilitate protoneuromast maturation in the trailing zone. These features of Wnt activity influence both when and where nascent protoneuromasts will form in the wake of a progressively shrinking Wnt system and where they undergo effective maturation and stabilization prior to deposition. Changes in individual SoxB1 expression patterns provide some hints about how some SoxB1 factors may compensate when function of one or more of these factors is compromised. However, a deeper understanding of robustness and “compensation” will require a systems level understanding of this gene regulatory network with computational models, which we are currently working on in our group. It remains possible, for example, that how far into the trailing zone the Wnt activity has an influence is regulated at least in part by how high it is allowed to get in the leading zone by sox1a. Conversely, how high Wnt activity gets in the leading zone may be influenced by how effectively it is shut off in the trailing zone by sox2 and sox3, as this influences the size of the Wnt system, which in turn can influence the overall level of Wnt activity. In this manner Sox1a may cooperate with Sox2 and Sox3 to limit both how high Wnt activity is allowed to get in the primordium and to effectively shut it off in the trailing zone.

      Reviewer #3:

      Related to this, the authors discuss that Sox1a/Sox2 double knockdown produces a more severe phenotype than Sox2/Sox3 double knockdown, yet this difference is not obviously reflected in the data.

      The severity of the sox1a/sox2 double mutant phenotype compared to that of the sox2/sox3 double mutant is shown in Figure 3 K and N, and quantified in Supplementary Figure 3A. Simultaneous loss of sox2 and sox3 results in a small but relatively penetrant delay in where the first stable neuromast is deposited (Figure 2 N). By contrast, loss of sox2 and sox1a together consistently results in a longer delay in deposition of the first stable (Figure 2 K). A new graph, shown below, which will be incorporated in the revised paper, shows that there is a significant difference in the pattern of L1 deposition in sox1a<sup>-/-</sup>, sox2<sup>-/-</sup> and sox2<sup>-/-</sup>, sox3<sup>-/-</sup> double mutants. 

      Author response image 4.

      All 3 datasets found to be normally distributed by Shapiro-Wilk test. 1-way ANOVA showed significance (<0.0001), with Tukey’s multiple comparisons test showing significant difference between all 3 conditions. (***p=0.0008, ****p<0.0001)

      Reviewer #1:

      It would be good to more clearly state why sox3 is not regulated by Wnt given its expression is inhibited by the delta TCF construct (Figure 2M).

      The explanation for why we believe sox3 expression is determined by Fgf signaling, and not Wnt activity requires integrating what is observed both with induction of the delta TCF construct and the dominant negative Fgf receptor (DN FgfR). Loss of sox3 expression with induced expression of the delta TCF construct could result from loss of Wnt activity or the downstream loss of Fgf activity, which is ultimately dependent on Fgfs secreted by Wnt active cells in the leading domain. Distinguishing between these possibilities is based on inhibition of FGF signaling with the DN FgfR, described in the next paragraph. Heat Shock induced expression of DN FgfR expression results in loss of FGF signaling and the simultaneous expansion of Wnt activity into the trailing zone. As explained in the original text, loss of sox3 expression in this context, rather than its expansion, suggests its expression is determined by Fgf signaling not Wnt activity. We will emphasize that its loss, rather than its expansion, following induction of DN FgfR, indicates its expression is determined by Fgf signaling not Wnt activity.

      Reviewer #2:

      The manuscript lacks quantification of many of the experiments, making it difficult to conclude their significance.

      One of the biggest inadvertent omissions of the paper was the inadequate quantification of some of the results. Quantification of results with considerable variation in the outcome, like the pattern of L1 deposition,  was provided following manipulations where various combinations of sox1a, sox2, and sox3 function was lost (Figures 3, supplementary Figures 2 and 3) or where sox2MO1/sox3MO was used with or without IWR (Figure 5 and Figure 6). However, numbers for the experiments in Figures 2 were omitted in the Figure legend, where typically about 10 embryos for each manipulation were photographed, scored, and a representative image was used to make the figure. In these experiments  there was a very consistent result with 100% of the embryos showing changes represented by each panel in Figure 2. The only exception was Figure 2Y where 9/10 embryos showed the described change. Similarly in Figure 4 there was a consistent result and 100% of embryos showed the change shown. Numbers and statistics for these results will be included in a revised manuscript.

      Reviewer #2:

      The statistical analysis in Figure 5 and Supplementary Figures 2 and 3 should be one-way ANOVA or Kruskal-Wallis with a Dunn's multiple comparisons test rather than pair-wise comparisons.

      The analysis has been re-done following the reviewer’s suggestions. The analysis confirms the primary conclusions of the original submission, and this analysis will be incorporated in a revised manuscript. However, to improve the power of the analysis, experiments with low numbers of embryos will be repeated.

      See redone graphs in Figure 5 and supplementary Figure 2 and 3.

    1. Author Response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      Summary:

      This paper introduces a new class of machine learning models for capturing how likely a specific nucleotide in a rearranged IG gene is to undergo somatic hypermutation. These models modestly outperform existing state-of-the-art efforts, despite having fewer free parameters. A surprising finding is that models trained on all mutations from non-functional rearrangements give divergent results from those trained on only silent mutations from functional rearrangements.

      Strengths:

      (1) The new model structure is quite clever and will provide a powerful way to explore larger models.

      (2) Careful attention is paid to curating and processing large existing data sets.

      (3) The authors are to be commended for their efforts to communicate with the developers of previous models and use the strongest possible versions of those in their current evaluation.

      Thank you very much for your comments. We especially appreciate the last comment, as we have indeed tried hard to do so.

      Weaknesses:

      (1) 10x/single cell data has a fairly different error profile compared to bulk data. A synonymous model should be built from the same briney dataset as the base model to validate the difference between the two types of training data.

      Thank you for pointing this out.

      We have repeated the same analysis with synonymous mutations derived from the bulk-sequenced tang dataset for Figure 4 and the supplementary figure. The conclusion remains the same. We used tang because only the out-of-frame sequences were available to us for the briney dataset, as we were using preprocessing from the Spisak paper.<br /> The fact that both the 10x and the tang data give the same results bolsters our claim.

      (2) The decision to test only kernels of 7, 9, and 11 is not described. The selection/optimization of embedding size is not explained. The filters listed in Table 1 are not defined.

      We have added the following to the Models subsection to further explain these decisions:

      “The hyperparameters for the models (Table 1) were selected with a run of Optuna (Akiba et al., 2019) early in the project and then fixed. Further optimization was not pursued because of the limited performance differences between the existing models.”

      Reviewer #2 (Public Review):

      Summary:

      This work offers an insightful contribution for researchers in computational biology, immunology, and machine learning. By employing a 3-mer embedding and CNN architecture, the authors demonstrate that it is possible to extend sequence context without exponentially increasing the model's complexity.

      Key findings:

      (1) Efficiency and Performance: Thrifty CNNs outperform traditional 5-mer models and match the performance of significantly larger models like DeepSHM.

      (2)Neutral Mutation Data: A distinction is made between using synonymous mutations and out-of-frame sequences for model training, with evidence suggesting these methods capture different aspects of SHM or different biases.

      (3) Open Source Contributions: The release of a Python package and pre-trained models adds practical value for the community.

      Thank you for your positive comments. We believe that we have been clear about the modest improvements (e.g., the abstract says “slight improvement”), and we discuss the data limitations extensively. If there are ways we can do this more effectively, we are happy to hear them.

      Reviewer #3 (Public Review):

      Summary:

      Sung et al. introduce new statistical models that capture a wider sequence context of somatic hypermutation with a comparatively small number of additional parameters. They demonstrate their model’s performance with rigorous testing across multiple subjects and datasets.

      Strengths:

      Well-motivated and defined problem. Clever solution to expand nucleotide context. Complete separation of training and test data by using different subjects for training vs testing. Release of open-source tools and scripts for reproducibility.

      Thank you for your positive comments.

      Weaknesses:

      This study could be improved with better descriptions of dataset sequencing technology, sequencing depth, etc.

      We have added columns to Table 3 that report sequencing technology and depth for each dataset.

      Reviewer #1 (Recommendations for the Authors):

      (1) There seems to be a contradiction between Tables 2 and 3 as to whether the Tang et al. dataset was used to train models or only to test them.

      Thank you for catching this. The "purpose" column in Table 3 was for the main analysis, while Table 2 is describing only models trained to compare with DeepSHM. Explaining this seems more work than it's worth, so we simply removed that column from Table 2. The dataset purposes are clear from the text.

      (2) In Figure 4, I assume the two rows correspond to the Briney and Tang datasets, as in Figure 2, but this is not explicitly described.

      Yes, you are correct. We added an explanation in the caption of Figure 4.

      (3) Figure 2, supplement 1 should include a table like Table 1 that describes these additional models.

      We have added an explanation in the caption to Table 1 that "Medium" and "Large" refer to specific hyperparameter choices. The caption to Figure 2, supplement 1 now describes the corresponding hyperparameter choices for "Small" thrifty models.

      (4) On line 378 "Therefore in either case" seems extraneous.

      Indeed. We have dropped those words.

      (5) In the last paragraph of the Discussion, only the attempt to curate the Ford dataset is described. I am not sure if you intended to discuss the Rodriguez dataset here or not.

      Thank you for pointing this out. We have updated the Materials and Methods section to include our attempts to recover data from Rodriguez et al., 2023.

      (6) Have you looked to see if Soto et al. (Nature 2019) provides usable data for your purposes?

      Thank you for making us aware of this dataset!

      We assessed it but found that the recovery of usable out-of-frame sequences was too low to be useful for our analysis. We now describe this evaluation in the paper.

      (7) Cui et al. note a high similarity between S5F and S5NF (r=0.93). Does that constrain the possible explanations for the divergence you see?

      This is an excellent point.

      We don't believe the correlation observed in Cui and our results are incompatible. Our point is not that the two sources of neutral data are completely different but that they differ enough to limit generalization. Also, the Spearman correlation in Cui is 0.86, which aligns with our observed drop in R-precision.

      (8) Are you able to test the effects of branch length or background SHM on the model?

      We're unsure what is meant by “background SHM.”<br /> We did try joint optimization of branch length and model parameters, but it did not improve performance. Differences in clone size thresholds do exist between datasets, but Figure 3 suggests that tang is better sequence data.

      (9) Would the model be expected to scale up to a kernel of, say, 50? Would that help yield biological insight?

      We did not test such large models because larger kernels did not improve performance.

      While your suggestion is intriguing, distinguishing biological effects from overfitting would be difficult. We explore biological insights more directly in our recent mechanistic model paper (Fisher et al., 2025), which is now cited in a new paragraph on biological conclusions.

      Reviewer #2 (Recommendations for the Authors):

      (1) Consider applying a stricter filtration approach to the Briney dataset to make it more comparable to the Tang dataset.

      Thank you. We agree that differences in datasets are interesting, though model rankings remain consistent. We now include supplementary figures comparing synonymous and out-of-frame models from the tang dataset.

      (2) You omit mutations between the unmutated germline and the MRCA of each tree. Why?

      The inferred germline may be incorrect due to germline variation or CDR3 indels, which could introduce spurious mutations. Following Spisak et al. (2020), we exclude this branch.<br /> Yes, singletons are discarded: ~28k in tang and ~1.1M in jaffe.

      (3) Could a unified model trained on both data types offer further insights?

      We agree and present such an analysis in Figure 4.

      (4) Tree inference biases from parent-child distances may impact the results.

      While this is an important issue, all models are trained on the same trees, so we expect any noise or bias to be consistent. Different datasets help confirm the robustness of our findings.

      (5) Simulations would strengthen validation.

      We focused on real datasets, which we view as a strength. While simulations could help, designing a meaningful simulation model would be nontrivial. We have clarified this point in the manuscript.

      Reviewer #3 (Recommendations for the Authors):

      There are typos in lines 109, 110, 301, 307, and 418.

      Thank you, we have corrected them.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors revisit the specific domains/signals required for the redirection of an inner nuclear membrane protein, emerin, to the secretory pathway. They find that epitope tagging influences protein fate, serving as a cautionary tale for how different visualisation methods are used. Multiple tags and lines of evidence are used, providing solid evidence for the altered fate of different constructs.

      Strengths:

      This is a thorough dissection of domains and properties that confer INM retention vs secretion to the PM/lysosome, and will serve the community well as a caution regarding the placement of tags and how this influences protein fate.

      Weaknesses:

      Biogenesis pathways are not explored experimentally: it would be interesting to know if the lysosomal pool arrives there via the secretory pathway (eg by engineering a glycosylation site into the lumenal domain) or by autophagy, where failed insertion products may accumulate in the cytoplasm and be degraded directly from cytoplasmic inclusions.

      This manuscript is a Research Advance that follows previous work that we published in eLife on this topic (Buchwalter et al., eLife 2019; PMID 31599721). In that prior publication, we showed that emerin-GFP arrives at the lysosome by secretion and exposure at the PM, followed by internalization. While we state these previous findings in this manuscript, we did not explicitly restate here how we came to that conclusion. In the 2019 study, we (i) engineered in a glycosylation site, which demonstrated that emerin-GFP receives complex, Endo H-resistant N-glycans, indicating passage through the Golgi; (ii) performed cell surface labeling, which confirmed that emerin accesses the PM; and interfered with (iii) the early secretory pathway using brefeldin A and with (iv) lysosomal function using bafilomycin A1. Further, we ruled out autophagy as a major contributor to emerin trafficking by treating cells with the PI3K inhibitor KU55933, which had no effect on emerin’s lysosomal delivery.

      It would be helpful if the topology of constructs could be directly demonstrated by pulse-labelling and protease protection. It's possible that there are mixed pools of both topologies that might complicate interpretation.

      We demonstrate that emerin’s TMD inserts in a tail-anchored orientation (C terminus in ER lumen) by appending a GFP tag to either the N or C terminus, followed by anti-GFP antibody labeling of unpermeabilized cells (Fig. 1G). This shows the preferred topology of emerin’s wild type TMD.

      As the reviewer points out, it is possible that our manipulations of the TMD sequence (Fig. 2D-E) alter its preferred topology of membrane insertion. We addressed this question by performing anti-GFP and anti-emerin antibody labeling of the less hydrophobic TMD mutant (EMD-TMDm-GFP) after selective permeabilization of the plasma membrane (Figure 2 supplement, panel F). If emerin biogenesis is normal, the GFP tag should face the ER lumen while the emerin antibody epitope should be cytosolic. If the fidelity of emerin’s membrane insertion is impaired, the GFP tag could be exposed to the cytosol (flipped orientation), which would be detected by anti-GFP labeling upon plasma membrane permeabilization. We find that the C-terminal GFP tag is completely inaccessible to antibody when the PM is selectively permeabilized with digitonin, but is readily detected when all intracellular membranes are permeabilized with Triton-X-100. These data confirm that mutating emerin’s TMD does not disrupt the protein’s membrane topology.

      Reviewer #2 (Public review):

      In this manuscript, Mella et al. investigate the effect of GFP tagging on the localization and stability of the nuclear-localized tail-anchored (TA) protein Emerin. A previous study from this group showed that C-terminally GFP-tagged Emerin protein traffics to the plasma membrane and reaches lysosomes for degradation. It is suggested that the C-terminal tagging of tail-anchored proteins shifts their insertion from the post-translational TRC/GET pathway to the co-translational SRP-mediated pathway. The authors of this paper found that C-terminal GFP tagging causes Emerin to localize to the plasma membrane and eventually reach lysosomes. They investigated the mechanism by which Emerin-GFP moves to the secretory pathway. By manipulating the cytosolic domain and the hydrophobicity of the transmembrane domain (TMD), the authors identify that an ER retention sequence and strong TMD hydrophobicity contribute to Emerin trafficking to the secretory pathway. Overall, the data are solid, and the knowledge will be useful to the field. However, the authors do not fully answer the question of why C-terminally GFP-tagged Emerin moves to the secretory pathway. Importantly, the authors did not consider the possible roles of GFP in the ER lumen influencing Emerin trafficking to the secretory pathway.

      Reviewer #2 (Recommendations for the authors):

      Major concerns:

      (1) The authors suggest that an ER retention sequence and high hydrophobicity of Emerin TMD contribute to its trafficking to the secretory pathway. However, these two features are also present in WT Emerin, which correctly localizes to the inner nuclear membrane. Additionally, the authors show that the ER retention sequence is normally obscured by the LEM domain. The key difference between WT Emerin and Emerin-GFP is the presence of GFP in the ER lumen. The authors missed investigating the role of GFP in the ER lumen in influencing Emerin trafficking to the secretory pathway. It is likely that COPII carrier vesicles capture GFP protein in the lumen as part of the bulk flow mechanism for transport to the Golgi compartment. The authors could easily test this by appending a KDEL sequence to the C-terminus of GFP; this should now redirect the protein to the nucleus.

      We agree with the reviewer’s point that the presence of lumenal GFP somehow promotes secretion of emerin from the ER, likely at the stage of enhancing its packaging into COPII vesicles. We struggle to think about how to interpret the KDEL tagging experiment that the reviewer proposes, as the KDEL receptor predominantly recycles soluble proteins from the Golgi to the ER, while emerin is a membrane protein; and we have shown that emerin already contains a putative COPI-interacting RRR recycling motif in its cytosolic domain.

      Nevertheless, we agree with the reviewer that it is worthwhile to test the possibility that addition of GFP to emerin’s C-terminus promotes capture by COPII vesicles. We have evaluated this question by performing temperature block experiments to cause cargo accumulation within stalled COPII-coated ER exit sites, then comparing the propensity of various untagged and tagged emerin variants to enrich in ER exit sites as judged by colocalization with the COPII subunit Sec31a. These data now appear in Figure 4 supplement 1. These experiments indicate that emerin-GFP samples ER exit sites significantly more than does untagged emerin. Further, the ER exit site enrichment of emerin-GFP is dampened by shortening emerin’s TMD. We do not see further enrichment of any emerin variant in ER exit sites when COPII vesicle budding is stalled by low temperature incubation, implying that emerin lacks any positive sorting signals that direct its selective enrichment in COPII vesicles. Altogether, these data indicate that both emerin’s long and hydrophobic TMD and the addition of a lumenal GFP tag increase emerin’s propensity to sample ER exit sites and undergo non-selective, “bulk flow” ER export.

      (2) The authors nicely demonstrate that the hydrophobicity of Emerin TMD plays a role in its secretory trafficking. I wonder if this feature may be beneficial for cells to degrade newly synthesized Emerin via the lysosomal pathway during mitosis, as the nuclear envelope breakdown may prevent the correct localization of newly synthesized Emerin. The authors could test Emerin localization during mitosis. Such findings could add to the physiological significance of their findings. At the minimum, they should discuss this possibility.

      We thank the reviewer for this insightful suggestion. It is attractive to speculate that secretory trafficking might enable lysosomal degradation of emerin during mitosis, when its lamin anchor has been depolymerized. However, we think it is unlikely that mitotic trafficking contributes significantly to the turnover flux of untagged emerin; if it did, we would expect to see higher steady state levels and/or slowed turnover of emerin mutants that cannot traffic to the lysosome. We did not observe this outcome. Instead, mutations that enhance (RA) or impair (TMDm) emerin trafficking had no effect on the untagged protein’s steady-state levels (Fig. 4G).

      Minor concerns:

      (1) On page 7, the authors note that "FLAG-RA construct was not poorly expressed relative to WR, in contrast with RA-GFP (Figures S3C, 2I)." The expression levels of these proteins cannot be compared across two different blots.

      We apologize for this confusion; we were implying two distinct comparisons to internal controls present on each blot. We have adjusted the text to read “FLAG-RA construct was not poorly expressed relative to FLAG-WT (Fig. S3C) in contrast to RA-GFP compared to WT-GFP (Fig. 2I).”

      (2) In the first paragraph of the discussion, the authors suggest that aromatic amino acids facilitate trafficking to lysosomes. However, they only replaced aromatic amino acids with alanine residues. If they want to make this claim, they should test other amino acids, particularly hydrophobic amino acids such as leucine.

      The reviewer may be inferring more import from our statement than we intended. We focused on these aromatic residues within the TMD because they contribute strongly to its overall hydrophobicity. Experimentally, we determined that nonconservative alanine substitutions of these aromatic residues inhibited trafficking. We do not state and do not intend to imply that the aromatic character of these residues specifically influences trafficking propensity, and we agree with the reviewer that to test such a question would require additional substitutions with non-aromatic hydrophobic amino acids.

      We realize that our phrasing may have been misleading by opening with discussion of the aromatic amino acids; in the revised discussion paragraph, we instead lead with discussion of TMD hydrophobicity, and then state how the specific substitutions we made affect trafficking.

      Reviewing Editor comments:

      While reviewer 1 did not provide any recommendations to the authors, I agree with this reviewer that the authors should validate the topology of their tagged proteins (at least for the one used to draw key conclusions). Given that Emerin is a tail-anchored protein, having a big GFP tag at the C-terminus could mess up ER insertion, causing the protein to take a wrong topology or even be mislocalized in the cytosol, particularly under overexpression conditions. In either case, it can be subject to quality control-dependent clearance via either autophagy, ERphagy, or ER-to-lysosome trafficking. I think that the authors should try a few straightforward experiments such as brefeldin A treatment or dominant negative Sar1 expression to test whether blocking conventional ER-to-Golgi trafficking affects lysosomal delivery of Emerin. I also think that the authors should discuss their findings in the context of the RESET pathway reported previously (PMID: 25083867). The ER stress-dependent trafficking of tagged Emerin to the PM and lysosomes appears to follow a similar trafficking pattern as RESET, although the authors did not demonstrate that Emerin traffic to lysosomes via the PM. In this regard, they should tone down their conclusion and discuss their findings in the context of the RESET pathway, which could serve as a model for their substrate.

      We agree that validating the topology of TMD mutants is important, and now include these experiments in the revised manuscript (please see our response to Reviewer 1 above).

      Please see our response to Reviewer 1’s public review; we previously determined that emerin-GFP undergoes ER-to-Golgi trafficking (see our 2019 study).

      We recognize the major parallels between our findings and the RESET pathway. In our 2019 study, we found that similarly to other RESET cargoes, emerin-GFP travels through the secretory pathway, is exposed at the PM, and is then internalized and delivered to lysosomes. We discussed these strong parallels to RESET in our 2019 study. In this revised manuscript, we now also point out the parallels between emerin trafficking and RESET and cite the 2014 study by Satpute-Krishnan and colleagues (PMID 25083867)

    1. Author Response:

      The following is the authors response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The authors report four cryoEM structures (2.99 to 3.65 Å resolution) of the 180 kDa, full-length, glycosylated, soluble Angiotensin-I converting enzyme (sACE) dimer, with two homologous catalytic domains at the N- and C-terminal ends (ACE-N and ACE-C). ACE is a protease capable of effectively degrading Aβ. The four structures are C2 pseudo-symmetric homodimers and provide insight into sACE dimerization. These structures were obtained using discrete classification in cryoSPARC and show different combinations of open, intermediate, and closed states of the catalytic domains, resulting in varying degrees of solvent accessibility to the active sites. 

      To deepen the understanding of the gradient of heterogeneity (from closed to open states) observed with discrete classification, the authors performed all-atom MD simulations and continuous conformational analysis of cryo-EM data using cryoSPARC 3DVA, cryoDRGN, and RECOVAR. cryoDRGN and cryoSPARC 3DVA revealed coordinated open-closed transitions across four catalytic domains, whereas RECOVAR revealed independent motion of two ACE-N domains, also observed with cryoSPARC-focused classification. The authors suggest that the discrepancy in the results of the different methods for continuous conformational analysis in cryo-EM could result from different approaches used for dimensionality reduction and trajectory generation in these methods. 

      Strengths: 

      This is an important study that shows, for the first time, the structure and the snapshots of the dynamics of the full-length sACE dimer. Moreover, the study highlights the importance of combining insights from different cryo-EM methods that address questions difficult or impossible to tackle experimentally while lacking ground truth for validation. 

      Weaknesses: 

      The open, closed, and intermediate states of ACE-N and ACE-C in the four cryo-EM structures from discrete classification were designated quantitatively (based on measured atomic distances on the models fitted into cryo-EM maps, Figure 2D). Unfortunately, atomic models were not fitted into cryo-EM maps obtained with cryoSPARC 3DVA, cryoDRGN, and RECOVAR, and the open/closed states in these cases were designated based on qualitative analysis. As the authors clearly pointed out, there are many other methods for continuous conformational heterogeneity analysis in cryo-EM. Among these methods, some allow analyzing particle images in terms of atomic models, like MDSPACE (Vuillemot et al., J. Mol. Biol. 2023, 435:167951), which result in one atomic model per particle image and can help in analyzing cooperativity of domain motions through measuring atomic distances or angular differences between different domains (Valimehr et al., Int. J. Mol. Sci. 2024, 25: 3371). This could be discussed in the article. 

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript presents a valuable contribution to the field of ACE structural biology and dynamics by providing the first complete full-length dimeric ACE structure in four distinct states. The study integrates cryo-EM and molecular dynamics simulations to offer important insights into ACE dynamics. The depth of analysis is commendable, and the combination of structural and computational approaches enhances our understanding of the protein's conformational landscape. However, the strength of evidence supporting the conclusions needs refinement, particularly in defining key terms, improving structural validation, and ensuring consistency in data analysis. Addressing these points through major revisions will significantly improve the clarity, rigor, and accessibility of the study to a broader audience, allowing it to make a stronger impact in the field. 

      Strengths: 

      The integration of cryo-EM and MD simulations provides valuable insights into ACE dynamics, showcasing the authors' commitment to exploring complex aspects of protein structure and function. This is a commendable effort, and the depth of analysis is appreciated. 

      Weaknesses: 

      Several aspects of the manuscript require further refinement to improve clarity and scientific rigor as detailed in my recommendations for the authors. 

      Reviewer #3 (Public review): 

      Summary: 

      Mancl et al. report four Cryo-EM structures of glycosylated and soluble Angiotensin-I converting enzyme (sACE) dimer. This moves forward the structural understanding of ACE, as previous analysis yielded partially denatured or individual ACE domains. By performing a heterogeneity analysis, the authors identify three structural conformations (open, intermediate open, and closed) that define the openness of the catalytic chamber and structural features governing the dimerization interface. They show that the dimer interface of soluble ACE consists of an N-terminal glycan and protein-protein interaction region, as well as C-terminal protein-protein interactions. Further heterogeneity mining and all-atom molecular dynamic simulations show structural rearrangements that lead to the opening and closing of the catalytic pocket, which could explain how ACE binds its substrate. These studies could contribute to future drug design targeting the active site or dimerization interface of ACE. 

      Strengths: 

      The authors make significant efforts to address ACE denaturation on cryo-EM grids, testing various buffers and grid preparation techniques. These strategies successfully reduce denaturation and greatly enhance the quality of the structural analysis. The integration of cryoDRGN, 3DVA, RECOVAR, and all-atom simulations for heterogeneity analysis proves to be a powerful approach, further strengthening the overall experimental methodology. 

      Weaknesses: 

      In general, the findings are supported by experimental data, but some experimental details and approaches could be improved. For example, CryoDRGN analysis is limited to the top 5 PCA components for ease of comparison with cryoSPARC 3DVA, but wouldn't an expansion to more components with CryoDRGN potentially identify further conformational states? The authors also say that they performed heterogeneity analysis on both datasets but only show data for one. The results for the first dataset should be shown and can be included in supplementary figures. In addition, the authors mention that they were not successful in performing cryoSPARC 3DFLex analysis, but they do not show their data or describe the conditions they used in the methods section. These data should be added and clearly described in the experimental section. 

      Some cryo-EM data processing details are missing. Please add local resolution maps, box sizes, and Euler angle distributions and reference the initial PDB model used for model building. 

      Reviewer #1 (Recommendations for the authors): <br /> Major point: 

      The authors could discuss the use of continuous conformational heterogeneity analysis methods that analyze particle images in terms of atomic models, based on MD simulations, like MDSPACE (Vuillemot et al., J. Mol. Biol. 2023, 435:167951). MDSPACE can be used on a dataset preprocessed with cryoSPARC or Relion by discrete classification to reduce compositional heterogeneity and obtain initial particle poses. It results in one atomic model per particle image and can help in analyzing the cooperativity of domain motions by measuring atomic distances or angular differences between different domains (Valimehr et al., Int. J. Mol. Sci. 2024, 25: 3371). 

      We agree that MDSPACE is a promising and useful tool for analysis, and are excited to implement such a method. Prior to manuscript submission, we have had discussions with the primary author, Slavica Jonic, about how we may employ her software in our analysis. Unfortunately, we were unable to overcome significant computational issues, notably MDSPACE’s lack of GPU functionality, which prevent us from employing MDSPACE in a reasonable manner for our dataset. We hope to employ MDSPACE in future work, once the computational issues have been addressed, and have added a section on MDSPACE to the discussion in an effort to increase the visibility of MDSPACE, as we feel it is an exciting approach that deserves more visibility. We have added a substantial discussion on this point, specifically on MDspace as follows:

      line 565-574

      Similarly, MDSPACE holds tremendous promise as a method for investigating conformational dynamics from cryo-EM data (61). MDSPACE integrates cryo-EM particle data with short MD simulations to fit atomic models into each particle image through an iterative process which extracts dynamic information. However, the lack of GPU-enabled processing for MDSPACE requires either a dedicated a computational setup that diverges from most other cryo-EM software, or access to a CPU-based supercomputer, which severely limits the accessibility of such software. Despite these challenges, both 3DFlex and MDSPACE use promising approaches to study protein conformational dynamics. We look forward to exploring effective methods to incorporate these strategies into our future research.

      Minor points: 

      (1) Lines 348-350: "The discrepancy in population size between these clusters is likely due to bias in the initial particle poses, rather than a subunit-specific preference for the open state." Which bias? The cluster size is related to conformations, not to poses. 

      We hope to emphasize that the assignment of particles to either the OC or CO cluster is likely due to the particle orientation within the complete dimer refinement, and the discrepancy in size between OC and CO clusters does not necessarily indicate a domain specific preference for one state or another, which would carry allosteric implications. This remains a possibility, but we hope to avoid over-interpretation of our results with the statement above.

      The statement was altered to now read:

      Line 418-423

      “The discrepancy in population size between these clusters is likely due to bias in the initial particle orientation, rather than a subunit-specific preference for the open state. As the O/C state and the C/O state are 180 degree rotations of each other, particle assignment to either cluster is likely influenced by the initial particle orientation of the complete dimer, and we currently lack the data to discern any allosteric implication to the orientation assignment.”

      (2) Line 519: "Micrographs with a max CTF value worse than 4Å were removed from the dataset,..." (also, lines 822-823 in supplementary material). <br /> Do you want to say that micrographs with a resolution worse than 4 A were removed? 

      Max CTF value was replaced with CTF fit resolution to properly match the parameter used in Cryosparc.

      (3) Figure 2C: The black lines are barely visible. Can you make them thicker and in red color? 

      The figure has been amended.

      (4) Figure 2D: The values for Chain A and Chain B in the second row (ACE-C) of sACE-3.05 columns are 17.9 (I) (Chain A) and 13.9 (C) (Chain B). Shouldn't they be reversed (13.9 (C) (Chain A) and 17.9 (I) (Chain B))? 

      The values are now correct. sACE-3.65 chains were flipped in the table, and the updated color scheme should make it easier to map the values from the table to their corresponding structure.

      Reviewer #2 (Recommendations for the authors): 

      The manuscript presents the first complete full-length dimeric ACE structure. The integration of cryo-EM and MD simulations provides valuable insights into ACE dynamics, showcasing the authors' commitment to exploring complex aspects of protein structure and function. This is a commendable effort, and the depth of analysis is appreciated. However, several aspects of the manuscript require further refinement to improve clarity and scientific rigor. In the view of this reviewer, a major revision is necessary. Please see the detailed comments below: 

      (1) Definition of "Conformational Heterogeneity": The term "conformational heterogeneity" should be clearly defined when citing references 27-29. <br /> References 27 and 29 use MD simulations, which reveal "conformational flexibility" rather than "conformational heterogeneity" as observed in cryo-EM data. A more precise distinction should be made. 

      We have changed the term “conformational heterogeneity” to the broader “conformational dynamics

      (2) Figure Adjustments for Clarity: <br /> Figure 1B: A scale bar is needed for accurate representation. 

      A 100 Angstrom scale bar was added to figure 1B.

      Figure 2A, B: Using a Cα trace representation would improve clarity and make structural differences more apparent. 

      We found using a Cα trace representation makes the figure too confusing and impossible to determine individual structural elements. Everything just becomes a jumble of lines.

      Additionally, a Cα displacement vs. residue index plot (with Figure 1A placed along the x-axis) should be included alongside Figures 2A and B to provide quantitative insight into structural variations. 

      This analysis has been combined with several other suggestions and now comprises a new figure 4.

      (3) Structural Resolution and Validation: <br /> Euler angle distribution and 3D-FSC analysis should be provided to help the audience assess how these factors influence the resolution of each structure. <br /> Local resolution analysis in Relion should be included to determine if there are dynamic differences among the four structures. <br /> To enhance structural interpretation, the manuscript would benefit from showcasing examples of bulky side-chain densities (e.g., Trp, Phe, Tyr) for each of the four structures. 

      Information is included in Figure S3 and S5.

      (4) Glycan Modeling Considerations: <br /> Since the resolution of cryo-EM does not allow for precise glycan composition determination, additional experimental validation (e.g., Glyco-MS) would strengthen the modeling. If experimental support is unavailable, appropriate references should be cited to justify the modeled glycans. 

      Minimal glycan modeling was performed with the goal of demonstrating that the protein is glycosylated. We have highlighted that we chose 12 N-linked glycosylation sites that have the observed extra density, an indication that glycan should be present and modeled them with complex glycans in the manuscript.  

      (5) Advanced Cryo-EM and MD Analyses: 3DFlex Analysis: <br /> It is recommended that the authors explore 3DFlex to better capture conformational variability. CryoSPARC's community support can assist in proper implementation. 

      We have incorporated our 3Dflex analysis in our discussion as follows:

      Line 553-565

      Surprisingly, we did not observe such motion using cryoSPARC 3DFlex, a neural network-based method analyzing our cryo-EM data of sACE (54). Central to the working of cryoSPARC 3DFlex is the generation of a tetrahedral mesh used to calculate deformations within the particle population. Proper generation of the mesh is critical for obtaining useful results and must often be determined empirically. Despite several attempts, we were unable to obtain results from 3DFlex comparable to what we observed with our other methods. Even using the results from our 3DVA as prior input to 3DFlex, the largest conformational change we observed was a slight wiggling at the bottom of the D3a subdomain (Movie S12). The authors of 3DFlex note that 3DFlex struggles to model intricate motions, and the implementation of custom tetrahedral meshes currently requires a non-cyclical fusion strategy between mesh segments. Given these limitations, and the complexity of sACE conformational dynamics, it appears that sACE, as a system, is not well-suited to analysis via 3DFlex in its current implementation.

      (6) Movie Consistency: <br /> The MD simulation movies should use the same color coding as the first four movies for consistency. Similarly, the 3DVar analysis map should be color-coded to enhance interpretability. 

      MD simulation movies are re-colored.

      (7) MD Simulations - Data Extraction and Validation: <br /> The manuscript includes several long-timescale MD simulations, but further analysis is needed to extract meaningful dynamic information. Suggested analyses include: <br /> a. RMSF (Root Mean Square Fluctuation) Analysis: Calculate RMSF from MD trajectories and compare it with local resolution variations in cryo-EM maps. 

      RMSF values were included in the new figure 4 along with structural depictions colored by RMSF value to localize variation to the structure.

      b. Assess whether regions exhibiting lower dynamics correspond to higher resolution in cryo-EM. 

      Information is added to Figure 4, Figure S3, S5, S6.

      c. Compare RMSF between simulations with and without glycans to identify potential effects. 

      This has been done in Figure 4.

      d. Clustering Analysis: Use the four solved structures as reference states to cluster MD simulation trajectories. Determine if the population states observed in MD simulations align with cryo-EM findings. 

      This has been done in supplementary figure S10.

      e. Principal Component Analysis (PCA): Perform PCA on MD trajectories and compare with dynamics inferred from cryo-EM analyses (3DVar, cryoDRGN, and RECOVAR) to ensure consistency. 

      This has been done in supplementary figure S11.

      f. Correction of RMSF Analysis or the y-axis label in Figure S9: The RMSF values cannot be negative by definition. The authors should carefully review the code used for this calculation or explicitly define the metric being measured. 

      The Y-axis label has been corrected to clarify that the plot depicts the change in RMSF values when comparing the glycosylated and non-glycosylated MD simulations.

      (8) Discussion on Coordinated Motion and Allostery: <br /> The discussion of coordinated motion and allosteric regulation between sACE-N domains should be explicitly connected to experimental evidence mentioned in the introduction: <br /> "Enzyme kinetics analysis suggests negative cooperativity between two catalytic domains (31-33). However, ACE also exhibits positive synergy toward Ab cleavage and allostery to enhance the activity of its binding partner, the bradykinin receptor (11, 34)." 

      (9) The authors should elaborate on how their new insights provide a mechanistic explanation for these experimental observations. 

      (10) Connection to Therapeutic Implications: <br /> The discussion section should more explicitly connect the structural findings to potential therapeutic applications, which would significantly enhance the impact of the study. 

      These three points (8-10) were addressed in a significant overhaul to the discussion section.

      In summary, this study makes a valuable contribution to the field of ACE structural biology and dynamics. The combination of cryo-EM and MD simulations is particularly powerful, and with major revisions, this manuscript has the potential to make a strong impact. Addressing the points outlined above will significantly improve clarity, strengthen the scientific claims, and enhance the manuscript's accessibility to a broader audience. I appreciate the authors' rigorous approach to this complex topic and encourage them to refine their work to fully highlight the significance of their findings. 

      Reviewer #3 (Recommendations for the authors): 

      (1) The authors incorrectly refer to their ACE construct as full-length throughout the manuscript. Given that they are purifying the soluble region (aa 1-1231), saying full-length ACE is not the correct nomenclature. I suggest removing full-length and using soluble ACE (sACE) throughout the text. 

      We utilize the term full-length to highlight the fact that our structures contain both the N and C domains for both subunits in the dimer, in contrast to the previously published ACE cryo-EM structure. We have clarified in the text that we refer to the full-length soluble region of ACE (sACE), and sACE is used to specifically refer to our construct throughout the text, except when referring to ACE in a more generalized biological context in the introduction and discussion.

      (2) The authors could show differences between the different structural states by measuring and displaying the alpha carbon distances. For example, in Figures 2A, B, 3A, and 4B and C. 

      Alpha carbon displacements for each residue have been added to the new figure 4.

      (3) Most figures, with a few exceptions (Figures 2 and S11), are of low quality. Perhaps they are not saved in the same format. In addition, the color schemes used throughout the figures and movies are not consistent. For example, in Figure 1 D2 domains are in green, while they appear yellow in Figure 2 and later. Please double-check all coloring schemes and keep them consistent throughout the manuscript. In addition, it would be good to keep the labeling of the domains in the subsequent figures, as it is difficult to remember which domain is which throughout the manuscript. 

      We are unsure of how to address the low quality issue, our files and the online versions appear to be of suitable high quality. We will work with editorial staff to ensure all files are of suitable quality. The color scheme has been revised throughout the manuscript to ensure consistency and better differentiate between domains and chains.

      (4) Figure 1. Indicate exactly where in panel A ACE-N ends and ACE-C starts. Also, the pink and magenta, as well as aqua vs. light blue, are hard to distinguish. 

      We have updated coloring scheme.

      (5) Figure 2. In the figure legend, the use of brackets for defining closed, intermediate, and open states is confusing, given that the panels are also described with brackets, and some letters match between them. Using a hyphen or bolding the abbreviations could help. Also, define chains A and B, make the black lines that I assume indicate distances in C bold or thicker as they are very hard to see in the figure, and add to the legend what those lines mean. 

      The abbreviations have been changed from parentheses to quotes, and suggestions have been implemented.

      (6) Figure 4 is confusing as shown. Since the authors mention the general range of motion in sACE-N first in the text, wouldn't it make more sense to show panel B first and then panel A? Also, can you point and label the "tip connecting the two long helices of the D1a subdomain" in the figure? It is not clear to me where this region is in B. In addition, add a description of the arrows in B and C to the figure legend. 

      Most changes incorporated. The order should make more sense now in light of other changes.

      (7) Figure 5. Can the authors add a description to the legend as to what the arrows indicate and their thickness? 

      Done

      (8) Add a scale bar to the micrograph images in the supplementary figures. 

      Figure S2 and S4 need the scale bar.

      (9) Provide a more comprehensive description of buffers used in the DF analysis, as this information could be useful to others. 

      We have included the data in Table S1.<br /> (10) Line 51: Reference format not consistent with other references: (Wu et al., 2023). 

      Fixed

      (11) Line 66: Define "ADAM". 

      The definition has been added.

      (12) Line 90: The authors say: Recent open state structures of sACE-N, sACE monomer, and a sACE-N dimer, along with molecular dynamics (MD) simulations of sACE-C, have begun to reveal the conformational heterogeneity, though it remains under-studied (27-29)." Can the authors clarify what "it" refers to? The full-length ACE, sACE, or its specific domains? 

      The sentence now reads: Recent open state structures of sACE-N, sACE monomer, and a sACE-N dimer, along with molecular dynamics (MD) simulations of sACE-C, have begun to reveal ACE conformational dynamics, though they remain under-studied (29-31).

      (13) Line 204: "The comparison of our dimeric sACE cryoEM structures of reveals the conformational dynamics of sACE catalytic domains." The second "of" should be removed. 

      Fixed<br /> (14) Line 268: "From room mean square fluctuation (RMSF) analysis..." "room" should be replaced with "root."

      Fixed

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1:

      Comment:

      The authors quantified information in gesture and speech, and investigated the neural processing of speech and gestures in pMTG and LIFG, depending on their informational content, in 8 different time-windows, and using three different methods (EEG, HD-tDCS and TMS). They found that there is a time-sensitive and staged progression of neural engagement that is correlated with the informational content of the signal (speech/gesture).

      Strengths:

      A strength of the paper is that the authors attempted to combine three different methods to investigate speech-gesture processing.

      We sincerely appreciate the reviewer’s recognition of our efforts in employing a multi-method approach, which integrates three complementary experimental paradigms, each leveraging distinct neurophysiological techniques to provide converging evidence.

      In Experiment 1, we found that the degree of inhibition in the pMTG and LIFG was strongly associated with the overlap in gesture-speech representations, as quantified by mutual information. Experiment 2 revealed the time-sensitive dynamics of the pMTG-LIFG circuit in processing both unisensory (gesture or speech) and multisensory information. Experiment 3, utilizing high-temporal-resolution EEG, independently replicated the temporal dynamics of gesture-speech integration observed in Experiment 2, further validating our findings.

      The striking convergence across these methodologically independent approaches significantly bolsters the robustness and generalizability of our conclusions regarding the neural mechanisms underlying multisensory integration.

      Comment 1: I thank the authors for their careful responses to my comments. However, I remain not convinced by their argumentation regarding the specificity of their spatial targeting and the time-windows that they used.

      The authors write that since they included a sham TMS condition, that the TMS selectively disrupted the IFG-pMTG interaction during specific time windows of the task related to gesture-speech semantic congruency. This to me does not show anything about the specificity of the time-windows itself, nor the selectivity of targeting in the TMS condition.

      (1) Selection of brain regions (IFG/pMTG)

      We thank the reviewer for their thoughtful consideration. The choice of the left IFG and pMTG as regions of interest (ROIs) was informed by a meta-analysis of fMRI studies on gesture-speech integration, which consistently identified these regions as critical hubs (see Author response table 1 for detailed studies and coordinates).

      Author response table 1.

      Meta-analysis of previous studies on gesture-speech integration.

      Based on the meta-analysis of previous studies, we selected the IFG and pMTG as ROIs for gesture-speech integration. The rationale for selecting these brain regions is outlined in the introduction in Lines 63-66: “Empirical studies have investigated the semantic integration between gesture and speech by manipulating their semantic relationship[15-18] and revealed a mutual interaction between them19-21 as reflected by the N400 latency and amplitude14 as well as common neural underpinnings in the left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG)[15,22,23].”

      And further described in Lines 77-78: “Experiment 1 employed high-definition transcranial direct current stimulation (HD-tDCS) to administer Anodal, Cathodal and Sham stimulation to either the IFG or the pMTG”. And Lines 85-88: ‘Given the differential involvement of the IFG and pMTG in gesture-speech integration, shaped by top-down gesture predictions and bottom-up speech processing [23], Experiment 2 was designed to assess whether the activity of these regions was associated with relevant informational matrices”.

      In the Methods section, we clarified the selection of coordinates in Lines 194-200: “Building on a meta-analysis of prior fMRI studies examining gesture-speech integration[22], we targeted Montreal Neurological Institute (MNI) coordinates for the left IFG at (-62, 16, 22) and the pMTG at (-50, -56, 10). In the stimulation protocol for HD-tDCS, the IFG was targeted using electrode F7 as the optimal cortical projection site[36], with four return electrodes placed at AF7, FC5, F9, and FT9. For the pMTG, TP7 was selected as the cortical projection site[36], with return electrodes positioned at C5, P5, T9, and P9.”

      The selection of IFG or pMTG as integration hubs for gesture and speech has also been validated in our previous studies. Specifically, Zhao et al. (2018, J. Neurosci) applied TMS to both areas. Results demonstrated that disrupting neural activity in the IFG or pMTG via TMS selectively impaired the semantic congruency effect (reaction time costs due to semantic incongruence), while leaving the gender congruency effect unaffected.

      These findings identified the IFG and pMTG as crucial hubs for gesture-speech integration, guiding the selection of brain regions for our subsequent studies.

      (2) Selection of time windows

      The five key time windows (TWs) analyzed in this study were derived from our previous TMS work (Zhao et al., 2021, J. Neurosci), where we segmented the gesture-speech integration period (0–320 ms post-speech onset) into eight 40-ms windows. This interval aligns with established literature on gesture-speech integration, particularly the 200–300 ms window noted by the reviewer. As detailed in Lines (776-779): “Procedure of Experiment 2. Eight time windows (TWs, duration = 40 ms) were segmented in relative to the speech IP. Among the eight TWs, five (TW1, TW2, TW3, TW6, and TW7) were chosen based on the significant results in our prior study[23]. Double-pulse TMS was delivered over each of the TW of either the pMTG or the IFG”.

      In our prior work (Zhao et al., 2021, J. Neurosci), we employed a carefully controlled experimental design incorporating two key factors: (1) gesture-speech semantic congruency (serving as our primary measure of integration) and (2) gesture-speech gender congruency (implemented as a matched control factor). Using a time-locked, double-pulse TMS protocol, we systematically targeted each of the eight predefined time windows (TWs) within the left IFG, left pMTG, or vertex (serving as a sham control condition). Our results demonstrated that a TW-selective disruption of gesture-speech integration, indexed by the semantic congruency effect (i.e., a cost of reaction time because of semantic conflict), when stimulating the left pMTG in TW1, TW2, and TW7 but when stimulating the left IFG in TW3 and TW6. Crucially, no significant effects were observed during either sham stimulation or the controlled gender congruency factor (Figure 3 from Zhao et al., 2021, J. Neurosci).

      This triple dissociation - showing effects only for semantic integration, only in active stimulation, and only at specific time points - provides compelling causal evidence that IFG-pMTG connectivity plays a temporally precise role in gesture-speech integration.

      Noted that this work has undergone rigorous peer review by two independent experts who both endorsed our methodological approach. Their original evaluations, provided below:

      Reviewer 1: “significance: Using chronometric TMS-stimulation the data of this experiment suggests a feedforward information flow from left pMTG to left IFG followed by an information flow from left IFG back to the left pMTG.  The study is the first to provide causal evidence for the temporal dynamics of the left pMTG and left IFG found during gesture-speech integration.”

      Reviewer 2: “Beyond the new results the manuscript provides regarding the chronometrical interaction of the left inferior frontal gyrus and middle temporal gyrus in gesture-speech interaction, the study more basically shows the possibility of unfolding temporal stages of cognitive processing within domain-specific cortical networks using short-time interval double-pulse TMS. Although this method also has its limitations, a careful study planning as shown here and an appropiate discussion of the results can provide unique insights into cognitive processing.”

      References:

      Willems, R.M., Ozyurek, A., and Hagoort, P. (2009). Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language. Neuroimage 47, 1992-2004. 10.1016/j.neuroimage.2009.05.066.

      Drijvers, L., Jensen, O., and Spaak, E. (2021). Rapid invisible frequency tagging reveals nonlinear integration of auditory and visual information. Human Brain Mapping 42, 1138-1152. 10.1002/hbm.25282.

      Drijvers, L., and Ozyurek, A. (2018). Native language status of the listener modulates the neural integration of speech and iconic gestures in clear and adverse listening conditions. Brain and Language 177, 7-17. 10.1016/j.bandl.2018.01.003.

      Drijvers, L., van der Plas, M., Ozyurek, A., and Jensen, O. (2019). Native and non-native listeners show similar yet distinct oscillatory dynamics when using gestures to access speech in noise. Neuroimage 194, 55-67. 10.1016/j.neuroimage.2019.03.032.

      Holle, H., and Gunter, T.C. (2007). The role of iconic gestures in speech disambiguation: ERP evidence. J Cognitive Neurosci 19, 1175-1192. 10.1162/jocn.2007.19.7.1175.

      Kita, S., and Ozyurek, A. (2003). What does cross-linguistic variation in semantic coordination of speech and gesture reveal?: Evidence for an interface representation of spatial thinking and speaking. J Mem Lang 48, 16-32. 10.1016/S0749-596x(02)00505-3.

      Bernardis, P., and Gentilucci, M. (2006). Speech and gesture share the same communication system. Neuropsychologia 44, 178-190. 10.1016/j.neuropsychologia.2005.05.007.

      Zhao, W.Y., Riggs, K., Schindler, I., and Holle, H. (2018). Transcranial magnetic stimulation over left inferior frontal and posterior temporal cortex disrupts gesture-speech integration. Journal of Neuroscience 38, 1891-1900. 10.1523/Jneurosci.1748-17.2017.

      Zhao, W., Li, Y., and Du, Y. (2021). TMS reveals dynamic interaction between inferior frontal gyrus and posterior middle temporal gyrus in gesture-speech semantic integration. The Journal of Neuroscience, 10356-10364. 10.1523/jneurosci.1355-21.2021.

      Hartwigsen, G., Bzdok, D., Klein, M., Wawrzyniak, M., Stockert, A., Wrede, K., Classen, J., and Saur, D. (2017). Rapid short-term reorganization in the language network. Elife 6. 10.7554/eLife.25964.

      Jackson, R.L., Hoffman, P., Pobric, G., and Ralph, M.A.L. (2016). The semantic network at work and rest: Differential connectivity of anterior temporal lobe subregions. Journal of Neuroscience 36, 1490-1501. 10.1523/JNEUROSCI.2999-15.2016.

      Humphreys, G. F., Lambon Ralph, M. A., & Simons, J. S. (2021). A Unifying Account of Angular Gyrus Contributions to Episodic and Semantic Cognition. Trends in neurosciences, 44(6), 452–463. https://doi.org/10.1016/j.tins.2021.01.006

      Bonner, M. F., & Price, A. R. (2013). Where is the anterior temporal lobe and what does it do?. The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(10), 4213–4215. https://doi.org/10.1523/JNEUROSCI.0041-13.2013

      Comment 2: It could still equally well be the case that other regions or networks relevant for gesture-speech integration are targeted, and it can still be the case that these timewindows are not specific, and effects bleed into other time periods. There seems to be no experimental evidence here that this is not the case.

      The selection of IFG and pMTG as regions of interest was rigorously justified through multiple lines of evidence. First, a comprehensive meta-analysis of fMRI studies on gesture-speech integration consistently identified these regions as central nodes (see response to comment 1). Second, our own previous work (Zhao et al., 2018, JN; 2021, JN) provided direct empirical validation of their involvement. Third, by employing the same experimental paradigm, we minimized the likelihood of engaging alternative networks. Fourth, even if other regions connected to IFG or pMTG might be affected by TMS, the distinct engagement of specific time windows of IFG and pMTG minimizes the likelihood of consistent influence from other regions.

      Regarding temporal specificity, our 2021 study (Zhao et al., 2021, JN, see details in response to comment 1) systematically examined the entire 0-320ms integration window and found that only select time windows showed significant effects for gesture-speech semantic congruency, while remaining unaffected during gender congruency processing. This double dissociation (significant effects for semantic integration but not gender processing in specific windows) rules out broad temporal spillover.

      Comment 3: To be more specific, the authors write that double-pulse TMS has been widely used in previous studies (as found in their table). However, the studies cited in the table do not necessarily demonstrate the level of spatial and temporal specificity required to disentangle the contributions of tightly-coupled brain regions like the IFG and pMTG during the speech-gesture integration process. pMTG and IFG are located in very close proximity, and are known to be functionally and structurally interconnected, something that is not necessarily the case for the relatively large and/or anatomically distinct areas that the authors mention in their table.

      Our methodological approach is strongly supported by an established body of research employing double-pulse TMS (dpTMS) to investigate neural dynamics across both primary motor and higher-order cognitive regions. As documented in Author response table 1, multiple studies have successfully applied this technique to: (1) primary motor areas (tongue and lip representations in M1), and (2) semantic processing regions (including pMTG, PFC, and ATL). Particularly relevant precedents include:

      (1) Teige et al. (2018, Cortex): Demonstrated precise spatial and temporal specificity by applying 40ms-interval dpTMS to ATL, pMTG, and mid-MTG across multiple time windows (0-40ms, 125-165ms, 250-290ms, 450-490ms), revealing distinct functional contributions from ATL versus pMTG.

      (2) Vernet et al. (2015, Cortex): Successfully dissociated functional contributions of right IPS and DLPFC using 40ms-interval dpTMS, despite their anatomical proximity and functional connectivity.

      These studies confirm double-pulse TMS can discriminate interconnected nodes at short timescales. Our 2021 study further validated this for IFG-pMTG.

      Author response table 2.

      Double-pulse TMS studies on brain regions over 3-60 ms time interval

      References:

      Teige, C., Mollo, G., Millman, R., Savill, N., Smallwood, J., Cornelissen, P. L., & Jefferies, E. (2018). Dynamic semantic cognition: Characterising coherent and controlled conceptual retrieval through time using magnetoencephalography and chronometric transcranial magnetic stimulation. Cortex, 103, 329-349.

      Vernet, M., Brem, A. K., Farzan, F., & Pascual-Leone, A. (2015). Synchronous and opposite roles of the parietal and prefrontal cortices in bistable perception: a double-coil TMS–EEG study. Cortex, 64, 78-88.

      Comment 4: But also more in general: The mere fact that these methods have been used in other contexts does not necessarily mean they are appropriate or sufficient for investigating the current research question. Likewise, the cognitive processes involved in these studies are quite different from the complex, multimodal integration of gesture and speech. The authors have not provided a strong theoretical justification for why the temporal dynamics observed in these previous studies should generalize to the specific mechanisms of gesture-speech integration..

      The neurophysiological mechanisms underlying double-pulse TMS (dpTMS) are well-characterized. While it is established that single-pulse TMS can produce brief artifacts (typically within 0–10 ms) due to transient cortical depolarization (Romero et al., 2019, NC), the dynamics of double-pulse TMS (dpTMS) involve more intricate inhibitory interactions. Specifically, the first pulse increases membrane conductance via GABAergic shunting inhibition, effectively lowering membrane resistance and attenuating the excitatory impact of the second pulse. This results in a measurable reduction in cortical excitability at the paired-pulse interval, as evidenced by suppressed motor evoked potentials (MEPs) (Paulus & Rothwell, 2016, J Physiol). Importantly, this neurophysiological mechanism is independent of cognitive domain and has been robustly demonstrated across multiple functional paradigms.

      In our study, we did not rely on previously reported timing parameters but instead employed a dpTMS protocol using a 40-ms inter-pulse interval. Based on the inhibitory dynamics of this protocol, we designed a sliding temporal window sufficiently broad to encompass the integration period of interest. This approach enabled us to capture and localize the critical temporal window associated with ongoing integrative processing in the targeted brain region.

      We acknowledge that the previous phrasing may have been ambiguous, a clearer and more detailed description of the dpTMS protocol has now been provided in Lines 88-92: “To this end, we employed chronometric double-pulse transcranial magnetic stimulation, which is known to transiently reduce cortical excitability at the inter-pulse interval]27]. Within a temporal period broad enough to capture the full duration of gesture–speech integration[28], we targeted specific timepoints previously implicated in integrative processing within IFG and pMTG [23].”

      References:

      Romero, M.C., Davare, M., Armendariz, M. et al. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat Commun 10, 2642 (2019). https://doi.org/10.1038/s41467-019-10638-7

      Paulus W, Rothwell JC. Membrane resistance and shunting inhibition: where biophysics meets state-dependent human neurophysiology. J Physiol. 2016 May 15;594(10):2719-28. doi: 10.1113/JP271452. PMID: 26940751; PMCID: PMC4865581.

      Obermeier, C., & Gunter, T. C. (2015). Multisensory Integration: The Case of a Time Window of Gesture-Speech Integration. Journal of Cognitive Neuroscience, 27(2), 292-307. https://doi.org/10.1162/jocn_a_00688

      Comment 5: Moreover, the studies cited in the table provided by the authors have used a wide range of interpulse intervals, from 20 ms to 100 ms, suggesting that the temporal precision required to capture the dynamics of gesture-speech integration (which is believed to occur within 200-300 ms; Obermeier & Gunter, 2015) may not even be achievable with their 40 ms time windows.

      Double-pulse TMS has been empirically validated across neurocognitive studies as an effective method for establishing causal temporal relationships in cortical networks, with demonstrated sensitivity at timescales spanning 3-60 m. Our selection of a 40-ms interpulse interval represents an optimal compromise between temporal precision and physiological feasibility, as evidenced by its successful application in dissociating functional contributions of interconnected regions including ATL/pMTG (Teige et al., 2018) and IPS/DLPFC (Vernet et al., 2015). This methodological approach combines established experimental rigor with demonstrated empirical validity for investigating the precisely timed IFG-pMTG dynamics underlying gesture-speech integration, as shown in our current findings and prior work (Zhao et al., 2021).

      Our experimental design comprehensively sampled the 0-320 ms post-stimulus period, fully encompassing the critical 200-300 ms window associated with gesture-speech integration, as raised by the reviewer. Notably, our results revealed temporally distinct causal dynamics within this period: the significantly reduced semantic congruency effect emerged at IFG at 200-240ms, followed by feedback projections from IFG to pMTG at 240-280ms. This precisely timed interaction provides direct neurophysiological evidence for the proposed architecture of gesture-speech integration, demonstrating how these interconnected regions sequentially contribute to multisensory semantic integration.

      Comment 6: I do appreciate the extra analyses that the authors mention. However, my 5th comment is still unanswered: why not use entropy scores as a continous measure?

      Analysis with MI and entropy as continuous variables were conducted employing Representational Similarity Analysis (RSA) (Popal et.al, 2019). This analysis aimed to build a model to predict neural responses based on these feature metrics.

      To capture dynamic temporal features indicative of different stages of multisensory integration, we segmented the EEG data into overlapping time windows (40 ms in duration with a 10 ms step size). The 40 ms window was chosen based on the TMS protocol used in Experiment 2, which also employed a 40 ms time window. The 10 ms step size (equivalent to 5 time points) was used to detect subtle shifts in neural responses that might not be captured by larger time windows, allowing for a more granular analysis of the temporal dynamics of neural activity.

      Following segmentation, the EEG data were reshaped into a four-dimensional matrix (42 channels × 20 time points × 97 time windows × 20 features). To construct a neural similarity matrix, we averaged the EEG data across time points within each channel and each time window. The resulting matrix was then processed using the pdist function to compute pairwise distances between adjacent data points. This allowed us to calculate correlations between the neural matrix and three feature similarity matrices, which were constructed in a similar manner. These three matrices corresponded to (1) gesture entropy, (2) speech entropy, and (3) mutual information (MI). This approach enabled us to quantify how well the neural responses corresponded to the semantic dimensions of gesture and speech stimuli at each time window.

      To determine the significance of the correlations between neural activity and feature matrices, we conducted 1000 permutation tests. In this procedure, we randomized the data or feature matrices and recalculated the correlations repeatedly, generating a null distribution against which the observed correlation values were compared. Statistical significance was determined if the observed correlation exceeded the null distribution threshold (p < 0.05). This permutation approach helps mitigate the risk of spurious correlations, ensuring that the relationships between the neural data and feature matrices are both robust and meaningful.

      Finally, significant correlations were subjected to clustering analysis, which grouped similar neural response patterns across time windows and channels. This clustering allowed us to identify temporal and spatial patterns in the neural data that consistently aligned with the semantic features of gesture and speech stimuli, thus revealing the dynamic integration of these multisensory modalities across time. Results are as follows:

      (1)  Two significant clusters were identified for gesture entropy (Figure 1 left). The first cluster was observed between 60-110 ms (channels F1 and F3), with correlation coefficients (r) ranging from 0.207 to 0.236 (p < 0.001). The second cluster was found between 210-280 ms (channel O1), with r-values ranging from 0.244 to 0.313 (p < 0.001).

      (2)  For speech entropy (Figure 1 middle), significant clusters were detected in both early and late time windows. In the early time windows, the largest significant cluster was found between 10-170 ms (channels F2, F4, F6, FC2, FC4, FC6, C4, C6, CP4, and CP6), with r-values ranging from 0.151 to 0.340 (p = 0.013), corresponding to the P1 component (0-100 ms). In the late time windows, the largest significant cluster was observed between 560-920 ms (across the whole brain, all channels), with r-values ranging from 0.152 to 0.619 (p = 0.013).

      (3)  For mutual information (MI) (Figure 1 right), a significant cluster was found between 270-380 ms (channels FC1, FC2, FC3, FC5, C1, C2, C3, C5, CP1, CP2, CP3, CP5, FCz, Cz, and CPz), with r-values ranging from 0.198 to 0.372 (p = 0.001).

      Author response image 1.

      Results of RSA analysis.

      These additional findings suggest that even using a different modeling approach, neural responses, as indexed by feature metrics of entropy and mutual information, are temporally aligned with distinct ERP components and ERP clusters, as reported in the current manuscript. This alignment serves to further consolidate the results, reinforcing the conclusion we draw. Considering the length of the manuscript, we did not include these results in the current manuscript.

      Reference:

      Popal, H., Wang, Y., & Olson, I. R. (2019). A guide to representational similarity analysis for social neuroscience. Social cognitive and affective neuroscience, 14(11), 1243-1253.

      Comment 7: In light of these concerns, I do not believe the authors have adequately demonstrated the spatial and temporal specificity required to disentangle the contributions of the IFG and pMTG during the gesture-speech integration process. While the authors have made a sincere effort to address the concerns raised by the reviewers, and have done so with a lot of new analyses, I remain doubtful that the current methodological approach is sufficient to draw conclusions about the causal roles of the IFG and pMTG in gesture-speech integration.

      To sum up:

      (1) Empirical validation from our prior work (Zhao et al., 2018,2021,JN): The selection of IFG and pMTG as target regions was informed by both: (1) a comprehensive meta-analysis of fMRI studies on gesture-speech integration, and (2) our own prior causal evidence from Zhao et al. (2018, J Neurosci), with detailed stereotactic coordinates provided in the attached Response to Editors and Reviewers letter. The temporal parameters were similarly grounded in empirical data from Zhao et al. (2021, J Neurosci), where we systematically examined eight consecutive 40-ms windows spanning the full integration period (0-320 ms). This study revealed a triple dissociation of effects - occurring exclusively during: (i)semantic integration (but not control tasks), (ii) active stimulation (but not sham), and (iii) specific time windows (but not all time windows)- providing robust causal evidence for the spatiotemporal specificity of IFG-pMTG interactions in gesture-speech processing. Notably, all reviewers recognized the methodological strength of this dpTMS approach in their evaluations (see attached JN assessment for details).

      (2) Convergent evidence from Experiment 3: Our study employed a multi-method approach incorporating three complementary experimental paradigms, each utilizing distinct neurophysiological techniques to provide converging evidence. Specifically, Experiment 3 implemented high-temporal-resolution EEG, which independently replicated the time-sensitive dynamics of gesture-speech integration observed in our double-pulse TMS experiments. The remarkable convergence between these methodologically independent approaches -demonstrating consistent temporal staging of IFG-pMTG interactions across both causal (TMS) and correlational (EEG) measures - significantly strengthens the validity and generalizability of our conclusions regarding the neural mechanisms underlying multisensory integration.

      (3) Established precedents in double-pulse TMS literature: The double-pulse TMS methodology employed in our study is firmly grounded in established neuroscience research. As documented in our detailed Response to Editors and Reviewers letter (citing 11 representative studies), dpTMS has been extensively validated for investigating causal temporal dynamics in cortical networks, with demonstrated sensitivity at timescales ranging from 3-60 ms. Particularly relevant precedents include: 1. Teige et al. (2018, Cortex) successfully dissociated functional contributions of anatomically proximal regions (ATL vs. pMTG vs.mid-MTG) using 40-ms-interval double-pulse TMS; 2. Vernet et al. (2015, Cortex) effectively distinguished neural processing in interconnected frontoparietal regions (right IPS vs. DLPFC) using 40-ms double-pulse TMS parameters. Both parameters are identical to those employed in our current study.

      (4) Neurophysiological Plausibility: The neurophysiological basis for the transient double-pulse TMS effects is well-established through mechanistic studies of TMS-induced cortical inhibition (Romero et al.,2019; Paulus & Rothwell, 2016).

      Taking together, we respectfully submit that our methodology provides robust support for our conclusions.

    1. Author Response:

      We would like to thank the reviewers and editors for your consideration of our manuscript, your kind comments about the value of our study, and for providing constructive feedback. We intend to submit a revised version of the manuscript and address the concerns and recommendations. This will include improvements to the statistical analyses, text content, and text format. 

      Specifically, we will:

      1. Revise the text to better explain the experimental methods, interpretation of results and how our findings are situated in the literature. Although we still believe that there is sufficient evidence to suggest that temperate tree species other than Fagus sylvatica may show similar patterns, we understand the reviewers concerns regarding these statements and will revise them.

      2. Add a supplemetal analysis of leaf chlorophyll content data to use leaf discolouration as an alternative marker of the end of the growing season. On this we would like to make two important points. Firstly, we agree with the reviewers that bud set often occurs before leaf discolouration. In experiment 1, bud set occurred on average on day-of-year (DOY) 262, onset of leaf senescence (last day when leaf chlorophyll content fell below 90% of its measured maximum) occurred on average at the same time – DOY 261, and mid-senescence (50% leaf discolouration) occurred on DOY 320. We do not agree that this excludes the combined discussion of bud set and leaf senescence timing. Whilst environmental drivers can affect parts of plants differently, often responses from different end-of-season indicators (e.g. bud set and leaf discolouration) are similar, even if only directionally. Secondly, shifts in bud set timing will remain the key focus of the manuscript as we believe it has greater physiological relevence to plant development, whereas leaf discolouration may simply follow bud set as a symptom of the completion of growth (reduced sink activity).

      3. Address points raised about potential additional drivers of our observed phenological shifts. For example, photoperiod effects and the Sosltice-as-Phenology-Switch hypothesis are not mutually exclusive, the annual progression of photoperiod is fundamental to how we suggest the switch is regulated (please see L66-68 in the original manuscript). The reviewers also comment on the significant differences in soil water content between the treatment groups in Fig. S1. However, all pots were watered sufficiently to avoid water deficit and all efforts were made to minimise differences in water availabiltiy. A provisional analysis shows only one treatment pair (6 - Late_July_Extreme vs. 7 - Early_August_Moderate) had significantly different soil water content, a pair whose differences are not discussed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):  

      Summary: 

      The paper describes the cryoEM structure of RAD51 filament on the recombination intermediate. In the RAD51 filament, the insertion of a DNA-binding loop called the L2 loop stabilizes the separation of the complementary strand for the base-pairing with an incoming ssDNA and the non-complementary strand, which is captured by the second DNA-binding channel called the site II. The molecular structure of the RAD51 filament with a recombination intermediate provides a new insight into the mechanism of homology search and strand exchange between ssDNA and dsDNA. 

      Strengths: 

      This is the first human RAD51 filament structure with a recombination intermediate called the D-loop. The work has been done with great care, and the results shown in the paper are compelling based on cryo-EM and biochemical analyses. The paper is really nice and important for researchers in the field of homologous recombination, which gives a new view on the molecular mechanism of RAD51-mediated homology search and strand exchange. 

      Weaknesses: 

      The authors need more careful text writing. Without page and line numbers, it is hard to give comments. 

      We would like to thank the reviewer for their kind words of appreciation of our work.

      Reviewer #2 (Public review):  

      Summary: 

      Homologous recombination (HR) is a critical pathway for repairing double-strand DNA breaks and ensuring genomic stability. At the core of HR is the RAD51-mediated strand-exchange process, in which the RAD51-ssDNA filament binds to homologous double-stranded DNA (dsDNA) to form a characteristic D-loop structure. While decades of biochemical, genetic, and single-molecule studies have elucidated many aspects of this mechanism, the atomic-level details of the strand-exchange process remained unresolved due to a lack of atomic-resolution structure of RAD51 D-loop complex. 

      In this study, the authors achieved this by reconstituting a RAD51 mini-filament, allowing them to solve the RAD51 D-loop complex at 2.64 Å resolution using a single particle approach. The atomic resolution structure reveals how specific residues of RAD51 facilitate the strand exchange reaction. Ultimately, this work provides unprecedented structural insight into the eukaryotic HR process and deepens the understanding of RAD51 function at the atomic level, advancing the broader knowledge of DNA repair mechanisms. 

      Strengths: 

      The authors overcame the challenge of RAD51's helical symmetry by designing a minifilament system suitable for single-particle cryo-EM, enabling them to resolve the RAD51 D-loop structure at 2.64 Å without imposed symmetry. This high resolution revealed precise roles of key residues, including F279 in Loop 2, which facilitates strand separation, and basic residues on site II that capture the displaced strand. Their findings were supported by mutagenesis, strand exchange assays, and single-molecule analysis, providing strong validation of the structural insights. 

      Weaknesses: 

      Despite the detailed structural data, some structure-based mutagenesis data interpretation lacks clarity. Additionally, the proposed 3′-to-5′ polarity of strand exchange relies on assumptions from static structural features, such as stronger binding of the 5′-arm-which are not directly supported by other experiments. This makes the directional model compelling but contradicts several well-established biochemical studies that support a 5'-to-3' polarity relative to the complementary strand (e.g., Cell 1995, PMID: 7634335; JBC 1996, PMID: 8910403; Nature 2008, PMID: 18256600). 

      Overall: 

      The 2.6 Å resolution cryoEM structure of the RAD51 D-loop complex provides remarkably detailed insights into the residues involved in D-loop formation. The high-quality cryoEM density enables precise placement of each nucleotide, which is essential for interpreting the molecular interactions between RAD51 and DNA. Particularly, the structural analysis highlights specific roles for key domains, such as the N-terminal domain (NTD), in engaging the donor DNA duplex. 

      This structural interpretation is further substantiated by single-molecule fluorescence experiments using the KK39,40AA NTD mutant. The data clearly show a significant reduction in D-loop formation by the mutant compared to wild-type, supporting the proposed functional role of the NTD observed in the cryoEM model. 

      However, the strand exchange activity interpretation presented in Figure 5B could benefit from a more rigorous experimental design. The current assay measures an increase in fluorescence intensity, which depends heavily on the formation of RAD51-ssDNA filaments. As shown in Figure S6A, several mutants exhibit reduced ability to form such filaments, which could confound the interpretation of strand exchange efficiency. To address this, the assay should either: (1) normalize for equivalent levels of RAD51-ssDNA filaments across samples, or (2) compare the initial rates of fluorescence increase (i.e., the slope of the reaction curve), rather than endpoint fluorescence, to better isolate the strand exchange activity itself. 

      We agree with the reviewer that the reduced filament-forming ability of some of the RAD51 mutants complicates a straightforward interpretation of their strand-exchange assay. Interestingly, the RAD51 mutants that appear most impaired are the esDNA-capture mutants that do not contact the ssDNA in the structure of the pre-synaptic filament. However, the RAD51 NTD mutants, that display the most severe defect in strand-exchange, have a near-WT filament forming ability.

      Based on the structural features of the D-loop, the authors propose that strand pairing and exchange initiate at the 3'-end of the complementary strand in the donor DNA and proceed with a 3'-to-5' polarity. This conclusion, drawn from static structural observations, contrasts with several well-established biochemical studies that support a 5'-to-3' polarity relative to the complementary strand (e.g., Cell 1995, PMID: 7634335; JBC 1996, PMID: 8910403; Nature 2008, PMID: 18256600). While the structural model is compelling and methodologically robust, this discrepancy underscores the need for further experiments. 

      We would like to thank the reviewer for highlighting the importance of our findings to our understanding of the mechanism of homologous recombination.

      The reviewer correctly points out that the polarity of strand exchange by RecA and RAD51 is an extensively researched topic that has been characterised in several authoritative studies. In our paper, we simply describe the mechanistic insights obtained from the structural D-loop models of RAD51 (our work) and RecA (Yang et al, PMID: 33057191).The structures illustrate a very similar mechanism of Dloop formation that proceeds with opposite polarity of strand exchange for RAD51 and RecA. Comparison of the D-loop structures for RecA and RAD51 provides an attractive explanation for the opposite polarity, as caused by the different positions of their dsDNA-binding domains in the filament structure. 

      We agree with the reviewer that further investigation will be needed for an adequate rationalisation of the available evidence. We will mention the relevant literature in the revised version of the manuscript.

      Reviewer #3 (Public review):  

      Summary: 

      Built on their previous pioneer expertise in studying RAD51 biology, in this paper, the authors aim to capture and investigate the structural mechanism of human RAD51 filament bound with a displacement loop (D-loop), which occurs during the dynamic synaptic state of the homologous recombination (HR) strand-exchange step. As the structures of both pre- and post-synaptic RAD51 filaments were previously determined, a complex structure of RAD51 filaments during strand exchange is one of the key missing pieces of information for a complete understanding of how RAD51 functions in the HR pathway. This paper aims to determine the high-resolution cryo-EM structure of RAD51 filament bound with the D-loop. Combined with mutagenesis analysis and biophysical assays, the authors aim to investigate the D-loop DNA structure, RAD51-mediated strand separation and polarity, and a working model of RAD51 during HR strand invasion in comparison with RecA. 

      Strengths: 

      (1) The structural work and associated biophysical assays in this paper are solid, elegantly designed, and interpreted.  These results provide novel insights into RAD51's function in HR. 

      (2) The DNA substrate used was well designed, taking into consideration the nucleotide number requirement of RAD51 for stable capture of donor DNA. This DNA substrate choice lays the foundation for successfully determining the structure of the RAD51 filament on D-loop DNA using single-particle cryo-EM. 

      (3) The authors utilised their previous expertise in capping DNA ends using monomeric streptavidin and combined their careful data collection and processing to determine the cryo-EM structure of full-length human RAD51 bound at the D-loop in high resolution. This interesting structure forms the core part of this work and allows detailed mapping of DNA-DNA and DNA-protein interaction among RAD51, invading strands, and donor DNA arms (Figures 1, 2, 3, 4). The geometric analysis of D-loop DNA bound with RAD51 and EM density for homologous DNA pairing is also impressive (Figure S5). The previously disordered RAD51's L2-loop is now ordered and traceable in the density map and functions as a physical spacer when bound with D-loop DNA. Interestingly, the authors identified that the side chain position of F279 in the L2_loop of RAD51_H differs from other F279 residues in L2-loops of E, F, and G protomers. This asymmetric binding of L2 loops and RAD51_NTD binding with donor DNA arms forms the basis of the proposed working model about the polarity of csDNA during RAD51-mediated strand exchange. 

      (4) This work also includes mutagenesis analysis and biophysical experiments, especially EMSA, singlemolecule fluorescence imaging using an optical tweezer, and DNA strand exchange assay, which are all suitable methods to study the key residues of RAD51 for strand exchange and D-loop formation (Figure 5). 

      Weaknesses: 

      (1) The proposed model for the 3'-5' polarity of RAD51-mediated strand invasion is based on the structural observations in the cryo-EM structure. This study lacks follow-up biochemical/biophysical experiments to validate the proposed model compared to RecA or developing methods to capture structures of any intermediate states with different polarity models. 

      (2) The functional impact of key mutants designed based on structure has not been tested in cells to evaluate how these mutants impact the HR pathway. 

      The significance of the work for the DNA repair field and beyond: 

      Homologous recombination (HR) is a key pathway for repairing DNA double-strand breaks and involves multiple steps. RAD51 forms nucleoprotein filaments first with 3' overhang single-strand DNA (ssDNA), followed by a search and exchange with a homologous strand. This function serves as the basis of an accurate template-based DNA repair during HR. This research addressed a long-standing challenge of capturing RAD51 bound with the dynamic synaptic DNA and provided the first structural insight into how RAD51 performs this function. The significance of this work extends beyond the discovery of biology for the DNA repair field, into its medical relevance. RAD51 is a potential drug target for inhibiting DNA repair in cancer cells to overcome drug resistance. This work offers a structural understanding of RAD51's function with the D-loop and provides new strategies for targeting RAD51 to improve cancer therapies. 

      We thank the reviewer for their positive comments on the significance of our work. Concerning the proposed polarity of strand exchange based on our structural finding, please see our reply to the previous reviewer; we agree with the reviewer that further experimentation will be needed to to reach a settled view on this.

      Testing the functional effects of the RAD51 mutants on HR in cells was not an aim of the current work but we agree that it would be a very interesting experiment, which would likely provide further important insights into the mechanism of strand exchange at the core of the HR reaction.

      Reviewer #1 (Recommendations for the authors):

      Major points:

      (1) Structural analysis showed a critical role of F279 in the L2 loop. However, the biochemical study showed that the F279A substitution did not provide a strong defect in the in vitro strand exchange, as shown in Figure 5B. Moreover, a previous study by Matsuo et al. FEBS J, 2006; ref 43) showed human RAD51-F279A is proficient in the in vitro strand exchange. These suggest that human RAD51 F279 is not critical for the strand exchange. The authors need more discussions of the role of F279 or the L2 for the RAD51-mediated reactions in the Discussion.

      In the strand-exchange essay of Figure 5B, the F279A mutant shows the mildest phenotype, in agreement with the findings of Matsuo et al. Accordingly, in the text we describe the F279A mutant as having a “modest impact” on strand-exchange.

      We have now added a brief comment to the relevant text, pointing out that the result of the strand exchange assay for F279A are in agreement with the previous findings by Matsuo et al., and adding the reference.

      (2) In some parts, the authors cited the newest references rather than the paper describing the original findings. For RAD51 paralogs, why are these three (refs 21,22, 23) selected here? For FIGNL1, why is only one (ref 24) chosen?

      The cited publications were chosen to acquaint the reader with the latest structural and mechanistic advances about the function of some of the most important and well-studied recombination mediator proteins. For completeness, we have now added a further reference for FIGNL1 - Ito, Masaru et al, Nat Comm, 2023 – in the Introduction, to provide the reader with an additional pointer to our current knowledge about the mechanism of FIGNL1 in Homologous Recombination.

      Minor points:

      (1) Page 3, line 1 in the second paragraph, the reaction of "HR": HR should be homology search and strand exchange. HR is used incorrectly throughout the text, please check them. Remove "strandexchange" from ATPases in line 2.

      We believe that HR is used correctly in this context, as we refer to the biochemical reactions of HR, which includes the search for homology and strand exchange.

      We have removed “strand-exchange” from ATPases in line 2, as requested by the reviewer.

      (2) Supplementary Figure 1B, C, "EMSA" experiment: Please indicate an experimental condition in the legend: how ssDNA and dsDNA were mixed with RAD51. In (B), this is not an actual EMSA result, but rather a native gel analysis of reaction products with the D-loop. In (C), was the binding of RAD51 to the pre-formed D-loop examined? Which is correct here? Moreover, why do the authors need streptavidin in this experiment? Please explain why this is necessary for the EMSA assay. Please show where is Cy3 or Cy5 labels on the DNAs should be shown in the schematic drawing.

      The conditions for the experiments of Supplementary figure 1B, C are reported in the Methods section.

      Panel B shows the mobility shifts of the ssDNA and dsDNA sequences in panel A, so it is appropriate to describe it as an EMSA.

      We did not examine the binding of RAD51 to a pre-formed D-loop.

      We used streptavidine in the experiment of Supplementary Figure 1C to show that streptavidine binding did not interfere with D-loop reconstitution.

      The position of the Cy3, Cy5 labels in the DNAs is reported in Table S1.

      (3) Figure S4B, page 6, line 6 from the top, 5'-arm and 3'-arm: please add them to the figure. And also, please explain what 5'-arm and 3'-arm are here in the text, as shown in lines 3-5 in the second paragraph of the same page.

      We thank the reviewer for spotting this slight incongruity. We have removed the reference to 5’- and 3’arms of the donor DNA in the initial description of the D-loop (first paragraph of the “D-loop structure” section, 6 lines from the top), as the nomenclature for the arms of the donor DNA is introduced more appropriately in the following paragraph. Thus, there is no need to re-label Figure S4B; we note that the 5’- and 3’-labels are added to the arms of the donor DNA in Figure S4D.

      (4) Page 7, line 4, and Figure 2E, "C24": C24 should be C26 here (Figure 2D shows that position 24 in esDNA is "T").

      We thank the reviewer for spotting this typo, that is now corrected in the revised version of Figure 2 and in the text.

      (5) Page 8, line 1, K284: It would be nice to show "K284" in Figure 3F.

      We have added the side chain of K284 to Figure 3F, as suggested by the reviewer.

      (6) Page 8, second paragraph, line 3 from the bottom, "5'-arm" should be "3'-arm" for the binding of RAD51A NTD to ds DNA (Figure 4D).

      We thank the reviewer for spotting this typo, that is now corrected in the revised version of the text.

      Reviewer #2 (Recommendations for the authors):

      I understand that the strand exchange polarity of RAD51 should be opposite to that of RecA. But in the RecA manuscript (Nature 2020), it states (in the extended figure 1) " Because the mini-filament consists of fused RecA protomers, it does not reflect the effects a preferential polarity of RecA polymerization might have on the directionality of strand exchange. Also, our strand exchange reactions do not include the single-stranded DNA binding protein SSB that is involved in strand exchange in vivo and may sequester released DNA strands."

      We are aware that the findings by Yang et al, 2020 were obtained with a multi-protomeric RecA chimera and that their construct might not therefore recapitulate a potential effect of RecA polymerisation on the directionality of strand-exchange. 

      Comparison of the RecA and RAD51 D-loop structures shows that RecA and RAD51 adopt the same asymmetric mechanism of D-loop formation, which begins at one arm of the donor DNA and proceeds with donor unwinding and strand invasion until the second arm is captured, completing D-loop formation. However, the cryoEM structures provide compelling evidence that, after engagement with the donor DNA, RecA and RAD51 proceed to unwind the donor with opposite polarity; the structures provide a clear rationale for this, because of the different position of their dsDNA-binding domains relative to the ATPase domain.

      We acknowledge that there exists an extensive body of literature that has investigated the polarity of strand exchange by RecA and RAD51 under a variety of experimental conditions, and we have added a brief comment to the text to reflect this, as well as some of the key citations. Undoubtedly, and as we also mention in our reply to the public reviews, further experimental work will be needed for a full reconciliation of the available evidence.

      Reviewer #3 (Recommendations for the authors):

      (1) I have a minor comment regarding the DNA shown in the structural figures in this work. The authors have used different colours to differentiate between isDNA, esDNA, and csDNA for easier interpretation. However, these colour codes are inconsistent across Figures 1, 2, 3, and 5. This inconsistency makes it difficult to interpret which strand is which, particularly for readers unfamiliar with D-loops and strand invasion. A consistent colour scheme for the DNA strands would enhance the quality of the structural figures.

      We appreciate the reviewer’s comment about the colour scheme of the strands in the D-loop. We chose a unique colour scheme for each figure, to help the reader focus on the particular structural features that we wanted to highlight in the figure. So for instance, in figure 1D we chose to highlight the relationship (complementary vs identical) of the donor DNA strands with the the invading strand; in figure 2, the emphasis is on distinguishing the homologously paired dsDNA (pink) from the exchanged strand (magenta), as a consequence of L2 loop binding; etc.

      (2) I have another comment regarding the rationale behind naming the RAD51 protomers (A to H) within the structure, which could confuse general readers if not clearly explained. In this paper, the RAD51 protomer is RAD51_A when closest to the 3' end of the isDNA. I assume the authors chose this order because HR generates a 3' ssDNA overhang before strand invasion. It would be beneficial for the introduction and results sections to mention this property of the 3' ssDNA overhang and the reasoning behind this naming strategy. This explanation will help readers understand how it differs from other naming orders used in RecA/RAD51 with ssDNA, where protomer A is closer to the 5' ssDNA.

      We thank the reviewer for their insightful comment. We chose to name as chain A the RAD51 protomer nearest to the 3’-end of the isDNA to be consistent with the naming scheme that we use for all our published RAD51 filament structures.

      (3) I have highlighted some text within this paper that has contradicting parts for authors to clarify and correct:

      "Overall, the structural features of the RAD51 D-loop provide a strong indication that strand pairing and exchange begins at the 3'-end of the complementary strand in the donor DNA and progresses with 3'-to5' polarity (Fig. 5F)"

      "The observed 5'-to-3' polarity of strand-exchange by RAD51 is opposite to the 3'-to-5' polarity of bacterial RecA (Fig. S8), that was determined based on cryoEM structures of RecA D-loops".

      We thank the reviewer for alerting us to this inconsistency that has now been corrected in the revised manuscript.

      (4) Figure S8 last model: NTD should be CTD in the title; Figure 2B: resolution scale bar needs A unit. We thank the reviewer for spotting this typo that has now been corrected in the revised version of figure S8. 

      We couldn’t find a missing resolution scale bar in Figure 2B; however, we have added a missing resolution bar with A unit to Fig. S3B.

    1. Author Response:

      The following is the authors’ response to the original reviews

      Reviewer #1(Public Review):

      Summary:

      The authors extended a previous study of selective response to herbivory in Arabidopsis, in order to look specifically for selection on induced epigenetic variation ("Lamarckian evolution"). They found no evidence. In addition, they re-examined result from a previously published study arguing that environmentally induced epigenetic variation was common, and found that these findings were almost certainly artifactual.

      Strengths:

      The paper is very clearly written, there is no hype, and the methods used are state-of-the-art.

      Weaknesses:

      The result is negative, so the best you can do is put an upper bound on any effects.

      Significance:

      Claims about epigenetic inheritance and Lamarckian evolution continue to be made based on very shaky evidence. Convincing negative results are therefore important. In addition, the study presents results that, to this reviewer, suggest that the 2024 paper by Lin et al. [26] should probably be retracted.

      Reviewer #2(Public Review):

      In this paper, the authors examine the extent to which epigenetic variation acquired during a selection treatment (as opposed to standing epigenetic variation) can contribute to adaptation in Arabidopsis. They find weak evidence for such adaptation and few differences in DNA methylation between experimental groups, which contrasts with another recent study (reference 26) that reported extensive heritable variation in response to the environment. The authors convincingly demonstrate that the conclusions of the previous study were caused by experimental error, so that standing genetic variation was mistaken for acquired (epigenetic) variation. Given the controversy surrounding the possible role of epigenetic variation in mediating phenotypic variation and adaptation, this is an important, clarifying contribution.

      I have a few specific comments about the analysis of DNA methylation:

      (1) The authors group their methylation analysis by sequence context (CG, CHG, CHH). I feel this is insufficient, because CG methylation can appear in two distinct forms: gene body methylation (gbM), which is CG-only methylation within genes, and transposable element (TE) and TE-like methylation (teM), which typically involves all sequence contexts and generally affects TEs, but can also be found within genes. GbM and teM have distinct epigenetic dynamics, and it is hard to know how methylation patterns are changing during the experiment if gbM and teM are mixed. This can also have downstream consequences (see point below).

      We thank Reviewer 2 for this suggestion. We usually separate the three contexts because they are set by different enzymes and not because of the general process or specific function. It would indeed be informative to group DMCs into gbM and teM, but as there are many regions with overlaps between genes and transposons, this also adds some complexity. Given that there were very few DMCs, we wanted to keep it simple. Therefore, we wrote that 87.3% of the DMCs were close to or within genes and that 98.1% were close to and within genes or transposons. Together with the clear overrepresentation of the CG context, this indicates that most of the DMCs were related to gbM. We updated the paragraph and specifically referred to gbM to make this point clearer.

      (2) For GO analysis, the authors use all annotated genes as a control. However, most of the methylation differences they observe are likely gbM, and gbM genes are not representative of all genes. The authors' results might therefore be explained purely as a consequence of analyzing gbM genes, and not an enrichment of methylation changes in any particular GO group.

      We are grateful to Reviewer #2 for this suggestion. We updated the GO analysis and defined the background as genes with cytosines that we tested for differences in methylation and which also exhibited overall at least 10% methylation (i.e., one cytosine per gene was sufficient). This resulted in a decrease of the background gene set from 34'615 to 18'315 genes. We still detect enrichment of terms related to epigenetic regulation, transport and growth processes. We have updated the corresponding paragraph accordingly.

      Reviewer #1 (Recommendations for The Authors):

      This paper is very clearly written and could be published as-is. The writing could be improved in a few places, for example:

      "We realized that in this recent study (26), potential errors may have confounded treatments with genetic variation. This is because in that study, Lin and colleagues kept lineages 1-to-1 throughout the experiment by single-seed descent."

      “This” in the second sentence seems to refer to the confounding, not your realization thereof.

      I am sure there are more: just give the manuscript a good read-through.

      We thank the Reviewer for pointing out that some sentences may not be clear. We have edited the manuscript and focused on avoiding misleading or unclear wording.

      Reviewer #2 (Recommendations for The Authors):

      (1) The authors should distinguish gbM from teM and repeat the GO term analysis with an appropriate set of control genes.

      See our response to the public reviews above.

      (2) The authors' experimental design should allow them to directly assess whether the rates of epigenetic change are affected by the selective environment. This would require comparison of methylation patterns of individual plants prior to treatment with their progeny (the progeny is what the authors have currently analyzed). This would entail gathering new data, and I don't feel that this analysis is essential, but given the question the authors are addressing (the extent to which a selective environment can induce heritable epigenetic variation), it seems important to test whether the rates of epigenetic change are at all affected by the selection treatment.

      While this is a very valuable recommendation, we can currently not address it because the person who gathered the data works at a different university now. However, we keep this in mind for future projects.

      Again, we would like to thank the reviewers for the constructive suggestions that help us to improve the manuscript.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this study, the authors developed three case studies:

      (1) transcriptome profiling of two human cell cultures (HEK293 and HeLa)

      (2) identification of experimentally enriched transcripts in cell culture (RiboMinus and RiboPlus treatments)

      (3) identification of experimentally manipulated genes in yeast strains (gene knockouts or strains transformed with plasmids containing the deleted gene for overexpression). Sequencing was performed using the Oxford Nanopore Technologies (ONT), the only technology that allows for real-time analysis. The real-time transcriptomic analysis was performed using NanopoReaTA, a recent toolbox for comparative transcriptional analyses of Nanopore-seq data, developed by the group (Wierczeiko and Pastore et al. 2023). The authors aimed to show the use of the tool developed by them in data generated by ONT, evidencing the versatility of the tool and the possibility of cost reduction since the sequencing by ONT can be stopped at any time since enough data were collected.

      Strengths: 

      Given that Oxford Nanopore Technologies offers real-time sequencing, it is extremely useful to develop tools that allow real-time data analysis in parallel with data generation. The authors demonstrated that this strategy is possible for both human cell lines and yeasts in the case studies presented. It is a useful strategy for the scientific community, and it has the potential to be integrated into clinical applications for rapid and cost-effective quality checks in specific experiments such as overexpression of genes.

      Weaknesses:

      In relation to the RNA-Seq analyses, for a proper statistical analysis, a greater number of replicates should have been performed. The experiments were conducted with a minimal number of replicates (2 replicates for case study 1 and 2 and 3 replicates for case study 3).

      We have addressed this issue by performing two new sets of experiments: similar HEK293 vs HeLa with 10 replicates per condition and heatshocked vs non-heat shock with 6 replicates per condition. In the case of HEK293 vs HeLa comparison, we kept the 2 replicates per condition comparison to demonstrate the effect of limited replication number, simulating an early-stage evaluation of the experimental approach to obtain valuable quality control metrics. Nevertheless, we show that relevant and reproducible data can be obtained even with a lower replication number (2 replicates per condition), compared to a higher replication number (10 replicates), across both PromethION and MinION sequencing platforms.

      Regarding the experimental part, some problems were observed in the conversion to doublestranded and loading for Nanopore-Seq, which were detailed in Supplementary Material 2. This fact is probably reflected in the results where a reduction in the overall sequencing throughput and detected gene number for HEK293 compared to HeLa were observed (data presented in Supplementary Figure 2). It is necessary to use similar quantities of RNA/cDNA since the sequencing occurs in real-time. The authors should have standardized the experimental conditions to proceed with the sequencing and perform the analyses.

      We completely agree with the reviewer. In the 10-replicate HEK vs HeLa experiment, we collected similar data to what was presented in Supplementary Material 2. We chose to include this information to highlight the experimental variability that can arise during Nanopore-seq library preparation, particularly with cDNA synthesis. This type of information is not often highlighted in Nanoporebased studies, yet it is crucial to be aware of such differences. Despite these variations, we identified a consistent set of DEGs across comparisons of low versus high replicate numbers. Importantly, NanopoReaTA successfully provided realtime monitoring (e.g. detected number of genes per replicate/condition) as it allows for informed decision-making regarding the next steps in sequencing-based experiments.

      Reviewer #2 (Public Review):

      Transcriptomics technologies play important roles in biological studies. Technologies based on second-generation sequencing, such as mRNA-seq, face some serious obstacles, including isoform analysis, due to short read length. Third-generation sequencing technologies perfectly solve these problems by having long reads, but they are much more expensive. The authors presented a useful real-time strategy to minimize the cost of sequencing with Oxford Nanopore Technologies (ONT). The authors performed three sets of experiments to illustrate the utility of the real-time strategy. However, due to the problems in experimental design and analysis, their aims are not completely achieved. If the authors can significantly improve the experiments and analysis, the strategy they proposed will guide biologists to conduct transcriptomics studies with ONT in a fast and cost-effective way and help studies in both basic research and clinical applications.

      Strengths:

      The authors have recently developed a computational tool called NanopoReaTA to perform real-time analysis when cDNA/RNA samples are sequenced with ONT (Wierczeiko et al., 2023). The advantage of real-time analysis is that the sequencing can be stopped once enough data is collected to save cost. Here, they described three sets of experiments: a comparison between two human cell lines, a comparison among RNA preparation procedures, and a comparison between genetically modified yeasts. Their results show that the real-time strategy works for different species and different RNA preparation methods.

      Weaknesses:

      However, especially considering that the computational tool NanopoReaTA is their previous work, the authors should present more helpful guidelines to perform real-time ONT analysis and more advanced analysis methods. There are four major weaknesses:

      (1) For all three sets of experiments, the authors focused on sample clustering and gene-level differential expression analysis (DEA), and only did little analysis on isoform level and even nothing in any figures in the main text. Sample clustering and gene-level DEA can be easily and well done using mRNA-seq at a much cheaper cost. Even for initial data quality checking, mRNA-seq can be first done in Illumina MiSeq/NextSeq which is quick, before deep sequencing in HiSeq/NovaSeq. The real power of third-generation RNA sequencing is the isoform analysis due to the long read length. At least for now, PacBio Iso-seq is very expensive and one cannot analyze the data in real-time. Thus, the authors should focus on the real-time isoform analysis of ONT to show the advantages.

      We are aware that isoform analysis is one of the powers of real-time monitoring of long-read data, especially with Nanopore-seq. That is why we have included pipelines such as DRIM-seq and DEX-seq, which could provide valuable information about the differential transcript usage (i.e. isoforms). However, interpreting the results in a biologically meaningful context, particularly regarding the role of specific isoforms, remains challenging. This is especially relevant as our main goal is to demonstrate NanopoReaTA's utility as a real-time transcriptomic tool that offers valuable quality control and meaningful insights. Nevertheless, in the heat-shock experiments, we have identified one isoform that was differentially expressed and included it in the main figure. We hope that with the right experimental setup, users could use the incorporated tools for meaningful analyses for isoforms identification.

      (2) The sample sizes are too small in all three sets of experiments: only two for sets 1 and 2, and three for set 3. For DEA, three is the minimal number for proper statistics. But a sample size of three always leads to very poor power. Nowadays, a proper transcriptomics study usually has a larger sample size. Besides the power issue, biological samples always contain many outliers due to many reasons. It is crucial to show whether the real-time analysis also works for larger sample sizes, such as 10, i.e., 20 samples in total. Will the performance still hold when the sample number is increasing? What is the maximum sample number for an ONT run? If the samples need to be split into multiple runs, how the real-time analysis will be adjusted? These questions are quite useful for researchers who plan to use ONT.

      We thank the reviewer for their suggestion. We performed the suggested experiment in the HEK293 vs HeLa, taking 10 replicates per condition and acquired the data during the sequencing. As you can see in the results (Figure 2), the performance held very well, from the first hour up until the 24hour mark. In theory, the maximum number of barcodes that can be integrated in a sequencing run can be used for the pair-wise comparison. We are using 24 barcoding kit (provided by ONT) therefore we can include up to 12 replicates per condition. We are aware that there is a 96 barcoding kit that could be used as well. However, it is important to note that with more samples integrated in the sequencing run, less reads will be generated per sample. Therefore, it is important to plan properly the number of replicates used per sequencing run.

      (3) According to the manuscript, real-time analysis checks the sequencing data in a few time points, this is usually called sequential analysis or interim analysis in statistics which is usually performed in clinical trials to save cost. Care must be taken while performing these analyses, as repeated checks on the data can inflate the type I error rate. Thus, the authors should develop a sequential analysis procedure for real-time RNA sequencing.

      We would like to respond to this comment by addressing two points: 1) Quality control: During the analysis we offer two main statistics, which enable scientists to assess the experimental development. For each iteration the change in relative gene counts per sample is computed to assess the convergence towards 0. Moreover, for each iteration the number of detected genes per sample is computed to assess whether the number of detected reads is saturated. These metrics allow the user to independently assess whether samples within the experimental development reach a stable state, to reveal a meaningful timepoint of data evaluation. 

      Sequential analysis: One solution to lower the type 1 error during sequential analysis is using the Pocock boundary, a systematic lowering of the p-value threshold depending on the number of interim analyses. We offer in NanopoReaTA a custom choice of the p-value threshold during the analysis. This allows researchers to set their parameters as needed.  

      (4) The experimental set 1 (comparison between two completely different human cell lines) and experimental set 2 (comparison among RNA preparation procedures) are not quite biologically meaningful. If it is possible, it is better for the authors to perform an experiment more similar to a real situation for biological discovery. Then the manuscript can attract more researchers to follow its guidelines.

      We took the suggestion of reviewer 2 (from recommendation for authors) to perform heat-shock experimental comparison between heatshocked and non-heat shocked cells from the same cell line (HEK293). We sequenced the sample (6 replicates per condition) and one-hour postsequencing initiation, we already identified three DEGs (including HSPA1A, DNAJB1, and HSP90AA1) known to be upregulated in heat shock conditions (Yonezawa and Bono 2023, Sanchez-Briñas et al. 2023). Therefore, we illustrate how NanopoReaTA can capture biologically relevant insights in real time.

      Reviewer #1 (Recommendations for The Authors):

      (1) The comparison between two different human cell lines doesn't have much biological relevance. It would be more interesting and useful to evaluate the genes and transcripts expressed from the same cell in different conditions.

      As mentioned previously, we conducted a heat-shock experimental comparison between heat-shocked and non-heat-shocked within the same cell line HEK293. We observed reliable results already within one hour of initiating the sequencing.

      (2) Increase the number of replicates to give greater confidence in the results.

      We have addressed the replicate issue by performing two new sets of experiments: HEK293 vs HeLa with 10 replicates per condition and heatshocked vs non-heat shock with 6 replicates per condition. In both cases, we obtained reliable and reproducible results (even when comparing with lower replicate number).

      (3) One of the advantages of performing Nanopore sequencing is the possibility of sequencing RNA molecules directly. It would be interesting to test the real-time analysis strategy in parallel using direct RNA sequencing if it is possible.

      That is a great point. In theory, it would be possible to perform realtime differential gene expression on direct RNA data (since the pipeline for such analysis is already integrated in NanopoReaTA), however the limiting factor is the lack of multiplexing. To perform real-time transcriptomic analysis with direct RNA-seq data, one would need to sequence at least 4 flow cells (MinION or PromethION), each containing one sample (2 flow cells per condition to perform pairwise transcriptomic analyses). Despite the possibility of such an analysis, this scenario will not be cost-effective as this will increase significantly the costs for the amount of data gathered. We are aware that ONT is planning to release a multiplexing option to direct RNA-seq in the unforeseen future. We have integrated the option of direct RNA-seq analyses for the day that such option will be available, and the users will be able to perform real-time transcriptomic analysis with dRNA-seq data.  

      Some minor weakneses are below:

      (4) With respect to the text as a whole, the authors should be more careful with standardization, such as mL/ml and uL/ul, Ribominus/RiboMinus.

      We have standardized the nomenclature to µL, mL and Ribominus (due to trademark).  

      (5) Set up paragraphs on page 9 and throughout the text when necessary.

      We have set the suggested paragraphs on page 9 and throughout the text.

      (6) Please, check the word form in the sentence: "To isolate the RNA form the

      RiboMinus{trade mark, serif} supernatant.."

      The word has been corrected.

      (7) In order to make clear to the reader at the outset, I suggest including in the methodology how many biological replicates were performed for each cell type studied (cell lines and yeast strains).

      _For cell line w_e have included now the number of replicates used for each replicate. We have included this also for yeast setups. 

      (8) Please, check the Supplementary Tables as the word VERDADEIRO has not been translated (TRUE) in Supplementary Table 1.

      This issue appears to be influenced by the language settings configured on the viewer's computer.

      (9) On page 17, I suggest including the absorbance used to measure RNA concentration in HEK293 and HeLa cell lines. Also, I suggest including how the quality of the RNA extracted from the cell cultures and yeast strains was determined. Was the ratio 260/280 and 260/230 calculated? Given that the material was extracted with Trizol, which has phenol and chloroform in its composition, it would be important to evaluate the quality of the RNA, especially by calculating the 260/230 ratio.

      We have included a statement regarding the concentrations and quality of RNA in the “RNA isolation” section within the material and methods.

      (10) On page 18, the topic of Selective purification of ribosomal-depleted (RiboMinus) and ribosomal-enriched (RiboPlus) transcripts needs to be better detailed, especially in the last two sentences. For example: "The pooled bead samples (containing the rRNA) were further processed with Trizol RNA isolation to complete the purification." This sentence should be detailed to make it clear that this procedure is what you call ribosomal-enriched (RiboPlus).

      Qualitative analysis of the material was performed after rRNA depletion and enrichment.

      We have made these sentences clearer.

      (9) On the topic of Direct cDNA-native barcoding Nanopore library preparation and sequencing, in the following sentences: "Concentration determination (1 μl) and adapter ligation using 5 μL NA, 10 μL NEBNext Quick Ligation Reaction Buffer (5X), and 5 μL Quick T4 DNA Ligase (NEB, cat # E6056) were performed. Pooled library purification with 0.7X AMPure XP Beads resulted in a final elution volume of 33 μl EB. Concentration of the pooled barcoded library was determined using Qubit (1 μl)."

      Two concentration determinations were performed, before and after adapter ligation. I suggest writing one sentence for concentration determination and another for adapter ligation.

      We applied the reviewer’s suggestion. 

      (11) In the section Experimental Design in Results, the first sentences are part of the methodology and are described in materials and methods. I suggest removing it from the results and rewriting the text. Results of the RNA extraction methodology and library preparation were shown in supplementary material. Thus, the authors could mention that the results were presented in supplementary material.

      We have revised this section to remove the details of RNA extraction and library preparation, focusing instead on the pipeline and experimental setups. The methodology is outlined in Figure 1, as well as in the materials and methods and the supplementary figures for each experimental setup.

      Reviewer #2 (Recommendations For The Authors):

      For major weakness 4 described in the Public Review, the authors could try experiments like:

      (1) comparison between females and males of tissues or primary cells; or

      (2) comparison between cell lines before and after heat shock.

      They are easy to perform and much more similar to real experimental designs for discovery, and the authors may actually have some new findings because usually people do not do much investigation on the isoform level using mRNA-seq.

      We thank the reviewer for their suggestions. We performed the heat-shock experimental comparison between heat-shocked and non-heat shocked cells from the same cell line (HEK293). We sequenced the sample (6 replicates per condition) and already one-hour post-sequencing initiation, we identified three DEGs including HSPA1A, DNAJB1, and HSP90AA1 reported to be upregulated heat shock conditions (Yonezawa and Bono 2023, Sanchez-Briñas et al. 2023). We have identified one differentially expressed isoform and included it in the main figure.

      There are two minor weaknesses:

      (1) Many figure numbers in the main text are wrong, including:

      Page 4, "similarity plot and principal component analysis (PCA) (Figure 1B, 1C)";

      Page 7, "same intervals as mentioned earlier (Figure 1A)", and "Next, we inspected the PCA and dissimilarity plots (Figure 2B";

      Page 10, "process (Supplementary Figure 19A) until the 24-hour PSI mark point (Figure 9B", and "NEW1 was the sole differentially expressed gene (Figure 9D)".

      The authors should be more careful about this. It is very confusing for readers.

      We have addressed these points in the text. 

      (2) The texts in the figures are too small to recognize, especially in Figures 4 and 5. The reason is that there are too many sub-figures in one figure. Is that really necessary to put more than 20 sub-figures in one? The authors should better summarize their results. For example, remove sub-figures with little information; do not show figures with the same styles again and again in the main text and just summarize them instead.

      We thank the reviewer for the suggestion. We have updated the figure to focus on the most relevant comparisons (new1Δ-pEV vs. WT-pEV and rkr1Δ-pEV vs. WT-pEV), providing a clearer and more realistic comparison between mutant and wild-type conditions in the main figure. Additionally, a summary and all related comparisons are included in Supplementary Documents S4 and S5. We believe these supplementary figures are essential to demonstrate NanopoReaTA's capabilities as a quality control tool, effectively detecting expected transcriptomic alterations in real-time.

    1. Author response:

      The following is the authors’ response to the original reviews

      We would like to thank you and the reviewers for valuable feedback on the first version of the manuscript. We now addressed all of the issues raised by reviewers, mostly by implementing the suggested changes and clarifying important details in the revised version of the manuscript. A detailed response to each comment is provided in the rebuttal letter. Briefly, the main changes were as follow:

      - We changed homeostatic balance to network balance especially when describing the main finding as the response changes induced by the stimulation occurred on a fast timescale. We speculate the sustained changes observed in the post-stimulation condition are the result of homeostatic mechanisms.

      - We added additional verification on the target stimulation effect by adding a supplementary result showing its effect between the target and off-target z-planes, as well as demonstrating the minimal impact of the imaging laser to rsChRmine.

      - We added a simple toy model illustrating suppression specifically applied to co-tuned cells that yields the response amplitude decrease, to further support our findings.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Kang et al. provide the first experimental insights from holographic stimulation of auditory cortex. Using stimulation of functionally-defined ensembles, they test whether overactivation of a specific subpopulation biases simultaneous and subsequent sensory-evoked network activations.

      Strengths:

      The investigators use a novel technique to investigate the sensory response properties in functionally defined cell assemblies in auditory cortex. These data provide the first evidence of how acutely perturbing specific frequency-tuned neurons impacts the tuning across a broader population.

      Weaknesses:

      I have several main concerns about the interpretation of these data:<br /> (1) The premise of the paper suggests that sensory responses are noisy at the level of neurons, but that population activity is reliable and that different neurons may participate in sensory coding on different trials. However, no analysis related to single trial variance or overall stability of population coding is provided. Specifically, showing that population activity is stable across trials in terms of total activity level or in some latent low dimensional representation would be required to support the concept of "homeostatic balancing".

      Thank you for raising an important point. We agree that the term ‘homeostatic balancing’ may be not the best term to be applied to explain the main results. We now have toned down on the homeostatic plasticity aspect to explain the main result. We have changed the term to a simple ‘network balance’, potentially due to various factors including rapid synaptic plasticity. We speculate the persistent activity of co-tuned cells in the post-stimulation session as a result of homeostatic balance, instead of rapidly changing back their responses to the baseline. Relevant changes are implemented throughout the manuscript including Introduction (e.g., lines 76-78) and Discussion sections (e.g., lines 453-456).

      (2) Rebalancing would predict either that the responses of stimulated neurons would remain A) elevated after stimulation due to a hebbian mechanism or B) suppressed due to high activity levels on previous trials, a homeostatic mechanism. The authors report suppression in targeted neurons after stimulation blocks, but this appears similar to all other non-stimulated neurons. How do the authors interpret the post-stimulation effect in stimulated neurons?

      It is true that the post stimulation effect of no response change both from co-tuned and non co-tuned neurons, and both from stimulation and control sessions. This could be due to neuronal activity being adapted and decreased enough from the consecutive presentation of acoustic stimuli themselves. However, we still think that if the stimulation driven co-tuned non stimulated neurons’ response decrease is highly driven by stimulation without homeostasis, at least their responses should bounce back during the post-stimulation. We agree that further investigation would be required to further confirm such effect. We elaborated this as another discussion point in the discussion section (lines 457-464).

      (3) The authors suggest that ACtx is different from visual cortex in that neurons with different tuning properties are intermingled. While that is true at the level of individual neurons, there is global order, as demonstrated by the authors own widefield imaging data and others at the single cell level (e.g. Tischbirek et al. 2019). Generally, distance is dismissed as a variable in the paper, but this is not convincing. Work across multiple sensory systems, including the authors own work, has demonstrated that cortical neuron connectivity is not random but varies as a function of distance (e.g. Watkins et al. 2014). Better justification is needed for the spatial pattern of neurons that were chosen for stimulation. Further, analyses that account for center of mass of stimulation, rather than just the distance from any stimulated neuron would be important to any negative result related to distance.

      Thank you for the further suggestion regarding the distance matter. While Watkins et al., 2014 and Levy and Reyes (2012) showed stronger connectivity for nearby cells as well as for more distant patches, on a functional level, Winkowski & Kanold 2013 showed high frequency heterogeneity especially in L2/3, where we targeted to image in this study. Thus, connected cells can have varied tuning consistent with spine imaging (Konnerth paper). We now also calculated the distance based on the center of mass of target cells to calculate the distance effect for an additional verification and still observed no distance related stimulation effect. We now replaced the Figure 4B with the result from the center of mass calculation.

      (4) Data curation and presentation: Broadly, the way the data were curated and plotted makes it difficult to determine how well-supported the authors claims are. In terms of curation, the removal of outliers 3 standard deviations above the mean in the analysis of stimulation effects is questionable. Given the single-cell stimulation data presented in Figure 1, the reader is led to believe that holographic stimulation is quite specific. However, the justification for removing these outliers is that there may be direct stimulation 20-30 um from the target. Without plotting and considering the outliers as well, it is difficult to understand if these outsized responses are due to strong synaptic connections with neighboring neurons or rather just direct off-target stimulation. Relatedly, data presentation is limited to the mean + SEM for almost all main effects and pre-post stimulation effects are only compared indirectly. Whether stimulation effects are driven by just a few neurons that are particularly suppressed or distinct populations which are suppressed or enhanced remains unclear.

      Thank you for pointing this out. Now we specifically removed neighboring cells that are < 20 um from the target point and we observed similar. We replaced all the relevant figures, texts, and statistical results to ensure that the exclusion was specific to overlapping neighboring cells.

      Reviewer #2 (Public review):

      The goal of HiJee Kang et al. in this study is to explore the interaction between assemblies of neurons with similar pure-tone selectivity in mouse auditory cortex. Using holographic optogenetic stimulation in a small subset of target cells selective for a given pure tone (PTsel), while optically monitoring calcium activity in surrounding non-target cells, they discovered a subtle rebalancing process: co-tuned neurons that are not optogenetically stimulated tend to reduce their activity. The cortical network reacts as if an increased response to PTsel in some tuned assemblies is immediately offset by a reduction in activity in the rest of the PTsel-tuned assemblies, leaving the overall response to PTsel unchanged. The authors show that this rebalancing process affects only the responses of neurons to PTsel, not to other pure tones. They also show that assemblies of neurons that are not selective for PTsel don't participate in the rebalancing process. They conclude that assemblies of neurons with similar pure-tone selectivity must interact in some way to organize this rebalancing process, and they suggest that mechanisms based on homeostatic signaling may play a role.

      he conclusions of this paper are very interesting but some aspects of the study including methods for optogenetic stimulation, statistical analysis of the results and interpretation of the underlying mechanisms need to be clarified and extended.

      (1) This study uses an all-optical approach to excite a restricted group of neurons chosen for their functional characteristics (their frequency tuning), and simultaneously record from the entire network observable in the FOV. As stated by the authors, this approach is applied for the first time to the auditory cortex, which is a tour de force. However, such an approach is complex and requires precise controls to be convincing. In the manuscript, several methodological aspects are not sufficiently described to allow a proper understanding.

      (i) The use of CRmine together with GCaMP8s has been reported as problematic as the 2Ph excitation of GCaMP8s also excites the opsin. Here, the authors use a red-shifted version of CRmine to prevent such cross excitation by the imaging laser. To be convincing, they should explain how they controlled for the absence of rsCRmine activation by the 940nm light. Showing the fluorescence traces immediately after the onset of the imaging session would ensure that neurons are not excited as they are imaged.

      Thank you for pointing this out. We realized that the important reference was omitted. Kishi et al. 2022 validated the efficacy of the rsChRmine compared to ChRmine. In this paper, they compared regular ChRmine and rsChRmine activity to different wavelengths and setting and showed the efficiency of rsChRmine with reduced optical cross talk. This reference is now included in the manuscript (line 98). We also checked the spontaneous baseline activity that lasted about 10 sec. before any of the sound presentation and observed a relatively stable activity throughout, rather than any imaging session onset related activation, which is also similar to what we see from another group of GCaMP6s transgenic animals.

      Author response image 1.

      Baseline fluorescence activity across cells within FOVs from AAV9-hSyn-GCaMP8s-T2A-rsChRmine injected mice (top) and CBA X Thy1-GCaMP6s F1 transgenic mice (bottom). Fluorescence levels and activity patterns remain similar, suggesting no evident imaging laser-induced activation from rsChRmine. Note that GCaMP8s examples are smoothed by using moving average of 4 points as GCaMP8s show faster activity.

      (ii) Holographic patterns used to excite 5 cells simultaneously may be associated with out-of-focus laser hot spots. Cells located outside of the FOV could be activated, therefore engaging other cells than the targeted ones in the stimulation. This would be problematic in this study as their tuning may be unrelated to the tuning of the targeted cells. To control for such an effect, one could in principle decouple the imaging and the excitation planes, and check for the absence of out-of-focus unwanted excitation.

      We further verified whether the laser power at the targeted z-plane influences cells’ activity at nearby z-planes. As the Reviewer pointed out, the previous x- and y-axis shifts were tested by single-cell stimulation. This time, we stimulated five cells simultaneously, to match the actual experiment setup and assess potential artifacts in other planes. We observed no stimulation-driven activity increase in cells at a z-planed shifted by 20 µm (Supplementary Figure 1). This confirms the holographic stimulation accurately manipulates the pre-selected target cells and the effects we observe is not likely due to out-of-focus stimulation artifacts. It is true that not all pre-selected cells showing significant response changes prior to the main experiment are effectively activated t every trial during the experiments. We varied the target cell distances across FOVs, from nearby cells to those farther apart within the FOV. We have not observed a significant relationship between the target cell distances and stimulation effect. Lastly, cells within < 20 µm of the target were excluded to prevent potential excitation due to the holographic stimulation power. Given the spontaneous movements of the FOV during imaging sessions due to animal’s movement, despite our efforts to minimize them, we believe that any excitation from these neighboring neurons would be directly from the stimulation rather than the light pattern artifact itself.

      (iii) The control shown in Figure 1B is intended to demonstrate the precision of the optogenetic stimulation: when the stimulation spiral is played at a distance larger or equal to 20 µm from a cell, it does not activate it. However, in the rest of the study, the stimulation is applied with a holographic approach, targeting 5 cells simultaneously instead of just one. As the holographic pattern of light could produce out-of-focus hot spots (absent in the single cell control), we don't know what is the extent of the contamination from non-targeted cells in this case. This is important because it would determine an objective criterion to exclude non-targeted but excited cells (last paragraph of the Result section: "For the stimulation condition, we excluded non-target cells that were within 15 µm distance of the target cells...")

      Highly sensitive neurons to certain frequency also shows the greatest adaptation effect, which can be observed the control condition. Therefore, the high sensitive neurons showing greater amplitude change is first related to the neuronal adaptation to its sensitive information. However, by stimulating the co-tuned target neurons, other co-tuned non-target neurons shows significantly greater amplitude decrease, compared to either non co-tuned target neurons stimulation or control (the latter did not meet the significance level).

      We also tried putting more rigorous criterion as 20 um instead of 15 um as you pointed out since the spiral size was 20 um. The result yielded further significant response amplitude decrease due to the stimulation effect only from co-tuned non-target neurons for processing their preferred frequency information.

      (2) A strength of this study comes from the design of the experimental protocol used to compare the activity in non-target co-tuned cells when the optogenetic stimulation is paired with their preferred tone versus a non-preferred pure tone. The difficulty lies in the co-occurrence of the rebalancing process and the adaptation to repeated auditory stimuli, especially when these auditory stimuli correspond to a cell's preferred pure tones. To distinguish between the two effects, the authors use a comparison with a control condition similar to the optogenetic stimulation conditions, except that the laser power is kept at 0 mW. The observed effect is shown as an extra reduction of activity in the condition with the optogenetic paired with the preferred tone, compared to the control condition. The specificity of this extra reduction when stimulation is synchronized with the preferred tone, but not with a non-preferred tone, is a potentially powerful result, as it points to an underlying mechanism that links the assemblies of cells that share the same preferred pure tones.

      The evidence for this specificity is shown in Figure 3A and 3D. However, the universality of this specificity is challenged by the fact that it is observed for 16kHz preferring cells, but not so clearly for 54kHz preferring cells: these 54kHz preferring cells also significantly (p = 0.044) reduce their response to 54kHz in the optogenetic stimulation condition applied to 16kHz preferring target cells compared to the control condition. The proposed explanation for this is the presence of many cells with a broad frequency tuning, meaning that these cells could have been categorized as 54kHz preferring cells, while they also responded significantly to a 16kHz pure tone. To account for this, the authors divide each category of pure tone cells into three subgroups with low, medium and high frequency preferences. Following the previous reasoning, one would expect at least the "high" subgroups to show a strong and significant specificity for an additional reduction only if the optogenetic stimulation is targeted to a group of cells with the same preferred frequency. Figure 3D fails to show this. The extra reduction for the "high" subgroups is significant only when the condition of opto-stimulation synchronized with the preferred frequency is compared to the control condition, but not when it is compared to the condition of opto-stimulation synchronized with the non-preferred frequency.

      Therefore, the claim that "these results indicate that the effect of holographic optogenetic stimulation depends not on the specific tuning of cells, but on the co-tuning between stimulated and non-stimulated neurons" (end of paragraph "Optogenetic holographic stimulation decreases activity in non-target co-tuned ensembles") seems somewhat exaggerated. Perhaps increasing the number of sessions in the 54kHz target cell optogenetic stimulation condition (12 FOV) to the number of sessions in the 16kHz target cell optogenetic stimulation condition (18 FOV) could help to reach significance levels consistent with this claim.

      We previously also tested by randomly subselecting 12 FOVs from 16kHz stimulation condition to match the same number of FOV between two groups and did not really see any result difference. However, to further ensure the results, we now added three more dataset for 54 kHz target cell stimulation condition (now 15 FOV) which yielded similar outcome. We have now updated the statistical values from added datasets.

      (3) To interpret the results of this study, the authors suggest that mechanisms based on homeostatic signaling could be important to allow the rebalancing of the activity of assemblies of co-tuned neurons. In particular, the authors try to rule out the possibility that inhibition plays a central role. Both mechanisms could produce effects on short timescales, making them potential candidates. The authors quantify the spatial distribution of the balanced non-targeted cells and show that they are not localized in the vicinity of the targeted cells. They conclude that local inhibition is unlikely to be responsible for the observed effect. This argument raises some questions. The method used to quantify spatial distribution calculates the minimum distance of a non-target cell to any target cell. If local inhibition is activated by the closest target cell, one would expect the decrease in activity to be stronger for non-target cells with a small minimum distance and to fade away for larger minimum distances. This is not what the authors observe (Figure 4B), so they reject inhibition as a plausible explanation. However, their quantification doesn't exclude the possibility that non-target cells in the minimum distance range could also be close and connected to the other 4 target cells, thus masking any inhibitory effect mediated by the closest target cell. In addition, the authors should provide a quantitative estimate of the range of local inhibition in layers 2/3 of the mouse auditory cortex to compare with the range of distances examined in this study (< 300 µm). Finally, the possibility that some target cells could be inhibitory cells themselves is considered unlikely by the authors, given the proportions of excitatory and inhibitory neurons in the upper cortical layers. On the other hand, it should be acknowledged that inhibitory cells are more electrically compact, making them easier to be activated optogenetically with low laser power.

      Minimum distance is defined as the smallest distance non-target cell to any of the target cells. Thus, if this is local inhibition, it is likely that the closest target cell would have affected the non-target cells’ response changes. We also calculated the distance based on the center of mass of target cells to calculate the distance effect for an additional verification, based on both Reviewers’ comments, and still observed no distance related stimulation effect. The result is now updated in Figure 4B.

      Based on previous literature, such as Levy & Reyes 2012, the excitatory and inhibitory connectivity is known to range around 100 um distance. Our results do not necessarily show any further effect observed for cells with distance below 100 um. This suggests that such effect is not limited to local inhibition. We also added further speculation on why our results are less likely due to increased inhibition, albeit the biological characteristics of inhibitory neurons to optogenetics.

      Reviewer #3 (Public review):

      Summary:

      The authors optogenetically stimulate 5 neurons all preferring the same pure tone frequency (16 or 54 kHz) in the mouse auditory cortex using a holography-based single cell resolution optogenetics during sound presentation. They demonstrate that the response boosting of target neurons leads to a broad suppression of surrounding neurons, which is significantly more pronounced in neurons that have the same pure tone tuning as the target neurons. This effect is immediate and spans several hundred micrometers. This suggests that the auditory cortical network balances its activity in response to excess spikes, a phenomenon already seen in visual cortex.

      Strengths:

      The study is based on a technologically very solid approach based on single-cell resolution two-photon optogenetics. The authors demonstrate the potency and resolution of this approach. The inhibitory effects observed upon targeted stimulation are clear and the relative specificity to co-tuned neurons is statistically clear although the effect size is moderate.

      Weaknesses:

      The evaluation of the results is brief and some aspects of the observed homeostatic are not quantified. For example, it is unclear whether stimulation produces a net increase or decrease of population activity, or if the homeostatic phenomenon fully balances activity. A comparison of population activity for all imaged neurons with and without stimulation would be instructive. The selectivity for co-tuned neurons is significant but weak. Although it is difficult to evaluate this issue, this result may be trivial, as co-tuned neurons fire more strongly. Therefore, the net activity decrease is expected to be larger, in particular, for the number of non-co-tuned neurons which actually do not fire to the target sound. The net effect for the latter neurons will be zero just because they do not respond. The authors do not make a very strong case for a specific inhibition model in comparison to a broad and non-specific inhibitory effect. Complementary modeling work would be needed to fully establish this point.

      Thank you for raising important points. We agree that the term homeostatic balancing may have been an overstatement. We toned down regarding the homeostatic plasticity and conclude the result from the rapid plasticity at a single trial level now. Regardless, the average activity level did not differ among stimulation conditions (control, 16kHz stim, and 54kHz stim), which seems to suggest that overall activity level has been maintained regardless of the stimulation. We added a new figure of the global activity change as Fig. 4A.

      We also added a simple model work in which a suppression term was applied either to all neurons or specifically to non-target co-tuned cells to test our results from the data.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) For the first holography paper in A1, more information is needed about how holographic stimulation was performed and how stimulation artifacts were avoided or removed from the data set, especially as the text states that the PMTs were left open for the duration of the experiment.

      We further clarified the rationale of leaving the shutter open to avoid any mechanic sounds to activate neurons in the AC. We further clarified that we keep the uncaging shutter open since the Bruker default setting (Software version: 5.7) opens and closes the shutter for the every iteration of the stimulation which generates extra heavy mechanical sounds which then hinders whether the activation is due to the sound or stimulation.

      (2) The choice of the dF/F as the primary tool for quantifying data should be better justified. Presumably, cells have very different variances in baseline activity levels and baseline fluorescence levels that create a highly skewed distribution of responses across the population. Further, a

      To take the baseline activity variances into account, we first calculate dF/F normalising to the baseline period (about 330 ms before the sound onset) right before each trial, per cell level. By doing so, we minimize any effect that could have been driven by variable baseline activity levels across neurons.

      (3) More analysis should be performed to determine why 33% of stimulated cells are not activated, and instead are suppressed during stimulation. Is this related to a cells baseline fluorescence?

      Great point. Although we tried our best to pre-select stimulation-responsive neurons before we start the actual experiments and head fix the animals as much as possible, these neurons do not stay as the “best stimulation-responsive neurons” throughout the entire imaging session. There can be various caveats on this. First, they seem to change their activity levels due to the optogenetic stimulation after they are exposed to acoustic stimulation. Second, since the AC is in the temporal side, it is likely to be more affected from the animals’ and their brain movements throughout the imaging session, which could be bigger than visual cortex or motor cortex. However, 33% of 5 cells is about 1.5 cells so it is usually missed about one cell on average, although some sessions have all 5 cells being stimulated while some other sessions have clearly less effective holographic stimulation effect.

      We even manually visualised the fluorescence change due to the holographic stimulation before we start any imaging sessions. Regardless, they don’t stay as the ‘best stimulation responsive cells’ throughout which we cannot control the natural biological aspect of neuronal activities. Regardless, based on the significant stimulation effects observed by presenting different pure tone frequencies as well as delivering different target stimulation and no-stimulation control, we believe that the effect itself is valid. We added these caveats into the manuscript as a further discussion point and things to consider.

      (4) The linear mixed-effects model should include time as a variable as A) the authors hypothesize that responses should be reduced over time due to sensory adaptation and that B) stimulation induced suppression might be dynamic (though they find it is not).

      Since the stimulation effect seems to be independent from trial-by-trial changes among stimulation conditions (Fig. 4) and we now have toned down on the aspect of homeostasis, we kept the current mixed-effect model variables.

      (5) More speculation is needed on why stimulation suppresses responses from the first trial onwards.

      We further speculate such rapid response changes due to activity-dependent synaptic changes due to overall network energy shift from optogenetic stimulation to maintain the cortical circuit balance.  

      (6) What does each dot represent in Figure 4a vs. Figure 4B? They are very different in number.

      In 4A, each dot is average amplitude change values per each trial level. They are exactly same number of dots between frequency, cell groups and conditions as each dot represents each trial (20 each). The reason why it may look differ could be only due to some overlaps between frequencies.

      In 4B, each dot is each cell. The reason why it’s denser in Stimulation conditions’ 16kHz preferring cells panel is that it naturally had more FOVs thus more cells to be plotted. We further clarified these details in the figure legend.

      (7) How sensory responsive neurons were selected should be shown in the figures. Specifically, which fraction of the 30% of most responsive neurons were stimulated should be stated. Depending on the exact yield in the field of view, all or only a minority of strongly sensory responsive neurons are being stimulated, which in either case would color the interpretation of the data.

      We tried varying the FOV as much as possible across sessions to ensure that FOVs are directly in the A1 covering a range of frequencies. If we cannot observe more than 80 neurons as sound responsive neurons from processed suite2p data, we searched for another FOV.  

      We now included an example FOV of the widefield imaging we first conducted to identify A1, and another example FOV of the 2-photon imaging where we conducted a short sound presentation session to identify the sensory responsive neurons, as an inset of the ‘Cell selection’ part in Figure 1.

      Reviewer #2 (Recommendations for the authors):

      Minor points:

      - p.4, last line: "of" probably missing "the processing the target..."

      Fixed.

      - p.5, top, end of the first paragraph of this page: Figure 3B and 3E don't show exemplar traces.

      Corrected as Figure 2A and 2D.

      - P.5, first sentence of the paragraph "Optogenetic holographic stimulation increases activity in targeted ensembles": reference to Figure 3A and 3D should rather be Figure 2A and 2D.

      Corrected.

      - P.9, 2nd paragraph: sentence with a strange syntax: "since their response amplitude..."

      Corrected.

      - Figure 2: panels C and F are missing.

      Corrected.

      - p.11, methods: "wasthen" should be "was then".

      Corrected.

      - p.12, analysis: it is not clearly explained why the sound evoked activity is computed based on the 160ms to 660ms after sound onset instead of 0ms to 660 ms. It is likely related to some potential contamination but it should be explicitly explained.

      Due to the relatively slow calcium transient to more correctly capture the sound related evoked responses. Added this detail.

      - Methods, analysis: the authors should better explain how they conducted the random permutation described in the Figures 1D, 2B and 2E. Which signals were permutated?

      Random permutation to shuffle the target cell ID.

      - References 55 and 56 don't explicitly state that excitatory neurons generally have stronger responses to sound than inhibitory neurons.

      Thank you for pointing out this error. We replaced those references with Maor et al. 2016 and Kerlin et al. 2010, showing excitatory neurons show more selective tuning, and also changed the wording more appropriately.

      - It is not explained whether the imaging sessions are performed on awake or anaesthetized animals. It is probably done on awake animals, but then it is not clear what procedure is used to get the animals used to the head restraint. It usually takes a few days for the mice to get used to it, and the stress level is often different at the beginning and end of an experiment. Given the experimental protocol used in the study, in which sessions are performed sequentially and compared to each other, this aspect could play a role. However, the main comparison made is probably safe as it compares a control condition (laser at 0mW) and conditions with optogenetic stimulation, all done with similar sequences of sessions.

      The experiment was conducted on awake animals. Although we did not have any control on comparing their status in the beginning and the end of the experiment, they all had a widefield imaging session imaging session to identify the A1 region which uses the same head-fixation setup, thus they are more used to the setup when we conduct 2-photon imaging and stimulation. Regardless of the session, if animals show any sign of extra discomfort due to the unfamiliar setup, we keep them there for 10-15 minutes until they are accustomed to the setup with no movement. If they still show a sign of discomfort, we take them out and try for another day. We now included this detail on the manuscript.

      Reviewer #3 (Recommendations for the authors):

      - Evaluate the global effect of stimulation on the population activity averaged across all neurons (activated and non-activated).

      Thank you for your suggestions. We now included a new Figure 3A that present the population activity across all responsive cells. The average activity level did not differ among stimulation conditions (control, 16kHz stim, and 54kHz stim).

      - Evaluate with a simple model if a population of neurons with different sound tuning receiving non-specific inhibition would not produce the observed effect.

      Thank you for the suggestion. We generated a simple model in which a suppression term was applied either to all neurons or specifically to non-target co-tuned cells to test our results from the data. We took a similar range of number of neurons and FOVs to closely simulate the model to the real dataset structure. On 50 simulated calcium traces of neurons (n),

      Trace<sub>n(t)</sub> = R<sub>n(t)</sub> – theta<sub>n</sub> + epsilon<sub>n(t)</sub>

      Where R<sub>n(t)</sub> is a response amplitude from either baseline or stimulation session, theta<sub>n</sub> is a suppression term applied either to all neurons or only to non-target co-tuned neurons, only during the stimulation session, and epsilon<sub>n(t)</sub> is additive noise. Theta was defined based on the average amount of increased activity amplitudes generated from target neurons due to the stimulation, implemented from the real dataset with extra neuron-level jitter. Similar to the real data analyses, we compared the response change between the stimulation and baseline sessions’ trace amplitudes. By comparing two different model outcomes and the real data, we observed a significant effect of the model type (F(2, 2535) = 34.943, p < 0.0001) and interaction between the model type and cell groups was observed (F(2, 2535) = 36.348, p < 0.0001). Applying suppression to only non-target co-tuned cells during the stimulation session yielded a significant response amplitude decrease for co-tuned cells compared to non co-tuned cells (F(1, 2535) = 45.62, p < 0.0001), which resembles the real data In contrast, applying suppression to all non-target cells led to similar amplitude changes in both co-tuned and non co-tuned neurons (F(1, 2535) = 0.87, p = 0.35), which was not observed in either the real data or the simulated data restricted to co-tuned cell suppression. Therefore, the model predicts correctly that the specific suppression given to only co-tuned neurons drove the real data outcome. All of this information is now added into Methods and Results sections and the figure is added as Figure 3C.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors have developed self-amplifying RNAs (saRNAs) encoding additional genes to suppress dsRNA-related inflammatory responses and cytokine release. Their results demonstrate that saRNA constructs encoding anti-inflammatory genes effectively reduce cytotoxicity and cytokine production, enhancing the potential of saRNAs. This work is significant for advancing saRNA therapeutics by mitigating unintended immune activation.

      Strengths:

      This study successfully demonstrates the concept of enhancing saRNA applications by encoding immune-suppressive genes. A key challenge for saRNA-based therapeutics, particularly for non-vaccine applications, is the innate immune response triggered by dsRNA recognition. By leveraging viral protein properties to suppress immunity, the authors provide a novel strategy to overcome this limitation. The study presents a well-designed approach with potential implications for improving saRNA stability and minimizing inflammatory side effects.

      We thank Reviewer #1 for their thorough review and for recognizing both the significance of our work and the potential of our strategy to expand saRNA applications beyond vaccines.

      Weaknesses:

      (1) Impact on Cellular Translation:

      The authors demonstrate that modified saRNAs with additional components enhance transgene expression by inhibiting dsRNA-sensing pathways. However, it is unclear whether these modifications influence global cellular translation beyond the expression of GFP and mScarlet-3 (which are encoded by the saRNA itself). Conducting a polysome profiling analysis or a puromycin labeling assay would clarify whether the modified saRNAs alter overall translation efficiency. This additional data would strengthen the conclusions regarding the specificity of dsRNA-sensing inhibition.

      We thank the Reviewer for this insightful suggestion. We performed a puromycin labeling assay to assess global translation rates (Figure 3—figure supplement 1c). This experiment revealed that the E3 construct significantly reduces global protein synthesis, despite driving high levels of saRNAencoded transgene expression (Figure 1d, e). In contrast, the E3-NSs-L* construct mitigated this reduction in global translation while maintaining moderate transgene expression. These findings support our hypothesis that E3 enhances transgene output in part by activating RNase L, which degrades host mRNAs and thereby reduces ribosomal competition. We appreciate the Reviewer’s recommendation of this experiment, which has strengthened the manuscript.

      (2) Stability and Replication Efficiency of Long saRNA Constructs:

      The saRNA constructs used in this study exceed 16 kb, making them more fragile and challenging to handle. Assessing their mRNA integrity and quality would be crucial to ensure their robustness.

      Furthermore, the replicative capacity of the designed saRNAs should be confirmed. Since Figure 4 shows lower inflammatory cytokine production when encoding srIkBα and srIkBαSmad7-SOCS1, it is important to determine whether this effect is due to reduced immune activation or impaired replication. Providing data on replication efficiency and expression levels of the encoded anti-inflammatory proteins would help rule out the possibility that reduced cytokine production is a consequence of lower replication.

      We thank the Reviewer for these valuable suggestions.

      To assess the integrity of the saRNA constructs, we performed denaturing gel electrophoresis (Supplemental Figure 6c). The native saRNA, E3, and E3-NSs-L* constructs each migrated as a single band. The moxBFP, srIκBα, and srIκBα-Smad7-SOCS1 constructs showed both a full-length transcript and a lower-abundance truncated band (Supplemental Figure 6d), suggestive of a cryptic terminator sequence introduced in a region common to these three constructs.

      To evaluate replicative capacity, we performed qPCR targeting EGFP, which is encoded by all constructs. This analysis revealed that the srIκBα-Smad7-SOCS1 construct exhibited lower replication efficiency than both native saRNA and E3. Several factors may contribute to this difference, including the longer transcript length, reduced molar input when equal mass was used for transfection, prevention of host mRNA degradation due to RNase L inhibition, or the presence of truncated transcripts.

      Given these confounding variables, we revised our approach to analyzing cytokine production. Rather than comparing all six constructs together, we split the analysis into two parts: (1) the effects of dsRNA-sensing pathway inhibition (Figure 4a), and (2) the effects of inflammatory signalling inhibition (Figure 4c). For the latter, we compared srIκBα and srIκBα-Smad7-SOCS1 to moxBFP, as these three constructs are more comparable in size, share the same truncated transcript, and all encode L* to inhibit RNase L. This strategy minimizes the likelihood that differences in the cytokine responses are due to variation in replication efficiency.

      (3) Comparative Data with Native saRNA:

      Including native saRNA controls in Figures 5-7 would allow for a clearer assessment of the impact of additional genes on cytokine production. This comparison would help distinguish the effect of the encoded suppressor proteins from other potential factors.

      We thank the Reviewer for this helpful suggestion. We have added the native saRNA condition to Figure 5 as a visual reference. However, due to the presence of truncated transcripts in the constructs designed to inhibit inflammatory signalling pathways, the actual amount of full-length saRNA delivered in these conditions is likely lower than expected, despite using equal total RNA mass for transfection. This complicates direct comparisons with constructs targeting dsRNAsensing pathways, which do not show transcript truncation. For this reason, native saRNA was included only as a visual reference and was not used in statistical comparisons with the inflammatory signalling inhibitor constructs.

      (4) In vivo Validation and Safety Considerations:

      Have the authors considered evaluating the in vivo potential of these saRNA constructs? Conducting animal studies would provide stronger evidence for their therapeutic applicability. If in vivo experiments have not been performed, discussing potential challenges - such as saRNA persistence, biodistribution, and possible secondary effectswould be valuable.

      (5) Immune Response to Viral Proteins:

      Since the inhibitors of dsRNA-sensing proteins (E3, NSs, and L*) are viral proteins, they would be expected to induce an immune response. Analyzing these effects in vivo would add insight into the applicability of this approach.

      We appreciate the Reviewer’s points regarding in vivo validation and safety considerations. While in vivo studies are beyond the scope of the present investigation, we agree that evaluating therapeutic potential, biodistribution, persistence, and secondary effects will be essential for future translation. We have now included a brief discussion of these considerations at the end of the revised discussion. In ongoing work, we are planning follow-up studies incorporating in vivo imaging and functional assessments of saRNA-driven cargo delivery in preclinical models of inflammatory joint pain.

      Regarding the immune response to viral proteins, we agree that this is an important consideration and have now included a clearer discussion of this limitation in the revised manuscript. Specifically, we highlight that encoding multiple viral inhibitors (E3, NSs, and L*), in combination with the VEEV replicase, may increase the likelihood of adaptive immune recognition via MHC class I presentation. This could lead to cytotoxic T cell–mediated clearance of saRNA-transfected cells, thereby limiting therapeutic durability. We emphasize that addressing both intrinsic cytotoxicity and immune-mediated clearance will be essential for advancing the clinical potential of this platform.

      (6) Streamlining the Discussion Section:

      The discussion is quite lengthy. To improve readability, some content - such as the rationale for gene selection-could be moved to the Results section. Additionally, the descriptions of Figure 3 should be consolidated into a single section under a broader heading for improved coherence.

      Thank you for these helpful suggestions. We have streamlined the Discussion to improve readability and have moved the rationale for gene selection to the results section, as recommended. In addition, we have consolidated the Figure 3 descriptions to improve coherence and to simplify the presentation.

      Reviewer #2 (Public review):

      Summary:

      Lim et al. have developed a self-amplifying RNA (saRNA) design that incorporates immunomodulatory viral proteins, and show that the novel design results in enhanced protein expression in vitro in mouse primary fibroblast-like synoviocytes. They test constructs including saRNA with the vaccinia virus E3 protein and another with E3, Toscana virus NS protein and Theiler's virus L protein (E3 + NS + L), and another with srIκBα-Smad7SOCS1. They have also tested whether ML336, an antiviral, enables control of transgene expression.

      Strengths:

      The experiments are generally well-designed and offer mechanistic insight into the RNAsensing pathways that confer enhanced saRNA expression. The experiments are carried out over a long timescale, which shows the enhance effect of the saRNA E3 design compared to the control. Furthermore, the inhibitors are shown to maintain the cell number, and reduce basal activation factor-⍺ levels.

      We thank Reviewer #2 for their thoughtful and detailed assessment of our manuscript, and for recognizing the mechanistic insights provided by our study. We also appreciate their positive comments on the experimental design, the extended timescale, and the observed effects on transgene expression, cell viability, and basal fibroblast activation factor-α levels.

      Weaknesses:

      One limitation of this manuscript is that the RNA is not well characterized; some of the constructs are quite long and the RNA integrity has not been analyzed. Furthermore, for constructs with multiple proteins, it's imperative to confirm the expression of each protein to confirm that any therapeutic effect is from the effector protein (e.g. E3, NS, L). The ML336 was only tested at one concentration; it is standard in the field to do a dose-response curve. These experiments were all done in vitro in mouse cells, thus limiting the conclusion we can make about mechanisms in a human system.

      Thank you for your detailed feedback. We have added new experiments and clarified limitations in the revised manuscript to address these concerns:

      RNA integrity: We performed denaturing gel electrophoresis on the in vitro transcribed saRNA constructs (Supplemental Figure 7c). Constructs targeting dsRNA-sensing pathways migrated as a single band, while those targeting inflammatory signalling pathways showed both a full-length product and a common, lower-abundance truncated transcript. This suggests that the actual amount of full-length RNA delivered for the constructs inhibiting inflammatory signalling was overestimated. To account for this, we avoided direct comparisons between the two types of constructs and instead focused on comparisons within each type to ensure more meaningful interpretation.

      Confirmation of protein expression: While we acknowledge that direct measurement of each protein would provide additional insight, we believe the functional assays presented offer strong evidence that the encoded proteins are expressed and exert their intended biological effects. Additionally, IRES functionality was confirmed visually using fluorescent protein reporters, supporting the successful expression of downstream genes.

      ML336 concentration–response: We have now performed a concentration–response analysis for ML336 (Figure 8a and b), which demonstrates its ability to modulate transgene expression in a concentration-dependent manner.

      Use of human cells: We agree that testing these constructs in human cells is essential for future translational applications and are actively exploring opportunities to evaluate them in patientderived FLS. However, previous studies have shown that Theiler’s virus L* does not inhibit human RNase L (Sorgeloos et al., PLoS Pathog 2013). As a result, it is highly likely that the E3-NSs-L* construct will not function as intended in human systems. Addressing this limitation will be a priority in our future work, where we aim to develop constructs incorporating inhibitors specific to human RNase L to ensure efficacy in human cells.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Figure 2c is not indicated.

      Thank you for pointing out this error. It has now been corrected in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      (1) The Graphical Abstract is a bit confusing; suggest modifying it to represent the study and findings more accurately.

      We have revised the graphical abstract to improve clarity and better reflect the study’s design and main findings. Thank you for the suggestion.

      (2) The impact of this paper would be greatly improved if these experiments were repeated, at least partially, in human cells. The rationale for mouse cells in vitro is unclear.

      The rationale for developing constructs targeting mouse cells is based on our intention to utilize these constructs in mouse models of inflammatory joint pain in future studies.

      We recognize that incorporating data from human cells would significantly enhance the translational relevance of our work, and we are actively pursuing collaborations to test these constructs in patient-derived FLS. However, a key component of our saRNA constructs—Theiler’s virus L*—has been shown to inhibit mouse, but not human, RNase L (Sorgeloos et al., PLoS Pathog 2013). Consequently, the E3-NSs-L* polyprotein may not function as intended in human cells. To address this limitation, future work will focus on developing constructs that incorporate inhibitors specific to human RNase L, thereby facilitating more effective translation of our findings to human systems.

      (3) The ML336 was only tested at one concentration and works mildly well, but would be more impactful if tested in a dose-response curve.

      We have now performed a concentration–response analysis for ML336 (Figure 8a and b), which demonstrates its concentration-dependent effects on transgene expression and saRNA elimination. Thank you for the suggestion.

      (4) Overall, there is not a cohesive narrative to the story, instead it comes off as we tried these three different approaches, and they worked in different contexts.

      We have revised the graphical abstract, results, and discussion to improve the cohesiveness of the manuscript’s narrative and to better integrate the mechanistic rationale linking the different approaches. We appreciate the feedback.

      (5) The title is not supported by the data; the saRNA is still somewhat cytotoxic, immunostimulatory and the antiviral minimally controls transgene expression; suggest making this reflect the data.

      We have revised the title to better reflect the scope of the data and the mechanistic focus of the study. The updated title emphasizes the pathways targeted and the outcomes demonstrated, while avoiding overstatement. Thank you for this helpful recommendation.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This article investigates the origin of movement slowdown in weightlessness by testing two possible hypotheses: the first is based on a strategic and conservative slowdown, presented as a scaling of the motion kinematics without altering its profile, while the second is based on the hypothesis of a misestimation of effective mass by the brain due to an alteration of gravity-dependent sensory inputs, which alters the kinematics following a controller parameterization error.

      Strengths:

      The article convincingly demonstrates that trajectories are affected in 0g conditions, as in previous work. It is interesting, and the results appear robust. However, I have two major reservations about the current version of the manuscript that prevent me from endorsing the conclusion in its current form.

      Weaknesses:

      (1) First, the hypothesis of a strategic and conservative slow down implicitly assumes a similar cost function, which cannot be guaranteed, tested, or verified. For example, previous work has suggested that changing the ratio between the state and control weight matrices produced an alteration in movement kinematics similar to that presented here, without changing the estimated mass parameter (Crevecoeur et al., 2010, J Neurophysiol, 104 (3), 1301-1313). Thus, the hypothesis of conservative slowing cannot be rejected. Such a strategy could vary with effective mass (thus showing a statistical effect), but the possibility that the data reflect a combination of both mechanisms (strategic slowing and mass misestimation) remains open.

      We test whether changing the ratio between the state and control weight matrices can generate the observed effect. As shown in Author response image 1 and Author response image 2, the cost function change cannot produce a reduced peak velocity/acceleration and their timing advance simultaneously, but a mass estimation change can. In other words, using mass underestimation alone can explain the two key findings, amplitude reduction and timing advance. Yes, we cannot exclude the possibility of a change in cost function on top of the mass underestimation, but the principle of Occam’s Razor would support to adhering to a simple explanation, i.e., using body mass underestimation to explain the key findings. We will include our exploration on possible changes in cost function in the revision (in the Supplemental Materials).

      Author response image 1.

      Simulation using an altered cost function with α = 3.0. Panels A, B, and E show simulated position, velocity, and acceleration profiles, respectively, for the three movement directions. Solid lines correspond to pre- and post-exposure conditions, while dashed lines represent the in-flight condition. Panels C and D display the peak velocity and its timing across the three phases (Pre, In, Post), and Panels F and G show the corresponding peak acceleration and its timing. Note, varying the cost function, while leading to reduced peak velocity/acceleration, leads to an erroneous prediction of delayed timing of peak velocity/acceleration.

      Author response image 2.

      Simulation results using a cost function with α = 0.3. The format is the same as in Author response image 1. Note, this ten-fold decrease in α, while finally getting the timing of peak velocity/acceleration right (advanced or reduced), leads to an erroneous prediction of increased peak velocity/acceleration.

      (2) The main strength of the article is the presence of directional effects expected under the hypothesis of mass estimation error. However, the article lacks a clear demonstration of such an effect: indeed, although there appears to be a significant effect of direction, I was not sure that this effect matched the model's predictions. A directional effect is not sufficient because the model makes clear quantitative predictions about how this effect should vary across directions. In the absence of a quantitative match between the model and the data, the authors' claims regarding the role of misestimating the effective mass remain unsupported.

      Our paper does not aim to quantitatively reproduce human reaching movements in microgravity. We will make this more clearly in the revision.

      (1) The model is a simplification of the actual situation. For example, the model simulates an ideal case of moving a point mass (effective mass) without friction and without considering Coriolis and centripetal torques, while the actual situation is that people move their finger across a touch screen. The two-link arm model assumes planar movements, but our participants move their hand on a table top without vertical support to constrain their movement in 2D.

      (2) Our study merely uses well-established (though simplified) models to qualitatively predict the overall behavioral patterns if mass underestimation is at play. For this purpose, the results are well in line with models’ qualitative predictions: we indeed confirm that key kinematic features (peak velocity and acceleration) follow the same ranking order of movement direction conditions as predicted.

      (3) Using model simulation to qualitatively predict human behavioral patterns is a common practice in motor control studies, prominent examples including the papers on optimal feedback control (Todorov, 2004 and 2005) and movement vigor (Shadmehr et al., 2016). In fact, our model was inspired by the model in the latter paper.

      Citations:

      Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907.

      Todorov, E. (2005). Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Computation, 17(5), 1084–1108.

      Shadmehr, R., Huang, H. J., & Ahmed, A. A. (2016). A Representation of Effort in Decision-Making and Motor Control. Current Biology: CB, 26(14), 1929–1934.

      In general, both the hypotheses of slowing motion (out of caution) and misestimating mass have been put forward in the past, and the added value of this article lies in demonstrating that the effect depended on direction. However, (1) a conservative strategy with a different cost function can also explain the data, and (2) the quantitative match between the directional effect and the model's predictions has not been established.

      Specific points:

      (1) I noted a lack of presentation of raw kinematic traces, which would be necessary to convince me that the directional effect was related to effective mass as stated.

      We are happy to include exemplary speed and acceleration trajectories. One example subject’s detailed trajectories are shown below and will be included in the revision. The reduced and advanced velocity/acceleration peaks are visible in typical trials.

      Author response image 3.

      Hand speed profiles (upper panels), hand acceleration profiles (middle panels) and speed profiles of the primary submovements (lower panels) towards different directions from an example participant.

      (2) The presentation and justification of the model require substantial improvement; the reason for their presence in the supplementary material is unclear, as there is space to present the modelling work in detail in the main text. Regarding the model, some choices require justification: for example, why did the authors ignore the nonlinear Coriolis and centripetal terms?

      Response: In brief, our simulations show that Coriolis and centripetal forces, despite having some directional anisotropy, only have small effects on predicted kinematics (see our responses to Reviewer 2). We will move descriptions of the model into the main text with more justifications for using a simple model.

      (3) The increase in the proportion of trials with subcomponents is interesting, but the explanatory power of this observation is limited, as the initial percentage was already quite high (from 60-70% during the initial study to 70-85% in flight). This suggests that the potential effect of effective mass only explains a small increase in a trend already present in the initial study. A more critical assessment of this result is warranted.

      Response: Indeed, the percentage of submovements only increases slightly, but the more important change is that the IPI (the inter-peak interval between submovements) also increases at the same time. Moreover, it is the effect of IPI that significantly predicts the duration increase in our linear mixed model. We will highlight this fact in our revision to avoid confusion.

      Reviewer #2 (Public review):

      This study explores the underlying causes of the generalized movement slowness observed in astronauts in weightlessness compared to their performance on Earth. The authors argue that this movement slowness stems from an underestimation of mass rather than a deliberate reduction in speed for enhanced stability and safety.

      Overall, this is a fascinating and well-written work. The kinematic analysis is thorough and comprehensive. The design of the study is solid, the collected dataset is rare, and the model tends to add confidence to the proposed conclusions. That being said, I have several comments that could be addressed to consolidate interpretations and improve clarity.

      Main comments:

      (1) Mass underestimation

      a) While this interpretation is supported by data and analyses, it is not clear whether this gives a complete picture of the underlying phenomena. The two hypotheses (i.e., mass underestimation vs deliberate speed reduction) can only be distinguished in terms of velocity/acceleration patterns, which should display specific changes during the flight with a mass underestimation. The experimental data generally shows the expected changes but for the 45{degree sign} condition, no changes are observed during flight compared to the pre- and post-phases (Figure 4). In Figure 5E, only a change in the primary submovement peak velocity is observed for 45{degree sign}, but this finding relies on a more involved decomposition procedure. It suggests that there is something specific about 45{degree sign} (beyond its low effective mass). In such planar movements, 45{degree sign} often corresponds to a movement which is close to single-joint, whereas 90{degree sign} and 135{degree sign} involve multi-joint movements. If so, the increased proportion of submovements in 90{degree sign} and 135{degree sign} could indicate that participants had more difficulties in coordinating multi-joint movements during flight. Besides inertia, Coriolis and centripetal effects may be non-negligible in such fast planar reaching (Hollerbach & Flash, Biol Cyber, 1982) and, interestingly, they would also be affected by a mass underestimation (thus, this is not necessarily incompatible with the author's view; yet predicting the effects of a mass underestimation on Coriolis/centripetal torques would require a two-link arm model). Overall, I found the discrepancy between the 45{degree sign} direction and the other directions under-exploited in the current version of the article. In sum, could the corrective submovements be due to a misestimation of Coriolis/centripetal torques in the multi-joint dynamics (caused specifically -or not- by a mass underestimation)?

      We agree that the effect of mass underestimation is less in the 45° direction than the other two directions, possibly related to its reliance on single-joint (elbow) as opposed to two-joints (elbow and shoulder) movements. Plus, movement correction using one joint is probably easier (as also suggested by another reviewer), this possibility will be further discussed in the revision. However, we find that our model simplification (excluding Coriolis and centripetal torques) does not affect our main conclusions at all. First, we performed a simple simulation and found that, under the current optimal hand trajectory, incorporating Coriolis and centripetal torques has only a limited impact on the resulting joint torques (see simulations in Author response image 4). One reason is that we used smaller movements than Hallerbach & Flash did. In addition, we applied an optimal feedback control model to a more realistic 2-joint arm configuration. Despite its simplicity, this model produced a speed profile consistent with our current predictions and made similar predictions regarding the effects of mass underestimation (Author response image 5). We will provide a more realistic 2-joint arm model muscle dynamics in the revision to improve the simulation further, but the message will be same: including or excluding Coriolis and centripetal torques will not affect the theoretical predictions about mass underestimation. Second, as the reviewer correctly pointed out, the mass (and its underestimation) also affects these two torque terms, thus its effect on kinematic measures is not affected much even with the full model.

      Author response image 4.

      Joint angles and joint torque of shoulder and elbow with simulated trajectories towards different directions. A. Shoulder (green) and elbow (blue) angles change with time for the 45° movement direction. B. Components of joint interaction torques at the shoulder. Solid line: net torque at the shoulder; dotted line: shoulder inertia torque; dashed line: shoulder Coriolis and centripetal torque. C. Same plot as B for the elbow joint. D–F. Coriolis and centripetal components in the full 360° workspace, beyond three movement directions (45°, 90°, and 135°). D. Net torque. E. Inertial torque. F. Combined Coriolis and centripetal torque. Note the polar plots of Coriolis/centripetal torques (F) have a scale that is two magnitudes smaller than that of inertial torque in our simulation. All torques were simulated with the optimal movement duration. Torques were squared and integrated over each trajectory.

      Author response image 5.

      Comparison between simulation results from the full model with the addition of Coriolis/centripetal torques (left) and the simplified model (right). The position profiles (top) and the corresponding speed profiles low) are shown. Solid lines are for normal mass estimation and dashed lines for mass underestimation in microgravity. The three colors represent three movement directions (dark red: 45°, red: 90°, yellow: 135°). The full model used a 2-link arm model without realistic muscle dynamics yet (will include in the formal revision) thus the speed profile is not smooth. Importantly, the full model also predict the same effect of mass underestimation, i.e., reduced peak velocity/acceleration and their timing advance.

      b) Additionally, since the taikonauts are tested after 2 or 3 weeks in flight, one could also assume that neuromuscular deconditioning explains (at least in part) the general decrease in movement speed. Can the authors explain how to rule out this alternative interpretation? For instance, weaker muscles could account for slower movements within a classical time-effort trade-off (as more neural effort would be needed to generate a similar amount of muscle force, thereby suggesting a purposive slowing down of movement). Therefore, could the observed results (slowing down + more submovements) be explained by some neuromuscular deconditioning combined with a difficulty in coordinating multi-joint movements in weightlessness (due to a misestimation or Coriolis/centripetal torques) provide an alternative explanation for the results?

      Response: Neuromuscular deconditioning is indeed a space or microgravity effect; thanks for bringing this up as we omitted the discussion of its possible contribution in the initial submission. However, muscle weakness is less for upper-limb muscles than for postural and lower-limb muscles (Tesch et al., 2005). The handgrip strength decreases 5% to 15% after several months (Moosavi et al., 2021); shoulder and elbow muscles atrophy, though not directly measured, was estimated to be minimal (Shen et al., 2017). The muscle weakness is unlikely to play a major role here since our reaching task involves small movements (~12cm) with joint torques of a magnitude of ~2N·m. Coriolis/centripetal torques does not affect the putative mass effect (as shown above simulations). The reviewer suggests that their poor coordination in microgravity might contribute to slowing down + more submovements. Poor coordination is an umbrella term for any motor control problems, and it can explain any microgravity effect. The feedforward control changes caused by mass underestimation can also be viewed as poor coordination. If we limit it as the coordination of the two joints or coordinating Coriolis/centripetal torques, we should expect to see some trajectory curvature changes in microgravity. However, we further analyzed our reaching trajectories and found no sign of curvature increase in our large collection of reaching movements. We probably have the largest dataset of reaching movements collected in microgravity thus far, given that we had 12 taikonauts and each of them performed about 480 to 840 reaching trials during their spaceflight. We believe the probability of Type II error is quite low here. We will include descriptive statistics of these new analyses in our revision.

      Citation: Tesch, P. A., Berg, H. E., Bring, D., Evans, H. J., & LeBlanc, A. D. (2005). Effects of 17-day spaceflight on knee extensor muscle function and size. European journal of applied physiology, 93(4), 463-468.

      Moosavi, D., Wolovsky, D., Depompeis, A., Uher, D., Lennington, D., Bodden, R., & Garber, C. E. (2021). The effects of spaceflight microgravity on the musculoskeletal system of humans and animals, with an emphasis on exercise as a countermeasure: A systematic scoping review. Physiological Research, 70(2), 119.

      Shen, H., Lim, C., Schwartz, A. G., Andreev-Andrievskiy, A., Deymier, A. C., & Thomopoulos, S. (2017). Effects of spaceflight on the muscles of the murine shoulder. The FASEB Journal, 31(12), 5466.

      (2) Modelling

      a) The model description should be improved as it is currently a mix of discrete time and continuous time formulations. Moreover, an infinite-horizon cost function is used, but I thought the authors used a finite-horizon formulation with the prefixed duration provided by the movement utility maximization framework of Shadmehr et al. (Curr Biol, 2016). Furthermore, was the mass underestimation reflected both in the utility model and the optimal control model? If so, did the authors really compute the feedback control gain with the underestimated mass but simulate the system with the real mass? This is important because the mass appears both in the utility framework and in the LQ framework. Given the current interpretations, the feedforward command is assumed to be erroneous, and the feedback command would allow for motor corrections. Therefore, it could be clarified whether the feedback command also misestimates the mass or not, which may affect its efficiency. For instance, if both feedforward and feedback motor commands are based on wrong internal models (e.g., due to the mass underestimation), one may wonder how the astronauts would execute accurate goal-directed movements.

      b) The model seems to be deterministic in its current form (no motor and sensory noise). Since the framework developed by Todorov (2005) is used, sensorimotor noise could have been readily considered. One could also assume that motor and sensory noise increase in microgravity, and the model could inform on how microgravity affects the number of submovements or endpoint variance due to sensorimotor noise changes, for instance.

      c) Finally, how does the model distinguish the feedforward and feedback components of the motor command that are discussed in the paper, given that the model only yields a feedback control law? Does 'feedforward' refer to the motor plan here (i.e., the prefixed duration and arguably the precomputed feedback gain)?

      We appreciate these very helpful suggestions about our model presentation. Indeed, our initial submission did not give detailed model descriptions in the main text, due to text limits for early submissions. We actually used a finite-horizon framework throughout, with a pre-specified duration derived from the utility model. In the revision, we will make that point clear, and we will also revise the Methods section to explicitly distinguish feedforward vs. feedback components, clarify the use of mass underestimation in both utility and control models, and update the equations accordingly.

      (3) Brevity of movements and speed-accuracy trade-off

      The tested movements are much faster (average duration approx. 350 ms) than similar self-paced movements that have been studied in other works (e.g., Wang et al., J Neurophysiology, 2016; Berret et al., PLOS Comp Biol, 2021, where movements can last about 900-1000 ms). This is consistent with the instructions to reach quickly and accurately, in line with a speed-accuracy trade-off. Was this instruction given to highlight the inertial effects related to the arm's anisotropy? One may however, wonder if the same results would hold for slower self-paced movements (are they also with reduced speed compared to Earth performance?). Moreover, a few other important questions might need to be addressed for completeness: how to ensure that astronauts did remember this instruction during the flight? (could the control group move faster because they better remembered the instruction?). Did the taikonauts perform the experiment on their own during the flight, or did one taikonaut assume the role of the experimenter?

      Thanks for highlighting the brevity of movements in our experiment. Our intention in emphasizing fast movements is to rigorously test whether movement is indeed slowed down in microgravity. The observed prolonged movement duration clearly shows that microgravity affects people’s movement duration, even when they are pushed to move fast. The second reason for using fast movement is to highlight that feedforward control is affected in microgravity. Mass underestimation specifically affects feedforward control in the first place. Slow movement would inevitably have online corrections that might obscure the effect of mass underestimation. Note that movement slowing is not only observed in our speed-emphasized reaching task, but also in whole-arm pointing in other astronauts studies (Berger, 1997; Sangals, 1999), which have been quoted in our paper. We thus believe these findings are generalizable.

      Regarding the consistency of instructions: all our experiments conducted in the Tiangong space station were monitored in real time by experimenters in the Control Center located in Beijing. The task instructions were presented on the initial display of the data acquisition application and ample reading time was allowed. In fact, all the pre-, in-, and post-flight test sessions were administered by the same group of experimenters with the same instruction. It is common that astronauts serve both as participants and experimenters at the same time. And, they were well trained for this type of role on the ground. Note that we had multiple pre-flight test sessions to familiarize them with the task. All these rigorous measures were in place to obtain high-quality data. We will include these experimental details and the rationales for emphasizing fast movements in the revision.

      Citations:

      Berger, M., Mescheriakov, S., Molokanova, E., Lechner-Steinleitner, S., Seguer, N., & Kozlovskaya, I. (1997). Pointing arm movements in short- and long-term spaceflights. Aviation, Space, and Environmental Medicine, 68(9), 781–787.

      Sangals, J., Heuer, H., Manzey, D., & Lorenz, B. (1999). Changed visuomotor transformations during and after prolonged microgravity. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 129(3), 378–390.

      (4) No learning effect

      This is a surprising effect, as mentioned by the authors. Other studies conducted in microgravity have indeed revealed an optimal adaptation of motor patterns in a few dozen trials (e.g., Gaveau et al., eLife, 2016). Perhaps the difference is again related to single-joint versus multi-joint movements. This should be better discussed given the impact of this claim. Typically, why would a "sensory bias of bodily property" persist in microgravity and be a "fundamental constraint of the sensorimotor system"?

      We believe the differences between our study and Gaveau et al.’s study cannot be simply attributed to single-joint versus multi-joint movements. One of the most salient differences is that their adaptation is about incorporating microgravity in control for minimizing effort, while our adaptation is about rightfully perceiving body mass. We will elaborate on possible reasons for the lack of learning in the light of this previous study.

      We can elaborate on “sensory bias” and “fundamental constraint of the sensorimotor system”. If an inertial change is perceived (like an extra weight attached to the forearm, as in previous motor adaptation studies), people can adapt their reaching in tens of trials. In this case, sensory cues are veridical as they correctly inform about the inertial perturbation. However, in microgravity, reduced gravitational pull and proprioceptive inputs constantly inform the controller that the body mass is less than its actual magnitude. In other words, sensory cues in space are misleading for estimating body mass. The resulting sensory bias prevents the sensorimotor system from correctly adapt. Our statement was too brief in the initial submission; we will expand it in the revision.

      Reviewer #3 (Public review):

      Summary:

      The authors describe an interesting study of arm movements carried out in weightlessness after a prolonged exposure to the so-called microgravity conditions of orbital spaceflight. Subjects performed radial point-to-point motions of the fingertip on a touch pad. The authors note a reduction in movement speed in weightlessness, which they hypothesize could be due to either an overall strategy of lowering movement speed to better accommodate the instability of the body in weightlessness or an underestimation of body mass. They conclude for the latter, mainly based on two effects. One, slowing in weightlessness is greater for movement directions with higher effective mass at the end effector of the arm. Two, they present evidence for an increased number of corrective submovements in weightlessness. They contend that this provides conclusive evidence to accept the hypothesis of an underestimation of body mass.

      Strengths:

      In my opinion, the study provides a valuable contribution, the theoretical aspects are well presented through simulations, the statistical analyses are meticulous, the applicable literature is comprehensively considered and cited, and the manuscript is well written.

      Weaknesses:

      Nevertheless, I am of the opinion that the interpretation of the observations leaves room for other possible explanations of the observed phenomenon, thus weakening the strength of the arguments.

      First, I would like to point out an apparent (at least to me) divergence between the predictions and the observed data. Figures 1 and S1 show that the difference between predicted values for the 3 movement directions is almost linear, with predictions for 90º midway between predictions for 45º and 135º. The effective mass at 90º appears to be much closer to that of 45º than to that of 135º (Figure S1A). But the data shown in Figure 2 and Figure 3 indicate that movements at 90º and 135º are grouped together in terms of reaction time, movement duration, and peak acceleration, while both differ significantly from those values for movements at 45º.

      Furthermore, in Figure 4, the change in peak acceleration time and relative time to peak acceleration between 1g and 0g appears to be greater for 90º than for 135º, which appears to me to be at least superficially in contradiction with the predictions from Figure S1. If the effective mass is the key parameter, wouldn't one expect as much difference between 90º and 135º as between 90º and 45º? It is true that peak speed (Figure 3B) and peak speed time (Figure 4B) appear to follow the ordering according to effective mass, but is there a mathematical explanation as to why the ordering is respected for velocity but not acceleration? These inconsistencies weaken the author's conclusions and should be addressed.

      Indeed, the model predicts an almost equal separation between 45° and 90° and between 90° and 135°, while the data indicate that the spacing between 45° and 90° is much smaller than between 90° and 135°. We do not regard the divergence as evidence undermining our main conclusion since 1) the model is a simplification of the actual situation. For example, the model simulates an ideal case of moving a point mass (effective mass) without friction and without considering Coriolis and centripetal torques. 2) Our study does not make quantitative predictions of all the key kinematic measures; that will require model fitting and parameter estimation; instead, our study uses well-established (though simplified) models to qualitatively predict the overall behavioral pattern we would observe. For this purpose, our results are well in line with our expectations: though we did not find equal spacing between direction conditions, we do confirm that the key kinematic properties (Figure 2 and Figure 3 as questioned) follow the same ranking order of directions as predicted.

      We thank the reviewer for pointing out the apparent discrepancy between model simulation and observed data. We will elaborate on the reasons behind the discrepancy in the revision.

      Then, to strengthen the conclusions, I feel that the following points would need to be addressed:

      (1) The authors model the movement control through equations that derive the input control variable in terms of the force acting on the hand and treat the arm as a second-order low-pass filter (Equation 13). Underestimation of the mass in the computation of a feedforward command would lead to a lower-than-expected displacement to that command. But it is not clear if and how the authors account for a potential modification of the time constants of the 2nd order system. The CNS does not effectuate movements with pure torque generators. Muscles have elastic properties that depend on their tonic excitation level, reflex feedback, and other parameters. Indeed, Fisk et al.* showed variations of movement characteristics consistent with lower muscle tone, lower bandwidth, and lower damping ratio in 0g compared to 1g. Could the variations in the response to the initial feedforward command be explained by a misrepresentation of the limbs' damping and natural frequency, leading to greater uncertainty about the consequences of the initial command? This would still be an argument for unadapted feedforward control of the movement, leading to the need for more corrective movements. But it would not necessarily reflect an underestimation of body mass.

      *Fisk, J. O. H. N., Lackner, J. R., & DiZio, P. A. U. L. (1993). Gravitoinertial force level influences arm movement control. Journal of neurophysiology, 69(2), 504-511.

      We agree that muscle properties, tonic excitation level, proprioception-mediated reflexes all contribute to reaching control. Fisk et al. (1993) study indeed showed that arm movement kinematics change, possibly owing to lower muscle tone and/or damping. However, reduced muscle damping and reduced spindle activity are more likely to affect feedback-based movements. Like in Fisk et al.’s study, people performed continuous arm movements with eyes closed; thus their movements largely relied on proprioceptive control. Our major findings are about the feedforward control, i.e., the reduced and “advanced” peak velocity/acceleration in discrete and ballistic reaching movements. Note that the peak acceleration happens as early as approximately 90-100ms into the movements, clearly showing that feedforward control is affected -- a different effect from Fisk et al’s findings. It is unlikely that people “advanced” their peak velocity/acceleration because they feel the need for more later corrective movements. Thus, underestimation of body mass remains the most plausible explanation.

      (2) The movements were measured by having the subjects slide their finger on the surface of a touch screen. In weightlessness, the implications of this contact are expected to be quite different than those on the ground. In weightlessness, the taikonauts would need to actively press downward to maintain contact with the screen, while on Earth, gravity will do the work. The tangential forces that resist movement due to friction might therefore be different in 0g. This could be particularly relevant given that the effect of friction would interact with the limb in a direction-dependent fashion, given the anisotropy of the equivalent mass at the fingertip evoked by the authors. Is there some way to discount or control for these potential effects?

      We agree that friction might play a role here, but normal interaction with a touch screen typically involves friction between 0.1 and 0.5N (e.g., Ayyildiz et al., 2018). We believe that the directional variation is even smaller than 0.1N. It is very small compared to the force used to accelerate the arm for the reaching movement (10-15N). Thus, friction anisotropy is unlikely to explain our data.

      Citation: Ayyildiz M, Scaraggi M, Sirin O, Basdogan C, Persson BNJ. Contact mechanics between the human finger and a touchscreen under electroadhesion. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12668-12673.

      (3) The carefully crafted modelling of the limb neglects, nevertheless, the potential instability of the base of the arm. While the taikonauts were able to use their left arm to stabilize their bodies, it is not clear to what extent active stabilization with the contralateral limb can reproduce the stability of the human body seated in a chair in Earth gravity. Unintended motion of the shoulder could account for a smaller-than-expected displacement of the hand in response to the initial feedforward command and/or greater propensity for errors (with a greater need for corrective submovements) in 0g. The direction of movement with respect to the anchoring point could lead to the dependence of the observed effects on movement direction. Could this be tested in some way, e.g., by testing subjects on the ground while standing on an unstable base of support or sitting on a swing, with the same requirement to stabilize the torso using the contralateral arm?

      Body stabilization is always a challenge for human movement studies in space. We minimized its potential confounding effects by using left-hand grasping and foot straps for postural support throughout the experiment. We would argue shoulder stability is an unlikely explanation because unexpected shoulder instability should not affect the feedforward (early) part of the ballistic reaching movement: the reduced peak acceleration and its early peak were observed at about 90-100ms after movement initiation. This effect is too early to be explained by an expected stability issue.

      The arguments for an underestimation of body mass would be strengthened if the authors could address these points in some way.

    1. Author response:

      We would like to thank the reviewers and the editorial team for all their thoughtful and constructive feedback. The reviewers provided many helpful comments which we will work to incorporate in our resubmission as we believe they will significantly enhance the quality of our manuscript.

      An overarching critique shared among reviewers was regarding limitations in our datasets. Namely, lower N-values for certain groups make some conclusions less reliable. We acknowledge this limitation and will add more experiments to address this concern. Additionally, attention was drawn to our reliance on using the generalized linear model (GLM) for making claims about rebalancing and learning-related changes. To address this, we will work to include additional analyses such as ACC spike-triggered average CA1sup responses, cross-covariances between ACC and CA1sup cells in post-task sleep, and ripple-triggered cross-correlations, among others as per reviewer recommendations. We will also provide a deeper analysis of the weights CA1 neuron in our GLM analysis and their specific features during learning. In accordance, we will provide a clearer description of our learning paradigm including performance data for each animal and how performance relates to our analyses. Overall, we will include more analyses of our datasets across various task events such as recall, to make more efficient use of the full repertoire of our recordings.

      Concerns were also raised regarding some aspects of our statistical analyses. During revision, we will ensure we select the most appropriate statistical measure for each of our tests. Our paper implements the use of tetrode recordings to assess sublayer identification. This approach comes with limitations, and in our resubmission, we will provide a more detailed explanation of those limitations along with a more thorough description of our measures to mitigate them.

      Lastly, in our follow-up submission we will work to improve the written clarity of findings. Specifically, we will simplify and better explain our findings and provide clearer justification for our interpretations and choice of analyses.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      Despite the strengths, multiple analytical decisions have to be explained, justified, or clarified. Also, there is scope to enhance the clarity and coherence of the writing - as it stands, readers will have to go back and forth to search for information. Last, it would be helpful to add line numbers in the manuscript during the revision, as this will help all reviewers to locate the parts we are talking about.

      We thank the reviewer’s suggestions have added the line numbers to the revised manuscript.

      (1) Introduction:

      The introduction is somewhat unmotivated, with key terms/concepts left unexplained until relatively late in the manuscript. One of the main focuses in this work is "hyperaltruistic", but how is this defined? It seems that the authors take the meaning of "willing to pay more to reduce other's pain than their own pain", but is this what the task is measuring? Did participants ever need to PAY something to reduce the other's pain? Note that some previous studies indeed allow participants to pay something to reduce other's pain. And what makes it "HYPER-altruistic" rather than simply "altruistic"?

      As the reviewer noted, we adopted a well-established experimental paradigm to study the context-dependent effect on hyper-altruism. Altruism refers to the fact that people take others’ welfare into account when making decisions that concern both parties. Research paradigms investigating altruistic behavior typically use a social decision task that requires participants to choose between options where their own financial interests are pitted against the welfare of others (FeldmanHall et al., 2015; Hu et al., 2021; Hutcherson et al., 2015; Teoh et al., 2020; Xiong et al., 2020). On the other hand, the hyperaltruistic tendency emphasizes subjects’ higher valuation to other’s pain than their own pain (Crockett et al., 2014, 2015, 2017; Volz et al., 2017). One example for the manifestation of hyperaltruism would be the following scenario: the subject is willing to forgo $2 to reduce others’ pain by 1 unit (social-decision task) and only willing to forgo $1 to reduce the same amount of his/her own pain (self-decision task) (Crockett et al., 2014). On the contrary, if the subjects are willing to forgo less money to reduce others’ suffering in the social decision task than in the self-decision task, then it can be claimed that no hyperaltruism is observed. Therefore, hyperaltruistic preference can only be measured by collecting subjects’ choices in both the self and social decision tasks and comparing the choices in both tasks.

      In our task, as in the studies before ours (Crockett et al., 2014, 2015, 2017; Volz et al., 2017), subjects in each trial were faced with two options with different levels of pain on others and monetary payoffs on themselves. Based on subjects’ choice data, we can infer how much subjects were willing to trade 1 unit of monetary payoff in exchange of reducing others’ pain through the regression analysis (see Figure 1 and methods for the experimental details). We have rewritten the introduction and methods sections to make this point clearer to the audience.  

      Plus, in the intro, the authors mentioned that the "boundary conditions" remain unexplored, but this idea is never touched again. What do boundary conditions mean here in this task? How do the results/data help with finding out the boundary conditions? Can this be discussed within wider literature in the Discussion section?

      Boundary conditions here specifically refer to the variables or decision contexts that determine whether hyperaltruistic behavior can be elicited. Individual personality trait, motivation and social relationship may all be boundary conditions affecting the emergence of hyperaltruistic behavior. In our task, we specifically focused on the valence of the decision context (gain vs. loss) since previous studies only tested the hyperaltruistic preference in the gain context and the introduction of the loss context might bias subjects’ hyperaltruistic behavior through implicit moral framing.

      We have explained the boundary conditions in the revised introduction (Lines 45 ~ 49).

      “However, moral norm is also context dependent: vandalism is clearly against social and moral norms yet vandalism for self-defense is more likely to be ethically and legally justified (the Doctrine of necessity). Therefore, a crucial step is to understand the boundary conditions for hyperaltruism.”

      Last, what motivated the authors to examine the decision context? It comes somewhat out of the blue that the opening paragraph states that "We set out to [...] decision context", but why? Are there other important factors? Why decision context is more important than studying those others?

      We thank the reviewer for the comment. The hyperaltruistic preference was originally demonstrated between conditions where subjects’ personal monetary gain was pitted against others’ pain (social-condition) or against subjects’ own suffering (self-condition) (Crockett et al., 2014). Follow up studies found that subjects also exhibited strong egoistic tendencies if instead subjects needed to harm themselves for other’s benefit in the social condition (by flipping the recipients of monetary gain and electric shocks) (Volz et al., 2017). However, these studies have primarily focused on the gain contexts, neglecting the fact that valence could also be an influential factor in biasing subjects’ behavior (difference between gain and loss processing in humans). It is likely that replacing monetary gains with losses in the money-pain trade-off task might bias subjects’ hyperaltruistic preference due to heightened vigilance or negative emotions in the face of potential loss (such as loss aversion) (Kahneman & Tversky, 1979; Liu et al., 2020; Pachur et al., 2018; Tom et al., 2007; Usher & McClelland, 2004; Yechiam & Hochman, 2013). Another possibility is that gain and loss contexts may elicit different subjective moral perceptions (or internal moral framings) in participants, affecting their hyperaltruistic preferences (Liu et al., 2017; Losecaat Vermeer et al., 2020; Markiewicz & Czupryna, 2018; Wu et al., 2018). In our manuscript, we did not strive to compare which factors might be more important in eliciting hyperaltruistic behavior, but rather to demonstrate the crucial role played by the decision context and to show that the internal moral framing could be the mediating factor in driving subjects’ hyperaltruistic behavior. In fact, we speculate that the egoistic tendencies found in the Volz et al. 2017 study was partly driven by the subjects’ failure to engage the proper internal moral framing in the social condition (harm for self, see Volz et al., 2017 for details).

      (2) Experimental Design:

      (2a) The experiment per se is largely solid, as it followed a previously well-established protocol. But I am curious about how the participants got instructed? Did the experimenter ever mention the word "help" or "harm" to the participants? It would be helpful to include the exact instructions in the SI.

      In the instructions, we avoided words such as “harm”, “help”, or other terms reminding subjects about the moral judgement of the decisions they were about to make. Instead, we presented the options in a neutral and descriptive manner, focusing only on the relevant components (shocks and money). The instructions for all four conditions are shown in supplementary Fig. 9.

      (2b) Relatedly, the experimental details were not quite comprehensive in the main text. Indeed, the Methods come after the main text, but to be able to guide readers to understand what was going on, it would be very helpful if the authors could include some necessary experimental details at the beginning of the Results section.

      We thank the reviewer’s suggestion. We have now provided a brief introduction of the experimental details in the revised results section (Lines 125 ~132).

      “Prior to the money-pain trade-off task, we individually calibrated each subject’s pain threshold using a standard procedure[4–6]. This allowed us to tailor a moderate electric stimulus that corresponded to each subject’s subjective pain intensity. Subjects then engaged in 240 decision trials (60 trials per condition), acting as the “decider” and trading off between monetary gains or losses for themselves and the pain experienced by either themselves or an anonymous “pain receiver” (gain-self, gain-other, loss-self and loss-other, see Supplementary Fig. 8 for the instructions and also see methods for details).”

      (3) Statistical Analysis<br /> (3a) One of the main analyses uses the harm aversion model (Eq1) and the results section keeps referring to one of the key parameters of it (ie, k). However, it is difficult to understand the text without going to the Methods section below. Hence it would be very helpful to repeat the equation also in the main text. A similar idea goes to the delta_m and delta_s terms - it will be very helpful to give a clear meaning of them, as nearly all analyses rely on knowing what they mean.

      We thank the reviewer’s suggestion. We have now added the equation of the harm aversion model and provided more detailed description to the equations in the main text (Lines 150 ~155).

      “We also modeled subjects’ choices using an influential model where subjects’ behavior could be characterized by the harm (electric shock) aversion parameter κ, reflecting the relative weights subjects assigned to ∆m and ∆s, the objective difference in money and shocks between the more and less painful options, respectively (∆V=(1-κ)∆m - κ∆s Eq.1, See Methods for details)[4–6]. Higher κ indicates that higher sensitivity is assigned to ∆s than ∆m and vice versa.”

      (3b) There is one additional parameter gamma (choice consistency) in the model. Did the authors also examine the task-related difference of gamma? This might be important as some studies have shown that the other-oriented choice consistency may differ in different prosocial contexts.

      To examine the task-related difference of choice consistency (γ), we compared the performance of 4 candidate models:

      Model 1 (M1): The choice consistency parameter γ remains constant across shock recipients (self vs. other) and decision contexts (gain vs. loss).

      Model 2 (M2): γ differs between the self- and other-recipient conditions, with γ<sub>self</sub> and γ<sub>other</sub> representing the choice consistency when pain is inflicted on him/her-self or the other-recipient.

      Model 3 (M3): γ differs between the gain and loss conditions, with γ<sub>gain</sub> and γ<sub>loss</sub> representing the choice consistencies in the gain and loss contexts, respectively.

      Model 4 (M4): γ varies across four conditions, with γ<sub>self-gain</sub>, γ<sub>other-gain</sub>, γ<sub>self-loss</sub> and γ<sub>other-loss</sub> capturing the choice consistency in each condition.

      Supplementary Fig. 10 shows, after fitting all the models to subjects’ choice behavioral data, model 1 (M1) performed the best among all the four candidate models in both studies (1 & 2) with the lowest Bayesian Information Criterion (BIC). Therefore, we conclude that factors such as the shock recipients (self vs. other) and decision contexts (gain vs. loss) did not significantly influence subjects’ choice consistency and report model results using the single choice consistency parameter.

      (3c) I am not fully convinced that the authors included two types of models: the harm aversion model and the logistic regression models. Indeed, the models look similar, and the authors have acknowledged that. But I wonder if there is a way to combine them? For example:

      Choice ~ delta_V * context * recipient (*Oxt_v._placebo)

      The calculation of delta_V follows Equation 1.

      Or the conceptual question is, if the authors were interested in the specific and independent contribution of dalta_m and dalta_s to behavior, as their logistic model did, why did the authors examine the harm aversion first, where a parameter k is controlling for the trade-off? One way to find it out is to properly run different models and run model comparisons. In the end, it would be beneficial to only focus on the "winning" model to draw inferences.

      The reviewer raised an excellent point here. According to the logistic regression model, we have:

      Where P is the probability of selecting the less harmful option. Similarly, if we combine Eq.1 (∆V=1-κ)∆m-κ∆s) and Eq.2 ) of the harm aversion model, we have:

      If we ignore the constant term β<sub>0</sub> from the logistic regression model, the harm aversion model is simply a reparameterization of the logistic regression model. The harm aversion model was implemented first to derive the harm aversion parameter (κ), which is an parameter in the range of [0 1] to quantify how subjects value the relative contribution of Δm and Δs between options in their decision processes. Since previous studies used the term κ<sub>other</sub>-κ<sub>self</sub> to define the magnitude of hyperaltruistic preference, we adopted similar approach to compare our results with previous research under the same theoretical framework. However, in order to investigate the independent contribution of Δm and Δs, we will have to take γ into account (we can see that the β<sub>∆m</sub> and β<sub>∆s</sub> in the logistic regression model are not necessarily correlated by nature; however, in the harm aversion model the coefficients (1-κ) and κ is always strictly negatively correlated (see Eq. 1). Only after multiplying γ, the correlation between γ(1-κ) and γκ will vary depending on the specific distribution of γ and κ). In summary, we followed the approach of previous research to estimate harm aversion parameter κ to compare our results with previous studies and to capture the relative influence between Δm and Δs. When we studied the contextual effects (gain vs. loss or placebo vs. control) on subjects’ behavior, we further investigated the contextual effect on how subjects evaluated Δm and Δs, respectively. The two models (logistic regression model and harm aversion model) in our study are mathematically the same and are not competitive candidate models. Instead, they represent different aspects from which our data can be examined.

      We also compared the harm aversion model with and without the constant term β<sub>0</sub> in the choice function. Adding a constant term β<sub>0</sub> the above Equation 2 becomes:

      As the following figure shows, the hyperaltruistic parameters (κ<sub>other</sub>-κ<sub>self</sub>) calculated from the harm aversion model with the constant term (panels A & B) have almost identical patterns as the model without the constant term (panels C & D, i.e. Figs. 2B & 4B in the original manuscript) in both studies.

      Author response image 1.

      Figs. 2B & 4B in the original manuscript) in both studies.

       

      (3d) The interpretation of the main OXT results needs to be more cautious. According to the operationalization, "hyperaltruistic" is the reduction of pain of others (higher % of choosing the less painful option) relative to the self. But relative to the placebo (as baseline), OXT did not increase the % of choosing the less painful option for others, rather, it decreased the % of choosing the less painful option for themselves. In other words, the degree of reducing other's pain is the same under OXT and placebo, but the degree of benefiting self-interest is reduced under OXT. I think this needs to be unpacked, and some of the wording needs to be changed. I am not very familiar with the OXT literature, but I believe it is very important to differentiate whether OXT is doing something on self-oriented actions vs other-oriented actions. Relatedly, for results such as that in Figure 5A, it would be helpful to not only look at the difference but also the actual magnitude of the sensitivity to the shocks, for self and others, under OXT and placebo.

      We thank the reviewer for this thoughtful comment. As the reviewer correctly pointed out, “hyperaltruism” can be defined as “higher % of choosing the less painful option to the others relative to the self”. Closer examination of the results showed that both the degrees of reducing other’s pain as well as reducing their own pain decreased under OXT (Figure 4A). More specifically, our results do not support the claim that “In other words, the degree of reducing others’ pain is the same under OXT and placebo, but the degree of benefiting self-interest is reduced under OXT.” Instead, the results show a significant reduction in the choice of less painful option under OXT treatment for both the self and other conditions (the interaction effect of OXT vs. placebo and self vs. other: F<sub>1.45</sub>= 16.812, P < 0.001, η<sup>2</sup> = 0.272, simple effect OXT vs. placebo in the self- condition: F<sub>1.45</sub>=59.332, P < 0.001, η<sup>2</sup> = 0.569, OXT vs. placebo in the other-condition: F<sub>1.45</sub>= 14.626, P < 0.001, η<sup>2</sup> = 0.245, repeated ANOVA, see Figure 4A).

      We also performed mixed-effect logistic regression analyses where subjects’ choices were regressed against  and  in different valences (gain vs. loss) and recipients (self vs. other) conditions in both studies 1 & 2 (Supplementary Figs. 1 & 6). As we replot supplementary Fig. 6 and panel B (included as Supplementary Fig. 8 in the supplementary materials) in the above figure, we found a significant treatment × ∆<sub>s</sub> (differences in shock magnitude between the more and less painful options) interaction effect β=0.136±0.029P < =0.001, 95% CI=[-0.192, -0.079]), indicating that subject’s sensitivities towards pain were indeed different between the placebo and OXT treatments for both self and other conditions. Furthermore, the significant four-way ∆<sub>s</sub> × treatment (OXT vs. Placebo) × context (gain vs. loss) × recipient (self vs. other) interaction effect (β=0.125±0.053, P=0.018 95% CI=[0.022, 0.228]) in the regression analysis, followed by significant simple effects (In the OXT treatment: ∆<sub>s</sub> × recipient effect in the gain context: F<sub>1.45</sub>= 7.622, P < 0.008, η<sup>2</sup> = 0.145; ∆<sub>s</sub> × recipient effect in the loss context: F<sub>1.45</sub>= 7.966, P 0.007, η<sup>2</sup> = 0.150, suggested that under OXT treatment, participants showed a greater sensitivity toward ∆<sub>s</sub> (see asterisks in the OXT condition in panel B) in the other condition than the self-condition, thus restoring the hyperaltruistic behavior in loss context.

      As the reviewer suggested, OXT’s effect on hyperaltruism does manifest separately on subjects’ harm sensitivities on self- and other-oriented actions. We followed the reviewer’s suggestions and examined the actual magnitude of the sensitivities to shocks for both the self and other treatments (panel B in the figure above). It’s clear that the administration of OXT (compared to the Placebo treatment, panel B in the figure above) significantly reduced participants’ pain sensitivity (treatment × ∆<sub>s</sub>: β=-0.136±0.029, P < 0.001, 95% CI=[-0.192,-0.079]), yet also restored the harm sensitivity patterns in both the gain and loss conditions. These results are included in the supplementary figures (6 & 8) as well as in the main texts.

      Recommendations:

      (1) For Figures 2A-B, it would be great to calculate the correlation separately for gain and loss, as in other figures.

      We speculate that the reviewer is referring to Figures 3A & B. Sorry that we did not present the correlations separately for the gain and loss contexts because the correlation between an individual’s IH (instrumental harm), IB (impartial beneficence) and hyperaltruistic preferences was not significantly modulated by the contextual factors. The interaction effects in both Figs. 3A & B and Supplementary Fig.5 (also see Table S1& S2) are as following: Study1 valence × IH effect: β=0.016±0.022, t<sub>152</sub>=0.726, P=0.469; valence × IB effect: β=0.004±0.031, t<sub>152</sub>=0.115, P=0.908; Study2 placebo condition: valence × IH effect: β=0.018±0.024, t<sub>84</sub>=0.030 P=0.463; valence × IB effect: β=0.051±0.030, t<sub>84</sub>=1.711, P=0.702. We have added these statistics to the main text following the reviewer’s suggestions.

      (2) "by randomly drawing a shock increment integer ∆s (from 1 to 19) such that [...] did not exceed 20 (𝑆+ {less than or equal to} 20)." I am not sure if a random drawing following a uniform distribution can guarantee S is smaller than 20. More details are needed. Same for the monetary magnitude.

      We are sorry for the lack of clarity in the method description. As for the task design, we followed adopted the original design from previous literature (Crockett et al., 2014, 2017). More specifically:

      “Specifically, each trial was determined by a combination of the differences of shocks (Δs, ranging from 1 to 19, with increment of 1) and money (Δm, ranging from ¥0.2 to ¥19.8, with increment of ¥0.2) between the two options, resulting in a total of 19×99=1881 pairs of [Δs, Δm]. for each trial. To ensure the trials were suitable for most subjects, we evenly distributed the desired ratio Δm / (Δs + Δm) between 0.01 and 0.99 across 60 trials for each condition. For each trial, we selected the closest [Δs, Δm] pair from the [Δs, Δm] pool to the specific Δm / (Δs + Δm) ratio, which was then used to determine the actual money and shock amounts of two options. The shock amount (S<sub>less</sub>) for the less painful option was an integer drawn from the discrete uniform distribution [1-19], constraint by S<sub>less</sub> + ∆s < 20. Similarly, the money amount (M<sub>less</sub>) for the less painful option was drawn from a discrete uniform distribution [¥0.2 - ¥19.8], with the constraint of M<sub>less</sub> + ∆m < 20. Once the S<sub>less</sub>and M<sub>less</sub> were selected, the shock (S<sub>more</sub>) and money (M<sub>more</sub>) magnitudes for the more painful option were calculated as: S<sub>more</sub> = S<sub>less</sub> + ∆s, M<sub>more</sub> = M<sub>less</sub> + ∆m”  

      We have added these details to the methods section (Lines 520-533).

      Reviewer #2:

      (1) The theoretical hypothesis needs to be better justified. There are studies addressing the neurobiological mechanism of hyperaltruistic tendency, which the authors unfortunately skipped entirely.

      Also in recommendation #1:

      (1) In the Introduction, the authors claim that "the mechanistic account of the hyperaltruistic phenomenon remains unknown". I think this is too broad of a criticism and does not do justice to prior work that does provide some mechanistic account of this phenomenon. In particular, I was surprised that the authors did not mention at all a relevant fMRI study that investigates the neural mechanism underlying hyperaltruistic tendency (Crockett et al., 2017, Nature Neuroscience). There, the researchers found that individual differences in hyperaltruistic tendency in the same type of moral decision-making task is better explained by reduced neural responses to ill-gotten money (Δm in the Other condition) in the brain reward system, rather than heightened neural responses to others' harm. Moreover, such neural response pattern is related to how an immoral choice would be judged (i.e., blamed) by the community. Since the brain reward system is consistently involved in Oxytocin's role in social cognition and decision-making (e.g., Dolen & Malenka, 2014, Biological Psychiatry), it is important to discuss the hypothesis and results of the present research in the context of this literature.

      We totally agree with the reviewer that the expression “mechanistic account of the hyperaltruistic phenomenon remains unknown” in our original manuscript can be misleading to the audience. Indeed, we were aware of the major findings in the field and cited all the seminal work of hyperaltruism and its related neural mechanism (Crockett et al., 2014, 2015, 2017). We have changed the texts in the introduction to better reflect this point and added further discussion as to how oxytocin might play a role:

      “For example, it was shown that the hyperaltruistic preference modulated neural representations of the profit gained from harming others via the functional connectivity between the lateral prefrontal cortex, a brain area involved in moral norm violation, and profit sensitive brain regions such as the dorsal striatum6.” (Lines 41~45)

      “Oxytocin has been shown to play a critical role in social interactions such as maternal attachment, pair bonding, consociate attachment and aggression in a variety of animal models[42,43]. Humans are endowed with higher cognitive and affective capacities and exhibit far more complex social cognitive patterns[44]. ” (Lines 86~90)

      (2) There are some important inconsistencies between the preregistration and the actual data collection/analysis, which the authors did not justify.

      Also in recommendations:

      (4) It is laudable that the authors pre-registered the procedure and key analysis of the Oxytocin study and determined the sample size beforehand. However, in the preregistration, the authors claimed that they would recruit 30 participants for Experiment 1 and 60 for Experiment 2, without justification. In the paper, they described a "prior power analysis", which deviated from their preregistration. It is OK to deviate from preregistration, but this needs to be explicitly mentioned and addressed (why the deviation occurred, why the reported approach was justifiable, etc.).

      We sincerely appreciate the reviewer’s thorough assessment of our manuscript. In the more exploratory study 1, we found that the loss decision context effectively diminished subjects’ hyperaltruistic preference. Based on this finding, we pre-registered study 2 and hypothesized that: 1) The administration of OXT may salvage subject’s hyperaltruistic preference in the loss context; 2) The administration of OXT may reduce subjects’ sensitivities towards electric shocks (but not necessarily their moral preference), due to the well-established results relating OXT to enhanced empathy for others (Barchi-Ferreira & Osório, 2021; Radke et al., 2013) and the processing of negative stimuli(Evans et al., 2010; Kirsch et al., 2005; Wu et al., 2020); and 3) The OXT effect might be context specific, depending on the particular combination of valence (gain vs. loss) and shock recipient (self vs. other) (Abu-Akel et al., 2015; Kapetaniou et al., 2021; Ma et al., 2015).

      As our results suggested, the administration of OXT indeed restored subjects’ hyperaltruistic preference (confirming hypothesis 1, Figure 4A). Also, OXT decreased subjects’ sensitivities towards electric shocks in both the gain and loss conditions (supplementary Fig. 6 and supplementary Fig. 8), consistent with our second hypothesis. We must admit that our hypothesis 3 was rather vague, since a seminal study clearly demonstrated the context-dependent effect of OXT in human cooperation and conflict depending on the group membership of the subjects (De Dreu et al., 2010, 2020). Although our results partially validated our hypothesis 3 (supplementary Fig. 6), we did not make specific predictions as to the direction and the magnitude of the OXT effect.

      The main inconsistency is related to the sample size. When we carried out study 1, we recruited both male and female subjects. After we identified the context effect on the hyperaltruistic preference, we decided to pre-register and perform study 2 (the OXT study). We originally made a rough estimate of 60 male subjects for study 2. While conducting study 2, we also went through the literature of OXT effect on social behavior and realized that the actual subject number around 45 might be enough to detect the main effect of OXT. Therefore, we settled on the number of 46 (study 2) reported in the manuscript. Correspondingly, we increased the subject number in study 1 to the final number of 80 (40 males) to make sure the subject number is enough to detect a small-to-medium effect, as well as to have a fair comparison between study 1 and 2 (roughly equal number of male subjects). It should be noted that although we only reported all the subjects (male & female) results of study 1 in the manuscript, the main results remain very similar if we only focus on the results of male subjects in study 1 (see the figure below). We believe that these results, together with the placebo treatment group results in study 2 (male only), confirmed the validity of our original finding.

      Author response image 2.

      Author response image 3.

      We have included additional texts (Lines 447 ~ 452) in the Methods section for the discrepancy between the preregistered and actual sample sizes in the revised manuscript:

      “It should be noted that in preregistration we originally planned to recruit 60 male subjects for Study 2 but ended up recruiting 46 male subjects (mean age =  years) based on the sample size reported in previous oxytocin studies[57,69]. Additionally, a power analysis suggested that the sample size > 44 should be enough to detect a small to median effect size of oxytocin (Cohen’s d=0.24, α=0.05, β=0.8) using a 2 × 2 × 2 within-subject design[76].”

      (3) Some of the exploratory analysis seems underpowered (e.g., large multiple regression models with only about 40 participants).

      We thank the reviewer’s comments and appreciate the concern that the sample size would be an issue affecting the results reliability in multiple regression analysis.

      In Fig. 2, the multiple regression analyses were conducted after we observed a valence-dependent effect on hyperaltruism (Fig. 2A) and the regression was constructed accordingly:

      Choice ~ ∆s *context*recipient + ∆m *context*recipient+(1+ ∆s *context*recipient + ∆s*context*recipient | subject)

      Where ∆s and ∆m indicate the shock level and monetary reward difference between the more and loss painful options, context as the monetary valence (gain vs. loss) and recipient as the identity of the shock recipient (self vs. other).

      Since we have 240 trials for each subject and a total of 80 subjects in Study 1, we believe that this is a reasonable regression analysis to perform.

      In Fig. 3, the multiple regression analyses were indeed exploratory. More specifically, we ran 3 multiple linear regressions:

      hyperaltruism~EC*context+IH*context+IB*context

      Relative harm sensitivity~ EC*context+IH*context+IB*context

      Relative money sensitivity~ EC*context+IH*context+IB*context

      Where Hyperaltruism is defined as κ<sub>other</sub> - κ<sub>self</sub>, Relative harm sensitivity as otherβ<sub>∆s</sub> - selfβ<sub>∆s</sub> and Relative monetary sensitivity as otherβ<sub>∆m</sub> - selfβ<sub>∆m</sub>. EC (empathic concern), IH (instrumental harm) and IB (impartial beneficence) were subjects’ scores from corresponding questionnaires.

      For the first regression, we tested whether EC, IH and IB scores were related to hyperaltruism and it should be noted that this was tested on 80 subjects (Study 1). After we identified the effect of IH on hyperaltruism, we ran the following two regressions. The reason we still included IB and EC as predictors in these two regression analyses was to remove potential confounds caused by EC and IB since previous research indicated that IB, IH and EC could be correlated (Kahane et al., 2018).

      In study 2, we performed the following regression analyses again to validate our results (Placebo treatment in study 2 should have similar results as found in study 1).

      Relative harm sensitivity~ EC*context+IH*context+IB*context

      Relative money sensitivity~ EC*context+IH*context+IB*context

      Again, we added IB and EC only to control for the nuance effects by the covariates. As indicated in Fig. 5 C-D, the placebo condition in study 2 replicated our previous findings in study 1 and OXT administration effectively removed the interaction effect between IH and valence (gain vs. loss) on subjects’ relative harm sensitivity.

      To more objectively present our data and results, we have changed the texts in the results section and pointed out that the regression analysis:

      hyperaltruism~EC*context+IH*context+IB*context

      was exploratory (Lines 186-192).

      “We tested how hyperaltruism was related to both IH and IB across decision contexts using an exploratory multiple regression analysis. Moral preference, defined as κ<sub>other</sub> - κ<sub>self</sub>, was negatively associated with IH (β=-0.031±0.011, t<sub>156</sub>=-2.784, P =0.006) but not with IB (β=0.008±0.016, t<sub>156</sub>=0.475, P=0.636) across gain and loss contexts, reflecting a general connection between moral preference and IH (Fig. 3A & B).”

      (4) Inaccurate conceptualization of utilitarian psychology and the questionnaire used to measure it.

      Also in recommendations:

      (2) Throughout the paper, the authors placed lots of weight on individual differences in utilitarian psychology and the Oxford Utilitarianism Scale (OUS). I am not sure this is the best individual difference measure in this context. I don't see a conceptual fit between the psychological construct that OUS reflects, and the key psychological processes underlying the behaviors in the present study. As far as I understand it, the conceptual core of utilitarian psychology that OUS captures is the maximization of greater goods. Neither the Instrumental Harm (IH) component nor the Impartial Beneficence (IB) component reflects a tradeoff between the personal interests of the decision-making agent and a moral principle. The IH component is about the endorsement of harming a smaller number of individuals for the benefit of a larger number of individuals. The IB component is about treating self, close others, and distant others equally. However, the behavioral task used in this study is neither about distributing harm between a smaller number of others and a larger number of others nor about benefiting close or distant others. The fact that IH showed some statistical association with the behavioral tendency in the present data set could be due to the conceptual overlap between IH and an individual's tendency to inflict harm (e.g., psychopathy; Table 7 in Kahane et al., 2018, which the authors cited). I urge the authors to justify more why they believe that conceptually OUS is an appropriate individual difference measure in the present study, and if so, interpret their results in a clearer and justifiable manner (taking into account the potential confound of harm tendency/psychopathy).

      We thank the reviewer for the thoughtful comment and agree that “IH component is about the endorsement of harming a smaller number of individuals for the benefit of a larger number of individuals. The IB component is about treating self, close others, and distant others equally”. As we mentioned in the previous response to the reviewer, we first ran an exploratory multiple linear regression analysis of hyperaltruistic preference (κ<sub>other</sub> - κ<sub>self</sub>) against IB and IH in study 1 based on the hypothesis that the reduction of hyperaltruistic preference in the loss condition might be due to 1) subjects’ altered altitudes between IB and hyperaltruistic preference between the gain and loss conditions, and/or 2) the loss condition changed how the moral norm was perceived and therefore affected the correlation between IH and hyperaltruistic preference. As Fig. 3 shows, we did not find a significant IB effect on hyperaltruistic preference (κ<sub>other</sub> - κ<sub>self</sub>), nor on the relative harm or money sensitivity (supplementary Fig. 3). These results excluded the possibility that subjects with higher IB might treat self and others more equally and therefore show less hyperaltruistic preference. On the other hand, we found a strong correlation between hyperaltruistic preference and IH (Fig. 3A): subjects with higher IH scores showed less hyperaltruistic preference. Since the hyperaltruistic preference (κ<sub>other</sub> - κ<sub>self</sub>) is a compound variable and we further broke it down to subjects’ relative sensitivity to harm and money (other β<sub>∆s</sub> - self β<sub>∆s</sub> and other β<sub>∆m</sub> - self β<sub>∆m</sub>, respectively). The follow up regression analyses revealed that the correlation between subjects’ relative harm sensitivity and IH was altered by the decision contexts (gain vs. loss, Fig. 3C-D). These results are consistent with our hypothesis that for subjects to engage in the utilitarian calculation, they should first realize that there is a moral dilemma (harming others to make monetary gain in the gain condition). When there is less perceived moral conflict (due to the framing of decision context as avoiding loss in the loss condition), the correlation between subjects’ relative harm sensitivity and IH became insignificant (Fig. 3C). It is worth noting that these results were further replicated in the placebo condition of study 2, further indicating the role of OXT is to affect how the decision context is morally framed.

      The reviewer also raised an interesting possibility that the correlation between subject’s behavioral tendency and IH may be confounded by the fact that IH is also correlated with other traits such as psychopathy. Indeed, in the Kahane et al., 2018 paper, the authors showed that IH was associated with subclinical psychopathy in a lay population. Although we only collected and included IB and Empathic concern (EC) scores as control variables and in principle could not rule out the influence of psychopathy, we argue it is unlikely the case. First, psychopaths by definition “only care about their own good” (Kahane et al., 2018). However, subjects in our studies, as well as in previous research, showed greater aversion to harming others (compared to harming themselves) in the gain conditions. This is opposite to the prediction of psychopathy. Even in the loss condition, subjects showed similar levels of aversion to harming others (vs. harming themselves), indicating that our subjects valuated their own and others’ well-being similarly. Second, although there appears to be an association between utilitarian judgement and psychopathy(Glenn et al., 2010; Kahane et al., 2015), the fact that people also possess a form of universal or impartial beneficence in their utilitarian judgements suggest psychopathy alone is not a sufficient variable explaining subjects’ hyperaltruistic behavior.

      We have thus rewritten part of the results to clarify our rationale for using the Oxford Utilitarianism Scale (especially the IH and IB) to establish the relationship between moral traits and subjects’ decision preference (Lines 212-215):

      “Furthermore, our results are consistent with the claim that profiting from inflicting pains on another person (IH) is inherently deemed immoral1. Hyperaltruistic preference, therefore, is likely to be associated with subjects’ IH dispositions.”

      (3) Relatedly, in the Discussion, the authors mentioned "the money-pain trade-off task, similar to the well-known trolley dilemma". I am not sure if this statement is factually accurate because the "well-known trolley dilemma" is about a disinterested third-party weighing between two moral requirements - "greatest good for the greatest number" (utilitarianism) and "do no harm" (Kantian/deontology), not between a moral requirement and one's own monetary interest (which is the focus of the present study). The analogy would be more appropriate if the task required the participants to trade off between, for example, harming one person in exchange for a charitable donation, as a recent study employed (Siegel et al., 2022, A computational account of how individuals resolve the dilemma of dirty money. Scientific reports). I urge the authors to go through their use of "utilitarian/utilitarianism” in the paper and make sure their usage aligns with the definition of the concept and the philosophical implications.

      We thank the reviewer for prompting us to think over the difference between our task and the trolley dilemma. Indeed, the trolley dilemma refers to a disinterested third-party’s decision between two moral requirements, namely, the utilitarianism and deontology. In our study, when the shock recipient was “other”, our task could be interpreted as either the decision between “moral norm of no harm (deontology) and one’s self-interest maximization (utilitarian)”, or a decision between “greatest good for both parties (utilitarian) vs. do no harm (deontology)”, though the latter interpretation typically requires differential weighing of own benefits versus the benefits of others(Fehr & Schmidt, 1999; Saez et al., 2015). In fact, it could be argued that the utilitarianism account applies not only to the third party’s well-being, but also to our own well-being, or to “that of those near or dear to us” (Kahane et al., 2018).

      We acknowledge that there may lack a direct analogy between our task and the trolley dilemma and therefore have deleted the trolley example in the discussion.

      (5) Related to the above point, the sample size of Study 2 was calculated based on the main effect of oxytocin. However, the authors also reported several regression models that seem to me more like exploratory analyses. Their sample size may not be sufficient for these analyses. The authors should: a) explicitly distinguish between their hypothesis-driven analysis and exploratory analysis; b) report achieved power of their analysis.

      We appreciate the reviewer’s thorough reading of our manuscript. Following the reviewer’s suggestions, we have explicitly stated in the revised manuscript which analyses were exploratory, and which were hypothesis driven. Following the reviewer’s request, we added the achieved power into the main texts (Lines 274-279):

      “The effect size (Cohen’s f<sup>2</sup>) for this exploratory analysis was calculated to be 0.491 and 0.379 for the placebo and oxytocin conditions, respectively. The post hoc power analysis with a significance level of α = 0.05, 7 regressors (IH, IB, EC, decision context, IH×context, IB×context, and EC×context), and sample size of N = 46 yielded achieved power of 0.910 (placebo treatment) and 0.808 (oxytocin treatment).”

      (6) Do the authors collect reaction times (RT) information? Did the decision context and oxytocin modulate RT? Based on their procedure, it seems that the authors adopted a speeded response task, therefore the RT may reflect some psychological processes independent of choice. It is also possible (and recommended) that the authors use the drift-diffusion model to quantify latent psychological processes underlying moral decision-making. It would be interesting to see if their manipulations have any impact on those latent psychological processes, in addition to explicit choice, which is the endpoint product of the latent psychological processes. There are some examples of applying DDM to this task, which the authors could refer to if they decide to go down this route (Yu et al, 2021, How peer influence shapes value computation in moral decision-making. Cognition.)

      We did collect the RT information for this experiment. As demonstrated in the figure below, participants exhibited significantly longer RT in the loss context compared to the gain context (Study1: the main effect of decision context: F<sub>1,79</sub>=20.043, P < 0.001, η<sup>2</sup> =0.202; Study2-placebo: F<sub>1.45</sub>=17.177, P < 0.001, η<sup>2</sup> =0.276). In addition to this effect of context, decisions were significantly slower in the other-condition compared to the self-condition

      (Study1: the main effect of recipient: F<sub>1,79</sub>=4.352, P < 0.040, η<sup>2</sup> =0.052; Study2-placebo: F<sub>1,45</sub>=5.601, P < 0.022, η<sup>2</sup> =0.111) which replicates previous research findings (Crockett et al., 2014). However, the differences in response time between recipients was not modulated by decision context (Study1: context × recipient interaction: F<sub>1,79</sub>=1.538, P < 0.219, η<sup>2</sup> =0.019; Study2-placebo: F<sub>1,45</sub>=2.631, P < 0.112, η<sup>2</sup> =0.055). Additionally, the results in the oxytocin study (study 2) revealed no evidence supporting any effect of oxytocin on reaction time. Neither the main effect (treatment: placebo vs. oxytocin) nor the interaction effect of oxytocin on response time was statistically significant (main effect of OXT treatment: F<sub>1,45</sub>=2.380, P < 0.230, η<sup>2</sup> =0.050; treatment × context: F<sub>1,45</sub>=2.075, P < 0.157η<sup>2</sup> =0.044; treatment × recipient: F<sub>1,45</sub>=0.266, P < 0.609, η<sup>2</sup> =0.006; treatment × context × recipient: F<sub>1,45</sub>=2.909, P < 0.095, η<sup>2</sup> =0.061).;

      Author response image 4.

      We also agree that it would be interesting to also investigate how the OXT might impact the dynamics of the decision process using a drift-diffusion model (DDM). However, we have already showed in the original manuscript that the OXT increased subjects’ relative harm sensitivities. If a canonical DDM is adopted here, then such an OXT effect is more likely to correspond to the increased drift rate for the relative harm sensitivity, which we feel still aligns with the current framework in general. In future studies, including further manipulations such as time pressure might be a more comprehensive approach to investigate the effect of OXT on DDM related decision variables such as attribute drift rate, initial bias, decision threshold and attribute synchrony.

      (7) This is just a personal preference, but I would avoid metaphoric language in a scientific paper (e.g., rescue, salvage, obliterate). Plain, neutral English terms can express the same meaning clearly (e.g., restore, vanish, eliminate).

      Again, we thank the reviewer for the suggestion and have since modified the terms.

      Reviewer #3:

      The primary weakness of the paper concerns its framing. Although it purports to be measuring "hyper-altruism" it does not provide evidence to support why any of the behavior being measured is extreme enough to warrant the modifier "hyper" (and indeed throughout I believe the writing tends toward hyperbole, using, e.g., verbs like "obliterate" rather than "reduce"). More seriously, I do not believe that the task constitutes altruism, but rather the decision to engage, or not engage, in instrumental aggression.

      We agree with the reviewer (and reviewer # 2) that plain and clear English should be used to describe our results and have since modified those terms.

      However, the term “hyperaltruism”, which is the main theme of our study, was originally proposed by a seminal paper (Crockett et al., 2014) and has since been widely adopted in related studies (Crockett et al., 2014, 2015, 2017; Volz et al., 2017; Zhan et al., 2020). The term “hyperaltruism” was introduced to emphasize the difference from altruism (Chen et al., 2024; FeldmanHall et al., 2015; Hu et al., 2021; Hutcherson et al., 2015; Lockwood et al., 2017; Xiong et al., 2020). Hyperaltruism does not indicate extreme altruism. Instead, it simply reflects the fact that “we are more willing to sacrifice gains to spare others from harm than to spare ourselves from harm” (Volz et al., 2017). In other words, altruism refers to people’s unselfish regard for or devotion to the welfare of others, and hyperaltruism concerns subject’s own cost-benefit preference as the reference point and highlights the “additional” altruistic preference when considering other’s welfare. For example, in the altruistic experimental design, altruism is characterized by the degree to which subjects take other people’s welfare into account (left panel). However, in a typical hyperaltruism task design (right panel), hyperaltruistic preference is operationally defined as the difference (κ<sub>other</sub> - κ<sub>self</sub>) between the degrees to which subjects value others’ harm (κ<sub>other</sub>) and their own harm (κ<sub>self</sub>).

      Author response image 5.

      I found it surprising that a paradigm that entails deciding to hurt or not hurt someone else for personal benefit (whether acquiring a financial gain or avoiding a loss) would be described as measuring "altruism." Deciding to hurt someone for personal benefit is the definition of instrumental aggression. I did not see that in any of the studies was there a possibility of acting to benefit the other participant in any condition. Altruism is not equivalent to refraining from engaging in instrumental aggression. True altruism would be to accept shocks to the self for the other's benefit (e.g., money).  The interpretation of this task as assessing instrumental aggression is supported by the fact that only the Instrumental Harm subscale of the OUS was associated with outcomes in the task, but not the Impartial Benevolence subscale. By contrast, the IB subscale is the one more consistently associated with altruism (e.g,. Kahane et al 2018; Amormino at al, 2022) I believe it is important for scientific accuracy for the paper, including the title, to be re-written to reflect what it is testing.

      Again, as we mentioned in the previous response, hyperaltruism is a term coined almost a decade ago and has since been widely adopted in the research field. We are afraid that switching such a term would be more likely to cause confusion (instead of clarity) among audience.

      Also, from the utilitarian perspective, the gain or loss (or harm) occurred to someone else is aligned on the same dimension and there is no discontinuity between gains and losses. Therefore, taking actions to avoid someone else’s loss can also be viewed as altruistic behavior, similar to choices increasing other’s welfare (Liu et al., 2020).

      Relatedly: in the introduction I believe it would be important to discuss the non-symmetry of moral obligations related to help/harm--we have obligations not to harm strangers but no obligation to help strangers. This is another reason I do not think the term "hyper altruism" is a good description for this task--given it is typically viewed as morally obligatory not to harm strangers, choosing not to harm them is not "hyper" altruistic (and again, I do not view it as obviously altruism at all).

      We agree with the reviewer’s point that we have the moral obligations not to harm others but no obligation to help strangers (Liu et al., 2020). In fact, this is exactly what we argued in our manuscript: by switching the decision context from gains to losses, subjects were less likely to perceive the decisions as “harming others”. Furthermore, after the administration of OXT, making decisions in both the gain and loss contexts were more perceived by subjects as harming others (Fig. 6A).

      The framing of the role of OT also felt incomplete. In introducing the potential relevance of OT to behavior in this task, it is important to pull in evidence from non-human animals on origins of OT as a hormone selected for its role in maternal care and defense (including defensive aggression). The non-human animal literature regarding the effects of OT is on the whole much more robust and definitive than the human literature. The evidence is abundant that OT motivates the defensive care of offspring of all kinds. My read of the present OT findings is that they increase participants' willingness to refrain from shocking strangers even when incurring a loss (that is, in a context where the participant is weighing harm to themselves versus harm to the other). It will be important to explain why OT would be relevant to refraining from instrumental aggression, again, drawing on the non-human animal literature.

      We thank the reviewer’s comments and agree that the current understanding of the link between our results of OT with animal literature can be at best described as vague and intriguing. Current literature on OT in animal research suggests that the nucleus accumbens (NAc) oxytocin might play the critical role in social cognition and reinforcing social interactions (Dölen et al., 2013; Dölen & Malenka, 2014; Insel, 2010). Though much insight has already been gained from animal studies, in humans, social interactions can take a variety of different forms, and the consociate recognition can also be rather dynamic. For example, male human participants with self-administered OT showed higher trust and cooperation towards in-group members but more defensive aggression towards out-group members (De Dreu et al., 2010). In another human study, participants administered with OT showed more coordinated out-group attack behavior, suggesting that OT might increase in-group efficiency at the cost of harming out-group members (Zhang et al., 2019). It is worth pointing out that in both experiments, the participant’s group membership was artificially assigned, thus highlighting the context-dependent nature of OT effect in humans.

      In our experiment, more complex and higher-level social cognitive processes such as moral framing and moral perception are involved, and OT seems to play an important role in affecting these processes. Therefore, we admit that this study, like the ones mentioned above, is rather hard to find non-human animal counterpart, unfortunately. Instead of relating OT to instrumental aggression, we aimed to provide a parsimonious framework to explain why the “hyperaltruism” disappeared in the loss condition, and, with the OT administration, reappeared in both the gain and loss conditions while also considering the effects of other relevant variables.  

      We concur with the reviewer’s comments about the importance of animal research and have since added the following paragraph into the revised manuscript (Line 86~90) as well as in the discussion:

      “Oxytocin has been shown to play a critical role in social interactions such as maternal attachment, pair bonding, consociate attachment and aggression in a variety of animal models[42,43]. Humans are endowed with higher cognitive and affective capacities and exhibit far more complex social cognitive patterns[44].”

      Another important limitation is the use of only male participants in Study 2. This was not an essential exclusion. It should be clear throughout sections of the manuscript that this study's effects can be generalized only to male participants.

      We thank the reviewer’s comments. Prior research has shown sex differences in oxytocin’s effects (Fischer-Shofty et al., 2013; Hoge et al., 2014; Lynn et al., 2014; Ma et al., 2016; MacDonald, 2013). Furthermore, with the potential confounds of OT effect due to the menstrual cycles and potential pregnancy in female subjects, most human OT studies have only recruited male subjects (Berends et al., 2019; De Dreu et al., 2010; Fischer-Shofty et al., 2010; Ma et al., 2016; Zhang et al., 2019). We have modified our manuscript to emphasize that study 2 only recruited male subjects.

      Recommendations:

      I believe the authors have provided an interesting and valuable dataset related to the willingness to engage in instrumental aggression - this is not the authors' aim, although also an important aim. Future researchers aiming to build on this paper would benefit from it being framed more accurately.

      Thus, I believe the paper must be reframed to accurately describe the nature of the task as assessing instrumental aggression. This is also an important goal, as well-designed laboratory models of instrumental aggression are somewhat lacking.

      Please see our response above that to have better connections with previous research, we believe that the term hyperaltruism might align better with the main theme for this study.

      The research literature on other aggression tasks should also be brought in, as I believe these are more relevant to the present study than research studies on altruism that are primarily donation-type tasks. It should be added to the limitations of how different aggression in a laboratory task such as this one is from real-world immoral forms of aggression. Arguably, aggression in a laboratory task in which all participants are taking part voluntarily under a defined set of rules, and in which aggression constrained by rules is mutual, is similar to aggression in sports, which is not considered immoral. Whether responses in this task would generalize to immoral forms of aggression cannot be determined without linking responses in the task to some real-world outcome.

      We agree with the reviewer that “aggression in a lab task …. is similar to aggression in sports”. Our starting point was to investigate the boundary conditions for the hyperaltruism (though we don’t deny that there is an aggression component in hyperaltruism, given the experiment design we used). In other words, the dependent variable we were interested in was the difference between “other” and “self” aggression, not the aggression itself. Our results showed that by switching the decision context from the monetary gain environment to the loss condition, human participants were willing to bear similar amounts of monetary loss to spare others and themselves from harm. That is, hyperaltruism disappeared in the loss condition. We interpreted this result as the loss condition prompted subjects to adopt a different moral framework (help vs. harm, Fig. 6A) and subjects were less influenced by their instrumental harm personality trait due to the change of moral framework (Fig. 3C). In the following study (study 2), we further tested this hypothesis and verified that the administration of OT indeed increased subjects’ perception of the task as harming others for both gain and loss conditions (Fig. 6A), and such moral perception mediated the relationship between subject’s personality traits (instrumental harm) and their relative harm sensitivities (the difference of aggression between the other- and self-conditions). We believe the moral perception framework and that OT directly modulates moral perception better account for subjects’ context-dependent choices than hypothesizing OT’s context-dependent modulation effects on aggression.

      The language should also be toned down--the use of phrases like "hyper altruism" (without independent evidence to support that designation) and "obliterate" rather than "reduce" or "eliminate" are overly hyperbolic.

      We have changed terms such as “obliterate” and “eliminate” to plain English, as the reviewer suggested.

      Reference

      Abu-Akel, A., Palgi, S., Klein, E., Decety, J., & Shamay-Tsoory, S. (2015). Oxytocin increases empathy to pain when adopting the other- but not the self-perspective. Social Neuroscience, 10(1), 7–15.

      Barchi-Ferreira, A., & Osório, F. (2021). Associations between oxytocin and empathy in humans: A systematic literature review. Psychoneuroendocrinology, 129, 105268.

      Berends, Y. R., Tulen, J. H. M., Wierdsma, A. I., van Pelt, J., Feldman, R., Zagoory-Sharon, O., de Rijke, Y. B., Kushner, S. A., & van Marle, H. J. C. (2019). Intranasal administration of oxytocin decreases task-related aggressive responses in healthy young males. Psychoneuroendocrinology, 106, 147–154.

      Chen, J., Putkinen, V., Seppälä, K., Hirvonen, J., Ioumpa, K., Gazzola, V., Keysers, C., & Nummenmaa, L. (2024). Endogenous opioid receptor system mediates costly altruism in the human brain. Communications Biology, 7(1), 1–11.

      Crockett, M. J., Kurth-Nelson, Z., Siegel, J. Z., Dayan, P., & Dolan, R. J. (2014). Harm to others outweighs harm to self in moral decision making. Proceedings of the National Academy of Sciences of the United States of America, 111(48), 17320–17325.

      Crockett, M. J., Siegel, J. Z., Kurth-Nelson, Z., Dayan, P., & Dolan, R. J. (2017). Moral transgressions corrupt neural representations of value. Nature Neuroscience, 20(6), 879–885.

      Crockett, M. J., Siegel, J. Z., Kurth-Nelson, Z., Ousdal, O. T., Story, G., Frieband, C., Grosse-Rueskamp, J. M., Dayan, P., & Dolan, R. J. (2015). Dissociable Effects of Serotonin and Dopamine on the Valuation of Harm in Moral Decision Making. Current Biology, 25(14), 1852–1859.

      De Dreu, C. K. W., Greer, L. L., Handgraaf, M. J. J., Shalvi, S., Van Kleef, G. A., Baas, M., Ten Velden, F. S., Van Dijk, E., & Feith, S. W. W. (2010). The Neuropeptide Oxytocin Regulates Parochial Altruism in Intergroup Conflict Among Humans. Science, 328(5984), 1408–1411.

      De Dreu, C. K. W., Gross, J., Fariña, A., & Ma, Y. (2020). Group Cooperation, Carrying-Capacity Stress, and Intergroup Conflict. Trends in Cognitive Sciences, 24(9), 760–776.

      Dölen, G., Darvishzadeh, A., Huang, K. W., & Malenka, R. C. (2013). Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 501(7466), 179–184.

      Dölen, G., & Malenka, R. C. (2014). The Emerging Role of Nucleus Accumbens Oxytocin in Social Cognition. Biological Psychiatry, 76(5), 354–355.

      Evans, S., Shergill, S. S., & Averbeck, B. B. (2010). Oxytocin Decreases Aversion to Angry Faces in an Associative Learning Task. Neuropsychopharmacology, 35(13), 2502–2509.

      Fehr, E., & Schmidt, K. M. (1999). A Theory of Fairness, Competition, and Cooperation*. The Quarterly Journal of Economics, 114(3), 817–868.

      FeldmanHall, O., Dalgleish, T., Evans, D., & Mobbs, D. (2015). Empathic concern drives costly altruism. Neuroimage, 105, 347–356.

      Fischer-Shofty, M., Levkovitz, Y., & Shamay-Tsoory, S. G. (2013). Oxytocin facilitates accurate perception of competition in men and kinship in women. Social Cognitive and Affective Neuroscience, 8(3), 313–317.

      Fischer-Shofty, M., Shamay-Tsoory, S. G., Harari, H., & Levkovitz, Y. (2010). The effect of intranasal administration of oxytocin on fear recognition. Neuropsychologia, 48(1), 179–184.

      Glenn, A. L., Koleva, S., Iyer, R., Graham, J., & Ditto, P. H. (2010). Moral identity in psychopathy. Judgment and Decision Making, 5(7), 497–505.

      Hoge, E. A., Anderson, E., Lawson, E. A., Bui, E., Fischer, L. E., Khadge, S. D., Barrett, L. F., & Simon, N. M. (2014). Gender moderates the effect of oxytocin on social judgments. Human Psychopharmacology: Clinical and Experimental, 29(3), 299–304.

      Hu, J., Hu, Y., Li, Y., & Zhou, X. (2021). Computational and Neurobiological Substrates of Cost-Benefit Integration in Altruistic Helping Decision. Journal of Neuroscience, 41(15), 3545–3561.

      Hutcherson, C. A., Bushong, B., & Rangel, A. (2015). A Neurocomputational Model of Altruistic Choice and Its Implications. Neuron, 87(2), 451–462.

      Insel, T. R. (2010). The Challenge of Translation in Social Neuroscience: A Review of Oxytocin, Vasopressin, and Affiliative Behavior. Neuron, 65(6), 768–779.

      Kahane, G., Everett, J. A. C., Earp, B. D., Caviola, L., Faber, N. S., Crockett, M. J., & Savulescu, J. (2018). Beyond sacrificial harm: A two-dimensional model of utilitarian psychology. Psychological Review, 125(2), 131–164.

      Kahane, G., Everett, J. A. C., Earp, B. D., Farias, M., & Savulescu, J. (2015). ‘Utilitarian’ judgments in sacrificial moral dilemmas do not reflect impartial concern for the greater good. Cognition, 134, 193–209.

      Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263.

      Kapetaniou, G. E., Reinhard, M. A., Christian, P., Jobst, A., Tobler, P. N., Padberg, F., & Soutschek, A. (2021). The role of oxytocin in delay of gratification and flexibility in non-social decision making. eLife, 10, e61844.

      Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S., Gruppe, H., Mattay, V. S., Gallhofer, B., & Meyer-Lindenberg, A. (2005). Oxytocin Modulates Neural Circuitry for Social Cognition and Fear in Humans. The Journal of Neuroscience, 25(49), 11489–11493.

      Liu, J., Gu, R., Liao, C., Lu, J., Fang, Y., Xu, P., Luo, Y., & Cui, F. (2020). The Neural Mechanism of the Social Framing Effect: Evidence from fMRI and tDCS Studies. The Journal of Neuroscience, 40(18), 3646–3656.

      Liu, Y., Li, L., Zheng, L., & Guo, X. (2017). Punish the Perpetrator or Compensate the Victim? Gain vs. Loss Context Modulate Third-Party Altruistic Behaviors. Frontiers in Psychology, 8, 2066.

      Lockwood, P. L., Hamonet, M., Zhang, S. H., Ratnavel, A., Salmony, F. U., Husain, M., & Maj, A. (2017). Prosocial apathy for helping others when effort is required. Nature Human Behaviour, 1(7), 131–131.

      Losecaat Vermeer, A. B., Boksem, M. A. S., & Sanfey, A. G. (2020). Third-party decision-making under risk as a function of prior gains and losses. Journal of Economic Psychology, 77, 102206.

      Lynn, S. K., Hoge, E. A., Fischer, L. E., Barrett, L. F., & Simon, N. M. (2014). Gender differences in oxytocin-associated disruption of decision bias during emotion perception. Psychiatry Research, 219(1), 198–203.

      Ma, Y., Liu, Y., Rand, D. G., Heatherton, T. F., & Han, S. (2015). Opposing Oxytocin Effects on Intergroup Cooperative Behavior in Intuitive and Reflective Minds. Neuropsychopharmacology, 40(10), 2379–2387.

      Ma, Y., Shamay-Tsoory, S., Han, S., & Zink, C. F. (2016). Oxytocin and Social Adaptation: Insights from Neuroimaging Studies of Healthy and Clinical Populations. Trends in Cognitive Sciences, 20(2), 133–145.

      MacDonald, K. S. (2013). Sex, Receptors, and Attachment: A Review of Individual Factors Influencing Response to Oxytocin. Frontiers in Neuroscience, 6. 194.

      Markiewicz, Ł., & Czupryna, M. (2018). Cheating: One Common Morality for Gain and Losses, but Two Components of Morality Itself. Journal of Behavior Decision Making. 33(2), 166-179.

      Pachur, T., Schulte-Mecklenbeck, M., Murphy, R. O., & Hertwig, R. (2018). Prospect theory reflects selective allocation of attention. Journal of Experimental Psychology: General, 147(2), 147–169.

      Radke, S., Roelofs, K., & De Bruijn, E. R. A. (2013). Acting on Anger: Social Anxiety Modulates Approach-Avoidance Tendencies After Oxytocin Administration. Psychological Science, 24(8), 1573–1578.

      Saez, I., Zhu, L., Set, E., Kayser, A., & Hsu, M. (2015). Dopamine modulates egalitarian behavior in humans. Current Biology, 25(7), 912–919.

      Teoh, Y. Y., Yao, Z., Cunningham, W. A., & Hutcherson, C. A. (2020). Attentional priorities drive effects of time pressure on altruistic choice. Nature Communications, 11(1), 3534.

      Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. A. (2007). The neural basis of loss aversion in decision-making under risk. Science, 315(5811), 515–518.

      Usher, M., & McClelland, J. L. (2004). Loss Aversion and Inhibition in Dynamical Models of Multialternative Choice. Psychological Review, 111(3), 757–769.

      Volz, L. J., Welborn, B. L., Gobel, M. S., Gazzaniga, M. S., & Grafton, S. T. (2017). Harm to self outweighs benefit to others in moral decision making. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 7963–7968.

      Wu, Q., Mao, J., & Li, J. (2020). Oxytocin alters the effect of payoff but not base rate in emotion perception. Psychoneuroendocrinology, 114, 104608.

      Wu, S., Cai, W., & Jin, S. (2018). Gain or non-loss: The message matching effect of regulatory focus on moral judgements of other-orientation lies. International Journal of Psychology, 53(3), 223-227.

      Xiong, W., Gao, X., He, Z., Yu, H., Liu, H., & Zhou, X. (2020). Affective evaluation of others’ altruistic decisions under risk and ambiguity. Neuroimage, 218, 116996.

      Yechiam, E., & Hochman, G. (2013). Losses as modulators of attention: Review and analysis of the unique effects of losses over gains. Psychological Bulletin, 139(2), 497–518.

      Zhan, Y., Xiao, X., Tan, Q., Li, J., Fan, W., Chen, J., & Zhong, Y. (2020). Neural correlations of the influence of self-relevance on moral decision-making involving a trade-off between harm and reward. Psychophysiology, 57(9), e13590.

      Zhang, H., Gross, J., De Dreu, C., & Ma, Y. (2019). Oxytocin promotes coordinated out-group attack during intergroup conflict in humans. eLife, 8, e40698.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      A) The presentation of the paper must be strengthened. Inconsistencies, mislabelling, duplicated text, typos, and inappropriate colour code should be changed.

      We spotted and corrected several inconsistencies and mislabelling issues throughout the text and figures. Thanks!  

      B) Some claims are not supported by the data. For example, the sentence that says that "adolescent mice showed lower discrimination performance than adults (l.22) should be rewritten, as the data does not show that for the easy task (Figure 1F and Figure 1H).

      We carefully reviewed the specific claims and fixed some of the wording so it adheres to the data shown.

      C) In Figure 7 for example, are the quantified properties not distinct across primary and secondary areas?

      We now carried out additional analysis to test this. We found that while AUDp and AUDv exhibit distinct tuning properties, they show similar differences between adolescent and adult neurons (see Supplementary Table 6, Fig. S7-1a-h). Note that TEa and AUDd could not be evaluated due to low numbers of modulated neurons in this protocol.

      D) Some analysis interpretations should be more cautious. (..) A lower lick rate in general could reflect a weaker ability to withhold licking- as indicated on l.164, but also so many other things, like a lower frustration threshold, lower satiation, more energy, etc).

      That is a fair comment, and we refined our interpretations. Moreover, we also addressed whether impulsiveness impacted lick rates. In the Educage, we found that adolescent mice had shorter ITIs only after FAs (Fig. S2-1). In the head-fixed setup, we examined (1) the proportion of ITIs where licks occurred (Fig. S3-1c) and (2) the number of licks in these ITIs (Fig. S3-1d). We found no differences between adolescents and adults, indicating that the differences observed in the main task are not due to general differences in impulsiveness (Fig. S2-1, Fig. S3-1c, d). Finally, we note that potential differences in satiation were already addressed in the original manuscript by carefully examining the number of trials completed across the session. See also Review 3, comment #1 below.

      Reviewer #2 (Public review):

      A) For some of the analyses that the authors conducted it is unclear what the rationale behind them is and, consequently, what conclusion we can draw from them.

      We reviewed the manuscript carefully and revised the relevant sections to clarify the rationale behind the analyses. See detailed responses to all the reviewer’s specific comments.

      B) The results of optogenetic manipulation, while very interesting, warrant a more in-depth discussion.

      We expanded our discussion on these experiments (L495-511) and also added an additional analysis to strengthen our findings (Fig. S3-2e).

      Reviewer #3 (Public review):

      (1) The authors report that "adolescent mice showed lower auditory discrimination performance compared to adults" and that this performance deficit was due to (among other things) "weaker cognitive control". I'm not fully convinced of this interpretation, for a few reasons. First, the adolescents may simply have been thirstier, and therefore more willing to lick indiscriminately. The high false alarm rates in that case would not reflect a "weaker cognitive control" but rather, an elevated homeostatic drive to obtain water. Second, even the adult animals had relatively high (~40%) false alarm rates on the freely moving version of the task, suggesting that their behavior was not particularly well controlled either. One fact that could help shed light on this would be to know how often the animals licked the spout in between trials. Finally, for the head-fixed version of the task, only d' values are reported. Without the corresponding hit and false alarm rates (and frequency of licking in the intertrial interval), it's hard to know what exactly the animals were doing.

      irst, as requested, we added the Hit rates and FA rates for the head-fixed task (Fig. S3-1a). Second, as requested by the reviewr, we performed additional analyses in both the Educage and head-fixed versions of the task. Specifically, we analyzed the ITI duration following each trial outcome. We found that adolescent mice had shorter ITIs only after Fas (Fig. S2-1). In the head-fixed setup, we examined (1) the proportion of ITIs during which licks occurred (Fig. S3-1c) and (2) the number of licks in these ITIs (Fig. S3-1d). We found no differences between adolescents and adults, indicating that the differences observed in the main task are not due to general differences in impulsiveness (Fig. S2-1, Fig. S3-1c, d). See also comment #D of reviewer #1 above.

      B) There are some instances where the citations provided do not support the preceding claim. For example, in lines 64-66, the authors highlight the fact that the critical period for pure tone processing in the auditory cortex closes relatively early (by ~P15). However, one of the references cited (ref 14) used FM sweeps, not pure tones, and even provided evidence that the critical period for this more complex stimulus occurred later in development (P31-38). Similarly, on lines 72-74, the authors state that "ACx neurons in adolescents exhibit high neuronal variability and lower tone sensitivity as compared to adults." The reference cited here (ref 4) used AM noise with a broadband carrier, not tones.

      We carefully checked the text to ensure that each claim is accurately supported by the corresponding reference.

      C) Given that the authors report that neuronal firing properties differ across auditory cortical subregions (as many others have previously reported), why did the authors choose to pool neurons indiscriminately across so many different brain regions?

      We appreciate the reviewer’s concern. While we acknowledge that pooling neurons across auditory cortical subregions may obscure region-specific effects, our primary focus in this study is on developmental differences between adolescents and adults, which were far more pronounced than subregional differences.

      To address this potential limitation: (1) We analyzed firing differences across subregions during task engagement (see Fig. S4-1, S4-2, S4-3; Supplementary Tables 2 and 3). (2) We have now added new analyses for the passive listening condition in AUDp and AUDv (Fig. S7-1; Supplementary Table 6).

      These analyses support our conclusion that developmental stage has a greater impact on auditory cortical activity than subregional location in the contexts examined. For clarity and cohesion, the main text emphasizes developmental differences, while subregional analyses are presented in the Supplement.

      D) And why did they focus on layers 5/6? (Is there some reason to think that age-related differences would be more pronounced in the output layers of the auditory cortex than in other layers?)

      We agree that other cortical layers, particularly supragranular layers, are important for auditory processing and plasticity. Our focus on layers 5/6 was driven by both methodological and biological considerations. Methodologically, our electrode penetrations were optimized to span multiple auditory cortical areas, and deeper layers provided greater mechanical stability for chronic recordings. Biologically, layers 5/6 contain the principal output neurons of the auditory cortex and are well-positioned to influence downstream decision-making circuits. We acknowledge the limitation of our recordings to these layers in the manuscript (L268; L464-8).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The presentation of the paper must be strengthened. As it is now, it makes it difficult to appreciate the strengths of the results. Here are some points that should be addressed:

      a) The manuscript is full of inconsistencies that should be fixed to improve the reader's understanding. For example, the description on l.217 and the Figure. S3-1b, the D' value of 0 rounded to 0.01 on l. 735 (isn't it rather the z-scored value that is rounded? A D' of 0 is not a problem), the definition of lick bias on l. 750 and the values in Fig.2, the legend of Figure 7F and what is displayed on the graph (is it population sparseness or responsiveness?), etc.

      We adjusted the legend and description of former Fig. S3-1b (now Fig. S3-2b).

      We now clarify that the rounded values refer to z-scored hit and false alarm rates that we used in the d’ calculation. We adjusted the definition of the lick bias in Fig. 2 and Fig. S3-1b (L804).

      We replaced ‘population responsiveness’ with ‘population sparseness’ throughout the figures, legend and the text.

      b) References to figures are sometimes wrong (for example on l. 737,739).

      c) Some text is duplicated (for example l. 814 and l. 837).

      d) Typos should be corrected (for example l. 127, 'the', l. 787, 'upto').

      We deleted the incorrect references of this section, removed the duplicated text, and corrected the typos.

      e) Color code should be changed (for example the shades of blue for easy and hard tasks - they are extremely difficult to differentiate).

      After consideration, we decided to retain the blue color code (i.e., Fig. 1d, Fig. 3d, Fig. 4e-g, Fig. 5c, Fig. 6d–g), where the distinction between the shades of blue appears sufficiently clear and maintains visual consistency and aesthetic appeal. We did however, made changes in the other color codes (Fig. 4, Fig. 5, Fig. 6, Fig. 7).

      f) Figure design should be improved. For example, why is a different logic used for displaying Figure 5A or B and Figure 1E?

      We adjusted the color scheme in Fig. 5. We chose to represent the data in Fig. 5 according to task difficulty, as this arrangement best illustrates the more pronounced deficits in population decoding in adolescents during the hard task.

      f) Why use a 3D representation in Figure 4G? (2)

      The 3D representation in Fig. 4g was chosen to illustrate the 3-way interactions between onset-latency, maximal discriminability, and duration of discrimination.

      g) Figure 1A, lower right panel- should "response" not be completed by "lick", "no lick"?

      We changed the labels to “Lick” and “No Lick” in Fig. 1a.

      h) l.18 the age mentioned is misleading, because the learning itself actually started 20 days earlier than what is cited here.

      Corrected.

      i) Explain what AAV5-... is on l.212.

      We added an explanation of virus components (see L216-220).

      (2) The comparison of CV in Figure 2 H-J is interesting. I am curious to know whether the differences in the easy and hard tasks could be due to a decrease in CV in adults, rather than an increase in CV in adolescents? Also, could the difference in J be due to 3 outliers?

      We agree that the observed CV differences may reflect a reduction in variability in adults rather than an increase in adolescents. We have revised the Results section accordingly to acknowledge this interpretation.

      Regarding the concern about potential outliers in Fig. 2J, we tested the data for outliers using the isoutlier function in MATLAB (defining outliers as values exceeding three standard deviations from the mean) and found no such cases.

      (3) Figure 2c shows that there is no difference in perceptual sensitivity between adolescents and adults, whereas the conclusion from Figure 4 is that adolescents exhibit lower discriminability in stimulus-related activity. Aren't these results contradictory?

      This is a nuanced point. The similar slopes of the psychometric functions (Fig. 2c) indicating comparable perceptual sensitivity and the lower AUC observed in the ACx of adolescents (Fig. 4) do not necessarily contradict each other. These two measures capture related but distinct issues: psychometric slopes reflect behavioral output, which integrates both sensory encoding and processing downstream to ACx, while the AUC analysis reflects stimulus-related neural activity in ACx, which may still include decision-related components.<br /> Note that stimulus-related neural discriminability outside the context of the task is not different between adolescent and adult experts (Fig. 7h; p = 0.9374, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). This suggests that there are differences that emerge when we measure during behavior. Also note that behavior may rely on processing beyond ACx, and it is possible that downstream areas compensate for weaker cortical discriminability in adolescents — but this issue merits further investigation.

      (4) Why do you think that the discrimination in hard tasks decreases with learning (Figure 6D vs Figure 6F)?

      This is another nuanced point, and we can only speculate at this stage. While it may appear counterintuitive that single-neuron discriminability (AUC) for the hard task is reduced after learning (Fig. 6D vs. 6F), we believe this may reflect a shift in sensory coding in expert animals. In a recent study (Haimson et al., 2024; Science Advances), we found that learning alters single-neuron responses in the easy versus hard task in complex and distinct ways, which may account for this result. It is also possible that, in expert mice, top-down mechanisms such as feedback from higher-order areas act to suppress or stabilize sensory responses in auditory cortex, reducing the apparent stimulus selectivity of single neurons (e.g., AUC), even as behaviorally relevant information is preserved or enhanced at the population level.

      Reviewer #2 (Recommendations for the authors):

      This is very interesting work and I enjoyed reading the manuscript. See below for my comments, queries and suggestions, which I hope will help you improve an already very good paper.

      We thank the reviewer for the meticulous and thoughtful review.

      (1) Line 107: x-axis of panel 1e says 'pre-adolescent'.

      (2) Line 130: replace 'less' with 'fewer'.

      (3) Line 153: 'both learned and catch trials': I find the terminology here a bit confusing. I would typically understand a catch trial to be a trial without a stimulus but these 'catch' trials here have a stimulus. It's just that they are not rewarded/punished. What about calling them probe trials instead?

      We corrected the labelling (1), reworded to ‘fewer’ and ‘probe trials’ (2,3).

      (4) Line 210: The results of the optogenetics experiments are very interesting. In particular, because the effect is so dramatic and much bigger than what has been reported in the literature previously, I believe. Lick rates are dramatically reduced suggesting that the mice have pretty much stopped engaging in the task and the authors very rightly state that the 'execution' of the behavior is affected. I think it would be worth discussing the implications of these results more thoroughly, perhaps also with respect to some of the lesion work. Useful discussions on the topic can be found, for instance, in Otchy et al., 2015; Hong et al., 2018; O'Sullivan et al., 2019; Ceballo et al., 2019 and Lee et al., 2024. Are the mice unable to hear anything in laser trials and that is why they stopped licking? If they merely had trouble distinguishing them then we would perhaps expect the psychometric curves to approach chance level, i.e. to be flat near the line indicating a lick rate of 0.5. Could the dramatic decrease in lick rate be a motor issue? Can we rule out spillover of the virus to relevant motor areas? (I understand all of the 200nL of the virus were injected at a single location) Or are the effects much more dramatic than what has been reported previously simply because the GtACR2 is much more effective at silencing the auditory cortex? Could the effect be down to off-target effects, e.g. by removing excitation from a target area of the auditory cortex, rather than the disruption of cortical processing?

      We have now expanded the discussion in the manuscript to more thoroughly consider alternative interpretations of the strong behavioral effect observed during ACx silencing (L495–511). In particular, we acknowledge that the suppression of licking may reflect not only impaired sensory discrimination but also broader disruptions to arousal, motivation, or motor readiness. We also discuss the potential impact of viral spread, circuit-level off-target effects, and the potency of GtACR2 as possible contributors. We highlight the need for future work using more graded or temporally precise manipulations to resolve these issues.

      (5) Line 226: Reference 19 (Talwar and Gerstein 2001) is not particularly relevant as it is mostly concerned with microstimulation-induced A1 plasticity. There are, however, several other papers that should be cited (and potentially discussed) in this context. In particular, O'Sullivan et al., 2019 and Ceballo et al., 2019 as these papers investigate the effects of optogenetic silencing on frequency discrimination in head-fixed mice and find relatively modest impairments. Also relevant may be Kato et al., 2015 and Lee et al., 2024, although they look at sound detection rather than discrimination.

      We changed the references and pointed the reader to the (new section) Discussion.

      (6) Line 253: 'engaged [in] the task.

      (7) Figure 4: It appears that panel S4-1d is not referred to anywhere in the main text.

      Fixed.

      (8) Line 260: Might be useful to explain a bit more about the motivation behind focusing on L5/L6. Are there mostly theoretical considerations, i.e. would we expect the infragranular layers to be more relevant for understanding the difference in task performance? Or were there also practical considerations, e. g. did the data set contain mostly L5/L6 neurons because those were easier to record from given the angle at which the probe was inserted? If those kinds of practical considerations played a role, then there is nothing wrong with that but it would be helpful to explain them for the benefit of others who might try a similar recording approach.

      There were no deep theoretical considerations for targeting L5/6.  Our focus on layers 5/6 was driven by both methodological and biological considerations. Methodologically, our electrode penetrations were optimized to span multiple auditory cortical areas, and deeper layers provided greater mechanical stability for chronic recordings. Biologically, layers 5/6 contain the principal output neurons of the auditory cortex and are well-positioned to influence downstream decision-making circuits. We acknowledge the limitation of our recordings to these layers in the manuscript (L268; L463–467). See also comment D of reviewer 3.

      (9) Supplementary Table 2: The numbers in brackets indicate fractions rather than percentages.

      Fixed.

      (10) Figure S4-3: The figure legend implies that the number of neurons with significant discriminability for the hard stimulus and significant discriminability for choice was identical. (adolescent neurons = 368, mice = 5, recordings = 10; adult n = 544, mice = 6, recordings = 12 in both cases). Presumably, that is not actually the case and rather the result of a copy/paste operation gone wrong. Furthermore, I think it would be helpful to state the fractions of neurons that can discriminate between the stimuli and between the choices that the animal made in the main text.

      Thank you for spotting the mistake. We corrected the n’s and added the percentage of neurons that discriminate stimulus and choice in the main text and the figure legend.

      (11) Line 301: 'We used a ... decoder to quantify hit versus correct reject trial outcomes': I'm not sure I understand the rationale here. For the single unit analysis hit and false alarm trials were compared to assess their ability to discriminate the stimuli. FA and CR trials were compared to assess whether neurons can encode the choice of the mice. But the hit and CR trials which are contrasted here differ in terms of both stimulus and behavior/choice so what is supposed to be decoded here, what is supposed to be achieved with this analysis?

      Thank you for this important point. You're correct that comparing hit and CR trials captures differences in both stimulus and choice, or task-related differences. We chose this contrast for the population decoding analysis to achieve higher trial counts per session and similar number of trials which are necessary for the reliability of the analysis. While this approach does not isolate stimulus from choice encoding, it provides an overall measure of how well population activity distinguishes task-relevant outcomes. We explicitly acknowledge this issue in L313-314.

      (12) Line 332: What do you mean when you say the novice mice were 'otherwise fully engaged' in the task when they were not trained to do the task and are not doing the task?

      By "otherwise fully engaged," we mean that novice mice were actively participating in the task environment, similar to expert mice — they were motivated by thirst and licked the spout to obtain water. The key distinction is that novice mice had not yet learned the task rules and likely relied on trial-and-error strategies, rather than performing the task proficiently.

      (13) Line 334: 'regardless of trial outcome': Why is the trial outcome not taken into account? What is the rationale for this analysis? Furthermore, in novice mice a substantial proportion of the 'go' trials are misses. In expert mice, however, the proportion of 'miss trials' (and presumably false alarms) will by definition be much smaller. Given this, I find it difficult to interpret the results of this section.

      This approach was chosen to reliably decode a sufficient number of trials for each task difficulty (i.e. expert mice predominantly performed CRs on No-Go trials and novice mice often showed FAs). Utilizing all trial outcomes ensured that we had enough trials for each stimulus type to accurately estimate the AUCs. This approach avoids introducing biases due to uneven trial numbers across learning stages.

      (14) Line 378: 'differences between adolescents and adults arise primarily from age': Are there differences in any of the metrics shown in 7e-h between adolescents and adults?

      We confirm that differences between adolescents and adults are indeed present in some metrics but not others in Figure 7e–h. Specifically, while tuning bandwidth was similar in novice animals, it was significantly lower in adult experts (Fig. 7e; novice: p = 0.0882; expert: p = 0.0001 Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The population sparseness was similar in both novice and expert adolescent and adult neurons (Fig. 7f; novice: p = 0.2873; expert: p = 0.1017, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The distance to the easy go stimulus was similar in novice animals, but lower in adult experts (Fig. 7g; novice: p = 0.7727; expert: p = 0.0001, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The neuronal d-prime was similar in both novice and expert adolescent and adult neurons (Fig. 7h; novice: p = 0.7727; expert: p = 0.0001, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript).

      (15) Line 475: '...well and beyond...': something seems to be missing in this statement.

      (16) Line 487: 'onto' should be 'into', I think.

      (17) Line 610 and 613: '3 seconds' ... '2.5 seconds': Was the response window 3s or 2.5s?

      (18) Line 638: 'set' should be 'setup', I believe.

      All the mistakes mentioned above, were fixed. Thanks.

      (19) Line 643: 'Reward-reinforcement was delayed to 0.5 seconds after the tone offset': Presumably, if they completed their fifth lick later than 0.5 seconds after the tone, the reward delivery was also delayed?

      Apologies for the lack of clarity. In the head-fixed version, there was no lick threshold. Mice were reinforced after a single lick. If that lick occurred after the 0.5-second reinforcement delay following tone offset, the reward or punishment was delivered immediately upon licking.

      (20) Line 661: 'effect [of] ACx'.

      (21) Line 680: 'a base-station connected to chassis'. The sentence sounds incomplete.

      (22) Line 746: 'infliction', I believe, should say 'inflection'.

      (23) Line 769: 'non-auditory responsive units': Shouldn't that simply say 'non-responsive units'? The way it is currently written I understand it to mean that these units were responsive (to some other modality perhaps) but not to auditory stimulation.

      (24) Line 791: 'bins [of] 50ms'.

      (25) Line 811: 'all of' > 'of all'.

      (26) Line 814: Looks like the previous paragraph on single unit analysis was accidentally repeated under the wrong heading.

      (27) Line 817: 'encoded' should say 'calculated', I believe.

      All the mistakes mentioned above were fixed. Thanks.

      (28) Line 869: 'bandwidth of excited units': Not sure I understand how exactly the bandwidth, i.e. tuning width was measured.

      We acknowledge that our previous answer was unclear and expanded the Methods section. To calculate bandwidth, we identified significant tone-evoked responses by comparing activity during the tone window to baseline firing rates at 62 dB SPL (p < 0.05). For each neuron, we counted the number of contiguous frequencies with significant excitatory responses, subtracting isolated false positives to correct for chance. We then converted this count into an octave-based bandwidth by multiplying the number of frequency bins by the octave spacing between them (0.1661 octaves per step).

      (29) Line 871: 'population sparseness': Is that the fraction of tone frequencies that produced a significant response? I would have thought that this measure is very highly correlated to your measure of bandwidth, to the point of being redundant, but I may have misunderstood how one or the other is calculated. Furthermore, the Y label of Figure 7f says 'responsiveness' rather than sparseness and that would seem to be the more appropriate term because, unless I am misunderstanding this, a larger value here implies that the neuron responded to more frequencies, i.e. in a less sparse manner.

      We have clarified the use of the term "population sparseness" and updated the Y-axis label in Figure 7f to better reflect this measure. This metric reflects the fraction of tone–attenuation combinations that elicited a significant excitatory response across the entire population of neurons, not within individual units.

      While this measure is related to bandwidth, it captures a distinct property of the data. Bandwidth quantifies how broadly or narrowly a single neuron responds across frequencies at a fixed intensity, whereas population sparseness reflects how distributed responsiveness is across the population as a whole. Although the two measures are related, since broadly tuned neurons often contribute to lower population sparseness, they capture distinct aspects of neural coding and are not redundant.

      (30) Line 881: I think this line should refer to Figure 7h rather than 7g.

      Fixed.

      Reviewer #3 (Recommendations for the authors):

      (1) In the Educage, water was only available when animals engaged in the task; however, there is no mention of whether/how animal weight was monitored.

      In the Educage, mice had continuous access to water by voluntarily engaging in the task, which they could perform at any time. Although body weight was not directly monitored, water access was essentially ad libitum, and mice performed hundreds of trials per day, thereby ensuring sufficient daily intake. This approach allowed us to monitor hydration (ad libitum food is supplied in the home cage). The 24/7 setup, including automated monitoring of trial counts and water consumption, was reviewed and approved by our institutional animal care and use committee (IACUC).

      (2) In Figure 2B-C and Figure 2E, the y-axis reads "lick rate". At first glance, I took this to mean "the frequency of licking" (i.e. an animal typically licks at a rate of 5 Hz). However, what the authors actually are plotting here is the proportion of trials on which an animal elicited >= 5 licks during the response window (i.e. the proportion of "yes" responses). I recommend editing the y-axis and the text for clarity.

      We replaced the y-label and adjusted the figure legend (Fig. 2).

      (3) I didn't see any examples of raw (filtered) voltage traces. It would be worth including some to demonstrate the quality of the data.

      We have added an example of a filtered voltage trace aligned to tone onset in Fig. S4-1a to illustrate data quality. In addition, all raw and processed voltage traces, along with relevant analysis code, are available through our GitHub repository and the corresponding dataset on Zenodo.

      (4) The description of the calculation of bias (C) in the methods section (lines 749-750) is incorrect. The correct formula is C = -0.5 * [z(hit rate) + z(fa rate)]. I believe this is the formula that the authors used, as they report negative C values. Please clarify or correct.

      Thanks for spotting this. It is now corrected.

      (5) The authors use the terms 'naïve' and 'novice' interchangeably. I suggest sticking with one term to avoid potential confusion.

      (6) Multiple instances: "less trials/day" should be "fewer trials/day"

      (7) Supplementary Table 2: The values reported are proportions, not percentages. Please correct.

      (8) Line 270: Table 2 does not show the number of neurons in the dataset categorized by region. Perhaps the authors meant Supplementary Table 2?

      Fixed. Thank you for pointing these mistakes out.

      (9) Figure 5C: the data from the hard task are entirely obscured by the data from the easy task. I recommend splitting it into two different plots.

      We agree and split the decoding of the easy and the hard task into two graphs (left: easy task; right: hard task). Thank you!

      (10) How many mice contributed to each analyzed data set? Could the authors provide a breakdown in a table somewhere of how many neurons were recorded in each mouse and which ones were included in which analyses?

      We added an overview of the analyzed datasets in supplementary Table 7. Please note that the number of mice and neurons used in each analysis is also reported in the main text and legends. Importantly, all primary analyses were conducted using LME models, which explicitly account for hierarchical data structure and inter-mouse variability, thereby addressing potential concerns about data imbalance or bias.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Weakness#1: The authors claim to have identified drivers that label single DANs in Figure 1, but their confocal images in Figure S1 suggest that many of those drivers label additional neurons in the larval brain. It is also not clear why only some of the 57 drivers are displayed in Figure S1.

      As described in the Results section, we screened 57 GAL4 driver lines based on previous reports. These included drivers that had been shown to label a single dopaminergic neuron (DAN) or a small subset of DANs in the larval or adult brain hemisphere, suggesting potential for specific DAN labeling in larvae.

      In Figure 1, TH-GAL4 was used to cover all neurons in the DL1 cluster, while R58E02 and R30G08 were well known drivers for pPAM. Fly strains in Figure 1h, k, l, and m were reported as single DAN strains in larvae[1], while strains in Figure 1e, f, g were reported identifying only several DANs in adult brains[2,3]. We examined these strains and only some of them labeled single DANs in 3rd instar larval brain hemisphere (Figure 1f, g, h, l and m). Among them, only strains in Figure 1f and h labeled single DAN in the brain hemisphere, without labeling other non-DANs. Other strains labeled non-DANs in addition to single DANs (Figure 1g, l and m). Taking ventral nerve cord (VNC) into consideration, strain in Figure 1h also labeled neurons in VNC (Figure S1e), while strain in Figure 1f did not (Figure S1c).

      In summary, the driver shown in Figure 1f (R76F02AD;R55C10DBD, labeling DAN-c1) is the only line we identified that labels a single DAN in the 3rd instar larval brain hemisphere without additional labeling. The other lines shown in Figure 1 (g, h, l, m) label a single DAN but also include some non-DANs. Figure 1 focuses on strains that label a single or a pair of DANs.

      Labeling patterns for all 57 driver lines are summarized in Table 1. Figure S1 includes representative examples; full confocal images for all screened strains are available upon request, as stated in the figure legend.

      Weakness #2: Critically, R76F02-AD; R55C10-DBD labels more than one neuron per hemisphere in Figure S1c, and the authors cite Xie et al. (2018) to note that this driver labels two DANs in adult brains. Therefore, the authors cannot argue that the experiments throughout their paper using this driver exclusively target DAN-c1.

      Figure S1c shows a single dopaminergic (DA) neuron in each brain hemisphere. While additional GFP-positive signals were occasionally observed, they did not originate from the cell bodies of DA neurons, as these were not labeled by the tyrosine hydroxylase (TH) antibody. These additional GFP signals primarily appeared to be neurites, including axonal terminals, although we cannot rule out the possibility that some represent false-positive signals or weakly stained non-neuronal cell bodies. This interpretation is based on the analysis of 22 third-instar larval brains.

      To clarify this point in the manuscript, we added the following sentence to the Results section: “Based on the analysis of 22 brain samples, we observed this driver strain labels one neuron per hemisphere in the third-instar larval brain (Figure 2a–d, Figure S1c, Table S3).” Additionally, Table S3 was included to summarize the DAN-c1 labeling pattern across all 22 samples. An enlarged inset highlighting GFP-positive signals was also added to Figure S1c.

      Weakness #3: Missing from the screen of 57 drivers is the driver MB320C, which typically labels only PPL1-γ1pedc in the adult and should label DAN-c1 in the larva. If MB320C labels DAN-c1 exclusively in the larva, then the authors should repeat their key experiments with MB320C to provide more evidence for DAN-c1 involvement specifically.

      We thank the reviewer for this insightful suggestion. The MB320C driver primarily labels the PPL1-γ1pedc neuron in the adult brain, along with one or two additional weakly labeled cells. It would indeed be interesting to examine the expression pattern of this driver in third-instar larval brains. If it is found to label only DAN-c1 at this stage, we could consider using it to knock down D2R and assess whether this recapitulates our current findings.

      While we agree that this is a promising direction for future studies, we believe it is not essential for the current manuscript, given the specificity of the DAN-c1 driver (please see our response to Reviewer #3 for details). Nonetheless, we appreciate the reviewer’s suggestion, and we recognize that MB320C could be a valuable tool for future experiments.

      Weakness #4: The authors claim that the SS02160 driver used by Eschbach et al. (2020) labels other neurons in addition to DAN-c1. Could the authors use confocal imaging to show how many other neurons SS02160 labels? Given that both Eschbach et al. and Weber et al. (2023) found no evidence that DAN-c1 plays a role in larval aversive learning, it would be informative to see how SS02160 expression compares with the driver the authors use to label DAN-c1.

      We did not have our own images showing DANs in brains of SS02160 driver cross line. However, Extended Data Figure 1 in the paper of Eschbach et al. shows strongly labeled four neurons on each brain hemisphere[4], indicating that this driver is not a strain only labeling one neuron, DAN-c1.

      Weakness #5: The claim that DAN-c1 is both necessary and sufficient in larval aversive learning should be reworded. Such a claim would logically exclude any other neuron or even the training stimuli from being involved in aversive learning (see Yoshihara and Yoshihara (2018) for a detailed discussion of the logic), which is presumably not what the authors intended because they describe the possible roles of other DANs during aversive learning in the discussion.

      We agree with the reviewer that the terms “necessary” and “sufficient” may be too exclusive and could unintentionally exclude contributions from other neurons. As noted in the Discussion section, we acknowledge that additional dopaminergic neurons may also play roles in larval aversive learning. To reflect this, we have revised our wording to use “important” and “mediates” instead of the more definitive terms “necessary” and “sufficient,” making our conclusions more accurate and appropriately measured.

      Weakness #6: Moreover, if DAN-c1 artificial activation conveyed an aversive teaching signal irrespective of the gustatory stimulus, then it should not impair aversive learning after quinine training (Figure 2k). While the authors interpret Figure 2k (and Figure 5) to indicate that artificial activation causes excessive DAN-c1 dopamine release, an alternative explanation is that artificial activation compromises aversive learning by overriding DAN-c1 activity that could be evoked by quinine.

      This is an excellent point, and we agree that we cannot rule out the possibility that artificial activation interferes with aversive learning by overriding the natural activity of DAN-c1 that would normally be evoked by quinine. The observed results with TRPA1 could potentially be attributed to dopamine depletion, inactivation due to prolonged depolarization, or neural adaptation. However, we believe that our hypothesis - that over-excitation of DAN-c1 impairs learning - is more consistent with our experimental findings and with previously published data. Our rationale is as follows: (1) Associative learning in larvae occurs only when the conditioned stimulus (CS, e.g., an odor such as pentyl acetate) and unconditioned stimulus (US, e.g., quinine) are paired. In wild-type larvae, the CS depolarizes a subset of Kenyon cells in the mushroom body (MB), while the US induces dopamine (DA) release from DAN-c1 into the lower peduncle (LP) compartment (Figure 7a). When both stimuli coincide, calcium influx from CS activation and Gαs signaling via D1-type dopamine receptors activate the MB-specific adenylyl cyclase, rutabaga, which functions as a coincidence detector (Figure 7d). (2) Rutabaga converts ATP to cAMP, activating the PKA signaling pathway and modifying synaptic strength between Kenyon cells and mushroom body output neurons (MBONs) (Figure 7d). These changes in synaptic strength underlie learned behavioral responses to future presentations of the same odor. (3) Our results show that D2R is expressed in DAN-c1, and that D2R knockdown impairs aversive learning. Since D2Rs typically inhibit neuronal excitability and reduce cAMP levels[5], we hypothesize that D2R acts as an autoreceptor in DAN-c1 to restrict DA release. When D2R is knocked down, this inhibition is lifted, leading to increased DA release in response to the US (quinine). The resulting excess DA, in combination with CS-induced calcium influx, would elevate cAMP levels in Kenyon cells excessively - disrupting normal learning processes (Figure 7b). This is supported by studies showing that dunce mutants, which have elevated cAMP levels, also exhibit aversive learning deficits[6]. (4) The TRPA1 activation results are consistent with our over-excitation model. When DAN-c1 was artificially activated at 34°C in the distilled water group, this mimicked the natural activation by quinine, producing an aversive learning response toward the odor (Figure 2k or new Figure 2i, DW group). Similarly, in the sucrose group, artificial activation mimicked quinine, producing a learning response that reflected both appetitive and aversive conditioning (Figure 2k, SUC group). (5) Over-excitation impairs learning in the quinine group. When DAN-c1 was activated during quinine exposure, both artificial and natural activation combined to produce excessive DA release. This over-excitation likely disrupted the cAMP balance in Kenyon cells, impairing learning and resulting in failure of aversive memory formation (Figure 2k, QUI group). This phenotype closely mirrors the effect of D2R knockdown in DAN-c1. (6) Optogenetic activation of DAN-c1 during aversive training similarly produced elevated DA levels due to both natural and artificial stimulation. This again would result in MBN over-excitation and a corresponding learning deficit. When optogenetic activation occurred during non-training phases (resting or testing), no additional DA was released during training, and aversive learning remained intact (Figure 5b). (7) Notably, when optogenetic activation was applied during training, we observed no aversive learning in the distilled water group and no reduction in the sucrose group (Figure 5c, 5d). We interpret this as evidence that the optogenetic stimulation was strong enough to cause elevated DA release in both groups, impairing learning in a manner similar to D2R knockdown or TRPA1 overactivation. (8) We extended this over-excitation framework to directly activate Kenyon cells (MBNs). Since MBNs are involved in both appetitive and aversive learning, their over-excitation disrupted both types of learning (Figure 6), further supporting our hypothesis. In summary, we propose that DAN-c1 activity is tightly regulated by D2R autoreceptors to ensure appropriate levels of dopamine release during aversive learning. Disruption of this regulation - either through D2R knockdown or artificial overactivation of DAN-c1 - results in excessive DA release, over-excitation of Kenyon cells, and impaired learning. This over-excitation model is consistent with both our experimental results and prior literature.

      Weakness #7: The authors should not necessarily expect that D2R enhancer driver strains would reflect D2R endogenous expression, since it is known that TH-GAL4 does not label p(PAM) dopaminergic neurons.

      Just like the example of TH-GAL4, it is possible that the D2R driver strains may partially reflect the expression pattern of endogenous D2R in larval brains. When we crossed the D2R driver strains with the GFP-tagged D2R strain, however, we observed co-localization in DM1 and DL2b dopaminergic neurons, as well as in mushroom body neurons (Figure S3c to h). In addition, D2R knockdown with D2R-miR directly supported that the GFP-tagged D2R strain reflected the expression pattern of endogenous D2R (Figure 4b to d, signals were reduced in DM1). In summary, we think the D2R driver strains supported the expression pattern we observed from the GFP-tagged D2R strain, especially in DM1 DANs.

      Weakness #8: Their observations of GFP-tagged D2R expression could be strengthened with an anti-D2R antibody such as that used by Lam et al., (1999) or Love et al., (2023).

      Love et al. (2023) used the antibody originally described by Draper et al.[6]. We attempted to use the same antibody in our experiments; however, we were unable to detect clear signals following staining. This may be due to a lack of specificity for neurons in the Drosophila larval brain or incompatibility with our staining protocol. Unfortunately, we were unable to locate a copy of the Lam (1999) paper for further reference.

      Weakness #9: Finally, the authors could consider the possibility other DANs may also mediate aversive learning via D2R. Knockdown of D2R in DAN-g1 appears to cause a defect in aversive quinine learning compared with its genetic control (Figure S4e). It is unclear why the same genetic control has unexpectedly poor aversive quinine learning after training with propionic acid (Figure S5a). The authors could comment on why RNAi knockdown of D2R in DAN-g1 does not similarly impair aversive quinine learning (Figure S5b).

      We re-analyzed the data related to DAN-g1. Interestingly, knockdown of D2R in DAN-g1 larvae trained with quinine (QUI) showed a significant difference in response index (R.I.) compared to the distilled water (DW) control group. However, it also differed significantly from the DAN-g1 genetic control group trained with QUI (two-way ANOVA with Tukey’s multiple comparisons, p = 0.0002), while it was not significantly different from the UAS-D2R-miR genetic control group (p = 0.2724). Furthermore, knockdown of D2R in DAN-g1 did not lead to aversive learning deficits when larvae were trained with a different odorant, propionic acid (ProA; Figure S5a). Similarly, using an RNAi line to knock down D2R in DAN-g1 did not result in learning impairment when larvae were trained with pentyl acetate (PA; Figure S5b). These inconsistencies may stem from differences in stimulus intensity across odorants, as well as the variable efficiency of the knockdown strategies (microRNA vs. RNAi). Based on these results, we propose that D2Rs in DAN-g1 may modulate larval aversive learning in a quantitative manner but do not play as critical a role as those in DAN-c1, where knockdown produces a clear qualitative effect. We have added this paragraph to the Discussion section of the manuscript.

      Reviewer #2 (Public review):

      Weakness#1: Is not completely clear how the system DAN-c1, MB neurons and Behavioral performance work. We can be quite sure that DAN-c1;Shits1 were reducing dopamine release and impairing aversive memory (Figure 2h). Similarly, DAN-c1;ChR2 were increasing dopamine release and also impaired aversive memory (Figure 5b). However, is not clear what is happening with DAN-c1;TrpA1 (Figure 2K). In this case the thermos-induction appears to impair the behavioral performance of all three conditions (QUI, DW and SUC) and the behavior is quite distinct from the increase and decrease of dopamine tone (Figure 2h and 5b).

      The study successfully examined the role of D2R in DAN-c1 and MB neurons in olfactory conditioning. The conclusions are well supported by the data, with the exception of the claim that dopamine release from DAN-c1 is sufficient for aversive learning in the absence of unconditional stimulus (Figure 2K). Alternatively, the authors need to provide a better explanation of this point.

      Please refer to our response to Weakness #6 of Reviewer #1 above.

      Reviewer #3 (Public review):

      Weakness #1: It is a strength of the paper that it analyses the function of dopamine neurons (DANs) at the level of single, identified neurons, and uses tools to address specific dopamine receptors (DopRs), exploiting the unique experimental possibilities available in larval Drosophila as a model system. Indeed, the result of their screening for transgenic drivers covering single or small groups of DANs and their histological characterization provides the community with a very valuable resource. In particular the transgenic driver to cover the DANc1 neuron might turn out useful. However, I wonder in which fraction of the preparations an expression pattern as in Figure 1f/ S1c is observed, and how many preparations the authors have analyzed. Also, given the function of DANs throughout the body, in addition to the expression pattern in the mushroom body region (Figure 1f) and in the central nervous system (Figure S1c) maybe attempts can be made to assess expression from this driver throughout the larval body (same for Dop2R distribution).

      We thank the reviewer for the positive comments and thoughtful suggestions.

      Regarding the R76F02AD; R55C10DBD strain, we examined 22 third instar larval brains expressing GFP, Syt-GFP, or Den-mCherry. All brains clearly labeled DAN-c1. In approximately half of the samples, only DAN-c1 was labeled. In the remaining samples, 1 to 5 additional weakly labeled soma were observed, typically without associated neurites. Only 1 or 2 strongly labeled non-DAN-c1 cells were occasionally detected. These additional labeled neurons were rarely dopaminergic. In the ventral nerve cord (VNC), 8 out of 12 samples showed no labeled cells. The remaining 4 samples had 2–4 strongly labeled cells. These results support our conclusion that the R76F02AD; R55C10DBD combination predominantly and specifically labels DAN-c1 in the third instar larval brain. As for the reviewer’s question about the expression pattern of R76F02AD; R55C10DBD and D2R in the larval body, we agree that this is a very interesting avenue for further investigation. However, our current study is focused on the central nervous system and larval learning behaviors. We hope to explore this question more fully in future work.

      We added the following sentence to the Results section: “Based on analysis of 22 brain samples, we believe this driver strain consistently labels one neuron per hemisphere in the third-instar larval brain (Figure 2a - d, Figure S1c, Table S3).” In addition, we included Table S3 to summarize the DAN-c1 labeling patterns observed across these samples.

      Weakness #2: A first major weakness is that the main conclusion of the paper, which pertains to associative memory (last sentence of the abstract, and throughout the manuscript), is not justified by their evidence. Why so? Consider the paradigm in Figure 2g, and the data in Figure 2h (22 degrees, the control condition), where the assay and the experimental rationale used throughout the manuscript are introduced. Different groups of larvae are exposed, for 30min, to an odour paired with either i) quinine solution (red bar), ii) distilled water (yellow bar), or iii) sucrose solution (blue bar); in all cases this is followed by a choice test for the odour on one side and a distilled-water blank on the other side of a testing Petri dish. The authors observe that odour preference is low after odour-quinine pairing, intermediate after odour-water pairing and high after odour-sucrose pairing. The differences in odour preference relative to the odour-water case are interpreted as reflecting odour-quinine aversive associations and odour-sucrose appetitive associations, respectively. However, these differences could just as well reflect non-associative effects of the 30-min quinine or sucrose exposure per se (for a classical discussion of such types of issues see Rescorla 1988, Annu Rev Neurosci, or regarding Drosophila Tully 1988, Behav Genetics, or with some reference to the original paper by Honjo & Furukubo-Tokunaga 2005, J Neurosci that the authors reference, also Gerber & Stocker 2007, Chem Sens).

      As it stands, therefore, the current 3-group type of comparison does not allow conclusions about associative learning.

      We adopted the single-odor larval learning paradigm from Honjo et al., who first developed and validated this method for studying larval olfactory associative learning7,8. To address the reviewer’s concern regarding potential non-associative effects from 30-minute exposure to quinine or sucrose, we refer to multiple lines of evidence provided in Honjo’s studies: (1) Honjo et al. demonstrated that only larvae receiving paired presentations of odor and unconditioned stimulus (quinine or sucrose) exhibited learned responses. Exposure to either stimulus alone, or temporally dissociated presentations, failed to induce any learning response. (2) When tested with a second, non-trained odorant, larvae only responded to the odorant previously paired with the unconditioned stimulus. This rules out generalized olfactory suppression and confirms odor-specific associative learning. (3) Well-characterized learning mutants (e.g., rutabaga, dunce) that show deficits in adult reciprocal odor learning also failed to exhibit learned responses in this single-odor paradigm, further supporting its validity. (4) In our study, we used two distinct odorants (pentyl acetate and propionic acid) and two independent D2R knockdown approaches (UAS-miR and UAS-RNAi). We consistently observed that D2R knockdown in DAN-c1 impaired aversive learning. Importantly, naïve olfactory, gustatory, and locomotor assays ruled out general sensory or motor defects. Comparisons with control groups (odor paired with distilled water) also ruled out non-associative effects such as habituation. Taken together, these results strongly support that the single-odor paradigm is a robust and reliable assay for assessing larval olfactory associative learning in Drosophila. We have added a section in the Discussion to clarify and defend the use of this paradigm in our study.

      Weakness #3: A second major weakness is apparent when considering the sketch in Figure 2g and the equation defining the response index (R.I.) (line 480). The point is that the larvae that are located in the middle zone are not included in the denominator. This can inflate scores and is not appropriate. That is, suppose from a group of 30 animals (line 471) only 1 chooses the odor side and 29, bedazzled after 30-min quinine or sucrose exposure or otherwise confused by a given opto- or thermogenetic treatment, stay in the middle zone... a P.I. of 1.0 would result.

      We gave 5 min during the testing stage to allow the larvae to wander on the testing plate. Under most conditions, more than half of larvae (>50%) will explore around, and the rest may stay in the middle zone (will not be calculated). We used 25-50 larvae in each learning assay, so finally around 10-30 larvae will locate in two semicircular areas. Indeed, based on our raw data, a R.I. of 1 seldom appears. Most of the R.I.s fall into a region from -0.2 to 0.8. We should admit that the calculation equation of R. I. is not linear, so it would be sharper (change steeply) when it approaches -1 and 1. However, as most of the values fall into the region from -0.2 to 0.8, we think ‘border effects’ can be neglected if we have enough numbers of larvae in the calculation (10-30).

      Weakness #4: Unless experimentally demonstrated, claims that the thermogenetic effector shibire/ts reduces dopamine release from DANs are questionable. This is because firstly, there might be shibire/ts-insensitive ways of dopamine release, and secondly because shibire/ts may affect co-transmitter release from DANs.

      Shibire<sup>ts1</sup> gene encodes a thermosensitive mutant of dynamin, expressing this mutant version in target neurons will block neurotransmitter release at the ambient temperature higher than 30C, as it represses vesicle recycling[7]. It is a widely used tool to examine whether the target neuron is involved in a specific physiological function. We cannot rule out that there might be Shibire<sup>ts1</sup> insensitive ways of dopamine release exist. However, blocking dopamine release from DAN-c1 with Shibire<sup>ts1</sup> has already led to learning responses changing (Figure 2h). This result indicated that the dopamine release from DAN-c1 during training is important for larval aversive learning, which has already supported our hypothesis.

      For the second question about the potential co-transmitter release, we think it is a great question. Recently Yamazaki et al. reported co-neurotransmitters in dopaminergic system modulate adult olfactory memories in Drosophila[9], and we cannot rule out the roles of co-released neurotransmitters/neuropeptides in larval learning. Ideally, if we could observe the real time changes of dopamine release from DAN-c1 in wild type and TH knockdown larvae would answer this question. However, live imaging of dopamine release from one dopaminergic neuron is not practical for us at this time. On the other hand, the roles of dopamine receptors in olfactory associative learning support that dopamine is important for Drosophila learning. D1 receptor, dDA1, has been proven to be involved in both adult and larval appetitive and aversive learning[10,11]. In our work, D2R in the mushroom body showed important roles in both larval appetitive and aversive learning (Figure 6a). All this evidence reveals the importance of dopamine in Drosophila olfactory associative learning. In addition, there is too much unknow information about the co-release neurotransmitter/neuropeptides, as well as their potential complex ‘interaction/crosstalk’ relations. We believe that investigation of co-released neurotransmitter/neuropeptides is beyond the scope of this study at this time.

      Weakness #5: It is not clear whether the genetic controls when using the Gal4/ UAS system are the homozygous, parental strains (XY-Gal4/ XY-Gal4 and UAS-effector/ UAS-effector), or as is standard in the field the heterozygous driver (XY-Gal4/ wildtype) and effector controls (UAS-effector/ wildtype) (in some cases effector controls appear to be missing, e.g. Figure 4d, Figure S4e, Figure S5c).

      Almost all controls we used were homozygous parental strains. They did not show abnormal behaviors in either learnings or naïve sensory or locomotion assays. The only exception is the control for DAN-c1, the larvae from homozygous R76F02AD; R55C10DBD strain showed much reduced locomotion speed (Figure S6). To prevent this reduced locomotion speed affecting the learning ability, we used heterozygous R76F02AD; R55C10DBD/wildtype as control, which showed normal learning, naïve sensory and locomotion abilities (Figure 4e to i).

      For Figure 4d, it is a column graph to quantify the efficiency of D2R knockdown with miR. Because we need to induce and quantify the knockdown effect in specific DANs (DM1), only TH-GAL4 can be used as the control group, rather than UAS-D2R-miR. For the missing control groups in Figure S4e and S5c, we have shown them in other Figures (Figure 4e).

      We described this in the Materials and Methods part, “All control strains used in learning assays were homozygous (except DAN-c1×WT), while all experimental groups (D2R knockdown and thermogenetics) used were heterozygous by crossing the corresponding control strains”.

      We also re-organized the Figure S4e and S5c along with the control groups to make it easier to understand.

      Weakness #6: As recently suggested by Yamada et al 2024, bioRxiv, high cAMP can lead to synaptic depression (sic). That would call into question the interpretation of low-Dop2R leading to high-cAMP, leading to high-dopamine release, and thus the authors interpretation of the matching effects of low-Dop2R and driving DANs.

      We appreciate the reviewer’s suggestion. We read through this literature, which also addresses the question we mentioned in the Discussion section, about the discrepancy between the cAMP elevation in the mushroom body neurons and the reduced MBN-MBON synaptic plasticity after olfactory associative learning in Drosophila. The author gave an explanation to the existing D1R-cAMP elevation-MBN-MBON LTD axis, which is really helpful to our understanding about the learning mechanism. However, unfortunately, we do not think this offers a possible explanation for our D2R-related mechanisms. We added this literature into our citation.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Throughout the behavioral experiments, a defect in aversive learning is defined as a relative increase in the response index (RI) after olfactory training with quinine (red) and a defect in appetitive learning as a relative decrease in RI after training with sucrose (blue). Training with distilled water (yellow) is intended to be a control for comparisons within genotypes/treatment groups but causes interpretation issues if it is also affected by experimental manipulations.

      The authors typically make comparisons between quinine, water, and sucrose within each group, but this often forces readers to infer the key comparisons of interest. For example, the key comparison in Figure 2h is the statistically significant difference between the red groups, which differ only in the temperature used during training. Many other figure panels in the paper would also benefit from more direct statistical comparisons, particularly Figure 2k.

      While I recognize the value of the water control, I strongly recommend that the authors make statistical comparisons directly between genotypes/treatment groups where possible and to interpret results with more caution when the water RI score differs substantially between groups. Also, since the authors are conducting two-way ANOVAs before Dunnett's multiple comparisons tests, they ideally should report the p-value for the main effect of each factor, plus the interaction p-value between the two factors before making multiple comparisons.

      We appreciate the reviewer’s suggestion. In response, we re-analyzed all learning assay data in Figures 2 and 4 using two-way ANOVA followed by Tukey’s multiple comparisons test. Unlike our previous analysis, which only compared each experimental group to its corresponding DW control, we now compared all groups against one another. First, we found that most R.I. values from different temperature conditions (Figure 2) or genotypes (Figure 4) trained with DW were not significantly different, with the exception of the data in Figure 2i (formerly Figure 2k; discussed further below). The R.I. from DAN-c1 × D2R-miR larvae trained with QUI was significantly different from both genotype control groups (DAN-c1 × WT and UAS-D2R-miR), while no significant difference was observed between the two controls trained with QUI. Thus, this more comprehensive statistical approach supports the conclusions we previously reported. Second, as the reviewer noted, the new analysis allows for a more direct interpretation of our findings. For example, in the thermogenetic experiments using the Shibire<sup>ts1</sup> strain, the R.I. of DAN-c1 × UAS-Shibire<sup>ts1</sup> larvae trained with QUI at 34°C was not significantly different from the DW group at 34°C, but was significantly different from the QUI group at 22°C. Both findings support our conclusion that blocking dopamine release from DAN-c1 impairs larval aversive learning (Figure 2f).

      In the dTRPA1 activation experiments, the R.I. of DAN-c1 × UAS-dTRPA1 larvae trained with DW at 34°C was significantly lower than that of the DW group at 22°C and the QUI group at 34°C, but not significantly different from the QUI group at 22°C (Figure 2i). These results indicate that activating DAN-c1 during training is sufficient to drive aversive learning even in the absence of QUI. Interestingly, when DAN-c1 × UAS-dTRPA1 larvae were trained with QUI at 34°C, their R.I. was significantly higher than that of the DW group at 34°C and significantly different from the QUI group at 22°C, but not significantly different from the DW group at 22°C (Figure 2i). We interpret this as evidence that simultaneous activation of DAN-c1 by both QUI and dTRPA1 leads to over-excitation, which in turn impairs aversive learning.

      We have revised the figures (Figures 2, 4, 5, and 6) and updated the corresponding Results sections to reflect this new statistical analysis. Additionally, we now report the p-values for interaction, row factor, and column factor - either in Table S4 (for Figure 2) or in the figure captions for Figures 4, 5, 6, S4, S5, and S7.

      (2) The authors' motivation to find tools that label DANs other than DAN-c1 was unclear until much later in the paper when I saw the screening experiments in Figures S4 and S5. The authors could provide a clearer justification for why they focus on DAN-c1 in Figure 2 rather than another DAN for which they found a specific driver in Figure 1. The motivation for looking at individual pPAM neurons was also unclear.

      We sincerely appreciate the reviewer’s thoughtful suggestion. Our study was initially motivated by the goal of characterizing the expression pattern of D2R in the larval brain. From there, we aimed to identify DAN drivers that label specific pairs of dopaminergic neurons, enabling us to assess the functional role of D2R in distinct DAN subtypes through targeted knockdown experiments. This approach ultimately led us to focus on DAN-c1, as it was the only neuronal population for which D2R knockdown resulted in a learning deficit. We then returned to examine the functional significance of DAN-c1 in aversive learning. While we recognize that a more comprehensive narrative might be desirable, the current structure of our manuscript reflects the most logical progression of our work based on our research priorities and experimental outcomes. We did explore alternative manuscript structures - such as beginning with the D2R expression pattern - but found that the current format best conveys our findings and rtionale.

      Regarding our motivation to study individual PAM neurons: we aimed to identify whether D2R plays a role in a specific pair of pPAM neurons involved in larval appetitive learning. However, we were unable to find a driver that exclusively labels DAN-j1, which we believe to be the key neuron in this context (see Figure 1). As a result, our investigation into appetitive learning did not progress beyond the observation of D2R expression in pPAM neurons (Figure 3d), and we did not proceed with learning assays in this context. While we acknowledge the limitations of our study, we believe that our focus on DAN-c1 is well-justified based on both our findings and the tools currently available. We respectfully note that a major restructuring of the manuscript would not necessarily clarify the rationale for focusing on DAN-c1, and therefore we have maintained the current organization.

      (3) The authors should also double-check and update the expression patterns of the drivers in Table 1 using references such as the FlyLight online resource. For example, MB438B labels PPL1-α'2α2, PPL1-α3, PPL1-γ1pedc according to FlyLight, not just PPL1-γ1pedc as initially reported by Aso and Hattori et al. (2014).

      We appreciate the reviewer’s suggestion. We have double-checked and updated the driver expression patterns in Table 1, using FlyLight data as a reference.

      (4) Interpreting overlaid green-and-red fluorescence confocal images would be difficult for any colorblind readers; I suggest that the authors consider using a more friendly color set.

      We thank the reviewer for the suggestion. In our study, we need three distinct colors to represent different channels. We also tested an alternative color scheme using and cyan , magenta, and yellow (CMY) instead of the standard red, green, and blue (RGB). As a comparison (see below), we used a R76F02AD;R55C10DBD (DAN-c1) GFP-labeled brain as an example. In our evaluation, the RGB combination provided clearer visualization and appeared more natural, while the CMY scheme looked somewhat artificial. Therefore, we decided to retain the original RGB color scheme and did not modify the colors in the figures.

      Author response image 1.

      (5) For Figure 4d, counting each DAN as an individual N would violate the assumption of independence made by the unpaired t test, since multiple DANs are found in each brain and therefore are not independent. Instead, it would be better to count each individual N as the average intensity of the four DANs measured in each brain.

      We revised the analysis of microRNA efficiency by averaging the fluorescence intensity of DANs within each brain, treating each brain as a single sample. Based on this approach, we re-plotted Figure 4d.

      (6) Finally, the authors ought to make it clearer throughout the paper that they have implicated a pair of DAN-c1 neurons in aversive learning, not just a single DAN as currently stated in the title.

      We thank the reviewer for the suggestion about the phrase we are using under this scenario. We have changed all “single neuron” to “a pair of neurons”.

      Reviewer #2 (Recommendations for the authors):

      (1) The results section presents: "Activation of DAN-c1 with dTRPA1 at 34°C during training induced repulsion to PA in the distilled water group (Figure 2k). These data suggested that DAN-c1 excitation and presumably increased dopamine release is sufficient for larval aversive learning in the absence of gustatory pairing."<br /> An alternative interpretation is that 30 min of TrpA activation depletes synaptic vesicle pool, or inactivates neurons because of prolonged depolarization, or DAN shows firing rate adaptation (e.g. see Pulver et al. 2009; doi:10.1152/jn.00071.2009). In such a case DA release would be reduced and not increased. Therefore, the interpretation that DAN-c1 activation is both necessary and sufficient in larval aversive learning is difficult to be sustained.

      In this regard it is important to know how the sensory motor abilities are during a thermos-induction at 34°C during 30 min.

      We thank the reviewer for the thoughtful suggestion. Regarding the concern about potential dopamine depletion or neuronal inactivation, we believe a comparison with the Shibire<sup>ts1</sup> experiments helps clarify the interpretation. Activation of Shibire<sup>ts1</sup> during training with distilled water did not result in aversive learning (Figure 2f), which is a distinct phenotype from that observed with dTRPA1 activation (Figure 2i). This suggests that the phenotypes seen with dTRPA1 activation are not due to reduced dopamine release. Additionally, as the reviewer suggested, we have revised our conclusion to state that “DAN-c1 is important for larval aversive learning,” rather than claiming it is both necessary and sufficient.

      (2) The GRASP system can label the contact of a cell in close proximity like synaptic contacts, but also other situations like no synaptic contact. It would be useful to use a more specific synaptic labelling tool, like the trans-synaptic tracing system (Talay et al., 2017 https://doi.org/10.1016/j.neuron.2017.10.011), which provides a better label of synaptic contact.

      We really appreciate the reviewer’s suggestion. First, we acknowledge that there are four general methods to reveal synaptic connections between neurons: immunohistochemistry (IHC), neuron labeling, viral tracing, GRASP, and electron microscopy (EM). Among these, IHC is not sufficiently convincing, viral tracing is challenging and rarely used in Drosophila, and EM, while the most accurate, is prohibitively expensive for our current goals. For these reasons, we chose the GRASP system to demonstrate the synaptic connections from dopaminergic neurons to the mushroom body. Second, we utilized an activity-dependent version of the GRASP system, linking split-GFP1-10 with synaptic proteins (e.g., synaptobrevin)[12] rather than with cell surface proteins like CD4 or CD8. This version significantly reduces false positive signals compared to the previous version, which was tagged with cell surface proteins. While we admit that this method does not provide as solid evidence of synaptic connections as EM, it is the most efficient method available to us for showing the synaptic connections from dopaminergic neurons to the mushroom body. Finally, we thank the reviewer for suggesting the literature on trans-synaptic tracing methods. Unfortunately, this method is not suitable for our goal, as it labels the entire postsynaptic neuron. In our study, we use GRASP to identify the specific dopaminergic neurons based on the synaptic locations and compartments within the mushroom body lobe. We require a labeling system at the subcellular level because, as noted, DAN-c1 forms synapses specifically in the lower peduncle (LP) of the mushroom body lobe, which is part of the axonal bundles from mushroom body neurons. Using the trans-synaptic tracing method would label the entire mushroom body, making it impossible to distinguish DAN-c1 from other DL1 dopaminergic neurons.

      (3) Previously, Honjo et al (2009) used a petri dish of 8.5 cm and a filter paper for reinforcement of 5.5 cm. In this study the petri dish was 10 cm and the size of the filter paper was not informed. That is important information because it will determine the probability of conditioning.

      A piece of filter paper (0.25cm<sup>2</sup> square) was used to hold odorants in this study. We have added this information to the Materials and Methods.

      (4) Statistic analysis of Behavioral performance of Fig 2H-I was made by ANOVA followed by Dunnett multiple comparisons test. Which was the control group? In each graph 2 independent Dunnett tests were performed against the DW control group?

      We have re-analyzed the data using a two-way ANOVA followed by Tukey’s multiple comparison test, as suggested by Reviewer #1. In Figure 2f-j (previously Figure 2h-l), the DW groups serve as the control groups. In our new analysis, we compared data across all groups using Tukey’s multiple comparison test, with particular focus on comparisons to the corresponding DW control groups.

      (5) The sample size in staining experiments of figures 1-4 were not informed.

      We have added Table S2 in the supplementary materials to provide the N numbers for brain samples used in the figures.

      (6) Color code in Fig 5 is missing, I assumed that is the same as in figure 4e

      We added color code in the figure legend of Figure 5.

      (7) Line 506 "0.1% QH solutions" should be 0.1% QUI solutions

      Changed.

      (8) There is no information on the availability of data

      We added Data Availability Statement: Data will be made available on request.

      Reviewer #3 (Recommendations for the authors):

      (1) Axes of behavioural experiments should better show the full span of possible values (-1;1) to allow a fair assessment.

      We have adjusted the axes in all learning assay graphs to a range from -1 to 1 for consistency and clarity.

      (2) Ns should better be given within the figures.

      We have added Table S2 in the supplementary materials to provide the N numbers for brain samples used in the figures. Additionally, Tables S4 to S6 include the N numbers for the learning assays. While we initially considered including the N numbers within the figure captions, we found it challenging to present this information clearly and efficiently. Therefore, we decided to summarize the N numbers in the tables instead.

      (3) Dot- or box-plots would be better for visualizing the data than means and SEMs.

      We agree with the reviewer’s suggestion. In the behavioral assay graphs, both dot plots and mean ± SEM have been included for better visualization of the data.

      (4) The paper reads as if Dop2R would reduce neuronal activity, rather than "just" cAMP levels. Such a misunderstanding should be avoided.

      We appreciate the reviewer’s comment. Under most conditions, dopamine binding to D2Rs activates the Gαi/o pathway, which inhibits adenylyl cyclase (AC) and reduces cAMP levels. This reduction in cAMP ultimately leads to decreased neuronal activity. In other words, D2R activation typically has an inhibitory effect on neurons. Additionally, D2R can exert inhibitory effects through other signaling pathways, such as the inhibition of voltage-gated associative learning, we continue to emphasize the importance of the D2R-mediated AC-cAMP-PKA signaling pathway. However, we do not rule out the potential involvement of additional signaling pathways, such as inhibition of voltage-gated calcium channels via Gβγ subunits[5]. As noted in the Introduction, dopamine receptors are also involved in other signaling cascades, including PKC, MAPK, and CaMKII pathways. In the context of our study, based on current understanding of molecular signaling in Drosophila olfactory, we still think D2R mediated AC-cAMP-PKA signaling pathway would be the most important one. However, we cannot rule out the involvement of other signaling pathways.

      (5) It would be better if citations were more clearly separated into ones that refer to adult flies versus work on larvae.

      We separated the citations related to adult flies from those working on larvae.

      (6) Line 81-83. DopECR is not found in mammals, is it?

      You are correct. DopECR is not found in mammals. This non-canonical receptor shares structural homology with vertebrate β-adrenergic-like receptors. It can be activated rapidly by dopamine as well as insect ecdysteroids[13,14].

      (7) Line 99: Better "a" learning center (some forms of learning work without mushroom bodies).

      We have revised the text from "the learning center" to "a learning center," as suggested by the reviewer.

      (8) Supplemental figures should be numbered according to the sequence in which they are mentioned in the text.

      We have rearranged the sequence of supplemental figures to match the order in which they are referenced in the text.

      (9) It is striking that dTRPA1-driving DANc1 is punishing in the water condition but that this effect does not summate with quinine punishment (but rather seems to impair it). Maybe you can back this up by ChR- or Chrimson-driving DANc1? Or by silencing DANc1 by GtACR1?

      We appreciate the reviewer’s suggestion. Indeed, we observed similar but not identical results when we used ChR2 to activate DAN-c1 during the training stage (Figure 5b and c). We found that activating DAN-c1 with quinine (QUI) impaired aversive learning (Figure 5b), consistent with our findings using dTRPA1 activation of DAN-c1 when trained in QUI at 34°C (Figure 2i). We propose that the over-excitation of DAN-c1, whether induced by QUI or artificial manipulation (optogenetics and thermogenetics), impairs aversive learning, which aligns with our findings for D2R knockdown (Figure 4e). However, there are some differences between dTRPA1 and ChR2 activation. While dTRPA1 activation induced aversive learning when trained with distilled water (DW) at 34°C (Figure 2i), ChR2 did not induce aversive learning under the same conditions (Figure 5c). We believe this difference is due to the varying activation levels between the two manipulations. Our optogenetic stimulus may have been stronger than the thermogenetic one, potentially leading to over-excitation in the DW group, preventing aversive learning. In the QUI group, the more severe over-excitation impaired aversive learning, producing a phenotype similar to that observed with other over-excitation methods (e.g., thermogenetics or D2R knockdown), where the phenotype reached a maximum level. We have also addressed these points in the Discussion section.

      (10) Unless I got the experimental procedure wrong, isn't it surprising that Figure S7b does not uncover a punishing effect of driving TH-Gals neurons?

      This optogenetic experiment with ChR2 expression in TH-GAL4 neurons was a pioneering attempt to activate DAN-c1 using ChR2. As explained in response to question (9), the failure to observe a punishing effect in the DW group when TH-GAL4 neurons were activated during training may be due to our optogenetic stimulus being too strong. This likely resulted in over-excitation of DAN-c1 (among the neurons labeled by TH-GAL4), impairing aversive learning and preventing the appearance of typical aversive behaviors.

      (11) It seems that Figure1f´ is repeated, in a mirrored manner, in Figure 2e.

      We have removed Figure 2e, as it was deemed redundant and not necessary for this section.

      Reference

      (1) Saumweber, T. et al. Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nat Commun 9, 1104 (2018). https://doi.org/10.1038/s41467-018-03130-1

      (2) Aso, Y. & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5 (2016). https://doi.org/10.7554/eLife.16135

      (3) Xie, T. et al. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila. Cell Rep 23, 652-665 (2018). https://doi.org/10.1016/j.celrep.2018.03.068

      (4) Eschbach, C. et al. Recurrent architecture for adaptive regulation of learning in the insect brain. Nat Neurosci 23, 544-555 (2020). https://doi.org/10.1038/s41593-020-0607-9

      (5) Neve, K. A., Seamans, J. K. & Trantham-Davidson, H. Dopamine receptor signaling. J Recept Signal Transduct Res 24, 165-205 (2004). https://doi.org/10.1081/rrs-200029981

      (6) Draper, I., Kurshan, P. T., McBride, E., Jackson, F. R. & Kopin, A. S. Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 67, 378-393 (2007). https://doi.org/10.1002/dneu.20355

      (7) Honjo, K. & Furukubo-Tokunaga, K. Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J Neurosci 25, 7905-7913 (2005). https://doi.org/10.1523/JNEUROSCI.2135-05.2005

      (8) Honjo, K. & Furukubo-Tokunaga, K. Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. J Neurosci 29, 852-862 (2009). https://doi.org/10.1523/JNEUROSCI.1315-08.2009

      (9) Yamazaki, D., Maeyama, Y. & Tabata, T. Combinatory Actions of Co-transmitters in Dopaminergic Systems Modulate Drosophila Olfactory Memories. J Neurosci 43, 8294-8305 (2023). https://doi.org/10.1523/jneurosci.2152-22.2023

      (10) Selcho, M., Pauls, D., Han, K. A., Stocker, R. F. & Thum, A. S. The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS One 4, e5897 (2009). https://doi.org/10.1371/journal.pone.0005897

      (11) Kim, Y. C., Lee, H. G. & Han, K. A. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J Neurosci 27, 7640-7647 (2007). https://doi.org/10.1523/JNEUROSCI.1167-07.2007

      (12) Macpherson, L. J. et al. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nat Commun 6, 10024 (2015). https://doi.org/10.1038/ncomms10024

      (13) Abrieux, A., Duportets, L., Debernard, S., Gadenne, C. & Anton, S. The GPCR membrane receptor, DopEcR, mediates the actions of both dopamine and ecdysone to control sex pheromone perception in an insect. Front Behav Neurosci 8, 312 (2014). https://doi.org/10.3389/fnbeh.2014.00312

      (14) Lark, A., Kitamoto, T. & Martin, J. R. Modulation of neuronal activity in the Drosophila mushroom body by DopEcR, a unique dual receptor for ecdysone and dopamine. Biochim Biophys Acta Mol Cell Res 1864, 1578-1588 (2017). https://doi.org/10.1016/j.bbamcr.2017.05.015

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the authors): 

      Overall, the manuscript could be clearer and more beneficial to the readers with the following suggested revisions:  

      (1) The abstract should include information on the comparative performance of 89Zr 64Cu and 18F labeled nanobodies, especially noting the challenges with DFO-89Zr and NOTA-64Cu. 

      (2) The abstract should explicitly note the types of transplants assessed and the specific PET findings.

      (3) The abstract should note the negative results in terms of brain PET findings. 

      We thank reviewer 1 for these three suggestions. We have now included this information in the abstract.

      (4)  Based on the data shown in Fig. 1 and Table 1, it seems that the nanobodies bind to quite a few proteins other than TfR. This should be discussed frankly as a limitation. 

      The presence of multiple other bands and proteins identified by LC/MS in Figure 1 is typical for immunoprecipitation experiments, as performed under the conditions used: all proteins other than TfR that are identified in Table 1 are abundant cytoplasmic (cytoskeletal) and/or nuclear proteins.  More rigorous washing would perhaps have removed some of these contaminants at the risk of losing some of the specific signal as well. We have added a comment to this effect.  In an in vivo setting, this would be of minor concern, as these proteins would be inaccessible to our nanobodies. In fact, when VHH123 radioconjugates are injected in huTfr+/+ mice (or VHH188 in C57BL/6), we observe no specific signal – which supports this conclusion. 

      We therefore state: “We show that both V<sub>H</sub>Hs bind only to the appropriate TfR, with no obvious cross-reactivity to other surface-expressed proteins by immunoblot, LC/MSMS analysis of immunoprecipitates, SDS-PAGE of <sup>35</sup>S-labelled proteins and flow cytometry (Fig 1;Table 1).”. We have added some clarification to make this clearer, and we also include the full LC/MSMS data tables are also added in supplemental materials, as supplementary Table 1. We have included subcellular localization information for each protein identified through LC/MSMS in Table 1 as well.

      (5)  Why did the authors use DFO, which is well known to leak Zr, rather than the current standard for 89Zr PET, DFO* (DFO-star)? 

      We used DFO rather than DFO-star for several reasons: 1) because we had already conducted and published numerous other studies using DFO-conjugated nanobodies and not observed any release of <sup>89</sup>Zr, 2) commercially sourced clickchemistry enabled DFO-star (such as DFO*-DBCO) was not available at the time of the study. 

      (6) Figure 2B appears to show complex structures, more complex than just GGG-DFOazide, and GGG-NOTA-azide. This should be explained in detail. 

      We have added two supplemental figures and methods that recapitulate how we generated what we have termed as GGG-DFO-Azide and GGG-NOTA-Azide. We have updated the legend of Figure 2B. 

      (7) Why is there a double band in Suppl. Fig 9 for VHH123-NOTA-Azide? 

      Under optimal conditions, sortase A-mediated transpeptidation is efficient,  resulting in the formation of a peptide bond between the C-terminally LPETG-tagged protein and the GGG-probe. However, extended reaction times or suboptimal concentrations of modified GGG-probes (which are often in limited supply) in the reaction mixture, allow hydrolysis of the sortase A-LPET-protein intermediate. The hydrolysis product can no longer participate in a sortase A reaction. This is what explains the doublet in the reaction used to generate VHH123-NOTA-N<sub>3</sub> – the upper band is VHH123-NOTA-N<sub>3</sub> and the lower band is the hydrolysis product.  VHH123-LPET, is unable to react with PEG<sub>20kDa</sub>-DBCO (the lower band that appears at the same position of migration in the next lane on the gel). We noticed that an adjacent lane was mislabelled as ‘VHH188-NOTA-PEG<sub>20kDa</sub>’ when in fact it was ‘VHH123-NOTA-PEG<sub>20kDa</sub>’. This has been corrected.

      The hydrolysis product, VHH123-LPET, has a short circulatory half-life and obviously lacks the PEG moiety as well as the chelator. It therefore cannot chelate <sup>64</sup>Cu. Its presence should not interfere with PET imaging.  Since all animals were injected with the same measured dose of <sup>64</sup>Cu labeled-conjugate, the presence of an unlabeled TfRbinding competitor in the form of VHH123-LPET - at a << 1:1 molar ratio to the labelled nanobody – would be of no consequence.

      (8) More details should be provided about the tetrazine-TCO click chemistry for 18F labeling. 

      We have added supplementary methods and figures that detail how <sup>18</sup>F-TCO was generated. For the principle of TCO-tetrazine click-chemistry, a brief description was added in the text, as well as a reference to a review on the subject.

      (9) For the data shown in Figure 3H, the authors should state whether the brain tissues were capillary depleted, and if so, how this was performed and how complete the procedure was. 

      No capillary depletion of the brain tissues was performed, as this was challenging to perform in compliance with the radiosafety protocols in place at our institution. We have updated the legend of figure 3H and methods to include this important detail. Whole blood gamma-counting did not show any obvious di  erence of activity across the 4 groups in figure 3G (same mice as in figure 3H), which would go against the interpretation that activity di  erences in the brain (figure 3H) are solely attributable to residual activity from blood in the capillaries. 

      (10) The authors should experimentally test the hypotheses that the PEG adduct reduced BBB transcytosis. 

      Reviewer 1 is correct to point out that we have not tested un-PEGylated conjugates of <sup>64</sup>Cu and <sup>89</sup>Zr with the anti-TfR nanobodies and we currently do not have the means to perform additional experiments. However, the <sup>18</sup>F conjugates were not PEGylated, and these also fail to show any detectable signal in the CNS by PET/CT (see figure 4A). PEGylation alone cannot be the sole factor that limits transcytosis across the BBB.

      (11) It was interesting to note that the Cu appears to dissociate from the NOTA chelator. The authors should provide more information about the kinetics of this process.  

      We have not tested the kinetics of dissociation between <sup>64</sup>Cu and the NOTA conjugates in vitro, like we have done for <sup>89</sup>Zr and DFO (supplemental figure 2), because previous work (see references 35 and 36 by Dearling JL and Mirick GR and colleagues) has shown that NOTA and other copper chelators tend to release free copper radioisotopes in the liver, a commonly reported artifact. We have also included a new set of images that show the biodistribution of VHH123-NOTA-<sup>64</sup>Cu in huTfR+/+ mice, where we still observe a substantial signal in the liver, indicating release of <sup>64</sup>Cu from NOTA, in the absence of the anti-TfR VHH binding to its target. This was clearly not seen using the DFO-<sup>89</sup>Zr conjugates.  Binding of the VHH to TfR, followed by internalization, appears to be required for the release of <sup>89</sup>Zr from DFO, prompting us to investigate this phenomenon further.

      (12) The authors should increase the sample size, and test two different radiolabels for the transplant imaging results (Figs. 5 and 6), since these seem to be the ones they feel are the most important, based on the title and abstract. 

      We agree with reviewer 1 that more repeats would increase the significance of our findings, but we unfortunately do not have the means of performing additional experiments at this time (the lab at Boston Children’s Hospital has closed as Dr. Ploegh has retired). We believe that the results are compelling and will be of use to the in vivo imaging community.

      (13) Fig. 6G appears to show a false positive result for the kidney imaging. Is this real, or an artifact of small sample size?

      We agree with reviewer 1 that the kidney signals in figure 6 are somewhat puzzling. The difference between the tumor-bearing mice that received VHH123 and VHHEnh conjugates is not significant – with the obvious caveat that the VHHEnh group is comprised of only 2 mice, so sample size may well be a factor here. If we compare the signals of the VHH123 conjugate in tumor-bearing mice vs. tumor-free mice, the VHH123 conjugates would have cleared much faster in the tumor-free mice over 24 hours (since no epitope is present for VHH123 to bind to), thus weakening the kidney signal observed after 24 hours. The same would be true for all the other tissues – except for the liver (where free <sup>64</sup>Cu that leaks from NOTA accumulates). VHHEnh conjugates in tumor-bearing mice show a significant kidney signal – although no VHH123 target epitope is present in these mice. B16.F10 tumors at 4 weeks of growth tend to be necrotic and can passively retain any radiotracer – this generates the weak lung signal visible in Fig 6D – thus the radiotracer would clear at a slower rate than VHH123 conjugates in tumor-free mice giving a higher kidney signal at 24 hours. 

      No tumors were found in the kidneys post-necropsy. We attribute the differences in kidney signals to di erent kinetics of clearance of the radioconjugates. We have added this explanation to the results and discussion.

      (14) Are the results shown in Fig. 7 generalizable? The authors should the constructs with 18F labeling and without the PEG adduct. 

      We agree with reviewer 1 that it would be very interesting to confirm these observations using 18F radioconjugates. The results should be generalizable, as the difference between signals can only be attributed to the presence of the recognized epitope in the placenta– which is in fact the only variable that differs between the two groups. At the time of conducting the study, we had not planned to perform the same experiments with 18F radioconjugates – partly because synthesis of 18F radioconjugates is more challenging (and costly) than the production of 89Zr-labeled nanobodies.  

      (15) The authors should discuss the relative safety of 89Zr and 64Cu. It is likely to be quite a bit worse than for 18F, since the 89Zr and 64Cu have longer half-lives, dissociate from their chelators, and lodge in off-target tissues. An alternative interpretation of the authors' data could be that 89Zr and 64Cu labeling in this context are unsuitable for the stated purposes of PET imaging. In this case, the key experiments shown in Figs. 5-7 should be repeated with the 18F labeled nanobody constructs. 

      Our vision was to o er a tool to the scientific community interested in in vivo tracking of cells in di erent preclinical disease models. The question of safety regarding 89Zr and 64Cu for clinical use was therefore not a factor we then considered. However, we have now included a section in the discussion about the potential safety issue of <sup>89</sup>Zr release and bone accumulation in clinical settings, especially for radioconjugates that target an internalizing surface protein. 

      (16) The authors should remark on the somewhat surprisingly modest amount of BBB transcytosis in the discussion. What were the a inities of the nanobodies? 

      The a inities and binding kinetics of both nanobodies was described in a separate work that is referenced in the introduction (references 21 and 22 by Wouters Y and colleagues). Through other methods that rely on a highly sensitive bio-assay, it was shown that both VHH123 and VHH188 are capable of transcytosis: both nanobodies coupled to a neurotensin peptide induced a drop of temperature after i.v. injection in matching mouse strains (VHH123 in C57BL/6 and VHH188 in huTfr +/+). The lack of any compelling CNS signal by PET/CT is discussed in the manuscript.

      (17) More details of the methods should be provided in the supplement. 

      a.  What was the source of the penta-mutant Sortase A-His6? 

      Sortase A pentamutant is produced in-house, by cytoplasmic expression in E.coli (BL21 strain), using a plasmid vector encoding a truncated and mutated version of Sortase A. References were added, as well as the Addgene repository number (51140).

      b.  What was the yield of the sortase reactions? 

      For small proteins, such as nanobodies/ V<sub>H</sub>Hs, we find that the yield of a sortase A reaction typically is > 75%. This is what we observed for all our conjugations. The methods section was updated to include this information.

      c.  What was the source of the GGG-Azide-DFO and GGG-Azide NOTA? Based on the structures shown in Fig. 2, these appear to be more complex that was noted in the text. 

      We have now detailed the synthesis of GGG-DFO-Azide and GGG-NOTA-Azide in the supplementary methods.

      d.  More details about the source and purity of the tetrazine and TCO labeling reagents should be provided. 

      We have included information on the synthesis of GGG-tetrazine in the supplementary methods. Concerning the synthesis of <sup>18</sup>F-TCO, we have also included a detailed description of the compound in supplementary methods. The reaction between GGG-tetrazine and <sup>18</sup>F-TCO is now further detailed in the manuscript. 

      e.  The TCO-agarose slurry purification should be explained in more detail, and the results should be shown. 

      We have included a detailed procedure of how the TCO-agarose slurry purification was performed in the methods sections. We had already included the Radio-Thin Layer Chromatography QC data of the final VHH123-18F and VHH188-18F purifications in the supplementary figures – which are obtained immediately after TCOagarose slurry purification. The detailed yields of the TCO-agarose slurry purification in terms of activity of each collected fraction is now detailed in the methods section.

      f.   The CT parameters should be provided.  

      We have now added more information about the PET/CT imaging procedure in the methods section of the manuscript.

      Reviewer #2 (Recommendations for the authors): 

      Authors should discuss the possibility of the TfR as a rejection antigen. Murine TfR is foreign for hTfR+/+ mice and vice versa. 

      We have not discussed this possibility, as we believe the risk of rejection of huTfR+ cells in moTfR+ mice (or vice versa) is negligible. The cells and mice are of the same genetic background – save for the coding region of ectodomain of the TfR (spanning amino acids ~194 to 390 of the full length TfR, which is 763 AA). The pairwise identity of both human and mouse TfR ectodomains is of 73% after alignment of both AA sequences using Clustal Omega. We agree that we cannot formally exclude the possibility of an immune rejection, and have now mentioned this possibility in the discussion.

      Is there any clinical use of the anti-human TfR receptor PET tracer? 

      We do not currently envision an application for the anti-human TfR VHH in PET/CT in a clinical setting.  

      Why is the in vivo anti-mouse TfR uptake level in C57BL/6 mice consistently higher than the anti-human TfR receptor PET tracer in hTfR+/+ mice? Is this due to differences in characteristics of the VHH's (e.g. a inity, internalization properties), or rather due to a different biological behavior of the hTfR-transgene (e.g. reduced internalization properties)? 

      We indeed observed that VHH123 uptake and binding appears to be more robust than that of VHH188 to their respective targets. Moreover, after later times post-injection (> 48h), VHH188 appears to display a very low reactivity to C57BL/6 (moTfR+) cells (see Figure 3B). We attribute this to the respective affinities and specificities of both VHHs. We have not investigated the VHH binding kinetics of the mouse versus humanectodomain TfR proteins in vitro. Internalization should be mildly different at best, as <sup>89</sup>Zr release from DFO occurs with both VHHs in both C57BL/6 and huTfR +/+ mouse models (when injected in a matched configuration). The huTfR +/+ mice rely exclusively on the huTfr for their iron supply. They are healthy with no obvious pathological features. The behavior of the huTfr is therefore presumably similar, if not identical to that of the mouse Tfr, bearing in mind that the huTfr and the mouse Tfr are both reliant on mouse Tf as their ligand

      The anti-TfR VHHs were initially developed as a carrier for BBB-transport of VHH-based drug conjugates (previous publications). The data shown here reduces enthusiasm towards this application. Uptake in the brain is several log-factors lower than physiological uptake elsewhere. Potential consequences of off-brain uptake on potential toxicity of VHH-based drug-conjugates could be better emphasized in the discussion. 

      We did not observe a significant presence of the anti-TfR VHHs in the CNS by PET/CT. We have addressed several possibilities: longer circulation times post-injection may favor transcytosis of the VHHs through the BBB. However, because transcytosis requires endocytosis –<sup>89</sup>Zr may be released by their chelating moiety at this step. The only radiotracers with a covalent bond between the radio-isotope and the VHHs in our work are the <sup>18</sup>F VHHs, but the signal acquisition window may have been too short to observe transcytosis and accumulation in the CNS. Another possible caveat is that PEGylation of the radiotracers may be an obstacle to transcytosis. The circulatory halflife of unpegylated VHHs is too low to allow adequate visualization after 24 hours postinjection, as the conjugates rapidly clear from the circulation (t ½ = 30 minutes or less). We have updated the discussion to address these points.

      In several locations (I have counted 5) a space is missing between words, please double-check. 

      We carefully checked the manuscript to remove any remaining typos.

      It is unclear to me why for the melanoma-tracking experiment the tracer is switched from the 89Zr-labeled variant to the 64Cu-labeled variant. 

      The decision to switch to the <sup>64</sup>Cu labeled VHHs for the melanoma experiment stemmed from a wish to 1) evaluate the performance of the <sup>64</sup>Cu-radioconjugates in detecting transplanted cells as we had done with the <sup>89</sup>Zr conjugates and 2) assess how the (non-specific) liver signal seen with <sup>64</sup>Cu contrasts with a specific signal.  

      typo in discussion: C57BL/6 instead of C57B/6         

      We have corrected the typo.

      It is unclear to me why in FIG1B cells are labeled with 35S. Is it correct that the signals seen are due to staining membranes with anti-TfR mAbs? Or is this an autoradiography of the gel? 

      In Figure 1B cells were labeled with 35S-Met/Cys, while the images shown are indeed those of Western Blots, using an anti-TfR monoclonal antibody as the primary antibody to detect human and mouse TfR retrieved by the anti Tfr VHHs. Autoradiography using the same lysates showed the presence of contaminants in the VHH eluates, as commonly seen in immunoprecipitates from metabolically labeled cells (as distinct from IP/Westerns). For this reason, we performed a Western Blot on the same samples to confirm TfR pull-down. As written in the results section, we also performed LCMS analysis of the immunoprecipitated proteins to better characterize contaminating proteins (Table 1). To clarify this, we have now added the autoradiographs in supplementary data (supplementary figure 15) and added a reference to these observation in the results. 

      ROI quantifications in all figures: these should be expressed as %ID/cc instead of %ID/g. Ex vivo tissue counts should be in %ID/g instead of cpm. 

      We have converted all ROI quantification figures as %ID/cc based on the assumption that 1mL (1cc) = 1g. For ex vivo tissue counts, %ID/g has been calculated based on injected dose (except for figure 3G, where the comparisons in %ID/G are not possible due to the uncertain nature of bone marrow and whole blood). All figures have now been updated.

      Fig4: it would be good to also see respective mouse controls (C57BL6 vs hTfR+/+) for the 64Cu- and 18F-labeled VHH123 tracers. Each radiolabeling methodology changes in vivo biodistribution and specificity, which can be better assessed by using appropriate controls. 

      We had performed these controls but they were not included in the manuscript as deemed redundant with the results of Figure 3. We have now separated Figure 4 in two panels (Figure 4A and 4B) with figure 4A showing the 1h timepoint post-injection of VHH123 radiotracers in C57BL/6 vs huTfr<sup>+/+</sup> and Figure 4B showing the 24h timepoint in the same configuration. ROI analyses were also done on the huTfR<sup>+/+</sup> controls and were included in Figure 4C as well.

      Fig7: is it correct that mouse imaging is performed at 24h p.i. and dissected embryo's at 72h p.i.? Why are there 2 days between each procedure of the same animals? 

      We acquired images at di erent timepoints, specifically at 1h, 24h, 48h and 72 hours after radio-tracer injection. As 72 h was the last timepoint, the mice were sacrificed the same day and embryo dissection performed thereafter, at 72 hours post radiotracer injection. We decided to show the 24h timepoint images as they were the most representative of the series, o ering the best signal-to-noise ratio. The signal pattern did not change over the course from 24h to 72h. We have now added those timepoints in the supplementary data.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary:

      The authors use analysis of existing data, mathematical modelling, and new experiments, to explore the relationship between protein expression noise, translation efficiency, and transcriptional bursting.

      Strengths:

      The analysis of the old data and the new data presented is interesting and mostly convincing.

      Thank you for the constructive suggestions and comments. We address the individual comments below. 

      Weaknesses:

      (1) My main concern is the analysis presented in Figure 4. This is the core of mechanistic analysis that suggests ribosomal demand can explain the observed phenomenon. I am both confused by the assumptions used here and the details of the mathematical modelling used in this section. Firstly, the authors' assumption that the fluctuations of a single gene mRNA levels will significantly affect ribosome demand is puzzling. On average the total level of mRNA across all genes would stay very constant and therefore there are no big fluctuations in the ribosome demand due to the burstiness of transcription of individual genes. Secondly, the analysis uses 19 mathematical functions that are in Table S1, but there are not really enough details for me to understand how this is used, are these included in a TASEP simulation? In what way are mRNA-prev and mRNA-curr used? What is the mechanistic meaning of different terms and exponents? As the authors use this analysis to argue ribosomal demand is at play, I would like this section to be very much clarified.

      Thank you for raising two important points. Regarding the first point, we agree that the overall ribosome demand in a cell will remain mostly the same even with fluctuations in mRNA levels of a few genes. However, what we refer to in the manuscript is the demand for ribosomes for translating mRNA molecules of a single gene. This demand will vary with the changes in the number of mRNA molecules of that gene. When the mRNA copy number of the gene is low, the number of ribosomes required for translation is low. At a subsequent timepoint when the mRNA number of the same gene goes up rapidly due to transcriptional bursting, the number of ribosomes required would also increase rapidly. This would increase ribosome demand. The process of allocation of ribosomes for translation of these mRNA molecules will vary between cells, and this process can lead to increased expression variation of that gene among cells. We have now rephrased the section between the lines 321 and 331 to clarify this point.

      Regarding the second point, each of the 19 mathematical functions was individually tested in the TASEP model and stochastic simulation. The parameters ‘mRNA-curr’ and ‘mRNA-prev’ are the mRNA copy numbers at the present time point and the previous time point in the stochastic simulations, respectively. These numbers were calculated from the rate of production of mRNA, which is influenced by the transcriptional burst frequency and the burst size, as well as the rate of mRNA removal. We have now incorporated more details about the modelling part along with explanation for parameters and terms in the revised manuscript (lines 390 to 411; lines 795 to lines 807). 

      (2) Overall, the paper is very long and as there are analytical expressions for protein noise (e.g. see Paulsson Nature 2004), some of these results do not need to rely on Gillespie simulations. Protein CV (noise) can be written as three terms representing protein noise contribution, mRNA expression contribution, and bursty transcription contribution. For example, the results in panel 1 are fully consistent with the parameter regime, protein noise is negligible compared to transcriptional noise. 

      Thank you for referring to the paper on analytical expressions for protein noise. We introduced translational bursting and ribosome demand in our model, and these are linked to stochastic fluctuations in mRNA and ribosome numbers. In addition, our model couples transcriptional bursting with translational bursting and ribosome demand. Since these processes are all stochastic in nature, we felt that the stochastic simulation would be able to better capture the fluctuations in mRNA and protein expression levels originating from these processes. For consistency, we used stochastic simulations throughout even when the coupling between transcription and translation were not considered. 

      Reviewer #1 (Recommendations for the authors):  

      (1) Figure 1B shows noise as Distance to Median (DM) that can be positive or negative. It is therefore misleading that the authors say there is a 10-fold increase in noise (this would be relevant if the quantity was strictly positive). How is the 10-fold estimated? Similar comments apply to Figure 1F and the estimated 37-fold. I also wonder if the datasets combined from different studies are necessarily compatible.

      We have now changed the statements and mentioned the actual noise values for different classes of genes rather than the fold-changes (lines 111-113 and 143-145). We agree that the measurements for mRNA expression levels, protein synthesis rates and protein noise were obtained from experiments done by different research labs, and this could introduce more variation in the data. However, it is unlikely the experimental variations are likely to be random and do not bias any specific class of genes (in Fig. 1B and Fig. 1F) more than others.  

      (2)   How Figure 1D has been generated seems confusing, the authors state this is based on the Gillespie algorithm, but in panel 1C and also in the methods, they are writing ODEs and Equations 3 and 4 stating the Euler method for the solution of ODEs. Also, I am concerned if this has been done at steady-state. The protein noise for the two-state model can be analytically obtained, and instead of simulations, the authors could have just used the expression. Also, Figure 1D shows CV while the corresponding data Figure 1B is showing mean adjusted DM. So, I am not sure if the comparison is valid. I am also very confused about the fact that the authors show CV does not depend on the mean expression of proteins and mRNA. Analytical solutions suggested there is always an inverse relationship exists between CV and mean and this has also been experimentally observed (see for example Newman et al 2006).

      We used Gillespie algorithm for stochastic simulations and identified the time points when an event (for example, switching to ON or OFF states during transcriptional bursting) occurred. If an event occurred at a time point, the rates of the reactions were guided by the equations 3 and 4, as the rates of reactions were dependent on the number of mRNA (or protein) molecules present, production rates and removal rates. 

      For all published datasets where we had measurements from many genes/promoters, we used the measures of adjusted noise (for mRNA noise) and Distance-to-median (DM, for protein noise). These measures of noise are corrected mean-dependence of expression noise (Newman et al., 2006). For simulations, which we performed for a single gene, and for experiments that we performed on a limited number of promoters, we used the measure of coefficient of variation (CV) to quantify noise, as calculation of adjusted noise or DM was not possible for a single gene. 

      The work of Newman et al. (2006) measures noise values of different genes with different transcriptional burst characteristics and different mRNA and protein removal rates. We also see similar results in our simulations (Fig. 1E), where as we increase the mean expression by changing the transcriptional burst frequency, the protein noise goes down.     

      (3) Estimating parameters of gene expression using reference 44 ignores the effect of variability in capture efficiency and cell size. In a recent paper, Tang et al Bioinformatics 39 (7), btad395 2023 addressed this issue.

      Thank you for referring to the work of Tang et al. (2023). We note that the cell size and capture efficiency have a small effect on the burst frequency (Kon) but has a more pronounced effect on burst size (Tang et al., 2023). In our analysis, we considered only burst frequency and even with likely small inaccuracies in our estimation of Kon, we can capture interesting association of burst frequency with noise trends. 

      (4) In the methods "αp = 0.007 per mRNA molecule per unit time", I believe it should be per protein molecule per unit time.

      Corrected.

      (5)  Figure 3 uses TASEP modelling but the details of this modelling are not described well.

      We have now expanded the description of the modelling approach in the revised manuscript (lines 391-412; lines 693-776 and lines 797-809). In addition, we have also added more details in the figure captions. 

      (6) Another overall issue is that when the authors talk about changes in burst frequency or changes in translation efficiency, it is not always clear, is this done while keeping all the other parameters constant therefore changing mean expressions, or is this done by keeping the mean expressions constant?

      To test for the association between mean protein expression and protein noise, we have varied the mean expression by changing the translation initiation rate (TLinit) for the most part of the manuscript while keeping other parameters constant. In figure 5, where we decoupled TLinit from ribosome traversal rate (V), we changed the mean protein expression by changing the ribosome traversal rate while keeping other parameters constant. We have now mentioned this in the manuscript. 

      (7)   I believe Figures 5 and 6 present the same data in different ways, I wonder if these can be combined or if some aspect of the data in Figure 5 could go to supplementary. Also, the statistical tests in Figure 5E and F are not clear what they are testing.

      We have now moved figures 5E and 5F to the supplement (Fig. S20). We have also added details of the statistical test in the figure caption. 

      Reviewer #2 (Public review): 

      This work by Pal et al. studied the relationship between protein expression noise and translational efficiency. They proposed a model based on ribosome demand to explain the positive correlation between them, which is new as far as I realize. Nevertheless, I found the evidence of the main idea that it is the ribosome demand generating this correlation is weak. Below are my major and minor comments.

      Thank you for your helpful suggestions and comments. We note that the direct experimental support required for the ribosome demand model would need experimental setups that are beyond the currently available methodologies. We address the individual comments below. 

      Major comments: 

      (1) Besides a hypothetical numerical model, I did not find any direct experimental evidence supporting the ribosome demand model. Therefore, I think the main conclusions of this work are a bit overstated.

      Direct experimental evidence of the hypothesis would require generation of ribosome occupancy maps of mRNA molecules of specific genes at the level of single cells and at time intervals that closely match the burst frequency of the genes. This is beyond the currently available methodologies. However, there are other evidences that support our model. For example, earlier work in cell-free systems have showed that constraining cellular resources required for transcription or translation can increase expression heterogeneity (Caveney et al., 2017). In addition, the ribosome demand model had two predictions both of which could be validated through modelling as well as from our experiments. 

      To further investigate whether removing ribosome demand from our model could eliminate the positive mean-noise correlation for a gene, we have now tested two additional sets of models where we decoupled the translation initiation rate (TLinit) from the ribosome traversal speed (V). In the first model, we changed the mean protein expression by changing the translation initiation rate but keeping the ribosome traversal speed constant. Thus, in this scenario, ribosome demand varied according to the variation in the translation initiation rate. As expected, the positive correlation between mean expression and protein noise was maintained in this condition (Fig. 5B). In the second model, we changed the mean expression by changing the ribosome traversal speed but keeping the translation initiation rate (and therefore, the ribosome demand) constant. In this situation, the relationship between mean expression and protein noise turned negative (Fig. 5B and fig. S16). These results further pointed that the ribosome demand was indeed driving the positive relationship between mean expression and protein noise. 

      (2) I found that the enhancement of protein noise due to high translational efficiency is quite mild, as shown in Figure 6A-B, which makes the biological significance of this effect unclear.

      We agree with the reviewer’s comment that the effect of translational efficiency on protein noise may not be as substantial as the effect of transcriptional bursting, but it has been observed in studies across bacteria, yeast, and Arabidopsis (Ozbudak et al., 2003; Blake et al., 2003; Wu et al., 2022). In addition, the relationship between translational efficiency and protein noise is in contrast with the inverse relationship observed between mean expression and noise (Newman et al., 2006; Silander et al., 2012). We also note that the goal of the manuscript was not to evaluate the relative strength of these associations, but to understand the molecular basis of the influence of translational efficiency on protein noise. 

      (3) The captions for most of the figures are short and do not provide much explanation, making the figures difficult to read.

      We have revised the figure captions to include more details as per the reviewer’s suggestion. 

      (4)  It would be helpful if the authors could define the meanings of noise (e.g., coefficient of variation?) and translational efficiency in the very beginning to avoid any confusion. It is also unclear to me whether the noise from the experimental data is defined according to protein numbers or concentrations, which is presumably important since budding yeasts are growing cells. 

      For all published datasets where we had measurements from many genes/promoters, we used the measures of adjusted noise (for mRNA noise) and Distance-tomedian (DM, for protein noise). These measures of noise are corrected mean-dependence of expression noise. For simulations, which we performed for a single gene, and for experiments that we performed on a limited number of promoters, we used the measure of coefficient of variation (CV) to quantify noise, as calculation of adjusted noise or DM was not possible for a single gene. We now mention this in line 123-124. We used the measure of protein synthesis rate per mRNA as the measure of translational efficiency (Riba et al., 2019; line 100). Alternatively, we also used tRNA adaptation index (tAI) as a measure of translational efficiency, as codon choice could also influence the translation rate per mRNA molecule (Tuller et al., 2010) (line 193). 

      The protein noise was quantified from the signal intensity of GFP tagged proteins (Newman et al., 2006; and our data), which was proportional to protein numbers without considering cell volume. For quantification of noise at the mRNA level, single-cell RNA-seq data was used, which provided mRNA numbers in individual cells.  

      (5) The conclusions from Figures 1D and 1E are not new. For example, the constant protein noise as a function of mean protein expression is a known result of the two-state model of gene expression, e.g., see Equation (4) in Paulsson, Physics of Life Reviews 2005.

      Yes, they may not be new, but we included these results for setting the baseline for comparison with simulation results that appear in the later part of the manuscript where we included translational bursting and ribosome demand in our models. 

      (6) In Figure 4C-D, it is unclear to me how the authors changed the mean protein expression if the translation initiation rate is a function of variation in mRNA number and other random variables.

      The translation initiation rate varied from a basal translation initiation rate depending on the mRNA numbers and other variables. We changed the basal translation initiation rate to alter the mean protein expression levels. We have now elaborated the modelling section to incorporate these details in the revised manuscript (lines 404 to 412). 

      (7) If I understand correctly, the authors somehow changed the translation initiation rate to change the mean protein expression in Figures 4C-D. However, the authors changed the protein sequences in the experimental data of Figure 6. I am not sure if the comparison between simulations and experimental data is appropriate.

      It is an important observation. Even though we changed the basal translation initiation rate to change the mean expression (Fig. 4C-D), we noted in the description of the model that the changes in the translation initiation rate were also linked to changes in the translation elongation rate (Fig. 3D). Thus, an increase in the translation initiation rate was associated with faster ribosome traversal through an mRNA molecule. This has also been observed in an experimental study by Barrington et al. (2023). Therefore, the models can also be expressed in terms of the translation elongation rate or ribosome traversal speed, instead of the translation initiation rate, and this modification will not change the results of the simulations due to interconnectedness of the initiation rate and the elongation rate.  

      Reviewer #2 (Recommendations for the authors):

      Minor comments:

      (1)  The discussion from lines 180 to 182 appears consistent with Figure 1E. It seems that the twostate model can already explain why the genes with high burst frequency and high protein synthesis rate showed a small protein noise. It is unclear to me the purpose of this discussion.

      Yes, the results from Fig. 1E were from stochastic simulations, whereas the results discussed in the lines 191 to 193 (in the revised manuscript) were based on our analysis of experimental data that is shown in Fig. 2D.

      (2)  If I understand correctly, "translational efficiency" is the same as "protein synthesis rate" in this work. It would be helpful if the authors could keep the same notation throughout the paper to avoid confusion.

      The protein synthesis rate per mRNA molecule is the best measure of translational efficiency, and we used the experimental data from Riba et al. (2019) for this purpose (line 99-100). Alternatively, we also used tRNA Adaptation Index (tAI) as a measure of translational efficiency, as the codon choice also influences the rate at which an mRNA molecule is translated (Tuller et al., 2010) (line 192). 

      (3) On line 227, does "higher translation rate" mean "higher translation initiation rate"? The same issues happen in a few places in this paper.

      Corrected now (line 243 in the revised manuscript and throughout the manuscript). 

      (4) The discussion from lines 296 to 301 is unclear. It is not obvious to me how the authors obtained the conclusion that lowering translational efficiency would decrease the protein expression noise.

      High translational efficiency will require more ribosomes and hence, will increase ribosome demand. If ribosome demand is the molecular basis of high expression noise for genes with bursty transcription and high translational efficiency, then we can expect a reduction in ribosome demand and a reduction in noise if we lower the translational efficiency. We have rephrased this section for clarity between the lines 334 and 339 in the revised manuscript.   

      (5)  On line 324, should slower translation mean a shorter distance between neighboring ribosomes? One can imagine the extreme limit in which ribosomes move very slowly so that the mRNA is fully packed with ribosomes. 

      Slower translation or ribosome traversal rate would also lower the translation initiation rate (Barrington et al., 2023). Slower traversal of ribosomes reduces the chances of collision in case of transient slow-down of ribosomes due to occurrence of one or more non-preferred codons. We have now clarified this part in the lines 360 to 369 in the revised manuscript.

      (6) The text from lines 423 to 433 can be put in Methods.

      We have already added this part to the methods section (lines 900 to 910) and now minimize this discussion in the results section. 

      (7)  The discussion from lines 128 to 130 is unclear, and the statement appears to be consistent with the two-state model (see Figure 1E). The meaning of "initial mRNA numbers" is also unclear.

      An earlier study has proposed that essential genes in yeast employs high transcription and low translation strategy for expression, likely to maintain low expression noise in these genes and to prevent detrimental effects of high expression noise (Fraser et al., 2004). However, there has been no direct supportive evidence. Therefore, we were testing whether the differences in mRNA levels and translational efficiency of genes can lead to differences in protein noise through stochastic simulations. The discussion between the lines 130 and 132 in the revised manuscript summarises the results of the simulations. 

      Initial mRNA numbers - mRNA copy numbers that are present in the cell at the start of stochastic simulations. However, we have now changed it to ‘mRNA levels’ in the revised manuscript for clarity (line 131 in the revised manuscript).

      (8)  On line 212, is the translation initiation rate TL_init the same thing as beta_p in Figure 3A?

      βp refers to the rate of protein synthesis, which is influenced by the translational burst kinetics as well as the translation initiation rate, whereas TLinit refers to the translation initiation rate. So, these parameters are related, but are not the same.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this study, Floedder et al report that dopamine ramps in both Pavlovian and Instrumental conditions are shaped by reward interval statistics. Dopamine ramps are an interesting phenomenon because at first glance they do not represent the classical reward prediction errors associated with dopamine signaling. Instead, they seem somewhat to bridge the gap between tonic and phasic dopamine, with an intense discussion still being held in the field about what is their actual behavioral role. Here, in tests with head-fixed mice, and dopamine being recorded with a genetically encoded fluorescent sensor in the nucleus accumbens, the authors find that dopamine ramps were only present when intertrial intervals were relatively short and the structure of the task (Pavlovian cue or progression in a VR corridor) contained elements that indicated progression towards the reward (e.g., a dynamic cue). The authors show that these findings are well explained by their previously published model of Adjusted Net Contingency of Causal Relation (ANCCR).

      Strengths:

      This descriptive study delineates some fundamental parameters that define dopamine ramps in the studied conditions. The short, objective, and to-the-point format of the manuscript is great and really does a service to potential readers. The authors are very careful with the scope of their conclusions, which is appreciated by this reviewer.

      We thank the reviewer for their overall support of the formatting and scope of the manuscript. 

      Weaknesses:

      The discussion of the results is very limited to the conceptual framework of the authors' preferred model (which the authors do recognize, but it still is a limitation). The correlation analysis presented in panel l of Figure 3 seems unnecessary at best and could be misleading, as it is really driven by the categorical differences between the two conditions that were grouped for this analysis. There are some key aspects of the data and their relationship with each other, the previous literature, and the methods used to collect them, that could have been better discussed and explored.

      We agree with the reviewer that a weakness of the discussion was the limited framing of the results within the ANCCR model. To address this, we have expanded our introduction and discussion sections to provide a more thorough explanation of our model and possible leading alternatives.

      We thank the reviewer for pointing out that Figure 3l may be misleading for readers; we removed this panel from the revised Figure 4.

      We have further addressed the specific concerns raised by the reviewer in their comments to the authors. Indeed, we agree with the reviewer that the original manuscript was narrow in its focus regarding relationships between different aspects of the data. To more thoroughly explore how key variables – including dopamine ramp slope and onset response as well as licking behavior slope – could relate to each other, we have added Extended Data Figure 8. In this figure, we show that no correlations exist between any of these key variables in either dynamic tone condition; it is our hope that this additional analysis highlights the significance of the clear relationship between dopamine ramp slope and ITI duration. 

      Reviewer #2 (Public Review):

      In this manuscript by Floeder et al., the authors report a correlation between ITI duration and the strength of a dopamine ramp occurring in the time between a predictive conditioned stimulus and a subsequent reward. They found this relationship occurring within two different tasks with mice, during both a Pavlovian task as well as an instrumental virtual visual navigation task. Additionally, they observed this relationship only in conditions when using a dynamic predictive stimulus. The authors relate this finding to their previously published model ANCCR in which the time constant of the eligibility trace is proportionate to the reward rate within the task.

      The relationship between ITI duration and the extent of a dopamine ramp which the authors have reported is very intriguing and certainly provides an important constraint for models for dopamine function. As such, these findings are potentially highly impactful to the field. I do have a few questions for the authors which are written below.

      We thank the reviewer for their interest in our findings and belief in their potential to be impactful in the field. 

      (1) I was surprised to see a lack of counterbalance within the Pavlovian design for the order of the long vs short ITI. Ramping of the lick rate does increase from the long-duration ITIs to the short-duration ITI sessions. Although of course, this increase in ramping of the licking across the two conditions is not necessarily a function of learning, it doesn't lend support to the opposite possibility that the timing of the dynamic CS hasn't reached asymptotic learning by the end of the long-duration ITI. The authors do reference papers in which overtraining tends to result in a reduction of ramping, which would argue against this possibility, yet differential learning of the dynamic CS would presumably be required to observe this effect. Do the authors have any evidence that the effect is not due to heightened learning of the timing of the dynamic CS across the experiment?

      We appreciate the reviewer expressing their surprise regarding the lack of counterbalance in our Pavlovian experimental design. We previously did not explicitly do this because the ramps disappeared in the short ITI/fixed tone condition, indicating that their presence is not just a matter of total experience in the task. However, we agree that this is incidental, but not direct evidence. To address this drawback, we repeated the Pavlovian experiment in a new cohort of animals with a revised training order, switching conditions such that the short ITI/dynamic tone (SD) condition preceded the long ITI/dynamic tone (LD) condition (see revised Figure 2a). Despite this change in the training order, the main findings remain consistent: positive dLight slopes (i.e., dopamine ramps) are only observed in the SD condition (Figure 2b-d). 

      We thank the reviewer for raising these questions regarding licking behavior and learning and their relationship with dopamine ramps. Indeed, a closer look at the average licking behavior reveals subtle differences across conditions (Figure 1f and Extended Data Figure 5a). While the average lick rate during the ramp window does not differ across conditions (Extended Data Figure 5c), the ramping of the lick rate during this window is higher for dynamic tone conditions compared to fixed tone conditions (Extended Data Figure 5d). Despite these differences, we still believe that the main comparison between the dopamine slope in the SD vs LD condition remains valid given their similar lick ramping slopes. Furthermore, our primary measure of learning is not lick slope, but anticipatory lick rate during the 1 s trace preceding reward delivery, which is robustly nonzero across cohorts and conditions (Figure 1g and Extended Data Figure 5b). 

      Taken together, we hope that the results from our counterbalanced Pavlovian training and more rigorous analysis of lick behavior across conditions provide sufficient evidence to assuage concerns that the differences in ramping dopamine simply reflect differences in learning. 

      (2) The dopamine response, as measured by dLight, seems to drop after the reward is delivered. This reduction in responding also tends to be observed with electrophysiological recordings of dopamine neurons. It seems possible that during the short ITI sessions, particularly on the shorter ITI duration trials, that dopamine levels may still be reduced from the previous trial at the onset of the CS on the subsequent trial. Perhaps the authors can observe the dynamics of the recovery of the dopamine response following a reward delivery on longer-duration ITIs in order to determine how quickly dopamine is recovering following a reward delivery. Are the trials with very short ITIs occurring within this period that dopamine is recovering from the previous trial? If so, how much of the effect may be due to this effect? It should be noted that the lack of observance of a ramp on the condition of shortduration ITIs with fixed CSs provides a potential control for this effect, yet the extent to which a natural ramp might occur following sucrose deliveries should be investigated.

      We thank the reviewer for highlighting the possibility that ramps may be due to the dopamine response recovery following reward delivery. Given that peak reward dopamine responses tend to be larger in long ITI conditions, however, we felt that it was inappropriate to compare post-reward dopamine recovery times across conditions. Instead, we decided to directly compare the dLight slope 2s before cue onset (“pre-cue window,” a proxy for recovery from previous trial) with the dLight slope during our ramp window from 3 to 8s after cue onset (Extended Data Figure 6a). There were no significant differences in pre-cue dLight slope across conditions (Extended Data Figure 6b); this suggests that the ramping slopes seen in the SD condition, but not other conditions, is not simply due to the natural dopamine recovery response following reward delivery. Furthermore, if the dopamine ramps observed in the SD condition were a continuation of the post-reward dopamine recovery from the previous trial, we would expect to see a positive correlation between the dLight slope before and during the cue. However, there is no such correlation between the dLight slopes in the ramp window vs. pre-cue window in the SD condition (Extended Data Figure 6c-d). We believe that this observation, along with the builtin control of the SF condition mentioned by the reviewer, serves as evidence against the possibility of our ramp results being due to a natural ramp after reward delivery.

      (3) The authors primarily relate the finding of the correlation between the ITI and the slope of the ramp to their ANCCR model by suggesting that shorter time constants of the eligibility trace will result in more precisely timed predictors of reward across discrete periods of the dynamic cue. Based on this prediction, would the change in slope be more gradual, and perhaps be more correlated with a broader cumulative estimate of reward rate than just a single trial?

      To clarify, we do not propose that a smaller eligibility trace time constant results in more precise timing per se. Instead, we believe that the rapid eligibility trace decay from smaller time constants gives greater causal predictive power for later periods in the dynamic cue (see Extended Data Figure 1) since the memory of the earlier periods of the cue is weaker. 

      We appreciate the reviewer’s curiosity regarding the influence of a broader cumulative estimate of reward vs. only the immediately preceding ITI on dopamine ramp slopes. Indeed, in several instrumental tasks (e.g., Krausz et al., Neuron, 2023), recent reward rate modulates the magnitude of dopamine ramps, making this an important variable to investigate. We chose to use linear regression for each mouse separately to analyze the relationship between the trial dopamine slope and the average previous ITI for the past 1 through 10 most recent trials. In the SD condition, as reported in our earlier manuscript, there was a significantly negative dependence of trial dopamine slope with the single previous ITI (i.e., if the previous ITI was long, the next trial tends to have a weaker ramp). This negative dependence, however, only held for a single previous trial; there was no clear relationship between the per-trial dopamine slope and the average of the past 2 through 10 ITIs (Extended Data Figure 7a). For the LD condition, on the other hand, there is no clear relationship between the per-trial dopamine slope and the average previous ITI for any of the past 1 through 10 trials, with one exception: there is a significantly negative dependence of trial dopamine slope with the average ITI of the previous 2 trials (Extended Data Figure 7b). This longer timescale relationship in the LD condition suggests that the adaptation of the eligibility trace time constant is nuanced and depends on the general ITI length. 

      In general, though we reason that the eligibility trace time constant should depend on overall event rates, we do not currently propose a real-time update rule for the eligibility trace time constant depending on recent event rates. Accordingly, we are currently agnostic about the actual time scale of history of recent event rate calculation that mediates the eligibility trace time constant. Our experimental results suggest that when the ITI is generally short for Pavlovian conditioning, the eligibility trace time constant adapts to ITI on a rapid timescale. However, only a small fraction of the variability of this rapid fluctuation is captured by recent ITI history. A more thorough investigation of this real-time update rule would need to be done in the future.

      Reviewer #3 (Public Review):

      Summary:

      Floeder and colleagues measure dopamine signaling in the nucleus accumbens core using fiber photometry of the dLight sensor, in Pavlovian and instrumental tasks in mice. They test some predictions from a recently proposed model (ANCCR) regarding the existence of "ramps" in dopamine that have been seen in some previous research, the characteristics of which remain poorly understood.

      They find that cues signaling a progression toward rewards (akin to a countdown) specifically promote ramping dopamine signaling in the nucleus accumbens core, but only when the intertrial interval just experienced was short. This work is discussed in the context of ongoing theoretical conceptions of dopamine's role in learning.

      Strengths:

      This work is the clearest demonstration to date of concrete training factors that seem to directly impact whether or not dopamine ramps occur. The existence of ramping signals has long been a feature of debates in the dopamine literature and this work adds important context to that. Further, as a practical assessment of the impact of a relatively simple trial structure manipulation on dopamine patterns, this work will be important for guiding future studies. These studies are well done and thoughtfully presented.

      We thank the reviewer for recognizing the context that our study adds to the dopamine literature and the potential for our experiments to guide future work. 

      Weaknesses:

      It remains somewhat unclear what limits are in place on the extent to which an eligibility trace is reflected in dopamine signals. In the current study, a specific set of ITIs was used, and one wonders if the relative comparison of ITI/history variables ("shorter" or "longer") is a factor in how the dopamine signal emerges, in addition to the explicit length ("short" or "long") of the ITI. Another experimental condition, where variable ITIs were intermingled, could perhaps help clarify some remaining questions.

      Though we used ITIs of fixed means, due to the exponential nature of their distribution, we did intermingle ITIs of various durations in both our long and short ITI conditions. The distribution of ITI durations is visualized in Figure 1c for Pavlovian conditioning and Extended Data Figure 9b for VR navigation. 

      The relative comparison between consecutive ITIs was not something we originally explored, so we thank the reviewer for wondering how it impacts the dopamine signal. To investigate this, we quantified both the change in ITI (+ or - Δ ITI for relatively longer or shorter, respectively) and the change in dopamine ramp slope between consecutive trials in the SD condition (Figure 3d). Across each mouse separately, we found a significantly negative relationship between Δ slope and Δ ITI (Figure 3e-f). Also, the average Δ slope was significantly greater for consecutive trials with a Δ ITI below -1 s compared to trials with a Δ ITI above +1 s (Figure 3g). Altogether, these findings suggest that relative comparison of ITIs does correlate with changes in the dopamine signal; a relatively longer ITI tends to have a weaker ramp, which fits in nicely with the expected inverse relationship between ITI and dopamine ramp slope from our ANCCR model.

      In both tasks, cue onset responses are larger, and longer on long ITI trials. One concern is that this larger signal makes seeing a ramp during the cue-reward interval harder, especially with a fluorescence method like photometry. Examining the traces in Figure 1i - in the long, dynamic cue condition the dopamine trace has not returned to baseline at the time of the "ramp" window onset, but the short dynamic trace has. So one wonders if it's possible the overall return to baseline trend in the long dynamic conditions might wash out a ramp.

      This is a good point, and we thank the reviewer for raising it. Certainly, the cue onset response is significantly larger in long ITI conditions (see Figure 1i-j and Figure 4h-j). To avoid any bleed over effect, we intentionally chose ramp window periods during later portions of the trial (in line with work from others e.g., Kim et al., Cell, 2020). While the cue onset dopamine pulse seems to have flatlined by the start of the ramp window period, the dopamine levels clearly remain elevated relative to pre-cue baseline. This type of signal has been observed with fiber photometry in other Pavlovian conditioning paradigms with long cue durations (e.g., Jeong et al., Science, 2022). Because of the persistently elevated dopamine levels, it is certainly possible that a ramping signal during the cue is getting washed out; with the bulk fluorescence photometry technique we employed in this study, this possibility is unfortunately difficult to completely rule out. However, the long ITI/fixed tone (LF) condition could serve as a potential control given the overall similarity in the dopamine signal between the LF and LD conditions: both conditions have large cue onset responses with elevated dopamine throughout the duration of the cue (see Extended Data Figures 2c and 3c). Critically, the LD condition lacks a noticeable ramp despite the dynamic tone providing information on temporal proximity to reward, which is thought to be necessary for dopamine ramps to occur. Importantly, regardless of whether a ramp is masked in the long ITI dynamic condition, most studies investigate such a condition in isolation and would report the absence of dopamine ramps. Thus, at a descriptive level, we believe it remains true that observable dopamine ramps are only present when the ITI is short. 

      Not a weakness of this study, but the current results certainly make one ponder the potential function of cue-reward interval ramps in dopamine (assuming there is a determinable function). In the current data, licking behavior was similar on different trial types, and that is described as specifically not explaining ramp activity.

      We agree that this work naturally raises the question of the function of dopamine ramps. However, selective and precise manipulation of only the dopamine ramps without altering other features such as phasic responses, or inducing dopamine dips, is highly technically challenging at this moment; due to this challenge, we intentionally focused on the conditions that determine the presence or absence of dopamine ramps rather than their function. We agree with the reviewer that studying the specific function of dopamine ramps is an interesting future question. 

      Reviewing Editor:

      The reviewers felt the results are of considerable and broad interest to the neuroscience community, but that the framing in terms of ANCCR undermined the scope of the findings as did the brief nature of the formatting of the manuscript. In addition, the reviewers felt that the relationship between ramp dynamics, behavior, and ITI conditions requires more in-depth analyses. Relatedly, the lack of counterbalancing of the ITI durations was considered to be a drawback and needs to be addressed as it may affect the baseline. Addressing these issues in a satisfactory manner would improve the assessment of the manuscript to important/convincing.

      We truly appreciate the valuable feedback provided on this manuscript by all three reviewers and the reviewing editor. Based on this input, we have significantly revised the manuscript to address the issues brought up by the reviewers. Firstly, we have conducted additional experiments to counterbalance the ITI conditions for Pavlovian conditioning; this strengthened our results by confirming our original findings that ITI duration, rather than training order, is the key variable controlling the presence or absence of dopamine ramps. Secondly, we completed more rigorous analyses to further explore the relationship between dopamine dynamics, animal behavior, and ITI duration; we generally found no significant correlations between these variables, with a notable exception being our main finding between ITI duration and dopamine ramp slope. Finally, we revised and expanded our writing to both explain predictions from our ANCCR model in less technical language and explore how alternative theoretical frameworks could potentially explain our findings. In doing so, we hope that our manuscript is now more accessible and of interest to a broad audience of neuroscience readers.

      Reviewer #1 (Recommendations For The Authors):

      The study could be improved if the authors performed a more detailed comparison of how other theoretical frameworks, beyond ANCCR could account for the observed findings. Also, the correlation analysis presented in the panel I of Figure 3 seems unnecessary and potentially spurious, as the slope of the correlation is clearly mostly driven by the categorical differences between the two ITI conditions, which were combined for the analysis - it's not clear what is the value of this analysis beyond the group comparison presented in the following panel.

      Again, we thank the reviewer for elaborating on their concern regarding Figure 3l – we have removed it from the revised Figure 4. 

      The relationship between ramp dynamics with the behavior and the large differences in cue onset responses between short and long ITI conditions could have been better explored. If I understand correctly the overarching proposal of this and other publications by this group, then the differences in cue responses is determined by the spacing of rewards in a somewhat similar way that the ramps are. So, is there a trial-by-trial correlation between the amplitude of the cue responses and the slope of the ramps? Is there a correlation between any of these two measures with the licking behavior, and if so, does it change with the ITI condition? A more thorough exploration of these relationships would help support the proposal of the primacy of inter-event spacing in determining the different types of dopamine responses in learning.

      There are certainly interesting relationships between dopamine dynamics, behavior, and ITI that we failed to explore in our original manuscript – we appreciate the reviewer bringing them up. We found no correlation between dopamine ramp slope and cue onset response in either the SD or LD condition (Extended Data Fig 8a-b). Moreover, we found no correlation between either of these variables and the trial-by-trial licking behavior (Extended Data Fig 8c-f). Finally, there is no relationship between licking behavior and previous ITI duration (Extended Data Fig 8g-h), suggesting that behavioral differences do not account for differences in the dopamine ramp slope. Together, the lack of significant relationships between these other variables highlights the specific, clear relationship between ITI duration and dopamine ramp slope. 

      Finally, another issue I feel could have been better discussed is how the particular settings of both tasks might be biasing the results. For example, there is an issue to be considered about how the dopamine ramp dynamics reported here, especially the requirement of a dynamic cue for ramps to be present, square with the previous published results by one of the authors - Mohebi et al, Nature, 2019. In that manuscript, rats were executing a bandit task where, to this reviewer's understanding, there was no explicit dynamic cue aside from the standard sensory feedback of the rats moving around in the behavior boxes to approach a nose poke port. Is the idea that this sensory feedback could function as a dynamic cue? If that's the case, then this short-scale, movement-related feedback should also function as a dynamic cue in a freely moving Pavlovian condition, when the animals must also move towards a reward delivery port, right? Therefore, could it be that the experimental "requirement" of a dynamic cue is only present in a head-fixed condition? One could phrase this in a different way to Steelman and potentially further the authors' proposal: perhaps in any slightly more naturalistic setting, the interaction of the animals with their environment always functions as a dynamic cue indicating proximity to reward, and this relationship was experimentally isolated by the use of head fixation (but not explicitly compared with a freely moving condition) in the present study. I think that would be an interesting alternative to consider and discuss, and perhaps explore experimentally at some point.

      We thank the reviewer for raising this important point regarding the influence of our experimental settings on our results. At first glance, it could appear that our results demonstrating the necessity of a dynamic cue for ramps in a head-fixed setting do not fit neatly with other results in a freely moving setup (e.g., Collins et al., Scientific Reports, 2016; Mohebi et al., Nature, 2019). Exactly as the reviewer states though, we believe that sensory feedback from the environment in freely moving preparations serves the same function as a dynamic progression of cues. We have considered the implications of methodological differences between head-fixed and freely moving preparations in the discussion section. 

      Reviewer #2 (Recommendations For The Authors):

      This comment relates indirectly to comment 3, in that the authors intermix theory throughout the manuscript. I think this would be fine if the experiment was framed directly in terms of ANCCR, but the authors specifically mention that this experiment wasn't developed to distinguish between different theories. As such, it seems difficult to assess the scope of the comments regarding theory within the paper because they tend to be specifically related to ANCCR. For instance, the last comment has broad implications of how the ramp might be related to the overall reward rate, an interesting finding that constrains classes of dopamine models rather than evidence just for ANCCR. Perhaps adding a discussion section that allows the authors to focus more on theory would be beneficial for this manuscript.

      We appreciate this suggestion by the reviewer. We have updated both our introduction and discussion sections to elaborate more thoroughly on theory.

      Reviewer #3 (Recommendations For The Authors):

      The paper could potentially benefit from the use of more accessible language to describe the conceptual basis of the work, and the predictions, and a bit of reformatting away from the brief structure with lots of supplemental discussion.

      For example, in the introduction, the line - "Varying the ITI was critical because our theory predicts that the ITI is a variable controlling the eligibility trace time constant, such that a short ITI would produce a small time constant relative to the cue-reward interval (Supplementary Note 1)". As far as I can tell, this is meant to get across the notion that dopamine represents some aspect of the time between rewards - dopamine signals will differ for cues following short vs long intervals between rewards.

      As written, the language of the paper takes a fair bit of parsing, but the notions are actually pretty simple. This is partly due to the brief format the paper is written in, where familiarity with the previous papers describing ANCCR is assumed.

      From a readability standpoint, and the potential impact of the paper on a broad audience, perhaps this could be considered as a point for revision.

      We thank the reviewer for pointing out the drawbacks of our technical language and brief formatting. To address this, we have removed the majority of the supplementary notes and expanded our introduction and discussion sections. In doing so, we hope that the conceptual foundations of this work, and potential alternative theoretical explanations, are accessible and impactful for a broad audience of readers.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      Summary:

      This valuable study by Wu and Zhou combined neurophysiological recordings and computational modelling to investigate the neural mechanisms that underpin the interaction between sensory evaluation and action selection. The neurophysiological results suggest non-linear modulation of decision-related LIP activity by action selection, but some further analysis would be helpful in order to understand whether these results can be generalised to LIP circuitry or might be dependent on specific spatial task configurations. The authors present solid computational evidence that this might be due to projections from choice target representations. These results are of interest for neuroscientists investigating decision-making.

      Strengths:

      Wu and Zhou combine awake behaving neurophysiology for a sophisticated, flexible visual-motion discrimination task and a recurrent network model to disentangle the contribution of sensory evaluation and action selection to LIP firing patterns. The correct saccade response direction for preferred motion direction choices is randomly interleaved between contralateral and ipsilateral response targets, which allows the dissociation of perceptual choice from saccade direction.

      The neurophysiological recordings from area LIP indicate non-linear interaction between motion categorisation decisions and saccade choice direction.

      The careful investigation of a recurrent network model suggests that feedback from choice target representations to an earlier sensory evaluation stage might be the source for this non-linear modulation and that it is an important circuit component for behavioural performance.

      The paper presents a possible solution to a central controversy about the role of LIP in perceptual decision-making, but see below.

      Weaknesses:

      The paper presents a possible solution to a central controversy about the role of LIP in perceptual decision-making. However, the authors could be more clear and upfront about their interpretational framework and potential alternative interpretations.

      Centrally, the authors' model and experimental data appears to test only that LIP carries out sensory evaluation in its RFs. The model explicitly parks the representation of choice targets outside the "LIP" module receiving sensory input. The feedback from this separate target representation provides then the non-linear modulation that matches the neurophysiology. However, they ignore the neurophysiological results that LIP neurons can also represent motor planning to a saccade target.

      The neurophysiological results with a modulation of the direction tuning by choice direction (contralateral vs ipsilateral) are intriguing. However, the evaluation of the neurophysiological results are difficult, because some of the necessary information is missing to exclude alternative explanations. It would be good to see the actual distributions and sizes of the RF, which were determined based on visual responses not with a delayed saccade task. There might be for example a simple spatial configuration, for example, RF and preferred choice target in the same (contralateral) hemifield, for which there is an increase in firing. It is a shame that we do not see what these neurons would do if only a choice target would be put in the RF, as has been done in so many previous LIP experiments. The authors exclude also some spatial task configurations (vertical direction decisions), which makes it difficult to judge whether these data and models can be generalised. The whole section is difficult to follow, partly also because it appears to mix reporting results with interpretation (e.g. "feedback").

      The model and its investigation is very interesting and thorough, but given the neurophysiological literature on LIP, it is not clear that the target module would need to be in a separate brain area, but could be local circuitry within LIP between different neuron types.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors recorded activity in the posterior parietal cortex (PPC) of monkeys performing a perceptual decision-making task. The monkeys were first shown two choice dots of two different colors. Then, they saw a random dot motion stimulus. They had to learn to categorize the direction of motion as referring to either the right or left dot. However, the rule was based on the color of the dot and not its location. So, the red dot could either be to the right or left, but the rule itself remained the same. It is known from past work that PPC neurons would code the learned categorization. Here, the authors showed that the categorization signal depended on whether the executed saccade was in the same hemifield as the recorded PPC neuron or in the opposite one. That is, if a neuron categorized the two motion directions such that it responded stronger for one than the other, then this differential motion direction coding effect was amplified if the subsequent choice saccade was in the same hemifield. The authors then built a computational RNN to replicate the results and make further tests by simulated "lesions".

      Strengths:

      Linking the results to RNN simulations and simulated lesions.

      Weaknesses:

      Potential interpretational issues due to a lack of evidence on what happens at the time of the saccades.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The neurophysiological results with a modulation of the direction tuning by choice direction are intriguing. However, the evaluation of the neurophysiological results are difficult because some of the necessary information is missing to exclude alternative explanations.

      We thank the reviewer for the helpful comments. We have addressed this point in detail in the following response.

      (a) Clearly state in the results how the response field "RF", where the stimulus was placed, was mapped. The methods give as "MGS"" (i.e., spatial selectivity during stimulus presentation and delay)" task rather than the standard delayed saccade. And also "while for those neurons which did not show a clear RF during the MGS task, we presented motion stimuli in the positions (always in the visual field contralateral to the recorded hemisphere) in which neurons exhibited the strongest response to the motion stimuli." All this sounds more like a sensory receptive field not an eye movement response filed". What was the exact task and criterion?

      We agree with the reviewer that the original description of how we mapped the response fields (RFs) of LIP neurons lacked sufficient detail. In this study, we used the memory-guided saccade (MGS) task to map the RFs of all isolated LIP neurons. Both MGS and delayed saccade tasks are commonly used to map a neuron's response field in previous decision-making studies.

      In the MGS task, monkeys initially fixate on the center of the screen. Subsequently, a dot randomly flashes at one of the eight possible locations surrounding the fixation dot with an eccentricity of 8 degree, requiring the monkeys to memorize the location of the flashed dot. After a delay of 1000 ms, the monkeys are instructed to saccade to the remembered location once the fixation dot disappears. The MGS task is a standard behavior task for mapping visual, memory, and motor RFs, particularly in brain regions involved in eye movement planning and control, such as LIP, FEF, and the superior colliculus.

      We believe the reviewer's confusion may stem from whether we mapped the visual, memory, or motor RFs of LIP neurons in the current study, as these "RFs" are not always consistent across individual neurons. In our study, we primarily mapped the visual and memory RFs of each LIP neuron by analyzing their activity during both the target presentation and delay periods. To focus on sensory evaluation-related activity, we presented the visual motion stimulus within the visual-memory RF of each neuron. For neurons that did not show a significant visual-memory RF, we used a different approach: we tested the neurons with the main task by altering the spatial configuration of the task stimuli to identify the visual field that elicited the strongest response when the motion stimulus was presented within it. This approach was used to guide the placement of the stimulus during the recording sessions.

      Following the reviewer’s suggestion, we have added the following clarification to the results section to better describe how we mapped the RF of LIP neurons:

      ‘We used the memory-guided saccade (MGS) task, which is commonly employed in LIP studies, to map the receptive fields (RFs) of all isolated LIP neurons. Specifically, we mapped both the visual and memory RFs of each neuron by analyzing their activity during the target presentation and delay periods of the MGS task (see Methods).’.

      (b) l.85 / l126: What do you mean by "orthogonal to the axis of the neural RF" - was the RF shape asymmetric, if so how did you determine this? OR do you mean the motion direction axis? Please explain.

      We realized that the original description of this point may have been unclear and could lead to confusion. The axis of the neural RF refers to the line connecting the center of the RF (which coincides with the center of the motion stimulus) to the fixation dot. We have revised this sentence in the revised manuscript as follows:

      ‘To examine the neural activity related to the evaluation of stimulus motion, we presented the motion stimuli within the RF of each neuron, while positioning the saccade targets at locations orthogonal to the line connecting the center of the RF (which also marks the center of the motion stimulus) and the fixation dot.’

      (c) Behavioural task. Figure 1 - are these example session? Please state this clearly. Can you show the examples (psychometric function and reaction times) separated for trials where correct choice direction aligning with the motion preference (within 90 degrees) and those that did not?

      Figure 1 shows the averaged behavioral results from all recording sessions. We have added this detail in the revised legend of Figure 1.

      We are uncertain about the reviewer’s reference to the “correct choice direction aligning with the motion preference,” as the term “motion preference” is specific to the neuron response, which are different for different neurons recorded simultaneously using multichannel recording probe.

      Nonetheless, following the reviewer’s suggestion, we grouped the trials in each recording session into two groups based on the relationship between the saccade direction and the preferred motion direction of the identified LIP neuron during one example single-channel recording. Both the RT and the performance accuracy during one example session were shown in the following figure.

      Author response image 1.

      Give also the performance averaged across all sites included in this study and range.<br /> If performance does differ for different configuration, please, show that the main modulatory effect does not align with this distinction.

      To clarify this point, we have plotted performance accuracy and RTs for horizontal, oblique, and vertical target position configurations separately, which are shown for both monkeys in the following figures. We did not observe any systematic influences of task configurations on the monkeys' performance accuracy. While the RTs did differ across different configurations, we believe these differences are likely attributable to several factors, such as varying levels of familiarity introduced by our training process and the intrinsic RT difference between different saccade directions.

      Author response image 2.

      (d) Show the distribution of RF positions and the direction preferences for the recording sites included in the quantitative analysis of this study. (And if available, separately those excluded).

      Following the reviewer’s suggestion, we have plotted the centers of the RFs for all neurons with identifiable RFs, categorizing them by their preferred motion directions. To determine each neuron’s RF, we analyzed the average firing rates from both the target presentation and delay periods during each trial of the memory-guided saccade (MGS) task. The RF centers of neurons with significant RFs were determined through a two-step process. First, we selected neurons that exhibited significant RFs in the MGS based on the following criteria: 1) there must be a significant activity difference between the eight target locations, and 2) the mean activity during the selected periods should be significantly greater than the baseline activity during the fixation period. Second, we fitted the activity data from the eight conditions to a Gaussian distribution, using the center of the fitted distribution as the RF center. A significant proportion of neurons from both monkeys that exhibited significant response to motion stimuli did not exhibited notable RFs based our current method. The following figures show the distributions of RFs and motion direction preference for all LIP neurons with identifiable RFs separately for each monkey. Since this is not the focus of the current study, we are not planning to include this result in the revised manuscript.

      Author response image 3.

      (e) Following on from d), was there a systematic relationship between RF position or direction preference and modulation by choice direction? For instance could the responses be simply explained by an increase in modulation for choices into the same (contralateral) hemifield as where the stimulus was placed?

      The reviewer raised a good point. To address whether there was a systematic relationship between RF position or direction preference and modulation by choice direction, we calculated a modulation index for each neuron to quantify the influence of saccade direction on neuronal responses to motion stimuli. We then plotted the modulation index against the RF position for each LIP neuron, shown as following:

      Author response image 4.

      As shown in the figures above, neurons with RFs farther from the horizontal meridian were more likely to exhibit stronger modulation by the saccade direction, while neurons with RFs closer to the horizontal meridian showed inconsistent and weaker modulation. This is because when the RFs was on the horizontal meridian, saccade directions were aligned with the vertical axis (with no contralateral or ipsilateral directions). This is consistent with the finding in Figure S3—no significant differences in direction selectivity between the CT and IT conditions in the data sessions where the saccade targets were aligned close to the vertical direction. Since fewer than half of the identified neurons showed clear receptive fields using our method, the figure above did not include all the neurons used in the analysis in the manuscript. Therefore, we chose not to include this figure in the revised manuscript.

      Additionally, we quantified the relationship between the modulation index and direction preference for neurons in sessions where the monkeys’ saccades were aligned to either horizontal or oblique directions. As shown in the following figure, no systematic relationship was found between direction preference and modulation by the choice direction for LIP neurons at the population level.

      Author response image 5.

      We have added this result as Figure S 2 in the revised manuscript.

      Notably, the observed modulation of saccade direction on LIP neurons’ response to motion stimuli cannot be simply explained by saccade direction selectivity. We presented two more evidence to rule out such possibility in the original manuscript. First, the modulation effect we observed was nonlinear; specifically, the firing rate of neurons increased for the preferred motion direction but decreased for the non-preferred motion direction (Figure 2i and Figure S1A-D). This phenomenon is unlikely to be attributed to a linear gain modulation driven by saccade directions. Second, we plotted the averaged neural activity for contralateral and ipsilateral saccade directions separately, and found that LIP neurons showed similar levels of activity between two saccade directions (revised Figure 2L).

      Additionally, we added a paragraph in the Methods section to describe the way we calculated modulation index as follows:

      “We have calculated a modulation index for each neuron to reflect the influence of saccade direction on neuron’s response to visual stimuli. The modulation index is calculated as:

      where represents the average firing rate from 50ms to 250ms after sample onset for all contralateral saccade trails with a neuron’s preferred moving direction of visual stimuli. The naming conventions are the same for , , and . An MI value between 0 and 1 indicate higher modulation in contralateral saccade trials, and an MI value between -1 and 0 indicates higher modulation in ipsilateral saccade trials.”

      Please split Figures 2G,H,I J,K, by whether the RF was located contralaterally or ipsilaterally. If there are only a small number of ipsilateral RFs, please show these examples, perhaps in an appendix.

      This is a reasonable suggestion; however, it is not applicable to our study. Among all the neurons included in our analysis, only one neuron from each monkey exhibited ipsilateral receptive fields (RFs). Therefore, we believe it may not be necessary to plot the result for this outlier.

      (f) Were the choice targets always equi-distant from the stimulus and at what distance was this? Please give quantitative details in methods.

      The review was correct that the choice targets were always equidistant form the stimulus. The distance between the motion stimulus and the target was typically 12-15 degree. We have added the details in the revised Methods section as follows:

      ‘Therefore, the two saccade targets were equidistant from the stimulus, with the distance typically ranging from 12 to 15 degrees.

      (2) For Figure 3E, how do you explain that there is an up regulation of for contralateral choices before the stimulus onset, i.e. before the animal can make a decision? Is this difference larger for error trials?

      This is a good question, which we have attempted to clarify in the revised manuscript. We believe that the observed upregulation in neural activity for contralateral choices may reflect the monkeys’ internal choice bias or expectation (choice between two motion directions) prior to stimulus presentation, which could influence their subsequent decisions. In Figure 3E, we calculated the r-choice to assess the correlation between the neuron’s direction selectivity and the monkeys’ decisions on motion stimuli, separately for contralateral and ipsilateral choice conditions. The increased r-decision during the pre-stimulus period indicates stronger neural activity for trials in which the monkeys later reported that the upcoming stimulus was in the preferred direction, and weaker activity for trials where the stimulus was judged to be in the non-preferred direction. This correlation was more pronounced for contralateral choices than for ipsilateral ones. It is important to note that while the monkeys cannot predict the upcoming stimulus direction with greater-than-chance accuracy, these results suggest that pre-stimulus neural activity in LIP is correlated with the monkeys’ eventual decision for that trial. Furthermore, LIP neural activity was more strongly correlated with the monkeys’ decisions in the contralateral choice condition compared to the ipsilateral one.

      Additionally, we clarify that the r-decision was calculated using both correct and error trials. When comparing Figure 2J with Figure 2K, the correlation between neural activity and the monkeys’ upcoming decision during the pre-stimulus period was most prominent in low- and zero-coherence trials, where the monkeys either made more errors or based decisions on guesswork. We infer that the monkeys' confidence in these decisions was likely lower compared to high-coherence trials. Thus, the decision process appears to be influenced by pre-stimulus neural activity, particularly in low-coherence and zero-coherence trials.

      Although it is unclear precisely what covert process this pre-stimulus activity reflects, similar patterns of choice-predictive pre-stimulus activity have been observed in LIP and other brain areas (Shadlen, M.N. and Newsome,T.W., 2001; Coe, B., at al. 2002; Baso, M.A. and Wurtz, R.H., 1998; Z. M. Williams at al. 2003). We have clarified this point in the revised manuscript, including a revision of the relevant sentence in the Results section for clarity, shown as follows:

      “Furthermore, we used partial correlation analysis to examine decision- and stimulus-related components of DS (i.e., r-decision and r-stimulus, Figure 3E and 3F) using all four coherence levels. The decision-related component of LIP DS was significantly greater in the CT condition than in the IT condition (Figure 3E; nested ANOVA: P = 1.07e-6, F= 25.72), and this difference emerged even before motion stimulus onset. This suggests that the LIP DS was more closely correlated with monkeys’ decisions in the CT condition than in the IT condition. The upregulation in r-decision for contralateral choices may reflect the monkeys’ internal choice bias or expectation (choice between two motion directions) prior to stimulus presentation, which could influence their subsequent decisions more in the CT condition”

      (3) Figure 2K: what is the very large condition-independent contribution? It almost seems as most of what these neurons code for is neither saccade or motion related.

      The condition-independent contribution is the time-dependent component that is unrelated to saccade, motion, or their interaction. Our findings are consistent with previous methodological studies, where this time-dependent component was shown to account for a significant portion of the variance in population activity (Kobak, D. et al., 2016)

      (4) Abstract:

      a) "We found that the PPC activity related to monkeys' abstract decisions about visual stimuli was nonlinearly modulated by monkeys' following saccade choices directing outside each neuron's response field."

      This sentence is not clear/precise in two regards:

      Should "directing" be "directed"?

      Also, it is not just saccades directed outside the RF, but towards the contralateral hemifield.

      We thank the reviewer for the suggestion. We agree that ‘directing’ should be ‘directed’ and revised it accordingly. However, we do not believe that ‘directed outside each neuron's response field’ should be replaced with “towards the contralateral hemifield”. There are two major reasons. First, the modulation effect was identified as the difference between contralateral and ipsilateral saccade directions. We cannot conclude that the modulation mainly happened in the contralateral saccade direction. Second, we used ‘directed outside each neuron's response field’ to emphasize that this modulation cannot be simply explained by saccade direction selectivity, whereas ‘towards the contralateral hemifield’ cannot fulfill this purpose.

      (b) " Recurrent neural network modeling indicated that the feedback connections, matching the learned stimuli-response associations during the task, mediated such feedback modulation."

      - should be "that feedback connection .... might mediate". A model can only ever give a possible explanation.

      Thanks for the help on the writing again! We have revised this sentence as following: “Recurrent neural network modeling indicated that the feedback connections, matching the learned stimuli-response associations during the task, might mediate such feedback modulation.”

      (c) "thereby increasing the consistency of flexible decisions." I am not sure what is really meant by increasing the consistency of flexible decisions? More correct or more the same?

      We apologize for the confusion. In the manuscript, "decision consistency" refers to the degree of agreement in the model's decisions under specific conditions. A higher decision consistency indicates that the model is more likely to produce the same choice when encountering encounters a stimulus in that condition. We have incorporated your suggestion and revise this sentence as “thereby increasing the reliability of flexible decisions”. We also clarified the definition of consistency in the main text as follows:

      “These disrupted patterns of saccade DS observed in the target module following projection-specific inactivation aligned with the decreased decision consistency of RNNs, where decision consistency reflects the degree of agreement in the model's choices under specific task conditions. This suggests a diminished reliance on sensory input and an increased dependence on internal noise in the decision-making process.”.

      (5) Results: headers should be changed to reflect the actual results, not the interpretation:

      "Nonlinear feedback modulation of saccade choice on visual motion selectivity in LIP"

      "Feedback modulation specifically impacted the decision-correlated activity in LIP"

      These first parts of the results describe neurophysiological modulations of LIP activity, the source cannot be known from the presented data alone. I thought that this feedback is suggested by the modelling results in the last part of the results. It is confusing to the reader that the titles already refer to the source of the modulation as "feedback". The titles should more accurelty describe what is found, not pre-judge the interpretation.

      We thank the reviewer for those valuable suggestions. We have updated the subtitles to: “Nonlinear modulation of saccade choice on visual motion selectivity in LIP” and “Decision-correlated but not stimulus-correlated activity was modulated in LIP.”

      (6) page 8, l366-380. Can you link the statements more directly to panels in Figure 6. For Figure 6H-K, it needs to be clarified that the headers for 6D-G also apply to H-K.

      ­We have added headers for Figure 6H-K in the revised version, and revised the corresponding results section as follows.

      ‘We further examined how the energy landscape in the 1-D subspace changed in relation to task difficulty (motion coherence). Consistent with prior findings, trials with lower decision consistency (trials using lower motion coherence) exhibited shallower attractor basins at the time of decision for all types of RNNs (Fig. 6H-K). However, both the depth and the positional separation of attractor basins in the network dynamics significantly decreased for all non-zero motion coherence levels after the ablation of all feedback connections (comparing Figure 6I with Figure 6H; P(depth) = 5.20e-25, F = 122.80; P(position) = 1.82e-27, F = 137.75; two-way ANOVA). Notably, this reduction in basin depth and separation was more pronounced in the specific group compared to the nonspecific groups after ablating the feedback connections (comparing Figure 6J with Figure 6K; P(depth) = 2.65e-13, F =57.35; P(position) = 3.73e-14, F = 61.79; two-way ANOVA). These results might underlie the computational mechanisms that explain the observed reduction in the decision consistency of RNNs following projection-specific inactivation: the shallower and closer attractor basins after ablating feedback connections resulted in less consistent decisions. This happened because the variability in neural activity made it more likely for population activity to stochastically shift out of the shallower basins and into nearby alternative ones.’

      (7) line 556-557: Please provide a reference or data for the assertion that nearby recording sites in LIP (100 microns apart) have similar RFs.

      The reviewer raised an interesting question that we are unable to address in depth with the current data, as we lack information on the specific cortical location for each recording session. In the original manuscript, we suggested that nearby recording sites in LIP have similar receptive fields (RFs), based on both our own experience with LIP recordings and previous studies. Specifically, we observed that neurons recorded within a single penetration using a single-channel electrode typically exhibited similar RFs. Similarly, the majority of neurons recorded from the same multichannel linear probe within a single session also showed comparable RFs. Additionally, several studies (both electrophysiological and fMRI) have reported topographic organization of RFs in LIP (Gaurav H. Patel et al., 2010; S. Ben Hamed et al., 2001; Gene J. Blatt et al., 1990).

      (8) Line 568, Methods: a response criterion of a maximum firing rate of 2 spikes/s seems very low, especially for LIP. How do the results change if this lifted to something more realistic like 5 spikes/s or 10 spikes/s?

      We chose this criterion to ensure we included as many neurons as possible in our analysis. To further clarify, we have plotted the distribution of maximum firing rates across all neurons. Based on our findings, relaxing this criterion is unlikely to affect the results, as the majority of neurons exhibit maximum firing rates well above 5 spikes/s, and many exceed 10 spikes/s. We hope this explanation addresses the concern.

      Author response image 6.

      Reviewer #2 (Recommendations For The Authors):

      In this manuscript, the authors recorded activity in the posterior parietal cortex (PPC) of monkeys performing a perceptual decision-making task. The monkeys were first shown two choice dots of two different colors. Then, they saw a random dot motion stimulus. They had to learn to categorize the direction of motion as referring to either the right or left dot. However, the rule was based on the color of the dot and not its location. So, the red dot could either be to the right or left, but the rule itself remained the same. It is known from past work that PPC neurons would code the learned categorization. Here, the authors showed that the categorization signal depended on whether the executed saccade was in the same hemifield as the recorded PPC neuron or in the opposite one. That is, if a neuron categorized the two motion directions such that it responded stronger for one than the other, then this differential motion direction coding effect was amplified if the subsequent choice saccade was in the same hemifield. The authors then built a computational RNN to replicate the results and make further tests by simulated "lesions".

      The data are generally interesting, and the manuscript is generally well written (but see some specific comments below on where I was confused). However, I'm still not sure about the conclusions. The way the experiment is setup, the "contra" saccade target is essentially in the same hemifield as the motion patch stimulus. Given that the RF's can be quite large, isn't it important to try to check whether the saccade itself contributed to the effects? i.e. if the RF is on the left side, and the "contra" saccade is to the left, then even if it is orthogonal to the location of the stimulus motion patch itself, couldn't the saccade still be part of a residual edge of the RF? This could potentially contribute to elevating the firing rate on the preferred motion direction trials. I think it would help to align the data on saccade onset to see what happens. It would also help to have fully mapped the neurons' movement fields by asking the monkeys to generate saccades to all screen locations in the monitor. The authors mention briefly that they used a memory-guided saccade task to map RF's, but it is also important to map with a visual target. And, in any case, it would be important to show the mapping results aligned on saccade onset.

      Another comment is that the authors might want to mention this other recent related paper by the Pack group: https://www.biorxiv.org/content/10.1101/2023.08.03.551852v2.full.pdf

      We thank the reviewer for the comments and realized that we did not explain our results clearly in the original manuscript. We agree with the reviewer that saccade direction selectivity might be a confounding factor for the modulation of the saccade choice direction onto LIP neurons’ activity responded to visual motion stimuli. Because the RFs of LIP neurons might be large and the saccade target might be presented within the edge of the RFs. However, we believe that the observed modulation of saccade direction on LIP neurons’ response to motion stimuli cannot be simply explained by saccade direction selectivity. We presented several pieces of evidence to rule out such possibility. First, the modulation effect we observed was not linear; specifically, the firing rate of neurons increased for the preferred motion direction but decreased for the non-preferred motion direction (Figure 2i and Figure S1A-D). This phenomenon is unlikely to be attributed to a linear gain modulation driven by saccade directions. Second, we plotted the averaged neural activity for contralateral and ipsilateral saccade directions separately, aligned the activity to either motion stimulus onset or saccade onset, and found that LIP neurons showed similar levels of activity between the contralateral and ipsilateral directions (revised Figure 2L), which is not consistent with obvious saccade direction selectivity.

      To better control for this confound, we have added figures plotting the mean neural activity aligned to saccade onset for both contralateral and ipsilateral saccades, which are now included in the revised main Figure 2. These figures are presented in the detailed response below. Additionally, we have revised the corresponding results section to clarify our points, as outlined below:

      “Figure 2A-2F shows three example LIP neurons that exhibited significant motion coherence correlated DS. Surprisingly, LIP neurons showed greater DS in the CT condition than in the IT condition, even though the same motion stimuli were used in the same spatial location for both conditions. The averaged population activity showed this DS difference between CT and IT conditions for all four coherence levels (Figure 2G, 2H). During presentation of their preferred motion direction, LIP neurons showed significantly elevated activity in the CT relative to the IT at all coherence levels (Figure S1A, S1B, nested ANOVA: P(high) = 0.0326, F = 4.65; P(medium) = 0.0088, 142 F = 7.03; P(low) = 0.0076, F = 7.32; P(zero) = 0.0124, F = 6.4), and a trend toward lower activity to the nonpreferred direction for CT vs. IT (Figure S1C, S1D, nested ANOVA: P(high) = 0.0994, F = 2.75; P(medium) = 0.0649, F = 3.12; P(low) = 0.0311, F = 4.73; P(zero) = 0.0273, F = 4.96). Most of the LIP neurons (48 of 83) showed such opposing trends in activity modulation between the preferred and nonpreferred directions (Figure 2I). These results indicated a nonlinear modulation of saccade choice on motion DS in LIP, aligned precisely with the response property of each neuron. This is unlikely to be driven by a linear gain modulation of saccade direction selectivity. Receiver operating characteristic (ROC) analysis further confirmed significantly greater motion DS in the CT condition than in the IT condition (Figure 2J 148 and 2K; nested ANOVA: P(high) = 5.0e-4, F= 12.44; P(medium) = 9.53e-6, F = 20.91; P(low) = 9.33e-7, F 149 = 26.03; P(zero) = 2.56e-8, F= 34.3). Such DS differences were observed even before stimulus onset. Moreover, LIP neurons exhibited similar levels of mean activity between different saccade directions (CT vs. IT) before monkeys’ saccade choice (Figure 2L), further supporting that saccade direction selectivity did not significantly contribute to the observed modulation of LIP neurons’ responses to motion stimuli.

      We also thank the reviewer for pointing out the missing of this relevant study, we have added the suggested refence in the revised discussion section as follows:

      ‘A recent study demonstrated that neurons in the middle temporal area responded more strongly to motion stimuli when monkeys saccaded toward their RFs in a standard decision task with a fixed mapping between motion stimuli and saccade directions. This modulation emerged through the training process and contributed causally to the monkeys' following saccade choices. Consistently, we found that the response of LIP neurons to motion stimuli was more strongly correlated with the monkeys' decisions in the CT condition (saccades toward RFs) than in the IT condition, in a more flexible decision task. Together, these results suggest that the modulation of action selection on sensory processing may be a general process in perceptual decision-making. However, the observed modulation of saccade direction on LIP neurons' responses to motion stimuli cannot be simply explained by saccade direction selectivity. Several lines of evidence argue against this possibility. First, the modulation effect was nonlinear; specifically, neuronal firing rates increased for preferred motion directions but decreased for non-preferred directions (Figure 2I and Figure S1). This pattern is unlikely to be driven by a linear gain modulation based on saccade directions. Second, we found that LIP neurons exhibited similar levels of activity in both the CT and IT conditions (Figure 2L), which is inconsistent with the presence of clear saccade direction selectivity.

      Some more specific comments are below:

      - I had a bit of a hard time with the abstract. It does not appear to be crystal clear to me, and it is the first thing that I am reading after the title. For example, if there is a claim about both perceptual decision-making and later target selection, then I feel that the task should be explained a bit more clearly than saying "flexible decision" task. Also, "..modulated by monkeys' following saccade choices directing outside each neuron's response field" was hard to read. It needs to be rewritten. Maybe just say "...modulated by the subsequent eye movement choices, even when these eye movement choices always directed the eyes away from the recorded neuron's response field". Also, I don't fully understand what "selectivity-specific feedback" means. Then, the concept of "consistency" in flexible decisions is brought up, again without much context. The above are examples of why I had a hard time with the abstract.

      We realize that our original statement may have been unclear and potentially caused confusion for the readers. Following the reviewer’s suggestions, we have revised the abstract as follows:

      ‘Neural activity in the primate brain correlates with both sensory evaluation and action selection aspects of decision-making. However, the intricate interaction between these distinct neural processes and their impact on decision behaviors remains unexplored. Here, we examined the interplay of these decision processes in posterior parietal cortex (PPC) when monkeys performed a flexible decision task, in which they chose between two color targets based on a visual motion stimulus. We found that the PPC activity related to monkeys’ abstract decisions about visual stimuli was nonlinearly modulated by their subsequent saccade choices, which were directed outside each neuron’s response field. Recurrent neural network modeling indicated that the feedback connections, matching the learned stimuli-response associations during the task, might mediate such feedback modulation. Further analysis on network dynamics revealed that selectivity-specific feedback connectivity intensified the attractor basins of population activity underlying saccade choices, thereby increasing the reliability of flexible decisions. These results highlight an iterative computation between different decision processes, mediated primarily by precise feedback connectivity, contributing to the optimization of flexible decision-making.’

      Specifically, selectivity-specific feedback refers to the feedback connections with positive or negative weights between selectivity-matched and selectivity-nonmatched unit pairs, respectively.

      Regarding "decision consistency," we define it as the degree to which the model’s decisions remain congruent under specific conditions. A higher level of decision consistency indicates that the model is more likely to produce the same choice each time it is presented with a stimulus under those conditions, in another words, decision reliability. We have revised the corresponding results section to make these concepts clearer.

      - Line 69: I'm not fully sure, but I think that some people might suggest that superior colliculus is also involved in the sensory aspect of the evaluation. But, I guess the sentence itself is correct as you write it. So, I don't think anyone should argue with it. However, if someone does argue with it, then they would flag the next sentence, since if the colliculus does both, then do the sensory and motor parts really employ distinct neural processes? Anyway, I think this is very minor.

      This is an interesting point. We have also noticed a recent study that demonstrates that the superior colliculus is causally involved in the sensory aspect of decision-making, specifically in visual categorization. However, the study also distinguishes between neural activity related to categorical decisions and that related to saccade planning. This suggests that the sensory and motor aspects of decision-making likely involve distinct neural processing, even within the same brain region—potentially reflecting separate populations of neurons. Therefore, we stand by our statement in the ‘next sentence’.

      - Line 79-80: you might want to look at this work because I feel that it is relevant to cite here: https://www.biorxiv.org/content/10.1101/2023.08.03.551852v2

      We have discussed this reference in the revised discussion section of the manuscript, please refer to the above response.

      - For a result like that shown in Fig. 2, I feel that it is important to show RF mapping with a saccade task alone. i.e. for the same neurons, have a monkey make a delayed visually guided saccade task to all possible locations on the display, and demonstrate that there is no modulation by saccades to the targets. Otherwise, the result in Fig. 2 could reflect first an onset response by a motion, and then the saccade-related response that would happen anyway, even without the decision task. So, I feel that now, it is not entirely clear whether the result reflects this so-called feedback modulation, or whether simply planning the saccade to the target itself activates the neurons. With large RF's, this is a distinct possibility in my opinion.

      - Line 174: this would also be predicted if the neuron's were responding based on the saccade target plan independent of the motion stimulus

      - On a related note, I would recommend plotting all data also aligned on saccade onset. This can help establish what the cause of the effects described is

      We understand the reviewer’s concern that the modulation might be related to saccade planning, and we acknowledge that the original manuscript might not adequately address this potential confound. Unfortunately, we did not map the LIP neurons' receptive fields (RFs) using a saccade-only task. However, as mentioned earlier, we believe that the modulation of LIP neurons' responses to motion stimuli based on saccade choice direction cannot be simply attributed to saccade direction selectivity. Several lines of evidence support this conclusion. First, the modulation we observed was nonlinear: the firing rate of neurons increased for the preferred motion direction but decreased for the non-preferred motion direction (Figure 2i and Figure S1A-D). This pattern is inconsistent with a simple linear gain modulation driven by saccade direction selectivity. Second, we directly compared LIP neuronal activity for contralateral and ipsilateral target conditions, and found no significant differences between the two. This suggests that saccade direction selectivity is unlikely to be the primary contributor to the observed modulation. In the revised figure, we added a plot (Figure 2L) that aligns neural activity to saccade onset, in addition to the original alignment to motion stimulus onset (Figure S1E). This new analysis further supports our interpretation.

      Author response image 7.

      - Even when reading the simulation results, I'm still not 100% sure I understand what is meant by this idea of "consistency" of flexible decision-making

      We have addressed this issue in a previous comment and please refer to the response above.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Early and accurate diagnosis is critical to treating N. fowleri infections, which often lead to death within 2 weeks of exposure. Current methods-sampling cerebrospinal fluid are invasive, slow, and sometimes unreliable. Therefore, there is a need for a new diagnostic method. Russell et al. address this need by identifying small RNAs secreted by Naegleria fowleri (Figure 1) that are detectable by RT-qPCR in multiple biological fluids including blood and urine. SmallRNA-1 and smallRNA-2 were detectable in plasma samples of mice experimentally infected with 6 different N. fowleri strains, and were not detected in uninfected mouse or human samples (Figure 4). Further, smallRNA-1 is detectable in the urine of experimentally infected mice as early as 24 hours post-infection (Figure 5). The study culminates with testing human samples (obtained from the CDC) from patients with confirmed N. fowleri infections; smallRNA-1 was detectable in cerebrospinal fluid in 6 out of 6 samples (Figure 6B), and in whole blood from 2 out of 2 samples (Figure 6C). These results suggest that smallRNA-1 could be a valuable diagnostic marker for N. fowleri infection, detectable in cerebrospinal fluid, blood, or potentially urine. 

      Strengths: 

      This study investigates an important problem, and comes to a potential solution with a new diagnostic test for N. fowleri infection that is fast, less invasive than current methods, and seems robust to multiple N. fowleri strains. The work in mice is convincing that smallRNA1 is detectable in blood and urine early in infection. Analysis of patient blood samples suggest that whole blood (but not plasma) could be tested for smallRNA-1 to diagnose N. fowleri infections. 

      Thank you for comments regarding the strengths of this study. We agree that our data for detecting the biomarker in biofluids from mice is convincing. In addition, our spike-in studies with human cerebrospinal fluid, plasma, and urine (Figure 6) suggest these biofluids from humans could be used for diagnosis.

      We appreciate the comment regarding plasma and recognize this was not fully explained in the manuscript. We do believe that plasma can be used to assess the biomarker. Firstly, we demonstrated equivalent sensitivity of the method to detect smallRNA-1 in plasma and urine in mice with end-stage PAM (Figure 5). In addition, spike in samples of human plasma, cerebrospinal fluid, and urine demonstrated equivalent sensitivity of detecting the biomarker (Figure 6). 

      The negative result for human plasma in Figure 6C requires clarification; this sample was convalescent plasma from a survivor. The patient presented to the hospital on August 7, 2016, was treated, made a remarkable recovery, and was released from the hospital later that month. The plasma sample in Figure 6C was collected September 7, 2016, which is a month after treatment was initiated and weeks after the patient was symptom free. Our interpretation of the convalescent plasma result is the patient had cleared the active amoeba infection and that is why we did not detect the biomarker. We have added text in the discussion and in the legend for Figure 6 to clarify the convalescent plasma result. 

      One additional caveat for consideration is that many of the samples we received from amoebaeinfected humans were stored at room temperatures for undefined periods of time before being moved to <-20°C (see details in Table S9). We can’t rule out possible sample degradation, but this is an unfortunate reality of obtaining human samples from individuals later confirmed to be infected with pathogenic free-living amoebae.

      Weaknesses: 

      (1) There are not many N. fowleri cases, so the authors were limited in the human samples available for testing. It is difficult to know how robust this biomarker is in whole blood (only 2 samples were tested, both had detectable smallRNA-1), serum (1 out of 1 sample tested negative), or human urine (presumably there is no material available for testing). This limitation is openly discussed in the last paragraph of the discussion section. 

      We agree the extremely limited availability of human samples is a limitation of this study. Given the rarity of these infections in the United States, even prospective studies to systematically collect samples would be very challenging. We hope that by publishing the details of this biomarker detection is that the method can be used by diagnostic reference centers, especially in areas where outbreaks of multiple cases per year have been reported.

      (2) There seems to be some noise in the data for uninfected samples (Figures 4B-C, 5B, and 6C), especially for those with serum (2E). While this is often orders of magnitude lower than the positive results, it does raise questions about false positives, especially early in infection when diagnosis would be the most useful. A few additional uninfected human samples may be helpful. 

      We agree; however, we would like to point out the progression of disease in humans and mice are similar. Typically, patients survive between 10-14 days after presumed exposure and mice have similar survival times following instillation of N. fowleri amoebae into a nare of the mouse. Therefore, detection of this biomarker as early as 72 h in mice is seemingly equivalent to the onset of initial symptoms in humans.  

      Reviewer #2 (Public review): 

      Summary: 

      The authors sought to develop a rapid and non-invasive diagnostic method for primary amoebic meningoencephalitis (PAM), a highly fatal disease caused by Naegleria fowleri. Due to the challenges of early diagnosis, they investigated extracellular vesicles (EVs) from N. fowleri, identifying small RNA biomarkers. They developed an RT-qPCR assay to detect these biomarkers in various biofluids. 

      Strengths: 

      (1)  This study has a clear methodological approach, which allows for the reproducibility of the experiments. 

      (2) Early and Non-Invasive Diagnosis - The identification of a small RNA biomarker that can be detected in urine, plasma, and cerebrospinal fluid (CSF) provides a non-invasive diagnostic approach, which is crucial for improving early detection of PAM. 

      (3) High Sensitivity and Rapid Detection - The RT-qPCR assay developed in the study is highly sensitive, detecting the biomarker in 100% of CSF samples from human PAM cases and in mouse urine as early as 24 hours post-infection. Additionally, the test can be completed in ~3 hours, making it feasible for clinical use. 

      (4)  Potential for Disease Monitoring - Since the biomarker is detectable throughout the course of infection, it could be used not only for early diagnosis but also for tracking disease progression and monitoring treatment efficacy. 

      (5)  Strong Experimental Validation - The study demonstrates biomarker detection across multiple sample types (CSF, urine, whole blood, plasma) in both animal models and human cases, providing robust evidence for its clinical relevance. 

      (6) Addresses a Critical Unmet Need - With a >97% case fatality rate, PAM urgently requires improved diagnostics. This study provides one of the first viable liquid biopsy-based diagnostic approaches, potentially transforming how PAM is detected and managed. 

      Thank you for summarizing the strengths of the study.

      Weaknesses: 

      (1) Limited Human Sample Size - While the biomarker was detected in 100% of CSF samples from human PAM cases, the number of human samples analyzed (n=6 for CSF) is relatively small. A larger cohort is needed to validate its diagnostic reliability across diverse populations. 

      As noted in response to Reviewer #1 above, we agree this is a limitation of the study; however, we were fortunate to obtain even 15 µL samples of cerebrospinal fluid, plasma, serum, or whole blood from as many patients as we did. There is an urgent need for more systematic collection and storage of samples for rare diseases like primary amoebic meningoencephalitis so that advancements in diagnostics and biomarker discovery can be conducted. It is our sincere hope that by publishing our detailed methods and experimental results in this manuscript, that additional hospitals and research centers can replicate our studies and help advance this or other techniques for early diagnosis of PAM.

      (2) Lack of Pre-Symptomatic or Early-Stage Human Data - Although the biomarker was detected in mouse urine as early as 24 hours post-infection, there is no data on whether it can be reliably detected before symptoms appear in humans, which is crucial for early diagnosis and treatment initiation. 

      It is difficult to envision a method to obtain these biofluids from infected humans prior to onset of symptoms. More likely the best we can hope for is that physicians include primary amoebic meningoencephalitis in their assessment of patients that present with prodromal symptoms of meningitis.

      (3)  Plasma Detection Challenges - While the biomarker was detected in whole blood, it was not detected in human plasma, which could limit the ease of clinical implementation since plasma-based diagnostics are more common. Further investigation is needed to understand why it is absent in plasma and whether alternative blood-based approaches (e.g., whole blood assays) could be optimized. 

      See response to Reviewer #1 above.

      Reviewer #1 (Recommendations for the authors): 

      (1) What is the evidence that these small RNAs are secreted specifically in EVs? I believe that they are, and ultimately it doesn't impact the conclusions, but I think the evidence here could be either stronger or presented in a more obvious way. 

      Our data demonstrates that smallRNA-1 is present in N. fowleri-derived EVs (Figures 2 and Supplemental Figure 7) and in the intact amoebae (Figure 3B).  Initial sequencing data to identify these smallRNA biomarkers came from PEG-precipitated EVs (Figure S1), by using methods we previously published (22). The PEG-precipitated EVs were extracted specifically for spike in studies. Finally, the smallRNAs in EVs were confirmed after extraction of EVs from 7 N. fowleri strains (Figure 2). We do not have evidence that they are secreted outside of EVs.

      (2) The figure legends would be more useful with some additional information. For example: why are there two points for Nf69 in Fig 2B? In Figure 3A-B, please add more detail as to what the graphs are showing (are they histograms binned by a number of amoebae? This does not seem obvious to me). 

      We agree the Figure legends should be edited for clarity and to add additional information. Both Figure legends have been updated.

      In Figure 2B, each point represents the mean of three technical replicates of EV preps for each N. fowleri strain.

      In Figure 3 the points indicate the Copy#/µL of a well from a 96-well plate. The histograms show the mean of these observations for each condition. 

      (3)  In Figure 2E, the FBS seems like it has near detectable levels of smallRNA-1 compared to Ac and Bm (albeit N. fowleri has 4 orders of magnitude higher levels than the FBS). Because cows are likely exposed to N. fowleri and have documented infections (e.g. doi: 10.1016/j.rvsc.2012.01.002), is it possible this signal is real? 

      Thank you for making this interesting observation. We agree that cows are likely to have significant exposure to N. fowleri, yet documented infections are rare. In this case we do not believe the near detectable levels of smallRNA-1 in FBS was due to an infected donor animal. This noise was likely due to extracting RNA from concentrated FBS rather than FBS diluted in cell culture media. In addition, as shown in Supplemental Figure 4, the qPCR product from EVs extracted from FBS were not the same as that from the N. fowleri-derived EVs. Please note we used a PEG extraction reagent that separates lipid particles, so this is additional evidence the smallRNAs are present in EVs.

      (4)  In Figure 6A, why was the sample size greater for water and unspiked urine? Similarly, why is the number of infected mice so variable in Figure 4B? 

      In Figure 6A we assayed de-identified biofluids provided by Advent Hospital in Orlando, Florida. The plasma and serum samples were pooled from multiple individuals; whereas, individual urine samples (n=8) were provided for this experiment. We have updated the legend for Figure 6A to include these details.

      For Figure 4B we used plasma collected at the end-stage of disease following infections with five different strains of N. fowleri. The sample sizes varied for two reasons. First, Nf69 was the strain used most by our lab and we had plasma from several in vivo experiments. The lower sample sizes for the other strains came from an experiment with 8 mice per group. Some of these strains were less virulent and did not succumb to disease with the number of amoebae inoculated in this experiment. Thus, plasma was only collected from animals that were euthanized due to severe N.

      fowleri infections. In follow up studies (e.g., Figure 5B), plasma was collected every 24 hr for analysis.

      Very minor points: 

      (1)  The number of acronyms (FLA, PAM, EVs, CNS, CSF, LOD) could be reduced to make this paper more reader-friendly. 

      Acronyms that were used infrequently in the manuscript (FLA, CNS, LOD, mNGS, UC) have been edited to spell out the complete names. We kept the acronyms EVs and CSF because they are each used more than twenty times in the manuscript.

      (2)  The decimal point in the Cq values is formatted strangely. 

      The decimal points have been edited to normal format in both the manuscript and supplementary material.

      (3)  Figure 3C is not intuitive. I do not understand the logic for the placement of the different samples (was row A only amoebae, B only Veros, C blank, D a mix, and F more Veros?). 

      Thank you for this comment; we agree the microtiter plate schematic (Fig 3C) was misleading. We have revised Figure 3C to make the point that we tested amoebae alone, Vero cells alone, and we combined supernatants from Vero cells (alone) plus amoebae (alone) to confirm that 1) smallRNA-1 was only detected in amoeba-conditioned media, and 2) that Vero-conditioned media does not affect detection of smallRNA-1.

      Reviewer #2 (Recommendations for the authors): 

      Minor corrections: 

      The abbreviation 'Nf' for Naegleria fowleri is not appropriate in a scientific publication. According to taxonomic conventions, the correct way to abbreviate a scientific name is as follows: 

      The first mention should be written in full: Naegleria fowleri. 

      In subsequent mentions, the genus name should be abbreviated to its initial in uppercase, followed by a period, while the species name remains in lowercase: N. fowleri. 

      The same rule applies to Balamuthia mandrillaris and Acanthamoeba species, which should be abbreviated as B. mandrillaris and Acanthamoeba spp. after their first mention. 

      We agree and each of the scientific names have been updated to the proper format. Please note Nf69 is the accepted nomenclature for this N. fowleri strain, so no changes were made when referring to this specific strain.

      Temperatures should be expressed in international units (°C). Please update the temperatures reported in Fahrenheit (°F) in the 'Materials and Methods' section, specifically in the 'Animal Studies' subsection. 

      These changes were made in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      This paper summarises responses from a survey completed by around 5,000 academics on their manuscript submission behaviours. The authors find several interesting stylised facts, including (but not limited to):

      - Women are less likely to submit their papers to highly influential journals (*e.g.*, Nature, Science and PNAS).

      - Women are more likely to cite the demands of co-authors as a reason why they didn't submit to highly influential journals.

      - Women are also more likely to say that they were advised not to submit to highly influential journals.

      Recommendation

      This paper highlights an important point, namely that the submissions' behaviours of men and women scientists may not be the same (either due to preferences that vary by gender, selection effects that arise earlier in scientists' careers or social factors that affect men and women differently and also influence submission patterns). As a result, simply observing gender differences in acceptance rates---or a lack thereof---should not be automatically interpreted as as evidence of for or against discrimination (broadly defined) in the peer review process. I do, however, make a few suggestions below that the authors may (or may not) wish to address.

      We thank the author for this comment and for the following suggestions, which we take into account in our revision of the manuscript.

      Major comments

      What do you mean by bias?

      In the second paragraph of the introduction, it is claimed that "if no biases were present in the case of peer review, then 'we should expect the rate with which members of less powerful social groups enjoy successful peer review outcomes to be proportionate to their representation in submission rates." There are a couple of issues with this statement.

      - First, the authors are implicitly making a normative assumption that manuscript submission and acceptance rates *should* be equalised across groups. This may very well be the case, but there can also be important reasons why not -- e.g., if men are more likely to submit their less ground-breaking work, then one might reasonably expect that they experience higher rejection rates compared to women, conditional on submission.

      We do assume that normative statement: unless we believe that men’s papers are intrinsically better than women’s papers, the acceptance rate should be the same. But the referee is right: we have no way of controlling for the intrinsic quality of the work of men and women. That said, our manuscript does not show that there is a different acceptance rate for men and women; it shows that women are less likely to submit papers to a subset of journals that are of a lower Journal Impact Factor, controlling for their most cited paper, in an attempt to control for intrinsic quality of the manuscripts.

      - Second, I assume by "bias", the authors are taking a broad definition, i.e., they are not only including factors that specifically relate to gender but also factors that are themselves independent of gender but nevertheless disproportionately are associated with one gender or another (e.g., perhaps women are more likely to write on certain topics and those topics are rated more poorly by (more prevalent) male referees; alternatively, referees may be more likely to accept articles by authors they've met before, most referees are men and men are more likely to have met a given author if he's male instead of female). If that is the case, I would define more clearly what you mean by bias. (And if that isn't the case, then I would encourage the authors to consider a broader definition of "bias"!)

      Yes, the referee is right that we are taking a broad definition of bias. We provide a definition of bias on page 3, line 92. This definition is focused on differential evaluation which leads to differential outcomes. We also hedge our conversation (e.g., page 3, line 104) to acknowledge that observations of disparities may only be an indicator of potential bias, as many other things could explain the disparity. In short, disparities are a necessary but insufficient indicator of bias. We add a line in the introduction to reinforce this. The only other reference to the term bias comes on page 10, line 276. We add a reference to Lee here to contextualize.

      Identifying policy interventions is not a major contribution of this paper

      In my opinion, the survey evidence reported here isn't really strong enough to support definitive policy interventions to address the issue and, indeed, providing policy advice is not a major -- or even minor -- contribution of your paper, so I would not mention policy interventions in the abstract. (Basically, I would hope that someone interested in policy interventions would consult another paper that much more thoughtfully and comprehensively discusses the costs and benefits of various interventions!)

      We thank the referee for this comment. While we agree that our results do not lead to definitive policy interventions, we believe that our findings point to a phenomenon that should be addressed through policy interventions. Given that some interventions are proposed in our conclusion, we feel like stating this in the abstract is coherent.

      Minor comments

      - What is the rationale for conditioning on academic rank and does this have explanatory power on its own---i.e., does it at least superficially potentially explain part of the gender gap in intention to submit?

      The referee is right: academic rank was added to control for career age of researchers, with the assumption that this variable would influence submission behavior. However, the rank information we collected was for the time that the individual respondent took the survey, which could be different from the rank they held concerning their submission behaviors mentioned in the survey. That is why we didn't consider rank as an independent variable of interest. But I do also agree with the reviewer that it could be related to their submission behaviors in some cases. Our initial analysis shows that academic rank is not a significant predictor of whether researchers submitted to SNP, but does contribute significantly to the SNP acceptance rates and desk rejection rates of individuals in Medical Sciences.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Basson et al. study the representation of women in "high-impact" journals through the lens of gendered submission behavior. This work is clear and thorough, and it provides new insights into gender disparities in submissions, such as that women were more likely to avoid submitting to one of these journals based on advice from a colleague/mentor. The results have broad implications for all academic communities and may help toward reducing gender disparities in "high-impact" journal submissions. I enjoyed reading this article, and I have several recommendations regarding the methodology/reporting details that could help to enhance this work.

      We thank the referee for their comments.

      Strengths:

      This is an important area of investigation that is often overlooked in the study of gender bias in publishing. Several strengths of the paper include:

      (1) A comprehensive survey of thousands of academics. It is admirable that the authors retroactively reached out to other researchers and collected an extensive amount of data.

      (2) Overall, the modeling procedures appear thorough, and many different questions are modeled.

      (3) There are interesting new results, as well as a thoughtful discussion. This work will likely spark further investigation into gender bias in submission behavior, particularly regarding the possible gendered effect of mentorship on article submission.

      Thank you for those comments.

      Weaknesses:

      (1) The GitHub page should be further clarified. A detailed description of how to run the analysis and the location of the data would be helpful. For example, although the paper says that "Aggregated and de-identified data by gender, discipline, and rank for analyses are available on GitHub," I was unable to find such data.

      We added the link to the Github page, as well as more details on the how to run the statistical analysis. Unfortunately, our IRB approval does not allow for the sharing of the raw data.

      (2) Why is desk rejection rate defined as "the number of manuscripts that did not go out for peer review divided by the number of manuscripts rejected for each survey respondent"? For example, in your Grossman 2020 reference, it appears that manuscripts are categorized as "reviewed" or "desk-rejected" (Grossman Figure 2). If there are gender differences in the denominator, then this could affect the results.

      We thank the referee for pointing this out. Actually, what the referee is proposing is how we calculated it in the manuscript; the calculation mentioned in the manuscript was a mistake. We corrected the manuscript.

      (3) Have you considered correcting for multiple comparisons? Alternatively, you could consider reporting P-values and effect sizes in the main text. Otherwise, sometimes the conclusions can be misleading. For example, in Figure 3 (and Table S28), the effect is described as significant in Social Sciences (p=0.04) but not in Medical Sciences (p=0.07).

      We highly appreciate the suggestion. We’ve added Odds Ratio values and p-values to the main manuscript.

      (4) More detail about the models could be included. It may be helpful to include this in each table caption so that it is clear what all the terms of the model were. For instance, I was wondering if journal or discipline are included in the models.

      We appreciate the suggestion. We’ve added model details to the figure and table captions in the manuscript and the supplemental materials.

      Reviewer #3 (Public Review):

      Summary:

      This is a strong manuscript by Basson and colleagues which contributes to our understanding of gender disparities in scientific publishing. The authors examine attitudes and behaviors related to manuscript submission in influential journals (specifically, Science, Nature and PNAS). The authors rightly note that much attention has been paid to gender disparities in work that is already published, but this fails to capture the unseen hurdles that occur prior to publication (which include decisions about where to publish, desk rejections, revisions and resubmissions, etc.). They conducted a survey study to address some of these components and their results are interesting:

      They find that women are less likely to submit their manuscript to Science, Nature or PNAS. While both men and women feel their work would be better suited for more specialized journals, women were more likely to think their work was 'less novel or groundbreaking.'

      A smaller proportion of respondents indicated that they were actively discouraged from submitting their manuscripts to these journals. In this instance, women were more likely to receive this advice than men.

      Lastly, the authors also looked at self-reported acceptance and rejection rates and found that there were no gender differences in acceptance or rejection rates.

      These data are helpful in developing strategies to mitigate gender disparities in influential journals.

      We thank the referee for their comments

      Comments:

      The methods the authors used are appropriate for this study. The low response rate is common for this type of recruitment strategy. The authors provide a thoughtful interpretation of their data in the Discussion.

      We thank the referee for their comments

      Reviewer #4 (Public Review):

      This manuscript covers an important topic of gender biases in the authorship of scientific publications. Specifically, it investigates potential mechanisms behind these biases, using a solid approach, based on a survey of researchers.

      Main strengths

      The topic of the MS is very relevant given that across sciences/academia representation of genders is uneven, and identified as concerning. To change this, we need to have evidence on what mechanisms cause this pattern. Given that promotion and merit in academia are still largely based on the number of publications and impact factor, one part of the gap likely originates from differences in publication rates of women compared to men.

      Women are underrepresented compared to men in journals with high impact factor. While previous work has detected this gap, as well as some potential mechanisms, the current MS provides strong evidence, based on a survey of close to 5000 authors, that this gap might be due to lower submission rates of women compared to men, rather than the rejection rates. The data analysis is appropriate to address the main research aims. The results interestingly show that there is no gender bias in rejection rates (desk rejection or overall) in three high-impact journals (Science, Nature, PNAS). However, submission rates are lower for women compared to men, indicating that gender biases might act through this pathway. The survey also showed that women are more likely to rate their work as not groundbreaking, and be advised not to submit to prestigious journals

      With these results, the MS has the potential to inform actions to reduce gender bias in publishing, and actions to include other forms of measuring scientific impact and merit.

      We thank the referee for their comments.

      Main weakness and suggestions for improvement

      (1) The main message/further actions: I feel that the MS fails to sufficiently emphasise the need for a different evaluation system for researchers (and their research). While we might act to support women to submit more to high-impact journals, we could also (and several initiatives do this) consider a broader spectrum of merits (e.g. see https://coara.eu/ ). Thus, I suggest more space to discuss this route in the Discussion. Also, I would suggest changing the terms that imply that prestigious journals have a better quality of research or the highest scientific impact (line 40: journals of the highest scientific impact) with terms that actually state what we definitely know (i.e. that they have the highest impact factor). And think this could broaden the impact of the MS

      We agree with the referee. We changed the wording on impact, and added a few lines were added on this in the discussion.

      (2) Methods: while methods are all sound, in places it is difficult to understand what has been done or measured. For example, only quite late (as far as I can find, it's in the supplement) we learn the type of authorship considered in the MS is the corresponding authorship. This information should be clear from the very start (including the Abstract).

      We performed the suggested edits.

      Second, I am unclear about the question on the perceived quality of research work. Was this quality defined for researchers, as quality can mean different things (e.g. how robust their set-up was, how important their research question was)? If researchers have different definitions of what quality means, this can cause additional heterogeneity in responses. Given that the survey cannot be repeated now, maybe this can be discussed as a limitation.

      We agree that this can mean something different for researchers—probably varies by discipline, but also by gender. But that was precisely the point: whether men/women considered their “best work” to be published in higher impact venue. While there may be heterogeneity in those perceptions, the fact that 1) men and women rate their research at the same level and 2) we control for disciplinary differences should mitigate some of that.

      I was surprised to see that discipline was considered as a moderator for some of the analyses but not for the main analysis on the acceptance and rejection rates.

      We appreciate the attention to detail. In our analysis of acceptance and rejection rates, we conducted separate regression analyses for each discipline to capture any field-specific patterns that might otherwise be obscured.

      We added more details on this to clarify.

      I was also suppressed not to see publication charges as one of the reasons asked for not submitting to selected journals. Low and middle-income countries often have more women in science but are also less likely to support high publication charges.

      That is a good point. However, both Science and Nature have subscription options, which do not require any APCs.

      Finally, academic rank was asked of respondents but was not taken as a moderator.

      Academic rank is included in the regression as a control variable (Figure 1).

      Reviewer #2 (Recommendations For The Authors):

      In addition to the points in the "Weaknesses" section of the my Public Review above, I have several suggestions to improve this work.

      (1) Can you please indicate what the error bars mean in each plot? I am assuming that they are 95% confidence intervals.

      We appreciate the attention to detail. Yes, they are 95% confidence intervals. We’ve clarified this in the captions of the corresponding figures. 

      (2) Can you provide a more detailed explanation for why the 7 journals were separated? I see that on page 3 of the supporting information you write that "Due to limited responses, analysis per journal was not always viable. The results pertaining to the journals were aggregated, with new categories based on the shared similarities in disciplinary foci of the journals and their prestige." Specifically, why did you divide the data into (somewhat arbitrary) categories as opposed to using all the data and including a journal term in your model?

      The survey covered 7 journals:

      • Science, Nature, and PNAS (S.N.P.)

      • Nature Communications and Science Advances (NC.SA.)

      • NEJM and Cell (NEJM.C.)

      We believe that the first three are a class of their own: they cover all fields (while NEJM and Cell are limited to (bio)medical sciences), and have a much higher symbolic capital than both Nature Comms and Science Advances (which are receiving cascading papers from Nature and Science, respectively). We believe that factors leading to submission to S.N.P. are much different than those leading to submission to the other groups of journals, which is why we separated the analysis in that manner.

      (3) You included random effects for linear regression but not for logistic regression. Please justify this choice or include additional logistic regression models with random effects.

      We used mixed-effect models for linear regressions (where number of submissions, acceptance rate, or rejection rate is the dependent variable). As mentioned in the previous comment, we tested using rank as the control variable and found it had a potential impact on the variables we analyzed using linear regressions in some disciplines. Therefore, we introduced it as a random effect for all the linear regression models.

      Reviewer #3 (Recommendations For The Authors):

      The limitations of this work are currently described in the Supplement. It may be helpful to bring several of these items into the Discussion so that they can be addressed more prominently.

      Added content

      Reviewer #4 (Recommendations For The Authors):

      (1) Line 40: add 'as leading authors of papers published in' before ' 'journals'

      Done

      (2) Explain what the direction in the ' relationship between' line 62 is

      Added

      (3) Lines 101-102 - this is a bit unclear. Please, provide some more info, also including what did these studies find.

      Added

      (4) Is 'sociodemographic' the best term in line 120

      Yes, we believe so.

      (5) Results would benefit from a short intro with the info on the number of respondents, also by gender.

      Those are present at the end of the intro (and in the methods, at the end). We nonetheless added gender.

      (6) Line 134 add how many woman and man did submit to Science, Nature, and PNAS

      Added. In all disciplines combined, 552 women and 1,583 men ever submitted to these three elite journals. More details can be found in SI Table 9

      (7) Add 'Self-' before reported, line 141

      Added

      (8) Add sample sizes to Figs 1 and 2

      Those are in the appendix

      (9) Line 168 - unclear if this is ever or as their first choice

      We do not discriminate – it is whether the considered it at all.

      (10) Add sample size in line 177

      Added. 480 women and 1404 men across all disciplines reported desk rejections by S.N.P. journals.

      (11) I would like to see some discussion on the fact that the highest citation paper will also be a paper that the authors have submitted earlier in their careers given that citations will pile up over time.

      Those are actually quite evenly distributed. We modified the supplementary materials.

      (12) Data availability - be clear that supporting info contains only summary data. Also, while the Data availability statement refers to de-identified data on Github, the Github page only contains the code, and the note that 'The STAT code used for our analyses is shared.

      We are unable to share the survey response details publicly per IRB protocols.' Why were de-identified data shared? This is extremely important to allow for the reproducibility of MS results. I would also suggest sharing data in a trusted repository (e.g. Dryad, ZENODO...) rather than on Github, as per current recommendations on the best practices for data sharing.

      Thank you for your careful reading and for highlighting the importance of clear data availability. We will revise our Data Availability Statement to explicitly state that the supporting information contains only summary data and that the complete analysis code is available on GitHub.

      We understand the importance of sharing de-identified data for reproducibility. However, our IRB strictly prohibits the sharing of any individual-level data, including de-identified files, to protect participant confidentiality. Consequently, the summary data included in the supporting information, together with the provided code, is intended to facilitate the verification of our core findings. Our previous statement regarding “de-identified” data sharing was inaccurate and thus has been removed. We apologize for the confusion.

      In light of your suggestion, we are also exploring depositing the summary data and code in a trusted repository (e.g., Dryad or Zenodo) to further align with current best practices for data sharing.

    1. Author response:

      The following is the authors’ response to the current reviews.

      We thank the editor and reviewers for their thoughtful evaluations. We would like to clarify that the revised manuscript does not make a general claim about the absence of ripple-associated synchronous population activity. Rather, we report only that the synchronous ensembles observed in our data were not associated with contralateral ripple oscillations. This distinction is clearly reflected in the revised Title, Abstract, Introduction, Results, and Discussion. We also explicitly acknowledged the methodological limitation of recording LFP from the contralateral side of the hippocampus.

      To further improve clarity and prevent potential misinterpretation, we are submitting a revised version (R4) in which we:

      (1) Replace the word "surprisingly" with the more neutral "Moreover";

      (2) Refer to ripple events consistently as "contralateral ripples (c-ripples)";

      (3)Expand the discussion of limitations inherent to contralateral LFP recordings.

      Additionally, while Buzsaki et al. (2003) wrote that "These findings suggest ripples emerge locally and independently in the two hemispheres", the same study also presents data and reports that "Ripple episodes occurred simultaneously in the left and right CA1 regions" (p. 206). Our original citation was intended to reflect this nuance. Nevertheless, to avoid any potential misinterpretation, we have removed the co-occurrence statement with its associated citations in the revised (R4) manuscript.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      For many years, there has been extensive electrophysiological research investigating the relationship between local field potential patterns and individual cell spike patterns in the hippocampus. In this study, using state-ofthe-art imaging techniques, they examined spike synchrony of hippocampal cells during locomotion and immobility states. In contrast to conventional understanding of the hippocampus, the authors demonstrated that hippocampal place cells exhibit prominent synchronous spikes locked to theta oscillations.

      Strengths:

      The voltage imaging used in this study is a highly novel method that allows recording not only suprathreshold-level spikes but also subthreshold-level activity. With its high frame rate, it offers time resolution comparable to electrophysiological recordings.

      Comments on revisions: I have no further comments.

      We thank the reviewer for constructive reviews and for recognizing the strength of our study.

      Reviewer #2 (Public review):

      Summary:

      This study employed voltage imaging in the CA1 region of the mouse hippocampus during the exploration of a novel environment. The authors report synchronous activity, involving almost half of the imaged neurons, occurred during periods of immobility. These events did not correlate with SWRs, but instead, occurred during theta oscillations and were phased locked to the trough of theta. Moreover, pairs of neurons with high synchronization tended to display non-overlapping place fields, leading the authors to suggest these events may play a role in binding a distributed representation of the context.

      Strengths:

      Technically this is an impressive study, using an emerging approach that allows single cell resolution voltage imaging in animals, that while head-fixed, can move through a real environment. The paper is written clearly and suggests novel observations about population level activity in CA1.

      Comments on revisions:

      I have no further major requests and thank the authors for the additional data and analyses.

      We thank the reviewer for recognizing the strength of our study and for appreciating the additional data and analyses we provided during the revision process.

      Reviewer #3 (Public review):

      Summary:

      In the present manuscript, the authors use a few minutes of voltage imaging of CA1 pyramidal cells in head fixed mice running on a track while local field potential (LFPs) are recorded. The authors suggest that synchronous ensembles of neurons are differentially associated with different types of LFP patterns, theta and ripples. The experiments are flawed in that the LFP is not "local" but rather collected the other side of the brain.

      Strengths:

      The authors use a cutting-edge technique.

      Weaknesses:

      Although the authors have toned down their claims, the statement in the title ("Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons Associated with Theta but not Ripple Oscillations During Novel Exploration") is still unsupported.

      One could write the same title while voltage imaging one mouse and recording LFP from another mouse.

      To properly convey the results, the title should be modified to read

      "Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons Associated with Contralateral Theta but not with Contralateral Ripple Oscillations During Novel Exploration"

      Without making this change, the title - and therefore the entire work - is misleading at best.

      We thank the reviewer for the thoughtful and constructive suggestion regarding the title. We fully understand the concern that our original title may have overstated the specificity of the contralateral LFP recordings, potentially allowing for misinterpretation.

      In our results, synchronous ensembles are associated with intracellular theta oscillations recorded from the ipsilateral hippocampus and with extracellular theta but not ripples oscillations recorded from the contralateral hippocampus. To clarify this distinction and minimize the potential for misinterpretation, we have revised the abstract accordingly. 

      Abstract (line18):

      “… Notably, these synchronous ensembles were not associated with contralateral ripple oscillations but were instead phase-locked to theta waves recorded in the contralateral CA1 region. Moreover, the subthreshold membrane potentials of neurons exhibited coherent intracellular theta oscillations with a depolarizing peak at the moment of synchrony.”

      Based on this, we propose the following revised title, which we believe more effectively communicates the central finding of our study: 

      “Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons During Novel Exploration”. 

      Compared to the reviewer’s suggested title, this version offers a clearer and more concise summary of our findings while allowing important methodological details to be fully conveyed in the abstract and main text. While the suggested title accurately reflects the source of the LFP signals, it does not mention the intracellular theta oscillations recorded from the ipsilateral hippocampus, which are a critical part of our results. Including both the intracellular and extracellular recording contexts in the title would make it overly long and potentially less accessible to readers. In contrast, the revised title succinctly captures the core phenomenon, and the updated abstract now explicitly clarifies the relationship between the synchronous ensembles and both types of oscillatory signals. 

      We sincerely appreciate the reviewer’s input, which helped us refine both the language and the presentation of our findings. We hope these changes address the concern and clarify the scope of our work. 

      Recommendations for the authors:

      Reviewer #3 (Recommendations for the authors):

      (1) Change the title. Although the authors have toned down their claims, the statement in the title ("Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons Associated with Theta but not Ripple Oscillations During Novel Exploration") is still unsupported. One could write the same title while voltage imaging one mouse and recording LFP from another mouse. To properly convey the results, the title should be modified to read

      "Synchronous Ensembles of Hippocampal CA1 Pyramidal Neurons Associated with Contralateral Theta but not with Contralateral Ripple Oscillations During Novel Exploration"

      Without making this change, the title - and therefore the entire work - is misleading at best. But if you can manage that (and attend to comment #2 below), then the manuscript would not be making any false statements.

      Please see our reply in the public review above.

      (2) Report the exact locations of the contralateral recording electrodes. In their rebuttal, the authors supplies a figure ("Author response image 1") in which they show damage to the neocortex and fluorescence signal in the CA1 pyramidal cell layer. This is useful, but it is unclear from which animal this histology was generated.

      Please include this (or another similar) photograph in Figure 1B, right next to the voltage imaging photograph. Indicate from which animal each photograph was obtained - ideally, provide the two photographs from the same animal. Second, please include such paired photographs - along with paired signals - for every animal that you are able to.

      If you can manage that, it will add credibility to the statement that the recordings are indeed from the contralateral CA1 pyramidal cell layer (as opposed to from the contralateral hemisphere).

      We thank the reviewer for this important point. We have followed the suggestion and now provide paired photographs showing LFP electrode tracks and voltage images from the same animal (see revised Figure 1B)

      In addition, we have included similar paired photographs for additional animals used in this study (see Figure 1-figure supplement 1).

      These updates directly support the claim that LFP recordings were obtained from the contralateral CA1 pyramidal layer, rather than from the contralateral hemisphere. We sincerely thank the reviewer for the valuable suggestion, which has substantially strengthened our manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      The authors of this study use electron microscopy and 3D reconstruction techniques to study the morphology of distinct classes of Drosophila sensory neurons *across many neurons of the same class.* This is a comprehensive study attempting to look at nearly all the sensory neurons across multiple sensilla to determine a) how much morphological variability exists between and within neurons of different and similar sensory classes, and 2) identify dendritic features that may have evolved to support particular sensory functions. This study builds upon the authors' previous work, which allowed them to identify and distinguish sensory neuron subtypes in the EM volumes without additional staining so that reconstructed neurons could reliably be placed in the appropriate class. This work is unique in looking at a large number of individual neurons of the same class to determine what is consistent and what is variable about their class-specific morphologies.

      This means that in addition to providing specific structural information about these particular cells, the authors explore broader questions of how much morphological diversity exists between sensory neurons of the same class and how different dendritic morphologies might affect sensory and physiological properties of neurons.

      The authors found that CO2-sensing neurons have an unusual, sheet-like morphology in contrast to the thin branches of odor-sensing neurons. They show that this morphology greatly increases the surface area to volume ratio above what could be achieved by modest branching of thin dendrites, and posit that this might be important for their sensory function, though this was not directly tested in their study. The study is mainly descriptive in nature, but thorough, and provides a nice jumping-off point for future functional studies. One interesting future analysis could be to examine all four cell types within a single sensilla together to see if there are any general correlations that could reveal insights about how morphology is determined and the relative contributions of intrinsic mechanisms vs interactions with neighboring cells. For example, if higher than average branching in one cell type correlated with higher than average branching in another type, if in the same sensilla. This might suggest higher extracellular growth or branching cues within a sensilla. Conversely, if higher branching in one cell type consistently leads to reduced length or branching in another, this might point to dendrite-dendrite interactions between cells undergoing competitive or repulsive interactions to define territories within each sensilla as a major determinant of the variability.

      We thank the reviewer for the insightful comments and appreciation for our study.

      Reviewer #2 (Public Review):

      The manuscript employs serial block‐face electron microscopy (SBEM) and cryofixation to obtain high‐resolution, three‐dimensional reconstructions of Drosophila antennal sensilla containing olfactory receptor neurons (ORNs) that detectCO2. This method has been used previously by the same lab in Gonzales et. al, 2021. (https://elifesciences.org/articles/69896), which had provided an exemplary model by integrating high-resolution EM with electrophysiology and cell-type-specific labeling.

      We thank the reviewer for expressing appreciation for our published study.

      The previous study ended up correlating morphology with activity for multiple olfactory sensillar types. Compared to the 2021 study, this current manuscript appears somewhat incomplete and lacks integration with activity.

      We thank the reviewer for their feedback. However, we would like to clarify that our previous study did not correlate morphology with activity to a greater extent than the current study. Both employed the same cryofixation, SBEM-based approach without recording odor-induced activity, but the focus of the current work is fundamentally different. While the previous study examined multiple sensillum types, the current study concentrates on a single sensillum type to address a distinct biological question regarding morphological heterogeneity. We appreciate the opportunity to clarify this distinction, and we hope that the revised manuscript more clearly conveys the unique scope and contributions of this study.

      In fact older studies have also reported two-dimensional TEM images of the putative CO2 neuron in Drosophila (Shanbhag et al., 1999) and in mosquitoes (McIver and Siemicki, 1975; Lu et al, 2007), and in these instances reported that the dendritic architecture of the CO2 neuron was somewhat different (circular and flattened, lamellated) from other olfactory neurons.

      We thank the reviewer for pointing this out. As noted in both the Introduction and Discussion sections, previous studies—including those cited by the reviewer—suggested that CO2-sensing neurons may have a distinct dendritic morphology. However, those earlier studies lacked the means to definitively link the observed morphology to CO2 neuron identity.

      In contrast, our study assigns neuronal identity based on quantitative morphometric measurements, allowing us to confidently associate the unique dendritic architecture with CO2 neurons. Furthermore, we extend previous observations by providing full 3D reconstructions and nanoscale morphometric analyses, offering a much more comprehensive and definitive characterization of these neurons. We believe this represents a significant advancement over earlier work.

      The authors claim that this approach offers an artifact‐minimized ultrastructural dataset compared to earlier. In this study, not only do they confirm this different morphology but also classify it into distinct subtypes (loosely curled, fully curled, split, and mixed). This detailed morphological categorization was not provided in prior studies (e.g., Shanbhag et al., 1999).

      We thank the reviewer for acknowledging the significance of our study.

      The authors would benefit from providing quantitative thresholds or objective metrics to improve reproducibility and to clarify whether these structural distinctions correlate with distinct functional roles.

      We thank the reviewer for raising this point. However, we would like to clarify that assigning neurons to strict morphological subtypes was not the primary aim of our study. In practice, dendritic architectures can be highly complex, with individual neurons often displaying features characteristic of multiple subtypes. This is precisely why we included a “mixed” subtype category—to acknowledge and capture this morphological heterogeneity rather than impose rigid classification boundaries.

      Our intent in defining subtypes was not to imply discrete functional classes, but rather to highlight the range of morphological variation observed across ab1C neurons. While we agree that exploring potential correlations between structure and function is an important future direction, the current study focuses on characterizing this diversity using 3D reconstruction and morphometric analysis. We hope this clarifies the purpose and scope of our morphological categorization.

      Strengths:

      The study makes a convincing case that ab1C neurons exhibit a unique, flattened dendritic morphology unlike the cylindrical dendrites found in ab1D neurons. This observation extends previous qualitative TEM findings by not only confirming the presence of flattened lamellae in CO₂ neurons but also quantifying key morphometrics such as dendritic length, surface area, and volume, and calculating surface area-to-volume ratios. The enhanced ratios observed in the flattened segments are speculated to be linked to potential advantages in receptor distribution (e.g., Gr21a/Gr63a) and efficient signal propagation.

      We thank the reviewer for appreciating the significance our current study.

      Weaknesses:

      While the manuscript offers valuable ultrastructural insights and reveals previously unappreciated heterogeneity among CO₂-sensing neurons, several issues warrant further investigation in addition to the points made above.

      (1) Although this quantitative approach is robust compared to earlier descriptive reports, its impact is somewhat limited by the absence of direct electrophysiological data to confirm that ultrastructural differences translate into altered neuronal function. A direct comparison or discussion of how the present findings align with the functional data obtained from electrophysiology would strengthen the overall argument.

      We thank the reviewer for this comment. We would like to clarify, however, that our study does not claim that the observed morphological heterogeneity necessarily leads to functional diversity. Rather, we consider this as a possible implication and discuss it as a potential question for future research. This idea is raised only in the Discussion section, and we are carefully not to present functional diversity as a conclusion of our study. Nonetheless, we have reviewed the relevant paragraph to ensure the language remains cautious and does not overstate our interpretation.

      We also acknowledge the significance of directly linking ultrastructural features to neuronal function through electrophysiological recordings. However, at present, it is technically challenging to correlate the nanoscale morphology of individual ORNs with their functional activity, as this would require volume EM imaging of the very same neurons that were recorded via electrophysiology. Currently, there is no dye-labeling method compatible with single-sensillum recording and SBEM sample preparation that allows for unambiguous identification and segmentation of recorded ORNs at the necessary ultrastructural resolution.

      To acknowledge this important limitation, we have added a paragraph in the Discussion section, as suggested, to clarify the current technical barriers and to highlight this as a promising direction for future methodological advances.

      (2) Clarifying the criteria for dendritic subtype classification with quantitative parameters would enhance reproducibility and interpretability. Moreover, incorporating electrophysiological recordings from ab1C neurons would provide compelling evidence linking structure and function, and mapping key receptor proteins through immunolabeling could directly correlate receptor distribution with the observed morphological diversity.

      Please see our response to the comment regarding the technical limitations of directly correlating ultrastructure with electrophysiological data.

      In addition, we would like to address the suggestion of using immunolabeling to map receptor distribution in relation to the 3D EM models. Currently, antibodies against Gr21a or Gr63a (the receptors expressed in ab1C neurons) are not available. Even if such antibodies were available, immunogold labeling for electron microscopy requires harsh detergent treatment to increase antibody permeability, damaging morphological integrity. These treatments would compromise the very morphological detail that our study aims to capture and quantify.

      (3) Even though Cryofixation is claimed to be superior to chemical fixation for generating fewer artifacts, authors need to confirm independently the variation observed in the CO2 neuron morphologies across populations. All types of fixation in TEMs cause some artifacts, as does serial sectioning. Without understanding the error rates or without independent validation with another method, it is hard to have confidence in the conclusions drawn by the authors of the paper.

      We thank the reviewer for raising concerns regarding potential artifacts in morphological analyses. However, we would like to clarify that cryofixation is widely regarded as a gold standard for ultrastructural preservation and minimizing fixation-induced artifacts, as supported by extensive literature. This is why we adopted high-pressure freezing and freeze substitution in our study.

      We have also published a separate methods paper (Tsang et al., eLife, 2018) directly comparing our cryofixation-based protocol with conventional chemical fixation, demonstrating substantial improvements in morphological preservation. This provides strong empirical support for the reliability of our approach.

      Regarding the suggestion to validate observed morphological variation across populations: we note that determining the presence of artifacts requires a known ground truth, which is inherently unavailable as we could not measure the morphometrics of fly olfactory receptor neurons in their native state. In the absence of such a benchmark, we have instead prioritized using the best-available preparation methods and high-resolution imaging to ensure structural integrity.

      Addressing these concerns and integrating additional experiments would significantly bolster the manuscript's completeness and advancement.

      We appreciate the reviewer’s feedback. As discussed in our responses to the specific comments above, certain suggested experiments are currently limited by technical constraints, particularly in the context of high-resolution volume EM for insect tissues enclosed in cuticles.

      Nevertheless, we have carefully addressed the reviewer’s concerns to the fullest extent possible within the scope of this study. We have revised the manuscript to clarify methodological limitations, added new explanatory content where appropriate, and ensured that our interpretations remain well grounded in the data. We hope these revisions strengthen the clarity and completeness of the manuscript.

      Reviewer #3 (Public Review):

      In the current manuscript entitled "Population-level morphological analysis of paired CO2- and odor-sensing olfactory neurons in D. melanogaster via volume electron microscopy", Choy, Charara et al. use volume electron microscopy and sensillum. They aim to investigate the degree of dendritic heterogeneity within a functional class of neurons using ab1Cand ab1D, which they can identify due to the unique feature of ab1 sensilla to house four neurons and the stereotypic location on the third antennal segment. This is a great use of volumetric electron imaging and neuron reconstruction to sample a population of neurons of the same type. Their data convincingly shows that there is dendritic heterogeneity in both investigated populations, and their sample size is sufficient to strongly support this observation. This data proposes that the phenomenon of dendritic heterogeneity is common in the Drosophila olfactory system and will stimulate future investigations into the developmental origin, functional implications, and potential adaptive advantage of this feature.

      Moreover, the authors discovered that there is a difference between CO2- and odour-sensing neurons of which the first show a characteristic flattened and sheet-like structure not observed in other sensory neurons sampled in this and previous studies. They hypothesize that this unique dendritic organization, which increases the surface area to volume ratio, might allow more efficient CO2 sensing by housing higher numbers of CO2 receptors. This is supported by previous attempts to express CO2 sensors in olfactory sensory neurons, which lack this dendritic morphology, resulting in lower CO2 sensitivity compared to endogenous neurons.

      Overall, this detailed morphological description of olfactory sensory neurons' dendrites convincingly shows heterogeneity in two neuron classes with potential functional impacts for odour sensing.

      Strength:

      The volumetric EM imaging and reconstruction approach offers unprecedented details in single cell morphology and compares dendrite heterogeneity across a great fraction of ab1 sensilla. The authors identify specific shapes for ab1C sensilla potentially linked to their unique function in CO2 sensing.

      We thank the reviewer for the insightful comments and appreciation for our study.

      Weaknesses:

      While the morphological description is highly detailed, no attempts are made to link this to odour sensitivity or other properties of the neurons. It would have been exciting to see how altered morphology impacts physiology in these olfactory sensory cells.

      We agree that linking morphological variation to physiological properties, such as odor sensitivity, would be a highly valuable direction for future research. However, the aim of the current study is to provide an in-depth nanoscale characterization based on a substantial proportion of ab1 sensilla, highlighting morphological heterogeneity among homotypic ORNs.

      At present, it is technically challenging to correlate the nanoscale morphology of individual ORNs with their physiological responses, as this would require volume EM imaging of the exact neurons recorded via single-sensillum electrophysiology. Currently, no dye-labeling method exists that is compatible with both single-sensillum recording and the stringent requirements of SBEM sample preparation to allow for unambiguous identification and segmentation of recorded ORNs.

      To acknowledge this important limitation, we have added a paragraph in the Discussion section clarifying the current technical barriers and highlighting this as a promising area for future methodological development. Please also see our responses to the reviewer’s 4th comment below, where we present preliminary experiments examining whether odor sensitivity varies among homotypic ORNs.

      (Please see the following pages for additional responses to the reviewers’ specific comments. These responses are not intended for publication.)

      Reviewer #1 (Recommendations for the authors):

      As this is mainly a descriptive paper I have no suggestions for additional experiments. Minor Text Suggestions:

      (1) The authors might want to include a better description/definition of the fly antennae, olfactory sensilla and their basic structure/makeup, position of the sensory neurons and dendrites within, etc, in the introduction perhaps in cartoon form to help readers that are not familiar (i.e. non-Drosophila readers) with the terminology and basic organization can follow the paper more easily from the start.

      We thank the reviewer for the helpful suggestion to broaden the appeal of our study to a wider readership. In response, we added a new introductory paragraph at the beginning of the Results section, along with illustrations in a new supplementary figure (Figure 1—figure supplement 1). The new paragraph reads as follows.

      “The primary olfactory organ in Drosophila is the antenna, which contains hundreds olfactory sensilla on the surface of its third segment (Figure 1—figure supplement 1A) . Each sensillum typically encapsulates the outer dendrites of two to four ORNs. The outer dendrites are the sites where odorant receptors are expressed, enabling the detection of volatile chemicals. A small portion of the outer dendrites lies beneath the base of the sensillum cuticle. At the ciliary constriction, the outer dendrites connect to the inner dendritic segment, which then links to the soma of each ORN (Figure 1—figure supplement 1B).”

      (2) In Figure 4D, the letter annotations above the graphs are not clearly defined anywhere that I could easily find. Please clarify with different symbols and/or in the figure legend so readers can easily comprehend the stats that are presented.

      We thank the reviewer for raising this point. As suggested, in the revised Figure 4D legend, following the original sentence “Statistical significance is determined by Kruskal-Wallis one-way ANOVA on ranks and denoted by different letters”, we added “For example, labels “a” and “b” indicate a significant difference between groups (P < 0.05), whereas labels with identical or shared letters (e.g., “a” and “a”, “a,b” and “a”, or “a,b” and “b”) indicate no significant difference.”

      Reviewer #3 (Recommendations for the authors):

      There are several aspects that I would like the authors to consider to improve the current manuscript:

      (1) Line 331: "Our analysis highlights how structural scaling in ab1D neurons achieves enhanced sensory capacity while maintaining the biophysical properties of dendrites". This is a strong statement, and not shown by the authors. They speculate about this in the discussion, but I would like them to soften the language here.

      We thank the reviewer for raising this point. As suggested, we have softened the language in the sentence in question. The revised version is as follows.

      “Our analysis suggests that structural scaling in ab1D neurons may enhance sensory capacity while preserving the biophysical properties of dendrites.”

      (2) The Supplementary material is not well presented and is not cited in the manuscript. It is not clear what the individual data files show, where they refer to, etc. Please provide clear labels of all data, cite them at the appropriate location in the manuscript, and make them more accessible to the reader. Also, there are two Videos mentioned in the manuscript that are not included in the submission.

      We thank the reviewer for bringing this to our attention and apologize for the oversight. We appreciate the reviewer’s careful attention to the supplementary materials. We have addressed these issues accordingly: 1) all source data have been consolidated in to a single, clearly labeled Excel file to improve accessibility for readers; this file is now cited at the appropriate locations in the manuscript. 2) The supplementary videos mentioned in the manuscript have also been included in the re-submission.

      (3) In Figure 1B, it is hard to recapitulate the increase in dendritic density in the presented pictures. Could the authors please highlight dendrites in the raw imaging files (e.g. by colour coding as done later in the manuscript). Also, it might be helpful to indicate the measured parameters visually in this Figure (e.g. volume, length, etc.).

      We thank the reviewer for the helpful suggestion. As suggested, we have pseudocolored the dendrites in Figure 1B to enhance visual clarity.

      As noted, the original legend stated that “the sensilla were arranged from left to right in order of increasing dendritic branch counts”. To improve clarity, we have now added the number of dendritic branches above each sensillum to make this information more explicit.

      We hope these changes make the figure more accessible and informative for readers.

      (4) Given the strength of the authors in in vivo physiology and single sensilla recordings, I would be very curious about how the described morphological heterogeneity is reflected in the response properties of ab1Cs and ab1Ds. Can the authors provide data (already existing from their lab) of these two neurons on response heterogeneity? I acknowledge that spike sorting can be very challenging in ab1s, but maybe it is possible to show the range of response sensitivities upon CO2 stimulation in ab1Cs? The authors speculate in the discussion and presented data will only be correlative - however I think it would strengthen the manuscript to have some link to physiology included.

      We thank the reviewer for this insightful comment. We share the same curiosity about response variability among homotypic ORNs, including ab1C and ab1D. Ideally, this question could be addressed by recording from a large proportion of neurons of a given ORN type to assess the response variability within a single antenna. However, due to technical limitations, we are only able to reliably record from 3–4 ab1 sensilla per antennal preparation, representing approximately 8% of the total ab1 population.

      Moreover, our recordings are typically limited to ab1 sensilla located on the posterior-medial side of the antenna, as this region provides the best accessibility for our recording electrode. This spatial constraint may limit our ability to sample the full morphological diversity of ab1C and ab1D neurons.

      Given these limitations, it is technically challenging to rigorously assess physiological variability in ab1C and ab1D responses across the entire ab1 population. Nonetheless, we attempted to address this question using a different sensillum type where a larger proportion of the population is accessible to single-sensillum recording per antennal preparation. Specifically, we focused on ab2 sensilla in the following analysis because we can reliably record from 6 sensilla per antenna, representing approximately 25% of the total ab2 population.

      In the preliminary data presented below, we recorded from 6 ab2A ORNs per antenna across a total of 6 flies. Spike analysis revealed that odor-evoked responses were consistent across individual ab2A neurons (Author response image 1A). When analyzing the dose-response curve for each ORN, we found no statistically significant differences in odor sensitivity, either among ORNs within the same antenna or across different flies (Author response image 1B; two-way ANOVA: P > 0.99 within antennae, P > 0.99 across flies). This is further supported by the closely clustered EC50 values (Author response image 1C). This result suggests that odor sensitivity is largely uniform among homotypic ab2A ORNs.

      Author response image 1.

      Homotypic ab2A ORNs display similar odorant sensitivity. (A) Single-sensillum recording. Raster plots of ab2A/Or59b ORN spike responses. Six ab2A ORNs from the same antenna were recorded per fly. Odor stimulus: methyl acetate (10-6). (B) Dose-response relationships of peak spike responses, normalized to the maximum response of the ORN to facilitate comparison of odor sensitivity. Each curve represents responses from a single ab2A ORN fitted with the Hill equation (n=36 ab2 sensilla from 6 flies). Responses recorded from the same antenna are indicated by the same color. Statistical comparisons between different ab2A ORNs from the same antenna (P > 0.99) or across flies (P > 0.99) were performed by two-way ANOVA. (C) Quantification of individual pEC50 values from (B), defined as -logEC50.

      However, we are hesitant to include this result in the main manuscript for several reasons. First, it does not directly relate to the morphometric analysis of ab1C and ab1D neurons, which is the primary focus of our study. Second, while we were able to record from approximately 25% of the ab2 population, this level of coverage is still limited and potentially subject to sampling bias due to the spatial constraints of the antennal region accessible to the recording electrode.

      At best, our data suggest limited variability in odor sensitivity among the recorded ab2A ORNs. However, we are cautious about generalizing this finding to the entire ab2 population. In light of these considerations, we hope the reviewer can appreciate the technical challenges inherent in addressing what may appear to be a straightforward question.

      For these reasons, we have chosen to include this preliminary result in the response only, rather than in the main manuscript.

    1. Author response: 

      We thank the reviewers for their feedback on our paper. We have taken all their comments into account in revising the manuscript. We provide a point-by-point response to their comments, below.

      Reviewer #1:

      Major comments:

      The manuscript is clearly written with a level of detail that allows others to reproduce the imaging and cell-tracking pipeline. Of the 22 movies recorded one was used for cell tracking. One movie seems sufficient for the second part of the manuscript, as this manuscript presents a proof-of-principle pipeline for an imaging experiment followed by cell tracking and molecular characterisation of the cells by HCR. In addition, cell tracking in a 5-10 day time-lapse movie is an enormous time commitment.

      My only major comment is regarding "Suppl_data_5_spineless_tracking". The image file does not load.

      It looks like the wrong file is linked to the mastodon dataset. The "Current BDV dataset path" is set to "Beryl_data_files/BLB mosaic cut movie-02.xml", but this file does not exist in the folder. Please link it to the correct file.

      We have corrected the file path in the updated version of Suppl. Data 5.

      Minor comments:

      The authors state that their imaging settings aim to reduce photo damage. Do they see cell death in the regenerating legs? Is the cell death induced by the light exposure or can they tell if the same cells die between the movies? That is, do they observe cell death in the same phases of regeneration and/or in the same regions of the regenerating legs?

      Yes, we observe cell death during Parhyale leg regeneration. We have added the following sentence to explain this in the revised manuscript: "During the course of regeneration some cells undergo apoptosis (reported in Alwes et al., 2016). Using the H2B-mRFPruby marker, apoptotic cells appear as bright pyknotic nuclei that break up and become engulfed by circulating phagocytes (see bright specks in Figure 2F)."

      We now also document apoptosis in regenerated legs that have not been subjected to live imaging in a new supplementary figure (Suppl. Figure 3),  and we refer to these observations as follows: "While some cell death might be caused by photodamage, apoptosis can also be observed in similar numbers in regenerating legs that have not been subjected to live imaging (Suppl. Figure 3)."

      Based on 22 movies, the authors divide the regeneration process into three phases and they describe that the timing of leg regeneration varies between individuals. Are the phases proportionally the same length between regenerating legs or do the authors find differences between fast/slow regenerating legs? If there is a difference in the proportions, why might this be?

      Both early and late phases contribute to variation in the speed of regeneration, but there is no clear relationship between the relative duration of each phase and the speed of regeneration. We now present graphs supporting these points in a new supplementary figure (Suppl. Figure 2).  

      To clarify this point, we have added the following sentence in the manuscript: "We find that the overall speed of leg regeneration is determined largely by variation in the speed of the early (wound closure) phase of regeneration, and to a lesser extent by variation in later phases when leg morphogenesis takes place (Suppl. Figure 2 A,B). There is no clear relationship between the relative duration of each phase and the speed of regeneration (Suppl. Figure 2 A',B')."

      Based on their initial cell tracing experiment, could the authors elaborate more on what kind of biological information can be extracted from the cell lineages, apart from determining which is the progenitor of a cell? What does it tell us about the cell population in the tissue? Is there indication of multi- or pluripotent stem cells? What does it say about the type of regeneration that is taking place in terms of epimorphosis and morphallaxis, the old concepts of regeneration?

      In the first paragraph of Future Directions we describe briefly the kind of biological information that could be gained by applying our live imaging approach with appropriate cell-type markers (see below). We do not comment further, as we do not currently have this information at hand. Regarding the concepts of epimorphosis and morphallaxis, as we explain in Alwes et al. 2016, these terms describe two extreme conditions that do not capture what we observe during Parhyale leg regeneration. Our current work does not bring new insights on this topic.

      Page 5. The authors mention the possibility of identifying the cell ID based on transcriptomic profiling data. Can they suggest how many and which cell types they expect to find in the last stage based on their transcriptomic data?

      We have added this sentence: "Using single-nucleus transcriptional profiling, we have identified approximately 15 transcriptionally-distinct cell types in adult Parhyale legs (Almazán et al., 2022), including epidermis, muscle, neurons, hemocytes, and a number of still unidentified cell types."

      Page 6. Correction: "..molecular and other makers.." should be "..molecular and other markers.."

      Corrected

      Page 8. The HCR in situ protocol probably has another important advantage over the conventional in situ protocol, which is not mentioned in this study. The hybridisation step in HCR is performed at a lower temperature (37˚C) than in conventional in situ hybridisation (65˚C, Rehm et al., 2009). In other organisms, a high hybridisation temperature affects the overall tissue morphology and cell location (tissue shrinkage). A lower hybridisation temperature has less impact on the tissue and makes manual cell alignment between the live imaging movie and the fixed HCR in situ stained specimen easier and more reliable. If this is also the case in Parhyale, the authors must mention it.

      This may be correct, but all our specimens were treated at 37˚C, so we cannot assess whether hybridisation temperature affects morphological preservation in our specimens.

      Page 9. The authors should include more information on the spineless study. What been is spineless? What do the cell lineages tell about the spineless progenitors, apart from them being spread in the tissue at the time of amputation? Do spineless progenitors proliferate during regeneration? Do any spineless expressing cells share a common progenitor cell?

      We now point out that spineless encodes a transcription factor. We provide a summary of the lineages generating spineless-expressing cells in Suppl. Figure 6, and we explain that "These epidermal progenitors undergo 0, 1 or 2 cell divisions, and generate mostly spineless-expressing cells (Suppl. Figure 5)."

      Page 10. Regarding the imaging temperature, the Materials and Methods state "... a temperature control chamber set to 26 or 27˚C..."; however, in Suppl. Data 1, 26˚C and 29˚C are indicated as imaging temperatures. Which is correct?

      We corrected the Methods by adding "with the exception of dataset li51, imaged at 29°C"

      Page 10. Regarding the imaging step size, the Materials and Methods state "...step size of 1-2.46 µm..."; however, Suppl. Data 1 indicate a step size between 1.24 - 2.48 µm. Which is correct?

      We corrected the Methods.

      Page 11. Correct "...as the highest resolution data..." to "...at the highest resolution data..."

      The original text is correct ("standardised to the same dimensions as the highest resolution data").

      Page 11. Indicate which supplementary data set is referred to: "Using Mastodon, we generated ground truth annotations on the original image dataset, consisting of 278 cell tracks, including 13,888 spots and 13,610 links across 55 time points (see Supplementary Data)."

      Corrected

      p. 15. Indicate which supplementary data set is referred to: "In this study we used HCR probes for the Parhyale orthologues of futsch (MSTRG.441), nompA (MSTRG.6903) and spineless (MSTRG.197), ordered from Molecular Instruments (20 oligonucleotides per probe set). The transcript sequences targeted by each probe set are given in the Supplementary Data."

      Corrected

      Figure 3. Suggestion to the overview schematics: The authors might consider adding "molting" as the end point of the red bar (representing differentiation).

      The time of molting is not known in the majority of these datasets, because the specimens were fixed and stained prior to molting. We added the relevant information in the figure legend: "Datasets li-13 and li-16 were recorded until the molt; the other recordings were stopped before molting."

      Figure 4B': Please indicate that the nuclei signal is DAPI.

      Corrected

      Supplementary figure 1A. Word is missing in the figure legend: ...the image also shows weak…

      Corrected

      Supplementary Figure 2: Please indicate the autofluorescence in the granular cells. Does it correspond to the yellow cells?

      Corrected

      Video legend for video 1 and 2. Please correct "H2B-mREFruby" to "H2B-mRFPruby".

      Corrected

      Reviewer #2:

      Major comments:

      MC 1. Given that most of the technical advances necessary to achieve the work described in this manuscript have been published previously, it would be helpful for the authors to more clearly identify the primary novelty of this manuscript. The abstract and introduction to the manuscript focus heavily on the technical details of imaging and analysis optimization and some additional summary of the implications of these advances should be included here to aid the reader.

      This paper describes a technical advance. While previous work (Alwes et al. 2016) established some key elements of our live imaging approach, we were not at that time able to record the entire time course of leg regeneration (the longest recordings were 3.5 days long). Here we present a method for imaging the entire course of leg regeneration (up to 10 days of imaging), optimised to reduce photodamage and to improve cell tracking. We also develop a method of in situ staining in cuticularised adult legs (an important technical breakthrough in this experimental system), which we combine with live imaging to determine the fate of tracked cells. We have revised the abstract and introduction of the paper to point out these novelties, in relation to our previous publications.

      In the abstract we explain: "Building on previous work that allowed us to image different parts of the process of leg regeneration in the crustacean Parhyale hawaiensis, we present here a method for live imaging that captures the entire process of leg regeneration, spanning up to 10 days, at cellular resolution. Our method includes (1) mounting and long-term live imaging of regenerating legs under conditions that yield high spatial and temporal resolution but minimise photodamage, (2) fixing and in situ staining of the regenerated legs that were imaged, to identify cell fates, and (3) computer-assisted cell tracking to determine the cell lineages and progenitors of identified cells. The method is optimised to limit light exposure while maximising tracking efficiency."

      The introduction includes the following text: "Our first systematic study using this approach presented continuous live imaging over periods of 2-3 days, capturing key events of leg regeneration such as wound closure, cell proliferation and morphogenesis of regenerating legs with single-cell resolution (Alwes et al., 2016). Here, we extend this work by developing a method for imaging the entire course of leg regeneration, optimised to reduce photodamage and to improve cell tracking. We also develop a method of in situ staining of gene expression in cuticularised adult legs, which we combine with live imaging to determine the fate of tracked cells."

      MC 2. The description of the regeneration time course is nicely detailed but also very qualitative. A major advantage of continuous recording and automated cell tracking in the manner presented in this manuscript would be to enable deeper quantitative characterization of cellular and tissue dynamics during regeneration. Rather than providing movies and manually annotated timelines, some characterization of the dynamics of the regeneration process (the heterogeneity in this is very very interesting, but not analyzed at all) and correlating them against cellular behaviors would dramatically increase the impact of the work and leverage the advances presented here. For example, do migration rates differ between replicates? Division rates? Division synchrony? Migration orientation? This seems to be an incredibly rich dataset that would be fascinating to explore in greater detail, which seems to me to be the primary advance presented in this manuscript. I can appreciate that the authors may want to segregate some biological findings from the method, but I believe some nominal effort highlighting the quantitative nature of what this method enables would strengthen the impact of the paper and be useful for the reader. Selecting a small number of simple metrics (eg. Division frequency, average cell migration speed) and plotting them alongside the qualitative phases of the regeneration timeline that have already been generated would be a fairly modest investment of effort using tools that already exist in the Mastodon interface, I would roughly estimate on the order of an hour or two per dataset. I believe that this effort would be well worth it and better highlight a major strength of the approach.

      The primary goal of this work was to establish a robust method for continuous long-term live imaging of regeneration, but we do appreciate that a more quantitative analysis would add value to the data we are presenting. We tried to address this request in three steps:

      First, we examined whether clear temporal patterns in cell division, cell movements or other cellular features can be observed in an accurately tracked dataset (li13-t4, tracked in Sugawara et al. 2022). To test this we used the feature extraction functions now available on the Mastodon platform (see link). We could discern a meaningful temporal pattern for cell divisions (see below); the other features showed no interpretable pattern of variation.

      Second, we asked whether we could use automated cell tracking to analyse the patterns of cell division in all our datasets. Using an Elephant deep learning model trained on the tracks of the li13-t4 dataset, we performed automated cell tracking in the same dataset, and compared the pattern of cell divisions from the automated cell track predictions with those coming from manually validated cell tracks. We observed that the automated tracks gave very imprecise results, with a high background of false positives obscuring the real temporal pattern (see images below, with validated data on the left, automated tracking on the right). These results show that the automated cell tracking is not accurate enough to provide a meaningful picture on the pattern of cell divisions.

      Third, we tried to improve the accuracy of detection of dividing cells by additional training of Elephant models on each dataset (to lower the rate of false positives), followed by manual proofreading. Given how labour intensive this is, we could only apply this approach to 4 additional datasets. The results of this analysis are presented in Figure 4.

      Author response image 1.

      MC 3. The authors describe the challenges faced by their described approach:

      Using this mode of semi-automated and manual cell tracking, we find that most cells in the upper slices of our image stacks (top 30 microns) can be tracked with a high degree of confidence. A smaller proportion of cell lineages are trackable in the deeper layers.

      Given that the authors quantify this in Table 1, it would aid the reader to provide metrics in the manuscript text at this point. Furthermore, the metrics provided in Table 1 appear to be for overall performance, but the text describes that performance appears to be heavily depth dependent. Segregating the performance metrics further, for example providing DET, TRA, precision and recall for superficial layers only and for the overall dataset, would help support these arguments and better highlight performance a potential adopter of the method might expect.

      In the revised manuscript we have added data on the tracking performance of Elephant in relation to imaging depth in Suppl. Figure 3. These data confirm our original statement (which was based on manual tracking) that nuclei are more challenging to track in deeper layers.

      We point to these new results in two parts of the paper, as follows: "A smaller proportion of cells are trackable in the deeper layers (see Suppl. Figure 3)", and "Our results, summarised in Table 1A, show that the detection of nuclei can be enhanced by doubling the z resolution at the expense of xy resolution and image quality. This improvement is particularly evident in the deeper layers of the imaging stacks, which are usually the most challenging to track (Suppl. Figure 3)."

      MC 4. Performance characterization in Table 1 appears to derive from a single dataset that is then subsampled and processed in different ways to assess the impact of these changes on cell tracking and detection performance. While this is a suitable strategy for this type of optimization it leaves open the question of performance consistency across datasets. I fully recognize that this type of quantification can be onerous and time consuming, but some attempt to assess performance variability across datasets would be valuable. Manual curation over a short time window over a random sampling of the acquired data would be sufficient to assess this.

      We think that similar trade-offs will apply to all our datasets because tracking performance is constrained by the same features, which are intrinsic to our system; e.g. by the crowding of nuclei in relation to axial resolution, or the speed of mitosis in relation to the temporal resolution of imaging. We therefore do not see a clear rationale for repeating this analysis. On a practical level, our existing image datasets could not be subsampled to generate the various conditions tested in Table 1, so proving this point experimentally would require generating new recordings, and tracking these to generate ground truth data. This would require months of additional work.

      A second, related question is whether Elephant would perform equally well in detecting and tracking nuclei across different datasets. This point has been addressed in the Sugawara et al. 2022 paper, where the performance of Elephant was tested on diverse fluorescence datasets.

      Reviewer #3:

      Major comments:

      • The authors should clearly specify what are the key technical improvements compared to their previous studies (Alwes et al. 2016, Elife; Konstantinides & Averof 2014, Science). There, the approaches for mounting, imaging, and cell tracking are already introduced, and the imaging is reported to run for up to 7 days in some cases.

      In Konstantinides and Averof (2014) we did not present any live imaging at cellular resolution. In Alwes et al. (2016) we described key elements of our live imaging approach, but we were never able to record the entire time course of leg regeneration. The longest recordings in that work were 3.5 days long.

      We have revised the abstract and introduction to clarify the novelty of this work, in relation to our previous publications. Please see our response to comment MC1 of reviewer 2.

      • While the authors mention testing the effect of imaging parameters (such as scanning speed and line averaging) on the imaging/tracking outcome, very little or no information is provided on how this was done beyond the parameters that they finally arrived to.

      Scan speed and averaging parameters were determined by measuring contrast and signal-to-noise ratios in images captured over a range of settings. We have now added these data in Supplementary Figure 1.

      • The authors claim that, using the acquired live imaging data across entire regeneration time course, they are now able to confirm and extend their description of leg regeneration. However, many claims about the order and timing of various cellular events during regeneration are supported only by references to individual snapshots in figures or supplementary movies. Presenting a more quantitative description of cellular processes during regeneration from the acquired data would significantly enhance the manuscript and showcase the usefulness of the improved workflow.

      The events we describe can be easily observed in the maximum projections, available in Suppl. Data 2. Regarding the quantitative analysis, please see our response to comment MC2 of reviewer 2.  

      • Table 1 summarizes the performance of cell tracking using simulated datasets of different quality. However only averages and/or maxima are given for the different metrics, which makes it difficult to evaluate the associated conclusions. In some cases, only 1 or 2 test runs were performed.

      The metrics extracted from each of the three replicates, per dataset, are now included in Suppl. Data 4.

      We consistently used 3 replicates to measure tracking performance with each of the datasets. The "replicates" column label in Table 1 referred to the number of scans that were averaged to generate the image, not to the replicates used for estimating the tracking performance. To avoid confusion, we changed that label to "averaging".

      • OPTIONAL: An imaging approach that allows using the current mounting strategy but could help with some of the tradeoffs is using a spinning-disk confocal microscope instead of a laser scanning one. If the authors have such a system available, it could be interesting to compare it with their current scanning confocal setup.

      Preliminary experiments that we carried out several years ago on a spinning disk confocal (with a 20x objective and the CSU-W1 spinning disk) were not very encouraging, and we therefore did not pursue this approach further. The main problem was bad image quality in deeper tissue layers.

      Minor comments:

      • The presented imaging protocol was optimized for one laser wavelength only (561 nm) - this should be mentioned when discussing the technical limitations since animals tend to react differently to different wavelengths. Same settings might thus not be applicable for imaging a different fluorescent protein.

      In the second paragraph of the Results section, we explain that we perform the imaging at long wavelengths in order to minimise photodamage. It should be clear to the readers that changing the excitation wavelength will have an impact for long-term live imaging.

      • For transferability, it would be useful if the intensity of laser illumination was measured and given in the Methods, instead of just a relative intensity setting from the imaging software. Similarly,more details of the imaging system should be provided where appropriate (e.g., detector specifications).

      We have now measured the intensity of the laser illumination and added this information in the

      Methods: "Laser power was typically set to 0.3% to 0.8%, which yields 0.51 to 1.37 µW at 561 nm (measured with a ThorLabs Microscope Slide Power Sensor, #S170C)."

      Regarding the imaging system and the detector, we provide all the information that is available to us on the microscope's technical sheets.

      • The versions of analysis scripts associated with the manuscript should be uploaded to an online repository that permanently preserves the respective version.

      The scripts are now available on gitbub and online repositories. The relevant links are included in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Functional lateralization between the right and left hemispheres is reported widely in animal taxa, including humans. However, it remains largely speculative as to whether the lateralized brains have a cognitive gain or a sort of fitness advantage. In the present study, by making use of the advantages of domestic chicks as a model, the authors are successful in revealing that the lateralized brain is advantageous in the number sense, in which numerosity is associated with spatial arrangements of items. Behavioral evidence is strong enough to support their arguments. Brain lateralization was manipulated by light exposure during the terminal phase of incubation, and the left-to-right numerical representation appeared when the distance between items gave a reliable spatial cue. The light-exposure induced lateralization, though quite unique in avian species, together with the lack of intense inter-hemispheric direct connections (such as the corpus callosum in the mammalian cerebrum), was critical for the successful analysis in this study. Specification of the responsible neural substrates in the presumed right hemisphere is expected in future research. Comparable experimental manipulation in the mammalian brain must be developed to address this general question (functional significance of brain laterality) is also expected.

      We sincerely appreciate the Reviewer's insightful feedback and his/her recognition of the key contributions of our study.

      Reviewer #2 (Public review):

      Summary:

      This is the first study to show how a L-R bias in the relationship between numerical magnitude and space depends on brain lateralisation, and moreover, how is modulated by in ovo conditions.

      Strengths:

      Novel methodology for investigating the innateness and neural basis of an L-R bias in the relationship between number and space.

      We would like to thank the Reviewer for their valuable feedback and for highlighting the key contributions of our study.

      Weaknesses:

      I would query the way the experiment was contextualised. They ask whether culture or innate pre-wiring determines the 'left-to-right orientation of the MNL [mental number line]'.

      We thank the Reviewer for raising this point, which has allowed us to provide a more detailed explanation of this aspect. Rather than framing the left-to-right orientation of the mental number line (MNL) as exclusively determined by either cultural influences or innate pre-wiring, our study highlights the role of environmental stimulation. Specifically, prenatal light exposure can shape hemispheric specialization, which in turn contributes to spatial biases in numerical processing. Please see lines 115-118.

      The term, 'Mental Number Line' is an inference from experimental tasks. One of the first experimental demonstrations of a preference or bias for small numbers in the left of space and larger numbers in the right of space, was more carefully described as the spatial-numerical association of response codes - the SNARC effect (Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General, 122, 371-396).

      We have refined our description of the MNL and SNARC effect to ensure conceptual accuracy in the revised manuscript; please see lines 53-59.

      This has meant that the background to the study is confusing. First, the authors note, correctly, that many other creatures, including insects, can show this bias, though in none of these has neural lateralisation been shown to be a cause. Second, their clever experiment shows that an experimental manipulation creates the bias. If it were innate and common to other species, the experimental manipulation shouldn't matter. There would always be an L-R bias. Third, they seem to be asserting that humans have a left-to-right (L-R) MNL. This is highly contentious, and in some studies, reading direction affects it, as the original study by Dehaene et al showed; and in others, task affects direction (e.g. Bachtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36, 731-735, not cited). Moreover, a very careful study of adult humans, found no L-R bias (Karolis, V., Iuculano, T., & Butterworth, B. (2011), not cited, Mapping numerical magnitudes along the right lines: Differentiating between scale and bias. Journal of Experimental Psychology: General, 140(4), 693-706). Indeed, Rugani et al claim, incorrectly, that the L-R bias was first reported by Galton in 1880. There are two errors here: first, Galton was reporting what he called 'visualised numerals', which are typically referred to now as 'number forms' - spontaneous and habitual conscious visual representations - not an inference from a number line task. Second, Galton reported right-to-left, circular, and vertical visualised numerals, and no simple left-to-right examples (Galton, F. (1880). Visualised numerals. Nature, 21, 252-256.). So in fact did Bertillon, J. (1880). De la vision des nombres. La Nature, 378, 196-198, and more recently Seron, X., Pesenti, M., Noël, M.-P., Deloche, G., & Cornet, J.-A. (1992). Images of numbers, or "When 98 is upper left and 6 sky blue". Cognition, 44, 159-196, and Tang, J., Ward, J., & Butterworth, B. (2008). Number forms in the brain. Journal of Cognitive Neuroscience, 20(9), 1547-1556.

      We sincerely appreciate the opportunity to discuss numerical spatialization in greater detail. We have clarified that an innate predisposition to spatialize numerosity does not necessarily exclude the influence of environmental stimulation and experience. We have proposed an integrative perspective, incorporating both cultural and innate factors, suggesting that numerical spatialization originates from neural foundations while remaining flexible and modifiable by experience and contextual influences. Please see lines 69–75.

      We have incorporated the Reviewer’s suggestions and cited all the recommended papers; please see lines 47–75.

      If the authors are committed to chicks' MN Line they should test a series of numbers showing that the bias to the left is greater for 2 and 3 than for 4, etc.

      What does all this mean? I think that the paper should be shorn of its misleading contextualisation, including the term 'Mental Number Line'. The authors also speculate, usefully, on why chicks and other species might have a L-R bias. I don't think the speculations are convincing, but at least if there is an evolutionary basis for the bias, it should at least be discussed.

      In the revised version of the manuscript, we have resorted to adopt the Spatial Numerical Association (SNA). We thank the Reviewer for this valuable comment.

      We appreciated the Reviewer’s suggestion regarding the evolutionary basis of lateralization and have included considerations of its relevance in chicks and other species; please see lines 143-151 and 381-386.

      This paper is very interesting with its focus on why the L-R bias exists, and where and why it does not.

      We wish to thank the Reviewer again for his/her work.

      Reviewer #1(Public review)

      (1) Introduction needs to be edited to make it much more concise and shorter. Hypotheses (from line 67 to 81) and predictions (from line 107 to 124) must be thoroughly rephrased, because (a) general readers are not familiar with the hypotheses (emotional valence and BAFT), (b) the hypotheses may or may not be mutually exclusive, and therefore (c) the logical linkage between the hypotheses and the predicted results are not necessarily clear. Most general readers may be embarrassed by the apparently complicated logical constructs of this study. Instead, it is recommended that focal spotlight should be given to the issue of functional contributions of brain lateralization to the cognitive development of number sense.

      We thank the Reviewer for these comments, which allowed us to improve the clarity of our hypotheses and predictions. We thoroughly rephrased them to ensure they are accessible to general readers and specified that the models may or may not be mutually exclusive. Additionally, we highlighted the functional contributions of brain lateralization to the cognitive development of number sense, addressing the suggested focal point. While we have shortened the introduction, we opted to retain essential background information to ensure readers are well-informed about the relevant scientific literature. Please review the entire introduction, particularly lines 84–118 and 218.

      (2) In relation to the above (a), abbreviations need to be reexamined. MNL (mental number line) appears early on lines 27 and 49, whereas the possibly related conceptual term SNA appeared first on line 213, without specification to "spatial numerical association".

      We thank the Reviewer for bringing this to our attention. We have addressed the suggestions, and the term SNA has been used specifically to refer to numerical spatialization in non-human animals. Please see lines 27-30.

      (3) By the way, what difference is there between MNL and SNA? Please specify the difference if it is important. If not important, is it possible that one of these two is consistently used in this report, at least in the Introduction?

      We clarified the distinction between MNL and SNA and have consistently used SNA in this report; please see lines 47-75.

      (4) In relation to the above (a and b), clarification of the hypotheses and their abbreviations in the form of a table or a graphical representation will strongly reinforce the general readers' understanding. It is also possible that some of these hypotheses are discussed later in the Discussion, rather than in Introduction.

      We appreciated this suggestion and have now clarified the hypotheses, also providing a table/graphical representation, aiming to enhance accessibility for general readers; please see lines 110-118, and 218.

      (5) Figures 1 and 2 are transparent and easily understandable; however, the statistical details in the Results may bother the readers as the main points are doubly represented in Figures 1, 2, and Table 1. These (statistics and Table 1) may go to the supplementary file, if the editor agrees.

      We would prefer to keep Table 1 and the statistical details as part of the main article to provide readers with a comprehensive overview of the experimental results. However, if the editors also suggest to move them to the supplementary file, we are open to making this adjustment.

      (6) In Figure 1D and E, and text lines 139-140. Figure 1D shows that the chick is looking monocularly by the right eye, but the text (line 139) says "left eye in use. Is it correct?

      We thank the reviewer for pointing out this incongruity. We have corrected the text to align with Figure 1D and E; please see lines 180-181.

      (7) Methods. The behavioral experiment was initiated on Wednesday (8 a.m.; line 479), but at what age? At what post-hatch day was the experiment terminated? A simple graphical illustration of the schedule will be quite helpful.

      We have added the requested details, specifying that experiments began on the third post-hatch day and ended on the fifth day; please see lines 533-539.

      Additionally, we have included a graphical illustration of the schedule to enhance clarity; please see line 666.  

      (8) Methods. How many chicks were excluded from the study in the course of Pre-training (line 525) and Training (line 535-536)? Was the exclusion rate high, or just negligible?

      We appreciate the reviewer's suggestion. We have now included the number of subjects excluded during the training phase; please see lines 593-597.

      We wish to thank the Reviewer again for his/her work.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The image analysis pipeline is tested in analysing microscopy imaging data of gastruloids of varying sizes, for which an optimised protocol for in toto image acquisition is established based on whole mount sample preparation using an optimal refractive index matched mounting media, opposing dual side imaging with two-photon microscopy for enhanced laser penetration, dual view registration, and weighted fusion for improved in toto sample data representation. For enhanced imaging speed in a two-photon microscope, parallel imaging was used, and the authors performed spectral unmixing analysis to avoid issues of signal cross-talk.

      In the image analysis pipeline, different pre-treatments are done depending on the analysis to be performed (for nuclear segmentation - contrast enhancement and normalisation; for quantitative analysis of gene expression - corrections for optical artifacts inducing signal intensity variations). Stardist3D was used for the nuclear segmentation. The study analyses into properties of gastruloid nuclear density, patterns of cell division, morphology, deformation, and gene expression.

      Strengths:

      The methods developed are sound, well described, and well-validated, using a sample challenging for microscopy, gastruloids. Many of the established methods are very useful (e.g. registration, corrections, signal normalisation, lazy loading bioimage visualisation, spectral decomposition analysis), facilitate the development of quantitative research, and would be of interest to the wider scientific community.

      We thank the reviewer for this positive feedback.

      Weaknesses:

      A recommendation should be added on when or under which conditions to use this pipeline.

      We thank the reviewer for this valuable feedback, which will be addressed in the revision. In general, the pipeline is applicable to any tissue, but it is particularly useful for large and dense 3D samples—such as organoids, embryos, explants, spheroids, or tumors—that are typically composed of multiple cell layers and have a thickness greater than 50 µm.

      The processing and analysis pipeline are compatible with any type of 3D imaging data (e.g. confocal, 2 photon, light-sheet, live or fixed).

      - Spectral unmixing to remove signal cross-talk of multiple fluorescent targets is typically more relevant in two-photon imaging due to the broader excitation spectra of fluorophores compared to single-photon imaging. In confocal or light-sheet microscopy, alternating excitation wavelengths often circumvents the need for unmixing. Spectral decomposition performs even better with true spectral detectors; however, these are usually not non-descanned detectors, which are more appropriate for deep tissue imaging. Our approach demonstrates that simultaneous cross-talk-free four-color two-photon imaging can be achieved in dense 3D specimen with four non-descanned detectors and co-excitation by just two laser lines. Depending on the dispersion in optically dense samples, depth-dependent apparent emission spectra need to be considered.

      - Nuclei segmentation using our trained StarDist3D model is applicable to any system under two conditions: (1) the nuclei exhibit a star-convex shape, as required by the StarDist architecture, and (2) the image resolution is sufficient in XYZ to allow resampling. The exact sampling required is object- and system-dependent, but the goal is to achieve nearly isotropic objects with diameters of approximately 15 pixels while maintaining image quality. In practice, images containing objects that are natively close to or larger than 15 pixels in diameter should segment well after resampling. Conversely, images with objects that are significantly smaller along one or more dimensions will require careful inspection of the segmentation results.

      - Normalization is broadly applicable to multicolor data when at least one channel is expected to be ubiquitously expressed within its domain. Wavelength-dependent correction requires experimental calibration using either an ubiquitous signal at each wavelength. Importantly, this calibration only needs to be performed once for a given set of experimental conditions (e.g., fluorophores, tissue type, mounting medium).

      - Multi-scale analysis of gene expression and morphometrics is applicable to any 3D multicolor image. This includes both the 3D visualization tools (Napari plugins) and the various analytical plots (e.g., correlation plots, radial analysis). Multi-scale analysis can be performed even with imperfect segmentation, as long as segmentation errors tend to cancel out when averaged locally at the relevant spatial scale. However, systematic errors—such as segmentation uncertainty along the Z-axis due to strong anisotropy—may accumulate and introduce bias in downstream analyses. Caution is advised when analyzing hollow structures (e.g., curved epithelial monolayers with large cavities), as the pipeline was developed primarily for 3D bulk tissues, and appropriate masking of cavities would be needed.

      Reviewer #2 (Public review):

      Summary:

      This study presents an integrated experimental and computational pipeline for high-resolution, quantitative imaging and analysis of gastruloids. The experimental module employs dual-view two-photon spectral imaging combined with optimized clearing and mounting techniques to image whole-mount immunostained gastruloids. This approach enables the acquisition of comprehensive 3D images that capture both tissue-scale and single-cell level information.

      The computational module encompasses both pre-processing of acquired images and downstream analysis, providing quantitative insights into the structural and molecular characteristics of gastruloids. The pre-processing pipeline, tailored for dual-view two-photon microscopy, includes spectral unmixing of fluorescence signals using depth-dependent spectral profiles, as well as image fusion via rigid 3D transformation based on content-based block-matching algorithms. Nuclei segmentation was performed using a custom-trained StarDist3D model, validated against 2D manual annotations, and achieving an F1 score of 85+/-3% at a 50% intersection-over-union (IoU) threshold. Another custom-trained StarDist3D model enabled accurate detection of proliferating cells and the generation of 3D spatial maps of nuclear density and proliferation probability. Moreover, the pipeline facilitates detailed morphometric analysis of cell density and nuclear deformation, revealing pronounced spatial heterogeneities during early gastruloid morphogenesis.

      All computational tools developed in this study are released as open-source, Python-based software.

      Strengths:

      The authors applied two-photon microscopy to whole-mount deep imaging of gastruloids, achieving in toto visualization at single-cell resolution. By combining spectral imaging with an unmixing algorithm, they successfully separated four fluorescent signals, enabling spatial analysis of gene expression patterns.

      The entire computational workflow, from image pre-processing to segmentation with a custom-trained StarDist3D model and subsequent quantitative analysis, is made available as open-source software. In addition, user-friendly interfaces are provided through the open-source, community-driven Napari platform, facilitating interactive exploration and analysis.

      We thank the reviewer for this positive feedback.

      Weaknesses:

      The computational module appears promising. However, the analysis pipeline has not been validated on datasets beyond those generated by the authors, making it difficult to assess its general applicability.

      We agree that applying our analysis pipeline to published datasets—particularly those acquired with different imaging systems—would be valuable. However, only a few high-resolution datasets of large organoid samples are publicly available, and most of these either lack multiple fluorescence channels or represent 3D hollow structures. Our computational pipeline consists of several independent modules: spectral filtering, dual-view registration, local contrast enhancement, 3D nuclei segmentation, image normalization based on a ubiquitous marker, and multiscale analysis of gene expression and morphometrics.

      Spectral filtering has already been applied in other systems (e.g. [7] and [8]), but is here extended to account for imaging depth-dependent apparent emission spectra of the different fluorophores. In our pipeline, we provide code to run spectral filtering on multichannel images, integrated in Python. In order to apply the spectral filtering algorithm utilized here, spectral patterns of each fluorophore need to be calibrated as a function of imaging depth, which depend on the specific emission windows and detector settings of the microscope.

      Image normalization using a wavelength-dependent correction also requires calibration on a given imaging setup to measure the difference in signal decay among the different fluorophores species. To our knowledge, the calibration procedures for spectral-filtering and our image-normalization approach have not been performed previously in 3D samples, which is why validation on published datasets is not readily possible. Nevertheless, they are described in detail in the Methods section, and the code used—from the calibration measurements to the corrected images—is available open-source at the Zenodo link in the manuscript.

      Dual-view registration, local contrast enhancement, and multiscale analysis of gene expression and morphometrics are not limited to organoid data or our specific imaging modalities. If we identify suitable datasets to validate these modules, we will include them in the revised manuscript.

      To evaluate our 3D nuclei segmentation model, we plan to test it on diverse systems, including gastruloids stained with the nuclear marker Draq5 from Moos et al. [1]; breast cancer spheroids; primary ductal adenocarcinoma organoids; human colon organoids and HCT116 monolayers from Ong et al. [2]; and zebrafish tissues imaged by confocal microscopy from Li et al [3]. These datasets were acquired using either light-sheet or confocal microscopy, with varying imaging parameters (e.g., objective lens, pixel size, staining method).

      Preliminary results are promising (see Author response image 1). We will provide quantitative comparisons of our model’s performance on these datasets, using annotations or reference predictions provided by the original authors where available.

      Author response image 1.

      Qualitative comparison of our custom Stardist3D segmentation strategy on diverse published 3D nuclei datasets. We show one slice from the XY plane for simplicity. (a) Gastruloid stained with the nuclear marker DRAQ5 imaged with an open-top dual-view and dual-illumination LSM [1]. (b) Breast cancer spheroid [2]. (c) Primary pancreatic ductal adenocarcinoma organoids imaged with confocal microscopy[2]. (d) Human colon organoid imaged with LSM laser scanning confocal microscope [2]. (e) Monolayer HCT116 cells imaged with LSM laser scanning confocal microscope [2]. (f) Fixed zebrafish embryo stained for nuclei and imaged with a Zeiss LSM 880 confocal microscopy [3].

      Besides, the nuclei segmentation component lacks benchmarking against existing methods.

      We agree with the reviewer that a benchmark against existing segmentation methods would be very useful. We tried different pre-trained models:

      - CellPose, which we tested in a previous paper ([4]) and which showed poor performances compared to our trained StarDist3D model.

      - DeepStar3D ([2]) is only available in the software 3DCellScope. We could not benchmark the model on our data, because the free and accessible version of the software is limited to small datasets. An image of a single whole-mount gastruloid with one channel, having dimensions (347,467,477) was too large to be processed, see screenshot below. The segmentation model could not be extracted from the source code and tested externally because the trained DeepStar3D weights are encrypted.

      Author response image 2.

      Screenshot of the 3DCellScore software. We could not perform 3D nuclei segmentation of a whole-mount gastruloids because the image size was too large to be processed.

      - AnyStar ([5]), which is a model trained from the StarDist3D architecture, was not performing well on our data because of the heterogeneous stainings. Basic pre-processing such as median and gaussian filtering did not improve the results and led to wrong segmentation of touching nuclei. AnyStar was demonstrated to segment well colon organoids in Ong et al, 2025 ([2]), but the nuclei were more homogeneously stained. Our Hoechst staining displays bright chromatin spots that are incorrectly labeled as individual nuclei.

      - Cellos ([6]), another model trained from StarDist3D, was also not performing well. The objects used for training and to validate the results are sparse and not touching, so the predicted segmentation has a lot of false negatives even when lowering the probability threshold to detect more objects. Additionally, the network was trained with an anisotropy of (9,1,1), based on images with low z resolution, so it performed poorly on almost isotropic images. Adapting our images to the network’s anisotropy results in an imprecise segmentation that can not be used to measure 3D nuclei deformations.

      We tried both Cellos and AnyStar predictions on a gastruloid image from Fig. S2 of our main manuscript. Author response image 3 displays the results qualitatively compared to our trained model Stardist-tapenade. For the revision of the paper, we will perform a comprehensive benchmark of these state-of-the-art routines, including quantitative assessment of the performance.

      Author response image 3.

      Qualitative comparison of two published segmentation models versus our model. We show one slice from the XY plane for simplicity. Segmentations are displayed with their contours only. (Top left) Gastruloid stained with Hoechst, image extracted from Fig S2 of our manuscript. (Top right) Same image overlayed with the prediction from the Cellos model, showing many false negatives. (Bottom left) Same image overlayed with the prediction from our Stardist-tapenade model. (Bottom right) Same image overlayed with the prediction from the AnyStar model, false positives are indicated with a red arrow.

      Appraisal:

      The authors set out to establish a quantitative imaging and analysis pipeline for gastruloids using dual-view two-photon microscopy, spectral unmixing, and a custom computational framework for 3D segmentation and gene expression analysis. This aim is largely achieved. The integration of experimental and computational modules enables high-resolution in toto imaging and robust quantitative analysis at the single-cell level. The data presented support the authors' conclusions regarding the ability to capture spatial patterns of gene expression and cellular morphology across developmental stages.

      Impact and utility:

      This work presents a compelling and broadly applicable methodological advance. The approach is particularly impactful for the developmental biology community, as it allows researchers to extract quantitative information from high-resolution images to better understand morphogenetic processes. The data are publicly available on Zenodo, and the software is released on GitHub, making them highly valuable resources for the community.

      We thank the reviewer for these positive feedbacks.

      Reviewer #3 (Public review):

      Summary

      The paper presents an imaging and analysis pipeline for whole-mount gastruloid imaging with two-photon microscopy. The presented pipeline includes spectral unmixing, registration, segmentation, and a wavelength-dependent intensity normalization step, followed by quantitative analysis of spatial gene expression patterns and nuclear morphometry on a tissue level. The utility of the approach is demonstrated by several experimental findings, such as establishing spatial correlations between local nuclear deformation and tissue density changes, as well as the radial distribution pattern of mesoderm markers. The pipeline is distributed as a Python package, notebooks, and multiple napari plugins.

      Strengths

      The paper is well-written with detailed methodological descriptions, which I think would make it a valuable reference for researchers performing similar volumetric tissue imaging experiments (gastruloids/organoids). The pipeline itself addresses many practical challenges, including resolution loss within tissue, registration of large volumes, nuclear segmentation, and intensity normalization. Especially the intensity decay measurements and wavelength-dependent intensity normalization approach using nuclear (Hoechst) signal as reference are very interesting and should be applicable to other imaging contexts. The morphometric analysis is equally well done, with the correlation between nuclear shape deformation and tissue density changes being an interesting finding. The paper is quite thorough in its technical description of the methods (which are a lot), and their experimental validation is appropriate. Finally, the provided code and napari plugins seem to be well done (I installed a selected list of the plugins and they ran without issues) and should be very helpful for the community.

      We thank the reviewer for his positive feedback and appreciation of our work.

      Weaknesses

      I don't see any major weaknesses, and I would only have two issues that I think should be addressed in a revision:

      (1) The demonstration notebooks lack accompanying sample datasets, preventing users from running them immediately and limiting the pipeline's accessibility. I would suggest to include (selective) demo data set that can be used to run the notebooks (e.g. for spectral unmixing) and or provide easily accessible demo input sample data for the napari plugins (I saw that there is some sample data for the processing plugin, so this maybe could already be used for the notebooks?).

      We thank the reviewer for this relevant suggestion. The 7 notebooks were updated to automatically download sample tests. The different parts of the pipeline can now be run immediately: https://github.com/GuignardLab/tapenade/tree/chekcs_on_notebooks/src/tapenade/notebooks

      (2) The results for the morphometric analysis (Figure 4) seem to be only shown in lateral (xy) views without the corresponding axial (z) views. I would suggest adding this to the figure and showing the density/strain/angle distributions for those axial views as well.

      We agree with the reviewer that a morphometric analysis based on the axial views would be informative and plan to perform this analysis for the revision.

      (1) Moos, F., Suppinger, S., de Medeiros, G., Oost, K.C., Boni, A., Rémy, C., Weevers, S.L., Tsiairis, C., Strnad, P. and Liberali, P., 2024. Open-top multisample dual-view light-sheet microscope for live imaging of large multicellular systems. Nature Methods, 21(5), pp.798-803.

      (2) Ong, H.T., Karatas, E., Poquillon, T., Grenci, G., Furlan, A., Dilasser, F., Mohamad Raffi, S.B., Blanc, D., Drimaracci, E., Mikec, D. and Galisot, G., 2025. Digitalized organoids: integrated pipeline for high-speed 3D analysis of organoid structures using multilevel segmentation and cellular topology. Nature Methods, 22(6), pp.1343-1354.

      (3) Li, L., Wu, L., Chen, A., Delp, E.J. and Umulis, D.M., 2023. 3D nuclei segmentation for multi-cellular quantification of zebrafish embryos using NISNet3D. Electronic Imaging, 35, pp.1-9.

      (4) Vanaret, J., Dupuis, V., Lenne, P. F., Richard, F., Tlili, S., & Roudot, P. (2023). A detector-independent quality score for cell segmentation without ground truth in 3D live fluorescence microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 29(4: Biophotonics), 1-12.

      (5) Dey, N., Abulnaga, M., Billot, B., Turk, E. A., Grant, E., Dalca, A. V., & Golland, P. (2024). AnyStar: Domain randomized universal star-convex 3D instance segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 7593-7603).

      (6) Mukashyaka, P., Kumar, P., Mellert, D. J., Nicholas, S., Noorbakhsh, J., Brugiolo, M., ... & Chuang, J. H. (2023). High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology with Cellos. Nature Communications, 14(1), 8406.

      (7) Rakhymzhan, A., Leben, R., Zimmermann, H., Günther, R., Mex, P., Reismann, D., ... & Niesner, R. A. (2017). Synergistic strategy for multicolor two-photon microscopy: application to the analysis of germinal center reactions in vivo. Scientific reports, 7(1), 7101.

      (8) Dunsing, V., Petrich, A., & Chiantia, S. (2021). Multicolor fluorescence fluctuation spectroscopy in living cells via spectral detection. Elife, 10, e69687.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      This work integrates two timepoints from the Adolescent Brain Cognitive Development (ABCD) Study to understand how neuroimaging, genetic, and environmental data contribute to the predictive power of mental health variables in predicting cognition in a large early adolescent sample. Their multimodal and multivariate prediction framework involves a novel opportunistic stacking model to handle complex types of information to predict variables that are important in understanding mental health-cognitive performance associations. 

      Strengths: 

      The authors are commended for incorporating and directly comparing the contribution of multiple imaging modalities (task fMRI, resting state fMRI, diffusion MRI, structural MRI), neurodevelopmental markers, environmental factors, and polygenic risk scores in a novel multivariate framework (via opportunistic stacking), as well as interpreting mental health-cognition associations with latent factors derived from partial least squares. The authors also use a large well-characterized and diverse cohort of adolescents from the ABCD Study. The paper is also strengthened by commonality analyses to understand the shared and unique contribution of different categories of factors (e.g., neuroimaging vs mental health vs polygenic scores vs sociodemographic and adverse developmental events) in explaining variance in cognitive performance 

      Weaknesses: 

      The paper is framed with an over-reliance on the RDoC framework in the introduction, despite deviations from the RDoC framework in the methods. The field is also learning more about RDoC's limitations when mapping cognitive performance to biology. The authors also focus on a single general factor of cognition as the core outcome of interest as opposed to different domains of cognition. The authors could consider predicting mental health rather than cognition. Using mental health as a predictor could be limited by the included 9-11 year age range at baseline (where many mental health concerns are likely to be low or not well captured), as well as the nature of how the data was collected, i.e., either by self-report or from parent/caregiver report. 

      Thank you so much for your encouragement.

      We appreciate your comments on the strengths of our manuscript.

      Regarding the weaknesses, the reliance on the RDoC framework is by design. Even with its limitations, following RDoC allows us to investigate mental health holistically. In our case, RDoC enabled us to focus on a) a functional domain (i.e., cognitive ability), b) the biological units of analysis of this functional domain (i.e., neuroimaging and polygenic scores), c) potential contribution of environments, and d) the continuous individual deviation in this domain (as opposed to distinct categories). We are unaware of any framework with all these four features.

      Focusing on modelling biological units of analysis of a functional domain, as opposed to mental health per se, has some empirical support from the literature. For instance, in Marek and colleagues’ (2022) study, as mentioned by a previous reviewer, fMRI is shown to have a more robust prediction for cognitive ability than mental health. Accordingly, our reasons for predicting cognitive ability instead of mental health in this study are motivated theoretically (i.e., through RDoC) and empirically (i.e., through fMRI findings). We have clarified this reason in the introduction of the manuscript.

      We are aware of the debates surrounding the actual structure of functional domains where the originally proposed RDoC’s specific constructs might not fit the data as well as the data-driven approach (Beam et al., 2021; Quah et al., 2025). However, we consider this debate as an attempt to improve the characterisation of functional domains of RDoC, not an effort to invalidate its holistic, neurobiological and basicfunctioning approach. Our use of a latent-variable modelling approach through factor analyses moves towards a data-driven direction. We made the changes to the second-to-last paragraph in the introduction to make this point clear:

      “In this study, inspired by RDoC, we a) focused on cognitive abilities as a functional domain, b) created predictive models to capture the continuous individual variation (as opposed to distinct categories) in cognitive abilities, c) computed two neurobiological units of analysis of cognitive abilities: multimodal neuroimaging and PGS, and d) investigated the potential contributions of environmental factors. To operationalise cognitive abilities, we estimated a latent variable representing behavioural performance across various cognitive tasks, commonly referred to as general cognitive ability or the gfactor (Deary, 2012). The g-factor was computed from various cognitive tasks pertinent to RDoC constructs, including attention, working memory, declarative memory, language, and cognitive control. However, using the g-factor to operationalise cognitive abilities caused this study to diverge from the original conceptualisation of RDoC, which emphasises studying separate constructs within cognitive abilities (Morris et al., 2022; Morris & Cuthbert, 2012). Recent studies suggest an improvement to the structure of functional domains by including a general factor, such as the g-factor, in the model, rather than treating each construct separately (Beam et al., 2021; Quah et al., 2025). The g-factor in children is also longitudinally stable and can forecast future health outcomes (Calvin et al., 2017; Deary et al., 2013). Notably, our previous research found that neuroimaging predicts the g-factor more accurately than predicting performance from separate individual cognitive tasks (Pat et al., 2023). Accordingly, we decided to conduct predictive models on the g-factor while keeping the RDoC’s holistic, neurobiological, and basic-functioning characteristics.”

      Reviewer #2 (Public review):

      Summary: 

      This paper by Wang et al. uses rich brain, behaviour, and genetics data from the ABCD cohort to ask how well cognitive abilities can be predicted from mental-health-related measures, and how brain and genetics influence that prediction. They obtain an out-ofsample correlation of 0.4, with neuroimaging (in particular task fMRI) proving the key mediator. Polygenic scores contributed less. 

      Strengths: 

      This paper is characterized by the intelligent use of a superb sample (ABCD) alongside strong statistical learning methods and a clear set of questions. The outcome - the moderate level of prediction between the brain, cognition, genetics, and mental health - is interesting. Particularly important is the dissection of which features best mediate that prediction and how developmental and lifestyle factors play a role. 

      Thank you so much for the encouragement. 

      Weaknesses: 

      There are relatively few weaknesses to this paper. It has already undergone review at a different journal, and the authors clearly took the original set of comments into account in revising their paper. Overall, while the ABCD sample is superb for the questions asked, it would have been highly informative to extend the analyses to datasets containing more participants with neurological/psychiatric diagnoses (e.g. HBN, POND) or extend it into adolescent/early adult onset psychopathology cohorts. But it is fair enough that the authors want to leave that for future work. 

      Thank you very much for providing this valuable comment and for your flexibility.

      For the current manuscript, we have drawn inspiration from the RDoC framework, which emphasises the variation from normal to abnormal in normative samples (Morris et al., 2022). The ABCD samples align well with this framework.

      We hope to extend this framework to include participants with neurological and psychiatric diagnoses in the future. We have begun applying neurobiological units of analysis for cognitive abilities, assessed through multimodal neuroimaging and polygenic scores (PGS), to other datasets containing more participants with neurological and psychiatric diagnoses. However, this is beyond the scope of the current manuscript. We have listed this as one of the limitations in the discussion section:

      “Similarly, our ABCD samples were young and community-based, likely limiting the severity of their psychopathological issues (Kessler et al., 2007). Future work needs to test if the results found here are generalisable to adults and participants with stronger severity.”

      In terms of more practical concerns, much of the paper relies on comparing r or R2 measures between different tests. These are always presented as point estimates without uncertainty. There would be some value, I think, in incorporating uncertainty from repeated sampling to better understand the improvements/differences between the reported correlations. 

      This is a good suggestion. We have now included bootstrapped 95% confidence intervals in all of our scatter plots, showing the uncertainty of predictive performance.

      The focus on mental health in a largely normative sample leads to the predictions being largely based on the normal range. It would be interesting to subsample the data and ask how well the extremes are predicted. 

      We appreciate this comment. Similar to our response to Reviewer 2’s Weakness #1, our approach has drawn inspiration from the RDoC framework, which emphasises the variation from normal to abnormal in normative samples (Morris et al., 2022). Subsampling the data would make us deviate from our original motivation. 

      Moreover, we used 17 mental healh variables in our predictive models: 8 CBCL subscales, 4 BIS/BAS subscales and 5 UPSS subscales. It is difficult to subsample them. Perhaps a better approach is to test the applicability of our neurobiological units of analysis for cognitive abilities (multimodal neuroimaging and PGS) in other datasets that include more extreme samples. We are working on this line of studies at the moment, and hope to show that in our future work. 

      Reviewer 2’s Weakness #4

      A minor query - why are only cortical features shown in Figure 3? 

      We presented both cortical and subcortical features in Figure 3. The cortical features are shown on the surface space, while the subcortical features are displayed on the coronal plane. Below is an example of these cortical and subcortical features from the ENBack contrast. The subcortical features are presented in the far-right coronal image.

      We separated the presentation of cortical and subcortical features because the ABCD uses the CIFTI format (https://www.humanconnectome.org/software/workbenchcommand/-cifti-help). CIFTI-format images combine cortical surface (in vertices) with subcortical volume (in voxels). For task fMRI, the ABCD parcellated cortical vertices using Freesurfer’s Destrieux atlas and subcortical voxels using Freesurfer’s automatically segmented brain volume (ASEG).

      Due to the size of the images in Figure 3, it may have been difficult for Reviewer 2 to see the subcortical features clearly. We have now added zoomed-in versions of this figure as Supplementary Figures 4–13.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the autors):

      (1) In the abstract, could the authors mention which imaging modalities contribute most to the prediction of cognitive abilities (e.g., working memory-related task fMRI)? 

      Thank you for the suggestion. Following this advice, we now mention which imaging modalities led to the highest predictive performance. Please see the abstract below.

      “Cognitive abilities are often linked to mental health across various disorders, a pattern observed even in childhood. However, the extent to which this relationship is represented by different neurobiological units of analysis, such as multimodal neuroimaging and polygenic scores (PGS), remains unclear. 

      Using large-scale data from the Adolescent Brain Cognitive Development (ABCD) Study, we first quantified the relationship between cognitive abilities and mental health by applying multivariate models to predict cognitive abilities from mental health in children aged 9-10, finding an out-of-sample r\=.36 . We then applied similar multivariate models to predict cognitive abilities from multimodal neuroimaging, polygenic scores (PGS) and environmental factors. Multimodal neuroimaging was based on 45 types of brain MRI (e.g., task fMRI contrasts, resting-state fMRI, structural MRI, and diffusion tensor imaging). Among these MRI types, the fMRI contrast, 2-Back vs. 0-Back, from the ENBack task provided the highest predictive performance (r\=.4). Combining information across all 45 types of brain MRI led to the predictive performance of r\=.54. The PGS, based on previous genome-wide association studies on cognitive abilities, achieved a predictive performance of r\=.25. Environmental factors, including socio-demographics (e.g., parent’s income and education), lifestyles (e.g., extracurricular activities, sleep) and developmental adverse events (e.g., parental use of alcohol/tobacco, pregnancy complications), led to a predictive performance of r\=.49. 

      In a series of separate commonality analyses, we found that the relationship between cognitive abilities and mental health was primarily represented by multimodal neuroimaging (66%) and, to a lesser extent, by PGS (21%). Additionally, environmental factors accounted for 63% of the variance in the relationship between cognitive abilities and mental health. The multimodal neuroimaging and PGS then explained 58% and 21% of the variance due to environmental factors, respectively. Notably, these patterns remained stable over two years. 

      Our findings underscore the significance of neurobiological units of analysis for cognitive abilities, as measured by multimodal neuroimaging and PGS, in understanding both a) the relationship between cognitive abilities and mental health and b) the variance in this relationship shared with environmental factors.”

      (2) Could the authors clarify what they mean by "completing the transdiagnostic aetiology of mental health" in the introduction? (Second paragraph). 

      Thank you. 

      We intended to convey that understanding the transdiagnostic aetiology of mental health would be enhanced by knowing how neurobiological units of cognitive abilities, from the brain to genes, capture variations due to environmental factors. We realise this sentence might be confusing. Removing it does not alter the intended meaning of the paragraph, as we clarified this point later. The paragraph now reads:

      “According to the National Institute of Mental Health’s Research Domain Criteria (RDoC) framework (Insel et al., 2010), cognitive abilities should be investigated not only behaviourally but also neurobiologically, from the brain to genes. It remains unclear to what extent the relationship between cognitive abilities and mental health is represented in part by different neurobiological units of analysis -- such as neural and genetic levels measured by multimodal neuroimaging and polygenic scores (PGS). To fully comprehend the role of neurobiology in the relationship between cognitive abilities and mental health, we must also consider how these neurobiological units capture variations due to environmental factors, such as sociodemographics, lifestyles, and childhood developmental adverse events (Morris et al., 2022). Our study investigated the extent to which a) environmental factors explain the relationship between cognitive abilities and mental health, and b) cognitive abilities at the neural and genetic levels capture these associations due to environmental factors. Specifically, we conducted these investigations in a large normative group of children from the ABCD study (Casey et al., 2018). We chose to examine children because, while their emotional and behavioural problems might not meet full diagnostic criteria (Kessler et al., 2007), issues at a young age often forecast adult psychopathology (Reef et al., 2010; Roza et al., 2003). Moreover, the associations among different emotional and behavioural problems in children reflect transdiagnostic dimensions of psychopathology (Michelini et al., 2019; Pat et al., 2022), making children an appropriate population to study the transdiagnostic aetiology of mental health, especially within a framework that emphasises normative variation from normal to abnormal, such as the RDoC (Morris et al., 2022).“

      (3) It is unclear to me what the authors mean by this statement in the introduction: "Note that using the word 'proxy measure' does not necessarily mean that the predictive model for a particular measure has a high predictive performance - some proxy measures have better predictive performance than others". 

      We added this sentence to address a previous reviewer’s comment: “The authors use the phrasing throughout 'proxy measures of cognitive abilities' when they discuss PRS, neuroimaging, sociodemographics/lifestyle, and developmental factors. Indeed, the authors are able to explain a large proportion of variance with different combinations of these measures, but I think it may be a leap to call all of these proxy measures of cognition. I would suggest keeping the language more objective and stating these measures are associated with cognition.” 

      Because of this comment, we assumed that the reviewers wanted us to avoid the misinterpretation that a proxy measure implies high predictive performance. This term is used in machine learning literature (for instance, Dadi et al., 2021). We added the aforementioned sentence to ensure readers that using the term 'proxy measure' does not necessarily mean that the predictive model for a particular measure has high predictive performance. However, it seems that our intention led to an even more confusing message. Therefore, we decided to delete that sentence but keep an earlier sentence that explains the meaning of a proxy measure (see below).

      “With opportunistic stacking, we created a ‘proxy’ measure of cognitive abilities (i.e., predicted value from the model) at the neural unit of analysis using multimodal neuroimaging.”

      (4) Overall, despite comments from reviewers at another journal, I think the authors still refer to RDoC more than needed in the intro given the restructuring of the manuscript. For instance, at the end of page 4 and top of page 5, it becomes a bit confusing when the authors mention how they deviated from the RDoC framework, but their choice of cognitive domains is still motivated by RDoC. I think the chosen cognitive constructs are consistent with what is in ABCD and what other studies have incorporated into the g factor and do not require the authors to further justify their choice through RDoC. Also, there is emerging work showing that RDoC is limited in its ability to parse apart meaningful neuroimaging-based patterns; see for instance, Quah et al., Nature 2025 (https://doi.org/10.1038/s41467-025-55831-z). 

      Thank you very much for your comment. We have addressed it in our Response to Reviewer 1’s summary, strengths, and weaknesses above. We have rewritten the paragraph to clarify the relevance of our work to the RDoC framework and to recent studies aiming to improve RDoC constructs (including that from Quah and colleagues).

      (5) I am still on the fence about the use of 'proxy measures of cognitive abilities' given that it is defined as the predictive performance of mental health measures in predicting cognition - what about just calling these mental health predictors? Also, it would be easier to follow this train of thought throughout the manuscript. But I leave it to the authors if they decide to keep their current language of 'proxy measure of cognition'. 

      Thank you so much for your flexibility. As we explained previously, this ‘proxy measures’ term is used in machine learning literature (for instance, Dadi et al., 2021). We thought about other terms, such as “score”, which is used in genetics, i.e., polygenic scores (Choi et al., 2020). and has recently been used in neuroimaging, i.e., neuroscore (Rodrigue et al., 2024). However, using a ‘score’ is a bit awkward for mental health and socio-demographics, lifestyle and developmental adverse events. Accordingly, we decided to keep the term ‘proxy measures’.

      (6) It is unclear which cognitive abilities are being predicted in Figure 1, given the various domains that authors describe in their intro. Is it the g-factor from CFA? This should be clarified in all figure captions. 

      Yes, cognitive abilities are operationalised using a second-order latent variable, the g-factor from a CFA. We now added the following sentence to Figure 1, 2, 4 to make this point clearer. Thank you for the suggestion:

      “Cognitive abilities are based on the second-order latent variable, the g-factor, based on a confirmatory factor analysis of six cognitive tasks.”

      (7) I think it may also be worthwhile to showcase the explanatory power cognitive abilities have in predicting mental health or at least comment on this in the discussion. Certainly, there may be a bidirectional relationship here. The prediction direction from cognition to mental health may be an altogether different objective than what the paper currently presents, but many researchers working in psychiatry may take the stance (with support from the literature) that cognitive performance may serve as premorbid markers for later mental health concerns, particularly given the age range that the authors are working with in ABCD. 

      Thank you for this comment. 

      It is important to note that we do not make a directional claim in these cross-sectional analyses. The term "prediction" is used in a machine learning sense, implying only that we made an out-of-sample prediction (Yarkoni & Westfall, 2017). Specifically, we built predictive models on some samples (i.e., training participants) and applied our models to test participants who were not part of the model-building process. Accordingly, our predictive models cannot determine whether mental health “causes” cognitive abilities or vice versa, regardless of whether we treat mental health or cognitive abilities as feature/explanatory/independent variables or as target/response/outcome variables in the models. To demonstrate directionality, we would need to conduct a longitudinal analysis with many more repeated samples and use appropriate techniques, such as a cross-lagged panel model. It is beyond the scope of this manuscript and will need future releases of the ABCD data.

      We decided to use cognitive abilities as a target variable here, rather than a feature variable, mainly for theoretical reasons. This work was inspired by the RDoC framework, which emphasises functional domains. Cognitive abilities is the functional domain in the current study. We created predictive models to predict cognitive abilities based on a) mental health, b) multimodal neuroimaging, c) polygenic scores, and d) environmental factors. We could not treat cognitive abilities as a functional domain if we used them as a feature variable. For instance, if we predicted mental health (instead of cognitive abilities) from multimodal neuroimaging and polygenic scores, we would no longer capture the neurobiological units of analysis for cognitive abilities.

      We now made it clearer in the discussion that our use of predictive models cannot provide the directional of the effects

      “Our predictive modelling revealed a medium-sized predictive relationship between cognitive abilities and mental health. This finding aligns with recent meta-analyses of case-control studies that link cognitive abilities and mental disorders across various psychiatric conditions (Abramovitch et al., 2021; East-Richard et al., 2020). Unlike previous studies, we estimated the predictive, out-of-sample relationship between cognitive abilities and mental disorders in a large normative sample of children. Although our predictive models, like other cross-sectional models, cannot determine the directionality of the effects, the strength of the relationship between cognitive abilities and mental health estimated here should be more robust than when calculated using the same sample as the model itself, known as in-sample prediction/association (Marek et al., 2022; Yarkoni & Westfall, 2017). Examining the PLS loadings of our predictive models revealed that the relationship was driven by various aspects of mental health, including thought and externalising symptoms, as well as motivation. This suggests that there are multiple pathways—encompassing a broad range of emotional and behavioural problems and temperaments—through which cognitive abilities and mental health are linked.”

      (8) There is a lot of information packed into Figure 3 in the brain maps; I understand the authors wanted to fit this onto one page, and perhaps a higher resolution figure would resolve this, but the brain maps are very hard to read and/or compare, particularly the coronal sections. 

      Thank you for this suggestion. We agree with Reviewer 1 that we need to have a better visualisation of the feature-importance brain maps. To ensure that readers can clearly see the feature importance, we added a Zoom-in version of the feature-importance brain maps as Supplementary Figures 4 – 13.

      (9) It would be helpful for authors to cluster features in the resting state functional connectivity correlation matrices, and perhaps use shorter names/acronyms for the labels. 

      Thank you for this suggestion. 

      We have now added a zoomed-in version of the feature importance for rs-fmri as Supplementary Figure 7 (for baseline) and 12 (for follow-up).

      (10) Figures 4a) and 4b): please elaborate on "developmental adverse" in the title. I am assuming this is referring to childhood adverse events, or "developmental adversities". 

      Thank you so much for pointing this out. We meant ‘developmental adverse events’. We have made changes to this figure in the current manuscript.

      (11) For the "follow-up" analyses, I would recommend the authors present this using only the features that are indeed available at follow-up, even if the list of features is lower, otherwise it becomes a bit confusing with the mix of baseline and follow-up features. Or perhaps the authors could make this more clear in the figures by perhaps having a different color for baseline vs follow-up features along the y-axis labels. 

      Thank you for this advice. We have now added an indicator in the plot to show whether the features were collected in the baseline or follow-up. We also added colours to indicate which type of environmental factors they were. It is now clear that the majority of the features that were collected at baseline, but were used for the followup predictive model, were developmental adverse events.

      (12) Minor: Makowski et al 2023 reference can be updated to Makowski et al 2024, published in Cerebral Cortex. 

      Thank you for pointing this out. We have updated the citation accordingly. 

      References

      Abramovitch, A., Short, T., & Schweiger, A. (2021). The C Factor: Cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clinical Psychology Review, 86, 102007. https://doi.org/10.1016/j.cpr.2021.102007

      Beam, E., Potts, C., Poldrack, R. A., & Etkin, A. (2021). A data-driven framework for mapping domains of human neurobiology. Nature Neuroscience, 24(12), 1733–1744. https://doi.org/10.1038/s41593-021-00948-9

      Calvin, C. M., Batty, G. D., Der, G., Brett, C. E., Taylor, A., Pattie, A., Čukić, I., & Deary, I. J. (2017). Childhood intelligence in relation to major causes of death in 68 year follow-up: Prospective population study. BMJ, j2708. https://doi.org/10.1136/bmj.j2708

      Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. C., Dick, A. S., Bjork, J. M., Thomas, K. M., … ABCD Imaging Acquisition Workgroup. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 43–54. https://doi.org/10.1016/j.dcn.2018.03.001

      Choi, S. W., Mak, T. S.-H., & O’Reilly, P. F. (2020). Tutorial: A guide to performing polygenic risk score analyses. Nature Protocols, 15(9), Article 9. https://doi.org/10.1038/s41596-020-0353-1

      Dadi, K., Varoquaux, G., Houenou, J., Bzdok, D., Thirion, B., & Engemann, D. (2021). Population modeling with machine learning can enhance measures of mental health. GigaScience, 10(10), giab071. https://doi.org/10.1093/gigascience/giab071

      Deary, I. J. (2012). Intelligence. Annual Review of Psychology, 63(1), 453–482. https://doi.org/10.1146/annurev-psych-120710-100353

      Deary, I. J., Pattie, A., & Starr, J. M. (2013). The Stability of Intelligence From Age 11 to Age 90 Years: The Lothian Birth Cohort of 1921. Psychological Science, 24(12), 2361–2368. https://doi.org/10.1177/0956797613486487

      East-Richard, C., R. -Mercier, A., Nadeau, D., & Cellard, C. (2020). Transdiagnostic neurocognitive deficits in psychiatry: A review of meta-analyses. Canadian Psychology / Psychologie Canadienne, 61(3), 190–214. https://doi.org/10.1037/cap0000196

      Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. American Journal of Psychiatry, 167(7), 748–751. https://doi.org/10.1176/appi.ajp.2010.09091379

      Kessler, R. C., Amminger, G. P., Aguilar-Gaxiola, S., Alonso, J., Lee, S., & Üstün, T. B. (2007). Age of onset of mental disorders: A review of recent literature. Current Opinion in Psychiatry, 20(4). https://journals.lww.com/co-psychiatry/fulltext/2007/07000/age_of_onset_of_mental_disorders_a_review_of .10.aspx

      Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., Donohue, M. R., Foran, W., Miller, R. L., Hendrickson, T. J., Malone, S. M., Kandala, S., Feczko, E., Miranda-Dominguez, O., Graham, A. M., Earl, E. A., Perrone, A. J., Cordova, M., Doyle, O., … Dosenbach, N. U. F. (2022). eproducible brain-wide association studies require thousands of individuals. Nature, 603(7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9

      Michelini, G., Barch, D. M., Tian, Y., Watson, D., Klein, D. N., & Kotov, R. (2019). Delineating and validating higher-order dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) study. Translational Psychiatry, 9(1), 261. https://doi.org/10.1038/s41398-019-0593-4

      Morris, S. E., & Cuthbert, B. N. (2012). Research Domain Criteria: Cognitive systems, neural circuits, and dimensions of behavior. Dialogues in Clinical Neuroscience, 14(1), 29–37.

      Morris, S. E., Sanislow, C. A., Pacheco, J., Vaidyanathan, U., Gordon, J. A., & Cuthbert, B. N. (2022). Revisiting the seven pillars of RDoC. BMC Medicine, 20(1), 220. https://doi.org/10.1186/s12916-022-02414-0

      Pat, N., Riglin, L., Anney, R., Wang, Y., Barch, D. M., Thapar, A., & Stringaris, A. (2022). Motivation and Cognitive Abilities as Mediators Between Polygenic Scores and Psychopathology in Children. Journal of the American Academy of Child and Adolescent Psychiatry, 61(6), 782-795.e3. https://doi.org/10.1016/j.jaac.2021.08.019

      Pat, N., Wang, Y., Bartonicek, A., Candia, J., & Stringaris, A. (2023). Explainable machine learning approach to predict and explain the relationship between task-based fMRI and individual differences in cognition. Cerebral Cortex, 33(6), 2682–2703. https://doi.org/10.1093/cercor/bhac235

      Quah, S. K. L., Jo, B., Geniesse, C., Uddin, L. Q., Mumford, J. A., Barch, D. M., Fair, D. A., Gotlib, I. H., Poldrack, R. A., & Saggar, M. (2025). A data-driven latent variable approach to validating the research domain criteria framework. Nature Communications, 16(1), 830. https://doi.org/10.1038/s41467-025-55831-z

      Reef, J., Diamantopoulou, S., van Meurs, I., Verhulst, F., & van der Ende, J. (2010). Predicting adult emotional and behavioral problems from externalizing problem trajectories in a 24-year longitudinal study. European Child & Adolescent Psychiatry, 19(7), 577–585. https://doi.org/10.1007/s00787-010-0088-6

      Rodrigue, A. L., Hayes, R. A., Waite, E., Corcoran, M., Glahn, D. C., & Jalbrzikowski, M. (2024). Multimodal Neuroimaging Summary Scores as Neurobiological Markers of Psychosis. Schizophrenia Bulletin, 50(4), 792–803. https://doi.org/10.1093/schbul/sbad149

      Roza, S. J., Hofstra, M. B., Van Der Ende, J., & Verhulst, F. C. (2003). Stable Prediction of Mood and Anxiety Disorders Based on Behavioral and Emotional Problems in Childhood: A 14-Year Follow-Up During Childhood, Adolescence, and Young Adulthood. American Journal of Psychiatry, 160(12), 2116–2121. https://doi.org/10.1176/appi.ajp.160.12.2116

      Yarkoni, T., & Westfall, J. (2017). Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Perlee et al. sought to generate a zebrafish line where CRISPR-based gene editing is exclusively limited to the melanocyte lineage, allowing assessment of cell-type restricted gene knockouts. To achieve this, they knocked in Cas9 to the endogenous mitfa locus, as mitfa is a master regulator of melanocyte development. The authors use multiple candidate genes - albino, sox10, tuba1a, ptena/ptenb, tp53 - to demonstrate their system induces lineagerestricted gene editing. This method allows researchers to bypass embryonic lethal and non-cell autonomous phenotypes emerging from whole body knockout (sox10, tuba1a), drive directed phenotypes, such as depigmentation (albino), and induce lineage-specific tumors, such as melanomas (ptena/ptenb, tp53, when accompanied with expression of BRAFV600E). While the genetic approaches are solid, the argued increase in efficiency of this model compared to current tools was untested, and therefore unable to be assessed. Furthermore, the mechanistic explanations proposed to underlie their phenotypes are mostly unfounded, as discussed further in the Weaknesses section. Despite these concerns, there is still a clear use for this genetic methodology and its implementation will be of value to many in vivo researchers.

      Strengths:

      The strongest component of this manuscript is the genetic control offered by the mitfa:Cas9 system and the ability to make stable, lineage-specific knockouts in zebrafish. This is exemplified by the studies of tuba1a, where the authors nicely show non-cell autonomous mechanisms have obfuscated the role of this gene in melanocyte development. In addition, the mitfa:Cas9 system is elegantly straightforward and can be easily implemented in many labs. Mostly, the figures are clean, controls are appropriate, and phenotypes are reproducible. The invented method is a welcomed addition to the arsenal of genetic tools used in zebrafish.

      Weaknesses:

      The major weaknesses of the manuscript include the overly bold descriptions of the value of the model and the superficial mechanistic explanations for each biological vignette.

      The authors argue that a major advantage of this system is its high efficiency. However, no direct comparison is made with other tools that achieve the same genetic control, such as MAZERATI. This is a missed opportunity to provide researchers the ability to evaluate these two similar genetic approaches. In addition, Fig.1 shows that not all melanocytes express Cas9. This is a major caveat that goes unaddressed. It is of paramount importance to understand the percentage of mitfa+ cells that express Cas9. The histology shown is unclear and too zoomed out of a scale to make any insightful conclusions, especially in Fig.S1. It would also be beneficial to see data regarding Cas9 expression in adult melanocytes, which are distinct from embryonic melanocytes in zebrafish. Moreover, this system still requires the injection of a plasmid encoding gRNAs of interest, which will yield mosaicism. A prime example of this discrepancy is in Fig.6, where sox10 is clearly still present in "sox10 KO" tumors.

      We agree with these points. While our method has the advantage of endogenous knockin (thus keeping all regulatory elements), you are correct that we did not make a direct comparison with existing technologies like MAZERATI, and therefore we cannot make comparative claims about efficiency. Based on this, we have revised the manuscript to remove these points, reduce the strength/boldness of the claims, and make it more clear what our system achieves in comparison to existing systems. In reference to the other specific points you raise above about mosaicism and extent of Cas9 expression:

      - We have added a paragraph to address the advantages and disadvantages of mitfaCas9 compared to expression of Cas9 with lineage-specific promoters including MAZERATI in the discussion.  

      - Figure 1C has been revised to more clearly show the overlap of mitfa and Cas9 in melanocytes. 

      - We then quantified the percentage of mitfa+ cells expressing Cas9 from the in situ hybridizations (Supplemental Figure S1D). We did attempt to look at Cas9 protein expression in both embryonic and adult melanocytes by immunofluorescence. Unfortunately, the Cas9 antibodies commercially available did not work on the zebrafish embryos or adult tailfins, so we are limited in proper quantification to the in situs in the embryos.

      The authors argue that their model allows rapid manipulation of melanocyte gene expression. Enthusiasm for the speed of this model is diminished by minimal phenotypes in the F0, as exemplified in Fig.2. Although the authors say >90% of fish have loss of pigmentation, this is misleading as the phenotype is a very weak, partial loss. Only in the F1 generation do robust phenotypes emerge, which takes >6 months to generate. How this is more efficient than other tools that currently exist is unclear and should be discussed in more detail.

      This needed clarification, and we have now modified the Discussion to reflect this more accurately. What we were trying to show is that both F0 and F1 fish can be useful in screening for the effect of any given gene. In the F0, while you are correct that the phenotype is indeed weak/partial, it is also quantifiable and therefore can be used as a rapid screen for potential effects of knockout, so it can help with speed. The major advantage of the F1 generation is that we can generate fully penetrant phenotypes for recessive genes since the fish just needs to have 1 copy of the Cas9/sgRNA instead of 2. This means we do not have to go to F2 or F3 generations, which really does save time. But we agree this could be achieved using MAZERATI, and so we have added these considerations to the manuscript, as we feel these are important.

      In Figure 3, the authors find that melanocyte-specific knockout of sox10 leads to only a 25% reduction in melanocytes in the F1 generation. This is in contradiction to prior literature cited describing sox10 as indispensable for melanocyte development. In addition, the authors argue that sox10 is required for melanocyte regeneration. This claim is not accurate, as >50% of melanocytes killed upon neocuproine treatment can regenerate. This data would indicate that sox10 is required for only a subset of melanocytes to develop (Fig.3C) and for only a subset to regenerate (Fig.3G). This is an interesting finding that is not discussed or interrogated further.

      We too were initially very puzzled by this result. We do not completely understand it, but we have two thoughts about it. First could be timing. sox10 usually starts to be expressed around the 1-somite stage, and so in the original sox10/colourless mutant (which truly has no melanocytes), sox10 will be lost during those early stages. In contrast, mitf comes on later (around 18hpf) so this might indicate that there is a subset of melanocytes that are dependent upon this early expression of sox10. This may indicate that there could be different functions of sox10 early in melanocyte development versus later timepoints after melanocytes have already been specified. This might also help explain our findings during regeneration.  Second could be genetic compensation. Since in the other parts of the paper we seem to see a somewhat reciprocal relationship between sox10 and sox9, it is conceivable that loss of sox10 in the melanocytes could be compensated for by sox9 (or even other genes) in our CRISPR approach (as opposed to the ENU allele in colourless). Since we really do not fully understand this, we have added a section to the Discussion about this issue, mentioning these possibilities but leaving open other yet to be defined mechanisms.

      Tumor induction by this model is weak, as indicated by the tumor curves in Figs.5,6. This might be because these fish are mitfa heterozygous. Whereas the avoidance of mitfa overexpression driven by other models including MAZERATI is a benefit of this system, the effect of mitfa heterozygosity on tumor incidence was untested. This is an essential question unaddressed in the manuscript.

      We agree that in the BRAF;p53 group especially tumor incidence is very low, although PTEN loss does accelerate it. One possibility is exactly as you stated, and that mitfa heterozygosity is the etiology. The other possibility is that in the MAZERATI approach (https://pubmed.ncbi.nlm.nih.gov/30385465/) the authors used the casper background as opposed to the wild-type T5D as we did in our study. In unpublished observations, we have found that casper (with miniCoopR rescue) is markedly more sensitive to melanoma induction compared to WT fish in this setting. In fact, in looking at our BRAF;p53 curves compared to the original Patton paper curves (https://pubmed.ncbi.nlm.nih.gov/15694309/) which were also done in a WT background with no miniCoopR, they are fairly similar. This might indicate that casper + miniCoopR particularly sensitizes the fish to melanoma. However, because we do not fully know the reasons for this, we have now included both of these possible reasons in the Discussion.

      In Fig.6, the authors recapitulate previous findings with their model, showing sox10 KO inhibits tumor onset. The tumors that do develop are argued to be highly invasive, have mesenchymal morphology, and undergo phenotypic switching from sox10 to sox9 expression. The data presented do not sufficiently support these claims. The histology is not readily suggestive of invasive, mesenchymal melanomas. Sox10 is still present in many cells and sox9 expression is only found in a small subset (<20%). Whether sox10-null cells are the ones expressing sox9 is untested. If sox9-mediated phenotypic switching is the major driver of these tumors, the authors would need to knockout sox9 and sox10 simultaneously and test whether these "rare" types of tumors still emerge. Additional histological and genetic evaluation is required to make the conclusions presented in Fig.6. It feels like a missed opportunity that the authors did not attempt to study genes of unknown contribution to melanoma with their system.

      We did not mean to overstate the admittedly early observations from these fish. Invasiveness in the fish models can be difficult to precisely quantify, and therefore is somewhat qualitative. While we did not mean to imply that every cell that loses sox10 will become sox9 positive (which is clearly not the case), the human single-cell RNA-seq data does suggest these are somewhat mutually exclusive populations (https://pubmed.ncbi.nlm.nih.gov/32753671/). This phenomenon has also long been observed even prior to single-cell approaches (https://pubmed.ncbi.nlm.nih.gov/25629959/). So while we agree our data is not definitive in this regard, it is consistent with the literature and was presented mainly to provide areas for future exploration with the model. 

      Overall, this manuscript introduces a solid method to the arsenal of zebrafish genetic tools but falls short of justifying itself as a more efficient and robust approach than what currently exists. The mechanisms provided to explain observed phenotypes are tenuous. Nonetheless, the mitfa:Cas9 approach will certainly be of value to many in vivo biologists and lays the foundation to generate similar methods using other tissue-specific regulators and other Cas proteins.

      We hope that by toning down the language around what we have observed, and providing as honest an assessment as possible as to what might be occurring, that the manuscript will be helpful for future studies aiming to knock out genes in the melanocyte lineage.

      Reviewer #2 (Public review):

      Summary:

      This manuscript describes a genetic tool utilizing mutant mitfa-Cas9 expressing zebrafish to knockout genes to analyze their function in melanocytes in a range of assays from developmental biology to tumorigenesis. Overall, the data are convincing and the authors cover potential caveats from their model that might impact its utility for future work.

      Strengths:

      The authors do an excellent job of characterizing several gene deletions that show the specificity and applicability of the genetic mitfa-Cas9 zebrafish to studying melanocytes.

      Weaknesses:

      Variability across animals not fully analyzed.

      To more clearly show variability across animals, we calculated the percentage of mitfa+ cells that express Cas9 across n=7 mitfaCas9 embryos. We also expanded Supplemental Figure 2 to show loss of pigmentation across n=7 individual adult MG-albino F2 fish instead of one representative image.

      Reviewer #3 (Public review):

      Summary:

      Perlee et al. present a method for generating cell-type restricted knockouts in zebrafish, focusing on melanocytes. For this method, the authors knock-in a Cas9 encoding sequence into the mitfa locus. This mitfaCas9 line has restricted Cas9 expression, allowing the authors to generate melanocyte-specific knockouts rapidly by follow-up injection of sgRNA expressing transposon vectors.

      The paper presents some interesting vignettes to illustrate the utility of their approach. These include 1) a derivation of albino mutant fish as a demonstration of the method's efficiency, 2) an interrogation and novel description of tuba1a as a potential non-autonomous contributor to melanocyte dispersion, and 3) the generation of sox10 deficient melanoma tumors that show "escape" of sox10 loss through upregulation of sox9. The latter two examples highlight the usefulness of cell-type targeted knockouts (Body-wide sox10 and tuba1a loss elicit developmental defects). Additionally, the tumor models involve highly multiplexed sgRNAs for tumor initiation which is nicely facilitated by the stable Cas9.

      Strengths:

      The approach is clever and could prove very useful for studying melanocytes and other cell types. As the authors hint at in their discussion, this approach would become even more powerful with the generation of other Cas9-restricted lineages so a single sgRNA construct can be screened across many lineages rapidly (or many sgRNA and fish lines screened combinatorially).

      The biological findings used to demonstrate the power of the approach are interesting in their own right. If it proves true, tuba1a's non-autonomous effects on melanosome dispersion are striking, and this example demonstrates very nicely how one could use Perlee et al.'s approach to search for other non-autonomous mechanisms systematically. Similarly, the observation of the sox9 escape mechanism with sox10 loss is a beautiful demonstration of the relevance of SOX10/SOX9's reciprocal regulation in vivo. This system would be a very nice model for further interrogating mechanisms/interventions surrounding Sox10 in melanoma.

      Finally, the figure presentation is very nice. This work involves complex genetic approaches including multiple fish generations and multiplexed construct injections. The vector diagrams and breeding schemes in the paper make everything very clear/"grok-able," and the paper was enjoyable to read.

      Weaknesses:

      The mitfa-driven GFP on their sgRNA-expressing cassette is elegant, but it makes one wonder why the endogenous knock-in is necessary. It would strengthen the motivation of the work if the authors could detail the potential advantages and disadvantages of their system compared to expressing Cas9 with a lineage-specific promoter from a transposon in their introduction or discussion.

      We agree this needed a better and more clear explanation. There are many excellent examples of promoter driven Cas9 approaches. Within melanocytes, Ablain and others have developed the MAZERATI system (https://pubmed.ncbi.nlm.nih.gov/30385465/) which is very powerful, especially for melanoma development. In our minds, the major advantage of endogenous knockin is that we retain all of the natural regulatory elements (many of which are not known) and so small promoter fragments always run the risk of missing certain types of regulation. While these regulatory elements may not matter under homeostatic conditions, they may become very important under perturbation, stress or disease states. This is why it is common, for example, in the mouse field, to knock in things like Cre into endogenous loci. We have now added a clarification of this to the manuscript.

      Related to the above - is mitfa haplosufficient? If the mitfaCas9/+ fish have any notable phenotypes, it would be worth noting for others interested in using this approach to study melanoma and pigmentation.

      In normal melanocytes, mitfa is haplosufficient. There are no visible differences between mitfaCas9/+ and wild-type fish at any stages of development (Figure S1C). Although we did not directly compare tumor growth in mitfa-/+ and mitfa+/+ fish in this study, it is possible that the disruption of mitfa in mitfaCas9/+ fish affects melanoma development. Most zebrafish melanoma models involve the overexpression of mitfa with MiniCoopR vectors and it would be interesting in future studies to determine how mitfa heterozygosity affects melanoma initiation or progression. 

      A core weakness (and also potential strength) of the system is that introduced edits will always be non-clonal (Fig 2H/I). The activity of individual sgRNAs should always be validated in the absence of any noticeable phenotype to interpret a negative result. Additionally, caution should be taken when interpreting results from rare events involving positive outgrowth (like tumorogenesis) to account for the fact many cells in the population might not have biallelic null alleles (i.e., 100% of the gene product removed).

      Along those lines: in my opinion, the tuba1a results are the most provocative finding in the paper, but they lack key validation. With respect to cutting activity, the Alt-R and transgenic sgRNA expression approaches are not directly comparable. Since there is no phenotype in the melanocyte specific tuba1a knockouts, the authors must confirm high knockout efficiency with this set of reagents before making the claim there is a non-autonomous phenotype. This can be achieved with GFP+ sorting and NGS like they performed with their albino melanocytes.

      The whole-body tuba1a knockout phenotype is expected to be pleiotropic, and this expectation might mask off-target effects. Controls for knockout specificity should be included. For instance, confidence in the claims would greatly increase if the dispersed melanosome phenotype could be recovered with guide-resistant tuba1a re-expression and if melanocyte-restricted tuba1a reexpression failed to rescue. As a less definitive but adequate alternative, the authors could also test if another guide or a morpholino against tuba1a phenocopies the described Alt-R edited fish.

      Thank you for your thoughtful suggestions, which led us to an important discovery. While validating the original tuba1a guide RNA, we found that tuba1a sg1 also targets tuba1c, a gene that shares 99.78% homology with tuba1a in zebrafish. To determine which gene was responsible for the melanocyte phenotype, we designed multiple new guide RNAs specifically targeting either tuba1a or tuba1c and used Alt-R to globally knock them out in zebrafish embryos. However, none of these guides successfully replicated the phenotype (Sanger sequencing validation for the most efficient tuba1a and tuba1c guides is provided below).

      Ultimately, we identified a new guide RNA (5’-GGTCTACAAAGACAGCCCTA-3’) that successfully phenocopied the original tuba1a sg1 melanocyte phenotype. Tuba1c—but not tuba1a—was predicted to have a mismatch at the 3’ end of the guide sequence, which is typically expected to inhibit target cleavage. Surprisingly, despite this mismatch, we observed robust cleavage in both tuba1a and tuba1c. Since the melanocyte phenotype was only reproducible when both tuba1a and tuba1c were targeted, this suggests potential compensatory interactions between these highly similar genes. We have updated the text and figures to reflect this finding and have included validation of this second guide RNA (tuba1a/c sg2) in Supplemental Figure 3.

      As you suggested, we also conducted GFP+ sorting and NGS to confirm knockout of both tuba1a and tuba1c in melanocytes of mitfaCas9 fish (Figure S3G). The knockout percentages were comparable to those observed in our previous experiment with MG_-albino_ fish. This also confirms that this method can be used to sort and sequence GFP+ cells even when pigmentation is retained, which was not the case for albino fish. 

      I have similar questions about the sox10 escapers, but these suggestions are less critical for supporting the authors claims (especially given the nice staining). Are the sox10 tumors relatively clonal with respect to sox10 mutations? And are the sox10 tumor mutations mostly biallelic frameshifts or potential missense mutations/single mutations that might not completely remove activity? I am particularly curious as SOX10 doesn't seem to be completely absent (and is still very high in some nuclei) in the immunohistochemistry.

      We attempted to address this question by performing DNA sequencing on the FFPE blocks that we had retained from the original study. While our sequencing facility said this should be possible, we could not consistently generate high enough quality DNA to make a definitive statement either way. While we are very curious to know what the nature of the mutations are in these “escapers”, the student who performed these studies has now graduated, and it would take us several additional months to a year to fully address it. Given this, we would prefer to leave this open question to a future paper, but have addressed this limitation in the Discussion.

      Recommendations for the authors:

      Reviewing Editor:

      Overall, the reviewers felt and eLife concurs that your manuscript is insightful and appropriate for publication. Reviewers were impressed by your generating a zebrafish line where CRISPRbased gene editing is exclusively limited to the melanocyte lineage, allowing assessment of celltype restricted gene knockouts. Your use of multiple candidate genes to demonstrate that your system induces lineage-restricted gene editing is compelling and will be of interest to the broad readership of eLife. This method will allow researchers to bypass embryonic lethal and non-cell autonomous phenotypes emerging from whole body knockout, drive directed phenotypes, such as depigmentation, and induce lineage-specific tumors, such as melanomas. This said, the argued increase in efficiency of this model compared to current tools was untested, and therefore it remains difficult for a reader to assess the extent to which your new model represents a major advance over prior ones. Of additional concern are the mechanistic explanations proposed to underlie the phenotypes, as these are largely unfounded. Thus, in preparing your final publication version of the paper, eLife strongly encourages you to fully address the reviewers' thoughtful comments. In particular, the boldness of the claims made in the manuscript should be reduced. Terms like "highly efficient" and "rapid" are unsupported due to the lack of comparison with other well-established methods, like MAZERATI.

      As discussed above in each of the reviewer points above, we agree with both of these points. We have reduced the boldness of the claims, with a better discussion of the different approaches. We also address the potential mechanisms of our observations, and where and why we still lack an understanding of what gives rise to those phenotypes. 

      There are also some minor discrepancies that should be edited in the manuscript: Fig.2A plasmid description is written oppositely in text; Fig.3 labels G-H are swapped in the legend description; Fig.5A MTdT is unexplained. This is a non-exhaustive list, and the authors are encouraged to carefully read through their manuscript to revise other minor mistakes and formatting errors.

      Figure 2A was revised to show the correct orientation of mitfa:GFP and the guide RNA cassette as described in the text. Figure 3 legend was fixed. We have gone through the manuscript again to make sure we have not made any other errors, to the best of our knowledge.

      The biggest concern is the expression of cas9 and the weak histological support shown in Fig.1 and Fig.S1. It would be a benefit to all readers and potential future users to know how robust cas9 expression is in the melanocyte lineage. It would be helpful if there is a way to analyze the percentage of cells that are mutated in each animal to understand the variability that can exist across animals with the method.

      We have revised Figure 1C to show additional melanocytes and added a new quantification of Cas9 RNA expression in melanocytes (S1D). 

      The analysis of the scRNA sequencing could also be described more fully.

      More details have been added to the scRNA sequencing analysis including the functions that were used. 

      The final major concern is whether this model is genuinely more valuable than MAZERATI. A more elaborate discussion would benefit potential future users to guide their decisions regarding which tool best suits their experimental goals.

      As noted above, we agree with this statement. The reviewers are correct in that we did not directly compare our system to MAZERATI, and therefore cannot make any claims about efficiency in a comparative regard. Therefore, in our revised Discussion, we talk about the relative strengths and weaknesses of each approach, and emphasize that our approach mainly has the advantage of retaining endogenous regulatory elements for mitfa, but that each user should decide which is the best approach for their problem.

      There are also some minor concerns that should be addressed.

      Are the mitfaCas9 fish used as homozygotes before the first cross? If so, might be nice to include their nacre-like phenotype in diagrams like Fig 2A.

      For these studies, heterozygous mitfaCas9 fish were used for all breedings and progeny were sorted for BFP+ eyes. This enabled the comparison to sibling controls without Cas9 expression. 

      BFP+ eye screening for mitfaCas9 is elegant and included nicely in the diagrams. Are germline sgRNA integrants identified in F1 with melanocyte GFP? Or present at a high enough efficiency that this is not relevant? This would be good to include in the diagrams.

      Germline sgRNA integrants are identified with melanocyte GFP in embryos. Figure 2A has been edited to show GFP expression. 

      Most cells are GFP positive in S3C (the F0 "mosaic"). It might be nice to show a single GFP stripe like in the other panels for direct comparison of edited/non-edited in the same fish.

      This figure (now S3E) has been edited to show a clear comparison between GFP+ and GFP- cells in the same fish. 

      177 - CRISPR-Seq is basically amplicon sequencing. This would measure efficiency but not "specificity" as described. Off-target activity would have to be measured at other loci etc. Not necessary to do, but I don't think measured.

      In this case, “specificity” refers to cell type specificity, not genomic specificity. We are measuring cell type specificity by comparing on-target cutting in GFP+ cells (melanocytes) versus GFP- cells (non-mitfa expressing cells). We did not look at off-target activity of Cas9 in this study and have edited the text to make this clearer. 

      219 -"several gaps were visible"

      Fixed

      286 - TUBA1A should be italicized

      Fixed

      399 - SOX9's most enriched dependency in DepMap is cutaneous melanoma and its top coessential gene is SOX10. I'm not sure the SOX9/SOX10 interaction couldn't be parsed from DepMap alone.

      This is true, and the DepMap was actually somewhat of an inspiration for our own studies. We have modified the line to acknowledge this and explain the main advantage of our system is in vivo confirmation of what the DepMap had alluded to.

      433 - "fewer animals since all F1 animals (even those for recessive alleles) are informative."

      The fact that this is approach is faster and more efficient per animal is important to highlight (and very believable), but is this technically true given not all F1 fish will have Cas9 or a germline sgRNA integration?

      In considering this statement, we agree with you and decided to remove it from the text.

      We hope the comments in both the public and private reviews will help improve the manuscript.

      Reviewer #1 (Recommendations for the authors):

      Overall, the boldness of the claims made in the manuscript should be reduced. Terms like "highly efficient" and "rapid" are unsupported due to the lack of comparison with other wellestablished methods, like MAZERATI.

      As discussed above, we agree with this and have now modified the manuscript to better reflect what our system achieves in comparison to the well developed systems such as MAZERATI. Because we have not done a direct comparison, we are not able to make any claims about comparative efficiency, and instead focus on the potential benefits of a knockin approach, which is the maintenance of endogenous regulatory elements.

      There are some minor discrepancies that should be edited in the manuscript: Fig.2A plasmid description is written oppositely in text; Fig.3 labels G-H are swapped in the legend description; Fig.5A MTdT is unexplained. This is a non-exhaustive list, and the authors are encouraged to carefully read through their manuscript to revise other minor mistakes and formatting errors.

      Figure 2A was revised to show the correct orientation of mitfa:GFP and the guide RNA cassette as described in the text. Figure 3 legend was fixed. We have gone through the manuscript again to make sure we have not made any other errors, to the best of our knowledge.

      The biggest concern is the expression of cas9 and the weak histological support shown in Fig.1 and Fig.S1. It would be a benefit to all readers and potential future users to know how robust cas9 expression is in the melanocyte lineage.

      We have revised Figure 1C to show additional melanocytes and added a new quantification of Cas9 RNA expression in melanocytes (S1D). 

      The second major concern is whether this model is genuinely more valuable than MAZERATI. A more elaborate discussion would benefit potential future users to guide their decision regarding which tool best suits their experimental goals.

      As noted above, we agree with this statement. The reviewers are correct in that we did not directly compare our system to MAZERATI, and therefore cannot make any claims about efficiency in a comparative regard. Therefore, in our revised Discussion, we talk about the relative strengths and weaknesses of each approach, and emphasize that our approach mainly has the advantage of retaining endogenous regulatory elements for mitfa, but that each user should decide which is the best approach for their problem.

      We hope the comments in both the public and private reviews will help improve the manuscript.

      Reviewer #2 (Recommendations for the authors):

      While that authors show the indel charts for the Crispr mutations generated in the supplement. However, I wonder if there is a way to analyze the percentage of cells that are mutated in each animal to understand the variability that can exist across animals with the method.

      We have revised Figure 1C to show additional melanocytes and added a new quantification of Cas9 RNA expression in melanocytes (S1D). 

      The analysis of the scRNA sequencing could be described more fully.

      More details have been added to the scRNA sequencing analysis including the functions that were used. 

      Reviewer #3 (Recommendations for the authors):

      This was an excellent read, and I'm very interested in seeing it in its final form. Congratulations! My larger critiques are outlined in the public reviews. A few smaller points:

      Are the mitfaCas9 fish used as homozygotes before the first cross? If so, might be nice to include their nacre-like phenotype in diagrams like Fig 2A.

      For these studies, heterozygous mitfaCas9 fish were used for all breedings and progeny were sorted for BFP+ eyes. This enabled the comparison to sibling controls without Cas9 expression. 

      BFP+ eye screening for mitfaCas9 is elegant and included nicely in the diagrams. Are germline sgRNA integrants identified in F1 with melanocyte GFP? Or present at a high enough efficiency that this is not relevant? This would be good to include in the diagrams.

      Germline sgRNA integrants are identified with melanocyte GFP in embryos. Figure 2A has been edited to show GFP expression. 

      Most cells are GFP positive in S3C (the F0 "mosaic"). It might be nice to show a single GFP stripe like in the other panels for direct comparison of edited/non-edited in the same fish.

      This figure (now S3E) has been edited to show a clear comparison between GFP+ and GFP- cells in the same fish. 

      177 - My understanding is that CRISPR-Seq is basically amplicon sequencing. This would measure efficiency but not "specificity" as described. Off-target activity would have to be measured at other loci etc. Not necessary to do in my opinion, but I don't think measured.

      In this case, “specificity” refers to cell type specificity, not genomic specificity. We are measuring cell type specificity by comparing on-target cutting in GFP+ cells (melanocytes) versus GFP- cells (non-mitfa expressing cells). We did not look at off-target activity of Cas9 in this study and have edited the text to make this clearer. 

      219 -"several gaps were visible"

      Fixed

      286 - TUBA1A should be italicized

      Fixed

      399 - I think I understand the logic of the DepMap argument, and the importance of studying tumor initiation in vivo stands for itself. But here is maybe not the best example (or might need clarification)? - SOX9's most enriched dependency in DepMap is cutaneous melanoma and its top co-essential gene is SOX10. I'm not sure the SOX9/SOX10 interaction couldn't be parsed from DepMap alone.

      This is true, and the DepMap was actually somewhat of an inspiration for our own studies. We have modified the line to acknowledge this and explain the main advantage of our system is in vivo confirmation of what the DepMap had alluded to.

      433 - "fewer animals since all F1 animals (even those for recessive alleles) are informative."

      The fact that this is approach is faster and more efficient per animal is important to highlight (and very believable), but is this technically true given not all F1 fish will have Cas9 or a germline sgRNA integration?

      In considering this statement, we agree with you and decided to remove it from the text.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This manuscript by Garbelli et al. investigates the roles of excitatory amino acid transporters (EAATs) in retinal bipolar cells. The group previously identified that EAAT5b and EAAT7 are expressed at the dendritic tips of bipolar cells, where they connect with photoreceptor terminals. The previous study found that the light responses of bipolar cells, measured by electroretinogram (ERG) in response to white light, were reduced in double mutants, though there was little to no reduction in light responses in single mutants of either EAAT5b or EAAT7.

      The current study further explores the roles of EAAT5b and EAAT7 in bipolar cells' chromatic responses. The authors found that bipolar cell responses to red light, but not to green or UV-blue light, were reduced in single mutants of both EAAT5b and EAAT7. In contrast, UV-blue light responses were reduced in double mutants. Additionally, the authors observed that EAAT5b, but not EAAT7, is strongly localized in the UV cone-enriched area of the eye, known as the "Strike Zone (SZ)." This led them to investigate the impact of the EAAT5b mutation on prey detection performance, which is mediated by UV cones in the SZ. Surprisingly, contrary to the predicted role of EAAT5b in prey detection, EAAT5b mutants did not show any changes in prey detection performance compared to wild-type fish. Interestingly, EAAT7 mutants exhibited enhanced prey detection performance, though the underlying mechanisms remain unclear.

      The distribution of EAAT7 protein in the outer plexiform layer across the eye correlates with the distribution of red cones. Based on this, the authors tested the behavioral performance driven by red light in EAAT5b and EAAT7 mutants. The results here were again somewhat contrary to predictions based on ERG findings and protein localization: the optomotor response was reduced in EAAT5b mutants, but not in EAAT7 mutants.

      Strengths:

      Although the paper lacks cohesive conclusions, as many results contradict initial predictions as mentioned above, the authors discuss possible mechanisms for these contradictions and suggest future avenues for study. Nevertheless, this paper demonstrates a novel mechanism underlying chromatic information processing.

      The manuscript is well-written, the data are well-presented, and the analysis is thorough.

      We are happy about the perceived strengths of our manuscript.

      Weaknesses:

      I have only a minor comment. The authors present preliminary data on mGluR6b distribution across the eye. Since this result is based on a single fish, I recommend either adding more samples or removing this data, as it does not significantly impact the paper's main conclusions.

      We agree that the mGluR6 result is statistically underpower (we would never claim differently). The data is based on only one clutch of fish, comprising 11 eyes. Since the data is anyway in the supplement and not part of the main story, we would like to keep it to spur further investigations into anisotropic distribution of synaptic proteins.

      Reviewer #2 (Public review):

      Garbelli et. al. set out to elucidate the function of two glutamate transporters, EAAT5b and EAAT7, in the functional and behavioral responses to different wavelengths of light. The question is an interesting one, because these transporters are well positioned to affect responses to light, and their distribution in the retina suggests that they could play differential roles in visual behaviors. However, the low resolution of both the functional and behavioral data presented here means that the conclusions are necessarily a bit vague.

      In Figure 1, the authors show that the double KO has a decreased ERG response to UV/blue and red wavelengths. However, the individual mutations only affect the response to red light, suggesting that they might affect behaviors such as OMR which typically rely on this part of the visual spectrum. However, there was no significant change in the response to UV/blue light of any intensity, making it unclear whether the mutations could individually play roles in the detection of UV prey. Based on the later behavioral data, it seems likely that at least the EAAT7 KO should affect retinal responses to UV light, but it may be that the ERG does not have the spatial or temporal resolution to detect the difference, or that the presence of blue light overwhelmed any effect of the individual knockouts on the response to UV light.

      In Figures 5 and 6, the authors compare the two knockouts to wild-type fish in terms of their sensitivity to UV prey in a hunting assay. The EAAT5b KO showed no significant impairment in UV sensitivity, while the EAAT7 KO fish actually had an increased hunting response to UV prey. However, there is no comparison of the KO and WT responses to different UV intensities, only in bulk, so we cannot conclude that the EAAT7 KO is allowing the fish to detect weaker prey-like stimuli.

      We have now reported in both in the results paragraph and in the methods section that response-comparison of intensity-specific responses were non-significant in all instances of analyses (Chi-square test with p>0.05). We decided not to add the information to the figure as it does not add to the data and risks causing excessive clutter of an already complex graph.

      As reviewer #2 rightfully states, we cannot conclude that EAAT7 KO is allowing the fish to detect weaker prey-like stimuli. We only intend to suggest that a lack of EAAT7 might facilitate prey detection events as the number of hunting events in total, is increased compared to WT.

      In Figure 7, the EAAT5b KO seems to cause a decrease in OMR behavior to red grating stimuli, but only one stimulus is tested, so it is unclear whether this is due to a change in visual sensitivity or resolution.

      We fully agree that further experiments presenting different stimuli in the setup may very well reveal more details on the nature of the observed defect and thank reviewer #2 for the suggestion. We feel that identifying the reason of the defect lies outside of the scope of this paper, but should definitely be investigated in future studies.

      The conclusions made in the manuscript are appropriately conservative; the abstract states that these transporters somehow influence prey detection and motion sensing, and this is probably true. However, it is unclear to what extent and how they might be acting on these processes, so the conclusions are a bit unsatisfying.

      In terms of impact on the field, this work highlights the potential importance of these two transporters to visual processing, but further studies will be required to say how important they are and what they are doing. The methods presented here are not novel, as UV prey and red OMR stimuli and behaviors have previously been described.

      We agree that this study is not fully conclusive but a first step towards a clarification of the role of glutamate transporters in shaping visual behavior.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      Suggestions for improved or additional experiments, data, or analyses:

      Figure 3:

      (a) What is the intensity of the light emitted by the UV and yellow LEDs and experienced by the larva, e.g. in nW? This is necessary in order to be able to compare and replicate the results.

      Stimuli intensities in microwatts are now included and reported in the Materials and Methods sections

      (b) In Figure 3D, are all the example eye movement events hunting initiations? Does right eye/left eye positive or negative angle change denote convergence?

      As indicated in the figure legend, hunting initiations are indicated by black dots on the graph. In Stytra’s eye tracking system, eye convergence is indicated by an increase in the left eye angle and a decrease in the right eye angle. Both these points have now been clarified in the figure legend.

      (c) Also in 3D, the tail angle plot and x-axis are too small to read.

      Figure 3D has been reformatted to be more legible.

      (d) How much eye convergence constitutes a response? In order to compare the findings to previous studies of prey capture, it would be best to use a bimodal distribution of eye angles to set a convergence threshold for each fish (e.g. Paride et. al., eLife 2019), but there should at least be a clear threshold mentioned.

      We have expanded the explanation of how the response detection paradigm was calculated. We acknowledge that this analysis has limitations in terms of comparability with previous studies, as it was developed de novo, based on the format of eye coordinate data provided by Stytra and refined through iterative comparison with experimental video recordings. Since the threshold was defined relative to the average noise level of the trace, it is difficult to specify an exact value. However, we are happy to share the Python scripts used for the analysis to facilitate further investigation.

      (e) The previous study using artificial UV prey stimuli to trigger hunting (Khan et. al., Current Biology 2023) should be acknowledged.

      This is an indeed an embarrassing omission, not excused by the first version of this section being drafted before the Khan publication. We have now cited this important study.

      Figure 5:

      Was the response at any individual intensity significantly lower in the mutant? If not, this should be clearly stated.

      Yes, and this is now clearly stated in the main text

      Figure 6:

      Again, it would be more informative to know for which intensities the KO response was significantly greater than WT.

      This is now also clearly stated in the main text

      Figure 7:

      (a) What are the intensity units?

      We now clarified in the figure that the intensity shown in the graph is digital intensity

      (b) Similar to Figures 5 and 6, it would be more informative to know at which intensities the KO response was significantly different from WT.

      We now report the measured optical powers relative to the digital intensities in the Materials and Methods sections.

      Suggestion for writing:

      The discussion was a bit discursive. A more structured discussion, sequentially explaining each of the key results, would be easier for the reader to follow. And, it would be helpful to have hypotheses for how these transporter mutants could cause each of the changes in visual behaviors that were observed.

      We agree that the discussion needed improvements. We have completely rewritten the discussion and hope that it now more concisely put our results into context.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors present a new protocol to assess social dominance in pairs and triads of C57BL/6j mice, based on a competition to access a hidden food pellet. Using this new protocol, the authors have been able to identify stable ranking among male and female pairs, while reporting more fluctuant hierarchies among triads of males. Ranking readouts identified with this new apparatus were compared to the outcomes obtained with the same animals competing in the tube and in the warm spot tests, which have been both commonly used during the last decade to identify social ranks in rodents under laboratory conditions.

      Strengths:

      FPCT allows for easy and fast identification of a winner and a loser in the context of food competition. The apparatus and the protocol are relatively easy and quick to implement in the lab and free from any complex post-processing/analysis, which qualifies it for wide distribution, particularly within laboratories that do not have the resources to implement more sophisticated protocols. Hierarchical readouts identified through the FPCT correlate with social ranks identified with the tube and the warm spot tests, which have been widely adopted during the last decade and allow for study comparison.

      Weaknesses:

      While the FPCT is validated by the tube and the warm spot test, this paper would have gained strength by providing a more ethologically based validation. Tube and warm spot tests have been shown to provide conflicting results and might not been a sufficient measurement for social ranking (see Varholik et al, Scientific reports, 2019; Battivelli et al, Biological psychiatry, 2024). Instead, a general consensus pushing toward more ethological approaches for neuroscience studies is emerging.

      We appreciate all the reviewers for recognizing the strength of the FPCT setup and the data. We also appreciate the reviewers for pointing out weakness and giving us valuable suggestions that help us to improve the quality of our manuscript through revision.

      In this manuscript, we found the ranking results of the FPCT were largely consistent with the tube and the warm spot tests. Such a finding was unexpected by us as we considered that different competitive targets of different paradigms should provide the mice with distinct appeals and enable them to exert their specific advantages. However, the consistency between the FPCT and tube test was observed in the pairs of female mice, pairs of male mice and triads of male mice. The consistency between the FPCT, tube test and warm spot test was observed in pairs of male mice and triads of male mice. Thus, we concluded that there is a social rank-order stability of mice. 

      We acknowledge that it’d better if this conclusion could be validated by more ethological approaches like urine-marking analysis and water competition test. Whereas, we did not rule out inconsistency of ranking results between two or more paradigms. Actually, there were inconsistent cases in our experiments. The inconsistency of ranking results between paradigms, even between FPCT and tube test, could be amplified if the tests were operated with other details of experimental protocols and conditions. This is in that too many factors and aspects can affect the readouts, such as formation of colony, tasks, test protocols, habituation and training. Using tube test itself, both stable 1,2 and unstable 3 ranking results have been reported.

      Other papers already successfully identified social ranks dyadic food competition, using relatively simple scoring protocol (see for example Merlot et al., 2006), within a more naturalistic set-up, allowing the 2 opponents to directly interact while competing for the food. A potential issue with the FPCT, is that the opponents being isolated from each other, the normal inhibition expected to appear in subordinates in the presence of a dominant to access food, could be diminished, and usually avoiding subordinates could be more motivated to push for the access to the food pellet.

      The hierarchical structure of mice colony could be established on the basis of physical aspects—such as muscular strength, vigorousness of fighting—and psychological aspects— such as boldness, focused motivation, active self-awareness of status. In the contexts of currently available food contest paradigms where the mice compete with bodily interaction, the physical and psychological aspects are intermingled in the interpretation of the mice’s winning/losing. In the FPCT, the opponents are isolated from each other so that the importance of direct bodily interaction in a competition is minimized, facilitating the exposure of psychological factors contributing to the establishment and/or expression of social status of the mice. In this study, the overall stable ranking results across the FPCT, tube test and warm spot test indicate that the status sense of animals is part of a comprehensive identify of self-recognition of individuals in an established mice social colony.

      There are issues with use of the English language throughout the text. Some sentences are difficult to understand and should be clarified and/or synthesized.

      We thank the reviewer for pointing out language issues. We have carefully corrected the grammar errors.

      Open question:

      Is food restriction mandatory? Palatable food pellet is not sufficient to trigger competition? Food restriction has numerous behavioral and physiological consequences that would be better to prevent to be able to clearly interpret behavioral outcomes in FPCT (see for example Tucci et al., 2006).

      We thank the reviewer for raising this question. In the preliminary experiments, we noticed that food restriction was mandatory and palatable food pellet was not sufficient to trigger competition. In order to limit the potential influence of food restriction on competitive behavior, the mice underwent only a 24-hour food deprivation period at the beginning of training, followed by mild restriction of food supply to meet basic energy requirement.

      Conclusive remarks:

      Although this protocol attempts to provide a novel approach to evaluate social ranks in mice, it is not clear how it really brings a significant advance in neuroscience research. The FPCT dynamic is very similar to the one observed in the tube test, where mice compete to navigate forward in a narrow space, constraining the opponent to go backward. The main difference between the FPCT and the tube test is the presence of food between the opponents. In the tube test, a food reward was initially used to increase motivation to cross the tube and push the opponent upon the testing day. This component has been progressively abandoned, precisely because it was not necessary for the mice to compete in the tube.

      This paper would really bring a significant contribution to the field by providing a neuronal imaging or manipulation correlate to the behavioral outcome obtained by the application of the FPCT.

      Thank the reviewer for this comment on the significance of the FPCT paradigm. In this manuscript, we think it is interesting to report that the ranking results were consistent across the FPCT, tube test and warm spot test. This finding indicates that the status sense of animals might be a part of a comprehensive identify of self-recognition of individuals in an established social colony. 

      Moreover, we are conducting researches on biological consequences and mechanisms of social competition. Hopefully, the results of the on-going project will be published in the near future.

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors have devised a novel assay to measure relative social rank in mice that is aimed at incorporating multiple aspects of social competition while minimizing direct contact between animals. Forming a hierarchy often involves complex social dynamics related to competitive drives for different fundamental resources including access to food, water, territory, and sexual mates. This makes the study of social dominance and its neural underpinnings hard, warranting the development of new tools and methods that can help understand both social functions as well as dysfunction.

      Strengths:

      This study showcases an assay called the Food Pellet Competition Test where cagemate mice compete for food, without direct contact, by pushing a block in a tube from opposite directions. The authors have attempted to quantify motivation to obtain the food independent of other factors such as age, weight, sex, etc. by running the assay under two conditions: one where the food is accessible and one where it isn't. This assay results in an impressive outcome consistency across days for females and males paired housed and for male groups of three. Further, the determined social ranks correlate strongly with two common assays: the tube test and the warm spot test.

      Weaknesses:

      This new assay has limited ethological validity since mice do not compete for food without touching each other with a block in the middle. In addition, the assay may only be valid for a single trial per day making its utility for recording neural recordings and manipulations limited to a single sample per mouse. Although the authors attempt to measure motivation as a factor driving who wins the social competition, the data is limited. This novel assay requires training across days with some mice reaching criteria before others. From the data reported, it is unclear what effects training can have on the outcome of social competition. Beyond the data shown, the language used throughout the manuscript and the rationale for the design of this novel assay is difficult to understand.

      We appreciate the reviewers for the valuable comments on the strength and weakness of our manuscript. 

      The design mentality of the FPCT was to (1) provide researchers with a choice of new food competition paradigm and (2) expose psychological factors influencing the establishment and/or expression social status in mice by avoiding direct physical competition between contenders (see revised Abstract and the last paragraph in the Introduction).

      As a result, the consistent ranking across the FPCT, tube test and warm spot test might indicate that the status sense of animals is part of a comprehensive identify of self-recognition of individuals in an established social colony. 

      We suggest to perform the FPCT test one trial per day per mouse as the mice might lose interest in the food pellet if it is tested frequently in a day, but it is practical to perform the FPCT assay for several days. 

      Regarding the training, we suggest 4-5 days for training as we did. In this revision, we add training data which show the progressing latency of food-getting of mice (Figure 1). At the last day of training, the mice would go directly to push the block and eat the food after they entered the arena.

      We thank the reviewer for pointing out language issues. We have carefully corrected the errors.

      Reviewer #3 (Public review):

      Summary:

      The laboratory mouse is an ideal animal to study the neural and psychological underpinnings of social dominance behavior because of its economic cost and the animals' readiness to display dominant and subordinate behaviors in simple and testable environments. Here, a new and novel method for measuring dominance and the individual social status of mice is presented using a food competition assay. Historically, food competition assays have been avoided because they occur in an open arena or the home cage, and it can be difficult to assess who gets priority access to the resource and to avoid aggressive interactions such as bite wounding. Now, the authors have designed a narrow rectangular arena separated in half by a sliding floor-to-ceiling obstacle, where the mice placed at opposite sides of the obstacle compete by pushing the obstacle to gain priority access to a food pellet resting on the arena floor under the obstacle. One can also place the food pellet within the obstacle to restrict priority access to the food and measure the time or effort spent pushing the obstacle back and forth. As hypothesized, the outcomes in the food competition test were significantly consistent with those of the more common tube test (space competition) and warm spot competition test. This suggests that these animals have a stereotypic dominance organization that exists across multiple resource domains (i.e., food, space, and temperature). Only male and female C57 mice in same-sex pairs or triads were tested.

      Strengths:

      The design of the apparatus and the inclusion of females are significant strengths within the study.

      Weaknesses:

      There are at least two major weaknesses of the study: neglecting the value of test inconsistency and not providing the mice time to recognize who they are competing with.

      Several studies have demonstrated that although inbred mice in laboratory housing share similar genetics and environment, they can form diverse types of hierarchical organizations (e.g., loose, stable, despotic, linear, etc.) and there are multiple resource domains in the home cage that mice compete over (e.g., space, food, water, temperature, etc.). The advantage of using multiple dominance assays is to understand the nuances of hierarchical organizations better. For example, some groups may have clear dominant and subordinate individuals when competing for food, but the individuals may "change or switch" social status when competing for space. Indeed, social relationships are dynamic, not static. Here, the authors have provided another test to measure another dimension of dominance: food competition. Rather than highlight this advantage, the authors highlight that the test is in agreement with the standard tube test and warm spot test and that C57 mice have stereotypic dominance across multiple domains. While some may find this great, it will leave many to continue using the tube test only (which measures the dimension of space competition) and avoid measuring food competition. If the reader looks at Figures 6E, F, and G they will see examples of inconsistency across the food competition test, tube test, and warm spot test in triads of mice. These groups are quite interesting and demonstrate the diversity of social dynamics in groups of inbred mice in highly standardized environmental conditions. Scientists interested in dominance should study groups that are consistent and inconsistent across multiple dimensions of dominance (e.g., space, food, mates, etc.).

      Unlike the tube test and warm spot test, the food competition test presented here provides no opportunity for the animals to identify their opponent. That is, they cannot sniff their opponent's fur or anogenital region, which would allow them an opportunity to identify them individually. Thus, as the authors state, the test only measures psychological motivation to get a food reward. Notably, the outcome in the direct and indirect testing of food competition is in agreement, leaving many to wonder whether they are measuring the social relationship or the effort an individual puts forth in attaining a food reward regardless of the social opponent. Specifically, in the direct test, an individual can retrieve the food reward by pushing the obstacle out of the way first. In the indirect test, the animals cannot retrieve the reward and can only push the obstacle back and forth, which contains the reward inside. In Figure 4E, you can see that winners spent more time pushing the block in the indirect test. Thus, whether the test measures a social relationship or just the likelihood of gaining priority access to food is unclear. To rectify this issue, the authors could provide an opportunity for the animals to interact before lowering the obstacle and raising(?) a food reward. They may also create a very long one-sided apparatus to measure the amount of effort an individual mouse puts forth in the indirect test with only one individual - or any situation with just one mouse where the moving obstacle is not pushed back, and the animal can just keep pushing until they stop. This would require another experiment. It also may not tell us much more since it remains unclear whether inbred mice can individually identify one another

      (see https://doi.org/10.1098/rspb.2000.1057 for more details).

      A minor issue is that the write-up of the history of food competition assays and female dominance research is inaccurate. Food competition assays have a long history since at least the 1950s and many people study female dominance now.

      Food competition: https://doi.org/10.1080/00223980.1950.9712776, https://psycnet.apa.org/fullte xt/1953-03267-

      001.pdf, https://doi.org/10.1016/j.bbi.2003.11.007, https://doi.org/10.1038/s41586-02204507-5

      Female dominance: history  https://doi.org/10.1016/j.cub.2023.03.020,  https://doi.org/10.1016/S0 031-9384(01)00494-2,  https://doi.org/10.1037/0735-7036.99.4.411

      We thank the reviewers very much for so many helpful comments and suggestions.

      In this manuscript, we want to address the overall and averagely consistency of ranking results between FPCT, tube test and warm spot test) as an unexpected finding. We agree that the inconsistency of social ranking occurred between trials and between paradigms should not be ignored. In the revision, we added description and discussion of inconsistent part of the different test paradigms (paragraph 2 in the section 3 of the Result, last 2 sentences of paragraph 4 in the Discussion)

      Although the two opponents were separated each other, they were able to see and sniff each other because the block is transparency, there are holes in the lower portion of the block, and there is the gap between the block and chamber (Supplementary figures 1 and 2). In the female but not male groups, the presence of a cagemate opponent during the test 1 could significantly disturb the female mice and increase the its latency to get the food, comparing with last day of training when there was no opponent (Figure 3A). This indicates that one mouse, at least female mouse, could identify the existence of the opponent in the opposite side of the chamber. To further see whether social relation was influential to readouts of the FPCT, we performed additional experiments using two groups of non-cagemate mice to perform the competition. We did not detect obviously different ranks between the two groups (Figure 1H-1J), suggesting that establishment of social colony is necessary for FPCT to distinguish social ranks of mice.

      Thank the reviewer for reminding us to recognize the history of food competition assays. We have added the citations and discussions of related literatures, both for male (paragraph 2 in the Introduction; paragraph 3 in the Discussion) and female (paragraph 1 of section 3 in the Results; paragraph 4 in the Discussion) mice. 

      Reviewer #1 (Recommendations for the authors):

      There are issues with use of the English language throughout the text. Some sentences are difficult to understand and should be clarified and/or synthesized.

      We appreciate the reviewer for constructive comments and helpful corrections.

      “Despite that 6 in 9 groups of mice display some extent of flipped ranking (Figures 6B-6G) and only 3 in 9 groups displayed continuously unaltered ranking (Figure 6H) during a total of 9 trials consisting of 3 trials of FPCT, 3 trials of tube test and 1 trial of WST, an obvious stable linear intragroup hierarchy was observed throughout all the trials and tasks"

      The above sentence has been re-written as: The ranking result showed that 6 in 9 groups of mice displayed some extent of flipped ranking (Figures 4B-4G), and only 3 in 9 groups displayed continuously unaltered ranking (Figure 4H). Averagely, in the totally 27 trials consisting of 12 trials of FPCT, 12 trials of tube test and 3 trials of WST, an obvious stable linear intragroup hierarchy was observed across all the trials and tasks (paragraph 1 of section 4 in the Results).

      "it is hard to attribute winning a competition in a shared space to stronger motivation rather than muscular superiority".

      The above sentence has been deleted and re-written in paragraph 1 of section 4 in the Results and paragraph 3 in the Discussion.

      "Unexpectedly, in most of the trials the mice preserved the winner or loser identity acquired in FPCT into tube test and WST (Figures 5L-5O)".

      Why this is unexpected? Instead, it looks like this result is expected (tube test has been successfully applied to identify ranks in females, see Leclair et al, eLife, 2021).

      We thank the reviewer for raising this point. FPCT is different from tube test and warm spot test at least in two aspects: competition for food vs space; presence vs absence of direct bodily interaction during competition. Some mice might be active in food competition, but not in space competition, while others might be on the contrary. Some mice might be good at physical contest, while others might be good at play tricks. Therefore, these factors made us expect task-specific outcomes of ranking results.

      Vocabulary issues:

      "Stereotypic", to talk about rank stability in a different context does not look appropriate. In behavioral neuroscience, stereotypy is more excepted to intend abnormal repetitive behaviors. The stability that the authors seem to indicate with the word "stereotype" refers rather to the concept of "consistency" or "stability".

      We thank the reviewer for this detailed explanation. We have chosen to use "stability" to describe the data.

      "Society", to talk about groups or colonies of animals sounds a bit odd. Society evokes more abstract concepts more likely to fit with human organization. I suggest the use of "group" or "colony".

      "Hide" to qualify the block preventing access to the food pellet. It is said that the block is transparent. We suggest the use of "inaccessible" instead of hidden.

      We strongly encourage the authors to further edit the entire script to improve language.

      Thank the reviewer for kind correction. We have corrected the above vocabulary misuse. 

      Technical issues / typos:

      Figure 1. The picture does not seem optimal to visualize the apparatus.

      Missing unit legend in Figure 4E.

      Supplementary videos 2 and 4 are missing.

      We have added a frontal view of the apparatus in the figure (Supplementary Figure 1), added a unit to the Figure 2F (previous Figure 4E), and we will make sure to upload the missing videos.

      Reviewer #2 (Recommendations for the authors):

      While the assay shows promise as a tool for studying social dominance, the study suffers from some limitations such as lack of ethological relevance. In addition, there is a lack of rationale and methodological clarity in the manuscript that can impact the ability of other scientists to be able to perform this novel assay.

      (1) Related to lack of scientific rigor:

      a. In the first paragraph of the introduction, the authors mention that "disability in social recognition and unsatisfied social status are associated with brain diseases such as autism, depression and schizophrenia". Both papers that they cited refer to mouse models, not humans (which is the species that is attributed these diagnoses clinically). In addition, neither citation discusses schizophrenia. While social dysfunctions can indeed be related to these diseases, to my knowledge this is not caused by a change in "social status" and there is no human data with patient populations and social status. Therefore, this sentence is inaccurate and there is no research that demonstrates that.

      We thank the reviewer for raising this point. To express the opinion and cite literatures more accurately, we improved the sentence in the 1st paragraph of Introduction as follows: “Impaired awareness of social competition has been documented in individuals with autism spectrum disorder (ASD)4,5, and reduced social interaction has been characterized in corresponding animal models6. Similarly, maladaptive responses to social status loss has been associated with patient depressive disorders7,8 and animal models of depression1,9”. The reviewer is right that no patient disease is causally related with social status, and only depression has been proposedly associated with change of social status7,8.

      b. In the second paragraph of the introduction, the authors mention a scarcity of research papers with designs for food competition-based social hierarchy assays for mice. At least two such papers have been published in the past few years (DOIs https://doi.org/10.1038/s41586-

      021-04000-5 and https://doi.org/10.1038/s41586-022-04507-5). The authors should acknowledge the existence of these and other assays and discuss how their work would be related. In the same paragraph, they also mention that existing assays suffer from "hierarchy instability" and "complex calculations" without showing any citations or details for these claims.

      We thank the reviewer for raising this point. We acknowledged that there are some available food competitions to measure social hierarchy for mice. But relative to space competition, food competition tests have not been used so commonly and widely. No food competition paradigm has been accepted as generally as some space competition paradigms like tube test and warm spot test. To improve the language and scientific expression, we revised the sentences as follows: “Relative to space competition, food competition tests for mice have been designated and applied less commonly in animal studies despite its long history 28-30. Several issues could be thought to be the underlying limitations for the application of food competition paradigms. First, there are methodological issues in some of these approaches, such as long video recording duration and difficulty in analyzing animal’s behaviors during competitive physical interaction in videos, hindering their application by laboratories that cannot afford sophisticated equipment and analysis”. Corresponding citations have been updated (see paragraph 3 in the Introduction).

      c. The authors say that their study is the first to demonstrate that female mice follow social ranks. This is not the first study to do so and the authors should acknowledge existing publications that have done the same (eg DOI https://doi.org/10.7554/eLife.71401).

      We have followed the reviewer’s suggestion to increase citations regarding social ranking of female mice tested by competition paradigms, especially food competition paradigms (see paragraph 1 of section 3 in the Results; paragraph 4 in the Discussion).

      (2) Related to problems with interpretation of data:

      a. The authors showed the assay works for females and males in pairwise housing, but two mice don't make a hierarchy, as hierarchies require a minimum of three individuals. Therefore, whether the assay works for females caged in three is an important question that is unaddressed in this study and is a caveat. extended the competition assay to male mice that are housed in cages of three. It would be important to show whether the assay generalizes well for female mice with this three-animal housing as well as discuss the effect of using even bigger groups of mice on the results of the assay.

      We thank the reviewer for raising questions related to the interpretation of data and giving us the insightful the suggestions. We agree that it is interesting and important to probe if FPCT works for a group of three female mice. Although social rankings of pairs of male and female mice were not significantly different (new Figure 2D-2F and 3F-3H), that of triads of male and female mice could be different. We have tested trads of male mice and found that the mice displayed an overall linear hierarchical ranking. We would like to use FPCT to investigate the rankings of trads of female mice and even bigger group of mice in the future. In the present manuscript we’d like to address the feasible application of the FPCT in smaller groups. In the Discussion, we add contents commenting group size effect on social competition tests (see paragraph 4 in the Discussion).

      b. The authors claim that "test 2" of their assay helps assert the motivation of mice for social competition as in Figure 4E. This could simply be a readout of how strong the mice are (muscle mass). To claim that this is indeed related to motivation during the FPCT assay, the authors should show the correlation of this readout with the latency to push the block during the social competition task.

      We appreciate the reviewer for raising this question. The dimensions establishing the social structures include physical and psychological factors. In the FPCT paradigm, the two contenders are separated so that physical factors are minimized in this context and psychological factors should play more important role in competition in comparison with previous reported food competition paradigms. Therefore, in the revised manuscript we consider to attribute the ranking results mainly to psychological factors, rather than only motivation which is just one of the numerous psychological factors (paragraph 3 of Discussion). Moreover, in the Discussion we point out that we could not exclude physical factors still participate in the determination of competitive outcomes since some of mice pairs pushed the block simultaneously (paragraph 3 of Discussion).

      c.The authors mention that they are interested to understand which factors lead to the outcome of the competition such as age, sex, physical strength, training level, and intensity of psychological motivation. However, in all their runs of the assay, they always matched these variables between the competitors. They should clarify that they were instead controlling for these variables. Another thing to note here is that while they controlled the body mass of the animals, that isn't the same as physical strength, as a lighter mouse can have more muscle mass than a heavier mouse. They should either specify this limitation or quantify the additional metric of "muscle mass" which is a much better proxy for physical strength. Thus, the claim that the outcome of the competition is solely affected by motivation is not convincing since they didn't rule out the others such as quantifying the rate of learning during training and strength.

      We thank the reviewer for addressing this question. As our response to the question in (c), we acknowledge that it is not accurate to ascribe the outcomes of FPCT to psychological motivation. In the revised manuscript, the dimensions of contributing factors to the outcomes of FPCT have been simplified to physical and psychological factors. We consider that the psychological factor could be the main driver of mice participating in FPCT (see paragraph 3 of Discussion).

      d. In the discussion, the authors mention that their task only requires a single day of food deprivation (the day before the first trial) while other assays suffer from a continued food deprivation protocol. However, the authors also use 10g per cage as the amount of food instead of giving them ad libitum access. Limited food is a food deprivation method. Thus, this is an inaccurate claim.

      We thank the reviewer for raising this point. We have clarified the requirement of food restriction for FPCT in the revision. The mice were deprived of food for 24 hours while water consumption remained normally to enhance the appeal of the food pellet to the mice. Then, after 24 hours of food deprivation, each cage of mice was given 10 g of food every morning to meet their daily food requirements until the end of the test (see FPCT procedure section in Methods and materials).

      e.In the second section of the results, the authors run their assay with female mice that are housed in cages of two. This section suffers from the same limitations as the first and can be improved by showing the training data, correlations of competition outcome with "motivation" and ruling out the other factors that could contribute to the outcome. Further, the authors saying that their FPCT assay is enough to show that female mice follow a social hierarchy by itself is a weak claim. They should instead include their cross-validation with the others to strengthen it.

      We appreciate the reviewer for raising this question. We have taken the reviewer’s suggestion to show the training data (Figures 1E, 2A and 3A). As the factors contributing to the outcomes of FPCT are diverse, we’d like not to control and determine the exact factor in the current manuscript. We agree with the reviewer that cross-validation with different paradigms is suggested for the studies to rank social hierarchy as the ranking results could be variable with tasks, procedures and operations.

      f.  In the last paragraph of the introduction, the authors mention how their assay involves "peaceful competition" since the mice are not in direct contact and hence cannot exhibit aggression. The authors do not address the limitation that a lack of physical contact actually makes the assay less ethological. Further, since the mice are housed in groups of two and three, it is not guaranteed that the mice will not be aggressive during their time in the home cage, which could affect their behavior during the competition assay. Whether the assay causes more aggression in the cage due to the lack of physical contact during the competition is not addressed in this study.

      We thank the reviewer for raising this point. Diverse factors affect the outcomes of a food competition test, some of which belong to psychological factors and others belong to physical factors. We agree that a lack of physical contact makes the assay less naturally ethological. However, when the social statuses have been established during habituation housing a group of mice for enough time, the win/lose outcomes in the FPCT could be a readout of the expression of social statuses since the mice cannot exhibit aggression in the test. We have revised the Introduction and Discussion (paragraph 3 of Discussion). Thank you.

      (3) Related to lack of methodological rigor and rationale clarity:

      a. In the first section of the results, the authors run their assay with male mice that are housed in cages of two. While the data that they display is promising, we do not see how mice change behavior across days of training and how that relates to the outcome of the competition. It would be valuable to also show the training data for the mice, answering questions related to competency and any inter-animal variabilities prior to rank assessment. Plotting the training data across all days would be helpful for the other parts of the results as well. This is especially important because the methods mention that mice are trained until they get to the criterium, so this means that different individuals get different amounts of training.

      We appreciate the reviewer for addressing the importance of showing training data. We have taken the reviewer’s suggestion and shown the training data (Figures 1E, 2A and 3A).

      b.  It is unclear why the assay was run only once per mouse pair per day since most protocols for the tube test involve multiple repetitions each day while alternating the side from which the mice enter. The authors should address whether a single trial per day is enough to show consistent results and that it wouldn't vary with more.

      We suggest to run the FPCT once or twice per mouse per day under conditions of mild food restriction, training and test procedures in this manuscript. Frequent tests might make the mice’s interest in the food pellet gradually diminished because the food supply was not fully deprived. According to our data, the outcomes of FPCT in 4 consecutive days were overall stable.

      c.  In the results the authors say that they "raised 3 male mice" which may be incorrect because they report in the methods buying the mice buy mice and they housed all their mice for only three days before running the assay which might be too little for the hierarchy to stabilize. The authors should comment on what was the range of the cohabitation across different cages and whether it had an impact on the results.

      According to our experiments, housing the mice for 3 days is enough to establish a mice social colony with relative stable status structure. Prolonged housing may produce either similar, stabler or more dynamic social colony.

      d. There are also some formatting and/or convention issues in the results. The first figure callout in the results is for Figure 4 instead of Figure 1 (which is the standard). This is because the authors do not explain how the mice are trained for the task in the results section and show limited data about the training of the task. Not showing comprehensive training data would make replication of this study very difficult.

      We appreciate the reviewer for raising this question. We have re-arranged the figures. The new arrangement of figures started with schematic drawing of FPCT procedure and training data (Figure 1).

      e. The authors don't report the exact p-values in the figures

      We reported the difference level in the figures in the revised manuscript. Thank you.

      4. The writing of the manuscript suffers from a lack of clarity in most sections of the manuscript.

      Here are several examples that are critical:

      a. In the title and abstract, it isn't clear what the authors mean by "stereotype". It could be a behavior during the competition, or that the social ranks across assays are correlated or that the rank for the new assay is consistent across days.

      b. There are several instances where the authors anthropomorphize mice using human features such as "urbanization" and "society" which are not established factors affecting mouse hierarchy. This further extends to anthropomorphizing mice in ways that are not standard such as an animal being "timid" or "bold" which would be hard to measure in mice, if not impossible.

      c. Across the social dominance literature, relative social rank is described using more general "dominant" and "subordinate" titles instead of "superior" and "inferior" that are sometimes used in the manuscript. The authors should follow the standard language so that readers understand.

      d.  In the third paragraph of the introduction, the authors say "Thus, it is more likely expected that different paradigms to weigh the social competency and status may lead to diverse readouts, given that competitive factors are included in competition paradigms." This sentence suffers from multiple syntax errors thereby reducing clarity

      e. There are several typos in the manuscript such as using "dominate" instead of "dominant", "grades" instead of "outcomes" and "forth" instead of "fourth", to give a few examples.

      We thank the reviewer for careful reading of the manuscript and very helpful comments. We have taken the above suggestions and improved the writing of the manuscript. For examples, "stereotype" was replaced by “stability”, mice "society" was expressed by "colony", the sentence “Thus, it is more.... in competition paradigms” has been deleted.

      Reviewer #3 (Recommendations for the authors):

      (1) The justification for the design of this new test paradigm is unclear. In the abstract, you state that the field needs a reliable, valid, and easily executable test. Your test provides this, as you state, but how is it better than the tube test? Does the tube test suffer from taskspecific win-or-lose outcomes? Can you provide evidence for this? The nature methods protocol for the tube test (https://doi.org/10.1038/s41596-018-0116-4) "strongly suggest using more than two dominance measures, for example, by also carrying out the warm spot test, or territory urine marking or ultrasonic courtship vocalization assays." This would suggest that results from the tube test can be task-specific, but I am not convinced that you have demonstrated that results from your food competition test are not task-specific. Indeed, by your title, one must run multiple tests.

      This same problem is apparent in the introduction. In the second paragraph, there is a discussion of the tube test, warm spot test, and food competition tests. What is the problem with these tests?

      I believe that social dominance relationships are complex and dynamic social relationships indicating who has priority access to a resource between multiple animals that live together. In these living situations, several resources can often be capitalized competed over-for example, space, food, mates, temperature, etc. Currently, we have tests to measure space via the tube test or urine marking, mates via ultrasonic vocalization, temperature via warm spot test, and food via food competition assays. The tube test, urine marking assay, and ultrasonic vocalization test have been demonstrated to be reliable, valid, and easily executable. However, the food competition assays are often difficult to execute because it is difficult to interpret the dominant behaviors and aggressive behaviors like bite wounding can occur during the test. Here, you present a new food competition assay to address these issues and show that it can be used in conjunction with other assays to measure social dominance across multiple resources easily. In doing so, you revealed that many same-sex groups of C57 mice have a stereotypic pattern of dominance behavior when competing across multiple types of resources: space, temperature, and food.

      I ask that you please rebut if you disagree with me, and adjust your abstract, introduction, and discussion accordingly.

      We thank the reviewer for all the constructive comments. We have adjusted the Abstract, Introduction and Discussion of the manuscript.

      We recognize and appreciate the valuable tube test, warm spot test and many other competition tests, including food competitions. Tube test and warm spot test are space competition tasks. Relative to space competition, food competition tests for mice have been designated and applied less commonly in animal studies. Several issues (such as methodological issue, aggressive behaviors occurring in competition, and prolonged food deprivation) could be thought to be the underlying limitations of the application of food competition paradigms (paragraph 3 in the Introduction). Therefore, we clarify that the justification for the design of FPCT was “to have a new choice of food competition paradigm for mice, and to facilitate the exposure of psychological aspects contributing to the winning/losing outcomes in competitions” (last paragraph in the Introduction).

      FPCT is different from tube test and warm spot test at least in two ways. FPCT is food completion task where the mice need no physical contact during competition, while tube test and WST are space competition tasks where the mice need direct physical contact during competition. Therefore, we expected inconsistent evaluation results of competitiveness and rankings if we compared FPCT with typically available competition paradigms—tube test and WST (last paragraph in the Introduction).

      (2)  The design of the test needs to be described before the results. You can either move the methods section before the results or add a paragraph in the introduction to better describe the test. Here, you can also reference Figures 1 through 3 so that the figures are presented in the order of which they are mentioned in the paper. (It is very confusing that the first reference to a figure is Figure 4, when it should be Figure 1).

      We appreciate the reviewer for raising this point and giving us suggestions. We have added a new section (section 1) in the Results. In the revised manuscript, the figures in the Results start with Figure 1 which shows schematic drawing of FPCT procedure, training data and some test results (Figure 1).

      (3)  The sentence describing Figure 4H. You argue that this shows that the mice are well and equally trained. It also shows that they have the same motivation or preference for the food.

      We appreciate the reviewer for this helpful comment. Data in previous Figures 4H and 5I have been presented as new Figures 2A and 3A, respectively, of revised manuscript. These retrospect analysis of training data displayed similar training level of food-getting and craving state for food (Sections 2 and 3 in the Results).

      (4)  "Social ranking of multiple cagemate mice using FPCT, tube test and WST"

      Here, you claim that "comparison of inter-task consistency revealed that the ranks evaluated by FPCT, tube test and WST did not differ from each other...Figure 6K." Okay, however, it is important to discuss the three cases when there wasn't consistency between the tests! Figure 6E-G.

      We appreciate the reviewer for raising this point. In the revised manuscript, we add description and discussion of inconsistent part of the different test paradigms (paragraph 2 in the section 3 of the Result, last 2 sentences of paragraph 4 in the Discussion)

      (5)  Replace all instances of "gender" with "sex". Animals do not have a gender.

      (6)  Adjust the strain of the mice to C57BL/6JNifdc.

      We have replaced "gender" with "sex" and “C57BL/6J” with “C57BL/6JNifdc”. Thank you for your careful correction.

      (7)  What is the justification for running the warm spot test for one day and the other tests for four days?

      From the consecutive FPCT and tube test, we already knew that the ranking results were overall stable. This stability was still observed in the day of warm spot test. A bad point for frequent warm spot test is that mice get much stress due to exposure in ice-cold environment. Therefore, we terminated the competition test after only one trial of warm spot test.

      (8)  Grammar

      The second sentence of the abstract: ...recognized as a valuable...

      Results, sentence after "...was observed (Figure 4G)." it should be "Fourth"

      We have corrected these and other grammar errors. We appreciate the reviewers for very careful review and all helpful comments.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary:  

      Wang et al. investigate sexual dimorphic changes in the transcriptome of aged humans. This study relies upon analysis of the Genotype-Tissue Expression dataset that includes 54 tissues from human donors. The authors investigate 17,000 transcriptomes from 35 tissues to investigate the effect of age and sex on transcriptomic variation, including the analysis of alternative splicing. Alternative splicing is becoming more appreciated as an influence in the aging process, but how it is affected by sexual dimorphism is still largely unclear. The authors investigated multiple tissues but ended up distilling brain tissue down to four separate regions: decision, hormone, memory, and movement. Building upon prior work, the authors used an analysis method called principal component-based signal-to-variation ratio (pcSVR) to quantify differences between sex or age by considering data dispersion. This method also considers differentially expressed genes and alternative splicing events. 

      Strengths:  

      (1) The authors investigate sexual dimorphism on gene expression and alternative splicing events with age in multiple tissues from a large publicly available data set that allows for reanalysis. 

      (2) Furthermore, the authors take into account the ethnic background of donors. Identification of agingmodulating genes could be useful for the reanalysis of prior data sets. 

      Weaknesses:  

      The models built off of the GTEx dataset should be tested in another data set (ex. Alzheimer's disease) where there are functional changes that can be correlated. Gene-length-dependent transcription decline, which occurs with age and disease, should also be investigated in this data set for potential sexual dimorphism. 

      We appreciate the reviewer’s constructive feedback and acknowledgment of the strengths of our study. The detailed results are included in the ‘Recommendations for the authors’ from the editorial office. Below we summarize our feedback that address the concerns of this reviewer:

      (1) Independent Alzheimer’s disease (AD) datasets:

      We acknowledge the importance of validating our models beyond GTEx to assess their generalizability aging to Alzheimer’s disease. While GTEx provides valuable transcriptomic data across multiple tissues, it lacks direct functional assessments linked to disease states. We have already analyzed RNA-seq data from ROSMAP and GEO in Figure 4, focusing on sex-biased gene expression and splicing changes between aging and AD.  The results showed a male-biased association with Alzheimer’s disease at AS resolution, indicating that the AS changes during aging could contribute more to AD in males than females. We added a highlight to this analysis in the manuscript (Pages 6-7).

      (2) Sexual dimorphism in Gene-Length-Dependent Transcription Decline (GLTD) 

      We appreciate the reviewer’s suggestion to explore gene-length-dependent transcription decline (GLTD), which has been implicated in both aging and disease. As the reviewer suggested, our analysis revealed that GLTD exhibits sex-biased patterns in different tissues, aligning with recent literature on sex-dimorphic transcriptional aging. Our findings also revealed that longer genes with greater transcriptional decline are enriched in AD-related pathways. We have incorporated this new analysis in the ‘Recommendations for the authors’ in Author response image 5-6 and expanded the discussion of the biological relevance. 

      Reviewer #2 (Public review): 

      Summary: 

      In this manuscript, Wang et al analyze ~17,000 transcriptomes from 35 human tissues from the GTEx database and address transcriptomic variations due to age and sex. They identified both gene expression changes as well as alternative splicing events that differ among sexes. Using breakpoint analysis, the authors find sex dimorphic shifts begin with declining sex hormone levels with males being affected more than females. This is an important pan-tissue transcriptomic study exploring age and sex-dependent changes although not the first one. 

      Strengths:  

      (1) The authors use sophisticated modeling and statistics for differential, correlational, and predictive analysis. 

      (2) The authors consider important variables such as genetic background, ethnicity, sampling bias, sample sizes, detected genes, etc. 

      (3) This is likely the first study to evaluate alternative splicing changes with age and sex at a pan-tissue scale. 

      (4) Sex dimorphism with age is an important topic and is thoroughly analyzed in this study.  Weaknesses:  

      (1) The findings have not been independently validated in a separate cohort or through experiments. Only selective splicing factor regulation has been verified in other studies. 

      (2) It seems the authors have not considered PMI or manner of death as a variable in their analysis. 

      (3) The manuscript is very dense and sometimes difficult to follow due to many different types of analyses and correlations. 

      (4) Short-read data can detect and quantify alternative splicing events with only moderate confidence and therefore the generalizability of these findings remains to be experimentally validated. 

      We appreciate the thorough review and thoughtful feedback. We have addressed the reviewer’s concerns and added clarification. The detailed results are included in Recommendations for the authors. Here are the summaries.

      (1) Challenge of independent validation in separate cohorts

      • The GTEx dataset includes the most comprehensive transcriptome resource for studying population-level differences in age and sex across tissues, particularly including large-scale brain samples. This provides a unique opportunity to analyze sex-dimorphic aging and the relevance of age-associated diseases.  Several technical issues, including cell type heterogeneity, postmortem artifacts, as well as sequencing biases, lead to technical challenges in different cohorts.

      • As the reviewer mentioned, we analyzed transcriptomic data from Shen et al. (2024) and compared them with GTEx results (Author response image 2). Limited overlap in differentially expressed genes again highlighted the challenges in cross-dataset validation due to the differences in cell composition and data processing (peripheral blood mononuclear cells (PBMCs) vs whole blood). 

      • Due to the limited human brain transcriptome data covering different age and sex groups, we found mouse hippocampus datasets from Mass spectrometry (MS), including young and old, as well as female and male groups.  The results validated the expression of splicing factors in brain (Author response image 9). This cross-species consistency supports the robustness of our findings in human brain aging.

      (2) Effects of Postmortem Interval, Manner of Death, and Time of Death

      • We agree that the sample collections could introduce confounding effects. To address this, we calculated the correlations between the confounding factors with Postmortem Interval (PMI), Manner of Death (DTHMNNR), or Time of Death (DTHTIME and DTHSEASON). We observed strong correlations in some surrogate variables in most tissues, indicating that those factors could be well-regressed during our analysis (Recommendations for the authors, Figure S4 and R8). 

      • In addition, we re-evaluated our analyses while incorporating PMI as a covariate in our models. Our results align with our initial findings (Author response image 1), suggesting that age- and sex-dependent transcriptomic changes are not strongly confounded by PMI and confirming that our model has controlled PMI. These results are detailed in ‘Recommendations for the authors’ and included in Figure S4C-E with the description in text, Page 5. 

      (3) Readability of manuscript and flow of analyses

      • In summary, our study first examined global alternative splicing (AS) and gene expression (GE) across all tissues before focusing on specific regions for deeper insights. To improve clarity, we have made the following revisions:

      • Add clearer statements when transitioning between all-tissue and brain-specific analyses (Page 6-7).

      • Modify the subtitle of Results to highlight all-tissue vs. brain analyses (Page 6).

      • These refinements could enhance the manuscript’s structure, making the flow of analysis and conclusions more intuitive for readers.

      (4) Limitations of short-read RNA-seq for splicing analysis

      • Short-read RNA-seq provides only moderate confidence in detecting and quantifying full-length isoforms. However, its higher sequencing depth makes it more suitable for quantifying changes in alternative splicing (AS) events.

      • Our analysis focused on splicing event-level quantification, applying stringent filters and using our GPU-based tool, which showed strong concordance with RT-PCR and other pipelines. Therefore, we also cited and included the updated Paean manuscript that benchmarks its performance in AS analysis.

      Reviewer #3 (Public review): 

      Summary:  

      In this study, Wang et al utilized the available GTEx data to compile a comprehensive analysis that attempt to reveal aging-related sex-dimorphic gene expression as well as alternative splicing changes in humans. 

      The key conclusions based on their analysis are that. 

      (1) extensive sex-dimorphisms during aging with distinct patterns of change in gene expression and alternative splicing (AS), and 

      (2) the male-biased age-associated AS events have a stronger association with Alzheimer's disease, and  (3) the female-biased events are often regulated by several sex-biased splicing factors that may be controlled by estrogen receptors. They further performed break-point analysis and revealed that in males there are two main breakpoints around ages 35 and 50, while in females, there is only one breakpoint at 45. 

      Strengths:  

      This study sets an ambitious goal, leveraging the extensive GTEx dataset to investigate aging-related, sexdimorphic gene expression and alternative splicing changes in humans. The research addresses a significant question, as our understanding of sex-dimorphic gene expression in the context of human aging is still in its early stages. Advancing our knowledge of these molecular changes is vital for identifying therapeutic targets for age-related diseases and extending the human health span. The study is highly comprehensive, and the authors are commendable for their attempted thorough analysis of both gene expression and alternative splicing - an area often overlooked in similar studies. 

      We thank this reviewer for the insightful review and recognition of our study's significance.  We agree with the reviewer on how to examine sex-dimorphic gene expression and alternative splicing in aging by using the GTEx dataset.  This is indeed an essential aspect of developing potential therapeutic targets for agerelated diseases to promote human health span.

      Weaknesses:  

      Due to the inherent noise within the GTEx dataset - which includes numerous variables beyond aging and sex - there are significant technical concerns surrounding this study. Additionally, the lack of crossvalidation with independent, existing data raises questions about whether the observed gene expression changes genuinely reflect those associated with human aging. For instance, the break-point analysis in this study identifies two major breakpoints in males around ages 35 and 50, and one breakpoint in females at age 45; however, these findings contradict a recent multi-omics longitudinal study involving 108 participants aged 25 to 75 years, where breakpoint at 44 and 60 years was observed in both male and females (Shen et al, 2024). These issues cast doubt on the robustness of the study's conclusions. Specific concerns are outlined below: 

      References: 

      Ferreira PG, Muñoz-Aguirre M, Reverter F, Sá Godinho CP, Sousa A, Amadoz A, Sodaei R, Hidalgo MR, Pervouchine D, Carbonell-Caballero J et al (2018) The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nature Communications 9: 490. 

      Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S, Snyder MP (2024) Nonlinear dynamics of multiomics profiles during human aging. Nature Aging. 

      Wucher V, Sodaei R, Amador R, Irimia M, Guigó R (2023) Day-night and seasonal variation of human gene expression across tissues. PLOS Biology 21: e3001986. 

      (1) The primary method used in this study is linear regression, incorporating age, sex, and age-by-sex interactions as covariates, alongside other confounding factors (such as ethnicity) as unknown variables. However, the analysis overlooks two critical known variables in the GTEx dataset: time of death (TOD) and postmortem interval (PMI). Both TOD and PMI are recorded for each sample and account for substantial variance in gene expression profiles. A recent study by Wucher et al.(Wucher et al, 2023) demonstrated the powerful impact of TOD on gene expression by using it to reconstruct human circadian and even circannual datasets. Similarly, Ferreira et al. (Ferreira et al, 2018) highlighted PMI's influence on gene expression patterns. Without properly adjusting for these two variables, confidence in the study's conclusions remains limited at best. 

      We appreciate the reviewer for raising this important point regarding the impact of post-mortem interval (PMI) and time of death (TOD) on gene expression, including the death seasons (DTHSEASON) and daytime (DTHTIME). To address this point, we carefully evaluated whether our linear model controlled for these factors as potential confounders. 

      Our results showed that PMI and TOD significantly correlated with the estimated covariates in most tissues, suggesting that their effects could be effectively regressed out using our model (Figure S4).  As the reviewers and editors suggested, we have now included this correlation analysis in the updated Figure S4C-E and the text in the Results section, citing relevant literature [1,2] (Page 5). 

      Author response image 1.

      The results of differential gene expression analysis with vs without the inclusion of PMI correction as a known covariate. The scatter plots show the correlations of significance levels (pvalues, left panel) and effect sizes (coefficients, right panel) of sex (A) and age (B). Whole-blood tissue is used as an example.

       

      In addition, we did the differential analysis that incorporated PMI as a covariate in the regression models and re-evaluated the age- and sex-related transcriptomic changes. Using WholeBlood gene expression as an example, our revised analysis shows that the inclusion of PMI in the covariates has minimal impact on the significance levels and effects of sex and age (i.e., p-values and coefficients, respectively), indicating that our findings are robust using confounding factors (Author response image 1). 

      (2) To demonstrate that their analysis is robust and that the covariates TOD and PMI are otherwise negligible - the authors should cross-validate their findings with independent datasets to confirm that the identified gene expression changes are reproducible for some tissues. For instance, the recent study by Shen et al. (Shen et al., 2024) in Nature Aging offers an excellent dataset for cross-validation, particularly for blood samples. Comparing the GTEx-derived results with this longitudinal transcriptome dataset would enable verification of gene expression changes at both the individual gene and pathway levels. Without such validation, confidence in the study's conclusions remains limited. 

      We thank the reviewer for the insightful suggestion regarding cross-validation with independent datasets. We understand that validating findings across datasets is crucial for ensuring robustness. As the reviewers suggested, we see whether there are some shared findings in the GTEx data with the study by Shen et al. (2024) in Nature Aging. However, after performing comparisons with our GTEx results in whole blood tissue, we found that the overlaps of differentially expressed genes are limited (Fig. 3). In our results, we found a large proportion of age-associated genes in the GTEx data, whereas just 54 genes are age-associated from Shen et al.’s PBMC data. 3 in 7 genes are differentially expressed in both datasets (Fig. 3A). Additionally, we performed the functional enrichment analysis on the GTEx-specific age-associated genes.

      We observed a strong enrichment in the biological pathways related to neutrophil functions and innate immune responses, which are specific to the cell compositions in whole blood rather than PBMC (Fig. 3B).

      Author response image 2.

      The comparison between the gene expression of whole blood tissue from GTEx and PBMCs from Shen et al. (A) The bar plot shows the number of age (left panel) or sex-associated  (right panel) genes in the two datasets. The grey bars highlight the proportion of overlapped genes in both datasets. (B) The top 10 significantly enriched biological processes in the GTEx-specific age-associated genes. The color bar shows the number of age-associated genes in specific pathways.

      These discrepancies highlighted the crucial factors in cross-dataset comparison:

      • Cell compositions: GTEx used whole blood, which contains all blood components, including neutrophils and erythrocytes, whereas PBMCs contain lymphocytes and monocytes. Under the influence of granulocytes and red blood cells in whole blood, the gene expression profiles between these two datasets are different.

      • Biological functions: Whole blood includes both innate and adaptive immune components; thus, aging-related gene expression changes in whole blood may include a broader systemic response than those in PBMCs. This difference in biological context contributes to the observed variation in the differentially expressed genes, as demonstrated by our functional enrichment analysis (Fig. 3B). 

      • Sequencing biases and data processing: The two datasets were generated using different RNAseq processing pipelines, including distinct normalization, batch correction, and quantification methodologies. These technical differences may introduce systematic variations that complicate direct cross-validation.

      Due to these fundamental problems, a direct one-to-one validation between the two datasets is challenging. We understand the importance of independent dataset validation and appreciate the reviewer’s suggestion. However, future studies could be performed more precisely if comparable whole-blood-based datasets are available. In addition, GTEx data provides nearly thousands of samples in whole blood, which is a largescale, comprehensive, and clinically relevant dataset for studying aging-related changes, particularly in innate immunity and inflammation, which are not well captured in PBMCs.

      (3) As a demonstration of the lack of such validation, in the Shen et al. study (Shen et al., 2024), breakpoints at 44 and 60 years were observed in both males and females, while this study identifies two major breakpoints in males around ages 35 and 50, and one breakpoint in females at age 45. What caused this discrepancy? 

      We thank the reviewer and the editors for both coming up with the non-linear multi-omic aging patterns observed by Shen et al.  They observed two prominent crests around the ages of 45 and 60 from omics data.

      Similarly, we also identified two breakpoints in our analysis, with some differences in specific age breakpoints. These could be the result of sample preparation methods and breakpoint definition. These responses are also included in the editor’s recommendations.

      Definition of breakpoints vs crests:

      • Crests represent age-related molecular changes at each time point across the human lifespan. They indicate the number of molecules that are differentially expressed during aging (q < 0.05), without considering individual expression levels.

      • Our breakpoints, in contrast, are identified after filtering the chronological trends using the Autoregressive Integrated Moving Average (ARIMA) model. We calculated the rate of change at each age point using the smooth approach and sliding windows. Breakpoints are defined as local maxima where the distance to the nearest minimum, relative to the global maximum. We indeed found some local wide peaks around 60 in some tissues, shown in Figure S10, however, we excluded these due to our strict cutoffs to remove noise.

      Differences and similarities between sequenced tissues: 

      • Whole-blood vs PBMC: In the GTEx RNA-seq data used in our study, whole blood samples from donors were sequenced, whereas their study used PBMCs. Whole blood contains all blood components, including red blood cells, platelets, granulocytes (e.g., neutrophils), lymphocytes, and monocytes, while PBMCs represent a subset of white blood cells, primarily consisting of lymphocytes (T cells, B cells, NK cells) and monocytes, excluding granulocytes and erythrocytes. As we mentioned in the previous responses, the gene expression changes observed in whole blood capture the contributions of neutrophils and other granulocytes, which are neglected in the PBMC profile (also shown in Figure S11C). 

      • For the shared tissues in two studies – skin, we looked at the non-linear changes during aging and found the same two breakpoints: 43 and 58. 

      Novelties in our study:

      • Whole blood can serve as a readily accessible resource for testing age-related disease biomarkers without cell separation, making it more practical for clinical applications.

      • Our analysis was performed on females and males, respectively. The main object of our analysis is to compare the differences in aging rates between sexes. Our results reveal clear sex-specific differences across multiple human tissues. Therefore, the identified breakpoints may differ when sex effects are not taken into account, highlighting the specificity of our analysis. 

      • Additionally, our breakpoints are integrated across multiple tissues. Our results showed that there is a large diversity of aging patterns in different tissues.

      As the reviewers and editors suggested, we have added the following statements to clarify this distinction in the Discussion section: ‘Our analysis observed the non-linear aging patterns with two breakpoints, which is consistent with recent findings, with differences in specific age points due to sex differences as well as tissue diversities 3.’ (Page 14), and ‘These breakpoints could represent key junctures in the aging process that align with the non-linear patterns of aging and disease progression.’ (Page 15)

      (4) Although the alternative splicing analysis is intriguing, the authors did not differentiate between splicing events that alter the protein-coding sequence and those that do not. Many splicing changes occurring in the 5' UTR and 3' UTR regions do not impact protein coding, so it is essential to filter these out and focus specifically on alternative splicing events that can modify protein-coding sequences. 

      The reviewer raises an important point. In our study, we included the AS events in protein-coding genes to gain a comprehensive understanding of sex-biased age-associated splicing. As the reviewer suggested, focusing on coding-sequence-altering events is particularly relevant to protein function. To address this, we performed an additional analysis to specifically annotate sBASEs occurring within the coding sequence (defeined as CDS-altering sBASEs) and reanalyzed their functional pathways and AD-associations (Author response image 3).  

      Our analysis revealed that most of the sBASEs are relevant to protein-coding sequences (CDS) across multiple tissues (Author response image 3A).  We then confirmed our findings using CDS-altering sBASEs. We found that those sBASEs in brain regions were significantly enriched in pathways related to amyloid-beta formation and actin filament organization (Author response image 3B). Notably, male-biased sBASEs in decision-related brain regions were particularly associated with dendrite development and regulation of cell morphogenesis, highlighting the sex-specific roles of sBASEs in brain functions. Additionally, we performed a random forest classification using only CDS-altering sBASEs in AD datasets (Author response image 3C-D), again confirming the malebiased association between aging and AD.

      Overall, we found that most of the identified sBASEs could modify protein-coding sequences, and our main conclusions remain consistent even after filtering out non-coding events. 

      Nevertheless, in addition to AS events that impact protein sequences, alternative splicing in untranslated regions (UTRs) also plays a critical regulatory role. Splicing events in the 5′ UTR can influence translation efficiency by modifying upstream open reading frames (uORFs) or RNA secondary structures, while splicing in the 3′UTR can affect mRNA stability, localization, and translation by altering microRNA binding sites and RNA-binding protein interactions. Given these functional implications, we believe that UTR-targeted AS events should also be considered to supplement the understanding of post-transcriptional gene regulation in future research.

      Author response image 3.

      The distribution and functional relevance of sBASEs with coding effects. (A) The number of sBASEs and CDS-altering sBASEs across multiple tissues. The deeper bars show the number of sBASEs whose alternative splice sites are located at protein-coding regions. (B) GO biological pathways in each sex and brain region. Heatmap shows the sex-specific pathways that are significantly enriched by CDS-altering sBASEs in more than 2 brain regions and sex. (C) Correlation between ADassociated and age-associated AS changes across the CDS-altering sBASEs that alter protein-coding sequences in females and males. (D) Performances of sex-stratified models predicted by CDS-altering sBASEs in 100 iterations using the random forest approach

      (5) One of the study's main conclusions - that "male-biased age-associated AS events have a stronger association with Alzheimer's disease" - is not supported by the data presented in Figure 4A, which shows an association with "regulation of amyloid precursor formation" only in female, not male, alternative splicing genes. Additionally, the gene ontology term "Alzheimer's disease" is absent from the unbiased GO analysis in Figure S6. These discrepancies suggest that the focus on Alzheimer's disease may reflect selective data interpretation rather than results driven by an unbiased analysis. 

      We thank the reviewer for this point. In our functional analysis, we identified distinct biological processes enriched in female- and male-biased AS genes, such as the regulation of amyloid precursor formation in females and structural constituents of the cytoskeleton in males. However, Alzheimer’s disease (AD) is a complex neurodegenerative disorder with multiple pathological mechanisms beyond amyloid-beta (Aβ) formation, many of which are strongly age-related in both sexes. This complexity motivates us to explore novel relationships between splicing and AD in distinct sexes.

      Although Figure 4A shows the enrichment of “regulation of amyloid precursor formation” in female-biased AS events, this does not contradict the broader enrichment of AD-related processes in male-biased AS events. Our disease ontology analysis supports this finding, as male-biased age-associated AS events are enriched in neurodegenerative diseases, including cognitive disorders. Additionally, we considered not only individual GO terms but also the disease-associated transcriptomic signatures from AD-related datasets, which collectively indicate a stronger association in males. 

      Regarding Figure S6 mentioned by the reviewer, the GO term “Alzheimer’s disease” is not explicitly listed in the heatmap because we filtered the pathways that are consistently enriched in multiple tissues. As noted in the figure legend, we only displayed sex-specific GO terms that were significant in at least 15 tissues. Then, since the brain is highly affected by age-related processes and neurological conditions show sex differences, the sex-biased AS events could help explain differential susceptibility to age-related cognitive decline and neurodegeneration. That’s why we chose the brain data for detailed analysis.

      To improve clarity, we have revised the text to describe the purpose of our analysis in brain rather than other tissues (Page 6-7). We appreciate the reviewer’s feedback, and we will consider additional analyses to further explore the sex-biased AS as well as disease risk in other tissues.

      (6) The experimental data presented in Figures 5E - I merely demonstrate that estrogen receptor regulates the expression of two splicing factors, SRSF1 and SRSF7, in an estradiol-dependent manner. However, this finding does not support the notion that this regulation actually contributes to sex-dimorphic alternative splicing changes during human aging. Notably, the authors do not provide evidence that SRSF1 and SRSF7 expression changes actually occur in a sex-dependent manner with human aging (in a manner similar to TIA1). As such, this experimental dataset is disconnected from the main focus of the study and does not substantiate the conclusions on sex-dimorphic splicing during human aging. The authors performed RNAseq in wild-type and ER mutant cells, and they should perform a comprehensive analysis of ER-dependent alternative splicing and compare the results with the GTEx data. It should be straightforward. 

      Thanks for the reviewer’s feedback. The main purpose of the analyses in Figures 5E-I was to explore which factors affect the sex-biased expression of splicing factors during aging and substantially regulate alternative splicing (AS). To address the reviewer’s concerns, we have included additional analysis and explained the challenge of linking estrogen receptor (ER)-regulated splicing factors to sex-dimorphic AS changes during human aging in specific human cell types. 

      • As suggested by the reviewer, we first examined the expression changes of SRSF1 and SRSF7 during aging in males and females, like TIA1 in decision-related brain regions (Fig. 5I).

      • Secondly, the regulation is based on a highly complex regulatory network involving multiple splicing factors and cell heterogeneity. Due to these complexities, we did not overlap ER-dependent AS changes with sBASEs from GTEx datasets directly. As far as the reviewer is concerned, we supplemented the AS analysis in the GSE89888 dataset (Fig. 5H) and identified the estrogenregulated AS events mediated by ESR1. We found that ~6% (26/396) of female-specific ageassociated AS events were regulated by ESR1, of which 6 sBASEs can be regulated by femalebiased splicing factors. The low overlaps could be represented by the limited coverage of different RNA-seq datasets and cell types used across these analyses. Notably, the results indicated that only a fraction of AS could be directly accounted for by estrogen via ESR1, suggesting the complexity of transcriptional and splicing regulatory networks during aging. 

      • Meanwhile, we downloaded independent experimental datasets to discover the regulation by our candidate splicing factors. Due to SRSF1 is identified as a potential regulator of sex-biased splicing, we analyzed RNA-seq data with SRSF1 knock-down (KD) glioblastoma cell lines (U87MG and U251), a type of brain cancer formed from astrocytes that support nerve cells 4.  As a result, we indeed found that some sBASEs are regulated by SRSF1 during aging through this experiment using brain cell lines (Author response image 4). Together, these results suggested that some of the SF-RNA regulatory relationships can be observed in another cellular system, further supporting our findings. 

      Due to the limitations of cell-based models and the complexity in the splicing regulatory network, it is challenging to directly validate aging regulation, particularly between different sexes, based on ER treatments in vivo. However, our findings still provide valuable mechanistic insights into ER-regulated splicing factors, implying their potential role in sex-biased aging.

      Author response image 4.

      SRSF1 regulations on specific sBASEs using SRSF1 knock-down RNA-seq data in GBM cells. Three examples are shown to be regulated during aging with significant changes between SRSF1 KD vs control in U251 and U87MG cell lines. The splicing diagrams are shown below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      The authors found that alternative splicing was affected by both sex and age across many tissues, with gene expression differences affected by both parameters only present in some tissues. This trend was consistent when the effects of sex chromosomes were subtracted from the analysis. The effect of aging on differential gene expression and alternative splicing was more prevalent in male than female samples. For analysis purposes, young subjects were deemed to be anyone under 40, and old subjects were over 60 years old. The authors then investigated if specific genes or alternative splicing events were responsible for these effects. Some candidate genes or splicing events were identified but there was little overlap between tissues, suggesting no universal gene or event as a driver of aging. Surrogate variables like the ethnic backgrounds of donors were also investigated. Ultimately the authors found that alternative splicing events showed a stronger sexual dimorphic effect with age than did differential gene expression and that at least for the brain, alternative splicing changes showed a bias for Alzheimer's disease in male samples. This was highlighted by examples of exon skipping in SCL43A2 and FAM107A in males that were associated respectively with plaques and tangles. 

      The authors go on to identify sexual dimorphic differences in splicing factors in particular brain regions during age. Finally, the authors performed analysis for aging-modulated genes, identifying nearly 1000 across the tissues, nearly 70% of which are sex-specific. Their work suggests that further analysis of these aging-modulated genes could be differentially modulating the transcriptome based on sex. The work is novel and interesting, especially investigating sexual dimorphism in alternative splicing. However, the work is still preliminary, and these assumptions need to be applied to other data sets beyond GTEx for validation as well as some other phenomena that need to be considered. I recommend major revisions to address the points below. 

      (1) At the beginning of the results section, the authors state that the brain is stratified into four functional regions. It would be useful to explicitly state those four regions in the text at that point. 

      We agree that specifying these regions early in the text will improve clarity and provide the reader with a clear understanding of the analysis. As the reviewer’s suggestion, we revised the Results section (Page 3) to explicitly state the four functional brain regions as follows: ‘Due to data sparseness, the brain tissues were recombined into four functional regions (table S1), including hormone- or emotion-related region, movement-related region, memory-related region, and decision-related region (See Methods).’. This ensures that the regions are clearly defined before the subsequent analysis is presented. 

      (2) The manuscript becomes a bit confusing when the authors shift from all the tissues as a whole specifically to the brain and then back to the larger tissue set to make assumptions. This can be a bit confusing and should be better delineated.

      We thank the reviewer and editor for the feedback regarding the transitions between the analysis of all tissues and the brain-specific analysis. In our study, we first conducted a broad analysis of alternative splicing (AS) and gene expression (GE) across all tissues. For the AS analyses, we did sBASEs analysis in all tissues and then focused on specific tissue (i.e., brain) whose splicing changes are functionally enriched with age-related diseases.  For the GE analyses, we also analyzed the aging rate across tissues and identified the tissue-specific/shared patterns. 

      We agree that the shifts of the tissues for AS and GE may cause some confusion, and have made the following revisions to delineate why we focused on different tissues for distinct analyses:

      • We have added clear statements to better delineate when we shift focus from the analysis of all tissues to the region-specific analysis and vice versa. For instance, in the Results section (Page 67), we include a transitional phrase: ‘Having established patterns across all tissues, we now turn to a more focused analysis to investigate tissue-specific alternative splicing changes.’

      • To improve the overall structure, we have reorganized the Results section, adding distinct subheadings for the analysis of all tissues and the brain (Page 6), which should make the transition between these sections smoother and more intuitive for the reader.

      We believe that these revisions will make the manuscript’s structure clearer and allow the reader to better follow the flow of the analysis and the subsequent conclusions.

      (3) Gene-length-dependent transcription decline (GLTD) is another phenomenon that occurs with aging and is known to be associated with Alzheimer's disease [PMID38519330]. The authors should make some statement if this is present in their dataset and if any sexual dimorphism in tissues is present. 

      We thank the editors and reviewers for bringing up the possible connection of gene-length-dependent transcription decline (GLTD), which was reported to be associated with both aging and Alzheimer’s disease (AD). We appreciate the reviewer’s suggestion and have addressed whether GLTD is present in our dataset and whether any sex differences are observed in this context.

      We evaluated GLTD using the correlation between gene length with age-associated changes (i.e., the coefficients of the ‘age’ term in the linear regression model) in GTEx data. We did observe strong evidence of GLTD, particularly in the brain, heart, muscle, pancreas, spleen, skin, muscle, etc (Author response image 5A). In brain, we performed the functional enrichment analysis on the genes with Foldchange > 2 and length > 10<sup>5</sup> bp (Author response image 5B). We found that these extremely long genes are significantly relevant to synapse and neuron functions. These findings align with previous studies showing that GLTD can occur with aging in the tissues that are relevant to Alzheimer’s disease, cardiovascular diseases, and common failures of metabolism (e.g., diabetes) [5,6]. Additionally, it was not a ubiquitous phenomenon across all tissues. The correlations could be positive in tissues like adipose and artery.  These findings suggested the GLTD could be varied and tissuespecific in its manifestation during aging. 

      Author response image 5.

      (A) The correlation between gene length and age-associated changes across GTEx tissues in human samples. The correlation tests are evaluated using Spearman’s approach. The color bar indicates the -log10 transformed p-values in the correlation test. (B) The results of GO enrichment analysis using the genes with Foldchange > 2 and length > 10<sup>5</sup> bp. The parent terms calculated by ‘rrvgo’ with a similarity threshold of 0.9 are shown.

      Regarding sexual dimorphism, we conducted this analysis in females and males, respectively (Author response image 6). We found GLTD exists in both females and males in most tissues, such as brain, whole blood, muscle, etc, consistent with the previous results without considering the sex groups. Interestingly, we observed sexbiased patterns in certain tissues. In particular, the left ventricle, pancreas, and hippocampus showed notable male-biased patterns in the degree of transcriptional decline with gene length, whereas skin, liver, small intestine, and esophagus showed that in females. These findings suggest that GLTD could be relevant to aging and age-related diseases; the levels of expression and sexual dimorphism may vary depending on the tissue type. We hope this clarification addresses the reviewer’s concern and provides a more comprehensive understanding of the GLTD and sex differences observed in our dataset. 

      Author response image 6.

      The correlation between gene length and age-associated changes across tissues in females and males, respectively. The correlation tests are evaluated using the Spearman’s approach. The red dots indicate the significant correlations in females, while the navy dots show those in males.

      (4) Because the majority of this work has been performed in the GTEx dataset, applying this analysis to another publicly available dataset would be useful validation. For instance, the authors have interesting findings in the brain and correlations to Alzheimer's disease. Analysis of an existing RNAseq dataset from Alzheimer's disease patients and controls (with functional outcomes) would provide more evidence beyond the preliminary findings from GTEx. 

      We appreciate the reviewer’s suggestion on the validation of our findings by applying our analysis to independent RNA-seq datasets from Alzheimer’s disease patients. 

      • We have used two Alzheimer’s disease datasets, GEO and ROSMAP, to investigate the correlation between aging and Alzheimer’s disease (AD) and included these analyses in our study (Fig. 4B-C and Figure S8C).

      • In the Results section (Page 7), we have presented the results of this validation, where we identified correlations between sex-biased aging-related splicing changes and AD-related changes. These findings support the conclusions from the GTEx dataset and further strengthen the relevance of our results to AD.

      As suggested, we have updated the manuscript to more explicitly highlight this validation in the Discussion section (Page 12), noting: ‘We further validated our findings using Alzheimer’s disease dataset, ROSMAP, where we observed consistent correlations between aging-related splicing changes and Alzheimer’s disease-related changes, providing additional evidence for the robustness of our results.’ 

      Reviewer #2 (Recommendations for the authors): 

      (1) In the text (Introduction and Discussion), the authors mention analyzing 54 tissues, the abstract states 35 tissues, Table S1 lists 48, and Figure 2A-B shows 33. Could the authors please clarify exactly how many tissues they used? I am also confused by the sample numbers in Table S1. For example: for adiposesubcutaneous tissue, the total number of females is listed as 218 but the sum of young and old females is only 110. Does this mean some samples were excluded? What is the exclusion criterion? 

      We thank the reviewers and editors for pointing out the discrepancies regarding the number of tissues analyzed and the sample numbers in Table S1. We appreciate the opportunity to clarify these points:

      Number of tissues analyzed:

      • We downloaded and analyzed 17,382 samples in 54 tissues from GTEx in total (31 tissues and 13 brain regions), as mentioned in the Results, Methods, and Discussion sections. Table S1 lists 48 tissues (31 tissues, 13 brain regions, and 4 merged brain regions), which include a refined classification of the tissues we analyzed, accounting for the variations in brain region categorization in the dataset.

      • The discrepancy also arises from the different sample size cutoffs in specific analyses. For pcSVR analysis (Figure 2A-B), we did the subsampling for the permutation analysis for certain key findings, so we filtered a subset of 33 tissues (29 tissues and 4 merged brain regions), which included at least 3 samples in each age group in females or males. 

      • To resolve this, we have clarified the total number of tissues analyzed and aligned the numbers across the manuscript. In the revised manuscript, we now explicitly state in both the Abstract and Methods sections that 54 tissues were analyzed in the context of this study. We added a note in Methods to clarify that 35 tissues are 31 tissues and 4 merged brain regions (Page 16). In Figure 2A-B, we clarified that the 33 tissues are filtered due to the usage in this analysis (Page 17).

      Sample numbers in Table S1:

      • Regarding the sample sizes of age groups, the discrepancy occurred due to the classification of the age groups. We classify the samples into three: Young, Middle, and Old, as mentioned in the Results section (Page 4). 

      • Additionally, we excluded the sample sizes in 13 single brain regions. We aligned the total tissue number to 35 with our texts.

      We hope this resolves the confusion regarding the number of tissues and the sample sizes used in the analysis. These clarifications have been incorporated into the revised manuscript to ensure consistency.

      (2) Was post-mortem interval (PMI) or manner of death considered in the model? For example, traumatic death may have major consequences on gene expression. Similarly, a few tissues have low sample numbers, for example, kidney cortex and brain. The pooling of brain samples is explained and the kidney cortex is excluded, so why is it listed in Table S1? 

      Thank you for raising this important point regarding the potential impact of post-mortem interval (PMI) and manner of death (DTHMNNR) on gene expression. We carefully considered both factors as potential confounders in our analysis. 

      Specifically, to evaluate their impacts, we calculated the correlations between the coefficients of PMI or manner of death, with the confounding factors. Our results showed that PMI and DTHMNNR are significantly correlated with the covariates in most tissues, suggesting that their effects could be effectively regressed in our model (Figure S4). As we have mentioned in Figure S4 and Author response image 1, we conducted a differential analysis that incorporated PMI as a covariate in the regression models and re-evaluated the age- and sex-related transcriptomic changes to address this concern. The high correlations showed the minor effect size of PMI when including the covariates in the model. As suggested by the reviewers and editors, we have now included this correlation analysis in Figure S4C-E and updated the text in the results section (Page 5).

      Additionally, as the responses above, Table S1 provides the general sample sizes of all GTEx tissues without filtering. We have modified the table to include a total of 35 tissues, including 31 non-brain tissues and 4 brain regions.

      (3) It might be important to show a simple visual of cohort details such as age ranges, sexes, ethnicities, PMIs, etc. 

      To address this, we added summary figures to illustrate the distributions of key demographic variables, including age, sex, BMI, ethnicity, post-mortem intervals (PMIs), and manner of death (DTHMNNR) (Author response image 7 and Author response image 8). This will provide readers with a clearer overview of the dataset composition and potential covariates affecting the analysis. 

      Author response image 7.

      Age (left panel), BMI (Body Mass Index) (middle panel), and PMI (Post-Mortem Interval) (right panel) distribution in GTEx v8 cohort.

      Author response image 8.

      Sex (left panel), ethnicity (middle panel), and manner of death (DTHMNNR) (right panel) distribution in GTEx v8 cohort.

      (4) Since this study is highly correlative, it is impossible to determine if the findings hold true without an independent cohort validation or experimental validation. They used the ROSMAP cohort for AD samples, and some splicing factors regulation but the generalizability to the age and sex effects have not been independently tested.

      The reviewer raises an important point regarding the independent validation of sex- and age-associated splicing changes associated with AD. We used GTEx primarily because it includes approximately 17,000 RNA-seq samples across multiple human tissues, making it the most comprehensive public resource for studying population-level differences in age and sex. In particular, its large-scale brain samples provide a unique opportunity to analyze transcriptomic changes in sex-dimorphic aging.

      We understand the reviewer’s concern that our findings are mainly supported by correlative evidence, which could be affected by dataset-specific biases. However, there are several technical issues in crossvalidation with transcriptomes across different datasets, including limited comparability due to cell type heterogeneity, postmortem artifacts, and sequencing biases.

      Specifically, GTEx data is bulk RNA-seq that does not capture cell-type-specific transcriptomic changes. Given the cellular complexity of the brain and other tissues, observed differences in gene expression and splicing may be influenced by shifts in cellular composition rather than intrinsic transcriptional regulation. For example, we compared our results from GTEx whole blood with the analysis using an external dataset from Peripheral Blood Mononuclear Cells (PBMCs) provided by Shen et al. (2024) [3] (Author response image 2).  We observed limited overlap in differentially expressed genes between these datasets (probably because the whole blood contains diverse immune cell populations), highlighting the challenges in cross-dataset validation due to differences in tissue composition and sample processing.

      Therefore, we applied surrogate variable analysis (SVA) to minimize technical and biological confounders. This approach helped reduce biases from genetic background to hidden batch effects, including postmortem artifacts, sequencing biases (Figure S4), and other covariates. This approach could help us identify whether sex-biased splicing events are biologically meaningful rather than technical artifacts.  

      In addition, to address the reviewer’s concern on the splicing factor regulation, we managed to find a dataset in decision-related brain regions. Due to the limitation of human brain data covering different age and sex groups, we used mouse hippocampus datasets, including young and old, as well as female and male groups [7].  The analysis of protein levels from MS data identified sex-biased age-associated splicing factors, including Srsf1 and Srsf7.  We found that the changes are consistent with the findings from GTEx (Author response image 9), aligning with our sex-biased splicing factor expression during aging in the same region of the human brain. This cross-species consistency supports the robustness of our findings in human brain aging.

      Author response image 9.

      Protein levels of some male-specific splicing factors in human hippocampus quantified using MS data. The Y-axis shows the protein intensity. Different facets mean different sample batch sets. The yellow boxes indicate the protein levels in the young group, while the brown boxes indicate those in the old group.

      In summary, despite the inherent limitations of RNA-seq studies in sex- and age-related transcriptomics, we have made our best efforts to address these concerns through comparisons with external datasets, statistical corrections, and validation using proteomic data. We appreciate the reviewer’s feedback and include additional discussion on these points (Page 13). 

      (5) Are AS predictions from short-read data accurate enough to make the predictions the authors report? 

      The reviewer is correct that the short-read sequencing has inherent limitations in reconstructing full-length isoforms.  However, the higher sequencing depth for short reads makes it a better choice in quantifying the relative change of each AS event across different conditions.  As a result, short-read data are extensively used in the splicing field to quantitatively measure the AS changes.  For this reason, we focused on the levels of alternative splicing events, rather than the quantification of full-length isoforms.  We used a series of stringent filters in our analyses to increase the reliability of our results.

      Specifically, we filtered the read counts of the junction read counts (JC) of most differential AS events that were higher than 10, as mentioned in the Methods section. Also, we used our GPU-based gene expression quantification tool, Paean, which performed better in cross-validation with quantitative RT-PCR results. The results of Paean are consistent with other pipelines. We cited an updated version of Paean that included the comparison with other tools in analyzing AS for consistency.  The manuscript on the new Paean version is being reviewed in another journal, and we included the PDF of that manuscript (Fig. 3 in the Paean manuscript) in the revised documents. 

      (6) Along the same lines, the finding that male age-related AS events are linked to Alzheimer's disease somewhat contradicts epidemiological studies that show that even after adjusting for age, women still have a greater risk of developing Alzheimer's than men. The authors show a significant overlap with AD GE events in females but don't explain the discrepancy. 

      We appreciate the editor’s comment regarding these discrepancies with the epidemiological studies. Previous studies suggested that the disease manifestations of Alzheimer’s Disease (AD) showed sex differences in AD phenotypes, including cognitive decline and brain atrophy [8].  The analyses on the sex/age effect of AD are indeed pretty complex, depending on the molecular criteria (GE or AS vs epidemiological data) in distinct studies, probably due to the difficulty in capturing how environmental exposures interact with biological pathways.  We hope to bring up three related points regarding this concern, which were also discussed in the revised manuscript. 

      • As we have mentioned in the Discussion section, an early study investigated the relationship between age, sex, and cognitive function in a large cohort of 17,127 UK Biobank participants [9]. Their study highlighted more apparent age-related changes in cognitive function among men, suggesting a potential vulnerability of men to cognitive decline with age.  Their main conclusion is consistent with our findings. 

      • While men and women can both suffer from Alzheimer's disease, women are more likely to be diagnosed, possibly due to longer lifespans and potential differences in brain structure or other factors. Although women exhibit a higher overall risk of AD, they may also have distinct molecular compensatory mechanisms that influence disease progression. 

      • To avoid the age effect, in our AD datasets, including ROSMAP, we filtered the samples over 90 years old to match the number of both sexes and the age distribution between the AD and control groups. Our analysis avoided the age biases in comparing AD and control, suggesting the crucial roles of sBASEs in AD during male aging.

      Moreover, for gene expression (GE), we showed distinct patterns of AD-related genes in females with AS. These two molecular processes do not necessarily have the same functional impact. AS changes may precede or contribute to disease onset in different ways compared to GE alterations. Our study came up with the underlying mechanisms linking cognitive disorders and alternative splicing (AS) at a higher molecular resolution.   

      (7) Could the authors explain which sBASE subset they used for their random forest prediction model and what was the rationale? 

      We are sorry for missing the details in selecting sBASEs (sex-biased age-associated splicing events) for the random forest prediction model. We specifically used sBASEs that exhibited specific sex-biased changes in splicing associated with aging. This subset of sBASEs was chosen in terms of those that could also be detected in the ROSMAP AD dataset due to different sequencing depths or technical biases across datasets. These sBASEs were further input to a prediction model with the feature selection algorithm RFE, and then evaluated their contributions. In the revised manuscript, we added the details of this selection in the Methods (Page 7).

      (8) The breakpoint analysis is particularly interesting. Can this be speculated to correlate with the recent non-linear multi-omic aging patterns observed by Shen et al in Nature Aging? 

      Thank you for highlighting the interesting aspects of our breakpoint analysis and suggesting its potential correlation with the non-linear aging patterns observed by Shen et al. 

      Shen et al. observed two prominent crests around the ages of 45 and 60 using omics data. Similarly, we also identified the non-linear aging patterns with two breakpoints in our analysis. However, there are some notable differences in specific breakpoints between these two studies, resulting from the breakpoint definition, as well as the sample preparations. According to the response in Author response image 2, the differences come from the following aspects:

      The definition of breakpoints vs crests:

      • Crests represent age-related molecular changes at each time point across the human lifespan. They indicate the number of molecules that are differentially expressed during aging (q < 0.05), without considering individual expression levels.

      • Our breakpoints, in contrast, are identified after filtering the chronological trends based on the expression levels and calculating the rate of change at each age point using sliding windows. Breakpoints are defined as local maxima where the distance to the nearest minimum, relative to the global maximum, exceeds 10%. We indeed found some local wide peaks around 60 in some tissues, shown in Figure S10, however, we excluded these due to our strict cutoffs.

      The sequenced biosamples: 

      • Whole-blood vs Peripheral Blood Mononuclear Cells (PBMC): As mentioned in previous responses, in GTEx, whole blood samples from donors were sequenced, whereas their study used PBMCs. Whole blood contains all blood components, including red blood cells, platelets, granulocytes (e.g., neutrophils), lymphocytes, and monocytes, while PBMCs only represent a subset of white blood cells, primarily consisting of lymphocytes (T cells, B cells, NK cells) and monocytes, excluding granulocytes and erythrocytes. Gene expression changes observed in whole blood capture the contributions from neutrophils and other granulocytes, which are absent in PBMC analyses (as shown in Figure S11C and Author response image 2). Additionally, whole blood can serve as a readily accessible biomarker source for testing age-related diseases without the need for cell separation, making it a more practical option for clinical applications.

      • For both studies, we share a tissue, which is skin, we looked at the non-linear changes during aging and found the same two breakpoints: 43 and 58. 

      Sex-specific analysis in females and males:

      • The main object of our analysis is to compare the differences in aging rates between sexes. Notably, the identified breakpoints may differ when sex effects are not taken into account, highlighting the importance of analyzing males and females separately.

      We have added the following statements to further clarify this connection: ‘Our analysis observed the nonlinear aging patterns with two breakpoints, which is consistent with recent findings (Nature Aging, 2024), with differences in specific age points due to the sex differences as well as tissue diversities.’ (Page 14), and ‘These breakpoints could represent key junctures in the aging process that align with the non-linear patterns of aging and disease progression.’ (Page 15)

      (9) Minor - the authors should refer to figures in the Discussion. They do so in some cases but this needs to be more extensive. 

      Thank you for pointing this out. In response, we have reviewed the Discussion section and added references to relevant figures where appropriate. In the section discussing the discrepancies between the profiles of GE vs. AS, we now refer to Figure 3 to highlight the earlier onset of different transcriptomic resolutions (Page 12); When describing the sex-specific age-associated AS changes and their associations with Alzheimer’s disease, we have added references to Figure 4 (Page 12); In the discussion of estrogen-mediated regulation of splicing factors, we have referred to Figure 5A, which detail the construction of RBP-RNA regulatory network integrating muti-dimensional data obtained through several orthogonal state-of-the-art approaches (Page 14).

      Reference:

      (1) Ferreira, P.G. et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nature communications 9, 490 (2018).

      (2) Wucher, V., Sodaei, R., Amador, R., Irimia, M. & Guigó, R. Day-night and seasonal variation of human gene expression across tissues. PLoS Biology 21, e3001986 (2023).

      (3) Shen, X. et al. Nonlinear dynamics of multi-omics profiles during human aging. Nature aging, 116 (2024).

      (4) Zhou, X. et al. Splicing factor SRSF1 promotes gliomagenesis via oncogenic splice-switching of MYO1B. The Journal of clinical investigation 129, 676-693 (2019).

      (5) Soheili-Nezhad, S., Ibáñez-Solé, O., Izeta, A., Hoeijmakers, J.H. & Stoeger, T. Time is ticking faster for long genes in aging. Trends in Genetics 40, 299-312 (2024).

      (6) Brouillette, M. Gene length could be a critical factor in the aging of the genome. Proceedings of the National Academy of Sciences 121, e2416630121 (2024).

      (7) Keele, G.R. et al. Global and tissue-specific aging effects on murine proteomes. Cell reports 42(2023).

      (8) Ferretti, M.T. et al. Sex differences in Alzheimer disease—the gateway to precision medicine. Nature Reviews Neurology 14, 457-469 (2018).

      (9) Foo, H. et al. Age-and sex-related topological organization of human brain functional networks and their relationship to cognition. Frontiers in aging neuroscience 13, 758817 (2021).

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      The authors survey the ultrastructural organization of glutamatergic synapses by cryo-ET and image processing tools using two complementary experimental approaches. The first approach employs so-called "ultra-fresh" preparations of brain homogenates from a knock-in mouse expressing a GFP-tagged version of PSD-95, allowing Peukes and colleagues to specifically target excitatory glutamatergic synapses. In the second approach, direct in-tissue (using cortical and hippocampal regions) targeting of the glutamatergic synapses employing the same mouse model is presented. In order to ascertain whether the isolation procedure causes any significant changes in the ultrastructural organization (and possibly synaptic macromolecular organization) the authors compare their findings using both of these approaches. The quantitation of the synaptic cleft height reveals an unexpected variability, while the STA analysis of the ionotropic receptors provides insights into their distribution with respect to the synaptic cleft.

      The main novelty of this study lies in the continuous claims by the authors that the sample preservation methods developed here are superior to any others previously used. This leads them as well to systematically downplay or directly ignore a substantial body of previous cryo-ET studies of synaptic structure. Without comparisons with the cryo-ET literature, it is very hard to judge the impact of this work in the field. Furthermore, the data does not show any better preservation in the so-called "ultra-fresh" preparation than in the literature, perhaps to the contrary as synapses with strangely elongated vesicles are often seen. Such synapses have been regularly discarded for further analysis in previous synaptosome studies (e.g. Martinez-Sanchez 2021). Whilst the targeting approach using a fluorescent PSD95 marker is novel and seems sufficiently precise, the authors use a somewhat outdated approach (cryo-sectioning) to generate in-tissue tomograms of poor quality. To what extent such tomograms can be interpreted in molecular terms is highly questionable. The authors also don't discuss the physiological influence of 20% dextran used for high-pressure freezing of these "very native" specimens.

      Lastly, a large part of the paper is devoted to image analysis of the PSD which is not convincing (including a somewhat forced comparison with the fixed and heavy-metal staining room temperature approach). Despite being a technically challenging study, the results fall short of expectations. 

      Our manuscript contains a discussion of both conventional EM and cryoET of synapses. We apologise if we have omitted referencing or discussing any earlier cryoET work. This was certainly not our intention, and we include a more complete discussion of published cryoET work on synapses in our revised manuscript.

      The reviewer is concerned that the synaptic vesicles in some synapse tomograms are “stretched” and that this may reflect poor preservation.  We would like to point out that such non-spherical synaptic vesicles have also been previously reported in cryoET of primary neurons grown on EM grids (Tao et al., J. Neuro, 2018). Indeed, there is no reason per se to suppose synaptic vesicles are always spherical and there are many diverse families of proteins expressed at the synapse that shape membrane curvature (BAR domain proteins, synaptotagmin, epsins, endophilins and others). We will add further discussion of this issue in the revised manuscript.

      The reviewer regards ‘cryo-sectioning’ as outdated and cryoET data from these preparations as “poor quality”. We respectfully disagree. Preparing brain tissues for cryoET is generally considered to be challenging. The first successful demonstration of preparing such samples was before the advent of the cryoEM resolution revolution (with electron counting detectors) by Zuber et al (Proc. Natl. Acad. Sci.,2005) preparing cryo-sections/CEMOVIS of in vitro brain cultures. We followed this technique to prepare tissue cryo-sections for cryoET in our manuscript. Recently, cryoFIB-SEM liftout has been developed as an alternative method to prepare tissue samples for cryoET (Mahamid et al., J. Struct. Biol., 2015) and only more recently this method became available to more laboratories. Both techniques introduce damage as has been described (Han et al., J. Microsc., 2008; Lucas et al., Proc. Natl. Acad. Sci., 2023). Importantly no like-for-like, quantitative comparison of these two methodologies has yet been performed. We have recently demonstrated that the molecular structure of amyloid fibrils within human brain is preserved down to the protein fold level in samples prepared by cryo-sectioning (Gilbert et al., Nature, 2024). We will add further detail on the process by which we excluded poor quality tomograms from our analysis, which we described in detail in our methods section.

      The reviewer asks what the physiological effect is of adding 20% w/v ~40,000 Da dextran? This is a reasonable concern since this could in principle exert osmotic pressure on the tissue sample. While we did not investigate this ourselves, earlier studies have (Zuber et al, 2005) showing cell membranes were not damaged by and did not have any detectable effect on cell structure in the presence of this concentration of dextran.

      The reviewer is not convinced by our analysis of the apparent molecular density of macromolecules in the postsynaptic compartment that in conventional EM is called the postsynaptic density. However, the reviewer provides no reasoning for this assessment nor alternative approaches that could be attempted. We would like to add that we have tested multiple different approaches to objectively measure molecular crowding in cryoET data, that give comparable results. We believe that our conclusion – that we do not observe an increased molecular density conserved at the postsynaptic membrane, and that the PSD that we and others observed by conventional EM does not correspond to a region of increased molecular density - is well supported by our data.  We and the other reviewers consider this an important and novel observation.

      Reviewer #2 (Public review)

      Summary: 

      The authors set out to visualize the molecular architecture of the adult forebrain glutamatergic synapses in a near-native state. To this end, they use a rapid workflow to extract and plunge-freeze mouse synapses for cryo-electron tomography. In addition, the authors use knockin mice expression PSD95-GFP in order to perform correlated light and electron microscopy to clearly identify pre- and synaptic membranes. By thorough quantification of tomograms from plunge- and high-pressure frozen samples, the authors show that the previously reported 'post-synaptic density' does not occur at high frequency and therefore not a defining feature of a glutamatergic synapse.

      Subsequently, the authors are able to reproduce the frequency of post-synaptic density when preparing conventional electron microscopy samples, thus indicating that density prevalence is an artifact of sample preparation. The authors go on to describe the arrangement of cytoskeletal components, membraneous compartments, and ionotropic receptor clusters across synapses.

      Demonstrating that the frequency of the post-synaptic density in prior work is likely an artifact and not a defining feature of glutamatergic synapses is significant. The descriptions of distributions and morphologies of proteins and membranes in this work may serve as a basis for the future of investigation for readers interested in these features.

      Strengths: 

      The authors perform a rigorous quantification of the molecular density profiles across synapses to determine the frequency of the post-synaptic density. They prepare samples using two cryogenic electron microscopy sample preparation methods, as well as one set of samples using conventional electron microscopy methods. The authors can reproduce previous reports of the frequency of the post-synaptic density by conventional sample preparation, but not by either of the cryogenic methods, thus strongly supporting their claim. 

      We thank the reviewer for their generous assessment of our manuscript.

      Reviewer #3 (Public review): 

      Summary: 

      The authors use cryo-electron tomography to thoroughly investigate the complexity of purified, excitatory synapses. They make several major interesting discoveries: polyhedral vesicles that have not been observed before in neurons; analysis of the intermembrane distance, and a link to potentiation, essentially updating distances reported from plastic-embedded specimen; and find that the postsynaptic density does not appear as a dense accumulation of proteins in all vitrified samples (less than half), a feature which served as a hallmark feature to identify excitatory plastic-embedded synapses. 

      Strengths: 

      (1)The presented work is thorough: the authors compare purified, endogenously labeled synapses to wild-type synapses to exclude artifacts that could arise through the homogenation step, and, in addition, analyse plastic embedded, stained synapses prepared using the same quick workflow, to ensure their findings have not been caused by way of purification of the synapses. Interestingly, the 'thick lines of PSD' are evident in most of their stained synapses.

      (2)I commend the authors on the exceptional technical achievement of preparing frozen specimens from a mouse within two minutes.

      (3)The approaches highlighted here can be used in other fields studying cell-cell junctions.

      (4)The tomograms will be deposited upon publication which will enable neurobiologists and researchers from other fields to carry on data evaluation in their field of expertise since tomography is still a specialized skill and they collected and reconstructed over 100 excellent tomograms of synapses, which generates a wealth of information to be also used in future studies.

      (5) The authors have identified ionotropic receptor positions and that they are linked to actin filaments, and appear to be associated with membrane and other cytosolic scaffolds, which is highly exciting.

      (6) The authors achieved their aims to study neuronal excitatory synapses in great detail, were thorough in their experiments, and made multiple fascinating discoveries. They challenge dogmas that have been in place for decades and highlight the benefit of implementing and developing new methods to carefully understand the underlying molecular machines of synapses.

      Weaknesses: 

      The authors show informative segmentations in their figures but none have been overlayed with any of the tomograms in the submitted videos. It would be helpful for data evaluation to a broad audience to be able to view these together as videos to study these tomograms and extract more information. Deposition of segmentations associated with the tomgrams would be tremendously helpful to Neurobiologists, cryo-ET method developers, and others to push the boundaries.

      Impact on community: 

      The findings presented by Peukes et al. pertaining to synapse biology change dogmas about the fundamental understanding of synaptic ultrastructure. The work presented by the authors, particularly the associated change of intermembrane distance with potentiation and the distinct appearance of the PSD as an irregular amorphous 'cloud' will provide food for thought and an incentive for more analysis and additional studies, as will the discovery of large membranous and cytosolic protein complexes linked to ionotropic receptors within and outside of the synaptic cleft, which are ripe for investigation. The findings and tomograms available will carry far in the synapse fields and the approach and methods will move other fields outside of neurobiology forward. The method and impactful results of preparing cryogenic, unlabelled, unstained, near-native synapses may enable the study of how synapses function at high resolution in the future.

      We thank the reviewer for their supportive assessment of our manuscript.  We thank the reviewer for suggesting overlaying segmentations with videos of the raw tomographic volumes. We will include this in our revised manuscript.

      Reviewer #1 (Recommendations for the authors): 

      Major comments: 

      (1) The previous literature on synaptic cryo-ET studies is systematically ignored. The results presented here (and their novelty) must be compared directly with this body of work, rather than with classical EM.

      Our submitted manuscript included a 3-paragraph discussion of earlier synaptic cryoET studies, albeit we apologize that a seminal citation was missing, which we have corrected in our revised manuscript. We have now also included an additional brief discussion related to several more recent cryoET studies (see citations below) that were published after our pre-print was first deposited in 2021.

      (1) Held, R.G., Liang, J., and Brunger, A.T. (2024). Nanoscale architecture of synaptic vesicles and scaffolding complexes revealed by cryo-electron tomography. Proc. Natl. Acad. Sci. 121, e2403136121. https://doi.org/10.1073/pnas.2403136121.

      (2) Held, R.G., Liang, J., Esquivies, L., Khan, Y.A., Wang, C., Azubel, M., and Brunger, A.T. (2024). In-Situ Structure and Topography of AMPA Receptor Scaffolding Complexes Visualized by CryoET. bioRxiv, 2024.10.19.619226. https://doi.org/10.1101/2024.10.19.619226.

      (3)Matsui, A., Spangler, C., Elferich, J., Shiozaki, M., Jean, N., Zhao, X., Qin, M., Zhong, H., Yu, Z., and Gouaux, E. (2024). Cryo-electron tomographic investigation of native hippocampal glutamatergic synapses. eLife 13, RP98458. https://doi.org/10.7554/elife.98458.

      (4)Glynn, C., Smith, J.L.R., Case, M., Csöndör, R., Katsini, A., Sanita, M.E., Glen, T.S., Pennington, A., and Grange, M. (2024). Charting the molecular landscape of neuronal organisation within the hippocampus using cryo electron tomography. bioRxiv, 2024.10.14.617844. https://doi.org/10.1101/2024.10.14.617844.

      We discuss the above papers in our revised manuscript with the following:

      “Since submission of our manuscript, several reports of synapse cryoET from within cultured primary neurons (Held et al., 2024a, 2024b)  and mouse brain(Glynn et al., 2024; Matsui et al., 2024) were prepared by cryoFIB-milling. These new datasets are largely consistent with the data reported here. CryoFIB-SEM has the advantage of overcoming the local knife damage caused by cryo-sectioning but introduces amorphization across the whole sample that diminishes the information content (Al-Amoudi et al., 2005; Lovatt et al., 2022; Lucas and Grigorieff, 2023). We have recently shown cryoET data is capable of revealing subnanometer resolution in-tissue protein structure from vitreous cryo-sections (Gilbert et al., 2024) and near-atomic structures within cryo-sections has recently been demonstrated (Elferich et al., 2025).”

      Although there is variation between individual synapses, PSDs are clearly visible in several previous cryo-ET studies (even if it's not as striking as in heavy-metal stained samples). In fact, although the contrast of the images is generally poor, PSDs are also visible in several examples shown in Figure 1 - Supplement 3. Not being able to detect them seems more of a problem of the workflow used here than of missing features. The authors should also discuss why heavy-metal stains would accumulate on a non-existing structure (PSD) in conventional EM.

      We agree that apparent higher molecular density can be observed in example tomographic data of earlier cryoET studies. We also report individual examples of similar synapses in our dataset. A key strength of our approach is that we have assessed the molecular architecture of large numbers of adult brain synapses acquired by an unbiased approach (solely guided by PSD95 cryoCLEM), which indicate that a higher molecular density proximal to the postsynaptic membrane is not a conserved feature of glutamatergic synapses in the adult brain. There is no rationale for our cryoCLEM approach being a ‘problem of the workflow’.

      The reviewer misunderstands the weaknesses of conventional/room temperature EM workflows (including resin-embedding and freeze substitution). It is unavoidable that most proteins are damaged by denaturation and/or washed away by washing samples in organic solvents (methanol/acetone that directly denature most proteins) during tissue preparation for conventional EM. It is therefore conceivable that in such preparations a relative increase in contrast proximal to the postsynaptic membrane (‘PSD’) would appear if cytoplasmic proteins were washed away during these harsh organic solved washing steps, leaving only those denatured proteins that are tethered to the postsynaptic membrane. It is not that the PSD is absent in cryoEM, rather that this difference in molecular crowding is not evident when tissues are imaged directly by cryoEM and have not undergone the harsh sample preparation required for conventional/room temperature EM.

      (2) Whether the synapses examined here are in a more physiological state than those analyzed in other papers remains absolutely unclear. For example, the quality of the tomographic slice shown in Figure 1C is poor, with the majority of synaptic vesicles looking suspiciously elongated. 

      We addressed this in our public reviews.

      (3) How were actin filaments segmented and quantified (e.g. for Fig 1E)? Apart from actin, can the authors show some examples of other macromolecular complexes (e.g. ribosomes) that they are able to identify in synapses (based on the info in supplementary tables)? Also, the mapping of glutamatergic receptors is not convincing, as the molecules were picked manually. To analyze their distribution, they should be mapped as comprehensively as possible by e.g. template matching.

      Actin filaments identified by ~7 nm diameter with ~70° branch points were manually segmented in IMOD. The number of filaments was counted per postsynaptic compartment. We have amended the methods section to include this description.

      “In the PoSM, F-actin formed a network with ~70° branch points (Figure 1–figure supplement 1C) likely formed by Arp2/3, as expected(Pizarro-Cerdá 2017,Fäßler 2020) . Putative filament copy number in the PoSM was estimated by manual segmentation in IMOD.” Manual picking was validated by the quality of the subtomogram average, which although only reached modest resolution (25 Å) is consistent with the identification of ionotropic glutamate receptors.

      (4) In the section "Synaptic organelles" the authors should provide some general information on the average number and size of synaptic vesicles (for the in-tissue tomograms).

      We have provided this information in the methods section:

      “The average diameter of synaptic vesicles was 40.2 nm and the minimum and maximum dimensions ranged from 20 to 57.8 nm, measured from the outside of the vesicle that included ellipsoidal synaptic vesicles similar to those previously reported (Tao et al., 2018).” A detailed survey of the presynaptic compartment, including the number of presynaptic vesicles was not the focus of our manuscript. We have deposited all tomograms from our dataset for any further data mining.

      Can the "flat tubular membranes compartments" be attributed to ER? The angular vesicles certainly have a typical ER appearance, as such morphology has been seen in several cryo-ET studies of neuronal and non-neuronal cells.

      In neuronal cells we regard it as unsafe to describe an intracellular organelle as being endoplasmic reticulum on the basis of morphology alone (eg. Smooth ER described widely in conventional EM) because of the apparent diversity of distinct organelles. As described in our methods section, we could have confidence that a membrane compartment is ER when we observe ribosomes tethered to the membrane. In instances where flat/tubular membranes did not have associated ribosomes, we take the cautious view that there is not sufficient evidence to define these as ER.

      Importantly, polyhedral vesicles were distinct from the flat/tubular membranes that resembled ER and are at present organelles of unknown identity. It will be important in future experiments to determine what are the protein constituents of these distinct organelle types to understand both their functions and how these distinct membrane architectures are assembled.

      Therefore, the sentences in lines 198-199 are simply wrong. Additionally, features of even higher membrane curvature are common in the ER (e.g. Collado et al., Dev Cell 2019). 

      We thank the reviewer for bringing our attention to this excellent paper (Collado et al.). We agree that the sentence describing the curvature being higher than all other membranes except mitochondrial cristae is wrong. We have removed this sentence in the revised manuscript.

      (5)The quality of the tomographic data for the in-tissue sample is low, likely due to cryo-sectioning-induced artifacts, as extensively documented in the literature. Additionally, the authors used 20% dextran as cryo-protectant for high-pressure freezing, which contrasts with statements like those in lines 342-344. Given that several publications describing the in-tissue targeting of synapses (e.g. from Eric Gouaux's lab) are available, the quality of the tomographic data presented in this work is underwhelming and limits the conclusions that can be drawn, not providing a solid basis for future studies of in-tissue synapse targeting. However, the complete workflow (excluding the sectioning part) can be adapted for a cryo-FIB approach. The authors should discuss the limitations of their approach. 

      Our manuscript preprint was deposited in the Biorxiv several years before Matsui/Gouaux’s recent ELife paper that reported a novel work-flow for in-tissue cryoET. It is difficult to directly compare data from our and Matsui/Gouaux’s approach because the latter reported a dataset of only 3 tomograms. Note also that Matsui/Gouaux followed our approach of using 20% dextran 40,000 as a cryo-preservative. The use of 20% dextran 40,000 as a cryo-protectant was first established by Zuber et al., 2005 (PMID: 16354833) and shown avoid hyper-osmotic pressure and cell membrane rupture. However, Matsui/Gouaux additionally included 5% sucrose in their cryoprotectant. We did not include sucrose as cryo-preservative because this exerts osmotic pressure and was not necessary to achieve vitreous tissues in our workflow.

      Before high-pressure freezing, Matsui/Gouaux also incubated tissue slices in a HEPES-buffered artificial cerebrospinal fluid (that included 2 mM CaCl2 but did not include glucose as an energy source) for 1 h at room temperature to label AMPA receptors with Fab fragment-Au conjugates. Under these conditions, neurons can elicit both physiological and excitotoxic action potentials (even though AMPARs were themselves antagonised with ZK-200775). The absence of glucose is a concern, and it is unclear to what extent tissue viability is affected by this incubation step. In contrast, we chose to use an NMDG-based artificial cerebrospinal fluid for slice preparation and high-pressure freezing that is a well-established method for preserving neuronal viability (Ting et al., 2018).

      We addressed the supposed limitations of cryo-sectioning versus cryoFIB-SEM in our public response. In particular, we have recently shown that cryo-sectioning produced a  subnanometer resolution in-tissue structure of a protein, that has so far only been achieved for ribosome within cryoFIB-SEM sample preparations. A discussion of cryo-sectioning versus cryoFIB-SEM must be informed by new data that directly compares these methods, which is not the subject of our eLife paper. We also cite a recent preprint directly comparing cryoFIB-milled lamellae with cryo-sections and showing that near atomic resolution structures can also be obtained from the latter sample preparations (Elferich et al., 2025).

      (6) The authors show (in Supplementary) putative tethers connecting SV and the plasma membrane. Is it possible to improve the image quality (e.g. some sort of filtering or denoising) so that the tethers appear more obvious? Can the authors observe connectors linking synaptic vesicles? 

      We have tested multiple iterative reconstruction and denoising approaches, including SIRT and noise2noise filtering in Isonet. We observed instances of macromolecular complexes linking one synaptic vesicle with another. However, there was no question we sought to answer by performing a quantitative analysis of these linkers.

      (7) Figure 4F is missing. 

      Thank you for spotting this omission. We have corrected this in the revised manuscript.

      (8) Most quantifications lack statistical analyses. These need to be included, and only statistically significant findings should be discussed. Terms like "significantly" (e.g. Line 144) should only be used in these cases.

      We used the term ‘significantly’ in the results section (line 143 and line 166 in revised text, we cite figure 1H and 2F showing analyses in which we have in fact performed statistical tests (t-tests with Bonferroni correction) comparing the voxel intensities in regions of the cytoplasm that are proximal versus distal to the postsynaptic membrane. We have amended the main text to include the details of the statistical test that we performed. Also, we neglected to include a description of the statistical test in line 241, which cites Figure 3G. We have corrected this in the revised text.

      Minor comments: 

      (1) Can the authors comment on why only 1-2 grids are prepared per mouse brain (in M&M -section)?

      We prepared only two grids in order to have prepared samples within 2 minutes, to limit deterioration of the sample.

      (2) Figure 1 Supplement 2 and its legend are confusing (averaging of non-aligned versus aligned post-synaptic membrane). Can the authors describe more clearly their molecular density profile analysis?

      We apologise that this figure legend was insufficient. We have included a detailed description of our molecular density profile analysis in the methods section entitled ‘Molecular density profile analysis’. In the revised manuscript we have now also included a citation to this methods section in Figure – figure 1 supplement 2 legend.

      (3) Please clarify with higher precision the areas were recorded in relation to the fluorescent spots (e.g. Figures 3A-C).

      We have included a white rectangular annotation in the cryoCLEM inset panels of Figures 3A-C to indicate the field of view of each corresponding tomographic slice. This shows that PSD95-GFP puncta localise to the postsynaptic compartments in each tomogram.

      (4) Figure 4 Supplement 2D is not clear: the connection between receptors and actin should be shown in a segmentation.

      We agree with the reviewer. A ‘connection’ is not clear, which is expected because the cytoplasmic domain of ionotropic glutamate receptor subunits is composed of a non-globular/intrinsically disordered sequence. We have amended our description of the proximity of actin cytoskeleton to ionotropic glutamate receptor clusters in the main text replacing “associated with” to “adjacent to”.

      (5) Line 341: the reference is referred to by a number (56) at the end of the sentence, rather than by name.

      Good spot. We have corrected this in the revised manuscript.

      (6) Line 968: tomograms is misspelled. 

      Good spot. We have corrected this error (line 1018 in our revised manuscript).

      Reviewer #2 (Recommendations for the authors): 

      (1) On page 11: "The position of (i)onotropic receptor...". 

      Good spot. We have corrected this.

      (2) On page 13: "Slightly higher relative molecular density..." this line ends with a citation to reference '56', but the works cited are not numbered.

      Good spot. We have corrected this in the revised manuscript.

      (3) On page 46: "as described in (69)..." the works cited are not numbered. 

      Good spot. We have corrected this in the revised manuscript.

      Reviewer #3 (Recommendations for the authors): <br /> (1) The title does not do the work justice. The authors make many exciting discoveries, e.g. PSD appearance, new polyhedral vesicles, ionotropic receptor positions, and intermembrane distance changes even within the synaptic cleft, but title their manuscript "The molecular infrastructure of glutamatergic synapses in the mammalian forebrain". It is also a bit misleading, since one would have expected more molecular detail and molecular maps as part of the work, so the authors may think about updating the title to reflect their exciting work. 

      We thank the reviewer for recognising the exciting discoveries in our manuscript. Summarising all these in a title is challenging. We intend ‘molecular infrastructure’ to mean a structure composed of many molecules including proteins (by analogy ‘transport infrastructure’ is composed of many roads, ports and train lines).

      (2) It would be in the spirit of eLife and open science if the authors could submit their segmentations alongside the tomographic data to either EMPIAR or pdb-dev (if they accept it) or the new CZII cryoET data portal for neurobiologists, method developers, and others to use. 

      We agree with the reviewer. We have deposited in subtomogram averaged map of AMPA receptor in EMDB, and all tilt series and 4x binned tomographic reconstructions described in our manuscript (figure 1- table1 and figure 2 -table 2), together with segmentations in EMPIAR.  

      (3) Methods: the authors establish an exciting new workflow to get from living mice to frozen specimens within 2 minutes and perform many unique analyses that would be useful to different fields. Their methods section overall is well described and contains criteria and details that should allow others to apply experiments to their scientific problems. However, it would be very helpful to expand on the methods in the 'annotation and analysis [...]' and "Subtomogram averaging" sections, to at least in short describe the steps without having to embark on a reference journey for each method and generally provide more detail. For the annotation section, the software used for annotation is not listed. Table 1 only contains the list of the counts of organelles etc. identified in each tomogram, no processing details. 

      We have revised the methods section ‘annotation and analysis’ including software used (IMOD). We have also included a slightly more detailed description of subtomogram averaging. We did not include ‘processing details’ because there are none - identification of constituents in each tomogram was carried out manually, as described in the methods section.

      (4) Some of the tomograms submitted as videos may have slipped through as an early version since they appear to be originating from not perfectly aligned tiltseries; vesicles and membranes can be observed 'rubberbanding'. The authors should go through and check their videos. 

      We thank the referee for suggesting we double check our tomogram videos. All movies are representative tomographic reconstructions from ultra-fresh synapse preparations (Figure 1 – videos 1-7) and synapses in tissue cryo-sections (Figure 2 – videos 1-2). We have double checked that the videos correspond to tomograms that were aligned as good as possible. In general, tissue cryo-section tomograms reconstructed less well than ultra-fresh synapse tomograms, which limits the information content of these data, as expected. Consequently, the reconstructions shown in these videos were all reconstructed as best we could (testing multiple approaches in IMOD, and more recent software packages, eg. AreTomo). While we think it is important to share all tomograms, regardless of quality, we were careful to exclude tomograms for analysis that did not contain sufficient information for analysis (as described in the methods section).

      Minor suggestions: 

      (1) Page 13, line 341, reference 56, but references are not numbered. Please update.

      Good spot. We have corrected this in the revised manuscript.

      (2) Page 33, line 746, the figure legend is not referencing the correct figure panels G-K should be I-K;

      We have amended the Figure 3 legend to “(G-K) Snapshots and quantification of membrane remodeling within glutamatergic synapses”.

      (3) Page 33, line 750; reads 'same as E', but should be 'same as G'. 

      Good spot. We have corrected this in the revised manuscript.

      (4) Page 35, Figure 4: Please use more labels: Figure 4B: it would be helpful to use different colors for each view and match to the tomogram - then non-experts could easily relate the projections and real data; Figure 4C: please label domains; Figure 4F: the figure panel got lost. 

      This is an interesting idea. While our subtomgram average of 2522 subvolumes provided decent evidence that these are ionotropic receptors, we are reluctant to label specific putative domains of individual subvolumes in the raw tomographic slice because the resolution of the raw tomogram (particularly in the Z-direction) is worse and may not be sufficient to resolve definitely each domain layer. We hope the reviewer appreciates our cautious approach.

      (5) Page 42, line 933: incomplete sentence. 

      Good spot. We have corrected this in the revised manuscript.

      (6) Page 46, line 1038; Reference 69 is in brackets, but references are not numbered. Please update.

      Good spot. We have corrected this in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewing Editor Comments:

      Focus and Scope:

      The paper attempts to address too many topics simultaneously, resulting in a lack of focus and insufficient depth in the treatment of individual components.

      We have moved this selective clinical review section that was previously Part I in the paper now to Part II, given the importance of leading off with the meta-analysis and resource before doing a selective review, which are now Part I. In the lead in to Part II, we now indicate that the review is not intended to be comprehensive, because there are other recent comprehensive reviews, which we cite. This part of the paper merely aims to generate hypotheses on the directionality of effects ripe for testing on how TUS could be used to excite or suppress function, illustrated with specific clinical examples. The importance of this section, even though not comprehensive, is that it should provide the reader with examples on how the directionality of TUS could be used specifically in a range of clinical applications. The reader will find that the same hypotheses do not apply to different clinical disorder. Therefore, patient specific hypotheses need to be motivated and then subsequently tested with empirical application of TUS, which Part II provides.

      Part II. Selective TUS clinical applications review and TUS directionality hypotheses starts at line 458. Part I, the meta-analysis and resource section starts at line 199, after the Introduction on TUS and the importance on understanding how the directionality of TUS effects could be better understood.

      Strengthening the Meta-Analysis:

      The meta-analysis is the strongest aspect of the paper and should be expanded to include the relevant statistics. However, it currently omits several key concepts, studies, and discussion points, particularly related to replication and the dominance of results from specific groups. These omissions should be addressed even with a focus on meta-analysis.

      We thank the reviewer for their enthusiasm about the meta-analysis, which we have now promoted to Part I in the revised paper. We have substantially updated the latest database (inTUS_DATABASE_1-2025.csv) and ensured that the R markdown script can re-generate all of the results and statistical values. We have inserted additional statistical values in the main manuscript, as requested. The inTUS Resource is located here (https://osf.io/arqp8/ under Cafferatti_et_al_inTUS_Resource), and we have aimed to make it as user friendly to use and contribute to as possible. For instance, the reader can find them all in the HTML link summarizing the R markdown output with all statistical values here: https://rpubs.com/BenSlaterNeuro/1268823, a part of the inTUS resource.

      Since the last submission, there has been a tremendous increase in the number of TUS studies in healthy participants. We have curated and included all of the relevant studies we could find in the 1-2025 database, as the next large expansion of the database (now including 52 experiments in healthy participants). We then reran and report the results of the statistical tests via the R markdown script (starting at line 336). Finally, the online database (inTUS_DATABASE_1-2025.csv) has additional columns, suggested by the reviewers, including one to identify the same groups that conducted the TUS study, based on a social network analysis. The manuscript figures (Table 1 and Table 2) did not have the space to expand the data tables, but these additional columns are available in the database online. Finally, we have ensured that the resource is as easy to use as possible (line 862 has the Introduction to the inTUS Resource – which is also the online READ ME file), and we have been in contact with the iTRUSST consortium leads who are interested in discussing hosting the resource and helping it to become self-sustaining.

      Conceptual Development:

      The more conceptual part of the paper is underdeveloped. It lacks sufficient supporting data, a well-articulated argument, and a clear derivation or development of a concrete model.

      To ensure that the conceptual sections are well developed, we have revised the introduction, including the background on TUS and bases for the interest in the directionality of effects. We have also revised the TUS mechanisms background as suggested by the reviewers. For Part I, the meta-analysis basis and hypotheses we have ensured the rationale is clearer. The hypotheses are based on several lines of research in the animal model and human literature as cited (starting with line 211). For Part II, the selective clinical review, we have revised this section as well to have each section on lowintensity TUS and end in a hypothesis on the directionality of TUS effects. Starting at line 199 we have clarified the scope of the review and ensured that all the relevant experiments in healthy participants (n = 52 experiments) have now been included in the next key update of the resource and meta-analysis in this key paper update.

      Database Curation:

      The authors should provide more detailed information about how the database will be curated and made accessible. They may consider collaborating with ITRUSST.

      We have expanded the information on the Resource documents (starting at line 862) to make the resource as user friendly as possible. At the beginning of the resource development stage we had contacted but not heard from the ITRUSST consortium. Encouraged by this comment we again reached out and are now in contact with the ITRUSST consortium leads who are interested in discussing sustaining the resource. It would be wonderful to have the resource linked to other ITTRUST tools, since it was inspired by the organization. Practically what this means is that the resource rather than being hosted on Open Science Framework, would potentially be hosted on the ITRUSST web site (https://itrusst.com/). These discussions are in progress, but the next key update to the database (1-2025) is already available and reported in this key update to our original paper.

      Reviewer #1: (Public Review)

      Summary:

      This paper is a relevant overview of the currently published literature on lowintensity focussed ultrasound stimulation (TUS) in humans, with a meta-analysis of this literature that explores which stimulation parameters might predict the directionality of the physiological stimulation effects.

      The pool of papers to draw from is small, which is not surprising given the nascent technology. It seems nevertheless relevant to summarize the current field in the way done here, not least to mitigate and prevent some of the mistakes that other non-invasive brain stimulation techniques have suffered from, most notably the theory- and data-free permutation of the parameter space.

      The meta-analysis concludes that there are, at best, weak trends toward specific parameters predicting the direction of the stimulation effects. The data have been incorporated into an open database, that will ideally continue to be populated by the community and thereby become a helpful resource as the field moves forward.

      Strengths:

      The current state of human TUS is concisely and well summarized. The methods of the meta-analysis are appropriate. The database is a valuable resource.

      Weaknesses:

      These are not so much weaknesses but rather comments and suggestions that the authors may want to consider.

      We thank the reviewer for their support of the resource and meta-analysis. We have implemented the suggestions next as follows.

      I may have missed this, but how will the database be curated going forward? The resource will only be as useful as the quality of data entry, which, given the complexity of TUS can easily be done incorrectly.

      We have added a paragraph on how authors could use the Qualtrics form to submit their data and the curation process involved (from line 891). Currently, this process cannot be automated because we continue to find that reported papers do not report the TUS parameters that ITRUSST has encouraged the community to report (Martin et al., 2024). We can dedicate for a TUS expert to ensure that every 6 or 12 months the data base is curated and expanded. The current version is the latest 1-2025 update to the data base. Longer term we are in discussion with ITRUSST on whether the resource could become self sustaining when TUS papers regularly reporting all the relevant parameters such that the database expansion becomes trivial, and then the Resource R markdown script and other tools can be used to re-evaluate the statistical tests and the user can conduct secondary hypothesis testing on the data.

      It would be helpful to report the full statistics and effect sizes for all analyses. At times, only p-values are given. The meta-analysis only provides weak evidence (judged by the p-values) for two parameters having a predictive effect on the direction of neuromodulation. This reviewer thinks a stronger statement is warranted that there is currently no good evidence for duty cycle or sonication direction predicting outcome (though I caveat this given the full stats aren't reported). The concern here is that some readers may gallop away with the impression that the evidence is compelling because the p-value is on the correct side of 0.05.

      We have ensured that the R script can generate the full statistics from the tests and the effect sizes for all the analyses, and now also report more of the key statistical values in the revised paper (starting at line 336). As suggested, we have also ensured that the interpretation is sufficiently nuanced given the small sample sizes and the p-values below 0.1 but above 0.05 are interpreted as a statistical trend.

      This reviewer thinks the issue of (independent) replication should be more forcefully discussed and highlighted. The overall motivation for the present paper is clearly and thoughtfully articulated, but perhaps the authors agree that the role that replication has to play in a nascent field such as TUS is worth considering.

      We completely agree and have added additional columns to the online database to identify unique groups, using a social network analysis, and independent replications. These expanded tables did not fit in the manuscript versions of Tables 1 and 2 but are fully available in the Resource data tables ready for further analysis by interested resource users.

      A related point is that many of the results come from the same groups (the so-called theta-TUS protocol being a clear example). The analysis could factor this in, but it may be helpful to either signpost independent replications, which studies come from the same groups, or both.

      In the expanded database tables (inTUS_DATABASE_1-2025.csv: https://osf.io/arqp8/ under Cafferatti_et_al_inTUS_Resource) we have added a column to identify independent replication.

      The recent study by Bao et al 2024 J Phys might be worth including, not least because it fails to replicate the results on theta TUS that had been limited to the same group so far (by reporting, in essence, the opposite result).

      Thank you. We have added this study and over a dozen recent TUS studies in healthy participants to the database and redone the analyses.

      The summary of TUS effects is useful and concise. Two aspects may warrant highlighting, if anything to safeguard against overly simplistic heuristics for the application of TUS from less experienced users. First, could the effects of sonication (enhancing vs suppressing) depend on the targeted structure? Across the cortex, this may be similar, but for subcortical structures such as the basal ganglia, thalamus, etc, the idiosyncratic anatomy, connectivity, and composition of neurons may well lead to different net outcomes. Do the models mentioned in this paper account for that or allow for exploring this? And is it worth highlighting that simple heuristics that assume the effects of a given TUS protocol are uniform across the entire brain risk oversimplification or could be plain wrong? Second, and related, there seems to be the implicit assumption (not necessarily made by the authors) that the effects of a given protocol in a healthy population transfer like for like to a patient population (if TUS protocol X is enhancing in healthy subjects, I can use it for enhancement in patient group Y). This reviewer does not know to which degree this is valid or not, but it seems simplistic or risky. Many neurological and psychiatric disorders alter neurotransmission, and/or lead to morphological and structural changes that would seem capable of influencing the impact of TUS. If the authors agree, this issue might be worth highlighting.

      We agree that given the divergence in circuits and cellular constituents between cortical and subcortical areas, it is important to distinguish studies that have focused on cortical or subcortical brain areas. The online data tables identify the target region. The analyses can be used to focus on the cortical or subcortical sites for analysis, although for the current version of the database there are too few subcortical sites with which to conduct analyses on subcortical sites. On the second point, that pathology may have affected the results, we completely agree and have clarified that the current database only includes healthy participant experiments for this reason. We are considering future updates to the resource may include clinical patient results (Line 247).

      Reviewer #1 (Recommendations for the authors):

      Minor edits (I wouldn't call them "corrections").

      We sincerely appreciate the constructive comments and have aimed to address them all as suggested.

      Perhaps the most relevant edit pertains to the statistics.

      We now report the more complete statistical results (line 336) and the R markdown script can re-generate all the statistical values for the tests.

      The issue of replication also seems relevant and ought to be raised. This reviewer does not want to prescribe what to do or impose the view the authors ought to adopt.

      In the online version of the data tables for the latest dataset, we have added a column in the data table as suggested that identifies independent groups and replications.

      The other points are left to the authors' discretion.

      We have aimed to address all of the reviewer’s points. Thank you for the constructive input which has helped to improve the expanded database and resource.

      Reviewer #2: (Public Review)

      Summary:

      This paper describes a number of aspects of transcranial ultrasound stimulation (TUS) including a generic review of what TUS might be used for; a meta-analysis of human studies to identify ultrasound parameters that affect directionality; a comparison between one postulated mechanistic model and results in humans; and a description of a database for collecting information on studies.

      Strengths:

      The main strength was a meta-analysis of human studies to identify which ultrasonic parameters might result in enhancement or suppression of modulation effects. The meta-analysis suggests that none of the US parameters correlate significantly with effects. This is a useful result for researchers in the field in trying to determine how the parameter space should be further investigated to identify whether it is possible to indeed enhance or suppress brain activity with ultrasound.

      The database is a good idea in principle but would be best done in collaboration with ITRUSST, an international consortium, and perhaps should be its own paper.

      Weaknesses:

      The paper tries to cover too many topics and some of the technical descriptions are a bit loose. The review section does not add to the current literature. The comparison with a mechanistic model is limited to comparing data with a single model at a time when there is no general agreement in the field as to how ultrasound might produce a neuromodulation effect. The comparison is therefore of limited value.

      We appreciate the reviewer’s assessment and interest in the meta-analysis and database to guide the development of TUS for more systematic control of the directionality of neuromodulation. With this next key expansion of the database (inTUS_DATABASE_1-2025.csv) we have added over a dozen new studies that have been published since our original submission (n = 52 experiments). We have also moved the ‘review’ part of the paper below the meta-analysis and resource description. We have clarified that the clinical review section (now Part II in the revised manuscript) is not intended as a comprehensive review but as a selective review showing how hypotheses on the directionality of TUS effects need to be carefully developed for specific patient groups that require different effects to be induced at specific brain areas. Finally, we have gotten in contact with the ITRUSST consortium leads, as suggested, and are in discussion on whether the inTUS resource could be hosted by ITRUSST. Since these discussions are ongoing practically what this might mean is moving the resource from the Open Science Framework to ITRUSST webpages, which would be a trivial update of the link to the resource in OSF.

      We also sincerely appreciate the time and care the reviewer has given to provide us with the below guidance, all of which we have aimed to take on board in the revised paper.

      Reviewer #2 (Recommendations for the authors):

      Line 24/25 - I suggest avoiding using the term "deep brain stimulation" in reference to TUS as the term is normally used to describe electrically implanted electrodes.

      We have removed the term “deep” brain stimulation in reference to TUS to avoid confusion with electrical DBS for patient treatment [Line 24].

      Line 25 - I don't think "computational modelling" has changed how TUS can be done. There is still much to be understood about mechanisms. I think the modelling aspects of the paper should be toned down. Indeed the NICE data that is presented later appears to have a weak, if any, correlation to the outcomes.

      We have revised the manuscript text throughout to ensure that the computational modeling contributions are not overstated, as noted, given the lack of strong correlation to the NICE model outcomes by the meta-analysis including in the latest results with the more extensive database (n = 52).

      Line 32 - "exponentially increasing" is a well-defined technical term and the increase in studies should be quantified to ensure it is indeed exponential. I agree that TUS studies in humans are increasing but a quick tally of the data by year in the meta-analysis reported here doesn't suggest that it follows an "exponential" growth.

      We have changed “exponential” to “to increase”. [Line 32]

      Line 50 - I would suggest using the term sub-MHz rather than 100-1,000 kHz as it is challenging to deliver ultrasound at 1 MHz through the skull. The highest frequency in the meta-analysis is 850 kHz; but the majority are in the 200-500 kHz range.

      We have made this correction to sub-MHz. [Line 54]

      Line 58/59 - Is the FDA publication on diagnostic imaging relevant for saying that 50 W/cm2 is a lowintensity TUS? I think it's perhaps reasonable to say that intensities below diagnostic thresholds are "low intensities" but that is not clear in the text. I would refer to ITRUSST on what is appropriate for defining what is low, medium, or high.

      We have cut the reference to the FDA here since it is, as noted, not as relevant as pointing to the ITRUSST definition.

      Line 65/66 - I agree that ultrasound for neuromodulation is gaining traction and there is an increase in activity, but it also has a long history with the work of the Fry brothers published in the 1950s; and extensive work of Gavrilov in humans starting in the 1970s.

      We have added citations to the Fry brothers and Gavrilov to the text in this section. [Line 69/70]

      Line 75 - I think the intermembrane cavitation mechanism is unlikely to be due to "microbubbles" in a lipid membrane. The predicted displacements are on the order of nanometres, so they are unlikely to generate microbubbles. The work on comparing with NICE is limited. Note there are a number of experimental papers that have reported an absence of intra-membrane cavitation, including the Yoo et al 2022 which is referenced later in the paragraph. Also, there are other models, such as Liao et al 2021 (https://www.nature.com/articles/s41598020-78553-2).

      As suggested, we have removed this phrase on microbubble formation as a likely mechanism. We have also added the Liao paper to this paragraph as it is relevant.

      Line 83 - "At the lower intensities..." it is not clear whether this means all TUS intensities or the lower end of intensities used in TUS.

      We now use the following wording here: “low intensities”. [Line 86]  

      Line 85/86 - "more continuous stimulation" the modulation paradigms haven't been described yet and so pulse vs continuous hasn't been made clear to the reader. Also "more continuous" is very loose terminology. Something is either continuous or it isn't.

      We agree and have removed “more” to be clear that the stimulation is continuous. [Line 88]

      Line 87/88 - "TUS does not .. cavitation ..when ..ISPTA...<14 W/cm2". You can't use ISPTA to determine cavitation. It is the peak negative pressure which is the key driver for cavitation and the MI which is the generally accepted (although grudgingly by some) metric for assessing cavitation risk. You can link the negative pressure to ISPPA but not really to ISPTA. In histotripsy for example the ISPTA is low due to the low duty cycles to avoid heating but the cavitation is a huge effect. Technical terminology is loose.

      We have corrected this to “TUS does not appear to cause significant heating or cavitation of brain tissue when the intensity remains low, based on Mechanical and Thermal Index values and recommendations of use”. [Line 90/91]

      Line 89 - What is meant by "low intensity TUS"? I think all TUS used in the literature counts as low intensity - in that it is below the level allowed for diagnostic imaging.

      We have ensured that the text is focused on TUS being low-intensity and only in the introduction do we distinguish low intensity TUS from moderate and high intensity TUS, such as used for thermal ablation [Lines 62-66].

      Line 88/89 - Most temperature rises in brain tissue in TUS are well below 1 C - will this really change membrane capacitance significantly? If so it would have been good to consider a model for it.

      We have revised this statement as “thermal effects could at least minimally alter cell membrane capacitance…”. [Line 93]

      Line 111 - The text refers to "recent studies" but then the next two references are from 1990 and 2005 which I would argue don't count as "recent".

      We have corrected this wording to “previous studies”. [Line 114]

      Lines 122/129 - This paragraph on TMS pulsing should be linked to the TUS paragraph on pulsing (lines 109/116). The intervening paragraph on anaesthesia is relevant but breaks the flow.

      We have merged the paragraph on anesthesia to the prior one on TUS so that the TMS paragraph is linked more closely to it [starting on line 112].

      Line 130/131 - It is not clear to me that current studies are being guided by computational models. I think there is still no generally accepted theory for mechanisms. If the authors want to do a mechanisms paper then they should compare a few.

      We have revised this as suggested to not overstate the contribution of the limited computational modeling studies throughout the manuscript.

      Line 132 on - There are a number of studies that suggest that NICE is likely not the mechanism by which TUS produces neuromodulation.

      We have revised this sentence as follows: “Although it remains questionable whether intramembrane cavitation is a key mechanism for TUS, the NICE model simulations explored a broad set of TUS parameters, including TUS intensity and the continuity of stimulation (duty cycle) on modelled neuronal responses.” [Lines 139/142]

      Lines 137-140 - Terms are defined after their use. Things like ISPPTA, PRF, TI, and MI have been discussed already and so the terms should have been defined earlier. The authors should think carefully about how the material is presented to make it more logical for the reader.

      We have ensured that the definitions precede the use of abbreviations and have added abbreviations to the tables.

      Part I Line 180-437 - The review of potential applications for TUS reads like an introductory chapter of a thesis. It is entirely proper for a thesis to have a chapter like this, but it is not really relevant for a peer-reviewed research article. There are also numerous applications, e.g. mapping areas associated with decisions, or treating patients with addiction, which are not included, so it is not exhaustive. I would suggest this part be removed.

      We have moved the ‘review’ part of the paper to Part II, given the metaanalysis and resource should be more prominent as Part I. In the review now Part II of the paper we also now make it clear that there are recent comprehensive reviews of the clinical literature ( line 465/467). Namely, the purpose of our selective review is to demonstrate how directionality of TUS effects need to be specific for the clinical application intended, given the great variability in clinical effects that might be desired, brain areas targeted and pathology being treated. We have also aimed to ensure that each section summary is scholarly and academically written to a high level. All the co-authors contributed to these sections so we have also edited to have some consistency across sections, with sections ending with directionality of TUS hypotheses that could be developed for empirical testing.

      Line 453 - It is stated that "ISPTA, which mathematically integrates ISSPA by the sonication DC" It sounds rather grand to mathematically integrate but you can't integrate with respect to DC, you can integrate with respect to time. If you integrate intensity with respect to time over pulse and over the sonication time then one finds that ISPTA = DC x ISPPA, multiplication is also an important mathematical function and should be given its due. Lastly, I think there is a typo and ISSPA should read ISPPA

      We have corrected the typo and the statement to “mathematically multiplies ISPPA by the continuity of sonication”. [Line 221/222]

      Line 454 - I don't think ISPTA is a good measure of "dose." In radiation physics dose is well defined in terms of absorbed energy. The equivalent has yet to be defined for TUS so I would avoid using dose. The ISPTA does relate to TI - although it depends not just on the spatial peak but also on the spatial distribution and the frequency-dependent absorption coefficient of the tissue. I would just avoid the use of "dose" until the field has a better idea of what is going on.

      We have cut this phrase on dose as suggested.

      Page 16 Box 1 - TI is defined as diagnostic ultrasound imaging it is based on. Also, I think TI is dimensionless; it is referenced to a 1-degree temperature rise and so it can be interpreted in terms of celsius or kelvin; but to be technically accurate it is dimensionless.

      We have made TI dimensionless in Box 1

      Page 17 Box 2 - Here you have no units for TI - which is correct but inconsistent with Box 1. But the legend suggests a 2 K temperature rise where as your Box allows for 6 K. The value of 6 is consistent with FDA but my understanding of the BMUS guidelines is the TI must be less than or equal to 0.7 for unlimited time or less than 3 if the duration is less than 1 minute. I accept that the table is labelled FDA limits, but the bold table caption is "Recommendations for TUS parameters" I think you should give the ITRUSST values rather than FDA.

      We have revised this Box legend to better distinguish the FDA and ITRUSST recommendation where they differ (e.g., the importance of ISPTA and the TI values). See revised legend for Box 2.

      Page 18 Box 3 - Not sure what this is trying to show? Also, what is "higher intensity" and "lower intensity"?

      Why not just give a range of values in each box?

      We agree that the higher and lower intensities likely to lead to enhancement or suppression are poorly defined and have noted this in the legend: “Note that the threshold for ISPPA qualifying as ‘higher’ or ‘lower’ intensity is currently poorly understood, or may non-linearly interact with other factors” [Line 751/754, Box 3].

      Line 444 - The hypotheses should be stated more clearly. Maybe I am just dense, but it is not obvious to me from box 3.

      We provide the basis for the hypotheses in the manuscript text on the paragraph [Lines 106-179].

      Line 481/482 - The intensity of a diagnostic ultrasound system is very well characterised. It just might be that the authors didn't report it. It is not clear what is meant by the "continuity." I guess it's to do with pulsing - which is also well defined but perhaps also not reported.

      We agree and have revised this as follows “For the meta-analysis, we only included studies that either reported a basic set of TUS stimulation parameters or those sufficient for estimating the required parameters or those sufficient for estimating the required parameters necessary for the meta-analysis” [Lines 256/258]

      Figure 2 - What is the purpose of this figure? Did you carry out simulations for all the studies? It doesn't seem to be relevant to the data here.

      This figure illustrates the TUS targeting approach and simulations, in this case conducted in k-plan. These were conducted to evaluate approximations to ISPPA in brain values from the studies that did not report these values [Lines 264/268]).  

      Figure 4 - The data in these figures is nice (and therefore doesn't need to have a NICE curve) To me it clearly shows that the data in the literature does not obviously segment into enhancement vs suppression with DC. I suspect it is the same with PRF. I think it would have been better if C and D had PRF on the horizontal axis for on-line and off-line so that effect could be seen more clearly.

      We have kept the NICE curve only for a reference that some readers familiar with the NICE model might want to see overlaid in the figure, but have ensured that the text throughout makes clear that the NICE model predictions are not as statistically robust as initially anecdotally thought. PRF results are not significant but we do show a panel with the PRF measures on one axis (Fig. 4D). Figure 5 also shows box plot results with PRF as well as the other key TUS parameters. Moreover, in the inTUS resource we have provided an app for users to explore the data (https://benslaterneuro.shinyapps.io/Caffaratti_inTUS_Resource/).

      Figure 5 - The text on the axes is too small to read. Was the DC significant for both on-line and offline? What about ISPPA for off-line. At least by eye, it looks as different as DC. Figure 5C doesn't add anything.

      We have boosted the font for Figure 5 and have cut panel 5C since it was not adding much. We have also checked whether DC parameter was significant separately for on-line and off-line effects, but the sample sizes were too small for significance, and the statistical test was not significantly different for Online and Offline effects even in the 12025 database. Therefore they might look stronger for Offline effects in some of the plots in Figure 5, but are currently statistically indistinguishable [Lines 347/348].

      Table 1 - There is a typo in the 3rd column. FF should have units of kHz, not KHz. In addition, SD should have units of s as that is the SI symbol for seconds. I would swap columns 9 and 10 so that ISPPA in water and ISPPA in the brain are next to each other.

      We have corrected the typo in the 3rd column and ensured that units are kHz. SD in the tables has units of ‘s’ for seconds and have put ISPPA in water and in brain next to each other in the data tables.

      Line 767 - "M.K. was supported..." There are TWO MKs in the author list.

      We have changed this to M.Ka. for Marcus Kaiser.

    1. Author response:

      We thank the Reviewers for their thoughtful and helpful critiques. Below we provide a point-bypoint response to the comment raised.

      Reviewer #1:

      (1) Labels should be added in the Figures and should be uniform across all Figures (some are distorted).

      We thank the Reviewer for pointing out this issue. As requested, labels have been edited to ensure they are legible and are consistent in font, size, and style.  

      Reviewer #2:

      (1) As for Figure 2F, Setd2-SET activity on WT rNuc (H3) appears to be significantly lower compared to what is extensively reported in the literature. This is particularly puzzling given that Figure 2B suggests that using 3H-SAM, H3-nuc are much better substrates than K36me1, whereas in Figure 3F, rH3 is weaker than K36me1. It is recommended for the authors to perform additional experimental repeats and include a quantitative analysis to ensure the consistency and reliability of these findings.  

      We appreciate the Reviewer’s points. We respectfully suggest that these comments may reflect potential confusion around interpreting how different assays detect in vitro methylation, what data can and cannot be compared, and the nature of the different substrates used. 

      With respect to point 1 (Western signal significantly lower compared to extensive literature): To the best of our knowledge, it would be extremely challenging to make a quantitative argument comparing the strength of the Western signal in Figure 2F with results reported in the literature. Specifically, comparing our results with previous studies would require (1) all the studies to have used the exact same antibodies as antibody signal intensities vary depending on the specific activity and selectively of a particular antibody and even its lot number, (2) similar in vitro methylation reaction condition, (3) the same type of recombinant nucleosomes used, and so on. Further, given that these are Western blots, we do not understand how one could interpret an absolute activity level. In the figure, all we can conclude is that in in vitro methylation reactions, our recombinant SETD2 protein methylates rNucs to generate mono-, di-, and tri-methylation at K36 (using vetted antibodies (see Fig. 2e)). If there is a specific paper within the extensive literature that the Reviewer highlights, we could look more into the details of why the signals are different (our guess is that any difference would largely be due to the use of different antibodies). We add that it might be challenging to find a similar experiment performed in the literature; we are not aware of a similar experiment. 

      With respect to comparing Figure 2B and 2F: We do not understand how one can meaningfully compare incorporation of radiolabeled SAM to antibody-based detection on film using an antibody against specific methyl states. In particular, regarding the question regarding comparing rH3 vs H3K36me1 nucleosomes, we point out that in using recombinant nucleosomes installed with native modifications (e.g. H3K36me1), in which the entire population of the starting material is mono-methylated, then naturally the Western signal with an anti-H3K36me1 antibody will be strong. In Fig. 2b, the assay is incorporation of radiolabeled methyl, which is added to the preexiting mono-methylated substrate. In other words, the results are entirely consistent if one understands how the methylation reactions were performed, how methylation was detected, and the nature of the reagents.

      (2) The additional bands observed in Figure 4B, which appear to be H4, should be accompanied by quantification of the intensity of the H3 bands to better assess K36me3 activity. Additionally, the quantification presented in Figure 4C for SAH does not seem accurate as it potentially includes non-specific methylation activity, likely from H4. This needs to be addressed for clarity and accuracy. 

      We thank the reviewer for this comment. The additional bands observed in Figure 4B represent degradation products of histone H3, not H4 methylation. This is commonly seen in in vitro reactions using recombinant nucleosomes, where partial proteolysis of H3 can occur under the assay conditions.  

      (3) In Figure 4E, the differences between bound and unbound substrates are not sufficiently pronounced. Given the modest differences observed, authors might want to consider repeating the assay with sufficient replicates to ensure the results are statistically robust.

      In Figure 4E, we observe a clear difference between the bound and unbound substrate. To aid interpretation, we have clarified in the figure where the bound complex migrates on the gel, while the unbound nucleosomes migrate at the bottom of the gel. The differences are indeed subtle, which we highlight in the text.  

      (4) Regarding labeling, there are multiple issues that need correction: In the depiction of Epicypher's dNuc, it is crucial to clearly mark H2B as the upper band, rather than ambiguously labeling H2A/H2B together when two distinct bands are evident. In Figure 3B and D, the histones appear to be mislabeled, and the band corresponding to H4 has been cut off. It would be beneficial to refer to Figure 3E for correct labeling to maintain consistency and accuracy across figures. 

      Thank you for pointing this out. To avoid any confusion, we have delineated the H2B and H2A markers and indicate the band corresponding to H4.

      (5) There are issues with the image quality in some blots; for instance, Figure 2EF and Figure 2D exhibit excessive contrast and pixelation, respectively. These issues could potentially obscure or misrepresent the data, and thus, adjustments in image processing are recommended to provide clearer, more accurate representations. 

      Contrast adjustments were applied uniformly across each entire image and were not used to modify any specific region of the blot. We have corrected the issue of increased pixelation in Figure 2D. 

      (6) The authors are recommended to provide detailed descriptions of the materials used, including catalog numbers and specific products, to allow for reproducibility and verification of experimental conditions. 

      We have added the missing product specifications and catalog numbers to ensure clarity and reproducibility of the experiments.

      (7) The identification of Setd2 as a tumor suppressor in KrasG12C-driven LUAD is a significant finding. However, the discussion on how this discovery could inspire future therapeutic approaches needs to be more balanced. The current discussion (Page 10) around the potential use of inhibitors is somewhat confusing and could benefit from a clearer explanation of how Setd2's role could be targeted therapeutically. It would be beneficial for the authors to explore both current and potential future strategies in a more structured manner, perhaps by delineating between direct inhibitors, pathway modulators, and other therapeutic modalities. 

      SETD2 is a tumor suppressor in lung cancer (as we show here and many others have clearly established in the literature) and thus we would recommend avoiding a SETD2 inhibitor to treat solid tumors, as it could have a very much unwanted affect.  Our discussion addresses a different point regarding the relative importance of the enzymatic activity versus other, nonenzymatic functions of SETD2. We believe that a detailed exploration of the therapeutic potential of inhibiting SETD2 would be better suited in a review or a more therapy-focused manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the reviewers and editors for their careful consideration of our work and pointing out areas where the current version lacked clarity or necessary experiments. Based on the reviews we have made the following significant changes to the revised version:

      (1) Revised the text to focus on the distinct pathogen responses to indole in isolation versus fecal material.

      We believe the key takeaway from this work is that the native context of a given effector, in this case indole, can elicit markedly different bacterial responses compared to the pure compound in isolation. This is because natural environments contain multiple, often conflicting, stimuli that complicate predictions of overall chemotactic behavior. For example, while indole has been proposed to mediate chemorepulsion and contribute to colonization resistance against enteric pathogens, our findings challenge this model. We provide evidence that feces, the intestinal source of indole, actually induces attraction, and that indole taxis may in fact benefit the pathogen through prioritizing niches with low microbial competition. Put another way, the biological reservoir of indole, fecal material, generates an attraction response but indole regulated the degree of attraction.

      Most current understanding of chemotaxis is based on responses to individual, purified effectors. Our study highlights the need to investigate chemotactic responses in the presence of native mixtures, which better reflect the complexity of natural environments and may reveal new functional insights relevant for disease.

      Reviewer comments indicated that these core points above were not clearly conveyed in the previous version, and that the manuscript's logical flow needed improvement. In this revised version, we have substantially rewritten the text and removed extraneous content to sharpen the focus on these central findings. We have also aligned our discussion more closely with the experimental data. While we appreciated the reviewers’ thoughtful suggestions, we chose not to expand on topics that fall outside the scope of our current experiments.

      (2) Provide new chemotaxis data with mixtures of fecal effectors (Fig. 5).

      Related to the above, the reviewers and editors brought up concerns that our discovery of pathogen fecal attraction was underexplored. Although we showed Tsr to be important for mediating fecal attraction, even the tsr mutant showed attraction to a lesser degree, and the reviewers noted that we did not identify what other fecal attractants could be involved.

      Fecal material is a complex biological material (as noted by Reviewer 3) and contains effectors already characterized as chemoattractants and chemorepellents. It would be ideal to be able to perform some experiment where individual effectors are removed from fecal material and then quantify chemotaxis. We considered methods to do this but ultimately found this approach unfeasible. Instead, we employed a reductionist approach and developed a synthetic approximate of fecal material containing a mixture of known chemoeffectors at fecal-relevant concentrations (Fig. 5). We used this defined system as a way to test the specific roles of the Tsr effectors L-Ser (attractant) and indole (repellent) in relation to glucose, galactose, and ribose (sensed through the chemoreceptor Trg), and L-Asp (sensed through the chemoreceptor Tar). We chose these effectors as they have reasonable structure-function relationships established in prior work, and had information available about their concentrations in fecal material. We present these data as a new Figure 5, and also provide videos clearly showing the responses to each treatment (Movies 7-10).

      This defined system provided several new insights that help understand and model indole taxis amidst other fecal effectors. First, the complete effector mixture, like fecal treatment, elicits attraction. Second, L-Ser is able to negate indole chemorepulsion in cotreatments of the two effectors, and also other chemoattractants in the absence of L-Ser also negate this repulsion, albeit to a lesser degree, helping to explain why the tsr mutant still shows attraction to fecal material. Lastly, we also show that the degree of attraction in this system is controlled by indole, with mixtures containing greater indole showing less attraction. We feel this is an important addition to the study because it provides a new view on how indole-taxis functions in pathogen colonization; rather than causing the pathogen to swim away (like pure indole does) indole helps the pathogen rank and prioritize its attraction to fecal effector mixtures, biasing navigation toward lower indolecontaining niches.

      We also acknowledge that this defined system does not capture all possible interactions. Indeed, there are even a few chemoreceptors in Salmonella for which the sensing functions remain poorly understood. Nonetheless, we believe the data offer mechanistic context for understanding fecal attraction and suggest that factors beyond Tsr, L-Ser, and indole also contribute to the observed behaviors, aligning with other data we present.

      (3) Provide new data that show that E. coli MG1655, and disease-causing clinical isolate strains of the Enterobacteriaceae Tsr-possessing species E. coli, Citrobacter koseri, and Enterobacter cloacae exhibit fecal attraction (Fig. 4).

      An important new finding from this study is our direct test of whether indole-rich fecal material elicits repulsion. Contrary to expectations, given that for E. coli indole is a wellcharacterized strong chemorepellent, we show that fecal material instead elicits attraction in non-typhoidal Salmonella.

      Reviewers raised the question of whether our observations regarding indole taxis and attraction to indole-rich feces in Salmonella are similar or relevant to E. coli. While a full dissection of indole taxis in E. coli is beyond the scope of this study and has been the focus of extensive prior research, we sought to address this point by examining whether other enteric pathogens respond similarly to the native indole reservoir, fecal material. To this end, we present new data demonstrating that, like S. Typhimurium, E. coli and other representative enteric pathogens and pathobionts possessing Tsr are also attracted to indole-rich feces (Fig. 4, Movies 4–6, Fig. S4).

      Notably, these new results represent some of the first characterizations of chemotactic behavior in the clinical isolates we examined, including E. coli NTC 9001 (a urinary tract infection isolate), Citrobacter koseri, and Enterobacter cloacae, adding another element of novelty to this work.

      (4) Repeated all of the explant Salmonella Typhimurium infection studies and added a new experimental control competition between WT and an invasion-deficient mutant (invA).

      Although our new colonic explant system was noted as a novelty and strength of this work, it was also seen as a weakness in that some of the results were surprising and difficult to link to chemotactic behavior. Reviewer 3 also brought up the need to be clear about our usage of the term ‘invasion’ in reference to S. Typhimurium entering nonphagocytic host cells, and requested we test an invasion-inhibited mutant (which we do in new experiments, now Fig. S1). We also note that some of the interpretations of these data were made challenging by result variability.

      To help address these issues we performed additional replicates for all of our explant experiments (contained within Figure 1, Fig. S1-S2, and Data S1), to provide greater power for our analyses. These new data provide a clearer view of this system that revise our interpretations from the prior version of this study. While treatment with indole alone does suppress the WT advantage over chemotactic mutants for both total colonization and cellular invasion, essentially all other treatments have a similar result with a timedependent increase in both colonization and invasion, dependent on chemotaxis and Tsr. A remaining unique feature of fecal treatment is an increase in the cellular invaded population of the cells at 3 h post-infection. As requested by Reviewer 3, we provide new experimental data showing that in competitions between WT and an invasion-deficient mutant (invA), with fecal material pretreatment, we see the WT has an advantage only for the gentamicin-treated qualifications, providing some support that our model selects for the invaded sub-population. Although we note that the invA still can invade through alternative mechanisms (as discussed in earlier work such as here: https://doi.org/10.1111/1574-6968.12614), so the relative amount of presumed cellular invasion is less than WT, and not zero, in our experiments (Fig. S1).

      One point of confusion in the previous version of the text was the assay design for the explant experiments, which is important to understand in order to interpret the results. During the explant infection bacteria are not immersed in the effector treatment solution, rather the tissue is soaked in the effector solution beforehand and then exposed to a 300 µl buffer solution containing the bacteria. This means that the bacteria experience only the residue of that treatment at concentrations far lower. We have added clarity about this through revising Fig. 1 to include a conceptual diagram of the assay (Fig. 1C), and added a new supplementary Fig. S5 that summarizes the explant data in this same conceptual model. We provide detail on the method in the text in lines 115-137. In describing the results, and synthesizing them in the discussion, we now state:

      Line 112: “This establishes a chemical gradient which we can use to quantify the degree to which different effector treatments are permissive of pathogen association with, and cellular invasion of, the intestinal mucosa (Fig. 1C).”

      And, a new section in the discussion devoted to describing the explant infections:

      Line: 366: “Our explant experiments can be thought of as testing whether a layer of effector solution is permissive to pathogen entry to the intestinal mucosa, and whether chemotaxis provides an advantage in transiting this chemical gradient to associate with, and invade, the tissue (Fig. 1C, Fig. S5).”

      As mentioned above, we have honed the text to focus on the disparity between the effects of indole alone versus treatments with indole-rich feces to help clarify how these data advance our understanding of the indole taxis in directing pathogenesis. While our explant studies still confirm the role of factors other than L-Ser, indole, and Tsr in directing Salmonella infection and cellular invasion, we now include further analyses of other fecal effectors (described above) that provide some insights into how fecal effectors have some redundancy in their impact.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study shows, perhaps surprisingly, that human fecal homogenates enhance the invasiveness of Salmonella typhimurium into cells of a swine colonic explant. This effect is only seen with chemotactic cells that express the chemoreceptor Tsr. However, two molecules sensed by Tsr that are present at significant concentrations in the fecal homogenates, the repellent indole and the attractant serine, do not, either by themselves or together at the concentrations in which they are present in the fecal homogenates, show this same effect. The authors then go on to study the conflicting repellent response to indole and attractant response to serine in a number of different in vitro assays.

      Strengths:

      The demonstration that homogenates of human feces enhance the invasiveness of chemotactic Salmonella Typhimurium in a colonic explant is unexpected and interesting. The authors then go on to document the conflicting responses to the repellent indole and the attractant serine, both sensed by the Tsr chemoreceptor, as a function of their relative concentration and the spatial distribution of gradients.

      Thank you for your summary and acknowledgement of the strengths of this work. We hope the revised text and additional data we provide further improve your view of the study.

      Weaknesses:

      The authors do not identify what is the critical compound or combination of compounds in the fecal homogenate that gives the reported response of increased invasiveness. They show it is not indole alone, serine alone, or both in combination that have this effect, although both are sensed by Tsr and both are present in the fecal homogenates. Some of the responses to conflicting stimuli by indole and serine in the in vitro experiments yield interesting results, but they do little to explain the initial interesting observation that fecal homogenates enhance invasiveness.

      Thank you for noting these weaknesses. We have provided new data using a defined mixture of fecal effectors to further investigate the roles of L-Ser, indole, and other effectors present in feces that we did not initially study. We have refined our discussion of these results to hopefully improve the clarity of our conclusions. We show now both in explant studies (Fig. 1I) and chemotaxis responses to a defined fecal effector system (Fig. 5) that L-Ser is able to abolish both the suppression of indole-mediated WT advantage and also indole chemorepulsion, respectively. We also show the latter can be accomplished by other fecal chemoattractants (Fig. 5). This is in line with our earlier finding that Tsr, the sensor of indole and L-Ser, is an important mediator of fecal attraction but not the sole mediator.

      As this reviewer points out, there are indeed other factors mediating invasion that we do not elucidate here, but we do note these possibilities in the text (lines: 125-127):

      “This benefit may arise from a combination of factors, including sensing of host-emitted effectors, redox or energy taxis, and/or swimming behaviors that enhance infection [5,30,31,35].”

      Reviewer #2 (Public review):

      Summary:

      The manuscript presents experiments using an ex vivo colonic tissue assay, clearly showing that fecal material promotes Salmonella cell invasion into the tissue. It also shows that serine and indole can modulate the invasion, although their effects are much smaller. In addition, the authors characterized the direct chemotactic responses of these cells to serine and indole using a capillary assay, demonstrating repellent and attractant responses elicited by indole and serine, respectively, and that serine can dominate when both are present. These behaviors are generally consistent with those observed in E. coli, as well as with the observed effects on cell invasion.

      Strengths:

      The most compelling finding reported here is the strong influence of fecal material on cell invasion. Also, the local and time-resolved capillary assay provides a new perspective on the cell's responses.

      Thank you for acknowledging these aspects of the study.

      Weaknesses:

      The weakness is that indole and serine chemotaxis does not seem to control the fecal-mediated cell invasion and thus the underlying cause of this effect remains unclear.

      In addition, the fact that serine alone, which clearly acts as a strong attractant, did not affect cell invasion (compared to buffer) is somewhat puzzling. Additionally, wild-type cells showed nearly a tenfold advantage even without any ligand (in buffer), suggesting that factors other than chemotaxis might control cell invasion in this assay, particularly in the serine and indole conditions. These observations should probably be discussed.

      Addressed above.

      Final comment. As shown in reference 12, Tar mediates attractant responses to indole, which appear to be absent here (Figure 3J). Is it clear why? Could it be related to receptor expression?

      Thank you for noting this. We now mention this in the discussion. In the course of this work, we encountered a number of apparent inconsistencies, or differences, between what we were observing with S. Typhimurium and what had been reported previously in studies of Tsr function in E. coli. We indeed noted that some studies had investigated a role of Tar for indole taxis (in E. coli), hence why we determined whether, and confirmed, that Tsr is required for indole taxis for S. Typhimurium (Fig. 6).

      We do not know the reason for this apparent difference between the two bacteria, but we have previously shown with our same strain of S. Typhimurium IR715, under the same growth assay, and preparation protocol, that L-Asp is a strong chemoattractant for both WT and the tsr mutant (see Glenn et al. 2024, eLife, Fig. 5G: https://iiif.elifesciences.org/lax:93178%2Felife-93178-fig5-v1.tif/full/1500,/0/default.jpg).

      This supports that this strain of Salmonella indeed has a functional Tar present and is expressed at a level sufficient for sensing L-Asp. So, if Tar generally mediates indole sensing we do not know why we would not see that in Salmonella. Hence, we do not see any role for Tar in indole chemorepulsion in our strain of study, which is different than reported for E. coli, but we cannot confirm the reason.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript, Franco and colleagues describe careful analyses of Salmonella chemotactic behavior in the presence of conflicting environmental stimuli. By doing so, the authors describe that this human pathogen integrates signals from a chemoattractant and a chemorepellent into an intermediate "chemohalation" phenotype.

      Strengths:

      The study was clearly well-designed and well-executed. The methods used are appropriate and powerful. The manuscript is very well written and the analyses are sound. This is an interesting area of research and this work is a positive contribution to the field.

      Thank you for your comments.

      Weaknesses:

      Although the authors do a great job in discussing their data and the observed bacterial behavior through the lens of chemoattraction and chemorepulsion to serine and indole specifically, the manuscript lacks, to some extent, a deeper discussion on how other effectors may play a role in this phenomenon. Specifically, many other compounds in the mammalian gut are known to exhibit bioactivity against Salmonella. This includes compounds with antibacterial activity, chemoattractants, chemorepellers, and chemical cues that control the expression of invasion genes. Therefore, authors should be careful when making conclusions regarding the effect of these 2 compounds on invasive behavior.

      Thank you for this comment, and we agree with your point. We hope we have revised the text and provided new data to address your concern. We have also chosen for clarity to keep our text close to our experimental data and so have refrained from speculating about some topics, even though you are absolutely correct about the immense complexity of these systems.

      It is important that the word invasion is used in the manuscript only in its strictest sense, the ability displayed by Salmonella to enter non-phagocytic host cells. With that in mind, authors should discuss how other signals that feed into the control of Salmonella invasion can be at play here.

      Thank you for your recommendation. We have revised the text to hopefully be clearer on our meaning of invasion in regard to Salmonella entering non-phagocytic host cells, essentially changing our usage to ‘cellular invasion’ throughout.

      It is also a commonly-used phrase in reference to enteric infections and the colonization resistance conferred by the microbiome to refer to ‘invading pathogens’ (i.e. invasion in the sense of a new microbe colonizing the intestines), For instance, this recent review on Salmonella makes use of the term invading pathogen (https://www.nature.com/articles/s41579-021-00561-4). We acknowledge the confusion by this dual use of the term. We have mostly removed our statements using invasion in this context. We hope our language is clearer in this revised version.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      It was difficult to understand the true intent or importance of the study described in this manuscript. The first figure in the paper showed that a Salmonella Typhimurium strain lacking either CheY, and thus incapable of any chemotaxis, or the Tsr chemoreceptor, and thus incapable of sensing serine or indole, was modestly inferior to the wild-type version of that strain in invading the cells of a swine colonic explant. It then showed that, in the presence of a human fecal homogenate, the wild-type strain had a much greater advantage in invading the colonic cells. Thus, the presence of the fecal homogenate significantly increased invasiveness in a way that depends on chemotaxis and the Tsr chemoreceptor.

      As human feces were determined to contain 882 micromolar indole and 338 micromolar serine, the effects of those concentrations of either indole or serine alone or in combination were tested. The somewhat surprising finding was that neither indole nor serine alone nor in combination changed the result from the experiment done with just buffer in the colonic explant.

      The clear conclusion of this initial study is that both chemotaxis in general and chemotaxis mediated by Tsr improve the invasiveness of S. Typhimurium. They provide a much bigger advantage in the presence of human feces. However, two molecules present in the feces that are sensed by Tsr, serine, and indole, seem to have no effect on invasiveness either alone or in combination.

      At this point, the parsimonious interpretation is that there is something else in human feces that is responsible for the increased invasiveness, and the authors acknowledge this possibility. However, they do not take what appears to be the obvious approach: to look for additional factors in human feces that might be responsible, either by themselves or in combination with indole and/or serine, for the increased invasiveness. Instead, they carry out a detailed examination of the counteracting effects of indole as a repellent and of serine as an attractant as a function of their relative concentrations and their spatial distributions.

      Thank you for your comments. In our revised version, we have undertaken some additional studies of other fecal effectors that help better understand the relationship between L-Ser and indole, but also the roles of other chemoattractants (glucose, galactose, ribose, L-Asp) in mediating fecal attraction (Fig. 5). We agree with the reviewer and conclude that fecal attraction and the cell invasion phenotype mediated by fecal treatment are influenced by factors other than only Tsr, indole, and L-Ser. Our new data do show that L-Ser is sufficient to block both the invasion suppression effects of indole (negating the WT advantage) and also indole chemorepulsion, therefore making our detailed examination of the counteracting effects more relevant for understanding this system.

      What they find is what other studies have shown, primarily with S. Typhimurium's relative, the gamma-proteobacterium Escherichia coli.

      At high indole and low serine concentrations, the repulsion by indole wins out. At low indole and high serine concentrations, attraction by serine wins out. What is perhaps novel is what happens at an intermediate ratio of concentrations. Repulsion by indole dominates at short distances from the source, so there is a zone of clearing. At longer distances, attraction by serine dominates, so there is an accumulation of cells in a "halo" around the zone of clearing. Thus, assuming that serine and indole diffuse equally, the repulsive effect of indole dominates until its concentration falls below some critical level at which the concentration of serine is still high enough to exert an attractive effect.

      They go on to show, using ITC, that serine binds to the periplasmic ligand-binding domain (LBD) of Tsr, something that has been studied extensively with very similar E. coli Tsr.

      They also show that indole does not bind to the Tsr LBD, which also is known for E. coli Tsr.

      This would be newsworthy only if the results were different for S. Typhimurium than for E. coli. As it is, it is merely confirmatory of something that was already known about Tsr of enteric bacteria.

      An idea that the authors introduce, if I understand it correctly, is that a repellent response to something in feces, perhaps indole, drives S. Typhimurium chemotactically competent cells out of the colonic lumen and promotes invasion of the bacteria into the cells of the colonic lining. If the feces contain both an attractant and a repellent, bacteria might be attracted by the feces to the lining of the intestine and then enter the colonic cells to escape a repellent, perhaps indole. That is an interesting proposition.

      In summary, I think that the initial experimental approach is fine. I do not understand the failure to follow up on the effect of the fecal homogenates in promoting invasion by chemotactic bacteria possessing Tsr. It seems there must be something else in the homogenates that is sensed by Tsr. Other amino acids and related compounds are also sensed by Tsr. Perhaps it is energy or oxygen taxis, which is partially mediated by Tsr, as the authors acknowledge.

      Much of the work reported here is quasi-repetitive with work done with E. coli Tsr. Minimally, previous work on E. coli Tsr should be explained more thoroughly rather than dealt with only as a citation.

      Thank you for your comments.

      We would like to confirm our agreement that E. coli and S. enterica indeed possess similarities. They are Gammaproteobacteria and inhabit/infect the gut. But also we note they diverged evolutionarily during the Jurassic period (ca. 140 million years ago, see: PMC94677). In the context of colonizing humans, the former is a pathobiont, indoleproducer, and a native member of the microbiome, whereas the latter is a frank pathogen and does not produce indole. Hence, there are many reasons to believe one is not an approximate of the other, especially when it comes to causing disease.

      We agree that much of what is known about indole taxis has come from excellent studies in well-behaved laboratory strains of E. coli, a powerful model. We believe that expanding this work to include clinically relevant pathogens is important for understanding its role in human disease. In this study, we contribute to that broader understanding by providing new mechanistic insights into Tsr-mediated indole taxis in S. Typhimurium, along with data demonstrating fecal attraction in other enteric pathogens and pathobionts. These findings help define a more general role for Tsr in enteric colonization and disease. While some of our results indeed confirm and extend prior findings, we respectfully believe that such confirmation in relevant pathogenic strains adds value to the field.

      Regarding our ITC studies, to our knowledge no other study has investigated, using ITC whether indole does or does not bind the LBD (which we show it does not), nor investigated whether it interferes with L-Ser sensing (which we show it does not). Hence, these are not duplicate findings, although we do acknowledge this leaves the mechanism of indolesensing undiscovered. If we are incorrect in this regard, please provide us a citation and we will be happy to include it and revise our comments.

      We now clarify in the text on lines 378-381: “While these leave the molecular mechanism of indole-sensing unresolved, it does eliminate two possibilities that have not, to our knowledge, been tested previously. Overall, our data add support to the hypothesis that a non-canonical sensing mechanism is employed by Tsr to respond to indole [8,18,69].”

      Lastly, as noted by the reviewer, and which we mention in the text, essentially all prior studies on indole taxis were conducted in E. coli, and this is not what is new and novel about the work we present, which is focused on S. Typhimurium and testing the prediction that fecal indole protects against pathogen invasion. We have added in a few additional points of comparisons between our results and prior studies. While we appreciate that much understanding has come from E. coli as a model for indole taxis, we feel discussing prior work in extensive detail would be more suitable for a review and would occlude our new findings about Salmonella, and other enterics.

      In an earlier version of the manuscript, we included more background on E. coli indole taxis. However, we found that the historical literature in this area was somewhat inconsistent, with different assays using varying time points and indole concentrations, often leading to results that were difficult to reconcile. Providing sufficient context to explain these discrepancies required considerable space and, ultimately, detracted from the focus of our current study. Hence, we have only brought in comparisons with E. coli where most relevant to the present work. Also, we provide new data that E. coli also exhibits fecal attraction, and so there is reason to believe the mechanisms we study here are also relevant to that system.

      Some minor points

      (1) Hyphens are not needed with constructs like "naturally occurring" or "commonly used".

      Thank you. Revisions made throughout.

      (2) The word "frank" as in "frank pathogen" seems odd. It seems "potent" would be better.

      Thank you for this comment. Per your recommendation, we have removed this term.

      The term ‘frank pathogen’ is standard usage in the field of bacterial pathogenesis in reference to a microbe that always causes disease in its host (in this case humans) and causes disease in otherwise healthy hosts (example: https://www.sciencedirect.com/science/article/pii/S1369527420300345). We actually used this specific term to distinguish an aspect of novelty of our study because E. coli can, sometimes, be a pathogen (i.e. a pathobiont) and of course E. coli indole taxis has been previously studied. Ours is the first study of indole taxis in a frank pathogen.

      (3) It is unnecessary to coin a new word, chemohalation, to describe a phenomenon that is a simple consequence of repulsion by higher concentrations of a repellent and attraction by lower concentrations of attractant to generate a halo pattern of cell distribution.

      Thank you for your opinion on this. We have softened our statements on this point, and in the newly revised version of the text less space is devoted to this idea. We now state in line 304-307:

      “There exists no consensus descriptor for taxis of this nature, and so we suggest expanding the lexicon with the term “chemohalation,” in reference to the halo formed by the cell population, and which is congruent with the commonly-used terms chemoattraction and chemorepulsion.”

      We appreciate the reviewer’s perspective and agree that the behavior we describe can be viewed as the result of competing attractant and repellent cues. However, we find that the traditional framework of “chemoattraction” and “chemorepulsion” is often insufficient to describe the spatial positioning behaviors we observe in our system. In our experience presenting and discussing this work, especially with audiences outside the chemotaxis field, it has been challenging to convey these dynamics clearly using only those two terms.

      For this reason, we introduced the term chemohalation to describe this more nuanced behavior, which appears to reflect a balance of signals rather than a simple unidirectional response. More bacteria enter the field of view, but they are clearly positioned differently than regular ‘chemoattraction.’ We also note that Reviewers 2 and 3 did not raise concerns about the term, and after careful consideration, we have opted to retain it in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      Lines 143-156 seem somewhat overcomplicated and may be confusing. For example: in line 143: "However, when colonic tissue was treated with purified indole at the same concentration, the competitive advantage of WT over the chemotactic mutants was abolished compared to fecaltreated tissue...". But indole was tested alone, so it did not abolish the response; rather the absence of fecal material did.

      We appreciate your point. We have made revisions throughout to help improve the clarity of how we discuss the explant infection data and provide new visuals to help explain the experiment and data (Fig. 1C, Fig. S5).

      Reviewer #3 (Recommendations for the authors):

      (1) Line 46 - Are references 9-11 really about topography?

      Thank you. You are correct. Revised and eliminated this statement.

      (2) Lines 87-89 - It seems to me that a bit more information on this would be helpful to the reader.

      In our revision of the text, to make it more centered on our primary findings of the differences between indole taxis when indole is the sole effector versus amidst other effectors, we have removed this section.

      (3) Line 112 - When mentioning the infection of the cecum and colon, authors should specify that this is in mice.

      Thank you for this comment. In our revised version we provide references both for animal model infections and work in human patients (ex: https://www.sciencedirect.com/science/article/abs/pii/S0140673676921000)

      We have revised our statement to be (Line 99-100: “Salmonella Typhimurium preferentially invades tissue of the distal ileum but also infects the cecum and colon in humans and animal models [42–46].”

      (4) Lines 122-123 - Authors state that "This experimental setup simulates a biological gradient in which the effector concentration is initially highest near the tissue and diffuses outward into the buffer solution.". Was this experimentally demonstrated? If not, authors should tone this down.

      We have removed this comment and instead present a conceptual diagram illustrating this idea (Fig. 1C). Also, addressed by above.

      (5) When looking at the results in Figure 1, I wonder what the results of this experiment would be if the authors tested an invasion mutant of Salmonella. In a strain that is able to perform chemotaxis (attraction and repulsion) but unable to actively invade, would there be a phenotype here? Is it possible that the fecal material affects cellular uptake of Salmonella, independently of active invasion? I don't think the authors necessarily need to perform this experiment, but I think it could be informative and this possibility should at least be discussed.

      Thank you for your comments and suggestions. We have included new data of an explant co-infection experiment with WT and an invasion-deficient mutant invA (Fig. S1). Under these conditions, WT exhibits an advantage in the gentamicin-treated homogenate, but not the untreated homogenate, suggestive of an advantage in cellular invasion.

      However, we did not repeat all experiments with this genetic background. We felt that would be outside the scope of this work, and would probably require dual chemotaxis/invA deletions to assess the impact of each, which also could be difficult to interpret. The hypothesis mentioned by the Reviewer is possible, but we were not able to devise a way to test this idea, as it seems we would need to deactivate all other mechanisms of Salmonella invasion.

      (6) Lines 137-140 - Because this is a competition experiment and results are plotted as CI, the reader can't readily assess the impact of human feces on invasion by WT Salmonella.

      Thank you for pointing this out. We want to mention that the data are plotted as CI in the main text, but the supplemental contains the disaggregated CFU data (Fig. S1-2) and the numerical values (Data S1).

      Please include the magnitude of induction in this sentence, compared to the buffer control.

      The text of this section has been changed to account for new data.

      Additionally, although unlikely, the presence of the chemotaxis mutants in the same infection may be a confounding factor. In order to irrefutably ascertain that feces induces invasion, I suggest authors perform this experiment with the wildtype strain (and mutant) alone in different conditions.

      Thank you for this suggestion, although after careful consideration we have decided not to repeat these explant studies with monoinfections. Coinfections are a common tool in Salmonella pathogenesis studies, including prior chemotaxis studies which our work builds upon (ex: https://pmc.ncbi.nlm.nih.gov/articles/PMC3630101/). The explant experiments, even controlling as many aspects as we did, still show lots of variability and one way to mitigate this is through competition experiments so that each strain experiences the same environment.

      We agree that a cost of this approach is that one strain may affect the other, or may alter the environment in a way that impacts the other. Thus, the resulting data must also be understood through this lens. We have revised the text to stay closer to the competitive advantage phenotype.

      (7) Line 150 - Authors state that bacterial loads are similar. However, authors should perform and report statistical analyses of these comparisons, at least in the supplementary data.

      We have removed this statement as requested. We do note, however, that the mean CFU values across treatments at identical time points appear qualitatively similar, which is an observation that does not require statistical testing.

      (8) Lines 154-154 - This seems incorrect, as the effect observed with the mixture of indole and serine is very similar to the addition of serine alone. Therefore, there was no "neutralization" of their individual effects.

      We have revised this statement.

      (9) Line 159-161 - I strongly suggest authors reword this sentence. I don't think this is the best way to describe these results. The stronger phenotype observed was with the fecal material. Therefore, it is the indole (alone) condition that does not "elicit a response". Focusing on indole too much here ignores everything else that is present in feces and also the fact that there was a drastic phenotype when feces were used.

      Thank you for your opinion on this. We believe this is one of the ways in which our earlier draft was unclear. It was actually a primary motivation of this work to test whether there were differences in pathogen infection, mediated by chemotaxis, in the presence of indole as a singular effector or in its near-native context in fecal material, and our revised text centers our study around this question. We believe this distinction is important for the reasons mentioned earlier.

      Relative to buffer treatment, indole changes the behavior of the system, eliminating the WT advantage, and this is the effect we refer to. We have made many revisions to the text of these sections and hope it better conveys this idea. We expect we may still have differences regarding the interpretation of these results, but regardless, thank you for your suggestions and we have tried to implement them to improve the clarity of the text.

      (10) Line 162 - Again, I disagree with this. Indole does not have an effect to be cancelled out by serine.

      Addressed above, and this text has been changed. Also, we provide new chemotaxis data that at fecal-relevant concentrations of indole and L-Ser, indole chemorepulsion is overridden (Fig. 5).

      (11) Lines 166-168 - Again, this is a skewed analysis. Indole and serine could not possibly provide an "additive effect" since they do not provide an effect alone. There is nothing to be added.

      This text has been deleted.

      (12) Lines 168-170 - Most of the citations provided to this sentence are inadequate. Our group has previously shown that the mammalian gut harbors thousands of small molecules (Antunes LC et al. Antimicrob Agents Chemother 2011). You obviously do not have to cite our work, but there is significant literature out there about the complexity of the gut metabolome.

      Thank you for this comment. We have revised this particular text, but do make mention of potential other effectors driving these effects, which was also requested by the other reviewers.

      Your work and others indeed support there being thousands of molecules in the gut, but our work centers on chemotaxis, and bacteria have a small number of chemoreceptors and only sense a very tiny fraction of these molecules as effectors. Since the impacts of infection of the explants depends on chemotaxis, we keep our comments restricted to those, but agree that there are likely many interactions involved, such as those impacting gene expression.

      Please note our more detailed description of the explant infection assay (and shown in Fig. 1C) that may change your view on the significance of non-chemotaxis effects. The bacteria only experience the effectors at low concentration, not the high concentration that is used to soak and prepare the tissue prior to infection.

      (13) Figure 2 - The letter 'B' from panel B is missing.

      Thank you very much for bringing this oversite to our attention. We have fixed this.

      (14) Legend of Figure 3 - Panel J is missing a proper description. Figure legends need improvement in general, to increase clarity.

      Thank you for noting this. This is now Fig. 6E. We have provided an additional description of what this panel shows. We have edited the legend text to read: “E. Shows a quantification of the relative number of cells in the field of view over time following treatment with 5 mM indole for a competition experiment with WT and tsr (representative image shown in F).”

      We also have made other edits to figure legends to improve their clarity and add additional experimental details and context. By breaking up larger figures into smaller figures, we also hope to have improved the clarity of our data presentation.

      (15) Lines 264-265 - Maybe I am missing something, but I do not see the ITC data for serine alone.

      We have clarified in the text that this was measured in our previous study https://elifesciences.org/articles/93178). The present study is a ‘Research Advance’ article format, and so builds on our prior observation.

      We have revised the text to read: “To address these possibilities, we performed ITC of 50 μM Tsr LBD with L-Ser in the presence of 500 μM indole and observed a robust exothermic binding curve and KD of 5 µM, identical to the binding of L-Ser alone, which we reported previously (Fig. 6H) [36].”

      (16) Lines 296-297 - What is the effect of these combinations of treatments on bacterial cells? I commend the authors for performing the careful growth assays, but I wonder if bacterial lysis could be a factor here. I am not doubting the effect of chemotaxis, but I am wondering if toxic effects could be a confounding factor. For instance, could it be that the "avoidance" close to the compound source and subsequent formation of a halo suggest bacterial death and lysis? I suggest the authors perform a very simple experiment, where bacteria are exposed to the compounds at various concentrations and combinations, and cells are observed over time to ensure that no bacterial lysis occurs.

      Thank you for mentioning this possibility. If we understand correctly, the Reviewer is asking if the chemohalation effect we report could be from the bacteria lysing near the source. Our data actually argue against this possibility through a few lines of evidence.

      First, if this were the case in experiments with the cheY mutant, we would also see an effect near the source. But actually, in experiments with either the cheY mutant or the tsr mutant, neither of which can sense indole, the bacteria just ignore the stimulus and show an even distribution (see current Fig. 6F).

      Second, our calculations suggest that in the chemotaxis assay (CIRA), the bacteria only experience rather low local concentration of indole, mostly I the nM concentration range, because as soon as the effector treatment is injected into the greater volume, it is immediately diluted. This means the local concentration is far below what we see inhibits growth of the cells in the long run and may not be toxic (Fig. 7, Fig. S3).

      Lastly, in the representative video presented we can observe individual cells approach and exit the treatment (Movie 11). Due to the above we have not performed additional experiments to test for lysis.

      (17) Lines 310-311 - Isn't this the opposite of the model you propose in Figure 5? The higher the concentration of indole in the lumen the more likely Salmonella is to swim away from it and towards the epithelium, favoring invasion, no?

      We appreciate the opportunity to clarify this point and apologize for any confusion caused. In response, we have revised the text to place less emphasis on chemohalation, and the specific statement and model in question have now been removed. Instead, we provide a summary of our explant data in light of the other analyses in the study (Fig. S5).

      What we meant here was in relation to the microscopic level, not whether or not a host/intestine is colonized. To put it another way, we think our data supports that the pathogen colonizes and infects the host regardless of indole presence, but it uses indole as a means to prioritize which tissues are optimal for colonization at the microscopic level. The prediction made by others was that bacteria swim away from indole source and therefor this could prevent or inhibit pathogen colonization of the intestines, which our data does not support.

      (18) Lines 325-326 - Maybe, but feces also contain several compounds with antibacterial activity, as well as other compounds that could elicit chemorepulsion. This should be stated and discussed.

      We have removed this statement since we did not explicitly test the growth of the bacteria with fecal treatments. We have refrained from speculating further in the text since we do not have direct knowledge of how that relationship with differing effectors could play out.

      We agree with the reviewer that the growth assays are reductionist and give insight only into the two effectors studied. We provide evidence from several different types of enterics that they all exhibit fecal attraction, and it seems unlikely the bacteria would be attracted to something deleterious, but we have not confirmed.

      (19) Lines 371-374 - How preserved (or not) is the mucus layer in this model? The presence of an inhibitory molecule in the lumen does not necessarily mean that it will protect against invasion. It is possible that by sensing indole in the lumen Salmonella preferentially swims towards the epithelium, thus resulting in enhanced evasion.

      The text in question has been removed. However, we acknowledge the reviewer’s point, and that these explant tissues do not fully model an in vivo intestinal environment. Other than a gentle washing with PBS to remove debris prior to the experiment the tissue is not otherwise manipulated, and feasibly the mucus layer is similar to its in vivo state.

      In mentioning this hypothesis about indole, which our data do not support, we were echoing a prediction from the field, proposed in the studies we cite. We agree with the reviewer that there were other potential outcomes of indole impacting chemotaxis and invasion, and indeed our data supports that.

      (20) Lines 394-395 - The authors need to remember that the ability to invade the intestinal epithelium is not only a product of chemoattraction and repulsion forces. Several compounds in the gut are used by Salmonella as cues to alter invasion gene expression. See PMID: 25073640, 28754707, 31847278, and many others.

      Thank for you for this point, and we now include these citations. We have revised the text in question, stating:

      “In addition to the factors we have investigated, it is already well-established in the literature that the vast metabolome in the gut contains a complex repertoire of chemicals that modulate Salmonella cellular invasion, virulence, growth, and pathogenicity [79–81].”

      Our intent is not to diminish the role of other intestinal chemicals but rather to put our new findings into the context of bacterial pathogenesis. We do provide evidence that specific chemoeffectors present in fecal material alter where bacteria localize through chemotaxis, which is one method of control over colonization.

      (21) Line 408 - I think it could be hard to observe this using your experimental approach.

      Because you need to observe individual cells, the number of cells you observe is relatively small. If, in a bet-hedging strategy, the proportion of cells that were chemoattracted to indole was relatively low you likely would not be able to distinguish it from an occasional distribution close to the repellent source. You may or may not want to discuss this.

      Thank you for this observation. It is indeed challenging to both observe large scale population behaviors and also the behaviors of individual cells in the same experiment. Our ability to make this distinction is similar to the approach used in the study we cite, so that is our comparison.

      But, if there was a subpopulation that was attracted we would predict a ‘bull’s-eye’ population structure, with some cells attracted and other avoiding the source, which we do not see - we see the halo. So, we find no evidence of the bet-hedging response seen in a different study using E. coli and using different time scales than we have.

      (22) Lines 410-411 - What could the other attractants be? Would it be possible/desirable to speculate on this?

      We have changed the text here, but we present new data that examines some of these other attractants (Fig. 5).

      (23) Line 431 - What exactly do you mean by "running phenotype"? Please, provide a brief explanation.

      We have removed this text, but a running phenotype means the swimming bacteria rarely make direction changes (i.e. tumbles), which has been associated with promoting contact with the epithelium, described in the references we cite. Hence, this type of swimming behavior could contribute to the effects we observe in the explant studies, potentially explaining some of the Tsr-mediated advantage that was not dependent on L-Ser/indole.

      (24) Line 441 - Other work has shown that feces contain inhibitors of invasion gene expression. The authors should integrate this knowledge into their model. In fact, indole has been shown to repress host cell invasion by Salmonella, so it is important that authors understand and discuss the fact that the impact of indole is multifaceted and not only a reflection of its action as a chemorepellent. PMID: 29342189, 22632036.

      We agree with the reviewer about this point, and mention this in the text (lines 55-57): “Indole is amphipathic and can transit bacterial membranes to regulate biofilm formation and motility, suppress virulence programs, and exert bacteriostatic and bactericidal effects at high concentrations [16–18,20–22].”

      We have added in the references suggested.

      What we test here is the specific hypothesis made by others in the field about indole chemorepulsion serving to dissuade pathogens from colonizing.

      For instance, the statement from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190613

      “Since indole is also a chemorepellent for EHEC [23], it is intriguing to speculate that in addition to attenuating Salmonella virulence, indole also attenuates the recruitment and directed migration of Salmonella to its infection niche in the GI tract.”

      And from: https://doi.org/10.1073/pnas.1916974117

      “We propose that indole spatially segregates cells based on their state of adaptation to repel invaders while recruiting beneficial resident bacteria to growing microbial communities within the GI tract.”

      And

      “Thus, foreign ingested bacteria, including invading pathogens such as E. coli O157:H7 and S. enterica, are likely to be prevented by indole from gaining a foothold in the mucosa.”

      As shown by others, indole certainly does have many roles in controlling pathogenesis, and there are other chemicals we do not investigate that control invasion and bacterial growth, but we keep our statements here restricted to chemotaxis since that is what are experiments and data show.

      (25) Line 472 - "until fully motile". How long did this take, how variable was it, and how was it determined?

      Thank you for asking for this clarification. We have added that the time was between 1-2 h, and confirmed visually. Our methods are similar to those described in earlier chemotaxis studies (ex: 10.1128/jb.182.15.4337-4342.2000).

      (26) Line 487 - I worry that the fact fecal samples were obtained commercially means that compound stability/degradation may be a factor to consider here. How long had the sample been in storage? Is this information available?

      Thank you for this question. We agree that the fecal sample we used serves as a model system and we cannot rule out that handling by the supplier could potentially alter its contents in some way that would impact bacterial chemosensing. However, we note that the measurements of L-Ser and indole we obtained are in the appropriate range for what other studies have shown.

      The fecal sample used for all work in the study were from a single healthy human donor, obtained from Lee Biosolutions (https://www.leebio.com/product/395/fecal-stool-samplehuman-donor-991-18). The supplier did not state the explicit date of collection, nor indicated any specific handline or storage methods that would obviously degrade its native metabolites, but we cannot rule that out. In our hands, the fecal sample was collected and kept frozen at -20 C. For research purposes, portions were extracted and thawed as needed, maintaining the frozen state of the original sample to limit degradation from freeze-thaws.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this paper, Li and colleagues overcome solubility problems to determine the structure of FtsEX bound to EnvC from E. coli.

      Strengths:

      The structural work is well done and the work is consistent with previous work on the structure of this complex from P. aerugionsa.

      Weaknesses:

      The model does not take into account all information that the authors obtained as well as known in vivo data.

      The work lacks a clear comparison to the Pseudomonas structure highlighting new information that was obtained so that it is readily available to the reader.

      The authors set out to obtain the structure of FtsEX-EnvC complex from E. coli. Previously, they were unable to do so but were able to determine the structure of the complex from P. aeruginosa. Here they persisted in attacking the E. coli complex since more is known about its involvement in cell division and there is a wealth of mutants in E. coli. The structural work is well done and recapitulates the results this lab obtained with this complex from P. aeruginosa. It would be helpful to compare more directly the results obtained here with the E. coli complex with the previously reported P. aeruginosa complex - are they largely the same or has some insight been obtained from the work that was not present in the previous complex from P. aeruginosa. This is particularly the case in discussing the symmetrical FtsX dimer binding to the asymmetrical EnvC, since this is emphasized in the paper. However, Figures 3C & D of this paper appear similar to Figures 2D & E of the P. aeruginosa structure. Presumably, the additional information obtained and presented in

      Figure 4 is due to the higher resolution, but this needs to be highlighted and discussed to make it clear to a general audience.

      The main issue is the model (Figure 6). In the model ATP is shown to bind to FtsEX before EnvC, however, in Figure 1c it is shown that ADP is sufficient to promote binding of FtsEX to EnvC.

      The work here is all done in vitro, however, information from in vivo needs to be considered. In vivo results reveal that the ATP-binding mutant FtsE(D162N)X promotes the recruitment of EnvC (Proc Natl Acad Sci U S A 2011 108:E1052-60). Thus, even FtsEX in vivo can bind EnvC without ATP (not sure if this mutant can bind ADP).

      Perhaps the FtsE protein from E. coli has to have bound nucleotides to maintain its 3D structure.

      Thank you for your thoughtful feedback and valuable suggestions. We have carefully revised the manuscript to address these concerns, incorporating additional analysis and discussion to enhance clarity and improve the accuracy of our interpretation.

      Regarding the relationship between EnvC binding and nucleotide binding to FtsEX, our previous study on P. aeruginosa FtsEX demonstrated that FtsEX can bind EnvC even in the absence of nucleotide (PMID: 37186861, Fig. 3C). However, for E. coli FtsEX (Fig. S1 in this study), ATP is required to stabilize the complex in vitro, preventing us from directly testing whether EnvC binding is ATP-dependent. The reviewer raised an important point about the FtsED162N mutant study, from which previous studies suggests that this mutant may still retain ATP binding, as observed in its homolog MacB (PMID: 29109272, PMID: 32636250). Additionally, previous work (PMID: 22006325) has shown that the PLD domain of FtsX can bind EnvC directly, even in the absence of the NBD domain, a finding further supported by Crow’s lab (PMID: 33097670). Taken together, these studies indicate that EnvC binding to FtsEX is likely nucleotideindependent, while ATP binding primarily stabilizes FtsE dimerization, reinforcing FtsEX complex formation.

      In line with these findings, our results suggest a stabilizing role of ATP in FtsEX assembly, whereas EnvC binding does not appear to be nucleotide-dependent. However, we acknowledge that the precise sequence of ATP binding and EnvC recruitment within the cell remains unresolved. To reflect this, we have revised the manuscript to incorporate these insights (L190-201, L445-451), clearly stated the limitations (L450-451, L887-890), and updated our model (Fig. 6) to avoid assigning a definitive sequence to EnvC and ATP binding.

      Additionally, we have strengthened the structural comparison between E. coli and P. aeruginosa FtsEX, as the reviewer suggested. We have now included a detailed comparative analysis (L282-306, Fig. S9), which reveals that the transmembrane and nucleotide-binding domains are highly superimposable. The primary structural distinction lies in a slight tilting difference in the bound EnvC, which appears to stem from the conformation of the X-lobes within the PLD domains. Highlighting these differences helps clarify how our new structural data provide additional insights beyond what was previously observed in P. aeruginosa.

      Reviewer #2 (Public Review):

      Summary:

      Peptidoglycan remodeling, particularly that carried out by enzymes known as amidases, is essential for the later stages of cell division including cell separation. In E. coli, amidases are generally activated by the periplasmic proteins EnvC (AmiA and AmiB) and NlpD (AmiC). The ABC family member, FtsEX, in turn, has been implicated as a modulator of amidase activity through interactions with EnvC. Specifically how FtsEX regulates EnvC activity in the context of cell division remains unclear.

      Strengths:

      Li et al. make two primary contributions to the study of FtsEX. The first, the finding that ATP binding stabilizes FtsEX in vitro, enables the second, structural resolution of fulllength FtsEX both alone (Figure 2) and in combination with EnvC (Figure 3). Leveraging these findings, the authors demonstrate that EnvC binding stimulates FtsEX-mediated ATP hydrolysis approximately two-fold. The authors present structural data suggesting EnvC binding leads to a conformational change in the complex. Biochemical reconstitution experiments (Figure 5) provide compelling support for this idea.

      Weaknesses:

      The potential impact of the study is curtailed by the lack of experiments testing the biochemical or physiological relevance of the model which is derived almost entirely from structural data.

      Altogether the data support a model in which interaction with EnvC, results in a conformational change stimulating ATP hydrolysis by FtsEX and EnvC-mediated activation of the amidases, AmiA and AmiB. However, the study is limited in both approach and scope. The importance of interactions revealed in the structures to the function of FtsEX and its role in EnvC activation are not tested. Adding biochemical and/or in vivo experiments to fill in this gap would allow the authors to test the veracity of the model and increase the appeal of the study beyond the small number of researchers specifically interested in FtsEX.

      Thank you for your thoughtful review and constructive feedback. We appreciate your recognition of our study’s contributions, particularly the structural resolution of fulllength E coli FtsEX, its interaction with EnvC, and our biochemical characterization of EnvC-stimulated ATP hydrolysis.

      We understand the importance of further biochemical and in vivo validation to support our model. While our study primarily provides a structural framework for understanding FtsEX function, many key residues identified in our E. coli structures have already been tested in prior cell physiological studies. For example, residues critical for the FtsEXEnvC interaction were examined in our collaborator David Roper’s lab in collaboration with Crow’s lab (PMID: 33097670, L319-321).

      With the structural blueprint provided by our full-length E. coli FtsEX-EnvC complex, we now have a foundation to explore several key functional aspects of this system. Future mutagenesis studies will help dissect the roles of specific residues in ATP binding/hydrolysis, coupling between the TMD and NBD domains, interactions between the PLD and TMD domains of FtsX, and signal transduction from the NBD, through the TMD and PLD to EnvC. Additionally, we aim to investigate how the symmetrical PLD domain recruits asymmetrical EnvC and how the dynamics of PLD of FtsX and CCD domains of EnvC contribute to the complex’s function.

      As these experiments require specialized expertise in cell physiology and PG degradation assays, we are actively collaborating with experts in these areas to pursue them. We are committed to furthering this work and providing deeper biochemical and in vivo insights into the function of the FtsEX complex in cell division.

      Reviewer #1 (Recommendations For The Authors):

      (1) As mentioned, two things could strengthen the paper. One is to take into account that ADP or possibly nucleotide-free FtsEX can bind EnvC. The second is to highlight any differences between the structures from E. coli and P. aeruginosa.

      Thank you for these insightful suggestions. In our revision, we have (1) carefully considered the possibility of EnvC binding independently of nucleotide and (2) have incorporated a detailed comparison between the newly obtained E. coli FtsEX/EnvC structure and that of P. aeruginosa.

      Regarding the relationship between EnvC binding and ATP binding to FtsEX, our previous study on P. aeruginosa FtsEX demonstrated that FtsEX can bind EnvC in the absence of nucleotide (PMID: 37186861, Fig 3C). However, for E. coli FtsEX systems (Fig S1 in this study), ATP is necessary for FtsEX stabilization in vitro, which limited us from further directly testing whether EnvC binding is ATP-dependent or not.

      We appreciate the reviewer’s reference to the FtsE(D162N) mutant study. Previous studies suggest that D162N mutant may still retain ATP binding, similar to its homolog MacB (PMID: 29109272; PMID: 32636250). Additionally, findings from Winkler’s lab (PMID: 22006325) indicate that the PLD domain of FtsX can bind EnvC directly, even in the absence of the NBD domain, a result further supported by study from Crow’s lab (PMID: 33097670). Collectively, these studies suggest that EnvC binding to FtsEX is nucleotide-independent, while ATP binding likely stabilizes FtsE dimerization, thereby reinforcing FtsEX complex formation, as the reviewer suggested.

      Thus, consistent with previous studies, our results so far support a stabilizing role of ATP in FtsEX assembly, while EnvC binding itself does not appear to be nucleotidedependent. However, the available evidence remains inconclusive, and the precise sequence of ATP binding and EnvC recruitment within the cell is still unclear. In our revision, we have now incorporated these analyses in L190-201 and L445-451, stated the limitations (L450-451 and L887-890) and updated our model (Fig. 6) to avoid assigning a definitive sequence to EnvC and ATP binding.

      For the structural comparison between E. coli and P. aeruginosa FtsEX, we have added a detailed analysis in L282-306 and Supplementary figure 9. In summary, we found that the transmembrane domain and nucleotide-binding domain are highly superimposable, with only minor differences observed. The primary distinction lies in a slight tilting difference in the bound EnvC, which appears to come from the conformation of the X-lobes within the PLD domains.

      (2) Line 129. Concerning the role of ATP in stabilizing the complex. It is clear that ADP can do it as well (Figure 1c). This is mentioned in line 131 but not considered in the model.

      Thank you for pointing this out. We have now revised the relevant sections in the manuscript (L190-201 and L445-451) and updated the model (Fig 6) accordingly. In the revised manuscript, we acknowledge the reviewer’s point that ATP may primarily serve to stabilize the FtsEX complex. Additionally, we have explicitly clarified that EnvC binding appears to be nucleotide-independent. Regarding the model, we state that the current study does not provide sufficient evidence to determine the precise sequence of EnvC and ATP binding to FtsEX in the cell. We believe these revisions, incorporating the reviewer’s suggestions, improve the accuracy of our interpretation.

      Reviewer #2 (Recommendations For The Authors):

      (1) The introduction is written for an audience with significant expertise in bacterial PG synthesis and is thus difficult for those outside the field to follow.

      Thank you for your feedback. We have revised the introduction, particularly the first passage (L51–63), to improve readability and make it more accessible to a broader audience.

      (1) Figure 1: Please express ATP hydrolysis data in ATP/FtsEX/minute. (It is currently nmol/mg/min).

      Changed accordingly, thank you!

      (2) Figure 4: Please clarify in the legend and in the figure itself which structures correspond to full-length data from cryoEM data or truncated (FtsEX-PLD domain) protein data from previous crystallographic studies.

      Both the FtsEX and FtsEX/EnvC complex structures shown in Figure 4 were obtained from our cryo-EM data using full-length proteins. To avoid any confusion, we have now further clarified this in the figure legend (L857).

    1. Author response:

      The following is the authors’ response to the previous reviews

      Recommendations for the authors:

      Reviewing Editor Comments:

      The resubmitted version of the manuscript adequately addressed several initial comments made by reviewing editors, including a more detailed analysis of the results (such as those of bilayer thickness). This version was seen by 2 reviewers. Both reviewers recognize this work as being an important contribution to the field of BK and voltage-dependent ion channels in general. The long trajectories and the rigorous/novel analyses have revealed important insights into the mechanisms of voltage-sensing and electromechanical coupling in the context of a truncated variant of the BK channel. Many of these observations are consistent with structural and functional measurements of the channel, available thus far. The authors also identify a novel partially expanded state of the channel pore that is accessed after gating-charge displacement, which informs the sequence of structural events accompanying voltage-dependent opening of BK.

      However, there are key concerns regarding the use of the truncated channel in the simulations. While many gating features of BK are preserved in the truncated variant, studies have suggested that opening of the channel pore to voltage-sensing domain rearrangement is impaired upon gating-ring deletion. So the inferences made here might only represent a partial view of the mechanism of electromechanical coupling.

      It is also not entirely clear whether the partially expanded pore represents a functionally open, sub-conductance, or another closed state. Although the authors provide evidence that the inner pore is hydrated in this partially open state, in the absence of additional structural/functional restraints, a confident assignment of a functional state to this structure state is difficult. Functional measurements of the truncated channel seem to suggest that not only is their single channel conductance lower than full-length channels, but they also appear to have a voltage-independent step that causes the gates to open. It is unclear whether it is this voltage-independent step that remains to be captured in these MD trajectories. A clean cut resolution of this conundrum might not be feasible at this time, but it could help present the various possibilities to the readers.

      We appreciate the positive comments and agree that there will likely be important differences between the mechanistic details of voltage activation between the Core-MT and full-length constructs of BK channels. We also agree that the dilated pore observed in the simulation may not be the fully open state of Core-MT.

      Nonetheless, the notion that the simulation may not have captured the full pore opening transition or the contribution of the CTD should not render the current work “incomplete”, because a complete understanding of BK activation would be an unrealistic goal beyond the scope of this work. We respectfully emphasize that the main insights of the current simulations are the mechanisms of voltage sensing (e.g., the nature of VSD movements, contributions of various charged residues, how small charge movements allow voltage sensing, etc.) as well as the role of the S4-S5-S6 interface in VSD-pore coupling. As noted by the Editor and reviewers, these insights represent important steps towards establishing a more complete understanding of BK activation.

      Below are the specific comments of the two experts who have assessed the work and made specific suggestions to improve the manuscript.

      Reviewer #1 (Recommendations for the authors):

      (1) Although the successful simulation of V-dependent K+ conduction through the BK channel pore and analysis of associated state dependent VSD/pore interactions and coupling analysis is significant, there are two related questions that are relevant to the conclusions and of interest to the BK channel community which I think should be addressed or discussed.

      One key feature of BK channels is their extraordinarily large conductance compared to other K+ selective channels. Do the simulations of K+ conductance provide any insight into this difference? Is the predicted conductance of BK larger than that of other K+ channels studied by similar methods? Is there any difference in the conductance mechanism (e.g., the hard and soft knock-on effects mentioned for BK)?

      The molecular basis of the large conductance of BK channels is indeed an interesting and fundamental question. Unfortunately, this is beyond the scope of this work and the current simulation does not appear to provide any insight into the basis of large conductance. It is interesting to note, though, the conductance is apparently related to the level of pore dilation and the pore hydration level, as increasing hydration level from ~30 to ~40 waters in the pore increases the simulated conductance from ~1.5 to 6 pS (page 8). This is consistent with previous atomistic simulations (Gu and de Groot, Nature Communications 2023; ref. 33) showing that the pore hydration level is strongly correlated with observed conductance. As noted in the manuscript, the conductance mechanism through the filter appears highly similar to previous simulations of other K+ channels (Page 8). Given the limit conductance events observed in the current simulations, we will refrain from discussing possible basis of the large conductance in BK channels except commenting on the role of pore hydration (page 8; also see below in response to #5).

      The pore in the MD simulations does not open as wide as the Ca-bound open structure, which (as the authors note) may mean that full opening requires longer than 10 us. I think that is highly likely given that the two 750 mV simulations yielded different degrees of opening and that in BK channels opening is generally much slower than charge movement. Therefore, a question is - do any of the conclusions illustrated in Figures 6, S5, S6 differ if the Ca-bound structure is used as the open state? For example, I expect the interactions between S5 and S6 might at least change to some extent as S6 moves to its final position. In this case, would conclusions about which residues interact, and get stronger or weaker, be the same as in Figures S6 b,c? Providing a comparison may help indicate to what extent the conclusions are dependent on achieving a fully open conformation.

      We appreciate the reviewer’s suggestion and have further analyzed the information flow and coupling pathways using the simulation trajectory initiated from the Ca<sup>2+</sup>-bound cryo-EM structure (sim 7, Table S1). The new results are shown in two new SI Figures S7 and S8, and new discussion has been added to pages 14-15. Comparing Figures 5 and S7, we find that dynamic community, coupling pathways, and information flow are highly similar between simulation of the open and closed states, even though there are significant differences in S5 contacts in the simulated open state vs Ca<sup>2+</sup>-bound open state (Figure S8). Interestingly, there are significant differences in S4-S5 packing in the simulated and Ca<sup>2+</sup>-bound open states (Figure S8 top panel), which likely reflect important difference in VSD/pore interactions during voltage vs Ca<sup>2+</sup> activation.

      (2) P4 Significance -"first, successful direct simulation of voltage-activation"

      This statement may need rewording. As noted above Carrasquel-Ursulaez et al.,2022 (reference 39) simulated voltage sensor activation under comparable conditions to the current manuscript (3.9 us simulation at +400 mV), and made some similar conclusions regarding R210, R213 movement, and electric field focusing within the VSD. However, they did not report what happens to the pore or simulate K+ movement. So do the authors here mean something like "first, successful direct simulation of voltage-dependent channel opening"?

      We agree with the reviewer and have revised the statement to “ … the first successful direct simulation of voltage-dependent activation of the big potassium (BK) channel, ..”

      (3) P5 "We compare the membrane thickness at 300 and 750 mV and the results reveal no significant difference in the membrane thickness (Figure S2)"

      The figure also shows membrane thickness at 0 mV and indicates it is 1.4 Angstroms less than that at 300 or 750 mV. Whether or not this difference is significant should be stated, as the question being addressed is whether the structure is perturbed owing to the use of non-physiological voltages (which would include both 300 and 750 mV).

      We have revised the Figure S2 caption to clarify that one-way ANOVA suggest the difference is not significant.

      (4) P7 "It should be noted that the full-length BK channel in the Ca2+ bound state has an even larger intracellular opening (Figure 2f, green trace), suggesting that additional dilation of the pore may

      occur at longer timescales."

      As noted above, I agree it is likely that additional pore dilation may occur at longer timescales. However, for completeness, I suppose an alternative hypothesis should be noted, e.g. "...suggesting that additional dilation of the pore may occur at longer timescales, or in response to Ca-binding to the full length channel."

      This is a great suggestion. Revised as suggested.

      (5) Since the authors raise the possibility that they are simulating a subconductance state, some more discussion on this point would be helpful, especially in relation to the hydrophobic gate concept. Although the Magleby group concluded that the cytoplasmic mouth of the (fully open) pore has little impact on single channel conductance, that doesn't rule out that it becomes limiting in a partially open conformation. The simulation in Figure 3A shows an initial hydration of the pore with ~15 waters with little conductance events, suggesting that hydration per se may not suffice to define a fully open state. Indeed, the authors indicate that the simulated open state (w/ ~30-40 waters) has 1/4th the simulated conductance of the open structure (w/ ~60 waters). So is it the degree of hydration that limits conductance? Or is there a threshold of hydration that permits conductance and then other factors that limit conductance until the pore widens further? Addressing these issues might also be relevant to understanding the extraordinarily large conductance of fully open BK compared to other K channels.

      We agree with the reviewer’s proposal that pore hydration seems to be a major factor that can affect conductance. This is also well in-line with the previous computational study by Gu and de Groot (2023). We have now added a brief discussion on page 8, stating “Besides the limitation of the current fixed charge force fields in quantitively predicting channel conductance, we note that the molecular basis for the large conductance of BK channels is actually poorly understood (78). It is noteworthy that the pore hydration level appears to be an important factor in determining the apparent conductance in the simulation, which has also been proposed in a previous atomistic simulation study of the Aplysia BK channel (33).”

      Minor points

      (1) P5 "the fully relaxed pore profile (red trace in Figure S1d, top row) shows substantial differences compared to that of the Ca2+-free Cryo-EM structure of the full-length channel."

      For clarity, I suggest indicating which is the Ca-free profile - "... Ca2+-free Cryo-EM structure of the full-length channel (black trace)."

      We greatly appreciate the thoughtful suggestion. Revised as suggested.

      (2) P8 "Consistent with previous simulations (78-80), the conductance follows a multi-ion mechanism, where there are at least two K+ ions inside the filter"

      For clarity, I suggest indicating these are not previous simulations of BK channels (e.g., "previous simulations of other K+ channels ...").

      Author response: Revised as suggested. Thank you.

      (3) Figure 2, S1 - grey traces representing individual subunits are very difficult to see (especially if printed). I wonder if they should be made slightly darker. Similar traces in Figure 3 are easier to see.

      The traces in Figure S1 are actually the same thickness in Figure 3 and they appear lighter due to the size of the figure. Figure 2 panels a-c have been updated to improve the resolution.

      (4) Figure 2 - suggest labeling S6 as "S6 313-324" (similar to S4 notation) to indicate it is not the entire segment.

      Figure 2 panel d) has been updated as suggested.

      (5) Figure 2 legend - "Voltage activation of Core-MT BK channels. a-d)..."

      It would be easier to find details corresponding to individual panels if they were referenced individually. For example:

      "a-d) results from a 10-μs simulation under 750 mV (sim2b in Table S1). Each data point represents the average of four subunits for a given snapshot (thin grey lines), and the colored thick lines plot the running average. a) z-displacement of key side chain charged groups from initial positions. The locations of charged groups were taken as those of guanidinium CZ atoms (for Arg) and sidechain carboxyl carbons (for Asp/Glu) b) z-displacement of centers-of-mass of VSD helices from initial positions, c) backbone RMSD of the pore-lining S6 (F307-L325) to the open state, and d) tilt angles of all TM helices. Only residues 313-324 of S6 were included inthe tilt angle calculation, and the values in the open and closed Cryo-EM structures are marked using purple dashed lines. "

      We appreciate the thoughtful suggestion and have revised the caption as suggested.

      (6) Figure S1 - column labels a,b,c, and d should be referenced in the legend.

      The references to column labels have been added to Figure S1 caption.

      (7) References need to be double-checked for duplicates and formatting.

      a) I noticed several duplicate references, but did not do a complete search: Budelli et al 2013 (#68, 100), Horrigan Aldrich 2002 (#22,97), Sun Horrigan 2022 (#40, 86), Jensen et al 2012 (#56,81).

      b) Reference #38 is incorrectly cited with the first name spelled out and the last name abbreviated.

      We appreciate the careful proofreading of the reviewer. The duplicated references were introduced by mistake due to the use of multiple reference libraries. We have gone through the manuscript and removed a total of 5 duplicated references.

      Response to additional reviewer comments

      My only new comment is that the numbering of residues in Fig. S8 does not match the standard convention for hSlo and needs to be doublechecked. For the residues I checked, the numbers appear to be shifted 3 compared hSlo (e.g. Y315, P317, E318, G324 should be Y318, P320, E321, G327).

      We greatly appreciate the reviewer for catching the errors in residue labels. Figure S8 has now been updated to include correct residue labels. Thanks!

      Reviewer #2 (Recommendations for the authors):

      This manuscript has been through a previous level of review. The authors have provided their responses to the previous reviewers, which appear to be satisfactory, and I have no additional comments, beyond the caveats concerning interpretations based on the truncated channel, which are noted above.

      We greatly appreciate the constructive comments and insightful advice. Please see above response to the Reviewing Editor’s comments for response and changes regarding the caveats concerning interpretations of the current simulations.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This study provides comprehensive instructions for using the chromatophore tracking software, Chromas, to track and analyse the dynamics of large numbers of cephalopod chromatophores across various spatiotemporal scales. This software addresses a long-standing challenge faced by many researchers who study these soft-bodied creatures, known for their remarkable ability to change colour rapidly. The updated software features a user-friendly interface that can be applied to a wide range of applications, making it an essential tool for biologists focused on animal dynamic signalling. It will also be of interest to professionals in the fields of computer vision and image analysis.

      Strengths:

      This work provides detailed instructions for this toolkit along with examples for potential users to try. The Gitlab inventory hosts the software package, installation documentation, and tutorials, further helping potential users with a less steep learning curve.

      Weaknesses:

      The evidence supporting the authors' claims is solid, particularly demonstrated through the use of cuttlefish and squid. However, it may not be applicable to all coleoid cephalopods yet, such as octopuses, which have an incredibly versatile ability to change their body forms.

      The reviewer is right to highlight this limitation. We clarified, in the revised manuscript, that CHROMAS relies on the assumption that chromatophore activity occurs primarily in a plane — a condition that is valid most of the time in squid and cuttlefish, where the majority of skin deformations are in-plane (with small occasional papillae). In cephalopods such as octopuses, however, in which the skin may undergo large 3-dimensional deformations through the action of papillary musculature, this assumption may not always hold. Although octopods’ bodies are more spherical (less flat) than those of squid and cuttlefish, CHROMAS should still be usable and useful if applied to smaller skin areas, especially because chromatophore density is often even higher in octopoda than in sepiidae.

      We added the following paragraph in the discussion:

      Another known limitation concerns the biological assumptions underlying the current version of CHROMAS. The pipeline is designed for surfaces that remain reasonably planar and undergo deformations primarily in two dimensions. In cephalopods such as octopuses, in which the skin can undergo substantial three-dimensional morphological changes, analysing chromatophore dynamics may require complementary three-dimensional tracking of the skin surface to correct for out-of-plane deformations and maintain accurate measurement of chromatophore activity.

      Reviewer #2 (Public review):

      Summary:

      The authors developed a computational pipeline named CHROMAS to track and analyse chromatophore dynamics, which provides a wide range of biological analysis tools without requiring the user to write code.

      Strengths:

      (1) CHROMAS is an integrated toolbox that provides tools for different biological tasks such as: segment, classify, track and measure individual chromatophores, cluster small groups of chromatophores, analyse full-body patterns, etc.

      (2) It could be used to investigate different species. The authors have already applied it to analyse the skin of the bobtail squid Euprymna berryi and the European cuttlefish Sepia officinalis.

      (3) The tool is open-source and easy to install. The paper describes in detail the command format to complete each task and provides relevant sample figures.

      Weaknesses:

      (1) The generality and robustness of the proposed pipeline need to be verified through more experimental evaluations. For example, the implementation algorithm depends on relatively specific or obvious image features, clean backgrounds, and objects that do not move too fast.

      (2) The pipeline lacks some kind of self-correction mechanism. If at one moment there is a conflicting match with the previous frames, how does the system automatically handle it to ensure that the tracking results are accurate over a long period of time?

      We thank the reviewer for raising this important point. CHROMAS does rely on relatively clean imaging conditions for optimal performance. However, the computational features of the pipeline — segmentation, tracking, and downstream analysis — have been designed to perform reliably as long as the segmentation models are trained on frames that reflect the diversity of the dataset (e.g., variations in lighting or minor background noise). It is correct, however, that acquiring the necessary quality of input data is both important and non-trivial. The pipeline is designed to work best with high-resolution footage of chromatophores under clear imaging conditions — specifically, with minimal water surface distortion, minimal particulate matter in the water column, and stable focus.

      To mitigate issues arising from motion blur or focus loss, CHROMAS includes an automatic frame quality control step that detects and discards frames that are out of focus, including those where the animal moves too fast for reliable tracking.

      To assist future users, we have now added a section under Discussion detailing the recommended recording conditions and video characteristics for effective analysis with CHROMAS. It reads:

      Recommended Video Parameters for Optimal Use of CHROMAS

      The performance of CHROMAS depends on the quality of the input videos. Although the pipeline analyses each frame independently and has no frame rate requirement, we recommend recording at 20 frames per second at least, to capture chromatophore dynamics accurately. Sharp, in-focus frames are critical, particularly for moving subjects, where higher shutter speeds help minimize motion blur. For reliable segmentation, each chromatophore should cover at least 10 pixels across its fully expanded diameter. Higher spatial resolution, with chromatophores covering around 50 pixels in diameter, are recommended if sub-chromatophore dynamics are of interest. Recording conditions should minimize background noise, and the water column should be as clear as possible, free of particles or debris. The water surface should be kept as calm and planar as possible to avoid optical artifacts. If wide-angle lenses or other optics that may introduce distortion are used, lens correction algorithms should be applied during preprocessing to compensate for the optical distortions. For long-term tracking applications (e.g., developmental studies), frequent imaging sessions are recommended. Newly differentiated chromatophores are initially light colored (e.g., yellow) and thus visually distinct from mature chromatophores (which are dark); over days to weeks, however, the light chromatophores darken and become increasingly difficult to differentiate from older ones. Recording at appropriate and regular intervals thus helps track individual chromatophores across developmental stages and improves the reliability of long-term analyses. Following these recommendations will help segmentation, tracking, and analysis with CHROMAS.

      CHROMAS does not implement an active self-correction mechanism in the sense of real-time error recovery. Yet, several steps are in place to ensure the reliability of registration and tracking over time. During registration, a set of points is tracked across frames using optical flow. If the displacement of a point between two frames exceeds a biologically plausible threshold, that point is automatically discarded from the registration calculation to prevent error propagation. If too many points are discarded, the registration step fails, preventing the acceptance of a poor alignment.

      In addition, masterframes (the averages of all aligned frames in a chunk) are generated at the end of the registration process to enable the visual verification of the quality of the mapping.

      During stitching, CHROMAS calculates reprojection errors between chunks, providing a quantitative measure of stitching validity and allowing users to detect and correct potential mismatches.

      We have revised the Results section to explicitly highlight the error-checking mechanisms implemented during registration and stitching to maintain tracking accuracy over time.

      Reviewer #1 (Recommendations for the authors):

      (1) Figures 2, 3, 5, 6, 8 showed the bobtail squid, however, all command lines for these figures were referred to "sepia_example.dataset".

      We thank the reviewer for noticing this inconsistency. We have corrected the labeling of the dataset name in the command line examples from "sepia_example.dataset" to the neutral term "example.dataset" to avoid any confusion regarding the species used in the figures.

      (2) It's excellent that Chromas includes a manual pre-alignment function. However, it's unclear how the authors determined the registration of selected chromatophores across different ages in the long-term tracking session. Given the rapid growth of cephalopods and presumably skin expansion with increased chromatophores, it would be helpful to provide more details or examples on this process.

      The manual pre-alignment function provides an interactive interface allowing the user to select a set of matching chromatophores across frames from different developmental stages. The accuracy of this process depends on the user's ability to recognize individual chromatophores reliably over time. Critically, it is not necessary to identify all those chromatophores; a representative subset is sufficient to interpolate the spatial mapping and align the surrounding chromatophores.

      To limit the potential challenges associated with chromatophore development, frequent imaging sessions (every few days) are recommended initially. Excessive intervals between recordings can result in relative displacements among existing chromatophores and the sudden appearance of newly matured chromatophores, both of which complicate manual matching.

      It should be noted that these challenges are not limitations of the CHROMAS pipeline itself, but rather relate to experimental design choices that affect the quality and traceability of the dataset. The exact parameters (e.g., size/duration of the datasets, spatial resolution, frame rate and intervals between recording sessions) to be used must be adapted to each experimental animal, each age, and ultimately, each question.

      Recommended video acquisition parameters, including guidance on recording frequency for long-term chromatophore tracking, have been added to the Discussion section.

      Reviewer #2 (Recommendations for the authors):

      (1) More detailed information should be given, such as operating system requirements, camera frame rate requirements, target size and speed limitations, when chunking videos into usable segments, the minimum length of each segment, etc.

      CHROMAS is platform-independent and requires only a functioning Python 3.9+ environment, regardless of the operating system or OS version, as described in “Methods – Implementation details”.

      Although CHROMAS does not require specific frame rates and because it analyses each frame independently, the quality of each image—and thus of imaging parameters—is critical to enable reliable chromatophore segmentation. If an animal remains relatively calm during recording, low shutter speeds will be adequate for image sharpness. Conversely, if the animal moves frequently or rapidly, it will be preferable to use a higher frame rate and a higher shutter speed to minimize motion blur. Recording parameters should therefore be adjusted accordingly, primarily to optimize image clarity and maintain frames in sharp focus.

      The frame rate should be sufficiently high also to capture the fast dynamics of chromatophore expansions and contractions. Although the pipeline has no specific frame rate requirement, we recommend image rates of at least 20 frames per second to sample the temporal patterns of chromatophore activity adequately, based on biological considerations.

      Each chromatophore should be represented by a sufficiently large number of pixels in each recorded image to enable the reliable estimation of its size, shape, and dynamics. If the spatial resolution is too low, individual chromatophores may appear as small pixel clusters, reducing the accuracy of area and shape measurements and introducing quantization artifacts. Based on our experience, we recommend recording conditions that result in each chromatophore covering at least 10 pixels across its diameter when fully expanded to ensure accurate segmentation and quantitative whole-chromatophore analysis. For sub-chromatophore motion analysis, we recommend a minimum of 50 pixels across the fully expanded diameter.

      These considerations relate to optimizing biological sampling and image quality for analysis, and are not technical requirements imposed by CHROMAS itself.

      We added a Discussion section outlining the recommended recording conditions and video parameters to facilitate effective use of CHROMAS.

      (2) This pipeline does not include functionality to correct for lens distortion, which may affect the results when accurate measurement of single chromatophore morphology is required.

      We thank the reviewer for this observation. We agree that lens distortion can affect the accurate measurement of chromatophore morphology if present. However, the current datasets analysed with CHROMAS were recorded using a long macro lens with minimal distortion, and visual inspections as well as quantitative assessments of chromatophore geometry did not indicate measurable optical deformation. We acknowledge that for other imaging setups —particularly those relying on the use of wide-angle lenses— lens distortion could introduce artifacts. In such cases, we recommend applying standard lens distortion correction during preprocessing, prior to analysis with CHROMAS.

      We have also addressed this point in the newly added section under the Discussion.

      (3) How to perform expansion for single chromatophores shown in Figure 6, and how to keep the expansion area consistent?

      The graph in Figure 6 illustrates the expansion of a single chromatophore over time and was generated entirely using the "areas" command and visualization tools available within CHROMAS.

      Spatial consistency is maintained because CHROMAS, through its registration and area extraction steps, tracks the identity of each chromatophore across the video, allowing the same individual to be followed reliably over time.

      (4) Tables 1 and 2: it's better to add the units of the values in each column.<br />

      We thank the reviewer for the suggestion. We have added the appropriate units to each column in Tables 1 and 2 to improve clarity.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors aimed to enhance the effectiveness of PARP inhibitors (PARPi) in treating high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) by inhibiting PRMT1/5 enzymes. They conducted a drug screen combining PARPi with 74 epigenetic modulators to identify promising combinations.

      Zhang et al. reported that protein arginine methyltransferase (PRMT) 1/5 inhibition acts synergistically to enhance the sensitivity of Poly (ADP-ribose) polymerase inhibitors (PARPi) in high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) cells. The authors are the first to perform a drug screen by combining PARPi with 74 well-characterized epigenetic modulators that target five major classes of epigenetic enzymes. Their drug screen identified both PRMT1/5 inhibitors with high combination and clinical priority scores in PARPi treatment. Notably, PRMT1/5 inhibitors significantly enhance PARPi treatment-induced DNA damage in HR-proficient HGSOC and TNBC cells through enhanced maintenance of gene expression associated with DNA damage repair, BRCAness, and intrinsic innate immune pathways in cancer cells. Additionally, bioinformatic analysis of large-scale genomic and functional profiles from TCGA and DepMap further supports that PRMT1/5 are potential therapeutic targets in oncology, including HGSOC and TNBC. These results provide a strong rationale for the clinical application of a combination of PRMT and PARP inhibitors in patients with HR-proficient ovarian and breast cancer. Thus, this discovery has a high impact on developing novel therapeutic approaches to overcome resistance to PARPi in clinical cancer therapy. The data and presentation in this manuscript are straightforward and reliable.

      Strengths:

      (1) Innovative Approach: First to screen PARPi with a large panel of epigenetic modulators.

      (2) Significant Results: Found that PRMT1/5 inhibitors significantly boost PARPi effectiveness in HR-proficient HGSOC and TNBC cells.

      (3) Mechanistic Insights: Showed how PRMT1/5 inhibitors enhance DNA damage repair and immune pathways.

      (4) Robust Data: Supported by extensive bioinformatic analysis from large genomic databases.

      Weaknesses:

      (1) Novelty Clarification: Needs clearer comparison to existing studies showing similar effects.

      (2) Unclear Mechanisms: More investigation is needed on how MYC targets correlate with PRMT1/5.

      (3) Inconsistent Data: ERCC1 expression results varied across cell lines.

      (4) Limited Immune Study: Using immunodeficient mice does not fully explore immune responses.

      (5) Statistical Methods: Should use one-way ANOVA instead of a two-tailed Student's t-test for multiple comparisons.

      We sincerely thank Reviewer #1 for the insightful and constructive feedback, as well as for the kind acknowledgment of the significance of our work: “These results provide a strong rationale for the clinical application of a combination of PRMT and PARP inhibitors in patients with HR-proficient ovarian and breast cancer. Thus, this discovery has a high impact on developing novel therapeutic approaches to overcome resistance to PARPi in clinical cancer therapy. The data and presentation in this manuscript are straightforward and reliable.” We greatly appreciate the reviewer #1’s thoughtful comments, which have significantly improved the quality of our manuscript. In response, we conducted additional experiments and analyses, and made comprehensive revisions to the text, figures, and supplementary materials. In the “Recommendations for the authors” sections, we have provided point-by-point responses to each of the reviewer’s comments, which were immensely helpful in guiding our revisions. We believe these updates have substantially strengthened the manuscript and have fully addressed all reviewer concerns.

      Reviewer #2 (Public Review):

      Summary:

      The authors show that a combination of arginine methyltransferase inhibitors synergize with PARP inhibitors to kill ovarian and triple-negative cancer cell lines in vitro and in vivo using preclinical mouse models.

      PARP inhibitors have been the common targeted-therapy options to treat high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC). PRMTs are oncological therapeutic targets and specific inhibitors have been developed. However, due to the insufficiency of PRMTi or PARPi single treatment for HGSOC and TNBC, designing novel combinations of existing inhibitors is necessary. In previous studies, the authors and others developed an "induced PARPi sensitivity by epigenetic modulation" strategy to target resistant tumors. In this study, the authors presented a triple combination of PRMT1i, PRMT5i and PARPi that synergistically kills TNBC cells. A drug screen and RNA-seq analysis were performed to indicate cancer cell growth dependency of PRMT1 and PRMT5, and their CRISPR/Cas9 knockout sensitizes cancer cells to PARPi treatment. It was shown that the cells accumulate DNA damage and have increased caspase 3/7 activity. RNA-seq analysis identified BRCAness genes, and the authors closely studied a top hit ERCC1 as a downregulated DNA damage protein in PRMT inhibitor treatments. ERCC1 is known to be synthetic lethal with PARP inhibitors. Thus, the authors add back ERCC1 and reduce the effects of PRMT inhibitors suggesting PRMT inhibitors mediate, in part, their effect via ERCC1 downregulation. The combination therapy (PRMT/PARP) is validated in 2D cultures of cell lines (OVCAR3, 8 and MDA-MB-231) and has shown to be effective in nude mice with MDA-MB-231 xenograph models.

      Strengths and weaknesses:

      Overall, the data is well-presented. The experiments are well-performed, convincing, and have the appropriate controls (using inhibitors and genetic deletions) and statistics.

      They identify the DNA damage protein ERCC1 to be reduced in expression with PRMT inhibitors. As ERCC1 is known to be synthetic lethal with PARPi, this provides a mechanism for the synergy. They use cell lines only for their study in 2D as well as xenograph models.

      We sincerely thank Reviewer #2 for the insightful and constructive feedback, as well as for the kind acknowledgment of the significance of our work: “Overall, the data are well-presented. The experiments are well-performed, convincing, and supported by appropriate controls (using inhibitors and genetic deletions) and statistics.” We greatly appreciate the reviewer #2’s thoughtful comments, which have significantly improved the quality of our manuscript. In response, we conducted additional experiments and analyses, and made comprehensive revisions to the text, figures, and supplementary materials. In the “Recommendations for the authors” sections, we have provided point-by-point responses to each of the reviewer’s comments, which were immensely helpful in guiding our revisions. We believe these updates have substantially strengthened the manuscript and have fully addressed all reviewer concerns.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Recent studies have revealed promising synergistic effects between PRMT inhibitors and chemotherapy, as well as DDR-targeting drugs (ref. 89-92). In the discussion, the authors should highlight what is novel in this study compared to the reported studies.

      We thank the reviewer for this important comment and fully agree that prior studies have demonstrated the potential of PRMT inhibitors to enhance the efficacy of DNA damage-targeting agents and certain chemotherapies[1-4]. In response to the reviewer’s constructive suggestion, we have now revised the discussion to highlight the novel aspects of our study compared to previously reported findings. Specifically, our work presents several key advances that go beyond prior studies. Below, we would like to emphasize the novelty of our current study as follows:

      In the clinic, a strategy termed “induced PARP inhibitor (PARPi) sensitivity by epigenetic modulation” is being evaluated to sensitize homologous recombination (HR)-proficient tumors to PARPi treatments. Together with other groups, we reported that repression of BET activity significantly reduces the expression levels of essential HR genes by inhibiting their super-enhancers[5]. This preclinical discovery is now being assessed in a Phase 1b/2 clinical trial combining the BET inhibitor ZEN-3694 with the PARPi talazoparib for the treatment of patients with metastatic triple-negative breast cancer (TNBC) who do not carry germline BRCA1/2 mutations. Promising anti-tumor activity has been observed in this ongoing trial[6]. Importantly, gene expression profiles from paired tumor biopsies demonstrated robust target engagement, evidenced by repression of BRCA1 and RAD51 mRNA expression, consistent with our preclinical findings in xenograft models. Based on these encouraging results, the trial is being expanded to a Phase 2b stage to enroll additional TNBC patients. Moreover, other combination strategies[7-13] based on this “induced PARPi sensitivity by epigenetic modulation” approach have also shown promising clinical responses in both intrinsic and acquired HR-proficient settings. Notably, these clinical studies indicate that the strategy is well-tolerated, likely due to cancer cells being particularly sensitive to epigenetic repression of DNA damage response (DDR) genes, compared with normal cells.

      However, two key clinical challenges remain for broader application of this strategy in oncology: 1) which clinically actionable epigenetic drugs can produce the strongest synergistic effects with PARPi? and 2) can a BRCA-independent approach be developed? To address these questions, we performed a drug screen combining the FDA-approved PARPi olaparib with a panel of clinically relevant epigenetic drugs. This panel includes 74 well-characterized epigenetic modulators targeting five major classes of epigenetic enzymes, comprising 7 FDA-approved drugs, 14 agents in clinical trials, and 54 in preclinical development. Notably, both type I PRMT inhibitors (PRMTi) and PRMT5 inhibitors (PRMT5i) achieved high combination and clinical prioritization scores in the screen. Functional assays demonstrated that PRMT inhibition markedly enhances PARPi-induced DNA damage in HR-proficient cancer cell lines. In line with a strong positive correlation between PRMT and DDR gene expression across primary tumors, we observed that PRMT activity supports the transcription of DDR genes and maintains a BRCAness-like phenotype in cancer cells. These findings provide strong rationale for clinical development of PRMT/PARPi combinations in patients with HR-proficient ovarian or breast cancers. Mechanistic characterization from our study further supports PRMTi clinical development by elucidating mechanisms of action, identifying rational combinations, defining predictive biomarkers, and guiding dosing strategies.

      We believe our studies will be of significant interest to the cancer research community for several reasons. First, they address major clinical challenges in women’s cancers, specifically, high-grade serous ovarian cancer (HGSOC) and TNBC, both of which are aggressive malignancies with limited therapeutic options. Second, they offer a novel solution to overcome PARPi resistance. Our earlier discovery of “induced PARPi sensitivity by epigenetic modulation” has already shown promising clinical results and represents a new path to overcome both primary and acquired resistance to PARPi and platinum therapies. Third, they focus on a clinically translatable drug class. Selective and potent PRMT inhibitors have been developed by leading pharmaceutical companies, with more than ten currently in advanced clinical trials. Fourth, they support mechanism-driven combination strategies. Preclinical evaluation of PRMTi-based combinations with other therapeutic agents is urgently needed for future clinical success. Finally, our work highlights understudied but therapeutically relevant mechanisms in cancer biology. In-depth mechanistic analysis of the PRMT regulome is essential, and our studies provide important new insights into how PRMTs regulate transcription, RNA splicing, DNA damage repair, and anti-tumor immune responses in the context of HGSOC and TNBC.

      In summary, our study identifies PRMT1 and PRMT5 as key epigenetic regulators of DNA damage repair and shows that their inhibition sensitizes HR-proficient tumors to PARP inhibitors by repressing transcription and altering splicing of BRCAness genes. Distinct from prior strategies, dual inhibition of type I PRMT and PRMT5 exhibits strong synergy, allowing for lower-dose combination treatments that may reduce toxicity. Our findings also nominate ERCC1 as a potential predictive biomarker and suggest that MYC-driven tumors may be particularly responsive to this approach. Collectively, these results offer a mechanistic rationale and translational framework to broaden the clinical application of PARP inhibitors.

      (2) In Figures 3H-J, MYC targets were likely to correlate with the expression levels of PRMT1/PRMT5 in various public datasets, supporting previous reports that the Myc-PRMT loop plays critical roles during tumorigenesis (ref. 45). "Myc-targets" signatures were also the most significant signatures correlated with the expression of PRMT1 and PRMT5. The authors suggest that under MYC-hyperactivated conditions, tumors may be extremely sensitive to PRMT inhibitors or PRMTi/PARPi combination. However, the underlying mechanism remains unclear.

      We sincerely thank the reviewer for the critical and insightful comments. We fully agree that more direct evidence is needed to establish the regulatory relationship between MYC and PRMT1/5. To investigate the effect of c-Myc on PRMT1 and PRMT5 expression, we analyzed RNA-seq data from P493-6 Burkitt lymphoma cells, which harbor a tetracycline (Tet)-repressible MYC transgene. In this system, MYC expression can be suppressed to very low levels and then reactivated, enabling a gradual increase in c-Myc protein levels[14]. Upon Tet removal to induce MYC expression, we observed a robust upregulation of both PRMT1 (4.3-fold) and PRMT5 (3.6-fold) RNA levels within 24 hours, as measured by RNA-seq. These findings indicate that MYC activation can transcriptionally upregulate PRMT1 and PRMT5. To determine whether this regulation is directly driven by MYC, we further analyzed MYC ChIP-seq profiles from the same cell line following 24 hours of MYC induction. Consistently, we observed remarkably increased MYC binding at the promoter regions of both PRMT1 and PRMT5 genes. Interestingly, MYC’s regulatory influence was not limited to PRMT1 and PRMT5, we also observed transcriptional upregulation of other PRMT family members, including PRMT3, PRMT4, and PRMT6, in response to MYC activation. Together with the data presented in Figure 3H, these new results strongly suggest that MYC directly upregulates the expression of PRMT family genes by binding to their promoter regions. Consequently, increased PRMT expression may facilitate MYC’s regulation of target gene expression and splicing in cancer cells. In cancers with MYC hyperactivation, this feed-forward loop may be amplified, creating a potential therapeutic vulnerability. In response to the reviewer’s insightful suggestion, we have further explored how MYC regulates PRMT1/5 and whether this regulation modulates the efficacy of PRMT inhibitors in oncology. These unpublished observations are currently being prepared for a separate manuscript, and we have now incorporated a discussion of these unpublished findings into the revised version of this manuscript. We thank the reviewer again for the thoughtful and constructive comments regarding the MYC–PRMT regulatory axis.

      (3) In Figure 5F, ERCC1 expression was unlikely to be reduced in cells treated with GSK025, especially in OVCAR8 cells, although other cells, including TNBC cells, are dramatically changed after treatment.

      We sincerely thank the reviewer for the critical and insightful comments. We agree with the reviewer that in Figure 5F, although GSK025 treatment reduced ERCC1 expression, the loading control Tubulin also showed a notable decrease in the OVCAR8 cell line. This may be because Tubulin expression is not specifically affected by the chemical inhibitor GSK025 in this particular cell line, or it may be secondarily reduced as a consequence of PRMT inhibitor-induced cell death. As the reviewer pointed out, this phenomenon was not observed in other cell lines, suggesting that the effect on Tubulin is not specific to PRMT inhibition. To further investigate, we employed CRISPR/Cas9-mediated knockout of PRMT1 or PRMT5 in OVCAR8 cells, a more specific genetic approach to inhibit PRMT activity. In both cases, ERCC1 expression was significantly reduced, whereas Tubulin levels remained stable (Figure 5G). These results support the conclusion that PRMT1 and PRMT5 specifically regulate ERCC1 expression in OVCAR8 cells. The inconsistent effect on Tubulin is likely due to nonspecific cellular responses to chemical inhibition, which are generally more variable and less precise than those induced by genetic perturbation.

      (4) In Figure 7H-L, MDA-MB-231 cells were implanted subcutaneously in nude immunodeficient mice to confirm the synergistic therapeutic action of the PRMTi/PARPi combination in vivo. Although PRMT inhibition activates intrinsic innate immune pathways in cancer cells, suggesting that PRMTi treatments may enhance intrinsic immune reactions in tumor cells, the use of nude immune deficient mice means that changes in the tumor immune microenvironment remain unknown.

      We sincerely thank the reviewer for the critical and insightful comments. We fully agree with the reviewer that our in vivo experiments using the human cancer cell line MDA-MB-231 in immunodeficient nude mice limit our ability to assess changes in the tumor immune microenvironment. We thank the reviewer for highlighting this important limitation. While the primary goal of the current study was to investigate the therapeutic synergy between PRMT inhibition and PARP inhibition in cancer cells, we would like to take this opportunity to share additional unpublished data that further support and extend the reviewer’s point regarding the immunomodulatory effects of PRMT inhibitors. In syngeneic mouse tumor models, we have observed that the combination of PRMT inhibition and PARP inhibition leads to a more robust anti-tumor immune response compared to either treatment alone. Specifically, we found increased infiltration of CD8⁺ cytotoxic T cells within the tumor microenvironment, suggesting enhanced immune activation and tumor immunogenicity. Furthermore, we have also obtained preliminary evidence that PRMT inhibition can potentiate immune checkpoint blockade therapy. Mechanistically, this may be mediated through the activation of the STING1 pathway and the upregulation of splicing-derived neoantigens, both of which have been implicated in promoting tumor immune visibility. These findings indicate that beyond enhancing DNA damage response, PRMT inhibition may have a broader impact on tumor-immune interactions and could serve as a promising strategy to sensitize tumors to immunotherapy. A separate manuscript detailing these results is currently in preparation and will be submitted for publication as an independent research article. In light of the reviewer’s thoughtful suggestions and in consideration of feedback from Reviewer #2, who recommended removing Figure 6 from the manuscript, we have carefully reevaluated the overall organization of the manuscript. Given the scope and focus of the current work, as well as the desire to maintain a concise and coherent narrative, we decided to move the content originally presented in Figure 6 to the supplementary materials. This figure is now included as Supplementary Figure S5 in the revised version of the manuscript. We believe this change helps streamline the main text while still making the additional data available for interested readers.

      (5) In Figures 6-7, a two-tailed Student's t-test was used to determine the statistical differences among multiple comparisons, which should be performed by one-way ANOVA followed by a post hoc test.

      We thank the reviewer for this thoughtful and important comment regarding the choice of statistical method. We fully agree with the reviewer that one-way ANOVA followed by a post hoc test is one of the standard approaches for multiple group comparisons. In response to the suggestion, we have performed one-way ANOVA on our data and found that the statistical conclusions are consistent with those obtained from the two-tailed Student’s t-tests. For example, in the first panel of Figure 6A (OVCAR8 treated with GSK715), one-way ANOVA (p = 1.1 × 10<sup>-6</sup>), followed by Tukey’s HSD test, confirmed significant differences between control and Olaparib (p = 0.000165), control and GSK715 (p = 0.000145), control and combination (p = 6.067 × 10<sup>-7</sup>), Olaparib and combination (p = 0.0003523), and GSK715 and combination (p = 0.0004015), consistent with the conclusions from the two-tailed t-test shown in Figure 6H. Additionally, we would like to explain why two-tailed Student’s t-tests were used in our current study. When comparisons are predefined and conducted pairwise (i.e., two groups at a time), a two-tailed Student’s t-test is statistically equivalent to one-way ANOVA for those comparisons. In our study, each comparison involved only two groups, and we therefore chose t-tests for hypothesis-driven, specific comparisons rather than exploratory multiple testing. This approach aligns with valid statistical principles. All statistical analyses presented in Figures 6-7 were designed to evaluate specific, biologically meaningful comparisons (e.g., treatment vs. control or treatment A vs treatment B). The study was hypothesis-driven, not exploratory, and did not involve simultaneous comparisons across multiple groups. In such cases, the t-test provides a more direct and interpretable result for targeted comparisons. The use of Student’s t-tests reflects the focused nature of the analysis, where each test directly addresses a specific biological question rather than a global group comparison. We sincerely appreciate the reviewer’s thoughtful comments on the statistical methods.

      Reviewer #2 (Recommendations for the authors):

      (1) If the authors kept the tumors of various sizes in Figure 7I, it would be important to assess the protein and/or mRNA level of ERCC1 to further support their mechanism.

      We sincerely thank the reviewer for the insightful comments. We fully agree that evaluating ERCC1 expression in drug-treated tumor samples is critical to support the proposed mechanism. Due to the limited volume of tumor specimens and extensive necrosis observed after three weeks of treatment in the condition used for Figure 7I, we were unable to obtain sufficient material for expression analysis in the original cohort. To address this, we conducted an additional experiment using xenograft-bearing mice (MDA-MB-231 model), initiating treatment when tumors reached approximately 200 mm³ to ensure adequate tissue collection. We also shortened the treatment duration to 7 days to assess early molecular responses to therapy, rather than downstream effects. Consistent with our in vitro results, both GSK715 and GSK025 significantly reduced ERCC1 RNA expression (0.79 ± 0.17, p = 0.03; 0.82 ± 0.11, p = 0.02, respectively), and the combination treatment further decreased ERCC1 expression (0.49 ± 0.20, p = 0.0003), as determined by qRT-PCR. A two-tailed Student’s t-test was used for statistical analysis. In this experiment, we used the same dosing regimen as in the three-week treatment shown in Figure 7I. Importantly, the shorter treatment period and moderate tumor size at treatment initiation minimized necrosis and did not significantly affect tumor growth, allowing for reliable molecular evaluation. We sincerely thank the reviewer for highlighting this important point.

      (2) Figure 2G: please explain why two bands remain for sgPRMT1.

      We greatly appreciate the reviewer for raising this insightful and important question. As the reviewer pointed out, an additional band appeared after PRMT1 knockdown in OVCAR8 cells using two sequence-independent gRNAs. Notably, this band was not observed in MDA-MB-231 cells. The antibody used to detect PRMT1 (clone A33, #2449, Cell Signaling Technology) is widely adopted in PRMT1 research, with over 65 citations supporting its specificity. Interestingly, previous studies[15] have identified seven PRMT1 isoforms (v1–v7), generated through alternative splicing and exhibiting tissue-specific expression patterns. Of these, three isoforms are detectable using the A33 antibody. We believe the additional band observed upon sgRNA treatment likely represents a PRMT1 isoform that is normally expressed at low levels in OVCAR8 cells. Upon knockdown of the major isoforms by CRISPR/Cas9, expression of this minor isoform may have increased as part of a compensatory feedback mechanism, rendering it detectable by immunoblotting. Because PRMT1 isoform expression is largely tissue-type specific, it is not surprising that the same band was absent in MDA-MB-231 cells, which are derived from a different lineage than OVCAR8 cells. The reviewer raised an important question regarding the role of PRMT1 isoforms in regulating DNA damage response in cancer. We agree this is an intriguing direction and will investigate it further in future studies.

      (3) Figure 4D: Please correct the figure legend so the description matches the color in the figure. Red and blue are absent.

      We sincerely thank the reviewer for the critical and insightful comments. The figure legend for Figure 4D has been corrected in the revised version of the manuscript to accurately match the colors shown in the figure. We thank the reviewer for pointing out this issue.

      (4) Figure 7A and B: please indicate the cell lines used.

      We sincerely thank the reviewer for the critical and insightful comments. In Figure 7A and 7B, human embryonic kidney 293T (HEK293T) cells were used due to their high transfection efficiency and widespread application in reporter assays. This information has been incorporated into the figure legend for Figures 7A and 7B.

      (5) What is the link with ERCC1 splicing because reduced overall ERCC1 expression is clear?

      We sincerely thank the reviewer for the critical and insightful comments. As the reviewer pointed out, although the direct impact of ERCC1 alternative splicing on its protein expression remains to be fully elucidated, it is likely that PRMT inhibition induces aberrant splicing events that result in the production of alternative ERCC1 isoforms with impaired or altered function. These splicing changes may compromise ERCC1’s role in DNA repair pathways. Furthermore, as shown in Figure 4G, we observed a reduction in the total ERCC1 mRNA reads following PRMTi treatment. This decrease may be attributed, at least in part, to the instability of the alternatively spliced ERCC1 transcripts, which could be more prone to degradation. In combination with the transcriptional downregulation of ERCC1 induced by PRMT inhibition, these alternative splicing events may lead to a further reduction in functional ERCC1 protein levels. This dual impact on ERCC1 expression, through both decreased transcription and the generation of unstable or non-functional isoforms, likely contributes to the enhanced cellular sensitivity to PARP inhibitors observed in our study. We believe this represents an important mechanistic insight into how PRMT inhibition modulates the DNA damage response in cancer cells, and further studies are warranted to investigate the precise role of ERCC1 splicing regulation in this context. We thank the reviewer for pointing out this interesting future research direction.

      (6) Figure 7J: From the graph, it seems like Olaparib+G715 and G715+G025 have a similar effect on tumor volume (two curves overlap). Please discuss.

      We sincerely thank the reviewer for the critical and insightful comments. In the current study, the doses used for single-agent treatments were selected based on prior publications. For example, the dose of GSK715 was guided by a recent study from the GSK group[16]. Our in vitro and in vivo findings, together with previously published data, consistently demonstrate that GSK715 is more potent than both GSK025 and Olaparib. Notably, treatment with GSK715 alone led to significantly greater inhibition of tumor growth compared to either GSK025 or Olaparib administered individually. This higher potency of GSK715 also explains the comparable levels of tumor suppression observed in the combination groups, including GSK715 plus Olaparib and GSK715 plus GSK025. These results suggest that GSK715 is likely the primary driver of efficacy in the two drug combination settings. Importantly, this observation provides a valuable opportunity to further refine and optimize the dosing strategy for GSK715. Specifically, because GSK715 is highly potent, its dose may be reduced when used in combination regimens without compromising therapeutic efficacy. This approach could significantly improve the safety profile of GSK715 by minimizing potential dose-related toxicities, thereby enhancing its suitability for future clinical development in combination therapy contexts.

      (7) Discussion: "PRMT5i increased global sDMA levels"-> "... aDMA levels.".

      We sincerely thank the reviewer for the critical and insightful comments. In response, we have corrected the sentence in the discussion from “PRMT5i increased global sDMA levels, which suggested that type I PRMT and PRMT5 share a substrate (i.e., MMA) and/or their functions are compensatory” to “PRMT1i increased global sDMA levels, which suggested that type I PRMT and PRMT5 share a substrate (i.e., MMA) and/or their functions are compensatory.” We apologize for the misstatement and have corrected this error in the revised version of the manuscript.

      (8) In addition to the methods, add that nude mice were used in the body of the results and the figure legend for Figure 7J.

      We sincerely thank the reviewer for the critical and insightful comments. In the revised version of the manuscript, we have added that immunodeficient nude mice were used in both the body of the Results section and the figure legend for Figure 7J, in addition to the Methods section. We thank the reviewer for this helpful suggestion.

      (9) Figure 6 can be deleted to focus the manuscript. It does not add to the PARP inhibition story, but only suggests a link to immunotherapy where this has been reported previously PMID: 35578032 and 32641491.

      We sincerely thank the reviewer for the critical and insightful comments. Reviewer #1 also raised a related concern regarding the relevance of this section to the main focus of the manuscript. In consideration of both reviewers’ comments, we have decided to move the data previously shown in Figure 6 to the supplementary section as Supplementary Figure S5. This revision allows us to streamline the main text and maintain a clear focus on the core findings related to PARP inhibition. At the same time, we believe the immunotherapy-related observation may still be of interest to some readers. By presenting these results in the supplementary materials, we ensure that this potentially relevant link remains accessible without distracting from the primary narrative of the manuscript. We greatly appreciate the reviewers’ guidance in helping us improve the clarity and focus of our work. We thank the reviewer for the thoughtful suggestion.

      References

      (1) Dominici, C., et al. Synergistic effects of type I PRMT and PARP inhibitors against non-small cell lung cancer cells. Clin Epigenetics 13, 54 (2021).

      (2) O'Brien, S., et al. Inhibiting PRMT5 induces DNA damage and increases anti-proliferative activity of Niraparib, a PARP inhibitor, in models of breast and ovarian cancer. BMC Cancer 23, 775 (2023).

      (3) Carter, J., et al. PRMT5 Inhibitors Regulate DNA Damage Repair Pathways in Cancer Cells and Improve Response to PARP Inhibition and Chemotherapies. Cancer Res Commun 3, 2233-2243 (2023).

      (4) Li, Y., et al. PRMT blockade induces defective DNA replication stress response and synergizes with PARP inhibition. Cell Rep Med 4, 101326 (2023).

      (5) Yang, L., et al. Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Sci Transl Med 9(2017).

      (6) Aftimos, P.G., et al. A phase 1b/2 study of the BET inhibitor ZEN-3694 in combination with talazoparib for treatment of patients with TNBC without gBRCA1/2 mutations. Journal of Clinical Oncology 40, 1023-1023 (2022).

      (7) Karakashev, S., et al. BET Bromodomain Inhibition Synergizes with PARP Inhibitor in Epithelial Ovarian Cancer. Cell Rep 21, 3398-3405 (2017).

      (8) Sun, C., et al. BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. Cancer Cell 33, 401-416 e408 (2018).

      (9) Johnson, S.F., et al. CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Rep 17, 2367-2381 (2016).

      (10) Iniguez, A.B., et al. EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma. Cancer Cell 33, 202-216 e206 (2018).

      (11) Shan, W., et al. Systematic Characterization of Recurrent Genomic Alterations in Cyclin-Dependent Kinases Reveals Potential Therapeutic Strategies for Cancer Treatment. Cell Rep 32, 107884 (2020).

      (12) Muvarak, N.E., et al. Enhancing the Cytotoxic Effects of PARP Inhibitors with DNA Demethylating Agents - A Potential Therapy for Cancer. Cancer Cell 30, 637-650 (2016).

      (13) Abbotts, R., et al. DNA methyltransferase inhibitors induce a BRCAness phenotype that sensitizes NSCLC to PARP inhibitor and ionizing radiation. Proc Natl Acad Sci U S A 116, 22609-22618 (2019).

      (14) Lin, C.Y., et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56-67 (2012).

      (15) Goulet, I., Gauvin, G., Boisvenue, S. & Cote, J. Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J Biol Chem 282, 33009-33021 (2007).

      (16) Fedoriw, A., et al. Anti-tumor Activity of the Type I PRMT Inhibitor, GSK3368715, Synergizes with PRMT5 Inhibition through MTAP Loss. Cancer Cell 36, 100-114 e125 (2019).

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Chen et al. identified the role of endocardial id2b expression in cardiac contraction and valve formation through pharmaceutical, genetic, electrophysiology, calcium imaging, and echocardiography analyses. CRISPR/Cas9 generated id2b mutants demonstrated defective AV valve formation, excitation-contraction coupling, reduced endocardial cell proliferation in AV valve, retrograde blood flow, and lethal effects.

      Strengths:

      Their methods, data and analyses broadly support their claims.

      Weaknesses:

      The molecular mechanism is somewhat preliminary.

      We thank the reviewer for the positive assessment of our work. A detailed point-by-point response has been incorporated in the response to “Recommendations for the authors” section.

      Reviewer #2 (Public review):

      Summary:

      Biomechanical forces, such as blood flow, are crucial for organ formation, including heart development. This study by Shuo Chen et al. aims to understand how cardiac cells respond to these forces. They used zebrafish as a model organism due to its unique strengths, such as the ability to survive without heartbeats, and conducted transcriptomic analysis on hearts with impaired contractility. They thereby identified id2b as a gene regulated by blood flow and is crucial for proper heart development, in particular, for the regulation of myocardial contractility and valve formation. Using both in situ hybridization and transgenic fish they showed that id2b is specifically expressed in the endocardium, and its expression is affected by both pharmacological and genetic perturbations of contraction. They further generated a null mutant of id2b to show that loss of id2b results in heart malformation and early lethality in zebrafish. Atrioventricular (AV) and excitation-contraction coupling were also impaired in id2b mutants. Mechanistically, they demonstrate that Id2b interacts with the transcription factor Tcf3b to restrict its activity. When id2b is deleted, the repressor activity of Tcf3b is enhanced, leading to suppression of the expression of nrg1 (neuregulin 1), a key factor for heart development. Importantly, injecting tcf3b morpholino into id2b-/- embryos partially restores the reduced heart rate. Moreover, treatment of zebrafish embryos with the Erbb2 inhibitor AG1478 results in decreased heart rate, in line with a model in which Id2b modulates heart development via the Nrg1/Erbb2 axis. The research identifies id2b as a biomechanical signaling-sensitive gene in endocardial cells that mediates communication between the endocardium and myocardium, which is essential for heart morphogenesis and function.

      Strengths:

      The study provides novel insights into the molecular mechanisms by which biomechanical forces influence heart development and highlights the importance of id2b in this process.

      Weaknesses:

      The claims are in general well supported by experimental evidence, but the following aspects may benefit from further investigation:

      (1) In Figure 1C, the heatmap demonstrates the up-regulated and down-regulated genes upon tricane-induced cardiac arrest. Aside from the down-regulation of id2b expression, it was also evident that id2a expression was up-regulated. As a predicted paralog of id2b, it would be interesting to see whether the up-regulation of id2a in response to tricane treatment was a compensatory response to the down-regulation of id2b expression.

      We thank the reviewer for the comment. As suggested, we performed qRT-PCR analysis to assess id2a expression in tricaine-treated heart. Our results demonstrate a significant upregulation of id2a following the inhibition of cardiac contraction, suggesting a potential compensatory response to the decreased id2b. These new results have been incorporated into the revised manuscript (Figure 1D).

      (2) The study mentioned that id2b is tightly regulated by the flow-sensitive primary cilia-klf2 signaling axis; however aside from showing the reduced expression of id2b in klf2a and klf2b mutants, there was no further evidence to solidify the functional link between id2b and klf2. It would therefore be ideal, in the present study, to demonstrate how Klf2, which is a transcriptional regulator, transduces biomechanical stimuli to Id2b.

      We have examined the expression levels of id2b in both klf2a and klf2b mutants. The whole mount in situ results clearly demonstrate a decrease in id2b signal in both mutants (Figure 3E). As noted by the reviewer, klf2 is a transcriptional regulator, suggesting that the regulation of id2b may occur at the transcriptional level. However, dissecting the molecular mechanisms underlying the crosstalk between klf2 and id2b is beyond the scope of the present study.

      (3) The authors showed the physical interaction between ectopically expressed FLAG-Id2b and HA-Tcf3b in HEK293T cells. Although the constructs being expressed are of zebrafish origin, it would be nice to show in vivo that the two proteins interact.

      We thank the reviewer for this insightful comment. As suggested, we synthesized Flag-id2b and HA-tcf3b mRNA and co-injected them into 1-cell stage zebrafish embryos. We collected 100-300 embryos at 12, 24, and 48 hpf and performed western blot analysis using the same anti-HA and anti-Flag antibodies validated in HEK293 cell experiments. Despite multiple independent attempts, we were unable to detect clear bands of the tagged proteins in zebrafish embryos. We speculate that this could be due to mRNA instability, translational efficiency, or the low abundance of Id2b and Tcf3b proteins. We have acknowledged these technical limitations in the revised manuscript and clarified that the HEK293 cell data support a potential interaction between Id2b and Tcf3b, while confirming their endogenous interaction will require further investigations (Lines 295-296).

      Reviewer #3 (Public review):

      Summary:

      How mechanical forces transmitted by blood flow contribute to normal cardiac development remains incompletely understood. Using the unique advantages of the zebrafish model system, Chen et al make the fundamental discovery that endocardial expression of id2b is induced by blood flow and required for normal atrioventricular canal (AVC) valve development and myocardial contractility by regulating calcium dynamics. Mechanistically, the authors suggest that Id2b binds to Tcf3b in endocardial cells, which relieves Tcf3b-mediated transcriptional repression of Neuregulin 1 (NRG1). Nrg1 then induces expression of the L-type calcium channel component LRRC1. This study significantly advances our understanding of flow-mediated valve formation and myocardial function.

      Strengths:

      Strengths of the study are the significance of the question being addressed, use of the zebrafish model, and data quality (mostly very nice imaging). The text is also well-written and easy to understand.

      Weaknesses:

      Weaknesses include a lack of rigor for key experimental approaches, which led to skepticism surrounding the main findings. Specific issues were the use of morpholinos instead of genetic mutants for the bmp ligands, cilia gene ift88, and tcf3b, lack of an explicit model surrounding BMP versus blood flow induced endocardial id2b expression, use of bar graphs without dots, the artificial nature of assessing the physical interaction of Tcf3b and Id2b in transfected HEK293 cells, and artificial nature of examining the function of the tcf3b binding sites upstream of nrg1.

      We thank the reviewer for the positive assessment and the constructive suggestions. We have performed additional experiments and data analysis to address these issues. A detailed point-by-point response has been incorporated in the response to “Recommendations for the authors” section.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Questions/Concerns:

      (1) In the introduction, it would be beneficial to include background information on the id2b gene, what is currently known about its function in heart development/regeneration and in other animal models than just the zebrafish.

      We thank the reviewer for the constructive suggestion. In the revised manuscript, we have added a paragraph in the Introduction to provide background on id2b and its role in heart development. Specifically, we discuss its function as a member of the ID (inhibitor of DNA binding) family of helix-loop-helix (HLH) transcriptional regulators and highlight its involvement in cardiogenesis in both zebrafish and mouse models. These additions help place our findings in a broader developmental and evolutionary context (Lines 91-100).

      (2) Of the 6 differentially expressed genes identified in Figure 1C, why did the authors choose to focus on id2b and not the other 5 downregulated genes?

      We thank the reviewer for the comments. As suggested, we have added a sentence in the revised manuscript to clarify the rationale for selecting id2b as the focus of the present study (Lines 117-121).

      (3) As the authors showed representative in situ images for id2b expression with blebbistatin treatment in Figure 1E, and tnn2a MO in Figure 1F, it would also be beneficial to show relative mRNA expression levels for id2b in conditions of blebbistatin treatment and tnn2a MO knockdown. In Fig. 1C: id2b is downregulated with tricaine, but id2a is upregulated with tricaine. Do these genes perform similar or different functions, results of gene duplication events?

      We thank the reviewer for the thoughtful suggestion. Our in situ hybridization results demonstrate reduced id2b expression following tricaine, blebbistatin, and tnn2 morpholino treatment. To further validate these observations and enhance cellular resolution, we generated an id2b:eGFP knockin line. Analysis of this reporter line confirmed a significant reduction in id2b expression in the endocardium upon inhibition of cardiac contraction and blood flow (Figure 3A-D), supporting our in situ results. The divergent expression patterns of id2a and id2b in response to tricaine treatment likely reflect functional specification following gene duplication in zebrafish. While our current study focuses on characterizing the role of id2b in zebrafish heart development, the specific function of id2a remains to be determined. 

      (4) In Fig. 2b, could the authors compare the id2b fluorescence with RNAscope ISH at 24, 48, and 72 hpf? RNAscope ISH allows for the visualization of single RNA molecules in individual cells. The authors should at least compare these in the heart to demonstrate that id2b accurately reflects the endogenous id2b expression. In Fig. 2E: Suggest showing the individual fluorescent images for id2b:eGFP and kdrl:mCherry in the same colors as top panel images instead of in black and white. In Fig. 2F: The GFP fluorescence from id2b:eGFP signals looks overexposed.

      We thank the reviewer for the valuable comment. In response, we attempted RNAscope in situ hybridization on embryos carrying the id2b:eGFP reporter to directly compare fluorescent reporter expression with endogenous id2b transcripts. However, we encountered a significant reduction in id2b:eGFP fluorescence following the RNAscope procedure, and even subsequent immunostaining with anti-GFP antibodies yielded only weak signals. Despite this technical limitation, the RNAscope results independently confirmed id2b expression in endocardial cells (Figure 2E), supporting the specificity and cell-type localization observed with the reporter line. As suggested by the reviewer, we have updated Figure 2G to display id2b:eGFP and kdrl:mCherry images in the same color scheme as the top panel to improve consistency and clarity. Additionally, we have replaced the images in Figure 2F to avoid overexposure and better represent the spatial distribution of id2b:eGFP in adult heart.

      (5) In Fig. 3A: are all the images in panel A taken with the same magnification? In Fig. 3e, could the authors show the localization of klf2 and id2b and confirm their expression in the same endocardial cells? In Fig. 3, the authors conclude that klf2-mediated biomechanical signaling is essential for activating id2b expression. This statement is somewhat overstated because they only demonstrated that knockout of klf2 reduced id2b expression.

      We thank the reviewer for these constructive comments. All images presented in Figure 3A were captured using the same magnification, as now clarified in the revised figure legend. We appreciate the reviewer’s question regarding the localization of klf2 and id2b. While we were unable to directly visualize both markers in the same embryos due to the current unavailability of klf2 reporter lines, prior studies using klf2a:H2B-eGFP transgenic zebrafish have demonstrated that klf2a is broadly expressed in endocardial cells, with enhanced expression in the atrioventricular canal region (Heckel et al., Curr Bio 2015, PMID: 25959969; Gálvez-Santisteban et al., Elife 2019, PMID: 31237233). Our id2b:eGFP reporter analysis revealed a similarly broad endocardial expression pattern. These independent observations support the likelihood that klf2a and id2b are co-expressed in the same endocardial cell population.   

      We also appreciate the reviewer’s comments regarding the connection between biomechanical signaling and id2b expression. Previous studies have already established that biomechanical cues directly regulate klf2 expression in zebrafish endocardial cells (Vermot et al., Plos Biol 2009, PMID: 19924233; Heckel et al., Curr Bio 2015, PMID: 25959969). In the present study, we observed a significant reduction in id2b expression in both klf2a and klf2b mutants, suggesting that id2b acts downstream of klf2. These observations together establish the role of biomechanical cues-klf2-id2b signaling axis in endocardial cells. Nevertheless, we agree with the reviewer that further investigation is required to elucidate the precise mechanism by which klf2 regulates id2b expression.

      (6) In Fig. 4: What's the mRNA expression for id2b in WT and id2b mutant fish hearts?

      We performed qRT-PCR analysis on purified zebrafish hearts and observed a significant reduction in id2b mRNA levels in id2b mutants compared to wild-type controls. These new results have been incorporated into the revised manuscript (Figure 4A).

      (7) In Fig. 5E, the heart rate shows no difference between id2b+/+ and id2b-/- fish according to echocardiography analysis. However, Fig. 5B indicates a difference in heart rate. Could the authors explain this discrepancy?

      We thank the reviewer for this insightful observation. In our study, we observed a reduction in heart rate in id2b mutants during embryonic stages (120 hpf), as shown in Figure 5B. However, this difference was not evident in adult fish based on echocardiography analysis (Figure 5E). While the exact reason for these changes during development remains unclear, it is possible that the reduction in cardiac output observed in id2b mutants during early development triggers compensatory mechanisms over time, ultimately restoring heart rate in adulthood. Given that heart rate is primarily regulated by pacemaker activity, further investigation will be required to determine whether such compensatory adaptations occur and to elucidate the underlying mechanisms.

      (8) In Fig. 6A: it's a little hard to read the gene names in the left most image in the panel. In Fig. 6B, the authors conducted qRT-PCR analysis of 72 hpf embryonic hearts and validated decreased nrg1 levels in id2b-/- compared to control. Since nrg1 is not specifically expressed in endocardial cells in the developing heart, the authors should isolate endocardial cells and compare nrg1 expression in id2b-/- to control. This would ensure that the loss of id2b affects nrg1 expression derived from endocardial cells rather than other cell types. In Supp Figure S6: Suggest adding an image of the UMAP projection to show tcf3b expression in endocardial cells from sequencing analysis.

      We thank the reviewer for these helpful suggestions. In response, we have increased the font size of gene names in the leftmost panel of Figure 6A to improve readability. Regarding nrg1 expression, we acknowledge the importance of assessing its cell-type specificity. Unfortunately, due to the lack of reliable transgenic or knock-in tools for nrg1, its precise expression pattern in embryonic hearts remains unclear. We attempted to isolate endocardial cells from embryonic hearts using FACS, but the limited number of cells obtained at this stage precluded reliable qRT-PCR analysis. Nonetheless, our data show that id2b is specifically expressed in endocardial cells, and publicly available single-cell RNA-seq datasets also support that nrg1 is predominantly expressed in endocardial, but not myocardial or epicardial cells during embryonic heart development (Figure 6-figure supplement 1). These findings suggest that id2b may regulate nrg1 expression in a cell-autonomous manner within the endocardium. As suggested, we have also added a UMAP image to Figure 7-figure supplement 1 to show tcf3b expression in endocardial cells, further supporting the cell identity in single-cell dataset.

      (9) In Fig. 6, Nrg1 knockout shows no gross morphological defects and normal trabeculation in larvae. Could the authors explain why they propose that endocardial id2b promotes nrg1 synthesis, thereby enhancing cardiomyocyte contractile function? Did Nrg1 knockdown with Mo lead to compromised calcium signaling and cardiac contractile function? Nrg2a has been reported to be expressed in endocardial cells in larvae, and its loss leads to heart function defects. Perhaps Nrg2a plays a more important role than Nrg1.

      We thank the reviewer for raising this important point. Although we did not directly test nrg1 knockout in our study, previous reports have shown that genetic deletion of nrg1 in zebrafish does not impair cardiac trabeculation during embryonic stages (Rasouli et al., Nat Commun 2017, PMID: 28485381; Brown et al., J Cell Mol Med 2018, PMID: 29265764). However, reduced trabecular area and signs of arrhythmia were observed in juvenile and adult fish (Brown et al., J Cell Mol Med 2018, PMID: 29265764), suggesting a potential role for nrg1 in maintaining cardiac structure and function later in development. Whether calcium signaling and cardiac contractility are affected at these stages remains to be determined. Given that morpholino-induced knockdown is limited to early embryonic stages, it is not suitable for assessing nrg1 function in juvenile or adult hearts.

      As noted by the reviewer, nrg2a is expressed in endocardial cells, and its deletion has been associated with cardiac defects (Rasouli et al., Nat Commun 2017, PMID: 28485381). To assess its potential involvement in our model, we performed qRT-PCR analysis and observed increased nrg2a expression in id2b mutant hearts (Author response image 1). This upregulation may reflect a compensatory response to the loss of id2b. Therefore, nrg2a is unlikely to play an essential role in mediating the depressed cardiac function in this context.

      Author response image 1.

      Expression levels of nrg2a. qRT-PCR analysis of nrg2a mRNA in id2b<sup>+/+</sup> and id2b<sup>-/-</sup> adult hearts. Data were normalized to the expression of actb1. N=5 biological replicates, with each sample containing two adult hearts.

      (10) In Fig. 7A of the IP experiment, it is recommended that the authors establish a negative control using control IgG corresponding to the primary antibody source. This control helps to differentiate non-specific background signal from specific antibody signal.

      As suggested, we have included an IgG control corresponding to the primary antibody species in the immunoprecipitation (IP) experiment to distinguish specific from non-specific binding. The updated data are presented in Figure 7A of the revised manuscript.

      (11) In Pg. 5, line 115: there is no reference included for previous literature on blebbistatin.

      We have added the corresponding reference (Line 126, Reference #5).

      In Pg. 5, lines 118-119; pg. 6 line 144: It would be beneficial to include a short sentence describing why choosing a tnnt2a morpholino knockdown to help provide mechanistic context to readers.

      We thank the reviewer for the constructive suggestion. In cardiomyocytes, tnnt2a encodes a sarcomeric protein essential for cardiac contraction, and its knockdown is a well-established method for abolishing heartbeat and blood flow in zebrafish embryos, thereby allowing investigation of flow-dependent gene regulation. In the revised manuscript, we have added a sentence and corresponding reference to clarify the rationale for using tnnt2a morpholino in our study (Lines 128-129, Reference #35).

      In Pg. 6, line 140: Results title of "Cardiac contraction promotes endocardial id2b expression through primary cilia but not BMP" is misleading and contradicts the results presented in this section and corresponding figure. For example, the bmp Mo knockdown experiments led to decreased id2b fluorescence and the last statement of this results section contradicts the title that BMP does not promote endocardial id2b in lines 179-180: "Collectively, these results suggest that BMP signaling and blood flow modulate id2b expression in a developmental-stage-dependent manner." It would be helpful to clarify whether BMP signaling is involved in id2b expression or not.

      We apologize for any confusion caused by the section title. Our results demonstrate that id2b expression is regulated by both BMP signaling and biomechanical forces in a developmental-stage-specific manner. Specifically, morpholino-mediated knockdown of bmp2b, bmp4, and bmp7a at the 1-cell stage significantly reduced id2b:eGFP fluorescence at 24 hpf (Figure 3-figure supplement 1A, B), suggesting that id2b is responsive to BMP signaling during early embryonic development. However, treatment with the BMP inhibitor Dorsomorphin during later stages (24-48 or 36-60 hpf) did not significantly alter id2b:eGFP fluorescence intensity in individual endocardial cells, although a modest reduction in total endocardial cell number was noted (Figure 3-figure supplement 1C, D). These results suggest that BMP signaling is required for id2b expression during early development but becomes dispensable at later stages, when biomechanical cues may play a more prominent role. To address this concern and better reflect the data, we have revised the Results section title to: "BMP signaling and cardiac contraction regulate id2b expression". This revised title more accurately reflects the dual regulation of id2b expression (Line 153).

      In line 205: Any speculation on why the hemodynamics was preserved between id2b mutant and WT siblings at 96 hpf?

      As suggested, we have included a sentence to address this observation. “Surprisingly, the pattern of hemodynamics was largely preserved in id2b<sup>-/-</sup> embryos compared to id2b<sup>+/+</sup> siblings at 96 hpf (Figure 4-figure supplement 1E, Video 1, 2), suggesting that the reduced number of endocardial cells in the AVC region was not sufficient to induce functional defects.” (Lines 223-225)

      In line 246: Fig. 6k and 6j are referenced, but should be figure 5k and 5j.

      We have corrected this in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      he manuscript was overall well explained, aside from a few minor points that would help facilitate reader comprehension:

      (1) The last paragraph of the introduction could be a brief summary of the study.

      We thank the reviewer for this constructive suggestion. As recommended, we have included a paragraph in the Introduction section summarizing our key findings to provide clearer context for the study (Lines 96-100).

      (2) Lines 127-128: 'revealed a substantial recapitulation of the... of endogenous id2b expression' may need to be rephrased.

      We thank the reviewer for the valuable suggestion. In the revised manuscript, we have changed the sentence to: “Comparison of id2b:eGFP fluorescence with in situ hybridization at 24, 48, and 72 hpf revealed that the reporter signal closely recapitulates the endogenous id2b expression pattern.” (Lines 137-139)

      (3) Line 182: '... in a developmental-stage-dependent manner' sounds a bit ambiguous, may need to slightly elaborate/ clarify what this means.

      We thank the reviewer for the helpful comment. To improve clarity, we have revised the statement to: “Collectively, these results suggest that id2b expression is regulated by both BMP and biomechanical signaling, with the relative contribution of each pathway varying across developmental stages.” (Lines 195-197)

      Reviewer #3 (Recommendations for the authors):

      (1) The conclusion that BMP signaling prior to 24 hpf is necessary for id2b expression is not fully supported by the data. How do the authors envision pre-linear heart tube BMP signaling impacting endocardial id2b expression during later chamber stages? Id2b reporter fluorescence can be clearly visualized in the linear heart tube in panel B from Figure 1. Does id2b expression initiate prior to contraction? Can the model be refined by showing when id2b endocardial reporter fluorescence is first observed, and whether this early/pre-contractile expression is dependent on BMP signaling?

      We thank the reviewer for the important comment. As suggested, we performed morpholino-mediated knockdown of bmp2b, bmp4, and bmp7a at the 1-cell stage. Live imaging at 24 hpf showed significantly reduced id2b:eGFP fluorescence compared to controls (Figure 3-figure supplement 1A, B), suggesting that id2b is responsive to BMP signaling during early embryonic development. However, treatment with the BMP inhibitor Dorsomorphin during 24-48 or 36-60 hpf did not significantly impact id2b:eGFP fluorescence intensity in individual endocardial cells, although a reduction in endocardial cell number was observed (Figure 3-figure supplement 1C, D). These results suggest that BMP signaling is essential for id2b expression during early embryonic development, while it becomes dispensable at later stages, when biomechanical cues exert a more significant role.

      (2) Overexpressing tagged versions of TCF3b and Id2b in HEK293 cells is a very artificial way to make the major claim that these two proteins interact in endogenous endocardial cells. Can this be done in zebrafish embryonic or adult hearts?

      We thank the reviewer for this insightful comment. As suggested, we synthesized Flag-id2b and HA-tcf3b mRNA and co-injected them into 1-cell stage zebrafish embryos. We collected 100-300 embryos at 12, 24, and 48 hpf and performed western blot analysis using the same anti-HA and anti-Flag antibodies validated in HEK293 cell experiments. Despite multiple independent attempts, we were unable to detect clear bands of the tagged proteins in zebrafish embryos. We speculate that this could be due to mRNA instability, translational efficiency, or the low abundance of Id2b and Tcf3b proteins. We have acknowledged these technical limitations in the revised manuscript and clarified that the HEK293 cell data support a potential interaction between Id2b and Tcf3b, while confirming their endogenous interaction will require further investigations (Lines 295-296).

      (3) The data presented are consistent with the claim that the tcf3b binding sites are functional upstream of nrg1 to repress its transcription. To fully support this idea, those two sites should be disrupted with gRNAs if possible.

      We thank the reviewer for the valuable suggestion. In response, we attempted to disrupt the tcf3b binding sites using sgRNAs. However, we encountered technical difficulties in identifying sgRNAs that specifically and efficiently target these binding sites without affecting adjacent regions. Despite these challenges, our luciferase reporter assay, using tcf3b mRNA overexpression and morpholino knockdown, clearly demonstrated that tcf3b binds to and regulates nrg1 promoter region. Nevertheless, we acknowledge that future study using genome editing will be necessary to validate the direct binding of tcf3b to nrg1 promoter.

      Minor Points:

      (1) Must remove all of the "data not shown" statements and add the primary data to the Supplemental Figures.

      As suggested, we have removed all of the “data not shown” statements and added the original data to the revised manuscript (Figure 4E, middle panels, and Figure 4-figure supplement 1F)

      (2) Must present the order of the panels in the figure as they are presented in the text. One example is Figure 6 where 6E is discussed in the text before 6C and 6D.

      We thank the reviewer for bring up this important point. In the revised manuscript, we have carefully revised the manuscript to ensure that the order of figure panels matches the sequence in which they are discussed in the text. Specifically, we have reorganized the presentation of Figure 6 panels to align with the text flow, discussing panels 6C and 6D before panel 6E. The updated figure and corresponding text have been corrected accordingly in the revised manuscript.

      (3) Change the italicized gene names (e.g. tcf3b) to non-italicized names with the first letter capitalized (e.g. Tcf3b) when referencing the protein.

      As suggested, we have revised the manuscript to use non-italicized names with the first letter capitalized when referring to proteins.

      (4) All bar graphs should be replaced with dot bar graphs.

      We have replaced all bar graphs with dot bar graphs throughout the manuscript.

      (5) The new id2b mutant allele should be validated as a true null using quantitative RT-PCR to show that the message becomes destabilized through non-sense mediated decay or by immunostaining/western blot analysis if there is a zebrafish Id2b-specific antibody available.

      We thank the reviewer for this important suggestion. We have performed qRT-PCR analysis and detected a significant reduction in id2b mRNA levels in id2b<sup>-/-</sup> compared to id2b<sup>+/+</sup> controls. These new results are presented in Figure 4A of the revised manuscript.

      (6) Was tricaine used to anesthetize embryos for capturing heart rate and percent fractional area change? This analysis should be performed with no or very limited tricaine as it affects heart rate and systolic function. These parameters were captured at 120 hpf, but the authors should also look earlier at 72 hpf at a time when valves are not present by calcium transients are necessary to support heart function.

      We thank the reviewer for this important comment. When performing live imaging to assess cardiac contractile function, we used low-dose tricaine (0.16 mg/mL) to anesthetize the zebrafish embryos. We have included this important information in the Methods section (Line 503). As suggested, we have also included the heart function results at 72 hpf, which are now presented in Figure 5-figure supplement 2A-C of the revised manuscript.

      (7) The alpha-actinin staining in Figure 5-supplement 2D is very pixelated and unconvincing. This should be repeated and imaged at a higher resolution.

      As suggested, we have re-performed the α-actinin staining and acquired higher-resolution images. The updated results are now presented in Figure 5-figure supplement 2G of the revised manuscript.

      (8) The authors claim that reductions in id2b mutant heart contractility are due to perturbed calcium transients instead of sarcomere integrity. Why do the authors think that regulation of calcium dynamics was not observed in the DEG enriched GO-terms? Was significant downregulation of cacna1 identified in the bulk RNAseq?

      We thank the reviewer for raising this important point. In our bulk RNAseq dataset comparing id2b mutant and control hearts, GO term enrichment was primarily associated with pathways related to cardiac muscle contraction and heart contraction (Figure 5-figure supplement 1B). We speculate that the transcriptional changes related to calcium dynamics may be relatively subtle and thus were not captured as significantly enriched GO terms. In addition, our qRT-PCR analysis revealed a significant reduction in cacna1c expression in id2b mutant hearts compared to controls, suggesting that id2b deletion impairs calcium channel expression. However, this change was not detected by RNA-seq, likely due to limitations in sensitivity.

      (9) In line 277, the authors say, "To determine whether this interaction occurs in zebrafish, Flag-id2b and HA-tcf3b were co-expressed in HEK293 cells...". This should be re-phrased to, "To determine if zebrafish Id2b and Tcf3b interact in vitro, Flag-id2b and HA-tcf3b were co-expressed in HEK293 cells for co-immunoprecipitation analysis." The sentence in line 275 should be changed to, "....heterodimer with Tcf3b to limit its function as a potent transcriptional repressor."

      We thank the reviewer for these constructive comments and have revised the text accordingly (Lines 291-294).

      (10) Small text corrections or ideas:

      Line 63: emphasized

      We have corrected this in the revised manuscript.

      Line 71: studied signaling pathways

      We have corrected this in the revised manuscript.

      Line 106: the top 6 DEGS (I think that the authors mean top 6 GO-terms) and is Id2b in one of the enriched GO categories?

      id2b is one of the top DEGs. This point has been clarified in the revised manuscript (Lines 116-117).

      Line 125: a knockin id2b:eGFP reporter line

      We have corrected this in the revised manuscript (Line 136).

      Line 138: This paragraph could use a conclusion sentence.

      We have added a conclusion sentence in the revised manuscript (Lines 150-151).

      Line 190: id2b-/- zebrafish experienced early lethality

      We have revised the statement as suggested (Line 206).

      Line 193: The prominent enlargement of the atrium with a smaller ventricle has characterized as cardiomyopathy in zebrafish (Weeks et al. Cardiovasc Res, 2024, PMID: 38900908), which has also been associated with disruptions in calcium transients (Kamel et al J Cardiovasc Dev Dis, 2021, PMID: 33924051 and Kamel et al, Nat Commun 2021, PMID: 34887420). This information should be included in the text along with these references.

      We thank the reviewer for this helpful suggestion. We have incorporated these important references into the revised manuscript and included the relevant information to acknowledge the established link between atrial enlargement, cardiomyopathy, and disrupted calcium transients in zebrafish models (Reference #41, 42, and 45; Lines 210 and 260).

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study uses a cell-based computational model to simulate and study T cell development in the thymus. They initially applied this model to assess the effect of the thymic epithelial cells (TECs) network on thymocyte proliferation and demonstrated that increasing TEC size, density, or protrusions increased the number of thymocytes. They postulated and confirmed that this was due to changes in IL7 signalling and then expanded this work to encompass various environmental and cell-based parameters, including Notch signalling, cell cycle duration, and cell motility. Critical outcomes from the computational model were tested in vivo using medaka fish, such as the role of IL-7 signalling and minimal effect of Notch signalling.

      Strengths:

      The strength of the paper is the use of computational modelling to obtain unique insights into the niche parameters that control T cell development, such as the role of TEC architecture, while anchoring those findings with in vivo experiments. I can't comment on the model itself, as I am not an expert in modelling, however, the conclusions of the paper seem to be wellsupported by the model.

      Weaknesses:

      One potential issue is that many of the conclusions are drawn from the number of thymocytes, or related parameters such as the thymic size or proliferation of the thymocytes. The study only touches briefly on the influence of the thymic niche on other aspects of thymocyte behaviour, such as their differentiation and death.

      We thank the reviewer for this constructive feedback. Indeed, the strength of our approach lies in the close cooperation between modellers and experimentalists. One advantage of the model is its ability to manipulate challenging or even impossible variables, such as TEC dimensions, which cannot be varied experimentally with current tools. 

      The reviewer rightly pointed out that our validation focuses on comparing cell numbers or organ size as a proxy for cell numbers.

      In our previous study (Aghaallaei et al., Science Advances, 2021), we focused more on differentiation and used the computational model to predict how proportions of T-cell sublineages would vary according to different parameter values, including the IL-7 availability. One of the initial inspirations for the focus on proliferation in this manuscript was the observation in this previous work that overexpression of IL-7 in the niche resulted in overproliferation. We also focused on proliferation and organ size because these are more easily measured in experimental conditions with the tools that we have available in medaka, allowing better comparisons to the computational results.

      Regarding cell death, our experimental observations do not suggest that it plays a role before the final stages of T cell maturation. Hence, the model also does not include apoptosis before this stage either. 

      However, we do agree that taking a closer look at the regulation of differentiation and cell death would be an exciting avenue for future study!

      Please see our response to author recommendations below for more information on these points. Moreover, to make the model more accessible to non-experts, we have created new schematic figures, which we can be found in the Appendix of the revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      The authors have worked up a ``virtual thymus' using EPISIM, which has already been published. Attractive features of the computational model are stochasticity, cell-to-cell variability, and spatial heterogeneity. They seek to explore the role of TECs, that release IL-7 which is important in the process of thymocyte division.

      In the model, ordinary clones have IL7R levels chosen from a distribution, while `lesioned' clones have an IL7R value set to the maximum. The observation is that the lesioned clones are larger families, but the difference is not dramatic. This might be called a cell-intrinsic mechanism. One promising cell-extrinsic mechanism is mentioned: if a lesioned clone happens to be near a source of IL-7 and begins to proliferate, the progeny can crowd out cells of other clones and monopolise the IL-7 source. The effect will be more noticeable if sources are rare, so is seen when the TEC network is sparse.

      Strengths:

      Thymic disfunctions are of interest, not least because of T-ALL. New cells are added, one at a time, to simulate the conveyor belt of thymocytes on a background of stationary cells. They are thus able to follow cell lineages, which is interesting because one progenitor can give rise to many progeny.

      There are some experimental results in Figures 4,5 and 6. For example, il7 crispant embryos have fewer thymocytes and smaller thymii; but increasing IL-7 availability produces large thymii.

      Weaknesses:

      On the negative side, like most agent-based models, there are dozens of parameters and assumptions whose values and validity are hard to ascertain.

      The stated aim is to mimic a 2.5-to-11 day-old medaka thymus, but the constructed model is a geometrical subset that holds about 100 cells at a time in a steady state. The manuscript contains very many figures and lengthy descriptions of simulations run with different parameters values and assumptions. The abstract and conclusion did not help me understand what exactly has been done and learned. No attempt to synthesise observations in any mathematical formula is made.

      The reviewer raises several important points to consider when working with mathematical or computational models.

      As in many other agent-based models, we agree that our model makes use of many parameters. Many of these parameters summarize multiple steps and are treated as phenomenological, i.e. they do not represent a microscopic event such as the rate of an individual chemical reaction, but more high-level processes such as "rate of differentiation". Realistically, this process should consist of cascades of pathway components that regulate transcription factors.

      In the supplementary material of our previous work (Aghaallaei et al., Science Advances, 2021) we provided an in-depth explanation of the mathematical formulation and rationale behind our choices in relation to the available biological data to select assumptions and restrict parameter value ranges. Four parameters that could not be characterized with pre-existing data, but which were crucial to the model's predictions, were studied in detail in that publication. Hence, the submitted manuscript starts with a well-calibrated model that has been tailored for the medaka thymus. The submitted manuscript explores the robustness of the system to lesions,  which we conceptualize as alterations in parameter values. We were surprised by how well the model recapitulated the time scales of overproliferation in the thymus of medaka embryos, which further supports the notion that our previous model calibration was successful.

      Another important point raised by the reviewer is that the "validity [of parameters and assumptions is] hard to ascertain". We agree, which is precisely the reason why we aim to test the model's predictions through experimentation. Importantly, a model does not need to be perfect to be useful. For example, in the submitted manuscript we observed a discrepancy between model predictions and experimental results that led us to hypothesize negative feedback regulation from the proliferative state to differentiation. 

      Thus, a major strength of modelling approaches is that they allow to identify erroneous or missing assumptions about the structure of the regulatory interaction network and its parametrization which can advance our scientific understanding of the underlying biology. Using models as an investigative tool is fundamental to the philosophy of systems biology (Kitano, Science, 2002), and is what we strive for.

      The reviewer rightfully points out that we only represent a geometric subset of the organ. In our preliminary work, we considered representing the full three-dimensional thymus; however, we later simplified our approach, as the organ is a symmetric ellipsoid at this developmental stage. This decision vastly reduced our computational costs, enabling us to explore parameter space more effectively.

      Nevertheless, we apologize if the submitted manuscript did not sufficiently emphasize the main insights of the paper, model limitations, and model construction. In the revised manuscript, we have improved the abstract and discussion sections to explicitly highlight the main results and limitations. We have also provided further details of the model's structure and underlying logic in the appendix.

      Reviewer #3 (Public review):

      Summary:

      Tsingos et al. seek to advance beyond the current paradigm that proliferation of malignant cells in T-cell acute lymphoblastic leukemia occurs in a cell-autonomous fashion. Using a computational agent-based model and experimental validation, they show instead that cell proliferation also depends on interaction with thymic epithelial cells (TEC) in the thymic niche. One key finding is that a dense TEC network inhibits the proliferation of malignant cells and favors the proliferation of normal cells, whereas a sparse TEC network leads to rapid expansion of malignant thymocytes.

      Strengths:

      A key strength of this study is that it combines computational modeling using an agent-based model with experimental work. The original modeling and novel experimental work strengthen each other well. In the agent-based model, the authors also tested the effects of varying a few key parameters of cell proliferation.

      Weaknesses:

      A minor weakness is that the authors did not conduct a global sensitivity analysis of all parameters in their agent-based model to show that the model is robust to variation, which would demonstrate that their results would still hold under a reasonable level of variation in the model and model parameters. This is a minor point, and such a supporting study would end in an appendix or supplement.

      The reviewer highlights the lack of a global sensitivity analysis as a minor weakness. 

      In our previous work (Aghaallaei et al., Science Advances, 2021), we studied parameters sensitivity for some parameters, while in the submitted manuscript, we extended this exploration to parameters that we expected to be the most meaningful for cell proliferation.

      In the revised version of the manuscript, we have included an additional supplementary figure alongside Figure 4 to show the effect of changing parameters in "control" simulations lacking a lesioned clone. These data are also provided in the source data to Figure 4. While this does not constitute an exhaustive exploration of all parameter space, it provides a useful overview of the effect of the studied parameters on thymocyte population size in the absence of lesioned clones.

      Response to reviewer recommendations

      In the revision, we have improved the manuscript to address the reviewers’ points. The following is an overview of the changes to the manuscript:

      • We wrote an extensive Appendix to better explain the model implementation.

      • The Abstract was rewritten to improve clarity on what was done and to highlight the main findings.

      • Subheadings to paragraphs were rewritten to better emphasize the main findings.

      • Font sizes in Figure 2J and Figure 4E were increased to improve readability.

      • The spacing of graphical elements in the legend of Figure 4E was improved.

      • An error in Figure 5B was corrected (the legend labels had been accidentally swapped).

      • A new supplementary figure to Figure 4 shows the sensitivity of clone size in control simulations for a subset of the tested parameter combinations.

      • The Conclusion section was rewritten to better highlight limitations of the study and Improve the summary of the main findings. 

      • Minor wording improvements were done throughout the text to improve readability.

      In the following we respond to the reviewers’ individual recommendations.

      Reviewer #1 (Recommendations for the authors):

      I am not an expert in modelling, so I apologise if I missed these points in the manuscript. I am slightly confused about how differentiation and death are included in the model. At the beginning of the results you mention that you model a 5 um slice, is it known which stages of development occur in that section of the thymus? 

      We thank the reviewer for this question and appreciate the opportunity to clarify. Our virtual thymus is based on the medaka embryonic thymus, which we have extensively characterized using functional analyses and noninvasive in toto imaging (Bajoghli et al., Cell, 2009; Bajoghli et al., J Immunology, 2015; Aghaallaei et al., Science Advances, 2021; Aghaallaei, Eur J Immunology, 2022). These studies allowed us to map thymocyte developmental stages and migratory trajectories within the spatial context of a fully functional medaka thymus (see Figure 7 in Bajoghli et al., J Immunology, 2015).

      To simplify the biological system without compromising model fidelity, we chose to simulate a representative 5 µm slice from the ventral half of the thymus. Importantly, the medaka thymus is a symmetric organ (Bajoghli et al., J Immunology 2015), hence this slice captures all key events of T-cell development, including thymus homing, differentiation, proliferation, selection, and egress akin to our in vivo observations (see Figure 7 in Bajoghli et al., 2015 and Figure 7a in Aghaallaei et al., Science Advances, 2021).

      Furthermore, our model incorporates the spatial organization of the thymic cortex and medulla by including two types of thymic epithelial cells (TECs): cortical TECs positioned on the outer side, and medullary TECs on the inner side (see Figure Supplement 7 in Aghaallaei et al., Science Advances, 2021). Differentiation and cell death are modeled as discrete steps along the developmental trajectory, informed by our in vivo observations.

      We apologize to the reviewer if the workings of the model were not sufficiently clear in the original manuscript. To address this, and as also requested by reviewer 2, we provided an extensive Appendix in the revised version of the manuscript that also includes visual summaries of the model logic in the form of intuitive flowcharts.

      And is it known, or do you factor in, whether there are changes in the responsiveness of the thymocytes to signals, such as notch and IL7, depending on their state of differentiation?

      We have previously examined the roles of IL-7 (Aghaallaei et al., Science Advances, 2021) and Notch1 (Aghaallaei et al., Europ J Immunology, 2022) signaling in the medaka thymus. These studies demonstrated that T cell progenitors are responsive to both IL7 and Notch signaling, whereas more differentiated, non-proliferative thymocytes are unresponsive to IL-7. Our in vivo observations further suggest that mature thymocytes require Notch signaling during the thymic selection process. This appears to be a species-specific phenomenon (Aghaallaei et al., Europ J Immunology, 2022). 

      In the computational model, we include this state-specific responsiveness by incorporating a dependence on IL-7 and Notch signaling in the cellular decision to commit to the cell cycle (see Appendix Figure 6, and Appendix section X.) and in the decision of differentiating into αβ<sup>+</sup> or γδ<sup>+</sup> T cell subtypes (see Appendix Figure 5, and Appendix section IX.). Although the model still calculates pathway signaling activity for thymocytes in the differentiated stage belonging to the αβ<sup>+</sup> or γδ<sup>+</sup> subtype, this signaling activity has no downstream consequences for the cells’ behavior in the model.

      Note that in the computational model we do not incorporate feedback loops that regulate pathway activity (for example, it could be that thymocytes upregulate the IL7R receptor at some point in their differentiation trajectory – in the absence of speciesspecific knowledge of such regulatory feedbacks, we have chosen not to include any in our model).

      And you mention the stages of development are incorporated into the model but the main output that you discuss is thymocyte number or proliferation. It would be interesting to use the model to explore how parameters related to differentiation are changed by, for example, the level of IL7 signalling.

      We agree that examining how factors like IL-7 signaling influence thymocyte differentiation is a promising direction for future work. Based on our previous modelling work (Aghaallaei et al., Science Advances, 2021), we expect that increased IL7 availability or sensitivity should result in an increase of cells differentiating into the γδ<sup>+</sup> T cell subtype. As molecular tools for medaka continue to advance, we anticipate being able to refine and expand the model accordingly.

      Moreover, we see strong potential for adapting the current computational framework to model thymopoiesis in other species, such as mouse or human, where stage-specific markers are well characterized. We have now explicitly mentioned this opportunity for future development in the conclusion section of the revised manuscript (see page #26).

      It is also mentioned in the description of the model that the cells can die at the end of the development process. However, is death incorporated into the earlier stages of development? For instance, it is possible that when signals, such as a notch, are at low levels the thymocytes at certain stages of development will die.

      We thank the reviewer for this comment. In a previous study, we mapped the spatial distribution of apoptotic cells within the medaka thymus and did not observe cell death in the region where ETPs enter the cortical thymus (Bajoghli et al., J Immunology, 2015) and where Notch1 signaling becomes activated (Aghaallaei et al., Europ J Immunology, 2021). Notch mutants exhibit a markedly reduced number of thymocytes, this reduction could be attributed either to impaired thymus homing or increased cell death within the thymus. However, our unpublished data shows that the total number of apoptotic cells in Notch1b-deficient thymus is comparable to their wild-type siblings. In fact, our in vivo observations revealed that the frequency of thymus colonization by progenitors is significantly reduced in the notch1b mutant (Aghaallaei et al., J E Immunol., 2021). Based on these in vivo observations, our computational model incorporates cell death only at the end of the thymocyte developmental trajectory. The current model does not consider cell death at earlier stages. 

      Overall, the manuscript was well-written and the figures were clear and well-presented. A minor point would be that the writing in some of the figures was too small and difficult to read, such as in Figure 4. I also sometimes struggled to find the definition of the acronyms in the figures, for example in Figure 3 it would be helpful if the definitions for D, SD, and SA were given in the figure legend as well as in the figure itself.

      We thank the reviewer for the kind words. We have reworked the figures to have larger more readable font sizes and improved figure legends as suggested.

      Reviewer #2 (Recommendations for the authors):

      Suppose the computational results did throw up an important new phenomenon. How might researchers seek to replicate it? If no mathematical relations can be given, can at least the code be made publicly available?

      We apologize to the reviewer if the workings of the model were not sufficiently clear in the submitted manuscript. However, we believe there may have been a misunderstanding, and we would like to clarify that both the mathematical formulations and the code used in this study were publicly available in the scientific record at the time of submission.

      Specifically, the full source code for the virtual thymus model is hosted in a permanent Zenodo repository (accessible here: https://zenodo.org/records/11656320), which includes:

      - Model files and links to source codes for the simulation environment;

      - Pre-compiled binary versions of the simulation environment (EPISIM) for both Windows and Linux platforms;

      - Detailed documentation, including step-by-step instructions on how to install and use the provided files.

      The repository link is cited in the manuscript (see page 38) and in the section “Data and materials availability”.  

      In addition, the mathematical framework that underpins the computational model has already been published and described in detail in our previous work (Aghaallaei, et al. Science Advances, 2021). In the supplementary material of this publication, we provide extensive documentation of the model, including:

      - A 13-page textual explanation of the design rationale;

      - 44 equations describing model implementation;

      - Parameter choices, partial sensitivity analysis, additional simulations, and supporting data presented in two figures and four tables.

      Nonetheless, to improve transparency, we have added an extensive Appendix in the revised version of the manuscript that also includes visual summaries of the model logic in the form of intuitive flowcharts. We hope this clarification and the new provided appendix assures the reviewer that both reproducibility and transparency have been central to our approach. 

      What about the growth of the animal and its thymus over weeks 2-11?

      We thank the reviewer for this insightful question. Indeed, our current computational model does not incorporate thymus growth over time. We decided not to model the dynamic increase in TEC numbers or organ size over time because we wanted to maintain simplicity and computational tractability. Therefore, we assumed a steadystate thymic environment. The model is therefore limited to representing thymopoiesis under homeostatic conditions, as it appears to stabilize by day 11. This is a recognized limitation of the current model. Looking ahead, we plan to develop a more advanced computational framework that incorporates thymic growth and dynamic changes in cellular composition over time. We have now included a brief note on this limitation in the conclusion of the revised manuscript (see page #26).

    1. Author response:

      Reviewer #1 (Public review):

      The usefulness of the proposed new metric of "variant consistency" and how it can guide users in selecting demultiplexing methods seems a little unclear. It correlates with the level of ambient RNA/DNA contamination, which makes it look like a metric on data quality. However, it does depend on the exact demultiplexing method, yet it's not clear how it directly connects to the "accuracy" of each demultiplexing method, which is the most important property that users of these methods care about. Since the simulated data has ground truth of donor identities available, I would suggest using the simulated data to show whether "variant consistency" directly indicates the accuracy of each method, especially the accuracy within those "C2" reads.

      I also think the tool and analyses presented in this paper need some further clarification and documentation on the details, such as how the cell-type gene and peak probabilities are determined in the simulation, and how doublets from different cell types are handled in the simulation and analysis. A few analyses and figures also need a more detailed description of the exact methods used. 

      We thank the reviewer for their suggestions. We plan on revising the manuscript to reflect their suggestions, which will include clarification of the variant consistency metric and its relationship with demultiplexing accuracy based on the simulations and additional detail regarding ambisim’s generation of multiplexed snRNA/snATAC.

      Reviewer #2 (Public review):

      (1) Throughout the manuscript, the figure legends are difficult to understand, and this makes it difficult to interpret the graphs.

      (2) Since this is both a new tool and a benchmark, it would be worthwhile in the Discussion to comment on which demultiplexing tools one may want to choose for their dataset, especially given the warning against ensemble methods. From this extensive benchmarking, one may want to choose a tool based on the number of donors one has pooled, the modalities present, and perhaps even the ambient RNA (if it has been estimated previously).

      (3) What are the minimal computational requirements for running ambisim? What is the time cost? 

      We thank the reviewer for their suggestions. We plan on updating the manuscript to better clarify figure legends. We will also outline a set of concrete recommendations in our discussion section based on different multiplexed experimental designs. Finally, we will also include extra computational benchmarks for ambisim.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      The authors had previously found that brief social isolation could increase the activity of these neurons, and that manipulation of these neurons could alter social behavior in a social rank-dependent fashion. This manuscript explored which of the outputs were responsible for this, identifying the central nucleus of the amygdala as the key output region. The authors identified some discrete behavior changes associated with these outputs, and found that during photostimulation of these outputs, neuronal activity appeared altered in 'social response' neurons.

      Strengths:

      Rigorous analysis of the anatomy. Careful examination of the heterogenous effects on cell activity due to stimulation, linking the physiology with the behavior via photostimulation during recording in vivo.

      Weaknesses:

      (1) There are some clear imbalances in the sample size across the different regions parsed. The CeA has a larger sample size, likely in part to the previous work suggesting differential effects depending on social rank/dominance. Given the potential variance, it may be hard to draw conclusions about the impact of stimulation across different social ranks for other groups.

      While it may be difficult to draw conclusions about the impact of stimulation across different social ranks, we believe that the dominance-induced variance in our dataset reveals key insights into how social history may affect the function of these circuits. However, we do recognize that there are imbalances in sample size across the different circuits that we probed. To test whether we could detect a significant effect in our DRN<sup>DAT</sup>-CeA:ChR2 group with a sample size matched to the DRN<sup>DAT</sup>-BLP:ChR2 group (the lowest sample size of the three circuits probed), we subsampled and ran tests for statistical significance using the following MATLAB code:

      Author response image 1.

      We found that out of 1000 subsamples, we detected a statistically significant effect 40.5% of the time (Author response image 2A). This suggests that the optogenetic effect exists, though it is moderate and is variable across mice (as explained by the significant correlation between social rank and optogenetic effect).

      To test whether these inconsistent effects may be an effect of variance induced by social rank, we wrote the following MATLAB code to maintain the distribution of social rank in our subsamples:

      Author response image 2.

      P-values from subsampling analysis show a moderately reproducible social preference effect in DRN<sup>DAT</sup>-CeA:ChR2 mice, but not in DRN<sup>DAT</sup>-BNST:ChR2 mice. (A-D) Histograms showing distribution of paired t-test p-values comparing OFF and ON social preference scores (as shown in Figure 4A-I) in subsampled groups (to match the sample size of the DRN<sup>DAT</sup>-BLP:ChR2 group). (A) 14 DRN<sup>DAT</sup>-CeA:ChR2 mice were randomly subsampled, a paired t-test was performed, and the resulting p-values were binned and plotted. (B) Same as (A), but ensuring that the proportion of subordinate, intermediate, and dominant mice in the subsampled groups were the same as the original distribution. (C) Same as (A), but with DRN<sup>DAT</sup>-BNST:ChR2 mice. (D) Same as (B), but with DRN<sup>DAT</sup>-BNST:ChR2 mice.

      Author response image 3.

      We found that out of 1000 subsamples, we detected a statistically significant effect 45.5% of the time when we maintained the original distribution of social rank in DRN<sup>DAT</sup>-CeA:ChR2 mice (Author response image 2B). This suggests that reducing the sample size to N=14 reduces the statistical power and indeed can make an effect harder to reliably detect. The reviewer is correct in saying that sample imbalance may skew conclusions. However, given the rank-dependent optogenetic effect on social preference seen in DRN<sup>DAT</sup>-CeA:ChR2 mice (N=29 mice, p=0.002, Figure 4H) that is notably absent in DRN<sup>DAT</sup>-BLP:ChR2 mice (N=14 mice, p=0.806, Figure 4I), we hypothesize that we would not see a significant effect of photoactivating the DRN<sup>DAT</sup>-BLP circuit on social preference, even with a larger sample size. While we acknowledge there may be evidence that there could be an effect in the DRN<sup>DAT</sup>-BLP projection, this analysis reveals that this effect is not as robust as the effect we see in the DRN<sup>DAT</sup>-CeA projection, which is the focus of this study. An in-depth exploration of the DRN<sup>DAT</sup> projection to the BLP is certainly warranted in future studies.

      Interestingly, the same analysis approach applied to DRN<sup>DAT</sup>-BNST:ChR2 mice suggest a reliably negative result, with subsampling only resulting in a significant result 1.1% of the time (Author response image 2C) and 1.7% of the time if maintaining the original rank distribution (Author response image 2D).

      (2) It is somewhat unclear why only the 'social object ratio' was used to assess the effects versus more direct measurements of social behavior.

      We decided to use ‘social:object ratio’ as we felt that measurement more directly supported our claim of increased social preference through optogenetic manipulation; however, in our updated manuscript, we included direct measurements of social behavior in the revised manuscript (Figure 4—figure supplement 1) and have updated the legend to reflect this addition (lines 1679-1684; 1698-1708).

      (3) Somewhat related, while it is statistically significant, it is unclear if the change seen in face investigation of biologically significant, on average, it looks like a few-seconds difference and that was not modulated by social rank.

      While the effect size is relatively small (4.19 seconds, 2.32% of the session), we believe we should report any statistically significant findings we discover. However, due to the small effect size, we have de-emphasized our claims regarding this finding in the text (line 172).

      (4) There are several papers studying these neurons that have explored behaviors examined here, as well as the physiological connectivity that are not cited that would provide important context for this work. In particular, multiple groups have found a dopamine-mediated IPSP in the BNST, in contrast to this work. There are technical differences that may drive these differences, but not addressing them is a major weakness.

      In the revised text, we have cited the groups who have found different effects of dopamine-mediated effects in the ovBNST (specifically from Krawczyk et al., 2011, Maracle et al., 2018, and Yu et al., 2021) and reconciled these results with those from our study (lines 422-432).

      (5) The inclusion of some markers for receptors for some of these outputs is interesting, and the authors suggest that this may be important, but this is somewhat disconnected from the rest of the work performed.

      We agree that we cannot make any causal signaling mechanism claims with the current downstream receptor RNA expression data (and we are careful in avoiding making those claims in the text), but we include these data to offer a potential mechanism and hope that these descriptive data will be useful to the field for follow up studies.

      Reviewer #2 (Public review):<br /> Summary:

      The authors perform a series of studies to follow up on their previous work, which established a role for dorsal raphe dopamine neurons (DRN) in the regulation of social-isolation-induced rebound in mice. In the present study, Lee et. al, use a combination of modern circuit tools to investigate putatively distinct roles of DRN dopamine transporting containing (DAT) projections to the bed nucleus of the stria terminalis (BNST), central amygdala (CeA), and posterior basolateral amygdala (BLP). Notably, they reveal that optogenetic stimulation of distinct pathways confers specific behavioral states, with DRNDAT-BLP driving aversion, DRNDAT-BNST regulating non-social exploratory behavior, and DRNDAT-CeA promoting socialability. A combination of electrophysiological studies and in situ hybridization studies reveal heterogenous dopamine and neuropeptide expression and different firing properties, providing further evidence of pathway-specific neural properties. Lastly, the authors combine optogenetics and calcium imaging to resolve social encoding properties in the DRNDAT-CeA pathway, which correlates observed social behavior to socially engaged neural ensembles.

      Collectively, these studies provide an interesting way of dissecting out separable features of a complex multifaceted social-emotional state that accompanies social isolation and the perception of 'loneliness.' The main conclusions of the paper provide an important and interesting set of findings that increase our understanding of these distinct DRN projections and their role in a range of social (e.g., prosocial, dominance), non-social, and emotional behaviors. However, as noted below, the examination of these circuits within a homeostatic framework is limited given that a number of the datasets did not include an isolated condition. The DRNDAT-CeA pathway was investigated with respect to social homeostatic states in the present study for some of the datasets.

      Strengths: 

      (1) The authors perform a comprehensive and elegant dissection of the anatomical, behavioral, molecular, and physiological properties of distinct DRN projections relevant to social, non-social, and emotional behavior, to address multifaceted and complex features of social state.<br /> (2) This work builds on prior findings of isolation-induced changes in DRN neurons and provides a working framework for broader circuit elements that can be addressed across the social homeostatic state.<br /> (3) This work characterizes a broader circuit implicated in social isolation and provides a number of downstream targets to explore, setting a nice foundation for future investigation.<br /> (4) The studies account for social rank and anxiety-like behavior in several of the datasets, which are an important consideration to the interpretation of social motivation states, especially in male mice with respect to dominance behavior.

      Weaknesses:

      (1) The conceptual framework of the study is based on the premise of social isolation and perceived 'loneliness' under the framework of social homeostasis, analogous to hunger. In this framework, social isolation should provoke an aversive state and compensatory social contact behavior. In the authors' prior work, they demonstrate synaptic changes in DRN neurons and social rebound following acute social isolation. Thus, the prediction would be that downstream projections also would show state-dependent changes as a function of social housing conditions (e.g., grouped vs. isolated). In the current paper, a social isolation condition was not included for the majority of the studies conducted (e.g., Figures 1-6 do not include an isolated condition, Figures 7-8 do include an isolated condition). Thus, while Figure 1-6 adds a very interesting and compelling set of data that is of high value to the social behavior field with respect to social and emotional processing and general circuit characterization, these studies do not directly investigate the impacts of dynamic social homeostatic state. The main claim of the paper, including the title (e.g., separable DRN projections mediate facets of loneliness-like state), abstract, intro, and discussion presents the claim of this work under the framework of dynamic social homeostatic states, which should be interpreted with caution, as the majority of the work in the paper did not include a social isolation comparison.

      In previous studies, loneliness-like phenotypes have been characterized across species as having the key dimensions of an aversive state that increases prosociality[1–5].  These two features are amplified by photostimulation of DRN DA neurons, and as we show in this manuscript, are separable across different projections to each target, and our ability to distinctly mimic different aspects of the constellation of features we characterize as “loneliness.”

      However we agree with the reviewer that we do not intend to imply that the mouse currently feels lonely.  Indeed, isolating the animals would occlude our ability to see photostimulation-induced mimicry of specific features of the loneliness-like phenotype, and this is precisely why we did not isolate animals for our ChR2 gain-of-function experiments.  To address the reviewers’ concern, we will change the title of our manuscript from making a claim of “mediating” (which we agree would rely more heavily on mediating actual (ethologically-induced) loneliness rather than “mimicry” (photostimulation-induced) behaviors associated with a loneliness-like phenotype. We have changed language regarding this claim throughout our manuscript (Lines 1, 83, 285, 369).

      For the ChR2 experiments in particular, we intended the optogenetic manipulation to be a gain-of-function one to test the hypothesis that activation of these circuits is sufficient to recapitulate different facets of a loneliness-like state (i.e. prosociality, aversion, and increased exploratory behavior). As such, that is why we only included group-housed conditions for these experiments—to mimic the phenotype of social isolation without social isolation. To test the necessity of these circuits in mediating different facets of a loneliness-like state, we agree that silencing the studied projections in an isolated state is critical, which is what we show in Figure 8. We agree that the addition of an isolated condition to understand the circuit-specific impact of dynamic social homeostatic state is important (particularly through in vivo recordings of these specific circuits during relevant behaviors), and would be a great follow-up to this study.

      (2) In Figure 1, the authors confirm co-laterals in the BNST and CeA via anatomical tracing studies. The goal of the optogenetic studies is to dissociate the functional/behavioral roles of distinct projections. However, one limitation of optogenetic projection targeting is the possibility of back-propagating action potentials (stimulation of terminals in one region may back-propagate to activate cell bodies, and then afferent projections to other regions), and/or stimulation of fibers of passage. Therefore, one limitation in the dataset for the optogenetic stimulation studies is the possibility of non-specific unintended activation of projections other than those intended (e.g., DRNDAT-CeA). This can be dealt with by administering lidocaine to prevent back-propagating action potentials.

      While back-propagating action potentials are potentially confounding for the manipulation techniques presented in this paper, we do show circuit-specific optogenetic behavioral effects despite significant collateralization (specifically between DRN<sup>DAT</sup> neurons projecting to the CeA and BNST; Figure 1H), suggesting circuit-specificity. Namely, we see that stimulation of DRN<sup>DAT</sup> terminals in CeA promotes social preference (Figure 4E,K) whereas stimulation of DRN<sup>DAT</sup> terminals in BNST promotes rearing (exploratory) behavior (Figure 3G). There is a non-negligible chance that we are stimulating DRN<sup>DAT</sup> fibers of passage, which we have addressed in a caveat disclaimer included in the revised discussion (lines 345-347).

      (3) It is unclear from the test, but in the subjects' section of the methods, it appears that only male animals were included in the study, with no mention of female subjects. It should be clear to the reader that this was conducted in males only if that is the case, with consideration or discussion, about female subjects and sex as a biological variable.

      In the revised manuscript, we have included discussion about sex as a biological variable (lines 342-345).

      (4) Averaged data are generally reported throughout the study in the form of bar graphs, across most figures. Individual data points would increase the transparency of the data.

      In an effort to increase the transparency of the data, we have prepared source data for each data panel in the final version of the manuscript and will upload it to eLife.  

      REFERENCES

      (1) Cacioppo, J.T., Hughes, M.E., Waite, L.J., Hawkley, L.C., and Thisted, R.A. (2006). Loneliness as a specific risk factor for depressive symptoms: cross-sectional and longitudinal analyses. Psychol Aging 21, 140–151. https://doi.org/10.1037/0882-7974.21.1.140.

      (2) Cacioppo, S., Capitanio, J.P., and Cacioppo, J.T. (2014). Toward a Neurology of Loneliness. Psychol Bull 140, 1464–1504. https://doi.org/10.1037/a0037618.

      (3) Baumeister, R.F., and Leary, M.R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin 117, 497–529. https://doi.org/10.1037/0033-2909.117.3.497.

      (4) Niesink, R.J., and Van Ree, J.M. (1982). Short-term isolation increases social interactions of male rats: A parametric analysis. Physiology & Behavior 29, 819–825. https://doi.org/10.1016/0031-9384(82)90331-6.

      (5) Panksepp, J., and Beatty, W.W. (1980). Social deprivation and play in rats. Behavioral & Neural Biology 30, 197–206. https://doi.org/10.1016/S0163-1047(80)91077-8.

      Reviewer #3 (Public review):

      Summary:

      The authors investigated the role of dopaminergic neurons (dopamine transporter expressing, DAT) in the dorsal raphe nucleus (DRN) in regulating social and affective behavior through projections to the central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and the posterior subdivision of the basolateral amygdala. The largest effect observed was in the DRN-DAT projections to the CeA. Augmenting previously published results from this group (Matthews et al., 2016), the comprehensive behavioral analysis relative to social dominance, gene expression analysis, electrophysiological profiling, and in vivo imaging provides novel insights into how DRN-DAT projections to the CeA influence the engagement of social behavior in the contexts of group-housed and socially isolated mice.

      Strengths:

      Correlational analysis with social dominance is a nice addition to the study. The overall computational analyses performed are well-designed and rigorous.

      Weaknesses: 

      (1) Analysis of dopamine receptor expression did not include Drd3, Drd4, or Drd5 which may provide more insights into how dopamine modulates downstream targets. This is particularly relevant to the BNST projection in which the densest innervation did not robustly co-localize with the expression of either Drd1 or Drd2. It is also possible that dopamine release from DRN-DAT neurons in any or all of these structures modulates neurotransmitter release from inputs to these regions that contain D2 receptors on their terminals.

      Although we find that there is more Vipr2 and Npbwr1 expression compared to Drd1 and Drd2 expression in ovBNST, we still do find that a substantial proportion of cells in ovBNST express dopamine receptors (particularly D2 dopamine receptors, as shown in Figure 5C). In our revised manuscript, we have discussed potential functional mechanism through D3, D4, and D5 dopamine receptors, as well as pre-synaptic dopamine receptor expression (lines 459-461).

      (2) Although not the focus of this study, without pharmacological blockade of dopamine receptors, it is not possible to assess what the contribution of dopamine is to the behavioral outcomes. Given the co-release of glutamate and GABA from these neurons, it is possible that dopamine plays only a marginal role in the functional connectivity of DRN-DAT neurons.

      While we agree with the reviewer’s comments, we are careful to avoid making claims about dopamine-mediated physiological and behavioral effects of DRN<sup>DAT</sup> neurons (despite that these neurons are genetically identified through the expression of dopamine transporter [DAT]), mentioned in lines 222-228 in the text.

      (3) Photostimulation parameters used during the behavioral studies (8 pulses of light delivered at 30 Hz for several minutes) could lead to confounding results limiting data interpretation. As shown in Figure 6J, 8 pulses of light delivered at 30 Hz result in a significant attenuation of the EPSC amplitude in the BLP and CeA projection. Thus, prolonged stimulation could lead to significant synaptic rundown resulting in an overall suppression of connectivity in the later stages of the behavioral analyses.

      Despite attenuation of EPSC amplitude in BLP and CeA projections and potential synaptic rundown, we still observe significant behavioral effects through optogenetic manipulation of these circuits (increasing the likelihood of capturing a ‘true positive’ rather than a ‘false negative’ effect). In general, we attempt to reduce the duty cycle by sparingly delivering trains of optogenetic stimulation (eight 5-ms pulses every 5 seconds). Additionally, in the real time place preference task where stimulation of the DRN<sup>DAT</sup>-BLP projection significantly reduces the time spent in the “ON” chamber, stimulation is only delivered when the mouse is in the “ON” compartment of the apparatus. However, we do feel that the reviewer’s concern that EPSC attenuation and potential synaptic rundown may potentially explain the robust place avoidance effects in DRN<sup>DAT</sup>-BLP:ChR2 mice in the first half of the session (Figure 2G). Importantly, we show in our previous published work (Matthews et al., 2016, Cell; Figure 3) through fast-scan cyclic voltammetry (FSCV) that dopamine transients were consistently recorded in response to eight pulses of 30 Hz DRN<sup>TH</sup> stimulation delivered every 5 seconds in the BNST, though less consistently in the CeA.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Recommendations for the authors: 

      Reviewer #1 (Recommendations for the authors): 

      (1) The use of the term "language network" throughout is unclear. Does this refer to work by Ev Fedorenko (i.e., does it distinguish language from other cognitive and sensorimotor domains)? There does not seem to be much in the behavior presented here that aligns with an interpretation about language per se. 

      We understand the reviewer’s point according to the work by Evelina Fedorenko considering this distinction. It is important to precise that in our present study we did not refer to her work when using the term “language network”.

      (2) Fig 4A: the "B" is missing on the figure panel to denote which Broadmann areas are shown. 

      We updated the figure panel by adding the “B” for more clarity.

      Reviewer #2 (Recommendations for the authors): 

      I think it would be worth mentioning the relatively sparse coverage of the right hemisphere in your abstract. 

      We agree with this suggestion, we updated the abstract as follows :  

      “Our use of language, which is profoundly social in nature, essentially takes place in interactive contexts and is shaped by precise coordination dynamics that interlocutors must observe. Thus, language interaction is highly demanding on fast adjustment of speech production. Here, we developed a real-time coupled-oscillators virtual partner that allows - by changing the coupling strength parameters - to modulate the ability to synchronise speech with a virtual speaker. Then, we recorded the intracranial brain activity of 16 patients with drug-resistant epilepsy while they performed a verbal coordination task with the virtual partner (VP). More precisely, patients had to repeat short sentences synchronously with the VP. This synchronous speech task is efficient to highlight both the dorsal and ventral language pathways. Importantly, combining time-resolved verbal coordination and neural activity shows more spatially differentiated patterns and different types of neural sensitivity along the dorsal pathway. More precisely, high-frequency activity in left secondary auditory regions is highly sensitive to verbal coordinative dynamics, while primary regions are not. Finally, while bilateral engagement was observed in the high-frequency activity of the IFG BA44— which seems to index online coordinative adjustments that are continuously required to compensate deviation from synchronisation—interpretation of right hemisphere involvement should be approached cautiously due to relatively sparse electrode coverage. These findings illustrate the possibility and value of using a fully dynamic, adaptive and interactive language task to gather deeper understanding of the subtending neural dynamics involved in speech perception, production as well as their interaction.”

      There are a few places in your results section which haven't been updated to reflect the fact that some sections refer only to the left hemisphere e.g. 

      Page 11 line 347: "Overall, neural responses are present in all six canonical frequency bands" I think this should be "In the left hemisphere, neural responses are present...". 

      Page 12 line 355: "As expected, the whole language network is strongly involved..." I think this should be "As expected, the whole left hemisphere language network is strongly involved".  Page 17 (third paragraph of the discussion): "The observed negative correlation between verbal coordination and high-frequency activity (HFa) in STG BA22" I think this should be "in left STG BA22". 

      We thank the reviewer for highlighting these important points. The updated lines are as follows:

      Page 11 line 348: ”In the left hemisphere, neural responses are present in all six canonical frequency bands…”  

      Page 12 line 356: ”As expected, the whole left hemisphere language network is strongly involved..." Page 17 lines 502-503 : “The observed negative correlation between verbal coordination and highfrequency activity (HFa) in left STG BA22 suggests a suppression of neural responses as the degree of behavioural synchrony increases.”

    1. Author response:

      Reviewer #1:

      The only minor weakness that I found is the assumption of independence of bacterial species, which is expressed as the well-stirred approximation. One could imagine that bacterial species might cooperate, leading to non-uniform distributions that are real. How to distinguish such situations? I believe that this method can be extended to determine if this is the case or not before the application. For example, if the bacteria species are independent of each other and one can use the binomial distributions, then the Fano factor would be proportional to the overall relative fraction of bacterial species. Maybe a simple test can be added to test it before the application of REPOP. However, I believe that this is a minor issue.

      This is an interesting point raised by the reviewer.

      First, we need to clarify an important point–we do not make a well-stirred assumption. Samples can be drawn and plated from any region of space however small and that region’s population can be quantified using our method. The stirring only occurs after we collect a sample in order to dilute the contents and pour the solution homogeneously over the plate.

      As such, learning multiple independent species is possible and not impacted by the dilution (“wellstirred” assumption). In the revised manuscript we will make it clear that this assumption concerns the dilution process. Any correlation between species arises in the initial sample and should be retained in the plating. Once given the sample, the dilution itself produces independent binomial draws from that point in space from which cultures were harvested. REPOP is designed to recover the true underlying heterogeneity in species abundance (even from limited data) by leveraging a Bayesian framework that remains valid regardless of whether species are independent or correlated.

      If one applies the method for multiple species as is, REPOP can recover the marginal distribution of each species in each plate if they are selectively cultured or many species at once if the colonies are sufficiently distinct. To demonstrate this, we will add a synthetic example with two species whose populations in a sample are correlated to the manuscript.

      However, in order to learn the joint distribution and capture correlations between species within samples, the method would need to be extended. At present, in Eq. 5 we sum the likelihood over all values of n, using a data-driven cutoff (twice the na¨ıvely estimated count times the dilution factor). Extending this to multiple species adding up to (n1,n2), while retain the generality of the method, would require quadratically scaling memory with this cutoff in the population number. For this reason while we will comment on this in the next version of the manuscript, it will not be implemented as part of REPOP.

      Reviewer #2:

      A more thorough discussion of when and by how much estimated microbial population abundance distributions differ from the ground truth would be helpful in determining the best practices for applying this method. Not only would this allow researchers to understand the sampling effort necessary to achieve the results presented here, but it would also contextualize the experimental results presented in the paper. Particularly, there is a disconnect between the discussion of the large sample sizes necessary to achieve accurate multimodal distribution estimates and the small sample sizes used in both experiments.

      That is a great suggestion from the reviewer. To address it, we will expand Appendix B, which currently presents the relative error between the means for the experimental results in Fig. 3, to also include a comparable evaluation for the synthetic data example in Fig. 2.

      Specifically, for each example, we will report (1) the relative error in the estimated means (as already done for Fig. 3), and (2) the Kullback-Leibler (KL) divergence between the reconstructed and ground truth distributions. These metrics will be shown as a function of the size of the dataset, enabling a direct assessment of how the sampling effort affects the precision of the inference.

      That said, we highlight that by explicitly modeling the dilution process within a Bayesian framework, REPOP extracts the mathematically optimal amount of information from each individual sample no matter the sample size. Our strategy therefore leads to better inference with fewer measurements, which is particularly important in applications such as plate counting, where data acquisition is laborintensive.

      Reviewer #3:

      While the study is promising, there are a few areas where the paper could be strengthened to increase its impact and usability. First, the extent to which dilution and plating introduce noise is not fully explored. Could this noise significantly affect experimental conclusions? And under what conditions does it matter most? Does it depend on experimental design or specific parameter values? Clarifying this would help readers appreciate when and why REPOP should be used.

      We agree with the reviewer that this is an important point, and we will expand Appendix B to include a quantitative analysis using simulated data (Fig. 2), reporting both relative error and KL divergence as a function of dataset size. This complements our response to Reviewer #2 clarifying when REPOP offers the greatest benefit.

      In addition, we will expand the discussion on how modeling dilution noise becomes essential when learning population dynamics. In particular, we will emphasize the role of Model 3, especially relevant when working with multiple plates and approaching the asymptotic regime—an aspect that was alluded to in Fig. 3 but not fully explored.

      Second, more practical details about the tool itself would be very helpful. Simply stating that it is available on GitHub may not be enough. Readers will want to know what programming language it uses, what the input data should look like, and ideally, see a step-by-step diagram of the workflow. Packaging the tool as an easy-to-use resource, perhaps even submitting it to CRAN or including example scripts, would go a long way, especially since microbiologists tend to favor user-friendly, recipe-like solutions.

      We will update the introduction to reinforce that REPOP is written in Python(PyTorch), installable via pip, and designed for ease of use. We are also expanding the tutorials to include clearer guidance on data formatting and common workflows. Author response image 1 will be added in the revised manuscript to better illustrate the full application process.

      Author response image 1.

      Third, it would be great to see the method tested on existing datasets, such as those from Nic Vega and Jeff Gore (2017), which explore how colonization frequency impacts abundance fluctuation distributions. Even if the general conclusions remain unchanged, showing that REPOP can better match observed patterns would strengthen the paper’s real-world relevance.

      That is a great suggestion from the reviewer. We will demonstrate the application of REPOP to datasets such as that of Vega and Gore (Ref. 27 in the manuscript), as well as other publicly available datasets, in the revised version.

      Lastly, it would be helpful for the authors to briefly discuss the limitations of their method, as no approach is without its constraints. Acknowledging these would provide a more balanced and transparent perspective.

      We agree with the reviewer on that. A new subsection will explicitly address the assumptions of our method, and therefore its limitations, including assumptions about species classification, computational cost of joint inference, and dependence on accurate dilution modeling. This discussion will synthesize points raised throughout our response to all reviewers.

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the three reviewers for their insightful feedback. We look forward to addressing the raised concerns in a revised version of the manuscript. There were a few common themes among the reviews that we will briefly touch upon now, and we will provide more details in the revised manuscript. 

      First, the reviewers asked for the reasoning behind the task ratios we implemented for the different attentional width conditions. The different ratios were selected to be as similar as possible given the size and spacing of our stimuli (aside from the narrowest cue width of one bin, the ratios for the others were 0.66, .6 and .66). As Figure 1b shows, while the ratios were similar, task difficulty is not constant across cue widths: spreading attention makes the task more difficult generally. But, while the modeled width of the spatial distribution of attention changes monotonically with cue width, task difficulty does not. Furthermore, prior work has indicated that there is a relationship between task difficulty and the overall magnitude of the BOLD response, however we don’t suspect that this will influence the width of the modulation. How task difficulty influences the BOLD response is an important topic, and we hope that future work will investigate this relationship more directly.   

      Second, reviewers raised interest in the distribution of spatial attention in higher visual areas. In our study we focus only on early visual regions (V1-V3). This was primarily driven by pragmatic considerations, in that we only have retinotopic estimates for our participants in these early visual areas. Our modeling approach is dependent on having access to the population receptive field estimates for all voxels, and while the main experiment was scanned using whole brain coverage, retinotopy was measured in a separate session using a field of view only covering the occipital cortex.  

      Lastly, we appreciate the opportunity to clarify the purpose of the temporal interval analysis. The reviewer is correct in assuming we set out to test how much data is needed to recover the cortical modulation and how dynamic a signal the method can capture. This analysis does show that more data provides more reliable estimates, though the model was still able to recover the location and width of the attentional cue at shorter timescales of as few as two TRs. This has implications for future studies that may involve more dynamic tracking of the attentional field.

      Public Reviews

      Reviewer #1 (Public review): 

      The authors conducted an fMRI study to investigate the neural effects of sustaining attention to areas of different sizes. Participants were instructed to attend to alphanumeric characters arranged in a circular array. The size of attention field was manipulated in four levels, ranging from small (18 deg) to large (162 deg). They used a model-based method to visualize attentional modulation in early visual cortex V1 to V3, and found spatially congruent modulations of the BOLD response, i.e., as the attended area increased in size, the neural modulation also increased in size in the visual cortex. They suggest that this result is a neural manifestation of the zoomlens model of attention and that the model-based method can effectively reconstruct the neural modulation in the cortical space. 

      The study is well-designed with sophisticated and comprehensive data analysis. The results are robust and show strong support for a well-known model of spatial attention, the zoom-lens model. Overall, I find the results interesting and useful for the field of visual attention research. I have questions about some aspects of the results and analysis as well as the bigger picture. 

      (1) It appears that the modulation in V1 is weaker than V2 and V3 (Fig 2). In particular, the width modulation in V1 is not statistically significant (Fig 5). This result seems a bit unexpected. Given the known RF properties of neurons in these areas, in particular, smaller RF in V1, one might expect more spatially sensitive modulation in V1 than V2/V3. Some explanations and discussions would be helpful. Relatedly, one would also naturally wonder if this method can be applied to other extrastriate visual areas such as V4 and what the results look like. 

      We agree with the reviewer. It’s very interesting how the spatial resolution within different visual regions contributes to the overall modulation of the attentional field, and how this in turn would influence perception. Our data showed that fits in V1 appeared to be less precise than in V2 and V3. This can be seen in the goodness of fit of the model as well as the gain and absolute angular error estimates. The goodness of fit and gain were lowest in V1 and the absolute angular error was largest in V1 (see Figure 5). We speculate that the finer spatial granularity of V1 RFs was countered by a lower amplitude and SNR of attention-related modulation in V1, resulting in overall lower sensitivity to variation in attentional field width. Prior findings concur that the magnitude of covert spatial attention increases when moving from striate to extrastriate cortex (Bressler & Silver (2010); Buracas & Boynton (2007)). Notably, in our perception condition, V1 showed more spatially sensitive modulation (see Figure 7), consistent with the known RF properties of V1 neurons.

      Regarding the second point: unfortunately, our dataset did not allow us to explore higherorder cortical regions with the model-based approach. While the main experiment was scanned using a sequence with whole brain coverage, the pRF estimates came from a separate scanning session which only had limited occipital coverage. Our modeling approach is dependent on the polar angle estimates from this pRF session. We now explicitly state this limitation in the methods (lines 87-89):

      “In this session, the field of view was restricted to the occipital cortex to maximize SNR, thereby limiting the brain regions for which we had pRF estimates to V1, V2, and V3.”

      (2) I'm a bit confused about the angular error result. Fig 4 shows that the mean angular error is close to zero, but Fig 5 reports these values to be about 30-40 deg. Why the big discrepancy? Is it due to the latter reporting absolute errors? It seems reporting the overall bias is more useful than absolute value. 

      The reviewer’s inference here is exactly right: Figure 4 shows signed error, whereas Figure 5 shows absolute error. We show the signed error for the example participant because, (1) by presenting the full distribution of model estimates for one participant, readers have access to a more direct representation of the data, and (2) at the individual level it is possible to examine potential directional biases in the location estimates (which do not appear to be present). As we don’t suspect a consistent directional bias across the group, we believe the absolute error in location estimates is more informative in depicting the precision in location estimates using the model-based approach. In the revised manuscript, we modified Figure 5 to make the example participant’s data visually distinct for easy comparison. We have clarified this reasoning in the text (results lines 59-64):

      “The angular error distribution across blocks, separated by width condition, is shown in Figure 4 for one example participant to display block-to-block variation. The model reliably captured the location of the attentional field with low angular error and with no systematic directional bias. This result was observed across participants. We next examined the absolute angular error to assess the overall accuracy of our estimates.”

      (3) A significant effect is reported for amplitude in V3 (line 78), but the graph in Fig 5 shows hardly any difference. Please confirm the finding and also explain the directionality of the effect if there is indeed one. 

      We realize that the y-axis scale of Figure 5 was making it difficult to see that gain decreases with cue width in area V3. Instead of keeping the y-axis limits the same across visual regions, we now adapt the y-axis scale of each subplot to the range of data values:  

      We now also add the direction of the effect in the text (results lines 83-86):

      “We observed no significant relationship between gain and cue width in V1 and V2 (V1 t(7)=.54, p=.605; V2 t(7)=-2.19, p=.065), though we did find a significant effect in V3 illustrating that gain decreases with cue width (t(7)=-3.12, p=.017).”

      (4) The purpose of the temporal interval analysis is rather unclear. I assume it has to do with how much data is needed to recover the cortical modulation and hence how dynamic a signal the method can capture. While the results make sense (i.e., more data is better), there is no obvious conclusion and/or interpretation of its meaning. 

      We apologize for not making our reasoning clear. We now emphasize our reasoning in the revised manuscript (results lines 110-112). Our objective was to quantify how much data was needed to recover the dynamic signal. As expected, we found that including more data reduces noise (averaging helps), but importantly, we found that we still obtained meaningful model fits even with limited data. We believe this has important implications for future paradigms that explore more dynamic deployment of spatial attention, where one would not want to average over multiple repetitions of a condition.

      The first paragraph of the Temporal Interval Analysis section in the results now reads: 

      “In the previous analyses, we leveraged the fact that the attentional cue remained constant for 5-trial blocks (spatial profiles were computed by averaging BOLD measurements across a block of 10 TRs). We next examined the degree to which we were able to recover the attentional field on a moment-by-moment (TR-by-TR) basis. To do this, we systematically adjusted the number of TRs that contributed to the averaged spatial response profile. To maintain a constant number of observations across the temporal interval conditions, we randomly sampled a subset of TRs from each block. This allowed us to determine the amount of data needed to recover the attentional field, with a goal of examining the usability of our modeling approach in future paradigms involving more dynamic deployment of spatial attention.”

      (5) I think it would be useful for the authors to make a more explicit connection to previous studies in this literature. In particular, two studies seem particularly relevant. First, how do the present results relate to those in Muller et al (2003, reference 37), which also found a zoom-lens type of neural effects. Second, how does the present method compare with spatial encoding model in Sprague & Serences (2013, reference 56), which also reconstructs the neural modulation of spatial attention. More discussions of these studies will help put the current study in the larger context.

      We now make a more explicit connection to prior work in the discussion section (lines 34-54). 

      “We introduced a novel modeling approach that recovered the location and the size of the attentional field. Our data show that the estimated spatial spread of attentional modulation (as indicated by the recovered FWHM) consistently broadened with the cue width, replicating prior work (Müller et al., 2003; Herrmann et al., 2010). Our results go beyond prior work by linking the spatial profiles to pRF estimates, allowing us to quantify the spread of both attentional and perceptual modulation in degrees of polar angle. Interestingly, the FWHM estimates for the attentional and perceptual spatial profiles were highly similar. Additionally, for area V3 we replicate that the population response magnitude decreased with cue width (Müller et al., 2003; Feldmann-Wüstefeld and Awh, 2020). One innovation of our method is that it directly reconstructs attention-driven modulations of responses in visual cortex, setting it apart from other methods, such as inverted encoding models (e.g. Sprague & Serences, 2013). Finally, we demonstrated that our method has potential to be used in more dynamic settings, in which changes in the attentional field need to be tracked on a shorter timescale.”

      (6) Fig 4b, referenced on line 123, does not exist. 

      We have corrected the text to reference the appropriate figure (Figure 5, results line 136).

      Reviewer #2 (Public review):

      Summary: 

      The study in question utilizes functional magnetic resonance imaging (fMRI) to dynamically estimate the locus and extent of covert spatial attention from visuocortical activity. The authors aim to address an important gap in our understanding of how the size of the attentional field is represented within the visual cortex. They present a novel paradigm that allows for the estimation of the spatial tuning of the attentional field and demonstrate the ability to reliably recover both the location and width of the attentional field based on BOLD responses. 

      Strengths: 

      (1) Innovative Paradigm: The development of a new approach to estimate the spatial tuning of the attentional field is a significant strength of this study. It provides a fresh perspective on how spatial attention modulates visual perception. 

      (2) Refined fMRI Analysis: The use of fMRI to track the spatial tuning of the attentional field across different visual regions is methodologically rigorous and provides valuable insights into the neural mechanisms underlying attentional modulation. 

      (3) Clear Presentation: The manuscript is well-organized, and the results are presented clearly, which aids in the reader's comprehension of the complex data and analyses involved. 

      We thank the reviewer for summarizing the strengths in our work. 

      Weaknesses: 

      (1) Lack of Neutral Cue Condition: The study does not include a neutral cue condition where the cue width spans 360°, which could serve as a valuable baseline for assessing the BOLD response enhancements and diminishments in both attended and non-attended areas. 

      We do not think that the lack of a neutral cue condition substantially limits our ability to address the core questions of interest in the present work. We set out to estimate the locus and the spread of covert spatial attention. By definition, a neutral cue does not have a focus of attention as the whole annulus becomes task relevant. We agree with the reviewer that how spatial attention influences the magnitude of the BOLD response is still not well defined; i.e., does attending a location multiplicatively enhance responses at an attended location or does it instead act to suppress responses outside the focus of attention? A neutral cue condition would be necessary to be able to explore these types of questions. However, our findings don’t rest on any assumptions about this. Instead, we quantify the attentional modulation with a model-based approach and show that we can reliably recover its locus, and reveal a broadening in the attentional modulation with wider cues. 

      We realize that throughout the original manuscript we often used the term ‘attentional enhancement,’ which might inadvertently specify an increase with respect to a neutral condition. To be more agnostic to the directionality of the effect, we have changed this to ‘attentional modulation’ and ‘attentional gain’ throughout the manuscript. Additionally, we have added results and visualizations for the baseline parameter to all results figures (Figures 4-7) to help readers further interpret our findings.  

      (2) Clarity on Task Difficulty Ratios: The explicit reasoning for the chosen letter-to-number ratios for various cue widths is not detailed. Ensuring clarity on these ratios is crucial, as it affects the task difficulty and the comparability of behavioral performance across different cue widths. It is essential that observed differences in behavior and BOLD signals are attributable solely to changes in cue width and not confounded by variations in task difficulty.  

      The ratios were selected to be as similar as possible given the size and spacing of our stimuli (aside from the narrowest cue width of one bin, the proportions for the others were 0.67, 0.60, and 0.67). We have updated the methods section to state this explicitly (methods lines 36-38): 

      “The ratios were selected to be as similar as possible given the size and spacing of our stimuli (aside from the one-bin cue, the proportions for the other cues were 0.67, 0.60, 0.67).”

      As Figure 1b shows, task accuracy showed small and non-monotonic changes across the three larger cue widths, dissociable from the monotonic pattern seen for the modelestimated width of the attentional field. Furthermore, as prior work has indicated that there is a relationship between task difficulty and the overall magnitude of the BOLD response (e.g., Ress, Backus & Heeger, 2000), we would primarily expect effects of task difficulty on the gain or baseline rather than the width. How exactly task difficulty influences the BOLD response and whether this would, in fact, interact with the width of the attentional field is an important topic, and we hope that future work will investigate this relationship more directly.  

      We have clarified these points within the text, and now explicitly motivate future work looking at these important interactions (discussion lines 57-67):

      “The observed effects of attentional field width were unlikely to be directly attributable to variation in task difficulty. Participants' task in our study was to discriminate whether more numbers or more letters were presented within a cued region of an iso-eccentric annulus of white noise. For our different cue widths, the ratios of numbers and letters were selected to be as similar as possible given the size and spacing of our stimuli. Changes in accuracy across the three larger cue widths were small and non-monotonic, implying task difficulty was dissociable from width per se. This dissociation bolsters the interpretability of our model fits; nevertheless, future work should further investigate how task difficulty interacts with the spread of the attentional field and the amplitude of attention-related BOLD effects (cf. Ress, Backus & Heeger, 2000).”

      Reviewer #3 (Public review):

      Summary: 

      In this report, the authors tested how manipulating the contiguous set of stimuli on the screen that should be used to guide behavior - that is, the scope of visual spatial attention - impacts the magnitude and profile of well-established attentional enhancements in visual retinotopic cortex. During fMRI scanning, participants attended to a cued section of the screen for blocks of trials and performed a letter vs digit discrimination task at each attended location (and judged whether the majority of characters were letters/digits). Importantly, the visual stimulus was identical across attention conditions, so any observed response modulations are due to topdown task demands rather than visual input. The authors employ population receptive field (pRF) models, which are used to sort voxel activation with respect to the location and scope of spatial attention and fit a Gaussian-like function to the profile of attentional enhancement from each region and condition. The authors find that attending to a broader region of space expands the profile of attentional enhancement across the cortex (with a larger effect in higher visual areas), but does not strongly impact the magnitude of this enhancement, such that each attended stimulus is enhanced to a similar degree. Interestingly, these modulations, overall, mimic changes in response properties caused by changes to the stimulus itself (increase in contrast matching the attended location in the primary experiment). The finding that attentional enhancement primarily broadens, but does not substantially weaken in most regions, is an important addition to our understanding of the impact of distributed attention on neural responses, and will provide meaningful constraints to neural models of attentional enhancement. 

      Strengths: 

      (1) Well-designed manipulations (changing location and scope of spatial attention), and careful retinotopic/pRF mapping, allow for a robust assay of the spatial profile of attentional enhancement, which has not been carefully measured in previous studies.

      (2) Results are overall clear, especially concerning width of the spatial region of attentional enhancement, and lack of clear and consistent evidence for reduction in the amplitude of enhancement profile.

      (3) Model-fitting to characterize spatial scope of enhancement improves interpretability of findings.

      We thank the reviewer for highlighting the strengths of our study. 

      Weaknesses: 

      (1) Task difficulty seems to vary as a function of spatial scope of attention, with varying ratios of letters/digits across spatial scope conditions, which may complicate interpretations of neural modulation results  

      The reviewer is correct in observing that task accuracy varied across cue widths. Though we selected the task ratios to be as similar as possible given the size and spacing of our stimuli (aside from the narrowest cue width of one bin, the proportions for the others were 0.67, 0.60, and 0.67), behavioral accuracy across the three larger cue widths was not identical. Prior research has shown that there is a relationship between task difficulty and the overall magnitude of the BOLD response (e.g., Ress, Backus & Heeger, 2000). Thus, we would primarily expect effects of task difficulty on gain rather than width. How task difficulty influences the BOLD response and whether this would, in fact, interact with the width of the attentional field is an important topic, and we hope that future work will investigate this relationship more directly.  

      To clarify these points and highlight the potential for future work looking at these important interactions, we added the following text to the discussion section (discussion lines 57-67):

      “The observed effects of attentional field width were unlikely to be directly attributable to variation in task difficulty. Participants' task in our study was to discriminate whether more numbers or more letters were presented within a cued region of an iso-eccentric annulus of white noise. For our different cue widths, the ratios of numbers and letters were selected to be as similar as possible given the size and spacing of our stimuli. Changes in accuracy across the three larger cue widths were small and non-monotonic, implying task difficulty was dissociable from width per se. This dissociation bolsters the interpretability of our model fits; nevertheless, future work should further investigate how task difficulty interacts with the spread of the attentional field and the amplitude of attention-related BOLD effects (cf. Ress, Backus and Heeger, 2000).”

      (2) Some aspects of analysis/data sorting are unclear (e.g., how are voxels selected for analyses?) 

      We apologize for not describing our voxel selection in sufficient detail. Some of the questions raised in the private comments are closely related to this point, we therefore aim to clarify all concerns below:

      - Voxel selection: To select voxels that contribute to the 1D spatial profiles, we relied on the independent pRF dataset. We first defined some general requirements that needed to be met. Specifically, 1) the goodness of fit (R<sup>2</sup>) of the pRF fits needed to be greater than 10%; 2) the estimated eccentricity had to fall within [0.7 9.1] degree eccentricity (to exclude voxels in the fovea and voxels with estimated eccentricities larger than the pRF mapping stimulus); 3) the estimated size must be greater than 0.01 degree visual angle. 

      Next, we included only voxels whose pRF overlapped with the white noise annulus. Estimated eccentricity was used to select all voxels whose eccentricity estimate fell within the annulus bounds. However, here it is also important to take the size of the pRF into account. Some voxels’ estimated eccentricity might fall just outside the annulus, but will still have substantial overlap due to the size of their pRF. Therefore, we further included all voxels whose estimated pRF size resulted in overlap with the annulus. 

      This implies that some voxels with greater eccentricities and larger pRF sizes contribute to the 1D profile, which will influence the spatial specificity of the 1D profiles. However, we want to emphasize that in our view, the exact FWHM value is not so much of interest, as this will always be dependent on the voxel selection and many other data processing steps. Instead, we focus on the relative differences of the FWHM driven by the parametric attentional cue width manipulation. 

      - Data sorting and binning. The reviewer raises an important point about how the FWHM value should be interpreted considering the data processing steps. To generate the 1D spatial profile, we binned voxels based on their estimated polar angle preference into 6degree bins and applied a moving average of 18 degrees to smooth the 1D profiles. Both of these processing steps will influence the spatial specificity of the profile. The binning step facilitates recentering based on cue center and combining across trials.

      To explore the extent to which the moving average substantially impacted our results, we reran our analyses without that smoothing step. The vast majority of the results held. In V1, we found a significant effect of cue width on FWHM where the result was not significant previously (t(7)=2.52, p\=.040). Additionally, when looking at the minimum number of TRs needed to see a significant effect of cue width on FWHM, without the smoothing step in V1 it took 10 TRs (not significant at 10 TRs previously), in V2 it took 5 TRs (10 previously), and in V3 it took 3 TRs (2 previously). The other notable difference is that FWHM was generally a bit larger when the moving average smoothing was performed. We have visualized the group results for the FWHM estimates below to help with comparison. 

      Author response image 1.

      No moving average smoothing:

      Voxel selection methods have been clarified in methods section lines 132-139:

      “Within each ROI, pRF modeling results were used to constrain voxel selection used in the main experiment. We excluded voxels with a preferred eccentricity outside the bounds of the pRF stimulus (<0.7° and >9.1°), with a pRF size smaller than 0.01°, or with poor spatial selectivity as indicated by the pRF model fit (R2 < 10%). Following our 2D visualizations (see below), we further constrained voxel selection by only including voxels whose pRF overlapped with the white noise annulus. We included all voxels with an estimated eccentricity within the annulus bounds, as well as voxels with an estimated pRF size that would overlap the annulus.”

      Data binning methods have been clarified in methods section lines 154-159: 

      “Voxels with pRFs overlapping the white noise annulus were grouped into 60 bins according to their pRF polar angle estimate (6° polar angle bin width). We computed a median BOLD response within each bin. This facilitated the recentering of each profile to align all cue centers for subsequent combining across trials. To improve the signal-to-noise ratio, the resulting profile was smoothed with a moving average filter (width 18° polar angle; see Figure 2b).”

      (3) While the focus of this report is on modulations of visual cortex responses due to attention, the lack of inclusion of results from other retinotopic areas (e.g. V3AB, hV4, IPS regions like IPS0/1) is a weakness 

      We agree with the reviewer that using this approach in other retinotopic areas would be of significant interest. In this case, population receptive field mapping occurred in a separate session with a field of view only covering the occipital cortex (in contrast to the experimental session, which had whole-brain coverage). Because our modeling approach relies on these pRF estimates, we were unable to explore higher visual areas. However, we hope future work will follow up on this.

      We have added the following text to the methods section describing the pRF mapping session (lines 87-89):

      “In this session, the field of view was restricted to the occipital cortex to maximize SNR, thereby limiting the brain regions for which we had pRF estimates to V1, V2, and V3.”

      (4) Additional analyses comparing model fits across amounts of data analyzed suggest the model fitting procedure is biased, with some parameters (e.g., FWHM, error, gain) scaling with noise. 

      In this analysis, we sought to test how much data was needed to recover the attentional field, in view of the need for additional fMRI-based tools for use in tasks that involve more rapid dynamic adaptation of attention. Though we did find that more data reduced noise (and accordingly decreased absolute error and amplitude while increasing FWHM and R<sup>2</sup>), absolute angular error remained low across different temporal intervals (well below the chance level of 90°). With regard to FWHM, we believe that the more important finding is that the model-estimated FWHM was modulated by cue width at shorter timescales of as few as two TRs while maintaining relatively low angular error. We refrain from drawing conclusions here on the basis of the exact FWHM values, both because we don’t have a ground truth for the attentional field and because various processing pipeline steps can impact the values as well. Rather, we are looking at relative value and overall patterns in the estimates. The observed patterns imply that the model recovers meaningful modulation of the attentional field even at shorter time scales.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Additional data reporting and discussion of results are needed as outlined in the public review. 

      Reviewer #2 (Recommendations for the authors):

      (1) The current experimental design effectively captured the impact of varying cue widths on the BOLD response in the visual cortex. However, the inclusion of a neutral cue condition, where the cue width spans 360{degree sign} and all peripheral stimuli are attended, could serve as a valuable baseline. This would enable a quantitative assessment of how much the BOLD response is enhanced in specific spatial regions due to focused cues and, conversely, how much it is diminished in non-attended areas, along with the spatial extent of these effects. 

      Please refer to our response in the public review. 

      (2) While the study provides valuable insights into BOLD signal changes in visual areas corresponding to the focus of attention, it does not extend its analysis to the impact on regions outside the focus of attention. It would be beneficial to explore whether there is a corresponding decrease in BOLD signal in non-attended regions, and if identified, to describe the spatial extent and position of this effect relative to the attended area. Such an analysis could yield deeper insights into how attention influences activity across the visual cortex. 

      We agree with the reviewer that it is very interesting to examine the spread of attention across the whole visual field. Our experiment was designed to focus on width modulations at a fixed eccentricity, but future work should explore how the attentional field changes with eccentricity and interacts with spatial variations across the visual field. This is highlighted in our discussion section (lines 76-81): 

      “Future work can help provide a better understanding of the contribution of spatial attention by considering how the attentional field interacts with these well described spatial variations across the visual field. Measuring the full spatial distribution of the attentional field (across both eccentricity and polar angle) will shed light on how spatial attention guides perception by interacting with the non-uniformity of spatial representations.”

      The addition of figure panels for the estimated baseline parameter in Figures 4-7 provides further information about BOLD effects in unattended regions of the annulus.  

      (3) The rationale behind the selection of task difficulty ratios for different cue widths, specifically the letter-to-number ratios of 1:0, 1:2, 2:3, and 3:6 (or vice versa) for cue widths of 18{degree sign}, 54{degree sign}, 90{degree sign}, and 162{degree sign} respectively, was not explicitly discussed. It would be beneficial to clarify the basis for these ratios, as they may influence the perceived difficulty of the task and thus the comparability of behavioral performance across different cue widths. Ensuring that the task difficulty is consistent across conditions is crucial for attributing differences in behavior and BOLD signals solely to changes in cue width and not confounded by variations in task difficulty. 

      Please refer to our response in the public review. We now clarify why we selected these ratios, and acknowledge more explicitly that behavioral performance differed across width conditions. See also our reply to private comment 1 from Reviewer 3 for some additional analyses examining task related influences.

      Reviewer #3 (Recommendations for the authors):

      (1) Task difficulty: the task seems exceptionally challenging. Stimuli are presented at a relativelyeccentric position for a very brief duration, and a large number of comparisons must be made across a broad region of space. This is reflected in the behavioral performance, which decreases rapidly as the scope of attention increases (Fig. 1). Because trials are blocked, does this change in task difficulty across conditions impact the degree to which neural responses are modulated? How should we consider differences in task difficulty in interpreting the conclusions (especially with respect to the amplitude parameter)? Also, note that the difficulty scales both with number of stimuli - as more need to be compared - but also with the ratio, which differs nonmonotonically across task conditions. One way to dissociate these might be RT: for 54/162, which both employ the same ratio of letter/digits and have similar accuracy, is RT longer for 162, which requires attending more stimuli? 

      In addition to our comments in response to the public review, we emphasize that the reviewer makes an important point that there are differences in task difficulty, though the ratios are as close as they can be given the size and spacing of our stimuli. Behavioral performance varied non-monotonically with cue width, bolstering our confidence that our monotonically increasing model-estimated width is likely not entirely driven by task difficulty. There nevertheless remain open questions related to how task difficulty does impact BOLD attentional modulation, which we hope future work will more directly investigate.

      The reviewer's comments identify two ways our data might preliminarily speak to questions about BOLD attentional modulation and task difficulty. First: how might the amplitude parameter reflect task difficulty? This is an apt question as we agree with the reviewer that it would be a likely candidate in which to observe effects of task difficulty. We do find a small effect of cue width on our amplitude estimates (amplitude decreases with width) in V3. Using the same analysis technique to look at the relationship between task difficulty and amplitude, we find no clear relationship in any of the visual areas (all p >= 0.165, testing whether the slopes differed from zero at the group level using a one-sample t-test). We believe future work using other experimental manipulations should look more systematically at the relationship between task difficulty and amplitude of the attentional BOLD enhancement.

      Second: Does the same ratio at different widths elicit different behavioral responses (namely accuracy and RT)? We followed the reviewer’s suggestion to compare performance between cue widths of three and nine (identical ratios, different widths; see Author response image 2 and Figure 5). We found that, using a paired t-test, behavioral accuracy differed between the two cue widths (mean accuracy of 0.73 versus 0.69, p = 0.008), with better performance for cue width three. RT did not differ significantly between the two conditions (paired t-test, p = 0.729). This could be due to the fact that participants were not incentivized to respond as quickly as possible, they merely needed to respond before the end of the response window (1.25 s) following the stimulus presentation (0.5 s). The comparisons for accuracy and RT (calculated from time of stimulus appearance) are plotted below:

      Author response image 2.

      In summary, with matched stimulus ratios, the wider cue was associated with worse (though not slower) performance. This could be due to the fact that more elements are involved and/or that tasks become more difficult when attending to a broader swath of space. Given these results, we believe that future studies targeting difficulty effects should use direct and independent manipulations of task difficulty and attentional width. 

      (2) Eye movements: while the authors do a good job addressing the average eccentricity of fixation, I'm not sure this fully addresses concerns with eye movements, especially for the character-discrimination task which surely benefits from foveation (and requires a great deal of control to minimize saccades!). Can the authors additionally provide data on, e.g., # of fixations within the attended stimulus annulus, or fixation heatmap, or # of saccades, or some other indicator of likelihood of fixating the letter stimuli for each condition? 

      We agree with the reviewer that this task is surely much easier if one foveated the stimuli, and it did indeed require control to minimize saccades to the annulus. (We appreciate the effort and motivation of our participants!) We are happy to provide additional data to address these reasonable concerns about eye movements. Below, we have visualized the number of fixations to the annulus, separated by participant and width. Though there is variability across participants, there are at most 16 instances of fixations to the annulus for a given participant, combined across all width conditions. The median number of fixations to the annulus per width is zero (shown in red). Considering the amount of time participants engaged in the task (between 8 and 12 runs of the task, each run with 100 trials), this indicates participants were generally successful at maintaining central fixation while the stimuli were presented.

      Author response image 3.

      We added the results of this analysis to the methods section (lines 205-208):

      “Additionally, we examined the number of fixations to the white noise annulus itself. No participant had more than 16 fixations (out of 800-1200 trials) to the annulus during the task, further suggesting that participants successfully maintained fixation.”

      (3) pRF sorting and smoothing: Throughout, the authors are analyzing data binned based on pRF properties with respect to the attended location ("voxels with pRFs overlapping with the white noise annulus", line 243-244) First, what does this mean? Does the pRF center need to be within the annulus? Or is there a threshold based on the pRF size? If so, how is this implemented? Additionally, considering the methods text in lines 242-247, the authors mention that they bin across 6 deg-wide bins and smooth with a moving average (18 deg), which I think will lead to further expansion of the profile of attentional enhancement (see also below) 

      We provide a detailed response in the public review. Furthermore, we have clarified the voxel selection procedure in the Methods (lines 132–139 & 154–159).

      (4) FWHM values: The authors interpret the larger FWHMs estimated from their model-fitting than the actual size of the attended region as a meaningful result. However, depending on details of the sorting procedure above, this may just be due to the data processing itself. One way to identify how much expansion of FWHM occurs due to analysis is by simulating data given estimates of pRF properties for a 'known' shape of modulation (e.g., square wave exactly spanning the attended aperture) and compare the resulting FWHM to that observed for attention and perception conditions (e.g., Fig. 7c). 

      We provide a detailed response in the public review. The essence of our response is to refrain from interpreting the precise recovered FWHM values, which will be influenced by multiple processing steps, and instead to focus on relative differences as a function of the attentional cue width. Accordingly, we did not add simulations to the revised manuscript, although we agree with the reviewer that such simulations could shed light on the underlying spatial resolution, and how binning and smoothing influences the estimated FWHM. We have clarified our interpretation of FWHM results in the manuscript as follows:

      Results lines 137-141:

      “One possibility is that the BOLD-derived FWHM might tend to overestimate the retinotopic extent of the modulation, perhaps driven by binning and smoothing processing steps to create the 1D spatial profiles. If this were the case, we would expect to obtain similar FWHM estimates when modeling the perceptual modulations as well.”

      Results lines 169-175:

      “Mirroring the results from the attentional manipulation, FWHM estimates systematically exceeded the nominal size of the perceptually modulated region of the visual field. Comparing the estimated FWHMs of the perceptual and attentional spatial profiles (Figure 7c) revealed that the estimated widths were highly comparable (Pearson correlation r=0.664 across width conditions and visual regions). Importantly, the relative differences in FWHM show meaningful effects of both cue and contrast width in a similar manner for both attentional and perceptual forms of modulation.”

      Discussion lines 16-22:

      “We also found that the estimated spatial spread of the attentional modulation (as indicated by the recovered FWHM) was consistently wider than the cued region itself. We therefore compared the spread of the attention field with the spatial profile of a perceptually induced width manipulation. The results were comparable in both the attentional and perceptual versions of the task, suggesting that cueing attention to a region results in a similar 1D spatial profile to when the stimulus contrast is simply increased in that region.”

      (5) Baseline parameter: looking at the 'raw' response profiles shown in Fig. 2b, it looks, at first, like the wider attentional window shows substantially lower enhancement. However, this seems to be mitigated by the shift of the curve downwards. Can the authors analyze the baseline parameter in a similar manner as their amplitude analyses throughout? This is especially interesting in contrast to the perception results (Fig. 7), for which the baseline does not seem to scale in a similar way. 

      We agree with the reviewer that the baseline parameter is worth examining, and have therefore added panels displaying the baseline parameter into all results figures (Figures 4-7). There was no significant association between cue width and baseline offset in any of the three visual regions.

      (6) Outlier: Fig. 5, V2, Amplitude result seems to have a substantial outlier - is there any notable difference in e.g. retinotopy in this participant? 

      One participant indeed has a notably larger median amplitude estimate in V2. Below, we plot the spatial coverage from the pRF data for this participant (022), as well as all other participants.

      Author response image 4.

      Each subplot represents a participant's 2D histogram of included voxels for the 1D spatial profiles; the colors indicate the proportion of voxels that fell within a specific x,y coordinate bin. Note that this visualization only shows x and y estimates and does not take into account size of the pRF. While there is variation across participants in the visual field coverage, the overall similarity of the maps indicates that retinotopy is unlikely to be the explanation. 

      To further explore whether this participant might be an outlier, we additionally looked at behavioral performance, angular error and FWHM parameters as well as the goodness of fit of the model. On all these criteria this participant did not appear to be an outlier. We therefore see no reason to exclude this participant from the analyses.  

      (7) Fig. 4 vs Fig. 5: I understand that Fig. 4 shows results from a single participant, showing variability across blocks, while Fig. 5 shows aggregate results across participants. However, the Angular Error figure shows complementary results - Fig. 4 shows the variability of best-fit angular error, while Fig. 5 shows the average deviation (approximately the width of the error distribution). This makes sense I think, but perhaps the abs(error) for the single participant shown in Fig. 4 should be included in the caption so we can easily compare between figures. 

      That's right: the Figure 4 results show the signed error, whereas the Figure 5 results show the absolute error. We agree that reporting the absolute error values for the example participant would facilitate comparison. Rather than add the values to the text, we have made the example participant’s data visually distinct within Figure 5 for easy comparison.  

      (8) Bias in model fits: the analysis shown in Fig. 6 compares the estimated parameters across amounts of data used to compute attentional modulation profiles for fitting those parameters. If the model-fitting procedure were unbiased, my sense is we would likely see no impact of the number of TRs on the parameters (R^2 should improve, abs(error) should improve, but FWHM, amplitude, baseline, etc should be approximately stable, if noisier). However, instead, it looks like more/less data leads to biased estimates, such that FWHM is biased to be smaller with more noise, and amplitude is biased to be larger. This suggests (to me) that the fit is landing on a spiky function that captures a noise wiggle in the profile. I don't think this is a problem for the primary results across the whole block of 10 TRs, which is the main point of the paper. Indeed, I'm not sure what this figure is really adding, since the single-TR result isn't pursued further (see below). 

      Please refer to our response in the public review, comment 4. 

      (9) 'Dynamics': The paper, starting in the title, claims to get at the 'dynamics' of attention fields. At least to me, that word implies something that changes over time (rather than across trials). Maybe I'm misinterpreting the intent of the authors, but at present, I'm not sure the use of the word is justified. That said, if the authors could analyze the temporal evolution of the attention field through each block of trials at 1- or 2-TR resolution, I think that could be a neat addition to the paper and would support the claim that the study assays dynamic attention fields. 

      We thank the reviewer for giving us a chance to speak more directly to the dynamic aspect of our approach. Here, we specifically use the word “dynamic” to refer to trial-to-trial dynamics.  Importantly, our temporal interval analysis suggests that we can recover information about the attentional field at a relatively fine-grained temporal resolution (a few seconds, or 2 TRs). Following this methodological proof-of-concept to dynamically track the attentional field, we are excited about future work that can more directly investigate the manner in which the attentional field evolves through time, especially in comparison to other methods that first require training on large amounts of data.

      (10) Correction for multiple comparisons across ROIs: it seems that it may be necessary to correct statistical tests for multiple comparisons across each ROI (e.g., Fig. 5 regression tests). If this isn't necessary, the authors should include some justification. I'm not sure this changes any conclusions, but is worth considering. 

      We appreciate the opportunity to explain our reasoning regarding multiple comparisons. We thought it appropriate not to correct as we are not comparing across regions and are not treating tests of V1, V2, and V3 as multiple opportunities to support a common hypothesis. Rather, the presence or absence of an effect in each visual region is a separate question. We would typically perform correction for multiple comparisons to control the familywise error rate when conducting a family of tests addressing a common hypothesis. We have added this to the Methods section (lines 192-195): 

      “No multiple comparison correction was applied, as the different tests for each region are treated as separate questions. However, using a threshold of 0.017 for p-values would correct for comparisons across the three brain regions.”

      However, we are happy to provide corrected results. If we use Bonferroni correction across ROIs (i.e. multiply p-values by three), there are some small changes from significant to only trending towards significance, but these changes don’t affect any core results. The changes that go from significant to trending are:

      Associated with Figure 5 – In V3, the relationship of cue width to amplitude goes from a p-value of 0.017 to 0.051.

      Associated with Figure 6 –

      V1: the effect of cue width on FWHM goes from p = 0.043 to 0.128.

      V2: the effect of TR on both FWHM and R2 goes from p = ~0.02 to ~0.06. 

      V3: the effect of cue width on amplitude goes from p = 0.024 to 0.073.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Shin et al. conduct extensive electrophysiological and behavioral experiments to study the mechanisms of short-term synaptic plasticity at excitatory synapses in layer 2/3 of the rat medial prefrontal cortex. The authors interestingly find that short-term facilitation is driven by progressive overfilling of the readily releasable pool, and that this process is mediated by phospholipase C/diacylglycerol signaling and synaptotagmin-7 (Syt7). Specifically, knockdown of Syt7 not only abolishes the refilling rate of vesicles with high fusion probability, but it also impairs the acquisition of trace fear memory.

      Overall, the authors offer novel insight to the field of synaptic plasticity through well-designed experiments that incorporate a range of techniques.

      Comments on revisions:

      The authors have adequately addressed my earlier comments and questions.

      Reviewer #2 (Public review):

      All the comments from Reviewer #2 are the same as her/his comments to our original manuscript. Therefore, we have already responded to all the following comments in the first revision. Here we described our additional responses to the same comments.

      Summary:

      Shin et al aim to identify in a very extensive piece of work a mechanism that contributes to dynamic regulation of synaptic output in the rat cortex at the second time scale. This mechanism is related to a new powerful model and is well versed to test if the pool of SV ready for fusion is dynamically scaled to adjust supply demand aspects. The methods applied are state-of-the-art and both address quantitative aspects with high signal to noise. In addition, the authors examine both excitatory output onto glutamatergic and GABAergic neurons, which provides important information on how general the observed signals are in neural networks. The results are compellingly clear and show that pool regulation may be predominantly responsible. Their results suggests that a regulation of release probability, the alternative contender for regulation, is unlikely to be involved in the observed short term plasticity behavior (but see below). Besides providing a clear analysis of the underlying physiology, they test two molecular contenders for the observed mechanism by showing that loss of Synaptotagmin7 function and the role of the Ca dependent phospholipase activity seems critical for the short term plasticity behavior. The authors go on to test the in vivo role of the mechanism by modulating Syt7 function and examining working memory tasks as well as overall changes in network activity using immediate early gene activity. Finally, they model their data, providing strong support for their interpretation of TS pool occupancy regulation.

      Strengths:

      This is a very thorough study, addressing the research question from many different angles and the experimental execution is superb. The impact of the work is high, as it applies recent models of short term plasticity behavior to in vivo circuits further providing insights how synapses provide dynamic control to enable working memory related behavior through non-permanent changes in synaptic output.

      Weaknesses:

      While this work is carefully examined and the results are presented and discussed in a detailed manner, the reviewer is still not fully convinced that regulation of release probability is not a putative contributor to the observed behavior. No additional work is needed, but in the moment, I am not convinced that changes in release probability are not in play. One solution may be to extend the discussion of changes in rules probability as an alternative.

      As the Reviewer #3 suggested, we examined the dependence of EPSC amplitude on extracellular [Ca<sup>2+</sup>] ([Ca<sup>2+</sup>]<sub>o</sub>) in order to test our assertion that vesicular release probability (p<sub>v</sub>) is already saturated in resting conditions at L2/3 recurrent synapses. A three-fold increase is expected according to Dodge and Rahamimoff (1967), if resting p<sub>v</sub> has enough room to increase, when [Ca<sup>2+</sup>]<sub>o</sub> is elevated from 1.3 to 2.5 mM. We found an increase in the baseline EPSC amplitude only by 23%, and this change was not statistically significant, supporting our assertion.

      Fig 3. I am confused about the interpretation of the Mean Variance analysis outcome. Since the data points follow the curve during induction of short term plasticity, doesn't these suggests that release probability and not the pool size increases?

      We separated the conventional release probability into a multiplication of p<sub>v</sub> and p<sub>occ</sub>, in which p<sub>v</sub> = probability of TS vesicles and p<sub>occ</sub> = occupancy of release sites by TS vesicles. In this regard, the abscissa of V-M plot represents the conventional release probability. Because p<sub>v</sub> is close to unity, we interpreted a change along the abscissa as a change of p<sub>occ</sub>.

      Related, to measure the absolute release probability and failure rate using the optogenetic stimulation technique is not trivial as the experimental paradigm bias the experiment to a given output strength, and therefore a change in release probability cannot be excluded.

      We agree to this concern. Because EPSC data were obtained by optogenetic stimulation, it cannot be ruled out a possibility that optogenetic stimulation biased the release probability. Although we found that STP obtained by dual patch experiment was not different from that by optogenetic stimulation, it needs to confirm our conclusion using dual patch or other methods.

      Fig. 4B interprets the phorbol ester stimulation to be the result of pool overfilling, however, phorbol ester stimulation has also been shown to increase release probability without changing the size of the readily releasable pool. The high frequency of stimulation may occlude an increased paired pulse depression in presence of OAG, that others have interpreted in mammalian synapses as an increase in release probability.

      Provided that pv of TS vesicles is very high, the OAG-induced increase in EPSC1 and low STF and PTA are consistent with higher baseline p<sub>occ</sub> in PDBu conditions, while the number of docking sites is limited. It should be noted that previous PDBu-induced invariance of the RRP size is based on measuring the RRP size using hypertonic solution (Basu et al., 2007). Given that this sucrose method releases not only TS but also LS vesicles, the sucrose-based RRP size may not be affected by PDBu or OAG at L2/3 synapses too. Therefore, PDBu or OAG-induced increase in p<sub>occ</sub> (proportion of TS vesicles over LS+TS vesicles) would result in an increase in release probability without a change in the RRP size.

      The literature on Syt7 function is still quite controversial. An observation in the literature that loss of Syt7 function in the fly synapse leads to an increase of release probability. Thus the observed changes in short term plasticity characteristics in the Syt7 KD experiments may contain a release probability component. Can the authors really exclude this possibility? Figure 5 shows for the Syt7 KD group a very prominent depression of the EPSC/IPSC with the second stimulus, particularly for the short interpulse intervals, usually a strong sign of increased release probability, as lack of pool refilling can unlikely explain the strong drop in synaptic output.

      Comments on revisions:

      I am satisfied with the reply of the authors and I do not have any further points of concern.

      Reviewer #3 (Public review):

      The results are consistent with the main claim that facilitation is caused by overfilling a readily releasable pool, but alternative interpretations continue to seem more likely, especially when the current results are taken together with previous studies. Key doubts could be resolved with a single straightforward experiment (see below).

      The central issue is the interpretation of paired pulse depression that occurs when the interval between action potentials is 25 ms, but not when 50. To summarize: a similar phenomenon was observed at Schaffer collateral synapses (Dobrunz and Stevens, 1997), but was interpreted as evidence for a decrease in pv. Ca2+-channel inactivation was proposed as the mechanism, but this was not proven. The key point for evaluating the current study is that Dobrunz and Stevens specifically ruled out the kind of decrease in pocc that is the keystone premise of the current study because the depression occurred independently of whether or not the first action potential elicited exocytosis. Of course, the mechanism might be different at layer 2/3 cortical synapses. But, it seems reasonable to hope that the older hypothesis would be ruled out for the cortical synapses before concluding that the new hypothesis must be correct.

      The old and new hypotheses could be distinguished from each other cleanly with a straightforward experiment. Most/maybe all central synapses strengthen a great amount when extracellular Ca2+ is increased from 1.3 to 2 mM, even when intracellular Ca2+ is buffered with EGTA. According to the authors' model, this is only possible when pv is low, and so could not occur at synapses between layer 2/3 neurons. Because of this, confirmation that increasing extracellular Ca2+ does not change synaptic strength would support the hypothesis that baseline pv is high, as the authors claim, and the support would be impressive because large changes have been seen at every other type of synapse where this has been studied (to my knowledge at least). In contrast, the Ca2+ imaging experiment that has been added to the new version of the manuscript does not address the central issue because a wide range of mechanisms could, in principle, decrease release without involving prior exocytosis or altering bulk Ca2+ signals, including: a small decrease in nano-domain Ca2+, which wouldn't be detected because nano-domains contribute a minuscule amount to the bulk signal during Ca2+-imaging; or even very fast activity-dependent undocking of synaptic vesicles, which was reported in the same Kusick et al, 2020 study that is central to the LS/TS terminology adopted by the authors.

      Additional points:

      (1) A new section in the Discussion (lines 458-475) suggests that previous techniques employed to show that augmentation and facilitation are caused by increases in pv did not have the resolution to distinguish between pv and pocc, but this is misleading. The confusion might be because the terminology has changed, but this is all the more reason to clarify this section. The previous evidence for increases in pv - and against increases in pocc - is as follows: The residual Ca2+ that drives augmentation decreases the latency between the onset of hypertonic solution and onset of the postsynaptic response by about 150 ms, which is large compared to the rise time of the response. The decrease indicates that the residual Ca2+ drives a decrease in the energy barrier that must be overcome before readily releasable vesicles can undergo exocytosis, which is precisely the type of mechanism that would enhance pv. In contrast, an increase in pocc could change the rise time, but not the latency. There is a small change in the rise time, but this could be caused by changes in either pv or pocc, and one of the studies (Garcia-Perez and Wesseling, 2008) showed that augmentation occluded facilitation, even at times when pocc was reduced by a factor of 3, which would seem to argue against parallel increases in both pv and pocc.

      We greatly appreciate for pointing out our mis-understanding. We acknowledge that the post-tetanic acceleration of the latency in the hypertonicity-induced vesicle release may reflect a decrease in the activation energy barrier (ΔEa) for vesicle fusion resulting in an increase in fusion probability of TS vesicles (Stevens and Wesseling, 1999; Garcia-Perez and Wesseling, 2008). We agree that such latency changes are not easily explained by increases in p<sub>occ</sub> alone. Indeed, Taschenberger et al (2016) concluded that PTP is similar to the PDBu-induced increase in baseline EPSCs. Subsequently, Lin et al (2025) estimated PDBu-induced changes of TS vesicle pool size and p_fusion of TS vesicles (these correspond to p<sub>occ</sub> and p<sub>v</sub> in this study, respectively), and found that PDBu increases majorly the former (2 folds) and minorly the latter (1.3 folds). Although it has not been directly tested, it is possible that PTP increases p<sub>v</sub>. Accordingly, we corrected the first statement of the paragraph, and mentioned the possibility for a post-tetanic increase in p<sub>v</sub> of TS vesicles.

      It should be noted, however, it is still puzzling what is represented by the acceleration of the latency in the hypertonicity-induced vesicle release. Schotten et al (2015) simulated how vesicle release rate is affected by reducing ΔEa for vesicle fusion. They found that a reduction of ΔEa resulted in increases in the peak amplitude and shorter time-to-peak of vesicle fusion, but did not accelerate the latency. Therefore, it remains to be clarified whether shorter latency can be regarded as lower activation barrier.  Moreover, the sucrose-induced release rate is comparable with the vesicle recruitment rate (1-2/s; Neher, Neuron, 2008). This slowness of sucrose-induced vesicle release rate makes it difficult to distinguish the vesicle fusion rate from their priming rate.

      (2) Similar evidence from hypertonic stimulation indicates that Phorbol esters increase pv, but I am not aware of evidence ruling out a parallel increase in pocc.

      As noted above, none of known mechanisms can clearly explain the PDBu-induced shorter latency to hypertonicity-induced vesicle fusion (Schotten et al, 2015). Even if shorter latency reflects higher p<sub>v</sub>, it does not rule out a concurrent change in p<sub>occ</sub>. Supporting this notion, Lin et al. (2025) showed in the framework of the two state vesicle fusion model that PDBu application leads to a substantial increase in the number of TS vesicles (vesicles having high fusion propensity), with a moderate change in fusion probability (p<sub>fusion</sub>). In light of previous observation that high tonicity (500 or 1000 mOsm) did not alter the RRP size (Basu et al., 2007), the results of Lin et al. (2025) can be interpreted as an increase of ‘p<sub>occ</sub>’ in terms of the present study.

      Reference:

      Schotten et al. (2015). Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate. eLife 4:e05531.

      Lin, K.-H., Ranjan, M., Lipstein, N., Brose, N., Neher, E., & Taschenberger, H. (2025). Number and relative abundance of synaptic vesicles in functionally distinct priming states determine synaptic strength and short-term plasticity. J. Physiology.

      Comments on revisions:

      There are at least two straightforward ways to address the main concern.

      The first would be experiments analogous to those in Dobrunz and Stevens that show that - unlike at Schaffer collateral synapses - paired pulse depression at L2/3 synapses requires neurotransmitter release. I proposed this in the first round, but realized since that a simpler and more powerful strategy would be to test directly that pv is/is-not near 1.0 in 1.2 mM Ca2+ simply by increasing to 2 mM Ca2+ (and showing that synaptic strength does-not/does change). This would be powerful because the increase in Ca2+ greatly increases synaptic strength at Schaffer collaterals by about 2.5-fold. Concerns about a confounding elevation in the basal intracellular Ca2+ concentration could be easily neutralized by pre-treating with EGTA-AM, which the authors have already done for other experiments.

      We thank to Reviewer #3 for suggesting an experiment for testing our assertion that the vesicular release probability (p<sub>v</sub>) is very high at layer 2/3 recurrent excitatory synapses. As the Reviewer recommended, we assessed EPSC changes induced by an increase in extracellular calcium concentration ([Ca<sup>2+</sup>]<sub>o</sub>). The results are added as Figure 3—figure supplement 3 to the revised manuscript.

      Dodge and Rahamimoff (1967) discovered a fourth-power relationship between end-plate potential (EPP) and [Ca<sup>2+</sup>]<sub>o</sub> at a neuromuscular junction. More specifically they found

      EPP amplitude µ  ([Ca<sup>2+</sup>]<sub>o</sub> / (1 + [Ca<sup>2+</sup>]<sub>o</sub> /1.1 mM + [Ma<sup>2+</sup>]<sub>o</sub> /2.97 mM))<sup>4</sup>.

      This equation nicely predicts the effects of high external calcium on EPSC amplitudes observed at the calyx synapses: a 2.6-fold increase of EPSC by changing [Ca<sup>2+</sup>]<sub>o</sub> from 1.25 to 2 mM  (Thanawala and Regehr, 2013; predicted as 2.57);  a 2.36-fold increase by changing [Ca<sup>2+</sup>] from 1.5 to 2 mM (Lin and Taschenberger, 2025; predicted as 2.16). In the framework of two-step priming model, Lin et al. (2015) estimated a 1.9-fold increase (from 0.22 to 0.42) in p<sub>v</sub> of TS vesicles and a 1.23-fold increase in the number of TS vesicles. It is clear that the increase in p<sub>v</sub> would be possible only if p<sub>v</sub> is not saturated, while the increase in the number of TS vesicles is still possible regardless of baseline p<sub>v</sub> of TS vesicles.

      The Dodge and Rahamimoff’s equation predicts a 3.24-fold increase in baseline EPSC amplitude by elevating [Ca Ca<sup>2+</sup>]<sub>o</sub> from 1.3 mM to 2.5 mM at L2/3 synapses. Contrary to this prediction, our recordings revealed a 1.23 fold increase in baseline EPSC amplitude, and this change was not statistically significant.

      Given the steep dependence of vesicle release on [Ca<sup>2+</sup>]<sub>o</sub>, this minimal increase strongly suggests that p<sub>v</sub> at L2/3 recurrent synapses is already near maximal at rest, limiting the dynamic range for further enhancement through increased calcium influx. Accordingly, we observed a small but statistically significant decrease in the paired-pulse ratio (PPR) at higher [Ca<sup>2+</sup>]<sub>o</sub>. Although this reduction in PPR might be indicative of increased p<sub>v</sub>, it is more consistent with a slight increase in p<sub>occ</sub> rather than a substantive increase in p<sub>v</sub> under the context of very high p<sub>v</sub>. Accordingly, Lin et al. (2025) recently estimated an increase in the TS vesicle subpool size as 1.23-fold by elevating [Ca<sup>2+</sup>]<sub>o</sub> under the framework of the two-step vesicle priming mode. Taken together, these findings suggest that an increase in the number of TS vesicles or p<sub>occ</sub> may contribute to both an increase in baseline EPSC amplitudes and a decrease in PPR.

      Overall, our central claim that baseline p<sub>v</sub> is near maximal at L2/3 recurrent synapses is supported by 1) high baseline PPR; 2) insensitivity to EGTA-AM; 3) high double failure rate; 4) insensitivity to elevating [Ca<sup>2+</sup>]<sub>o</sub>. These data are difficult to reconcile with a model in which facilitation is mediated by Ca<sup>2+</sup>-dependent increases in p<sub>v</sub>. Instead, our results support a mechanism in which facilitation arises from changes in release site occupancy.

      References

      Dodge, F.A., & Rahamimoff, R. (1967). Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J Physiol, 193(2), 419–432. 

      Thanawala, M.S., & Regehr, W.G. (2013). Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool. J Neurosci, 33(11), 4625–4633.

      Lin, K.-H., Ranjan, M., Lipstein, N., Brose, N., Neher, E., & Taschenberger, H. (2025). Number and relative abundance of synaptic vesicles in functionally distinct priming states determine synaptic strength and short-term plasticity. J. Physiology.

      Neher E, Sakaba T (2008) Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release. Neuron 59:861-872.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public review):

      Summary: 

      Authors benchmarked 5 IBD detection methods (hmmIBD, isoRelate, hap-IBD, phasedIBD, and Refined IBD) in Plasmodium falciparum using simulated and empirical data. Plasmodium falciparum has a mutation rate similar to humans but a much higher recombination rate and lower SNP density. Thus, the authors evaluated how recombination rate and marker density affect IBD segment detection. Next, they performed parameter optimization for Plasmodium falciparum and benchmarked the robustness of downstream analyses (selection detection and Ne inference) using IBD detected by each of the methods. They also tracked the computational efficiency of these methods. The authors work is valuable for the tested species and the analyses presented appear to support their claim that users should be cautious calling IBD when SNP density is low and recombination rate is high. 

      Strengths: 

      The study design was solid. The authors set up their reasoning for using P. falciparum very well. The high recombination rate and similar mutation rate to humans is indeed an interesting case. Further, they chose methods that were developed explicitly for each species. This was a strength of the work, as well as incorporating both simulated and empirical data to support their goal that IBD detection should be benchmarked in P. falciparum

      Weaknesses: 

      The scope of the optimization and application of results from the work are narrow, in that everything is finetuned for Plasmodium. Some of the results were not entirely unexpected for users of any of the tested software that was developed for humans. For example, it is known that Refined IBD is not going to do well with the combination of short IBD segments and low SNP density. Lastly, it appears the authors only did one largescale simulation (there are no reported SDs). 

      We thank the reviewer for highlighting the strengths and weaknesses of the study. 

      First, we would like to highlight that: (1) while we use Plasmodium as a model to investigate the impact of high recombination and low marker density on IBD detection and downstream analyses, our IBD benchmarking framework and strategies are widely applicable to IBD methods development for many sexually recombining species including both Plasmodium and non-Plasmodium species. (2) Although some results are not completely unexpected, such as the impact of low marker density on IBD detection, IBD-based methods have been increasingly used in malaria genomic surveillance research without comprehensive benchmarking for malaria parasites despite the high recombination rate. Due to the lack of benchmarking, researchers use a variety of different IBD callers for malaria research including those that are only benchmarked in human genomes, such as refined-ibd. Our work not only confirmed that low marker density (related to high recombination rate) can affect the accuracy of IBD detection, but also demonstrated the importance of proper parameter optimization and tool prioritization for specific downstream analyses in malaria research. We believe our work significantly contributes to the robustness of IBD segment detection and the enhancement of IBDbased malaria genomic surveillance.

      Second, we agree that there is a lack of clarity regarding simulation replicates and the uncertainty of reported estimates. We have made the following improvements, including (1) running n = 3 full sets of simulations for each analysis purpose, which is in addition to the large sample sizes and chromosomal-level replications already presented in our initial submission, and (2) updating data and figures to reflect the uncertainty at relevant levels (segment level, genome-pair level or simulation set level).   

      Reviewer #2 (Public review):

      Summary: 

      Guo et al. benchmarked and optimized methods for detecting Identity-By-Descent (IBD) segments in Plasmodium falciparum (Pf) genomes, which are characterized by high recombination rates and low marker density. Their goal was to address the limitations of existing IBD detection tools, which were primarily developed for human genomes and do not perform well in the genomic context of highly recombinant genomes. They first analysed various existing IBD callers, such as hmmIBD, isoRelate, hap-IBD, phased-IBD, refinedIBD. They focused on the impact of recombination on the accuracy, which was calculated based on two metrics, the false negative rate and the false positive rate. The results suggest that high recombination rates significantly reduce marker density, leading to higher false negative rates for short IBD segments. This effect compromises the reliability of IBD-based downstream analyses, such as effective population size (Ne) estimation. They showed that the best tool for IBD detection in Pf is hmmIBD, because it has relatively low FN/FP error rates and is less biased for relatedness estimates. However, this method is less computationally efficient. Their suggestion is to optimize human-oriented IBD methods and use hmmIBD only for the estimation of Ne. 

      Strengths: 

      Although I am not an expert on Plasmodium falciparum genetics, I believe the authors have developed a valuable benchmarking framework tailored to the unique genomic characteristics of this species. Their framework enables a thorough evaluation of various IBD detection tools for non-human data, such as high recombination rates and low marker density, addressing a key gap in the field. This study provides a

      comparison of multiple IBD detection methods, including probabilistic approaches (hmmIBD, isoRelate) and IBS-based methods (hap-IBD, Refined IBD, phased IBD). This comprehensive analysis offers researchers valuable guidance on the strengths and limitations of each tool, allowing them to make informed choices based on specific use cases. I think this is important beyond the study of Pf. The authors highlight how optimized IBD detection can help identify signals of positive selection, infer effective population size (Ne), and uncover population structure. They demonstrate the critical importance of tailoring analytical tools to suit the unique characteristics of a species. Moreover, the authors provide practical recommendations, such as employing hmmIBD for quality-sensitive analyses and fine-tuning parameters for tools originally designed for non-P. falciparum datasets before applying them to malaria research. 

      Overall, this study represents a meaningful contribution to both computational biology and malaria genomics, with its findings and recommendations likely to have an impact on the field. 

      Weaknesses: 

      One weakness of the study is the lack of emphasis on the broader importance of studying Plasmodium falciparum as a critical malaria-causing organism. Malaria remains a significant global health challenge, causing hundreds of thousands of deaths annually. The authors could have introduced better the topic, even though I understand this is a methodological paper. While the study provides a thorough technical evaluation of IBD detection methods and their application to Pf, it does not adequately connect these findings to the broader implications for malaria research and control efforts. Additionally, the discussion on malaria and its global impact could have framed the study in a more accessible and compelling way, making the importance of these technical advances clearer to a broader audience, including researchers and policymakers in the fight against malaria. 

      We thank the reviewer for highlighting the need to better contextualize the work and emphasize its relevance to malaria control and elimination efforts. We have edited the introduction and discussion sections to highlight the importance of studying Plasmodium as malaria-causing organisms and why IBD-based analysis is important to malaria researchers and policymakers. We believe the changes will better emphasize the public health relevance of the work and improve clarity for a general audience.  

      We would like to clarify that we are not recommending that researchers “optimize human-oriented IBD methods and use hmmIBD only for the estimation of Ne.” We recommended hmmIBD for Ne analysis; however, hmmIBD can be utilized for other applications, including population structure and selection detection. Thus, we generally recommend using hmmIBD for Plasmodium when phased genotypes are available. To avoid potential misunderstandings, we have revised relevant sentences in the abstract, introduction, and discussion. One reason to consider human-oriented IBD detection methods in Plasmodium research is that hmmIBD currently has limitations in handling large genomic datasets. Our ongoing research focuses on improving hmmIBD to reduce its computational runtime, making it scalable for large Plasmodium wholegenome sequence datasets.

      Recommendations for the authors

      Reviewer #1:

      (1) Additional experiments 

      (i) More simulation replicates would be valuable here. The way that results are presented, it appears as though there are no replicates. Apologies if I am incorrect, but when looking through the authors code the --num_reps defaults to one simulation and there are no SDs reported for any figure. Perhaps the authors are bypass replicates by taking a random sample of lineages? Some clarification here would be great. 

      We agree with the reviewer’s constructive suggestions. We have increased the number of simulation sets to (n = 3) in addition to the existing replicates at the chromosomal level. We did not use a larger n for full sets of simulation replicates for two reasons: (1) full replication is quite computationally intensive (n=3 simulation sets already require a week to run on our computer cluster with hundreds of CPU cores). (2), the results from different simulation sets are highly consistent with each other, likely due to our large sample size (n= 1000 haploid genomes for each parameter combination).  The consistency across simulation sets can be exemplified by the following figures (Author response image 1 and 2) based on simulation sets different from Figures and Supplementary Figures included in the manuscript. 

      Author response image 1.

      Additional simulation sets repeating experiments shown in Fig 2.

      Author response image 2.

      Post-optimization Ne estimates based on three independent simulation sets (Fig 5 shows data simulation set 1).

      In our updated figures, we address the uncertainty of measurements as follows:

      (1) For IBD accuracy based on overlapping IBD segments, we present the mean ± standard deviation (SD) at the segment level (IBD segment false positives and false negatives for each length bin) or genome-pair level (IBD error rates at the genome-wide level). Figures in the revised manuscript show results from one of the three simulation set replicates. The SD of IBD segment accuracy is included in all relevant figures. In the S2 Data file, we chose not to show SDs to avoid text overcrowding in the heatmaps; however, a detailed version, including SD plotting on the heatmap and across three simulation set replicates, is available on our GitHub repository at https://github.com/bguo068/bmibdcaller_simulations/tree/main/simulations/ext_data

      (2) For IBD-based genetic relatedness, the uncertainty is depicted in scatterplots.

      (3) For IBD-based selection signal scans, we provide the mean ± SD of the number of true selection signals and false selection signals. The SD is calculated at the simulation set level (n=3). 

      (4) For IBD network community detection, the mean ± SD of the adjusted Rand index is reported at the simulation set level (n=3). A representative simulation set is randomly chosen for visualization purposes.

      (5) For IBD-based Ne estimates, each simulation set provides confidence intervals via bootstrapping. We found Ne estimates across n=3 simulation sets to be highly consistent and decided to display Ne from one of the simulation sets.

      (6) For the measurement of computational efficiency and memory usage, the mean ± SD was calculated across chromosomes from the same simulation sets.

      We have included a paragraph titled "Replications and Uncertainty of Measures" in the methods section to clarify simulation replications. Additionally, a table of simulation replicates is provided in the new S1 Data file under the sheet named “02_simulation_replicates.”

      (ii) I might also recommend a table or illustrative figure with all the simulation parameters for the readers rather than them having to go to and through a previous paper to get a sense of the tested parameters. 

      We have now generated tables containing full lists of simulation/IBD calling parameters. We have organized the tables into two sections: simulation parameters and IBD calling parameters. For the simulations, we are using three demographic models: the single-population (SP) model, the multiple-population (MP) model, and the human population demography in the UK (UK) model, each with different sets of parameters. Parameters and their values are listed separately for each demographic model (SP, MP and UK). For the IBD calling, we have five different IBD callers, each with different parameters. We have provided lists of the parameters and their values separately for each caller. In total, there are 15 different combinations of 3 demographic models in simulation and five callers in IBD detection (Author response image 3). We provide a table for each of the 15 combinations. We also provide a single large table by concatenating all 15 tables. In the combined table, demographic model-specific or IBD caller-specific parameters are displayed in their own columns, with NA values (empty cells) appearing in rows where these parameters are not applied (see S2 Data file).

      Author response image 3.

      Schematic of combined parameters from simulations and IBD detection (also included in the S2 Data file)

      (2) Recommendations for improving the writing and presentation 

      Overall, the writing was great, especially the introduction. 

      Three thoughts: 

      (i) It would be great if the authors included a few sentences with guidance on the approach one would take if their organism was not human or P. falciparum

      We have updated our discussion with the following statement: “Beyond Plasmodium parasites, there are many other high-recombining organisms such as Apicomplexan species like Theileria, insects like Apis mellifera (honeybee), and fungi like Saccharomyces cerevisiae (Baker's yeast). For these species, our optimized parameters may not be directly applicable, but the benchmarking framework established in this study can be utilized to prioritize and optimize IBD detection methods in a context-specific manner.”

      (ii) I think there was a lot of confusion about the simulations as they were presented between the co-reviewer and I. Clarification on whether there were replicates and how sampling of lineages occurred would be helpful for a reader. 

      We have added a paragraph with heading “Replications and uncertainty of measures” under the method section to clarify simulation replicates.  Please also refer to our response above for more details (Reviewer #1 (1) Additional experiments).

      (iii) Maybe we missed it, but could the authors add a sentence or two about why isoRelate performed so poorly (e.g. lines 206-207) considering it was developed for Plasmodium? This result seems important. 

      IsoRelate assumes non-phased genotypes as input; therefore, even if phased genotypes are provided, the HMM model used in isoRelate (distinct from the hmmIBD model) may not utilize them. Below, we present examples of IBD segments between true sets and inferred sets from both isoRelate and hmmIBD, where many small IBD segments identified by tskibd (ground truth) and hmmIBD (inferred) are not detected by isoRelate (inferred), although isoRelate still captures very long IBD segments. These patterns are also illustrated in Fig. 3 and S3 Fig. We acknowledge that isoRelate may outperform other methods in the context of unphased genotypes. However, we chose not to benchmark IBD calling methods using unphased genotypes in simulations, as the results may be significantly influenced by the quality of genotype phasing for all other IBD detection methods. The characterization of deconvolution methods is beyond the scope of this paper. We have added a paragraph in the discussion to reflect the above explanation.

      Author response image 4.

      Example IBD segments inferred by isoRelate and hmmIBD compared to true IBD segments calculated by tskibd.

      (3) Minor corrections to the text and figures 

      Lines 105-110 feel like introduction because the authors are defining IBD and goals of work 

      We have shortened these sentences and retained only relevant information for transition purposes. 

      Line 121-122 The definition of false positive is incorrect, it appears to be the exact text from false negative 

      We apologize for the typo and have corrected the definition, so that  it is consistent with that in the methods section. 

      Lines 177-180 feels more like discussion than results 

      We have removed this sentence for brevity. 

      Figure 1: 

      Remove plot titles from the figure 

      Write out number in a 

      The legend in b overlaps the data so moving that inset to the right would be helpful 

      We have removed the titles from Figure 1. In Figure 1a, we have changed the format of  the y-axis tick labels from scientific notation to integers.  In Figure 1b, we have adjusted the size and location of the legend so that it does not overlap with the data points.

      Figure 2-3 & S4-5: 

      It was hard to tell the difference between [3-4) and [10-18) because the colors and shapes are similar. It might be worth using a different color or shape for one of them? 

      We have changed the color for the [10-18) group so that the two groups are easier to distinguish.

      Figure 3 & S3-5: 

      Biggest suggestion is that when an axis is logged it should not only be mentioned in the caption but also should be shown in the figure as well. 

      We have updated all relevant figures so that the log scale is noted in the figure captions (legends) as well as in the figures (in the x and/or y axis labels).

      Supplementary Figure S2 

      (i) It would be nice to either combine it with the main text Figure 1 (I don't believe it would be overwhelming) or add in the other two methods for comparison 

      We have now plotted data for all five IBD callers in S1 Fig for better comparison. 

      (ii) the legend overlaps the data so relocating it to the top or bottom would be helpful 

      We have moved the legend to the bottom of the figure to avoid overlap with the data.

      Reviewer #2:

      I don't have any major comments on the paper. It is well-written, although perhaps a bit long and repetitive in some sections. Make sure not to repeat the same concepts too many times. 

      We have consolidated and removed several paragraphs to reduce repetition of the same concepts.

      I am not a methodological developer, but it seems you have addressed several challenges regarding IBD detection in P. falciparum. You have also acknowledged the study's caveats, which I agree with. 

      Thank you for the positive comments.

      Minor comments: 

      -In my opinion, the paper would benefit from including the workflow figure in the main text rather than keeping it in the supplementary materials. This would make it more accessible and useful for readers. 

      We have moved the original S1 Fig to be Fig 1 in the main text.

      -Some of the figures (e.g. Fig. 2, 4) should be larger for better clarity and interpretation. 

      We have updated Fig 2 and Fig 4 (now labeled as Figure 3 and 5) to make them larger for improved clarity and interpretation.

      -While the focus on P. falciparum is understandable, it would have been valuable to include examples of other species and discuss the broader implications of the findings for a broader field. 

      We have updated the third-to-last paragraph to discuss implications for other species, such as Apicomplexan species like Theileria, insects like Apis mellifera (honeybee), and fungi like Saccharomyces cerevisiae (Baker's Yeast). We acknowledge that optimal parameters and tool choices may vary among species due to differences in demographic history and evolutionary parameters. However, we emphasize that the methods outlined are adaptable for prioritizing and optimizing IBD detection methods in a context-specific manner across different species.

      -Figure 6 is somewhat confusing and could use clearer labeling or additional explanation to improve comprehension. 

      We have updated the labels and titles in the figure to improve clarity. We also edited the figure caption for better clarity.

      -Although hmmIBD outperformed other tools in accuracy, its computational inefficiency due to single-threaded execution poses a significant challenge for scaling to large datasets. The trade-off between accuracy and computational cost could be discussed in more detail. 

      We have added a paragraph in the discussion section to highlight the trade-off between accuracy and computation cost. We noted that we are developing an adapted tool to enhance the hmmIBD model and significantly reduce the runtime via parallelizing the IBD inference process.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Recommendations for the authors):

      The authors have taken into consideration and addressed all my previous comments.

      This referee has one major concern remaining: although the authors have refined their analysis of mitochondrial morphology, my concern regarding the characterization of mitochondria in Drp1-depleted zygotes as "elongated" persists.

      Taking into account this reviewers' comment, the following description has been changed. Line 256-257: “Quantification of the aspect ratio (major axis/minor axis) suggests that mitochondria are significantly elongated in Drp1-depleted embryos" to “The mean aspect ratio (major axis/minor axis) increased slightly from 1.36 in control to 1.66 in Drp1-depleted embryos ."

      (1) The morphological analysis of mitochondria reveals that both axes increase in length. Yet, the aspect ratio it is virtually unchanged, at least in biologically relevant terms, if not statistically.

      - Please calculate and represent mitochondrial aspect ratio as major axis/minor axis in fig 2M.

      - Could the authors also display individual data points in the graphs of Figure 2 K, L and M?

      We have revised the graph display format in accordance with the reviewer's suggestions.

      (2) The authors provide PMID: 25264261 as an example, yet mitochondria in PMID: 35704569 are apparently elongated. Judging by the authors discussion about the differences between these two studies, it would be enriching to comment, in the discussion of the manuscript, on the differences in morphology and to the reason why these might arise

      This referee believes that the unconventional mitochondrial morphology upon fission inhibition, reported here, enhances the relevance of the study and raises questions that could promote novel research lines, if thoroughly discussed in the manuscript.

      Thank you for your insightful suggestion. However, since the latter paper (PMID: 35704569) lacks EM images, it would be difficult to accurately assess the elongation. Thus, we would like to reconsider the mitochondrial morphological changes in zygotes caused by Drp1 deletion levels based on the results of future research.

      Minor

      (1) Labels for the staining used are missing in figure 1-figure supplement 1

      (2) Line 218. Could the intended sentence be:

      "Live imaging of mitochondria (mt-GFP) and chromosomes (H2B-mCherry) in Myo19 depleted zygotes shows symmetric distribution and partitioning of mitochondria during the first embryonic cleavage (Figure 1-figure supplement 2A, 2B; Figure 1-Video 2)."

      (3) Figure 2M: Please calculate and represent mitochondrial aspect ratio as major axis/minor axis.

      (4) Include a label with the experimental condition in figure 1 fig supp 2.

      (5) Line 592: missing reference.

      Thank you for your careful correction. We have corrected all the points the reviewer pointed out in the revised version.

      Reviewer #2 (Recommendations for the authors):

      The authors have sufficiently revised the manuscript to accommodate the majority of suggestions provided by myself and the other reviewers. While it would have been useful to see further clarity around mitochondrial transport, the data presented provide valuable insight into the role of a mitochondrial dynamics regulator in mediating the first mitosis event in embryo development.

      We thank again reviewer 2 for the helpful comment. We would like to address the issue of (aggregated) mitochondrial transport, including analysis methods, as a future challenge.

      Reviewer #3 (Recommendations for the authors):

      After reading through the comments of other reviewers, what authors could potentially improve their manuscript had been largely summarized in three following points.

      (1) Authors would better clarify whether a loss of Drp1 contributes to the chromosome segregation defects directly (e.g. checking SAC-like activity) or indirectly (aggregated mitochondria became physically obstacle; maybe in part getting the cytoskeleton involved).

      (2) Although the level of Myo19 may not be so high (given the low level of TRAK2 in oocytes: Lee et al. PNAS 2024, PMID 38917013), authors would better further clarify the effect of Myo19-Trim with timelapse (e.g. EB3-GFP/Mt-DsRed) and EM analysis (detailed mitochondrial architecture).

      (3) Authors would better clarify phenotypic heterogeneity/variety regarding the degree of alteration in mitochondrial morphology/ architecture dependent on the levels of Drp1 loss with detailed quantification of EM images to address why aggregation of mitochondria in Drp1-/- parthenote (possibly, more likely Drp1 protein-free) looks different/weaker than Trim-awayed one. Employment of the parthenotes of Trim-awayed MII oocytes might also complement the further discussion.

      The revised preprinted have addressed all the points described above. Authors have also adequately indicated the limitations at each of the specific points. Revisions authors made have consolidated their conclusion, thus still, making this study an excellent one.The only remaining weakness is that the authors have not undertaken additional experiments to clarify any role for mitochondrial transport following Drp1 depletion.

      We thank again reviewer 3 for the insightful comments. We would like to address the comments you have raised (points that were unclear in this study) as issues for future study.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Chua, Daugherty, and Smith analyze a new set of archaeal 20S proteasomes obtained by cryo-EM that illustrate how the occupancy of the HbYX binding pocket induces gate opening. They do so primarily through a V24Y mutation in the αsubunit. These results are supported by a limited set of mutations in K66 in the α subunit, bringing new emphasis to this unit.

      Strengths:

      The new structure's analysis is comprehensive, occupying the entire manuscript. As such, the scope of this manuscript is very narrow, but the strength of the data is solid, and they offer an interesting and important new piece to the gate-opening literature.

      Weaknesses:

      Major Concerns

      (1) This manuscript rests on one new cryo-EM structure, leading to a single (albeit convincing) experiment demonstrating the importance of occupying the pocket and moving K66. Could a corresponding bulky mutation at K66 not activate the 20S proteasome?

      Thank you for this insightful question. We believe such a mutation would likely not activate the proteasome, and would likely  be detrimental to gate opening. Our previous work (Smith et al., Molecular Cell, 2007), and data presented in this manuscript, demonstrate that a K66A mutation, which removes the side chain, blocks 20S gate opening. Furthermore, our new αV24Y T20S structure reveals that Lys66 forms specific hydrogen bonds with surrounding residues that are crucial for stabilizing the open gate conformation (Fig. 5). An aromatic or bulky hydrophobic mutation at this position would be unable to form these essential hydrogen bonds and would likely disrupt the necessary stabilizing interactions.  

      (2) To emphasize the importance of this work, the authors highlight the importance of gateopening to human 20S proteasomes. However, the key distinctions between these proteasomes are not given sufficient weight.

      (a) As the authors note, the six distinct Rpt C-termini can occupy seven different pickets. However, how these differences would impact activation is not thoroughly discussed.

      We appreciate the reviewer's point regarding the complexities of eukaryotic 26S proteasome activation. While our manuscript discusses some aspects of this, we agree that a detailed mechanistic extrapolation from our archaeal T20S model to the diverse interactions within the human 26S proteasome is challenging. As we elaborate in our response to Reviewer #2 (Recommendation #3), the significant differences in α-ring composition (homoheptameric vs. heteroheptameric) and the multifactorial nature of Rpt C-termini binding make direct, wide-reaching speculations about specific pocket contributions in the eukaryotic system difficult at this stage. Our aim was to focus on the conserved fundamental role of the HbYX hydrophobic pocket itself. 

      (b) With those other sites, the relative importance of various pockets, such as the one controlling the α3 N-terminus, should be discussed more thoroughly as a potential critical difference.

      The reviewer raises an excellent point about the regulation of specific α-subunits, like the α3 N-terminus, which acts as a lynchpin in gating. Understanding its precise regulation in the eukaryotic 26S proteasome is indeed a key goal in the field. However, determining which specific HbYX binding events (e.g., in the α2-α3 pocket, the α3-α4 pocket, or cooperative binding across multiple pockets) control the α3 subunit's conformation is beyond the scope of what our current T20S structural data can definitively inform. The cooperative nature of HbYX binding and its precise allosteric consequences across the heteroheptameric α-ring are complex questions that remain to be fully elucidated in the eukaryotic system. Our study focuses on demonstrating the sufficiency of hydrophobic pocket occupancy for activation in a conserved manner, which we propose is a fundamental aspect of HbYX action. Identifying which of the seven distinct eukaryotic hydrophobic pockets must be engaged for full activation remains an important area for future research.

      (c) These differences can lead to eukaryote 20S gates shifting between closed and open and having a partially opened state. This becomes relevant if the goal is to lead to an activated 20S. It would have been interesting to have archaea 20S with a mix of WT and V24Y α-subunits. However, one might imagine the subclassification problem would be challenging and require an extraordinary number of particles.

      We agree with the reviewer that exploring mixed subunit populations is an interesting idea, particularly given the dynamic and potentially partially open states of eukaryotic proteasomes. We have previously considered co-expressing WT and V24Y α-subunits. However, the interpretation of such experiments would be challenging. With 14 potential sites for mutant incorporation across the two homoheptameric α-rings, a heterogeneous population of proteasomes with varying numbers and arrangements of V24Y subunits would be generated. Correlating any observed changes in activity or structure (e.g. via cryoEM subclassification, would be exceedingly difficult) to specific stoichiometries or arrangements of mutant subunits would be highly complex and likely inconclusive for deriving clear mechanistic insights.

      (d) Furthermore, the conservation of the amino acids around the binding pocket was not addressed. This seems particularly important in the relative contribution of a residue analogous to K66 or V24.

      We apologize for the mislabeled figure title in the previous submission, which may have made this information less accessible. We have now corrected the title for Supplemental Figure S10 (previously S9). This figure presents the sequence alignment showing the conservation of residues in and around the HbYX hydrophobic pocket, including those analogous to T20S αV24, αL21, and αA154. As discussed in the manuscript, key residues that form this pocket, such as those corresponding to and surrounding T20S L21 and A154, are indeed well conserved in human α-subunits. This conservation supports the relevance of our findings to eukaryotic proteasomes.

      Reviewer #2 (Public review):

      Summary:

      The manuscript by Chuah et al. reports the experimental results that suggest the occupancy of the HbYX pockets suffices for proteasome gate opening. The authors conducted cryo-EM reconstructions of two mutant archaeal proteasomes. The work is technically sound and may be of special interest in the field of structural biology of the proteasomes.

      Strengths:

      Overall, the work incrementally deepens our understanding of the proteasome activation and expands the structural foundation for therapeutic intervention of proteasome function. The evidence presented appears to be well aligned with the existing literature, which adds confidence in the presentation.

      Weaknesses:

      The paper may benefit from some minor revision by making improvements on the figures and necessary quantitative comparative studies.

      We appreciate the reviewers thoughtful critique of our manuscript and have made the requested changes and provided further perspectives mentioned below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Line 467: Mammalian should be replaced with eukaryotic.

      Done.  

      (2) Figure 1 Caption: The descriptions of the blue and green boxes should be described in panel A's caption rather than waiting until panel C.

      Done.

      (3) Figure 2 A: For greater clarity, the asterisks should be replaced with the numbers H4, H5, and H6.

      Done.

      (4) Figure 7 caption: The panels are misannotated. What is listed as E should become D, and what is listed as F should become E.

      Done.

      (5) The title for Figure S9, "αV24Y T20S validation," is inappropriate. A better title should discuss the sequence conservation of those amino acids. Why is the arrow drawing attention to L21 when the paper is about V24? There should be a corresponding alignment that includes K66.

      Thank you for pointing out the title issue for Figure S10 (previously S9); this has now been corrected to reflect its focus on sequence conservation. The arrow highlighting L21 (and its eukaryotic analogues) is intended to draw attention to a key residue that, along with A154, forms part of the hydrophobic pocket occupied by V24Y. As detailed in the main text and shown in Figures 3C, 3D, and 4G, measurements involving L21 were used to demonstrate the widening of this pocket upon V24Y mutation or ZYA binding.

      Reviewer #2 (Recommendations for the authors):

      The authors might consider improving the manuscript by addressing the following minor issues:

      (1) Figure 1: it might be easier for readers to understand what the authors meant to show by superimposing the atomic model of the mutated sidechain with the density map. In this case, the density map could be rendered half-transparent, or it could be represented by mesh.

      We appreciate this suggestion for enhancing Figure 1. While we agree that showing the model fit within the density is valuable, we found that incorporating this directly into the comparative overlay panels of Figure 1 (which already depict multiple aligned density maps) made the figure overly complex and visually detracted from its primary message of comparing overall conformational states. However, we do provide a clear illustration of the model-to-map fit for the αV24Y T20S structure in Supplemental Figure S3, where the atomic model is shown within the transparent map surface. Furthermore, all our maps and models are publicly available, and we encourage interested readers to perform detailed comparisons. We believe this approach balances clarity in the main figure with the provision of detailed validation data.  

      (2) What is the solvent-inaccessible surface area of the mutated side-chain buried by its hydrophobic interaction with the HbYX pockets? How is this buried surface area compared to the solvent-accessible surface area of the HbYX pocket without the mutation?

      We appreciate the idea of another visual to answer the question and provide the reader with a better perception of this pocket in the WT versus V24Y T20S. To address this we added a new Supplemental Figure 7 with surfaces showing this comparison including each separate pocket and an overlay with solid and mesh surfaces. We also added this line to the text: “Moreover, molecular surface representations of the hydrophobic pocket clearly show occupancy by the mutant tyrosine’s side chain (Fig. S7)”.

      (3) Based on the data of the buried surface area of the mutated side-chain (requested above), can the authors make some quantitative comparison with the activated eukaryotic proteasome (either human or yeast 26S) with the alpha-pocket occupied with HbYX motifs from Rpt subunits? How similar are they?

      This is a thoughtful suggestion, and we understand the interest in directly comparing pocket occupancy across systems. While we draw general parallels regarding HbYXdependent activation in the discussion, we believe a direct quantitative extrapolation of specific surface area occupancies from our T20S V24Y mutant to the eukaryotic system would be overly speculative and unlikely to yield further definitive insights into the eukaryotic gate-opening mechanism at this time. The primary reason for this is the significant disparity in complexity between the archaeal T20S and eukaryotic 26S proteasomes. The eukaryotic α-ring is a heteroheptamer, composed of seven distinct αsubunits, which creates seven non-identical inter-subunit pockets. In contrast, our study utilizes the homoheptameric archaeal T20S. Furthermore, eukaryotic 26S proteasome activation involves the intricate binding of multiple C-terminal tails from the six different Rpt ATPase subunits of the 19S regulatory particle. These C-termini include various HbYX motifs as well as non-HbYX tails, and they interact with the diverse α-subunit pockets in a highly complex, multifactorial manner that drives what appears to be an allosteric mechanism for gate regulation.

      Crucially, the precise number of C-termini required for 20S gate-opening in the eukaryotic system, the specific combination of these Rpt C-termini, and even the exact inter-subunit pockets that must be occupied to induce robust gate opening are still areas of active investigation and are not resolved (as discussed in our manuscript). Therefore, attempting to extrapolate nuances, such as the precise degree of hydrophobic pocket occupancy from our single, engineered αV24Y side-chain (which models one specific type of Hb-pocket interaction in a simplified system) to each of the potentially five or more different Rpt Ctermini interactions within the various 20S inter-subunit pockets in the eukaryotic 26S proteasome, would involve too many assumptions and would not provide reliable predictive power to understand mechanism.

      However, regarding the fundamental question of how a hydrophobic group occupies the HbYX pocket in our archaeal model system, we believe Figure 4D provides relevant insight that may address the reviewer's underlying curiosity. This figure carefully illustrates the spatial overlap, showing that the engineered αV24Y side-chain and the hydrophobic 'Z' group of the ZYA HbYX-mimetic occupy the same region within the T20S inter-subunit hydrophobic pocket. This provides a clear visual comparison of this key 'Hb' interaction in our defined and structurally characterized system.

      (4) It may be helpful that at the end of the discussion, the authors make some comments on how the current results might offer insights into the eukaryotic proteasome activation, and on what the limitations of the current study are.

      We thank the reviewer for this suggestion. We agree that discussing the implications for eukaryotic proteasome activation and the study's limitations is important.

      Insights into Eukaryotic Proteasome Activation:

      We have indeed discussed how our current findings with the αV24Y T20S mutant offer insights into eukaryotic proteasome activation in the Discussion section. To briefly summarize:

      (1) Conservation of the Target Site: Our study highlights that the key residues forming the hydrophobic pocket targeted by the αV24Y mutation (αL21 and αA154 in T20S) are well-conserved in the human 20S α-subunits (as shown in Fig. S9). This suggests that the mechanism of inducing gate opening through occupancy of this specific hydrophobic 'Hb' pocket by an aromatic residue is a plausible strategy for activating eukaryotic proteasomes.

      (2) Relevance of the IT Switch: The αV24Y mutation, by occupying the Hb-pocket, allosterically affects the conserved IT switch, promoting an open-gate conformation. As detailed in our previous work (Chuah et al., Commun. Biol. 2023; Ref. 31 in the current manuscript), this IT switch mechanism is also functionally conserved in most human α-subunits. The current study reinforces that direct manipulation of the Hb-pocket is sufficient to trigger this conserved downstream gating machinery.

      (3) Therapeutic Implications: These findings further pinpoint the HbYX hydrophobic pocket as a specific and promising target for the design of small molecule proteasome activators aimed at human proteasomes.

      While these parallels are informative, we reiterate our caution (as also mentioned in response to comment #3 and in the manuscript regarding direct quantitative extrapolation due to the increased complexity of the heteroheptameric eukaryotic α-ring and the multifactorial nature of Rpt C-termini interactions.

      We also agree that we should add a statement regarding key limitation raised by the reviewer, to our manuscript. Below is the key limitations paragraph that has been added to the penultimate paragraph of the discussion: 

      “While this study provides significant insights, it is important to acknowledge certain limitations. A key limitation stems from using the homoheptameric archaeal T20S as our model. Although this simpler system allows for more reliable dissection of fundamental mechanisms, and core elements like HbYX-induced gate opening are conserved at the intersubunit pocket level, the overall T20S and eukaryotic 20S/26S proteasomes differ significantly in their complexity. Specifically, our engineered αV24Y mutation results in a tyrosine constitutively occupying all seven identical hydrophobic pockets. This contrasts with the eukaryotic proteasome, which possesses seven distinct α-subunit pockets that interact with various Rpt C-termini through dynamic binding. Moreover, the specific Rpt Ctermini interactions—whether acting individually or cooperatively—that are essential to drive gate opening in the eukaryotic system remain incompletely understood. Therefore, while insights from our archaeal system are valuable for understanding general principles, direct comparisons and extrapolations to the intricate allostery and interaction complexities of the eukaryotic 26S proteasome must be made with caution.”

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2:

      Minor reviews:

      The caveats are (1) the particular point will perhaps only be interesting to a small slice of the eQTL research community; (2) the authors provide no statistical controls/error estimate or independent validation of the variance partitioning analysis in Figure 3, and (3) the authors don't seem to use the single-cell growth/fitness estimates for anything else, as Figure 4 uses loci mapped to growth from a previously published, standard culture-by-culture approach. It would be appropriate for the manuscript to mention these caveats.

      We have added two small mention of these caveats – mainly that the study may not generalize, and that the study does not attempt to try the variance partitioning on other traits or other system where the values of the partitions are better established.

      I also think it is not appropriate for the manuscript to avoid a comparison between the current work and Boocock et al., which reports single-cell eQTL mapping in the same yeast system. I recommend a citation and statement of the similarities and differences between the papers.

      We have added this reference and a clear statement of similarities between the two studies. It was not our intention to avoid this; we had simply not seen that study in the initial submission.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      This is an interesting follow-up to a paper published in Human Molecular Genetics reporting novel roles in corticogenesis of the Kif7 motor protein that can regulate the activator as well as the repressor functions of the Gli transcription factors in Shh signalling. This new work investigates how a null mutation in the Kif7 gene affects the formation of corticofugal and thalamocortical axon tracts and the migration of cortical interneurons. It demonstrates that the Kif7 null mutant embryos present with ventriculomegaly and heterotopias as observed in patients carrying KIF7 mutations. The Kif7 mutation also disrupts the connectivity between the cortex and thalamus and leads to an abnormal projection of thalamocortical axons. Moreover, cortical interneurons show migratory defects that are mirrored in cortical slices treated with the Shh inhibitor cyclopamine suggesting that the Kif7 mutation results in a down-regulation of Shh signalling. Interestingly, these defects are much less severe at later stages of corticogenesis.

      Strengths/weaknesses:

      The findings of this manuscript are clearly presented and are based on detailed analyses. Using a compelling set of experiments, especially the live imaging to monitor interneuron migration, the authors convincingly investigate Kif7's roles and their results support their major claims. The migratory defects in interneurons and the potential role of Shh signalling present novel findings and provide some mechanistic insights but rescue experiments would further support Kif7's role in interneuron migration. Similarly, the mechanism underlying the misprojection which has previously been reported in other cilia mutants remains unexplored. Taken together, this manuscript makes novel contributions to our understanding of the role of primary cilia in forebrain development and to the aetiology of neural symptoms in ciliopathy patients.

      We again thank Reviewer 1 for her/his positive assessment of our article. We have addressed several weaknesses identified by the reviewer, supplementing the initial results with new data, and correcting or clarifying the text where necessary. Our detailed responses to the reviewer’s recommendations appear at the end of each comment.

      Reviewer #1 (Recommendations for the authors):

      (1) The authors report remarkable phenotypic changes in E14.5 embryos in the projection patterns of corticofugal/thalamocortical axons and in interneuron migration, but some of those phenotypes appear much less severe at E16.5. This might be indicative of a delay in development. Does the migration of interneurons to more dorsal regions correspond to an extended Cxcl12 expression? Do interneuorons still show migratory defects at E16.5? To address a potential delay, the authors could, if feasible, repeat Tbr2/Tomato and L1 or neurofilament stainings in E18.5 embryos?

      The question of a possible developmental delay in Kif7 -/- embryos is important. To document this topic, we have extended our study initially focused on embryonic stage E14.5 to earlier (E12.5) and later (E16.5, E18.5/P0) developmental stages. We added new data on E12.5 (Fig. 1, Fig. 3, Fig. S4) and E18.5 (Fig. 3, Fig. 4) embryos in the main figures, and considerably extended the data on E16.5 embryos (Fig. 1, Fig. 3). The legends of figures and the text of the result section (p5-p6) have been modified accordingly. We now describe developmental defects in Kif7 -/- embryos, which are not simple developmental delays. The sequences of thalamic axon development and cIN migration are representative of this complexity.

      Thalamic axons: the pioneer projection is misrouted to the amygdala at E14.5 (Fig. 4B) whereas most Kif7 -/- thalamic axons extend to the cortex at E16.5, with a slight delay compared to WT axons (Fig. 4D). At E18.5, the Kif7 -/- thalamo-cortical projection appears rather normal in the rostral forebrain but is drastically reduced in the median and caudal forebrain (Fig. 4E). This strong decrease is confirmed by neurofilament staining performed at E18.5 which identifies a major loss of corticofugal and thalamo-cortical projections in Kif7 -/- brains (Fig. 4F). 

      Migrating cIN: During normal development, CXCL12 maintains cIN in their tangential pathways as they start to colonize the cortical wall (E13.5/E14.5). Then CXCL12 drops in the SVZ (Tiveron et al., 2006; Caronia-Brown and Grove, 2011) allowing wild type cIN to invade the cortical plate (Stumm et al., 2003; Li et al., 2008; Atkins et al., 2023). In Kif7 -/- embryos, CXCL12 is never expressed in the SVZ of the dorsal cortex. Therefore Kif7 -/- cIN migrate radially in the dorsal cortex instead of tangentially. We have improved our text in the result section to clarify this transient defect (p8-9).

      (2) Figure 1D: The overview of the Gsh2 and Tbr2 stainings does not allow us to see details of the PSPB. The lines indicating the position of the PSPB are not helpful either. Higher magnifications are required to see whether there are subtle differences at these boundaries as observed for other cilia mutants.

      We thank the reviewer for her/his question that allowed us to identify a mild default of patterning at the PSB, illustrated by high magnification pictures in the Fig. 1D and described in the result section (p5). This subtle defect of PSB patterning is consistent with previous observations in Kif7 -/- embryos (Putoux et al, 2019) and appears milder than the PSB defect in hypomorphic Gli3 Pdn mutants (PSB shifted dorsally and less well defined as illustrated in Kuschel et al, 2003 and Magnani et al., 2010).

      (3) Figure 3: The authors report an interesting mis-projection of thalamocortical axons towards the amygdala. A very similar pattern has been described in Gli3 hypomorphic Pdn mutants (Magnani et al., 2010), in Rfx3, and in Inpp5e null mutant embryos (Magnani et al., 2015). These papers lend further support that this Kif7 phenotype is Gli3 dependent and should be cited in the manuscript. Moreover, the mechanism(s) underlying this mis-projection remain unexplored. Is this phenotype rescued in the previously reported Kif7/ Gli3D699 double mutants? Is there an abnormal expression of axon guidance molecules?

      We deeply thank the reviewer for drawing our attention to the abnormal projection of thalamic axons to the amygdala described in the Gli3 Pdn mutant and in two ciliary mutants, Rfx3 -/- and Lnpp5e -/-. We cite these two papers (Magnani et al., 2010, 2015) in the revised manuscript (p7). In the Gli3 Pdn mutant, transplantation experiments show that a patterning defect of the ventral telencephalon (VT) underlies the mis-projection of the thalamus to the amygdala (Magnani et al, 2010). In the Rfx3 ciliary mutant, two possible mechanisms are proposed: pre-thalamus patterning defect and ectopic Netrin and Slit1 expression in the VT (Magnani et al, 2015). We do agree that understanding the mechanism of the thalamic misprojection in the Kif7 mutant would be of great interest. However, given the complexity of the putative mechanisms described in the Gli3 Pdn and Rfx3 mutants, we believe that this question deserves further investigation in a future study. Finally, the possibility that the thalamic projection defect observed in Kif7 -/- embryos could be rescued in Kif7/Gli3699 (double mutants in which Gli3R is overexpressed in the dorsal and ventral forebrain) is very unlikely. Our two main arguments are:

      (1) Magnani et al (2015) did not rescue the TCA pathfinding defect in the Rfx3 -/- ciliary mutant when they overexpressed GLI3-R (see TCA description in the Rfx3/ Gli3699 double mutant, last paragraph of the result section). The authors concluded “This finding could be explained by a requirement for Gli activator and not Gli repressor function in VT {ventral telencephalon} patterning and indeed, Gli3 western blots showed that the levels of Gli3R are not altered in the VT of Rfx3 -/- embryos”.

      (2) The GLI3-R/Gli3-FL ratio is decreased in the cortex of the Kif7 -/- embryos (dorsal telencephalon) as expected, whereas it is very low in the MGE of WT embryos (ventral telencephalon) and remains unaltered in the Kif7 -/- embryos (Fig. 2B).  

      Similarly, the analysis of Kif7 -/- cIN migratory defects leads us to conclude that Kif7 ablation impairs Gli activation function rather than Gli repressor function in the VT where cIN are generated.

      (4) Figure 4: The authors should discuss the difference between Tbr2 and Cxcl12 expression which does not extend into the dorsal-most cortical SVZ.

      We observed that the transient CXCL12 expression is lacking in the SVZ of the dorsal cortex of Kif7 -/- embryos at E14.5, in a region where TBR2 cells abnormally reach the cortical surface and intermingle with post-mitotic cells. A sentence in our previous version (lines 233-234) could suggest a link between the abnormal location of TBR2 expressing cells and the lack of CXCL12 expression. Having found no data in the literature to explain the absence of CXCL12 expression in the brain by an abnormal cellular environment or by a defect in transcription factor expression, we do not want to further elaborate on differences and similarities between TBR2 and CXCL12 expression patterns in the Kif7 -/- brain. We have modified our text accordingly in the result section of the revised manuscript (p8-9). 

      (5) Figure 5: The authors convincingly describe migratory defects of interneurons. The treatment with Shh agonist and antagonist provides some mechanistic insights but genetic or pharmacological rescue experiments would lend further support. For example, they could treat Kif7 mutant sections with Shh agonists or analyse Kif7/Gli3D699 double mutants.

      We thank the reviewer for her/his positive assessment of our analysis of the cIN migration. Unfortunately, the rescue experiments proposed by the reviewer should not help to further support our conclusions. First, Kif7 ablation in cIN prevents the processing of any SHH signal in the transcriptional pathway. Second, increasing GLI3R by crossing Kif7 -/- animals with Gli3D699 mice could possibly rescue the alterations of layering in the dorsal cortex where the GLI3R/GLI-FL ratio is strongly decreased and the SHH pathway activated. Such a rescue had been previously described for corpus callosum defects (Putoux et al., 2019). However, because cIN are generated in the ventral forebrain where SHH signaling predominantly activates the formation of GLI-A and where Kif7 ablation does not alter the GLI3 ratio, GLI3R re-introduction in the basal forebrain should rather increase the migratory defects of Kif7 -/- cIN instead of producing a rescue. To further support our conclusion, we analyzed the migratory behavior of Kif7 -/- cIN in a WT cortical environment. The results illustrated in the Fig. 6A and described in page 9 of the result section confirm that the migration defects of Kif7 -/-  cIN are reminiscent of an inhibition but not an activation of the  transcriptional SHH pathway (same phenotype as in Kif3a ciliary mutants described in Baudoin et al, 2012).

      (6) Figure 6: The authors describe the Shh mRNA and protein expression with relevance to interneuron migration. In contrast to the in situ hybridisation, the immunofluorescence analysis is not very convincing and requires further controls. The authors should at least show a no primary antibody control and, if available, could include a staining on Shh mutants. These additional controls are important as Shh protein expression in the developing cortex is highly controversial and a recent paper describes a different pattern (Manuel et al., 2022: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001563#). Moreover, it remains unclear whether the Shh protein expression is uniform within the cortex or follows lateral to medial or ventricular to pial gradients. A more thorough description and corresponding figures would be helpful. 

      Manuel et al. (2022) used the SHH KO (generated by Chiang et al., 1996) that develops a long proboscis to validate the rabbit anti-SHH antibodies (from Genetech) used in their study. They show a lack of SHH signal in the SHH KO. However, it is difficult to identify the cortex in this mouse line and the authors did not specify which part of the SHH protein was used to generate antibodies. We wished to use the SHH KO generated by Chiang and backcrossed on a C57B/6 line (Rash and Grove, 2007) that develops a layered neocortex at E17.5. However,

      (1) the SHH KO was obtained by replacing exon2 with a PGK-neo cassette and could express a 101 aa truncated protein comprising the N-ter part of the protein, and

      (2) the antibody we used, is a polyclonal N-ter antibody that targets the active SHH protein (Cys25-Gly198 part of SHH protein used as immunogen to produce the antibody). We thus thought that this labeling experiment will not give information on the specificity of the antibody, some epitopes being able to recognize the truncated protein produced in the SHH KO.

      To overcome the lack of a good mutant mice to validate the SHH N-ter antibodies, we analyzed the SHH immunostaining pattern at E12.5 and compared the expression profile with previously published SHH mRNA expression patterns. The border of the third ventricle and the ZLI were strongly immunostained by SHH-Nter antibodies and these regions were shown to express SHH mRNA at E12.5-E13.5 (Kicker et al. 2004, Loulier et al., 2005, Sahara et al., 2007 and Fig. 7B1). In brain sections at E14.5, only the choroid plexus was strongly labeled and some structures showed diffused labeling. We analyzed the distribution of SHH mRNAs in the cortex using a highly sensitive technique (RNAscop) at E14.5 and showed that very few cortical cells expressed SHH mRNA and at very low level. Anti-SHH-Nter antibodies immunostained numerous bright dots throughout the cortical neuropile, which is not surprising for a diffusible factor like SHH. However, the labeling was not homogeneous and showed a ventricle to pial gradient at E12.5 and aligned distributions in the different cortical layers at E14.5. We have described the expression pattern in more detail and modified the Fig. S4 by adding an image of immunostaining performed without SHH N-ter antibody.  

      (7) Figure S1: The Gli3 Western blot needs to be quantified. As the authors only show one control and one mutant sample, it remains unclear how representative this blot is. In addition to Gli3R and Gli3FL, the authors should also determine the ratio of both isoforms. Are there also differences in the MGE?

      We now produce results of Gli3 western blots in the cortex and MGE of several E14.5 Kif7 KO (n=4) and WT (n=4) embryos. The GLI3R/GLI3FL ratio has been determined in the cortex and in the MGE of WT and mutant embryos. Results are illustrated in the Fig. 2. 

      Minor points:

      The authors should carefully amend the literature on Gli genes and forebrain development. For example:

      (1) Line 85: Add Hasenpusch-Theil et al., 2018.

      We added this reference.

      (2) Line 141: Remove Magnani et al., 2010 (they characterized hypomorphic Gli3 Pdn mutants) and replace with Kuschel et al., 2003.

      Since our revised figure 2 illustrates GLI3 western blots and compare GLI3R/GLI3FL ratios in the cortex and MGE of WT and Kif7-/- embryos, we no longer cite these papers in the result section.

      (3) Line 380: Replace reference with Theil, 2005.

      We have replaced Magnani et al, 2014 by Theil 2005 in the sentence.

      (4) Line 414: Rallu et al is not an appropriate reference for this as this manuscript does not investigate the expression of a single cortical marker in Shh/Gli3 double mutants.

      We removed the reference Rallu et al. in the sentence.

      (5) Reference in line 355: do not use Vancouver style.

      We apologize for the mistake that was corrected.

      (6) Spelling: Line 447 it should read "choroid plexus"

      We again apologize for the mistake that has been corrected.

      Reviewer #2 (Public review):

      Summary:

      This study investigates the role of KIF7, a ciliary kinesin involved in the Sonic Hedgehog (SHH) signaling pathway, in cortical development using Kif7 knockout mice. The researchers examined embryonic cortex development (mainly at E14.5), focusing on structural changes and neuronal migration abnormalities.

      Strengths:

      (1) The phenotype observed is interesting, and the findings provide neurodevelopmental insight into some of the symptoms and malformations seen in patients with KIF7 mutations.<br /> (2) The authors assess several features of cortical development, including structural changes in layers of the developing cortex, connectivity of the cortex with the thalamus, as well as migration of cINs from CGE and MGE to the cortex.

      We greatly thank Reviewer 2 for her/his positive assessment of our work that characterize the neurodevelopmental defects induced by KIF7 ablation. We have deeply reorganized and implemented data in the figures to show changes occurring in different cortical cell types and at different stages. We have moreover corrected and clarified the text where necessary. Our detailed responses to the reviewer’s recommendations appear at the end of each comment.

      Weaknesses:

      (1) The Kif7 null does have phenotype differences from individual mutations seen in patients. It would be interesting to add more thoughts about how the null differs from these mutants in ciliary structure and SHH signaling via the cilium.

      We are grateful to the Reviewer for recalling that Kif7 ablation alters SHH signaling within primary cilium and has a strong effect on ciliary structure. In the revised version of the manuscript, we discuss data from the literature that describe these alterations in human (Putoux et al, 2011) and in murine KIF7 depleted cells (He et al, 2015; Cheung et al., 2009; Lai et al., 2021) (discussion p13).

      (2) The description of altered cortex development at E14.5 is perhaps rather descriptive. It would be useful to assess more closely the changes occurring in different cell types and stages. For this it seems very important to have a time course of cortical development and how the structural organization changes over time. This would be easy to assess with the addition of serial sections from the same. It might also be interesting to see how SHH signaling is altered in different cortical cell types over time with a SHH signaling reporter mouse.

      We thank the Reviewer for her/his request that helped us to improve our description of developmental defaults in the Kif7 -/- cortex.  In the revised manuscript, we have expanded our study initially focused on embryonic stage E14.5 to earlier (E12.5) and later (E16.5, E18.5 /P0) developmental stages. Instead of focusing on median forebrain sections, we have expanded our observations to rostral and caudal sections. Altogether, these new observations allow us to describe more precisely the complex developmental defects in the Kif7 -/- cortex over time, in specific cortical regions (dorsal versus lateral cortex, and rostral versus caudal levels). Figures 1, 3, 4, and S4 have been deeply edited to present new data on E12.5 (Fig. 1, Fig. 3, Fig. S4), E16.5 (Fig. 1, Fig. 3) and E18.5 (Fig. 3, Fig. 4) embryos. We have modified the legends and text in the result section (p5-6) accordingly. We agree with the Reviewer that deciphering how SHH signaling is altered in the different cortical cells over time should be highly interesting and relevant. Nevertheless, we anticipate complex analyses and consider that they should be retained for future studies.

      (3) Abnormal neurodevelopmental phenotypes have been widely reported in the absence of other key genes affecting primary cilia function (Willaredt et al., J Neurosci 2008; Guo et al., Nat Commun 2015). It would be interesting to have more discussion of how the Kif7 null phenotype compares to some of these other mutants.

      We agree with this Reviewer concern. In the revised manuscript, we discuss our results with regard to previous observations in other ciliary mutants. The murine cobblestone mutant described in Willaredt et al. (2008) indeed shows defects similar to those we describe in the Kif7 -/- mouse. We thank again the Reviewer for her/his helpful comment that allowed us to strengthen and better interpret our results. Guo et al (2015) did not conduct a study of ciliary mutants. Nevertheless, their characterization of cortical developmental defects following invalidation of genes involved in human ciliopathies identified cell autonomous defects in cortical progenitors and in differentiating cortical neurons, which corroborate our observations (p.15)

      (4) The authors see alterations in cIN migration to the cortex and observe distinct differences in the pattern of expression of Cxcl12 as well as suggest cell-intrinsic differences within cIN in their ability to migrate. The slice culture experiments though make it a little difficult to interpret the cell intrinsic effects on cIN of loss of Kif7, as the differences in Cxcl12 patterns still exist presumably in the slice cultures. It would be useful to assess their motility in an assay where they were isolated, as well as assess transcriptional changes in cINs in vivo lacking KIF7 for expression patterns that may affect motility or other aspects of migration.

      To circumvent the difference in the expression profile of CXCL12 in the dorsal cortex of WT and Kif7 -/- embryos on the migratory behavior of cIN, we compared the trajectories and dynamics of WT and Kif7 -/- cIN imaged in the lateral cortex where CXCL12 expression appears similar in WT and Kif7 -/- brains.

      We moreover followed the reviewer recommendation and analyzed the migratory behavior of Kif7 -/- cIN that migrate as isolated cells on a dissociated substrate of WT cortical cells. We sincerely thank the reviewer for her/his suggestion as the results revealed an interesting and relevant ciliary phenotype in migrating Kif7 -/- cIN. This additional experiment confirms that Kif7 -/- cIN exhibit the same migratory defects as those initially characterized in the Kif3a -/-  ciliary mutant.  The new results are illustrated in the Fig. 6A and described in the result section (p9). We agree with the reviewer that the analysis of transcriptional changes that could affect Kif7 -/- cIN motility and migration would be very interesting to study, but this study is beyond the scope of the present article.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Review:

      Review #1 (Public review):

      Also, they observed no difference in the binding free energy of phosphatidyl-serine with wild TREM2-Ig and mutant TREM2-Ig, which is a bit inconsistent with the previous report with experiment studies by Journal of Biological Chemistry 293, (2018), Alzheimer's and Dementia 17, 475-488 (2021), Cell 160, 1061-1071 (2015).

      We agree with the reviewer that our results do not fully recapitulate experimental findings and directly note this in the body of our work, particularly given the known limitations of free energy calculations in MD simulations, as outlined in the Limitations section. Our claim is that the loss-of-function effects of the R47H variant extend beyond decreased binding affinities which are likely due to variable binding patterns. We have also re-analyzed and highlighted statistically significant differences in interaction entropies. Ultimately, our claim is that mutational effects extend beyond experimentally confirmed differences in binding affinities.

      Perhaps the authors made significant efforts to run a number of simulations for multiple models, which is nearly 17 microseconds in total; none of the simulations has been repeated independently at least a couple of times, which makes me uncomfortable to consider this finding technically true. Most of the important conclusions that authors claimed, including the opposite results from previous research, have been made on the single run, which raises the question of whether this observation can be reproduced if the simulation has been repeated independently. Although the authors stated the sampling number and length of MD simulations in the current manuscript as a limitation of this study, it must be carefully considered before concluding rather than based on a single run.

      To address this comment, we have added numerous replicates to our simulations of WT and R47H (s)TREM2 without lipids and substantially increased the total simulation time. Each pure protein system now has six total microsecond-long technical replicates. The addition of replicates strengthens the validity of the work and allows us to make stronger novel conclusions than with one simulation alone, particularly for claims regarding the CDR2 loop and sTREM2 stalk.  In our models with phospholipids, running multiple independent biological replicates of the same system offers a more rigorous methodology than simply repeating simulations of the same docked model. This strategy allows us to sample several distinct starting configurations, thereby minimizing biases introduced by docking algorithms and single-model reliance.

      sTREM2 shows a neuroprotective effect in AD, even with the mutations with R47H, as evidenced by authors based on their simulation. sTREM2 is known to bind Aβ within the AD and reduce Aβ aggregation, whereas R47H mutant increases Aβ aggregation. I wonder why the authors did not consider Aβ as a ligand for their simulation studies. As a reader in this field, I would prefer to know the protective mechanism of sTREM2 in Aβ aggregation influenced by the stalk domain.

      Our initial approach for this study used Aβ as a ligand rather than phospholipids. However, we noted the difficulties in simulating Aβ, particularly in choosing relevant Aβ structures and oligomeric states (n-mers). We believe that phospholipids represent an equally pertinent ligand for TREM2, given its critical role in lipid sensing and metabolism. Furthermore, there is growing recognition in the AD research community of the need to move beyond Aβ and focus on other understudied pathological mechanisms.

      In a similar manner, why only one mutation is considered "R47H" for the study? There are more server mutations reported to disrupt tethering between these CDRs, such as T66M. Although this "T66M" is not associated with AD, I guess the stalk domain protective mechanism would not be biased among different diseases. Therefore, it would be interesting to see whether the findings are true for this T66M.

      In most previous studies, the mechanism for CDR destabilization by mutant was explored, like the change of secondary structures and residue-wise interloop interaction pattern. While this is not considered in this manuscript, neither detailed residue-wise interaction that changed by mutant or important for 'ligand binding" or "stalk domain".

      These are both excellent points that deserve extensive investigation, although we note that our paper does include significant protein-protein and protein-ligand interaction mapping that encompasses both the CDR2 loop and stalk, analyses which were not performed in any previous papers. In a separate paper, we explored more detailed residue-wise interactions for the CDR2 loop (Lietzke et al., Alzheimer’s and Dementia, 2025). While R47H is the most common and prolific mutation in literature, an extensive catalog of other mutations is important to explore. To this end, we are currently preparing a separate publication that will explore a larger mutational library and include more detailed sTREM2 analyses. 

      The comparison between the wild and mutant and other different complex structures must be determined by particular statistical calculations to state the observed difference between different structures is significant. Since autocorrelation is one of the major concerns for MD simulation data for predicting statistical differences, authors can consider bootstrap calculations for predicting statistical significance.

      The addition of numerous replicates across systems negates potential effects from autocorrelation and allows us to include standard deviations to critically assess the validity of our claims.

      Review #2 (Public review):

      The authors state that reported differences in ligand binding between the TREM2 and sTREM2 remain unexplained, and the authors cite two lines of evidence. The first line of evidence, which is true, is that there are differences between lipid binding assays and lipid signaling assays. However, signaling assays do not directly measure binding. Secondly, the authors cite Kober et al 2021 as evidence that sTREM2 and TREM2 showed different affinities for Abeta1-42 in a direct binding assay. Unfortunately, when Kober et al measured the binding of sTREM2 and Ig-TREM2 to Abeta they reported statistically identical affinities (Kd = 3.8 {plus minus} 2.9 µM vs 5.1 {plus minus} 3.7 µM) and concluded that the stalk did not contribute measurably to Abeta binding.

      We appreciate the reviewer’s insight and acknowledge the need to clarify our interpretation of Kober et al. (2021). We have adjusted how we cite Kober et al. and reframed the first paragraph in the second results section.

      In line with these findings, our energy calculations reveal that sTREM2 exhibits weaker—but still not statistically significant—binding affinities for phospholipids compared to TREM2. These results suggest that while overall binding affinity might be similar, differences in binding patterns or specific lipid interactions could still contribute to functional differences observed between TREM2 and sTREM2.

      The authors appear to take simulations of the Ig domain (without any stalk) as a surrogate for the full-length, membrane-bound TREM2. They compare the Ig domain to a sTREM2 model that includes the stalk. While it is fully plausible that the stalk could interact with and stabilize the Ig domain, the authors need to demonstrate why the full-length TREM2 could not interact with its own stalk and why the isolated Ig domain is a suitable surrogate for this state.

      We believe that this is a major limitation of all computational work of TREM2 to-date, and of experimental work which only presents the Ig-like domain. This is extensively discussed in the limitations section of our paper and treated carefully throughout the text. We are currently working toward a separate manuscript that will represent the first biologically relevant model of full-length TREM2 in a membrane and will rigorously assess the current paradigm of using the Ig-like domain as an experimental surrogate for TREM2.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Perhaps the authors made significant efforts to run a number of simulations for multiple models, which is nearly 17 microseconds in total; none of the simulations has been repeated independently at least a couple of times, which makes me uncomfortable to consider this finding technically true. Most of the important conclusions that authors claimed, including the opposite results from previous research, have been made on the single run, which raises the question of whether this observation can be reproduced if the simulation has been repeated independently. Although the authors stated the sampling number and length of MD simulations in the current manuscript as a limitation of this study, it must be carefully considered before concluding rather than based on a single run.

      To address this comment, we have added numerous replicates to our simulations of WT and R47H (s)TREM2 without lipids and substantially increased the total simulation time. Each pure protein system now has six total microsecond-long technical replicates. The addition of replicates strengthens the validity of the work and allows us to make stronger novel conclusions than with one simulation alone, particularly for claims regarding the CDR2 loop and sTREM2 stalk.  In our models with phospholipids, running multiple independent biological replicates of the same system offers a more rigorous methodology than simply repeating simulations of the same docked model. This strategy allows us to sample several distinct starting configurations, thereby minimizing biases introduced by docking algorithms and single-model reliance. 

      (2) sTREM2 shows a neuroprotective effect in AD, even with the mutations with R47H, as evidenced by authors based on their simulation. sTREM2 is known to bind Aβ within the AD and reduce Aβ aggregation, whereas R47H mutant increases Aβ aggregation. I wonder why the authors did not consider Aβ as a ligand for their simulation studies. As a reader in this field, I would prefer to know the protective mechanism of sTREM2 in Aβ aggregation influenced by the stalk domain.

      Our initial approach for this study used Aβ as a ligand rather than phospholipids. However, we noted the difficulties in simulating Aβ, particularly in choosing relevant Aβ structures and oligomeric states (n-mers). We believe that phospholipids represent an equally pertinent ligand for TREM2, given its critical role in lipid sensing and metabolism. Furthermore, there is growing recognition in the AD research community of the need to move beyond Aβ and focus on other understudied pathological mechanisms.

      (3) In a similar manner, why only one mutation is considered "R47H" for the study? There are more server mutations reported to disrupt tethering between these CDRs, such as T66M. Although this "T66M" is not associated with AD, I guess the stalk domain protective mechanism would not be biased among different diseases. Therefore, it would be interesting to see whether the findings are true for this T66M.

      (4) In most previous studies, the mechanism for CDR destabilization by mutant was explored, like the change of secondary structures and residue-wise interloop interaction pattern. While this is not considered in this manuscript, neither detailed residue-wise interaction that changed by mutant or important for 'ligand binding" or "stalk domain".

      These are both excellent points that deserve extensive investigation, although we note that our paper does include significant protein-protein and protein-ligand interaction mapping that encompasses both the CDR2 loop and stalk, analyses which were not performed in any previous papers. In a separate paper, we explored more detailed residue-wise interactions for the CDR2 loop (Lietzke et al., Alzheimer’s and Dementia, 2025). While R47H is the most common and prolific mutation in literature, an extensive catalog of other mutations is important to explore. To this end, we are currently preparing a separate publication that will explore a larger mutational library and include more detailed sTREM2 analyses.

      (5) The comparison between the wild and mutant and other different complex structures must be determined by particular statistical calculations to state the observed difference between different structures is significant. Since autocorrelation is one of the major concerns for MD simulation data for predicting statistical differences, authors can consider bootstrap calculations for predicting statistical significance.

      The addition of numerous replicates across systems negates potential effects from autocorrelation and allows us to include standard deviations to critically assess the validity of our claims.

      Reviewer #2 (Recommendations for the authors):

      Major points:

      (1) I encourage the authors to review Figure 5D and the text of section 2.7 from Kober et al 2021, which argued that "(t)he identical (within error) binding affinities indicated that the TREM2 Ig domain composes the majority (if not entirety) of the mAβ42 binding surface."

      We appreciate the reviewer’s insight and acknowledge the need to clarify our interpretation of Kober et al. (2021). We have adjusted how we cite Kober et al and reframed the first paragraph in the second results section.

      (2) The abstract and text need extensive revision to address the major concerns, which jeopardize the biological premise and significance of the work.

      We have made changes to the abstract and text to reflect concerns and revisions.

      (3) The title and abstract should change to reflect the contents of the paper. The authors do not directly measure lipid binding, nor are any of the computations done in a membrane environment. The authors do not measure anything in the brain.

      We have modified the title to better reflect the content of the paper. The paper measures lipid binding in the form of free energy calculations and interaction maps.

      Minor points:

      (1) How does the conservation of the TREM2 stalk compare to the Ig domain as they relate to the TREM2 family?

      While this study may inspire further exploration of other TREM receptors, we do not believe that our results extend to other TREM family members because of relatively low homology.

      (2) Please show the locations of the glycosylation sites on a model in Figure 1 and discuss their potential contribution to the ligand binding surfaces.

      N-linked glycosylation points are now noted on the sequence map of Figure 1 and updated in the text.

      (3) There is an isoform of TREM2 that produces a secreted product that is similar to the sTREM2 produced by proteolysis. The authors should comment as to whether their findings would apply to secreted TREM2.

      We have addressed this with a new line in the ‘Ideas and Speculation’ section.

      (4) This sentence on p. 2, line 73 references a review, not a study:

      This has been corrected.

      (5) "Yet, one study suggested effective TREM2 stimulation by PLs may require co-presentation with other molecules, potentially reflecting the nature of lipoprotein endocytosis30"

      This has been corrected.

      (6) Is "inclusive" on line 88 a typo for inconclusive?

      This has been corrected.

      (7) "Further, there is a strong correlation between the levels of sTREM2 in the cerebrospinal fluid and that of Tau, however correlation with Aβ is inclusive"

      This has been corrected.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Review:

      Reviewer #1 (Public review): 

      Summary: 

      Odor- and taste-sensing are mediated by two different systems, the olfactory and gustatory systems, and have different behavioral roles. In this study, Wei et al. challenge this dichotomy by showing that odors can activate gustatory receptor neurons (GRNs) in Drosophila to promote feeding responses, including the proboscis extension response (PER) that was previously thought to be driven only by taste. While previous studies suggested that odors can promote PER to appetitive tastants, Wei et al. go further to show that odors alone cause PER, this effect is mediated through sweet-sensing GRNs, and sugar receptors are required. The study also shows that odor detection by bitter-sensing GRNs suppresses PER. The authors' conclusions are supported by behavioral assays, calcium imaging, electrophysiological recordings, and genetic manipulations. The observation that both attractive and aversive odors promote PER leaves an open question as to why this effect is adaptive. Overall, the study sheds new light on chemosensation and multimodal integration by showing that odor and taste detection converge at the level of sensory neurons, a finding that is interesting and surprising while also being supported by another recent study (Dweck & Carlson, Sci Advances 2023).

      Strengths: 

      (1) The main finding that odors alone can promote PER by activating sweet-sensing GRNs is interesting and novel.

      (2) The study uses video tracking of the proboscis to quantify PER rather than manual scoring, which is typically used in the field. The tracking method is less subjective and provides a higherresolution readout of the behavior.

      (3) The study uses calcium imaging and electrophysiology to show that odors activate GRNs. These represent complementary techniques that measure activity at different parts of the GRN (axons versus dendrites, respectively) and strengthen the evidence for this conclusion. 

      (4) Genetic manipulations show that odor-evoked PER is primarily driven by sugar GRNs and sugar receptors rather than olfactory neurons. This is a major finding that distinguishes this work from previous studies of odor effects on PER and feeding (e.g., Reisenman & Scott, 2019; Shiraiwa, 2008) that assumed or demonstrated that odors were acting through olfactory neurons.

      We appreciate the reviewer’s positive assessment of the novelty and significance of our work.

      Weaknesses/Limitations: 

      (1) The authors may want to discuss why PER to odors alone has not been previously reported, especially as they argue that this is a broad effect evoked by many different odors. Previous studies testing the effect of odors on PER only observed odor enhancement of PER to sugar (Oh et al., 2021; Reisenman & Scott, 2019; Shiraiwa, 2008) and some of these studies explicitly show no effect of odor alone or odor with low sugar concentration; regardless, the authors likely would have noticed if PER to odor alone had occurred. Readers of this paper may also be aware of unpublished studies failing to observe an effect of PER on odor alone (including studies performed by this reviewer and unrelated work by other colleagues in the field), which of course the authors are not expected to directly address but may further motivate the authors to provide possible explanations.

      We appreciate the reviewer’s comment. We believe that the difference in genotype is likely the largest reason behind this point. This is because the strength varied widely across genotypes and was quite weak in some strains including commonly used w[1118] empty Gal4 and w[1118] empty spit Gal4 as shown in Figure1- figure supplement 3 (Figure S3 in original submission). However, given that we observed odor-evoked PER in various genotypes (many in main Figures and three in Figure1- figure supplement 3 including Drosophila simulans), the data illustrate that it is a general phenomenon in Drosophila. Indeed, although Oh et al. (2021) did not emphasize it in the text, their Fig. 1E showed that yeast odor evoked PER at a probability of 20%, which is much higher than the rate of spontaneous PER in many genotypes. Therefore, this literature may represent another support for the presence of odor-evoked PER. We have expanded our text in the Discussion to describe these issues.

      Another possibility is our use of DeepLabcut to quantitatively track the kinematics of proboscis movement, which may have facilitated the detection of PER.

      (2) Many of the odor effects on behavior or neuronal responses were only observed at very high concentrations. Most effects seemed to require concentrations of at least 10-2 (0.01 v/v), which is at the high end of the concentration range used in olfactory studies (e.g., Hallem et al., 2004), and most experiments in the paper used a far higher concentration of 0.5 v/v. It is unclear whether these are concentrations that would be naturally encountered by flies.

      We acknowledge that the concentrations used are on the higher side, suggesting that GRNs may need to be stimulated with relatively concentrated odors to induce PER. Although it is difficult to determine the naturalistic range of odor concentration, it is at least widely reported that olfactory neurons including olfactory receptor neurons and projection neurons do not saturate, and exhibit odor identity-dependent responses at the concentration of 10<sup>-2</sup> where odor-evoked PER can be observed. Furthermore, we have shown in Figure 6 that low concentration (10<sup>-4</sup>) of banana odor, ethyl butyrate, and 4-methycyclohexanol all significantly increased the rate of odor-taste multisensory PER even in olfactory organs-removed flies, suggesting that low concentration odors can influence feeding behavior via GRNs in a natural context where odors and tastants coexist at food sites. Finally, we note that odors were further diluted by a factor of 0.375 by mixing the odor stream with the main air stream before being applied to the flies as described in Methods.

      (3) The calcium imaging data showing that sugar GRNs respond to a broad set of odors contrasts with results from Dweck & Carlson (Sci Adv, 2023) who recorded sugar neurons with electrophysiology and observed responses to organic acids, but not other odors. This discrepancy is not discussed.  

      As the reviewer points out, Dweck and Carlson (Sci Adv, 2023) reported using single sensillum electrophysiology (base recording) that sugar GRNs only respond to organic acids whereas we found using calcium imaging from a group of axons and single sensillum electrophysiology (tip recording) that these GRNs respond to a wide variety of odors. Given that we observed odor responses using two methods, the discrepancy is likely due to the differences in genotype examined. We now have discussed this point in the text.

      (4) Related to point #1, it would be useful to see a quantification of the percent of flies or trials showing PER for the key experiments in the paper, as this is the standard metric used in most studies and would help readers compare PER in this study to other studies. This is especially important for cases where the authors are claiming that odor-evoked PER is modulated in the same way as previously shown for sugar (e.g., the effect of starvation in Figure S4).

      For starved flies, we would like to remind the reviewer that the percentage of trials showing PER is reported in Fig. 1E, which shows a similar trend as the integrated PER duration. For fed flies, we have analyzed the percentage of PER and added the result to Figure 2-figure supplement 1C (Figure S4 in original submission).

      (5) Given the novelty of the finding that odors activate sugar GRNs, it would be useful to show more examples of GCaMP traces (or overlaid traces for all flies/trials) in Figure 3. Only one example trace is shown, and the boxplots do not give us a sense of the reliability or time course of the response. A related issue is that the GRNs appear to be persistently activated long after the odor is removed, which does not occur with tastes. Why should that occur? Does the time course of GRN activation align with the time course of PER, and do different odors show differences in the latency of GRN activation that correspond with differences in the latency of PER (Figure S1A)?

      Following the reviewer’s suggestion, we now report GCaMP responses for all the trials in all the flies (both Gr5a>GCaMP and Gr66a>GCaMP flies), where the time course and trial-to-trial/animal-toanimal variability of calcium responses can be observed (Figure 3-figure supplement 2).

      Regarding the second point, we recorded responses to both sucrose and odors in some flies and found that calcium responses of GRNs are long-lasting not only to odors but also to sucrose, as shown in Author response image 1. This may be due in part to the properties of GCaMP6s and slower decay of intracellular calcium concentration as compared to spikes.

      Author response image 1.

      Example calcium responses to sucrose and odor (MCH) in the same fly (normalized by the respective peak responses to better illustrate the time course of responses). Sucrose (blue) and odor (orange) concentrations are 100 mM, and 10<sup>-1</sup> respectively. Odor stimulation begins at 5 s and lasts for 2 s. Sucrose was also applied at the same timing for the same duration although there was a limitation in controlling the precise timing and duration of tastant application. Because of this limitation, we did not quantify the off time constant of two responses.

      To address whether the time course of GRN activation aligns with the time course of PER, and whether different odors evoke different latencies of GRN activation that correspond to latencies of PER, we plotted the time course of GRN responses and PER, and further compared the response latencies across odors and across two types of responses in Gr5a>GCaMP6s flies. As shown in Author response image 2, no significant differences were found in response latency between the six odors for PER and odor responses. Furthermore, Pearson correlation between GRN response latencies and PER latencies was not significant (r = 0.09, p = 0.872).

      Author response image 2.

      (A) PER duration in each second in Gr5a-Gal4>UAS-GCaMP6s flies. The black lines indicate the mean and the shaded areas indicate standard error of the mean. n = 25 flies. (B) Time course of calcium responses (ΔF/F) to nine odors in Gr5a GRNs. n = 5 flies. (C) Latency to the first odor-evoked PER in Gr5a-Gal4>UAS-GCaMP6s flies. Green bar indicates the odor application period. p = 0.67, one-way ANOVA. Box plots indicate the median (orange line), mean (black dot), quartiles (box), and 5-95% range (bar). Dots are outliers. (D) Latency of calcium responses (10% of rise to peak time) in Gr5a GRNs. Green bar indicates the odor application period. p = 0.32, one-way ANOVA. Box plots indicate the median (orange line), mean (black dot), quartiles (box), and 5-95% range (bar). Dots are outliers.

      (6) Several controls are missing, and in some cases, experimental and control groups are not directly compared. In general, Gal4/UAS experiments should include comparisons to both the Gal4/+ and UAS/+ controls, at least in cases where control responses vary substantially, which appears to be the case for this study. These controls are often missing, e.g. the Gal4/+ controls are not shown in Figure 2C-G and the UAS/+ controls are not shown in Figure 2J-L (also, the legend for the latter panels should be revised to clarify what the "control" flies are). For the experiments in Figure S5, the data are not directly compared to any control group. For several other experiments, the control and experimental groups are plotted in separate graphs (e.g., Figure 2C-G), and they would be easier to visually compare if they were together. In addition, for each experiment, the authors should denote which comparisons are statistically significant rather than just reporting an overall p-value in the legend (e.g., Figure 2H-L).

      We thank the reviewer for the input. We have conducted additional experiments for four Gal4/+controls in Figure 2 and added detailed information about control flies in the figure legend (Figure 2C-F).

      For the RNAi flies shown in Figure 2 and Figure 2-figure supplement 3, we used the recommended controls suggested by the VDRC. These control flies were crossed with tubulin-Gal4 lines to include both Gal4 and UAS control backgrounds.

      Regarding Figure S5 in original submission (current Figure 2-figure supplement 2), we now present the results of statistical tests which revealed that PER to certain odors is statistically significantly stronger than that to the solvent control (mineral oil) for both wing-removed and wing-leg-removed flies.

      For Figure 2C-F, we now plot the results for experimental and control groups side by side in each figure.

      Regarding the results of statistical tests, we have provided more information in the legend and also prepared a summary table (supplemental table). 

      (7) Additional controls would be useful in supporting the conclusions. For the Kir experiments, how do we know that Kir is effective, especially in cases where odor-evoked PER was not impaired (e.g., Orco/Kir)? The authors could perform controls testing odor aversion, for example. For the Gr5a mutant, few details are provided on the nature of the control line used and whether it is in the same genetic background as the mutant. Regardless, it would be important to verify that the Gr5a mutant retains a normal sense of smell and shows normal levels of PER to stimuli other than sugar, ruling out more general deficits. Finally, as the method of using DeepLabCut tracking to quantify PER was newly developed, it is important to show the accuracy and specificity of detecting PER events compared to manual scoring.  

      A previous study (Sato, 2023, Front Mol Neurosci) showed that the avoidance to 100 μM 2methylthiazoline was abolished, and the avoidance to 1 mM 2MT was partially impaired in Orco>Kir2.1 flies. However, because Orco-Gal4 does not label all the ORNs and we have more concrete results on flies in which all the olfactory organs are removed as well as specific GRNs and Gr are manipulated, we decided to remove the data for Orco>kir2.1 flies and have updated the text and Figure 2 accordingly.

      For the Gr5a mutant and its control, we have added detailed information about the genotype in the figure legend and in the Methods. We have used the exact same lines as reported in Dahanukar et al. (2007) by obtaining the lines from Dr. Dahanukar. Dahanukar et al. has already carefully examined that Gr5a mutant loses responses only to certain types of sugars (e.g. it even retains normal responses to some other sugars), demonstrating that Gr5a mutants do not exhibit general deficits.

      As for the PER scoring method, we manually scored PER duration and compared the results with those obtained using DeepLabCut in wild type flies for the representative data. The two results were similar (no statistical difference). We have reported the result in Figure1-figure supplement 1C.

      (8) The authors' explanation of why both attractive and aversive odors promote PER (lines 249-259) did not seem convincing. The explanation discusses the different roles of smell and taste but does not address the core question of why it would be adaptive for an aversive odor, which flies naturally avoid, to promote feeding behavior.  

      We have extended our explanation in the Discussion by adding the following possibility: “Enhancing PER to aversive odors might also be adaptive as animals often need to carry out the final check by tasting a trace amount of potentially dangerous substances to confirm that those should not be further consumed.”

      Reviewer #2 (Public review): 

      Summary: 

      A gustatory receptor and neuron enhances an olfactory behavioral response, proboscis extension. This manuscript clearly establishes a novel mechanism by which a gustatory receptor and neuron evokes an olfactory-driven behavioral response. The study expands recent observations by Dweck and Carlson (2023) that suggest new and remarkable properties among GRNs in Drosophila. Here, the authors articulate a clear instance of a novel neural and behavioral mechanism for gustatory receptors in an olfactory response.

      Strengths: 

      The systematic and logical use of genetic manipulation, imaging and physiology, and behavioral analysis makes a clear case that gustatory neurons are bona fide olfactory neurons with respect to proboscis extension behavior.

      Weaknesses: 

      No weaknesses were identified by this reviewer.  

      We appreciate the reviewer’s recognition of the novelty and significance of our work.

      Reviewer #3 (Public review): 

      Summary: 

      Using flies, Kazama et al. combined behavioral analysis, electrophysiological recordings, and calcium imaging experiments to elucidate how odors activate gustatory receptor neurons (GRNs) and elicit a proboscis extension response, which is interpreted as a feeding response. 

      The authors used DeepLabCut v2.0 to estimate the extension of the proboscis, which represents an unbiased and more precise method for describing this behavior compared to manual scoring.

      They demonstrated that the probability of eliciting a proboscis extension increases with higher odor concentrations. The most robust response occurs at a 0.5 v/v concentration, which, despite being diluted in the air stream, remains a relatively high concentration. Although the probability of response is not particularly high it is higher than control stimuli. Notably, flies respond with a proboscis extension to both odors that are considered positive and those regarded as negative.

      The authors used various transgenic lines to show that the response is mediated by GRNs.

      Specifically, inhibiting Gr5a reduces the response, while inhibiting Gr66a increases it in fed flies. Additionally, they find that odors induce a strong positive response in both types of GRNs, which is abolished when the labella of the proboscis are covered. This response was also confirmed through electrophysiological tip recordings.

      Finally, the authors demonstrated that the response increases when two stimuli of different modalities, such as sucrose and odors, are presented together, suggesting clear multimodal integration.

      Strengths: 

      The integration of various techniques, that collectively support the robustness of the results.

      The assessment of electrophysiological recordings in intact animals, preserving natural physiological conditions.

      We appreciate the reviewer’s recognition of the novelty and significance of our work.

      Weaknesses: 

      The behavioral response is observed in only a small proportion of animals.  

      We acknowledge that the probability of odor-evoked PER is lower compared to sucrose-evoked PER, which is close to 100 % depending on the concentration. To further quantify which proportion of animals exhibit odor-evoked PER, we now report this number besides the probability of PER for each odor shown in Fig. 1E. We found that, in wild type Dickinson flies, 73% and 68 % of flies exhibited PER to at least one odor presented at the concentration of 0.5 and 0.1.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      Minor comments/suggestions: 

      - Define "MO" in Figure 1D.  

      We have defined it as mineral oil in the figure legend.

      - Clarify how peak response was calculated for GCaMP traces (is it just the single highest frame per trial?).

      We extended the description in the Methods as follows: “The peak stimulus response was quantified by averaging ΔF/F across five frames at the peak, followed by averaging across three trials for each stimulus. Odor stimulation began at frame 11, and the frames used for peak quantification were 12 to 16.” We made sure that information about the image acquisition frame rate was provided earlier in the text.

      - Clarify how the labellum was covered in Figure 3 and show that this does not affect the fly's ability to do PER (e.g., test PER to sugar stimulation on tarsus) - otherwise one might think that gluing the labella could affect PER.

      In Figure 3, only calcium responses were recorded, and PER was not recorded simultaneously from the same flies. To ensure stable recording from GRN axons in the SEZ, we kept the fly’s proboscis in an extended position as gently as possible using a strip of parafilm. In some of the imaging experiments, we covered the labellum with UV curable glue, whose purpose was not to fix the labellum in an extended position but to prevent the odors from interacting with GRNs on the labellum. We have added a text in the Methods to explain how we covered the labellum.

      - Clarify how the coefficients for the linear equation were chosen in Figure 3G.  

      We used linear regression (implemented in Python using scikit-learn) to model the relationship between neural activity and behavior, aiming to predict the PER duration based on the calcium responses of two GRN types, Gr5a and Gr66a. The coefficients were estimated using the LinearRegression function. We added this description to the Methods. 

      - Typo in "L-type", Figure 4A.  

      We appreciate the reviewer for pointing out this error and have corrected it.

      - Clarify over what time period ephys recordings were averaged to obtain average responses.

      We have modified the description in the Methods as follows: “The average firing rate was quantified by using the spikes generated between 200 and 700 ms after the stimulus contact following the convention to avoid the contamination of motion artifact (Dahanukar and Benton, 2023; Delventhal et al., 2014; Hiroi et al., 2002).

      - The data and statistics indicate that MCH does not enhance feeding in Figure 6G, so the text in lines 207-208 is not accurate.

      We have modified the text as follows: “A similar result was observed with ethyl butyrate, and a slight, although not significant, increase was also observed with 4-methylcyclohexanol (Figure 6G).”

      - P-value for Figure S9 correlation is not reported.  

      We appreciate the reviewer for pointing this out. The p-value is 0.00044, and we have added it to the figure legend (current Figure 5-figure supplement 1).

      Reviewer #2 (Recommendations for the authors): 

      Honestly, I have no recommendations for improvement. The manuscript is extremely well-written and logical. The experiments are persuasive. A lapidary piece of work.

      We appreciate the reviewer for the positive assessment of our work.

      Reviewer #3 (Recommendations for the authors): 

      - I suggest explaining the rationale for selecting a 4-second interval, beginning 1 second after the onset of stimulation.

      Integrated PER duration was defined as the sum of PER duration over 4 s starting 1 s after the odor onset. This definition was set based on the following data.

      (1) We used a photoionization detector (PID) to measure the actual time that the odor reaches the position of a tethered fly, which was approximately 1.1 seconds after the odor valve was opened. Therefore, we began analyzing PER responses 1 second after the odor onset (valve opening) to align with the actual timing of stimulation.

      (2) As shown in Fig.1D and 1F, the majority of PER occurred within 4 s after the odor arrival.

      We have now added the above rationale in the Methods.

      - I could not find the statistical analysis for Figures 1E and 1G. If these figures are descriptive, I suggest the authors revise the sentences: 'Unexpectedly, we found that the odors alone evoked repetitive PER without an application of a tastant (Figures 1D-1G, and Movie S1). Different odors evoked PER with different probability (Figure 1E), latency (Figure S1A), and duration (Figures 1F, 1G, and S2)'.

      We have added the results of statistical analysis to the figure legend.

      - In Figure 2, the authors performed a Scheirer-Ray-Hare test, which, to my knowledge, is a nonparametric test for comparing responses across more than two groups with two factors. If this is the case, please provide the p-values for both factors and their interaction

      We now show the p-values for both factors, odor and group as well as their interaction in the supplementary table. 

      - In line 83, I suggest the authors avoid claiming that 'these data show the olfactory system modulates but is not required for odor-evoked PER,' as they are inhibiting most, but not all olfactory receptor neurons. In this regard, is it possible to measure the olfactory response to odors in these flies?  

      We thank the reviewer for the comment. Because Orco-Gal4 does not label all the ORNs and because we have more concrete results on flies in which all the olfactory organs are removed as well as specific GRNs and Gr are manipulated, we decided to remove the data for Orco>kir2.1 flies and have updated the text and Figure 2 accordingly.

      - In Figure 2, I wonder if there are differences in the contribution of various receptors in detecting different odors. A more detailed statistical analysis might help address this question.

      Although it might be possible to infer the contribution of different gustatory receptors by constructing a quantitative model to predict PER, it is a bit tricky because the activity of individual GRNs and not Grs are manipulated in Figure 2 except for Gr5a. The idea could be tested in the future by more systematically manipulating many Grs that are encoded in the fly genome.

      - For Figures 2J-L, please clarify which group serves as the control.  

      We have added this information to the legend. 

      - In Figure 3, I recommend including an air control in panels D and F to better appreciate the magnitude of the response under these conditions.

      The responses to all three controls, air, mineral oil and water, were almost zero. As the other reviewer suggested to present trial-to-trial variability as well, we now show responses to all the controls in all the trials in all the animals tested in Figure 3-figure supplement 2.

      - I had difficulty understanding Figure 3G. Could the authors provide a more detailed explanation of the model?

      We used linear regression (implemented in Python using scikit-learn) to model the relationship between neural activity and behavior, aiming to predict the PER duration based on the calcium responses of two GRN types, Gr5a and Gr66a. The weights for GRNs were estimated using the LinearRegression function. The weight for Gr5a and Gr66a was positive and negative, respectively, indicating that Gr5a contributes to enhance whereas Gr66a contributes to reduce PER.

      To evaluate the model performance, we calculated the coefficient of determination (R<sup>2</sup>), which was 0.81, meaning the model explained 81% of the variance in the PER data.

      The scatter plot in Fig. 3G shows a tight relationship between the predicted PER duration (y-axis) plotted against the actual PER duration (x-axis), demonstrating a strong predictive power of the model.

      We added the details to the Methods.

      - In Figure S4a, the reported p-value is 0.88, which seems to be a typo, as the text indicates that PER is enhanced in a starved state.

      Thank you for pointing this out. We have modified the figure legend to describe that PER was enhanced in a starved state only for the experiments conducted with odors at 10<sup>-1</sup> concentration (current Figure 2-figure supplement 1).