3,992 Matching Annotations
  1. Mar 2025
    1. Reviewer #3 (Public review):

      Summary:

      In this paper, Rethemeier et al capitalize on their previous observation that the beetle central complex develops heterochronically compared to the fly and try to identify the developmental origin of this difference. For this reason, they use a fez enhancer trap line that they generated to study the neuronal stem cells (INPs) that give rise to the central complex. Using this line and staining against Drosophila type-II neuroblast markers, they elegantly dissect the number of developmental progression of the beetle type II neuroblasts. They show that the NBs, INPs, and GMCs have a conserved marker progression by comparing to Drosophila marker genes, although the expression of some of the lineage markers (otd, six3, and six4) is slightly different. Finally, they show that the beetle type II neuroblasts lineages are likely longer than the equivalent ones in Drosophila and argue that this might be the underlying reason for the observed heterochrony.

      Strengths:

      - Very interesting study system that compares a conserved structure that, however, develops in a heterochronic manner.<br /> - Identification of a conserved molecular signature of type-II neuroblasts between beetles and flies. At the same time, identification of transcription factors expression differences in the neuroblasts, as well as identification of an extra neuroblast.<br /> - Nice detailed experiments to describe the expression of conserved and divergent marker genes, including some lineaging looking into co-expression of progenitor (fez) and neuronal (skh) markers.

      Weaknesses:

      - The link between size and number of neuroblast lineages and the earlier central complex development in beetles is not examined.

    1. Reviewer #3 (Public review):

      The authors aim to understand how gene pleiotropy affects parallel evolutionary changes among independent replicates of adaptation to a new hot environment of a set of experimental lines of Drosophila simulans using experimental evolution. The flies were RNAsequenced after more than 100 generations of lab adaptation and the changes in average gene expression were obtained relative to ancestral expression levels from reconstructed ancestral lines. Parallelism of gene expression change among lines is evaluated as variance in differential gene expression among lines relative to error variance. Similarly, the authors ask how the standing variation in gene expression estimated from a handful of flies from a reconstructed outbred line affects parallelism. The main findings are that parallelism in gene expression responses is positively associated with pleiotropy and negatively associated with expression variation. Those results are in contradiction with theoretical predictions and empirical findings. To explain those seemingly contradictory results the authors invoke the role of synergistic pleiotropy and correlated selection, although they do not attempt to measure either.

      Strengths:

      The study uses highly replicated outbred laboratory lines of Drosophila simulans evolved in the lab under constant hot regime for over 100 generations. This allows for robust comparisons of evolutionary responses among lines.

      The manuscript is well written and the hypotheses are clearly delineated at the onset.

      The authors have run a causal analysis to understand the causal dependencies between pleiotropy and expression variation on parallelism.

      The use of whole-body RNA extraction to study gene expression variation is well justified.

      Weaknesses:

      The accuracy of the estimate of ancestral phenotypic variation in gene expression is likely low because estimated from a small sample of 20 males from a reconstructed outbred line. It might not constitute a robust estimate of the genetic variation of the evolved lines under study.

      There are no estimates of the standing genetic variation of expression levels of the genes under study, only estimates of their phenotypic variation. I wished the authors had been clear about that limitation and had refrained from equating phenotypic variation in expression level with standing genetic variation.

      Moreover, since the phenotype studied is gene expression, its genetic basis extends beyond expressed sequences. The phenotypic variation of a gene's expression may thus likely misrepresent the genetic variation available for its evolution. The authors do not present evidence that sequence variation correlates with expression variation.

      The authors have not attempted to estimate synergistic pleiotropy among genes, nor how selection acts on gene expression modules. It makes their conclusion regarding the role of synergistic pleiotropy rather speculative.

    1. Reviewer #3 (Public review):

      The authors apply multivoxel decoding analyses from fMRI during reward feedback about the cues previously chosen that led to that feedback. They compare two versions of the task - one in which the feedback is provided about the current trial, and one in which the feedback is provided about the previous trial. Reward probability changes slowly over time, so subjects need to identify which cues are leading to reward at a given time. They find that evidence for recall of the cue in lateral orbitofrontal cortex (lOFC) and hippocampus (HC). They also find that in the second condition, where feedback is for the one-back trial, this representation is mediated by the lateral frontal pole (FPl).

      Overall, the analyses are clean and elegant and seem to be complete. I have only a few comments, all of which can be public.

      (1) They do find (not surprisingly) that the one-back task is harder. It would be good to ensure that the reason that they had more trouble detecting direct HC & lOFC effects on the harder task was not because the task is harder and thus that there are more learning failures on the harder one-back task. (I suspect their explanation that it is mediated by FPl is likely to be correct. But it would be nice to do some subsampling of the zero-back task [matched to the success rate of the one-back task] to ensure that they still see the direct HC and lOFC there.)

      (2) The evidence that they present in the main text (Figure 3) that the HC and lOFC are mediated by FPl is a correlation. I found the evidence presented in Supplemental Figure 7 to be much more convincing. As I understand it, what they are showing in SF7 is that when FPl decodes the cue, then (and only then) HC and lOFC decode the cue. If my understanding is correct, then this is a much cleaner explanation for what is going on than the secondary correlation analysis. If my understanding here is incorrect, then they should provide a better explanation of what is going on so as to not confuse the reader.

      (3) I like the idea of "credit spreading" across trials (Figure 1E). I think that credit spreading in each direction (into the past [lower left] and into the future [upper right]) is not equivalent. This can be seen in Figure 1D, where the two tasks show credit spreading differently. I think a lot more could be studied here. Does credit spreading in each of these directions decode in interesting ways in different places in the brain?

      Comments on revisions:

      After revision, I have no additional comments.

    1. Reviewer #3 (Public review):

      Summary:

      The authors applied an innovative approach (CO-Detection by indEXing - CODEX) together with sophisticated computational analyses to image pancreas tissues from rare organ donors with type 1 diabetes. They aimed to assess key features of inflammation in both islet and extra-islet tissue areas; they report that the extra-islet space of lobules with extensive islet infiltration differs from the extra-islet space of less infiltrated areas within the same tissue section. The study also identifies four sub-states of inflamed islets characterized by the activation profiles of CD8+T cells enriched in islets relative to the surrounding tissue. Lymphoid structures are identified in the pancreas tissue away from islets, and these were enriched in CD45RA+ T cells - a population also enriched in one of the inflamed islet sub-states. Together, these data help define the coordination between islets and the extra-islet pancreas in the pathogenesis of human T1D.

      Strengths:

      The analysis of tissue from well-characterized organ donors, provided by the Network for the Pancreatic Organ Donor with Diabetes, adds strength to the validity of the findings.

      By using their innovative imaging/computation approaches, key known features of islet autoimmunity were confirmed, providing validation of the methodology.

      The detection of IDO+ vasculature in inflamed islets - but not in normal islets or islets that have lost insulin-expression links this expression to the islet inflammation, and it is a novel observation. IDO expression in the vasculature may be induced by inflammation and may lost as disease progresses, and it may provide a potential therapeutic avenue.

      The high-dimensional spatial phenotyping of CD8+T cells in T1D islets confirmed that most T cells were antigen experienced. Some additional subsets were noted: a small population of T cells expressing CD45RA and CD69, possibly naive or TEMRA cells, and cells expressing Lag-3, Granzyme-B, and ICOS.

      While much attention has been devoted to the study of the insulitis lesion in T1D, our current knowledge is quite limited; the description of four sub-clusters characterized by the<br /> activation profile of the islet-infiltrating CD8+T cells is novel. Their presence in all T1D donors, indicates that the disease process is asynchronous and is not at the same stage across all islets. Although this concept is not novel, this appears to be the most advanced characterization of insulitis stages.

      When examining together both the exocrine and islet areas, which is rarely done, authors report that pancreatic lobules affected by insulitis are characterized by distinct tissue markers. Their data support the concept that disease progression may require crosstalk between cells in the islet and extra-islet compartments. Lobules enriched in β-cell-depleted islets were also enriched in nerves, vasculature, and Granzyme-B+/CD3- cells, which may be natural killer cells.

      Lastly, authors report that immature tertiary lymphoid structures (TLS) exist both near and away from islets, where CD45RA+ CD8+T cells aggregate, and also observed an inflamed islet-subcluster characterized by an abundance of CD45RA+/CD8+ T cells. These TLS may represent a point of entry for T cells and this study further supports their role in islet autoimmunity.

      Weaknesses:

      As the author themselves acknowledge, the major limitation is that the number of donors examined is limited as those satisfying study criteria are rare. Thus, it is not possible to examine disease heterogeneity, and the impact of age at diagnosis. Of 8 T1D donors examined, 4 would be considered newly diagnosed (less than 3 months from onset) and 4 had longer disease durations (2, 2, 5 and 6 years). It was unclear if disease duration impacted the results in this small cohort. In the introduction, the authors discuss that most of the pancreata from nPOD donors with T1D lack insulitis. This is correct, yet it is a function of time from diagnosis. Donors with shorter duration will be more likely to have insulitis. A related point is that the proportion of islets with insulitis is low even near diagnosis, Finally, only one donor was examined that while not diagnosed with T1D, was likely in the preclinical disease stage and had autoantibodies and insulitis. This is a critically important disease stage where the methodology developed by the investigators could be applied in future efforts.

      While this was not the focus of this investigation, it appears that the approach was very much immune-focused and there could be value in examining islet cells in greater depth using the methodology the authors developed.

      Additional comments

      Overall, the authors were able to study pancreas tissues from T1D donors and perform sophisticated imaging and computational analysis that reproduce and importantly extend our understanding of inflammation in T1D. Despite the limitations associated with the small sample size, the results appear robust, and the claims are well supported.

      The study expands the conceptual framework of inflammation and islet autoimmunity, especially by the definition of different clusters (stages) of insulitis and by the characterization of immune cells in and outside the islets.

      Comments on revisions:

      I have not felt the need to update the initial review.

      However, I note that the paragraph describing the nPOD repository (lines 154-158) can be misinterpreted that insulitis is infrequent in T1D (17 of 200 donors had it) without the clarification that insulitis is present around the time of diagnosis in most patients and it subsides over time. Thus, authors are urged to clarify that the presence of insulitis and its severity are impacted by the disease stage and disease duration.

      The last sentence of this paragraph, lines 164-165, although linked to the previous sentence about the cause of death in the donors, may be misconstrued in the context of this paragraph, and it is unclear what data support this statement. Please delete this sentence.

    1. Reviewer #3 (Public review):

      Summary:

      Ruan and colleagues consider a branching process model (in their terminology the "Haldane model") and the most basic Wright-Fisher model. They convincingly show that offspring distributions are usually non-Poissonian (as opposed to what's assumed in the Wright-Fisher model), and can depend on short-term ecological dynamics (e.g., variance in offspring number may be smaller during exponential growth). The authors discuss branching processes and the Wright-Fisher model in the context of 3 "paradoxes" --- 1) how Ne depends on N might depend on population dynamics; 2) how Ne is different on the X chromosome, the Y chromosome, and the autosomes, and these differences do match the expectations base on simple counts of the number of chromosomes in the populations; 3) how genetic drift interacts with selection. The authors provide some theoretical explanations for the role of variance in the offspring distribution in each of these three paradoxes. They also perform some experiments to directly measure the variance in offspring number, as well as perform some analyses of published data.

      Strengths:

      - The theoretical results are well-described and easy to follow.<br /> - The analyses of different variances in offspring number (both experimentally and analyzing public data) are convincing that non-Poissonian offspring distributions are the norm.<br /> - The point that this variance can change as the population size (or population dynamics) change is also very interesting and important to keep in mind.<br /> - I enjoyed the Density-Dependent Haldane model. It was a nice example of the decoupling of census size and effective size.<br /> - Equation (10) is a nice result

      Comments on revisions:

      I appreciate the effort that the authors have put into the revision, but I still find the framing to be a bit confusing -- these apparent paradoxes only appear in the most basic version of Wright-Fisher models, and so framing the paper as the solution to these paradoxes overlooks much previous work. Saying that existing work discussing exactly these phenomena is "beyond the scope of this study", without citing or interacting in any way with that work is unscholarly. I agree with the authors that the apparent paradoxes that they consider and interesting, and by thinking about branching processes, the apparent paradoxes appear to be less paradoxical, but without contextualizing this work in the substantial Wright-Fisher literature (e.g., Cannings Exchangeable Models and the work of Möhle) it misrepresents the state of the field and the contributions of this paper.

    1. Reviewer #3 (Public review):

      Summary:

      Notch is active in HCC, but generally not mutated. The authors use a JAG1-selective blocking antibody in a large panel of liver cancer patient-derived xenograft models. They find JAG-dependent HCCs, and these are aggressive and proliferative. Notch inhibition induces cycle arrest and promotes hepatocyte differentiation, through upregulation of CEBPA expression and activation of existing HNF4A, mimicking normal developmental programs.

      The authors use aJ1.b70, a potent and selective therapeutic antibody that inhibits JAG1 against PDX models. They tested over 40 PDX models and found a handful of super-responders to single-agent inhibition. In LIV78 and Li1035 cancer cells, NOTCH2 was expressed and required, in contrast to NOTCH1. RNA-seq showed that the responsive HCCs resembled the S2 transcriptional class of HCCs, which were enriched for Notch-dependent models. They conclude that these dependent tumors have transcriptomes that resemble a hybrid progenitor cell expressing FGF9 and GAS7. Inhibition was able to induce hepatocyte differentiation away from a NOTCH-driven progenitor program. scRNA-seq analysis showed a large population of NOTCH-JAG expressing cells but also showed that there are cells that did not. Not surprisingly, NOTCH2 inhibition leads to increased CEBPA and HNF4A transcriptional activity, which are standard TFs in hepatocytes.

      Strengths:

      The paper provides useful information about the frequency of HCCs and CCA that respond to NOTCH inhibition and could allow us to anticipate the super-responder rate if these antibodies were actually used in the clinic. The inhibitor tools are highly specific, and provide useful information about NOTCH activities in liver cancers. The large number of PDXs and the careful transcriptomic analyses were positives about the study.

      Weaknesses:

      The paper is mostly descriptive.

    1. Reviewer #3 (Public review):

      In this study, Cao et al. explore the neural mechanisms by which chronic heat exposure induces negative valence and hyperarousal in mice, focusing on the role of the posterior paraventricular nucleus (pPVT) neurons that receive projections from the preoptic area (POA). The authors show that chronic heat exposure leads to heightened activity of the POA projection-receiving pPVT neurons, potentially contributing to behavioral changes such as increased anxiety level and reduced sociability, along with heightened startle responses. In addition, using electrophysiological methods, the authors suggest that increased membrane excitability of pPVT neurons may underlie these behavioral changes. The use of a variety of behavioral assays enhances the robustness of their claim. Moreover, while previous research on thermoregulation has predominantly focused on physiological responses to thermal stress, this study adds a unique and valuable perspective by exploring how thermal stress impacts affective states and behaviors, thereby broadening the field of thermoregulation.

      While the manuscript has been revised and some efforts have been made to address the reviewers' concerns, the majority of the issues raised remain insufficiently resolved. Therefore, the reviewer has highlighted key major points that the authors should address to strengthen the manuscript's conclusions.

      Major points<br /> The manuscript highlights the increased activity in pPVT neurons receiving projections from the POA (Figure 3) and shows that these neurons are necessary for heat-induced behavioral changes (Figures 4N-W). However, it remains unclear whether the POA-to-pPVT projection itself plays a critical role. Since pPVT recipient neurons can receive inputs from various brain regions, the role of the POA input in driving these effects needs to be validated more explicitly.<br /> (1) To establish this, the authors should conduct experiments directly inhibiting the POA-to-pPVT projection and demonstrate whether the increased activity in pPVT neurons due to chronic heat exposure is abolished when the POA is blocked.<br /> (2) Alternatively, the authors could use anterograde labeling from the POA and specifically target recipient neurons in the pPVT to confirm that the observed excitatory inputs originate from the POA (related to Figure 6).<br /> (3) If these experiments are not feasible, the authors should consider toning down the emphasis on the POA's role throughout the manuscript and discussing this limitation explicitly. The term "POA recipient pPVT neurons" should be used consistently to avoid misleading implications that the POA-to-pPVT excitatory projection is definitively established as the key pathway.<br /> a) For example, in lines 368-369, the phrase "The increase in presynaptic excitability of the POA to pPVT excitatory pathway" represents a logical jump, as the data only support the "differential increase in presynaptic excitability of the excitatory pathway" (as described in lines 358-359) without specifically confirming the POA-to-pPVT pathway.<br /> b) Similarly, in lines 442-446, the statement "the role of excitatory projections from POA to pPVT in chronic heat exposure-induced emotional changes" should be revised to "the role of excitatory projection recipient pPVT in chronic heat~," as the data do not provide direct evidence that heat-responsive POA neurons projecting to pPVT mediate these effects. Such revisions would improve clarity and ensure that the conclusions remain aligned with the presented data.

    1. Reviewer #3 (Public review):

      Summary:

      The authors used cTBS TMS, magnetic resonance spectroscopy (MRS), and functional magnetic resonance imaging (fMRI) as the main methods of investigation. Their data show that cTBS modulates GABA concentration and task-dependent BOLD in the ATL, whereby greater GABA increase following ATL cTBS showed greater reductions in BOLD changes in ATL. This effect was also reflected in the performance of the behavioural task response times, which did not subsume to practice effects after AL cTBS as opposed to the associated control site and control task. This is in line with their first hypothesis. The data further indicates that regional GABA concentrations in the ATL play a crucial role in semantic memory because individuals with higher (but not excessive) GABA concentrations in the ATLs performed better on the semantic task. This is in line with their second prediction. Finally, the authors conducted additional analyses to explore the mechanistic link between ATL inhibitory GABAergic action and semantic task performance. They show that this link is best captured by an inverted U-shaped function as a result of a quadratic linear regression model. Fitting this model to their data indicates that increasing GABA levels led to better task performance as long as they were not excessively low or excessively high. This was first tested as a relationship between GABA levels in the ATL and semantic task performance; then the same analyses were performed on the pre and post-cTBS TMS stimulation data, showing the same pattern. These results are in line with the conclusions of the authors.

      Comments on revisions:

      The authors have comprehensively addressed my comments from the first round of review, and I consider most of their answers and the steps they have taken satisfactorily. Their insights prompted me to reflect further on my own knowledge and thinking regarding the ATL function.

      I do, however, have an additional and hopefully constructive comment regarding the point made about the study focusing on the left instead of bilateral ATL. I appreciate the methodological complexities and the pragmatic reasons underlying this decision. Nevertheless, briefly incorporating the justification for this decision into the manuscript would have been beneficial for clarity and completeness. The presented argument follows an interesting logic; however, despite strong previous evidence supporting it, the approach remains based on an assumption. Given that the authors now provide the group-level fMRI results captured more comprehensively in Supplementary Figure 2, where the bilateral pattern of fMRI activation can be observed in the current data, the authors could have strengthened their argument by asserting that the activation related to the given semantic association task in this data was bilateral. This would imply that the TMS effects and associated changes in GABA should be similar for both sites. Furthermore, it is worth noting the approach taken by Pobric et al. (2007, PNAS), who stimulated a site located 10 mm posterior to the tip of the left temporal pole along the middle temporal gyrus (MTG) and not the bilateral ATL.

    1. Reviewer #3 (Public review):

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome is multi-dimensional. In particular, the authors propose that the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally propose that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea thus has the potential to change how we think about mental disorders in a substantial way, and could even help us better understand how healthy people navigate challenging decision-making problems.

      Unfortunately, my view is that neither the theoretical nor empirical aspects of the paper really deliver on that promise. In particular, most (perhaps all) of the interesting claims in the paper have weak empirical support.

      Starting with theory, the elasticity idea does not truly "extend" the standard control model in the way the authors suggest. The reason is that effort is simply one dimension of action. Thus, the proposed model ultimately grounds out in how strongly our outcomes depend on our actions (as in the standard model). Contrary to the authors' claims, the elasticity of control is still a fixed property of the environment. Consistent with this, the computational model proposed here is a learning model of this fixed environmental property. The idea is still valuable, however, because it identifies a key dimension of action (namely, effort) that is particularly relevant to the notion of perceived control. Expressing the elasticity idea in this way might support a more general theoretical formulation of the idea that could be applied in other contexts. See Huys & Dayan (2009), Zorowitz, Momennejad, & Daw (2018), and Gagne & Dayan (2022) for examples of generalizable formulations of perceived control.

      Turning to experiment, the authors make two key claims: (1) people infer the elasticity of control, and (2) individual differences in how people make this inference are importantly related to psychopathology.

      Starting with claim 1, there are three sub-claims here; implicitly, the authors make all three. (1A) People's behavior is sensitive to differences in elasticity, (1B) people actually represent/track something like elasticity, and (1C) people do so naturally as they go about their daily lives. The results clearly support 1A. However, 1B and 1C are not supported.

      Starting with 1B, the experiment cannot support the claim that people represent or track elasticity because the effort is the only dimension over which participants can engage in any meaningful decision-making (the other dimension, selecting which destination to visit, simply amounts to selecting the location where you were just told the treasure lies). Thus, any adaptive behavior will necessarily come out in a sensitivity to how outcomes depend on effort. More concretely, any model that captures the fact that you are more likely to succeed in two attempts than one will produce the observed behavior. The null models do not make this basic assumption and thus do not provide a useful comparison.

      For 1C, the claim that people infer elasticity outside of the experimental task cannot be supported because the authors explicitly tell people about the two notions of control as part of the training phase: "To reinforce participants' understanding of how elasticity and controllability were manifested in each planet, [participants] were informed of the planet type they had visited after every 15 trips." (line 384).

      Finally, I turn to claim 2, that individual differences in how people infer elasticity are importantly related to psychopathology. There is much to say about the decision to treat psychopathology as a unidimensional construct. However, I will keep it concrete and simply note that CCA (by design) obscures the relationship between any two variables. Thus, as suggestive as Figure 6B is, we cannot conclude that there is a strong relationship between Sense of Agency and the elasticity bias---this result is consistent with any possible relationship (even a negative one). The fact that the direct relationship between these two variables is not shown or reported leads me to infer that they do not have a significant or strong relationship in the data.

      There is also a feature of the task that limits our ability to draw strong conclusions about individual differences in elasticity inference. As the authors clearly acknowledge, the task was designed "to be especially sensitive to overestimation of elasticity" (line 287). A straightforward consequence of this is that the resulting *empirical* estimate of estimation bias (i.e., the gamma_elasticity parameter) is itself biased. This immediately undermines any claim that references the directionality of the elasticity bias (e.g. in the abstract). Concretely, an undirected deficit such as slower learning of elasticity would appear as a directed overestimation bias.

      When we further consider that elasticity inference is the only meaningful learning/decision-making problem in the task (argued above), the situation becomes much worse. Many general deficits in learning or decision-making would be captured by the elasticity bias parameter. Thus, a conservative interpretation of the results is simply that psychopathology is associated with impaired learning and decision-making.

      Minor comments:

      Showing that a model parameter correlates with the data it was fit to does not provide any new information, and cannot support claims like "a prior assumption that control is likely available was reflected in a futile investment of resources in uncontrollable environments." To make that claim, one must collect independent measures of the assumption and the investment.

      Did participants always make two attempts when purchasing tickets? This seems to violate the intuitive model, in which you would sometimes succeed on the first jump. If so, why was this choice made? Relatedly, it is not clear to me after a close reading how the outcome of each trial was actually determined.

      It should be noted that the model is heuristically defined and does not reflect Bayesian updating. In particular, it overestimates control by not using losses with less than 3 tickets (intuitively, the inference here depends on your beliefs about elasticity). I wonder if the forced three-ticket trials in the task might be historically related to this modeling choice.

    1. Reviewer #3 (Public review):

      Summary:

      This is a retrospective analysis of 53 individuals over 26 features (12 clinical phenotypes, 12 CGM features, and 2 autocorrelation features) to examine which features were most informative in predicting percent necrotic core (%NC) as a parameter for coronary plaque vulnerability. Multiple regression analysis demonstrated a better ability to predict %NC from 3 selected CGM-derived features than 3 selected clinical phenotypes. LASSO regularization and partial least squares (PLS) with VIP scores were used to identify 4 CGM features that most contribute to the precision of %NC. Using factor analysis they identify 3 components that have CGM-related features: value (relating to the value of blood glucose), variability (relating to glucose variability), and autocorrelation (composed of the two autocorrelation features). These three groupings appeared in the 3 validation cohorts and when performing hierarchical clustering. To demonstrate how these three features change, a simulation was created to allow the user to examine these features under different conditions.

      Review:

      The goal of this study was to identify CGM features that relate to %NC. Through multiple feature selection methods, they arrive at 3 components: value, variability, and autocorrelation. While the feature list is highly correlated, the authors take steps to ensure feature selection is robust. There is a lack of clarity of what each component (value, variability, and autocorrelation) includes as while similar CGM indices fall within each component, there appear to be some indices that appear as relevant to value in one dataset and to variability in the validation. We are sceptical about statements of significance without documentation of p-values. While hesitations remain, the ability of these authors to find groupings of these many CGM metrics in relation to %NC is of interest. The believability of the associations is impeded by an obtuse presentation of the results with core data (i.e. correlation plots between CGM metrics and %NC) buried in the supplement while main figures contain plots of numerical estimates from models which would be more usefully presented in supplementary tables. Given the small sample size in the primary analysis, there is a lot of modeling done with parameters estimated where simpler measures would serve and be more convincing as they require less data manipulation. A major example of this is that the pairwise correlation/covariance between CGM_mean, CGM_std, and AC_var is not shown and would be much more compelling in the claim that these are independent factors. Lack of methodological detail is another challenge. For example, the time period of CGM metrics or CGM placement in the primary study in relation to the IVUS-derived measurements of coronary plaques is unclear. Are they temporally distant or proximal/ concurrent with the PCI? A patient undergoing PCI for coronary intervention would be expected to have physiological and iatrogenic glycemic disturbances that do not reflect their baseline state. This is not considered or discussed. The attempts at validation in external cohorts, Japanese, American, and Chinese are very poorly detailed. We could only find even an attempt to examine cardiovascular parameters in the Chinese data set but the outcome variables are unspecified with regard to what macrovascular events are included, their temporal relation to the CGM metrics, etc. Notably macrovascular event diagnoses are very different from the coronary plaque necrosis quantification. This could be a source of strength in the findings if carefully investigated and detailed but due to the lack of detail seems like an apples-to-oranges comparison. Finally, the simulations at the end are not relevant to the main claims of the paper and we would recommend removing them for the coherence of this manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      Ribosomes are generally considered homogeneous complexes with no inherent role in regulating translation. However, recent studies have found heterogeneity in the composition of ribosome accessory factors, proteins, and ribosomal RNA. Moreover, there is evidence that district ribosomal isoforms are produced at different developmental stages in Xenopus, Drosophila, and zebrafish. In Drosophila, germline-derived ribosomes have a different protein composition to those produced by somatic cell types. In zebrafish, germline vs. somatic ribosomes have been shown to incorporate distinct rRNA isoforms. However, the functional significance of ribosome heterogeneity is not known.

      The manuscript by Shah et al., uses the power of the zebrafish to test the hypothesis that maternal ribosome isoforms have a distinct function relative to ribosome isoforms produced by somatic cells after the maternal-to-zygotic transition (MTZ). They confirm previous findings that all maternal rRNA are derived from the maternal-specific rRNA locus on Chromosome 4. Additionally, proteomic analysis showed that maternal and somatic ribosomes also differ in protein composition. Using ribosome tagging experiments they showed that maternally derived subunits can form functional heteroduplexes (hybrids) with somatic-derived subunits. Finally, they show that maternal-derived ribosomes continue to be expressed in germ cells where they preferentially associate with the maternally derived and germline localized nanos3 mRNA. This suggests a possible role of maternal ribosomes in germ cell-specific translational regulation.

      Strengths:

      The authors use the experimental power of zebrafish to test the hypothesis that maternal and somatic-derived ribosomes have distinct functions. They use state-of-the art proteomics, molecular modeling, and transgenesis techniques. For the most part, the data presented is clear and supports their conclusions.

      Weaknesses:

      Using pulldown experiments they show that maternal ribosomes associate with the PGC-enriched nanos3 RNA, suggesting a role for the maternal isoform in germline-specific translation. However, they acknowledge that the level of enrichment is similar to the level of maternal vs. somatic isoforms that localize to PGCs. The nanos3 mRNA is unique in that it is actively degraded in somatic cells shortly after MTZ so is never present in cells that express the somatic isoforms. Therefore, the association of nanos3 with maternal ribosomes shows that these ribosomes can associate with germline-specific RNAs, but does not provide compelling evidence for a maternal isoform-specific role in translational regulation.

    1. Reviewer #3 (Public review):

      Summary:

      Dong et al. described a deep learning-based framework of antimicrobial (AMP) generator and regressor to design and rank de novo antimicrobial peptides (AMPs). For generated AMPs, they predicted their minimum inhibitory concentration (MIC) using a model that combines the Morgan fingerprint, contact map and ESM language model. For their selected AMPs based on predicted MIC, they also use a combination of antiviral peptide (AVP) prediction models to select AMPs with potential antiviral activity. They experimentally validated 3 candidates for antimicrobial activity against S. aureus, A. baumannii, E. coli, and P. aeruginosa, and their toxicity on mouse blood and three human cell lines. The authors select their most promising AMP (P076) for in vivo experiments in A. baumannii-infected mice. They finally test the antiviral activity of their 3 AMPs against viruses.

      Strengths:

      - The development of de novo antimicrobial peptides (AMPs) with the novelty of being bifunctional (antimicrobial and antiviral activity).

      - Novel, combined approach to AMP activity prediction from their amino acid sequence.

      Weaknesses:

      - I missed the justification for combined antiviral and antibacterial activities. As the authors responded, less than 10% of the training data has antiviral activity. Therefore, I do not understand how the high percentage of antiviral activities was achieved. Especially reading that the antiviral filtering did not have an influence on the number of antiviral peptides obtained.

      - I had difficulty in reading the story because of the use of acronyms without referring to their full name for the first time, and incomplete information annotation in figures and captions.

  2. Feb 2025
    1. Reviewer #3 (Public review):

      Summary:

      In this study, Li et al. identified CAD96CA and FGF1 among 20 receptor tyrosine kinase receptors as mediators of JH signaling. By performing a screen in HaEpi cells with overactivated JH signaling, the authors pinpointed two main RTKs that contribute to the transduction of JH. Using the CRISPR/Cas9 system to generate mutants, the authors confirmed that these RTKs are required for normal JH activation, as precocious pupariation was observed in their absence. Additionally, the authors demonstrated that both CAD96CA and FGF1 exhibit a high affinity for JH, and their activation is necessary for the proper phosphorylation of Tai and Met, transcription factors that promote the transcriptional response. Finally, the authors provided evidence suggesting that the function of CAD96CA and FGF1 as JH receptors is conserved across insects.

      Strengths:

      The data provided by the authors are convincing and support the main conclusions of the study, providing ample evidence to demonstrate that phosphorylation of the transducers Met and Tai mainly depends on the activity of two RTKs. Additionally, the binding assays conducted by the authors support the function of CAD96CA and FGF1 as membrane receptors of JH. The study's results validate, at least in H. amigera, the predicted existence of membrane receptors for JH.

      Weaknesses:

      The authors have provided evidences that the Cad96Ca and FGF1 RTK receptors contribute to JH signaling through CRISPR/Cas9, inducing precocious metamorphosis, although not to the same extent as absence of JH. Therefore, it still remains unclear whether these RTKs are completely required for pathway activation or only necessary for high activation levels during the last larval stage.

      While the authors have included some additional data, the mechanism by which different RTKs function in transducing JH signaling in a tissue specific manner is still unclear. As the authors note in the discussion, it is possible that other RTKs may also play a role in facilitating the transduction of JH signaling.

      Lastly, the study does not yet explain how RTKs with known ligands could also bind JH and contribute to JH signaling activation. Although receptor promiscuity has been suggested as a possible mechanism, future studies could explore whether activation of RTK pathways by their known ligands induces certain levels of JH transducer phosphorylation, which, in the presence of JH, could contribute to full pathway activation without the need for direct JH-RTK binding.

    1. Reviewer #3 (Public review):

      In this manuscript, Fang et al. describe a new oncogenic function of the STAMBPL1 protein in triple-negative breast cancer (TNBC). STAMBPL1 is a deubiquitinase that has been poorly studied in cancer. Previous reports identify it as a promoter of epithelial to mesenchymal transition or an inhibitor of cisplatin-induced cell death, but its participation to other cancer phenotypes has not been investigated. Fang et al. find that in cell line models of TNBC, STAMBPL1 promotes expression of the transcription factor HIF-1a and its downstream target VEGF, with the consequence of stimulating neo-angiogenesis in vitro and in vivo. Mechanistically, the authors find that this occurs via a non-enzymatic and indirect mechanism, that is by promoting the expression of GRHL3, a transcription factor that in turn binds to the HIF-1a promoter to stimulate its transcription. Interestingly, the way by which STAMPB1 promotes GRHL3 expression is by facilitating the transcriptional activity of FOXO1, a known regulator of GRHL3. Because the authors find that STAMBPL1 and FOXO1 interact, they suggest that STAMBPL1 may promote the formation of an active transcriptional complex containing FOXO1, perhaps by facilitating the recruitment of transcriptional coactivators.

      In conclusion, these data position for the first time the STAMBPL1 deubiquitinase in a FOXO-GRHL3 regulatory axis for the control of VEGF expression and tumor angiogenesis.

      The main weaknesses of this work are that the relevance of this molecular axis to the pathogenesis of TNBC is not clear, and it is not clearly established whether this is a regulatory pathway that occurs in hypoxic conditions or independently of oxygen levels.

      Major criticisms:

      (1) Both FOXO1 and GRHL3 have been previously described as tumor suppressors, with reports of FOXO1 inhibiting tumor angiogenesis. Therefore, this work describes an apparently contradictory function of these proteins in TNBC. While it is not surprising that the same genes perform divergent functions in different tumor contexts, a stronger evidence in support of the oncogenic function of these two genes should be provided to make the data more convincing.<br /> To strengthen the notion that STAMBPL1, FOXO and GRHL3 are overexpressed in TNBC, the authors have utilized the BCIP tool to analyze their expression in the Metabric database. According to this analysis, the levels of STAMBPL1and GRHL3 are not higher in breast cancer than in adjacent tissues, and the levels of FOXO1 are lower. Nonetheless, the authors observe that their expression levels are significantly (yet not dramatically) higher in TNBC compared to non-TNBC (Fig.S6A-C). However, these new data do not provide convincing evidence of the relevant tumor suppressive function of these genes in TNBC, as neither is more expressed in tumors compared to adjacent normal tissues.

      (2) Because STAMBPL1 overexpression in normoxic conditions is sufficient to cause HIF-1a protein accumulation, it is not clear why the authors then use hypoxic conditions to analyze the effect of STAMBPL1 on HIF-1a transcription Avoiding HIF1-a protein degradation should not have any effect on its transcription. At the same time, it is not clear nor is being explained why different hypoxic conditions are sometimes used, resulting in different mRNA levels of HIF-1a and its downstream targets and quite significant fluctuations within the same cell line from one experimental setting to the next. In conclusion, it is not clear what is the relevance of the new HIF-1a regulatory axis described in this paper in normoxic or hypoxic conditions.

      (3) Another critical point is that necessary experimental controls are sometimes missing, and this is reducing the strength of some of the conclusions enunciated by the authors. As an example, experiments where overexpression of STAMBPL1 is coupled to silencing of FOXO1 to demonstrate dependency lack FOXO1silencing the absence of STAMBPL1 overexpression. Because diminishing FOXO1 expression affects HIF-1a/VEGF transcription even in the absence of STAMBPL1 (shown in Figure 7C, D), it is not clear if the data presented in Figure 7G are significant. The difference between HIF-1a expression upon FOXO1 silencing should be compared in the presence or absence of STAMBPL1 overexpression to understand if FOXO1 impacts HIF-1a transcription dependently or independently of STAMBPL1.

      In addition, some minor comments to improve the quality of this manuscript are provided.

      (1) In Figures 2A and D, where endogenous versus STAMBPL1 expression is shown, it is not clear what is the molecular weight of these proteins as they both appear to be of 55 KDa, even though according to the authors the exogenous protein is bigger than the endogenous and the lower band in Figure 2D is reported to be the endogenous STAMBPL1.

      (2) In Figure 2, the effect of STAMBPL1 overexpression on HIF-1a mRNA is minor. At the same time, it seems that the protein levels of HIF-1a are quite high (or at least visible by WB) in normoxic cells even in the absence of STAMBPL1 overexpression. This raises questions about the type of regulation that HIF-1a is subjected to in these cells.

      In general, because only two cell lines are used in this study and the data in patients do not appear to strongly support an oncogenic function of STAMBPL1 in TNBC (via its overexpression), data should be more solid and additional experiments should be provided to substantiate the oncogenic function of this pathway in TNCB.

    1. Reviewer #3 (Public review):

      Summary:

      Rapamycin is a macrolide of immunologic therapeutic importance, proposed as a ligand of mTOR. It is also employed as in essays to probe protein-protein interactions.<br /> The authors serendipitously found that the drug rapamycin and some related compounds, potently activate the cationic channel TRPM8, which is the main mediator of cold sensation in mammals. The authors show that rapamycin might bind to a novel binding site that is different from the binding site for menthol, the prototypical activator of TRPM8. These convincing results are important to a wide audience, since rapamycin is a widely used drug and is also employed in essays to probe protein-protein interactions, which could be affected by potential specific interactions of rapamycin with other membrane proteins, as illustrated herein.

      Strengths:

      The authors employ several experimental approaches to convincingly show that rapamycin activates directly the TRPM8 cation channel and not an accessory protein or the surrounding membrane. In general, the electrophysiological, mutational and fluorescence imaging experiments are adequately carried out and cautiously interpreted, presenting a clear picture of the direct interaction with TRPM8. In particular, the authors convincingly show that the interactions of rapamycin with TRPM8 are distinct from interactions of menthol with the same ion channel.

      Weaknesses:

      The main weakness of the manuscript was the NMR method employed to show that rapamycin binds to TRPM8. The authors developed and deployed a novel signal processing approach based on subtraction of several independent NMR spectra to show that rapamycin binds to the TRPM8 protein and not to the surrounding membrane or other proteins. In this revised version the authors have strengthened the evidence that the method gives solid results and have improved the clarity of the presentation.

      Comments on revisions:

      The authors have greatly improved the quality of the presentation of the NMR data and have answered my concerns regarding the new methodology. The manuscript is improved and represents an important contribution.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, the authors address the paradox of how tyrosine can act as a stronger sticker for phase separation than phenylalanine, despite phenylalanine being higher on the hydrophobicity scale and exhibiting more prominent pairwise contact statistics in folded protein structures compared to tyrosine.

      Strengths:

      This is a fascinating problem for the protein science community with special relevance for the biophysical condensate community. Using atomistic simulations of simple model peptides and condensates as well as quantum calculations, the authors provide an explanation that relies on the dielectric constant of the medium and the hydration level that either tyrosine or phenylalanine can achieve in highly hydrophobic vs. hydrophilic media. The authors find that as the dielectric constant decreases, phenylalanine becomes a stronger sticker than tyrosine. The conclusions of the paper seem to be solid, it is well-written and it also recognises the limitations of the study. Overall, the paper represents an important contribution to the field.

      Weaknesses:

      How can the authors ensure that a condensate of GSY or GSF peptides is a representative environment of a protein condensate? First, the composition in terms of amino acids is highly limited, second the effect of peptide/protein length compared to real protein sequences is also an issue, and third, the water concentration within these condensates is really low as compared to real experimental condensates. Hence, how can we rely on the extracted conclusions from these condensates to be representative for real protein sequences with a much more complex composition and structural behaviour?

    1. Reviewer #3 (Public review):

      Summary:

      The authors performed snRNA-seq in the pre-optic area (POA), a heterogeneous brain region implicated in multiple innate behaviors, comparing two species of Peromyscus mice that possess strikingly different parenting behaviors. P. polionotus show high levels of parental care from both sexes of parent, and P. maniculatus show lower levels of care, predominantly displayed by dams rather than sires. The overall goal of understanding the genomic basis of behavioral variation is significant and of broad interest and comparative studies in POA in these two species is an excellent approach to tackle this question. The authors correctly point out that existing studies largely compare species that are highly divergent, such as mice and humans, which confounds the association of specific neuronal populations or gene expression patterns with distinct behaviors. They identify neuronal populations with differential abundance between species and sexes, and additionally report sex and species differences in gene expression within each transcriptomic cell type. Their cell type classification is aided by mapping their Peromyscus cells onto a previously existing POA single cell dataset generated in lab mice. The detection and validation of previously observed sex differences in the Gal/Moxd1 cell type, and species differences in Avp expression provides additional support that their data are robust. Importantly, the authors demonstrate reduced sexual dimorphism in the POA of P. polionotus, compared to P. maniculatus, and prior knowledge in rats and mice. This finding suggests a potential neural substrate for the increased parental behavior in P. polionotus.

      Strengths:

      This is a pioneering comparative snRNA-seq study that provides a roadmap for similar approaches in non-traditional model organisms.

      The authors have identified populations that may underlie sex- and species- differences in parenting behavior in rodents.

      A significant strength of the manuscript is the histological validation of their most robust marker genes.

      Weaknesses:

      My primary concern is that the dataset is limited: 52,121 neuronal nuclei across 24 samples, which does not provide many cells per cluster to analyze comparatively across sex and species, particularly given the heterogeneity of the large region dissected, which contains adjacent regions such as the PVN and SCN.

      There is no explanation for the finding that there is a female-bias in gene expression across all cell types in P. polionotus.

    1. Reviewer #3 (Public review):

      Summary:

      In this study by Kawadkar et al, the authors investigate the developmental role of Nup107, a nucleoporin, in regulating the larval-to-pupal transition in Drosophila through RNAi knockdown and CRISPR-Cas9-mediated gene editing. They demonstrate that Nup107, an essential component of the nuclear pore complex (NPC), is crucial for regulating ecdysone signaling during developmental transitions. The authors show that the depletion of Nup107 disrupts these processes, offering valuable insights into its role in development.

      Specifically, they find that:

      (1) Nup107 depletion impairs pupariation during the larval-to-pupal transition.<br /> (2) RNAi knockdown of Nup107 results in defects in EcR nuclear translocation, a key regulator of ecdysone signaling.<br /> (3) Exogenous 20-hydroxyecdysone (20E) rescues pupariation blocks, but rescued pupae fail to close.<br /> (4) Nup107 RNAi-induced defects can be rescued by activation of the MAP kinase pathway.

      Strengths:

      The manuscript provides strong evidence that Nup107, a component of the nuclear pore complex (NPC), plays a crucial role in regulating the larval-to-pupal transition in Drosophila, particularly in ecdysone signaling.

      The authors employ a combination of RNAi knockdown, CRISPR-Cas9 gene editing, and rescue experiments, offering a comprehensive approach to studying Nup107's developmental function.

      The study effectively connects Nup107 to ecdysone signaling, a key regulator of developmental transitions, offering novel insights into the molecular mechanisms controlling metamorphosis.

      The use of exogenous 20-hydroxyecdysone (20E) and activation of the MAP kinase pathway provides a strong mechanistic perspective, suggesting that Nup107 may influence EcR signaling and ecdysone biosynthesis.

      Weaknesses:

      The authors do not sufficiently address the potential off-target effects of RNAi, which could impact the validity of their findings. Alternative approaches, such as heterozygous or clonal studies, could help confirm the specificity of the observed phenotypes.

      NPC Complex Specificity: While the authors focus on Nup107, it remains unclear whether the observed defects are specific to this nucleoporin or if other NPC components also contribute to similar defects. Demonstrating similar results with other NPC components would strengthen their claims.

      Although the authors show that Nup107 depletion disrupts EcR signaling, the precise molecular mechanism by which Nup107 influences this process is not fully explored. Further investigation into how Nup107 regulates EcR nuclear translocation or ecdysone biosynthesis would improve the clarity of the findings.

      There are some typographical errors and overly strong phrases, such as "unequivocally demonstrate," which could be softened. Additionally, the presentation of redundant data in different tissues could be streamlined to enhance clarity and flow.

    1. Reviewer #3 (Public review):

      Neural activity in the visual cortex has primarily been studied in terms of responses to external visual stimuli. While the noisiness of inputs to a visual area is known to also influence visual responses, the contribution of this noisy component to overall visual responses has not been well characterized.

      In this study, the authors reanalyze two previously published datasets - a Ca++ imaging study from mouse V1 and a large-scale electrophysiological study from monkey V1-V4. Using regression models, they examine how neural activity in one layer (in mice) or one cortical area (in monkeys) predicts activity in another layer or area. Their main finding is that significant predictions are possible even in the absence of visual input, highlighting the influence of non-stimulus-related downstream activity on neural responses. These findings can inform future modeling work of neural responses in the visual cortex to account for such non-visual influences.

      A major weakness of the study is that the analysis includes data from only a single monkey. This makes it hard to interpret the data as the results could be due to experimental conditions specific to this monkey, such as the relative placement of electrode arrays in V1 and V4. The authors perform a thorough analysis comparing regression-based predictions for a wide variety of combinations of stimulus conditions and directions of influence. However, the comparison of stimulus types (Figure 4) raises a potential concern. It is not clear if the differences reported reflect an actual change in predictive influence across the two conditions or if they stem from fundamental differences in the responses of the predictor population, which could in turn affect the ability to measure predictive relationships. The authors do control for some potential confounds such as the number of neurons and self-consistency of the predictor population. However, the predictability seems to closely track the responsiveness of neurons to a particular stimulus. For instance, in the monkey data, the V1 neuronal population will likely be more responsive to checkerboards than to single bars. Moreover, neurons that don't have the bars in their RFs may remain largely silent. Could the difference in predictability be just due to this? Controlling for overall neuronal responsiveness across the two conditions would make this comparison more interpretable.

    1. Reviewer #3 (Public review):

      Summary:

      In their report, Tsutsumi et al., use single nucleus transcriptional and chromatin accessibility analyses of mouse achilles tendon in an attempt to uncover new markers of tendon stem/progenitor cells. They propose CD55 and CD248 as novel markers of tendon stem/progenitor cells.

      Strengths:

      This is an interesting and important research area. The paper is overall well written.

      Weaknesses:

      Major problems:

      (1) It is not clear what tissue exactly is being analyzed. The authors build a story on tendons, but there is little description of the dissection. The authors claim to detect MTJ and cartilage cells, but not bone or muscle cells. The tendon sheath is known to express CD55, so the population of "progenitors" may not be of tendon origin.

      (2) Cluster annotations are seemingly done with a single gene. Names are given to cells without functional or spatial validation. For example, MTJ cells are annotated based on Postn, but it is never shown that Postn is only expressed at the MTJ, and not in other anatomical locations in the tendon.

      (3) The authors compare their data to public data based on interrogating single genes in their dataset. It is now standard practice to integrate datasets (eg, using harmony), or at a minimum using gene signatures built into Seurat (eg AddModuleScore).

      (4) Progenitor populations (SP1, SP2). The authors claim these are progenitors but show very clearly that they express macrophage genes. What are they, macrophages or fibroblasts?

      (5) All omics analysis is done on single data points (from many mice pooled). The authors make many claims on n=1 per group for readouts dependent on sample number (eg frequency of clusters).

      (6) The scRNAseq atlas in Figure 1 is made by analyzing 2W and 6W tendons at the same time. The snRNAseq and ATACseq atlas are built first on 2W data, after which the 6W data is compared. Why use the 2W data as a reference? Why not analyze the two-time points together as done with the scRNAseq?

      (7) Figure 5: The authors should show the gating strategy for FACS. Were non-fibroblasts excluded (eg, immune cells, endothelia...etc). Was a dead cell marker used? If not, it is not surprising that fibroblasts form colonies and express fibroblast genes when compared to CD55-CD248- immune cells, dead cells, or debris. Can control genes such as Ptprc or Pecam1 be tested to rule out contamination with other cell types?

      Minor problems:

      (1) Report the important tissue processing details: type of collagenase used. Viability before loading into 10x machine.

    1. Reviewer #3 (Public review):

      The manuscript of Fuchsberger et al. investigates the cellular mechanisms underlying dopamine-dependent long-term potentiation (DA-LTP) in mouse hippocampal CA1 neurons. The authors conducted a series of experiments to measure the effect of dopamine on the protein synthesis rate in hippocampal neurons and its role in enabling DA-LTP. The key results indicate that protein synthesis is increased in response to dopamine and neuronal activity in the pyramidal neurons of the CA1 hippocampal area, mediated via the activation of adenylate cyclases subtypes 1 and 8 (AC1/8) and the cAMP-dependent protein kinase (PKA) pathway. Additionally, the authors show that postsynaptic DA-induced increases in protein synthesis are required to express DA-LTP, while not required for conventional t-LTP.

      The increased expression of the newly synthesized GluA1 receptor subunit in response to DA supports the formation of homomeric calcium-permeable AMPA receptors (CP-AMPARs). This evidence aligns well with data showing that DA-LTP expression requires the GluA1 AMPA subunit and CP-AMPARs, as DA-LTP is absent in the hippocampus of a GluA1 genetic knock-out mouse model.

      Comments on revisions:

      The authors addressed adequately all my comments.

    1. Reviewer #3 (Public review):

      Strengths:

      The paper describes a new perspective on friction perception, with the hypothesis that humans are sensitive to the instabilities of the surface rather than the coefficient of friction. The paper is very well written and with a comprehensive literature survey.

      One of the central tools used by the author to characterize the frictional behavior is the frictional instabilities maps. With these maps, it becomes clear that two different surfaces can have both similar and different behavior depending on the normal force and the speed of exploration. It puts forward that friction is a complicated phenomenon, especially for soft materials.

      The psychophysics study is centered around an odd-one-out protocol, which has the advantage of avoiding any external reference to what would mean friction or texture for example. The comparisons are made only based on the texture being similar or not.

      The results show a significant relationship between the distance between frictional maps and the success rate in discriminating two kinds of surface.

      Weaknesses:

      The main weakness of the paper comes from the fact that the frictional maps and the extensive psychophysics study are not made at the same time, nor with the same finger. The frictional maps are produced with an artificial finger made out of PDMS which is a poor substitute for the complex tribological properties of skin.

      The evidence would have been much stronger if the measurement of the interaction was done during the psychophysical experiment. In addition, because of the protocol, the correlation is based on aggregates rather than on individual interactions.

      The authors compensate with a third experiment where they used a 2AFC protocol and an online force measurement. But the results of this third study, fail to convince the relation.

      No map of the real finger interaction is shown, bringing doubt to the validity of the frictional map for something as variable as human fingers.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the investigators identified LMOD1 as one of a subset of cytoskeletal proteins whose levels increase in the early stages of myogenic differentiation. Lmod1 is understudied in striated muscle and in particular in myogenic differentiation. Thus, this is an important study. It is also a very thorough study - with perhaps even too much data presented. Importantly, the investigators observed that LMOD1 appears to be important for skeletal regeneration, and myogenic differentiation and that it interacts with SIRT1. Both primary myoblast differentiation and skeletal muscle regeneration were studied. Rescue experiments confirmed these observations: SIRT1 can rescue perturbations of myogenic differentiation as a result of LMOD1 knockdown.

      Strengths:

      Particular strengths include: important topic, the use of primary skeletal cultures, the use of both cell culture and in vivo approaches, careful biomarker analysis of primary mouse myoblast differentiation, the use of two methods to probe the function of the Lmod1/SIRT1 pathway via using depletion approaches and inhibitors, and generation of six independent myoblast cultures. Results support their conclusions.

      Weaknesses:

      (1) Figure 1. Images of cells in Figure 1A are too small to be meaningful (especially in comparison to the other data presented in this figure). Perhaps the authors could make graphs smaller?

      (2) Line 148 "We found LMOD2 to be the most abundant Lmod in whole skeletal muscle." This is confusing since most if not all prior studies have shown that Lmod3 is the predominant isoform in skeletal muscle. The two papers that are cited are incorrectly cited. Clarification to resolve this discrepancy is needed.

      (3) Figure 2. Immunoflorescence (IF) panels are too small to be meaningful. Perhaps the graphs could be made smaller and more space allocated for the IF panels? This issue is apparent for just about all IF panels - they are simply too small to be meaningful. Additionally, in many of the immunofluorescence figures, the colors that were used make it difficult to discern the stained cellular structures. For example in Figure S1, orange and purple are used - they do not stand out as well as other colors that are more commonly used.

      (4) There is huge variability in many experiments presented - as such, more samples appear to be required to allow for meaningful data to be obtained. For example, Figure S2. Many experimental groups, only have 3 samples - this is highly problematic - I would estimate that 5-6 would be the minimum.

      (5) Ponceau S staining is often used as a loading control in this manuscript for western blots. The area/molecular weight range actually used should be specified. Not clear why in some experiments GAPDH staining is used, in other experiments Ponceau S staining is used, and in some, both are used. In some experiments, the variability of total protein loaded from lane to lane is disconcerting. For example, in Figure S4C there appears to be more than normal variability. Can the protein assay be redone and samples run again?

      (6) Figure S3 - Lmod3 is included in the figure but no mention of it occurs in the title of the figure and/or legend.

      (7) Abstract, line 25. "overexpression accelerates and improves the formation of myotubes". This is a confusing sentence. How is it improving the formation? A little more information about how they are different than developing myotubes in normal/healthy muscles would be helpful.

      (8) It is impossible from the IF figures presented to determine where Lmod1 localizes in the myocytes. Information on its subcellular localization is important. Does it localize with Lmod2 and Lmod3 at thin filament pointed ends?

    1. Reviewer #3 (Public review):

      Summary:

      Chen and Phillips present intriguing work that extends our view on the C. elegans small RNA network significantly. While the precise findings are rather C. elegans specific there are also messages for the broader field, most notably the switching of small RNA populations bound to an argonaute, and RNA granules behavior depending on developmental stage. The work also starts to shed more light on the still poorly understood role of the CSR-1 argonaute protein and supports its role in the decay of maternal transcripts. Overall, the work is of excellent quality, and the messages have a significant impact.

      Strengths:

      Compelling evidence for major shift in activities of an argonaute protein during development, and implications for how small RNAs affect early development. Very balanced and thoughtful discussion.

      Weaknesses:

      The switch between maternal and zygotic NRDE-3 remains unaddressed

    1. Reviewer #3 (Public review):

      Summary:

      Xiang et al. investigated the role of ubiquitin E3 ligase ITCH in SARS-CoV-2 replication. First, they described the role of ITCH on the structural proteins. Here, the ubiquitination of E and M (but not S) leads to an enhanced interaction and presumably virion assembly. In addition, E and M ubiquitination seems to be necessary for p62-guided sequestration into autophagosomes for secretion. Furthermore, ITCH regulates S proteolytic cleavage by changing furin localization and inhibiting CTSL protease maturation. In addition, SARS-CoV-2 infection upregulates ITCH phosphorylation, whereas knockout of ITCH reduces SARS-CoV-2 replication.

      Strengths:

      The proposed study is of interest to the virology community because it aims to elucidate the role of ubiquitination by ITCH in SARS-CoV-2 proteins. Understanding these mechanisms will address broadly applicable questions about coronavirus biology and enhance our knowledge of ubiquitination's diverse functions in cell biology.

      Weakness:

      The involvement of ubiquitin ligases in SARS-CoV-2 replication is not entirely new (see E3 Ubiquitin Ligase RNF5; Yuan et al., 2022; Li et al., 2023). While the data generally support the conclusions, additional work is needed to confirm the role of ITCH in SARS-CoV-2 replication in a biologically relevant context. The vast majority of data is based on transient overexpression experiments of ITCH, which ultimately leads to massive ubiquitination of several viral and host cell factors, including potentially low-affinity substrates not typically recognized under physiological conditions. In addition to that, nearly all experiments were done in cells co-overexpressing ITCH and the viral structural proteins (or cellular proteases) in HEK293T cells. Therefore, a proteomic analysis of protein ubiquitination in a) SARS-CoV-2-infected cells (ideally several cell types) and b) SARS-CoV-2-infected v2T-ITCH-KO cells would verify the ITCH-related ubiquitination of e.g., E and M and would strengthen the whole manuscript. In addition, the few key experiments using SARS-CoV-2 infected cells were performed in VeroE6 cells, which are neither human nor lung-derived. Only in one experiment were lung-derived Calu3 cells included.<br /> Moreover, the manuscript names ITCH as a central regulator of SARS-CoV-2 replication. If ITCH is beneficial for E and M interaction and thereby aids virion assembly, showing its effect on VLP production would be desirable. Clarifications regarding data acquisition and data analysis could strengthen the manuscript and its conclusions.

    1. Reviewer #3 (Public review):

      NCXs are key Ca2+ transporters located on the plasma membrane, essential for maintaining cellular Ca2+ homeostasis and signaling. The activities of NCX are tightly regulated in response to cellular conditions, ensuring precise control of intracellular Ca2+ levels, with profound physiological implications. Building upon their recent breakthrough in determining the structure of human NCX1, the authors obtained cryo-EM structures of NCX1 in complex with its modulators, including the cellular activator PIP2 and the small molecule inhibitor SEA0400. Structural analyses revealed mechanistically informative conformational changes induced by PIP2 and elucidated the molecular basis of inhibition by SEA0400. These findings underscore the critical role of the interface between the transmembrane and cytosolic domains in NCX regulation and small molecule modulation. Overall, the results provide key insights into NCX regulation, with important implications for cellular Ca2+ homeostasis.

    1. Reviewer #3 (Public review):

      Summary:

      The authors develop automated methods to visually identify micronuclei (MN) and MN-containing cells. The authors then use these methods to isolate MN-containing RPE-1 cells post-photoactivation and analyze transcriptional changes in cells with and without micronuclei. The authors find that RPE-1 cells with MN have similar transcriptomic changes as aneuploid cells and that MN rupture does not lead to vast changes in the transcriptome.

      Strengths:

      The authors develop a method that allows for automating measurements and analysis of micronuclei. This has been something that the field has been missing for a long time. Using such a method has the potential to greatly enhance the field's ability to analyze micronuclei and understand the downstream consequences. The authors also develop a method to identify cells with micronuclei in real-time, mark them using photoconversion, and then isolate them via cell sorting, which could change the way we isolate and study MN-containing cells, and the scale at which we do it. The authors use this method to look at the transcriptome. This method is very powerful as it can allow for the separation of a heterogenous population and subsequent analysis with a much higher sample number than previously possible.

      Weaknesses:

      The major weakness of this paper is the transcriptomic analysis of MN. There is in general large variance between replicates in experiments looking at cells with ruptured versus intact micronuclei. This limits our ability to assess if lack of changes are due to truly not having changes between these populations or experimental limitations. More transcriptomic analysis will be necessary to fully understand the downstream consequences of MN rupture.

    1. Reviewer #3 (Public review):

      Summary:

      Type VI secretion systems (T6SS) are employed by bacteria to inject competitor cells with numerous effector proteins. These effectors can kill injected cells via an array of enzymatic activities. A common class of T6SS effector are peptidoglycan (PG) lysing enzymes. In this manuscript, the authors characterize a PG-lysing effector-TseP-from the pathogen Aeromonas dhakensis. While the C-terminal domain of TseP was known to have lysozyme activity, the N-terminal domain was uncharacterized. Here, the authors functionally characterize TsePN as a zinc-dependent amidase. This discovery is somewhat novel because it is rare for PG-lysing effectors to have amidase and lysozyme activity. In the second half of the manuscript, the authors utilize a crystal structure of the lysozyme TsePC domain to inform the engineering of this domain to lyse gram-positive peptidoglycan.

      Strengths:

      The two halves of the manuscript considered together provide a nice characterization of a unique T6SS effector and reveal potentially general principles for lysozyme engineering.

      Weaknesses:

      The advantage of fusing amidase and lysozyme domains in a single effector is not discussed but would appear to be a pertinent question.

      Comments on revisions:

      The authors have adequately addressed my previous comments. The authors did not conduct any additional experiments to address the comments made by other reviewers. However, in most cases it seems that paring down the strength of claims made in the text or adding data to the supplement is sufficient to address these concerns.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript introduces a differentiable variant of the Gillespie algorithm (DGA) that allows gradient calculation using backpropagation. The most significant contribution of this work is the development of the DGA itself, a novel approach to making stochastic simulations differentiable. This is achieved by replacing discontinuous operations in the traditional Gillespie algorithm with smooth, differentiable approximations using sigmoid and Gaussian functions. This conceptual advance opens up new avenues for applying powerful gradient-based optimization techniques, prevalent in machine learning, to studying stochastic biological systems.

      The method was tested on a simple two-state promoter model of gene expression. The authors found that the DGA accurately captured the moments of the steady-state distribution and other major qualitative features. However, it was less accurate at capturing information about the distribution's tails, potentially because rare events result from frequent low-probability reaction events where the approximations made by the DGA have a greater impact. The authors also used the DGA to design a four-state promoter model of gene regulation that exhibited a desired input-output relationship. The DGA could learn parameters that produced a sharper response curve, which was achieved by consuming more energy.

      The authors conclude that the DGA is a powerful tool for analyzing and designing stochastic systems. The discussion lays several open questions in the field and constructively addresses shortcomings of the proposed method as well as potential ways forward.

      Strengths:

      The DGA allows gradient-based optimization techniques to estimate parameters and design networks with desired properties.

      The DGA efficacy in estimating kinetic parameters from both synthetic and experimental data. This capability highlights the DGA's potential to extract meaningful biophysical parameters from noisy biological data.

      The DGA's ability to design a four-state promoter architecture exhibits a desired input-output relationship. This success indicates the potential of the DGA as a valuable tool for synthetic biology, enabling researchers to engineer biological circuits with predefined behaviours.

      Weaknesses:

      The study primarily focuses on analysing the steady-state properties of stochastic systems.

      Comments on revisions:

      Thank you for addressing all the points raised. I am looking forward to seeing the next steps in DGAs development and performance!

    1. Reviewer #3 (Public review):

      Ito et al. investigate the role of synaptic plasticity in the medial preoptic area (MPOA) pathway of male mice and its involvement in transitions from infanticidal aggression to parental behavior. Using optogenetics, whole-cell patch-clamp recordings, and behavioral assays, they demonstrate that inhibitory synaptic transmission from the posterior-dorsal medial amygdala (MePD) to the central MPOA (cMPOA) decreases following mating and cohabitation with pregnant females. This synaptic disinhibition is correlated with a reduction in aggressive behavior toward pups. They further show that paternal experience induces enhanced inhibitory transmission in the rhomboid nucleus of the bed nucleus of the stria terminalis (BSTrh), downstream of the MPOA, through postsynaptic mechanisms. These findings suggest a circuit-based model where social experiences and mating induce synaptic changes in the Me-cMPOA-BSTrh pathway, mediating the transition to parental behavior.

      The conclusions of this paper are largely supported by the data, but several methodological and conceptual aspects require clarification or additional experiments.

      (1) When evaluating the Me Cartpt-expressing neuron projection to the cMPOA, the authors compared excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs). However, the standard procedure for isolating these currents is to hold the membrane potential at the reversal potential for inhibitory or excitatory currents, respectively. The authors appear not to have followed this procedure, making it unclear how EPSCs and IPSCs were calculated. This requires clarification to ensure the validity of their reported E/I balance changes.

      (2) The authors chose to assess parental behavior over four consecutive days. It is unclear why this specific timeframe was selected. A justification for this choice would strengthen the interpretation of the behavioral data.

      (3) The experimental design in Figure 5, where the authors lesioned the entire cMPOA to assess its role in BSTrh inhibition, presents several limitations: First, the effects on BSTrh activity could result from indirect circuit alterations rather than direct cMPOA projections. The current lesion approach cannot disentangle these possibilities. Second, the cMPOA is a heterogeneous region containing diverse neuronal subtypes. Full lesions prevent the differentiation of the roles played by distinct populations within this region. Third, lesion specificity is questionable, as some lesions extended beyond the cMPOA boundaries (Figure S5). This overextension complicates the interpretation of the results and requires tighter control.

      (4) In Figure 3, the authors show that optogenetic inhibition of Me projections to the cMPOA modifies the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs). However, the proposed mechanism that this modulation reflects inter-neuronal network activity within the cMPOA lacks sufficient experimental validation. Additional experiments assessing circuit-level interactions could substantiate these claims.

      (5) While the paper highlights synaptic changes in the cMPOA, it does not establish a direct relationship between these changes and the social experience. How do mating and cohabitation with females impact this pathway and modulate synaptic strength? The discussion could benefit from integrating these factors into their proposed model.

      Overall, the paper offers valuable insights into the neural circuitry underlying male parental behavior, particularly the synaptic dynamics of the Me-cMPOA-BSTrh pathway. However, addressing these methodological and conceptual limitations would significantly enhance the clarity and impact of the work.

    1. Reviewer #3 (Public review):

      Summary:

      This study indicates that connections across human cortical pyramidal cells have identical latencies despite a larger mean dendritic and axonal length between somas in human cortex. A precise demonstration combining detailed electrophysiology and modeling, indicates that this property is due to faster propagation of signals in proximal human dendrites. This faster propagation is itself due to a slightly thicker dendrite, to a larger capacitive load, and to stronger hyperpolarizing currents. Hence, the biophysical properties of human pyramidal cells are adapted such that they do not compromise information transfer speed.

      Strengths:

      The manuscript is clear and very detailed. The authors have experimentally verified a large number of aspects that could affect propagation speed and have pinpointed the most important one. This paper provides an excellent comparision of biophysical properties between rat and human pyramidal cells. Thanks to this approach a comprehensive description of the mechanisms underlying the acceleration of propagation in human dendrite is provided.

      Weaknesses:

      The weaknesses I had identified have been addressed by the authors.

    1. Reviewer #3 (Public review):

      Summary:

      Li et al propose to better understand the mechanisms of drug resistance in nematode parasites by studying mutants of the model roundworm C. elegans that are resistant to the deworming drug ivermectin. They provide compelling evidence that loss-of-function mutations in the E3 ubiquitin ligase encoded by the UBR-1 gene make worms resistant to the effects of ivermectin (and related compounds) on viability, body size, pharyngeal pumping rate, and locomotion and that these mutant phenotypes are rescued by a UBR-1 transgene. They propose that the mechanism is resistance is indirect, via the effects of UBR-1 on glutamate production. They show mutations (vesicular glutamate transporter eat-4, glutamate synthase got-1) and drugs (glutamate, glutamate uptake enhancer ceftriaxone) affecting glutamate metabolism/transport modulate sensitivity to ivermectin in wild type and ubr-1 mutants. The data are generally consistent with greater glutamate tone equating to ivermectin resistance. Finally, they show that manipulations that are expected to increase glutamate tone appear to reduce expression of the targets of ivermectin, the glutamate-gated chloride channels, which is known to increase resistance.

      There is a need for genetic markers of ivermectin resistance in livestock parasites that can be used to better track resistance and to tailor drug treatment. The discovery of UBR-1 as a resistance gene in C. elegans will provide a candidate marker that can be followed up in parasites. The data suggest Ceftriaxone would be a candidate compound to reverse resistance.

      Strengths:

      The strength of the study is the thoroughness of the analysis and the quality of the data. There can be little doubt that ubr-1 mutations do indeed confer ivermectin resistance. The use of both rescue constructs and RNAi to validate mutant phenotypes is notable. Further, the variety of manipulations they use to affect glutamate metabolism/transport makes a compelling argument for some kind of role for glutamate in resistance.

      Weaknesses:

      The use of single ivermectin dose assays can be misleading. A response change at a single dose shows that the dose-response curve has shifted, but the response is not linear with dose, so the degree of that shift may be difficult to discern and may result from a change in slope but not EC50.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have done a good job at creating a "resource" paper for the study of gut regeneration in sea cucumbers. They present a single-cell RNAseq atlas for the reconstitution of Holothuria glaberrima gut following self-evisceration in response to a potassium chloride injection. The authors provide data characterizing cellular populations and precursors of the regenerating anlage at 9 days post evisceration. As a "Tools and Resources" contribution to eLife, this work, with some revisions, could be appropriate. It will be impactful in the fields of regeneration, particularly in invertebrates, but also in comparative studies in other species, including evolutionary studies. Some of these comparative studies could extend to vertebrates and could therefore impact regenerative medicine in the future.

      Strengths:

      • Novel and useful information for a model organism and question for which this type of data has not yet been reported<br /> • Single-cell gene expression data will be valuable for developing testable hypotheses in the future<br /> • Marker genes for cell types provided to the field<br /> • Interesting predictions about possible lineage relationships between cells during sea cucumber gut regeneration<br /> • Authors have done a good job in the revision of making sure not to overstate the lineage claims in absence of definitive lineage-tracing experiments<br /> • Authors have improved the figures and the overall readability of the figures and text

      Specific questions:

      - Is there any way to systematically compare these cells to evolutionarily-diverged cells in distant relatives to sea cucumbers? Or even on a case-by-case basis? For example, is there evidence for any of these transitory cell types to have correlate(s) in vertebrate gut regeneration?

      • Authors acknowledged this would be interesting and important, but they say in the response document this is outside the scope of the current manuscript and more data would be needed to do this well.

      - Line 808: The authors may make a more accurate conclusion by saying that the characteristics are similar to blastemas or behaves like a blastema rather than it is blastema. There is ambiguity about the meaning of this term in the field, but most researchers seem to currently have in mind that the "blastema" definitions includes a discrete spatial organization of cells, and here these cells are much more spread out. This could be a good opportunity for the authors to engage in this dialogue, perhaps parsing out the nuances of what a "blastema" is, what the term has traditionally referred to, and how we might consider updating this term or at least re-framing the terminology to be inclusive of functions that "blastemas" have traditionally had in the literature and how they may be dispersed over geographical space in an organism more so than the more rigid, geographically-restricted definition many researchers have in mind. However, if the authors choose to elaborate on these issues, those elaborations do belong in the discussion, and the more provisional terminology we mention here could be used throughout the paper until that element of the revised discussion is presented. We would welcome the authors to do this as a way to point the field in this direction as this is also how we view the matter. For example, some of the genes whose expression has been observed to be enriched following removal of brain tissue in axolotls (such as kazald2, Lust et al.), are also upregulated in traditional blastemas, for instance, in the limb, but we appreciate that the expression domain may not be as localized as in a limb blastema. Additionally, since there is now evidence that some aspects of progenitor cell activation even in limb regeneration extend far beyond the local site of amputation injury (Johnson et al., Payzin-Dogru et al.), there is an opportunity to connect the dots and make the claim that there could be more dispersion of "blastema function" than previously appreciated in the field. Diving a bit more into these nuances may also enable a better conceptual framework of how blastema function may evolve across vast evolutionary time and between different injury contexts in super-regenerative organisms.

      • Authors addressed this comment and agree it is interesting, but given how much territory they had to cover and space limitations, they will save this type of discussion and comparative theoretical work for the future.

      Overall, the manuscript is much improved.

    1. Reviewer #3 (Public review):

      Background:

      Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride channel whose dysfunction underlies cystic fibrosis, a life-limiting condition caused by thick, sticky mucus buildup in the lungs and other organs. Despite multiple high-resolution structures of CFTR, these snapshots have all captured the channel in a non-conducting or "closed" conformation - even when the protein was prepared under conditions that should favor channel opening. This discrepancy has posed a key challenge: how can a channel be experimentally observed as closed while physiological tests demonstrate it conducts chloride ions?

      Key Findings:

      (1) Stable Open Conformation

      Through repeated molecular dynamics (MD) simulations of human CFTR in lipid bilayers, researchers observed a reproducible, stable open state. Unlike previous transient openings seen in single-run or short simulations, this conformation remains consistently permeable over extended timescales.

      (2) Penta-Helical Arrangement

      The authors highlight a "penta-helical" pore-lining arrangement in which five transmembrane helices symmetrically organize to create a clear ion-conduction pathway. This novel configuration resolves the previously puzzling hydrophobic bottleneck found in cryo-EM structures.

      (3) Conductance Close to Experimental Values

      By analyzing chloride ion flow under near-physiological voltages, they calculate a channel conductance aligning well with electrophysiological measurements. This alignment provides strong support that the observed structure is functionally relevant.

      (4) Roles of Key Residues

      Several positively charged (cationic) residues in the pore appear crucial for guiding and stabilizing chloride ions. Simultaneously, small kinks in certain helices may act as structural "hinges," allowing or blocking chloride passage.

      How to Interpret These Results:

      (1) Bridging a Major Gap: The study tackles the mismatch between static "closed" CFTR structures and their known open-channel function. Successfully capturing a stable open state in MD simulations is a significant step toward reconciling what cryo-EM data shows versus what physiological experiments have long told us.

      (2) Strength in Multiple Replicas: Running many simulation repeats (rather than relying on a single trajectory) lends credibility. Only if a phenomenon is reproducible across multiple runs can it be considered robust.

      (3) Consistency with Mutational Data: Observing that known functional hotspots (e.g., specific charged residues) play a key role in the new pore model further validates these findings.

      Important Caveats and Limitations:

      (1) Simulation Timescales vs. Biology<br /> Even extended MD (on the microsecond scale) is still much faster, simpler, and more controlled than real cellular processes.

      (2) Physiological existence of the penta-helical pore<br /> Although the simulations and results are highly compelling, several factors leave open the possibility of a physiological open conformation differing from the observed penta-helical pore. These factors include ATP hydrolysis, interactions with physiological binding partners, the native membrane environment, and regions not modeled in the CFTR structures, such as the R domain. Most importantly, the transmembrane voltage is very high (500mV).

      Bottom Line:

      This work delivers a long-awaited, near-physiological view of CFTR's open conformation. It provides a foundational structure against which future experimental and computational studies can be compared. By demonstrating reliable chloride conduction and matching established biophysical data, these simulations bring us closer to understanding - and potentially targeting - CFTR's gating mechanism in health and disease. Readers should applaud the breakthroughs while recognizing that further exploration (including more complex in vitro and in vivo experiments) will still be necessary to capture the full dynamism of CFTR in the living cell environment.

    1. Reviewer #3 (Public review):

      Summary:

      The paper presents an in-depth analysis of the original colour of a fossil feather from the crest of a 125-million-year-old enantiornithine bird. From its shape and location, it would be predicted that such a feather might well have shown some striking colour and pattern. The authors apply sophisticated microscopic and numerical methods to determine that the feather was iridescent and brightly coloured and possibly indicates this was a male bird that used its crest in sexual displays.

      Strengths:

      The 3D micro-thin-sectioning techniques and the numerical analyses of light transmission are novel and state-of-the-art. The example chosen is a good one, as a crest feather is likely to have carried complex and vivid colours as a warning or for use in sexual display. The authors correctly warn that without such 3D study feather colours might be given simply as black from regular 2D analysis, and the alignment evidence for iridescence could be missed.

      Weaknesses: Trivial.

    1. Reviewer #3 (Public review):

      Summary:

      Kamal L. Nahas et al. demonstrated that pUL16, pUL21, pUL34, VP16, and pUS3 are involved in the egress of the capsids from the nucleous, since mutant viruses ΔpUL16, ΔpUL21, ΔUL34, ΔVP16, and ΔUS3 HSV-1 show nuclear egress attenuation determined by measuring the nuclear:cytoplasmic ratio of the capsids, the dfParental, or the mutants. Then, they showed that gM-mCherry+ endomembrane association and capsid clustering were different in pUL11, pUL51, gE, gK, and VP16 mutants. Furthermore, the 3D view of cytoplasmic budding events suggests an envelopment mechanism where capsid budding into spherical/ellipsoidal vesicles drives the envelopment.

      Strengths:

      The authors employed both structured illumination microscopy and cellular ultrastructure analysis to examine the same infected cells, using cryo-soft-X-ray tomography to capture images. This combination, set here for the first time, enabled the authors to obtain holistic data regarding a biological process, as a viral assembly. Using this approach, the researchers studied various stages of HSV-1 assembly. For this, they constructed a dual-fluorescently labelled recombinant virus, consisting of eYFP-tagged capsids and mCherry-tagged envelopes, allowing for the independent identification of both unenveloped and enveloped particles. They then constructed nine mutants, each targeting a single viral protein known to be involved in nuclear egress and envelopment in the cytoplasm, using this dual-fluorescent as the parental one. The experimental setting, both the microscopic and the virological, is robust and well-controlled. The manuscript is well-written, and the data generated is robust and consistent with previous observations made in the field.

      Weaknesses:

      It would be helpful to find out what role the targeted proteins play in nuclear egress or envelopment acquisition in a different orthoherpesvirus, like HSV-2. This would confirm the suitability of the technical approach set and would also act as a way to validate their mechanism at least in one additional herpesvirus beyond HSV-1. So, using the current manuscript as a starting point and for future studies, it would be advisable to focus on the protein functions of other viruses and compare them.

    1. Reviewer #3 (Public review):

      Summary:

      This study identifies confirmational fingerprints of amylodogenic light chains, that set them apart from the non-amylodogenic ones.

      Strengths:

      The research employs a comprehensive combination of structural and dynamic analysis techniques, providing evidence that conformational dynamics at VL-CL interface and structural expansion are distinguished features of amylodogenic LCs.

      Weaknesses:

      The sample size is limited, which may affect the generalizability of the findings. Additionally, the study could benefit from deeper analysis of specific mutations driving this unique conformation to further strengthen therapeutic relevance.

      Furthermore. p-value (statistical significance) of Rg difference should be computer. Finally, significance of mutations (SHM?) at the interface, such as A40G should be compared with previous observations. (Garofalo et al., 2021)

    2. Reviewer #3 (Public review):

      Summary:

      This study identifies confirmational fingerprints of amylodogenic light chains, that set them apart from the non-amylodogenic ones.

      Strengths:

      The research employs a comprehensive combination of structural and dynamic analysis techniques, providing evidence that conformational dynamics at VL-CL interface and structural expansion are distinguished features of amylodogenic LCs.

      Weaknesses:

      The sample size is limited, which may affect the generalizability of the findings. Additionally, the study could benefit from deeper analysis of specific mutations driving this unique conformation to further strengthen therapeutic relevance.

      Furthermore. p-value (statistical significance) of Rg difference should be computer. Finally, significance of mutations (SHM?) at the interface, such as A40G should be compared with previous observations. (Garofalo et al., 2021)

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript entitled "Shc1 cooperates with Frs2 and Shp2 to recruit Grb2 in FGF-induced lens development" by Wang et al., investigates the molecular mechanism used by FGFR signaling to support lens development. The lens has long been known to depend on FGFR-signaling for proper development. Previous investigations have demonstrated the FGFR signaling is required for embryonic lens cell survival and for lens fiber cell differentiation. The requirement of FGFR signaling for lens induction has remained more controversial as deletion of both Fgfr1 and Fgfr2 during lens placode formation does not prevent the induction of definitive lens markers such as FOXE3 or αA-crystallin. Here the authors have used the Le-Cre driver to delete all four FGFR genes from the developing lens placode demonstrating a definitive failure of lens induction in the absence of FGFR-signaling. The authors focused on FGFR1 and FGFR2, the two primary FGFRs present during early lens development and demonstrated that lens development could be significantly rescued in lenses lacking both FGFR1 and FGFR2 by expressing a constitutively active allele of KRAS. They also showed that the removal of pro-apoptotic genes Bax and Bak could also lead to a substantial rescue of lens development in lenses lacking both FGFR1 and FGFR2. In both cases, the lens rescue included both increased lens size and the expression of genes characteristic of lens cells.

      Significantly the authors concentrated on the juxtamembrane domain, a portion of the FGFRs associated with FRS2. Previous investigations have demonstrated the importance of FRS2 activation for mediating a sustained level of ERK activation. FRS2 is known to associate both with GRB2 and SHP2 to activate RAS. The authors utilized a mutant allele of Fgfr1, lacking the entire juxtamembrane domain (Fgfr1ΔFrs) and an allele of Fgfr2 containing two-point mutations essential for Frs2 binding (Fgfr2LR). When combining three floxed alleles and leaving only one functional allele (Fgfr1ΔFrs or Fgfr2LR) the authors got strikingly different phenotypes. When only the Fgfr1ΔFrs allele was retained, the lens phenotype matched that of deleting both Fgfr1 and Fgfr2. However, when only the Fgfr2LR allele was retained the phenotype was significantly milder, primarily affecting lens fiber cell differentiation, suggesting that something other than FRS2 might be interacting with the juxtamembrane domain to support FGFR signaling in the lens. The authors also deleted Grb2 in the lens and showed that the phenotype was similar to that of the lenses only retaining the Fgfr2LR allele, resulting a failure of lens fiber cell differentiation and decreased lens cell survival. However, mutating the major tyrosine phosphorylation site of GRB2 did not affect lens development. The authors additionally investigated the role of SHP2 in lens development by either deleting SHP2 or by making mutations in the SHP2 catalytic domain. The deletion of the SHP2 phosphatase activity did not affect lens development as severely as total loss of SHP2 protein, suggesting a function for SHP2 outside of its catalytic activity. Although the loss of Shc1 alone has only a slight effect on lens size and pERK activation in the lens, the authors showed that the loss of Shc1 exacerbated the lens phenotype in lenses lacking both Frs2 and Shp2. The authors suggest that SHC1 binds to the FGFR juxtamembrane domain allowing for the recruitment of GRB2 in independently of FRS2.

      Strengths:

      (1) The authors used a variety of genetic tools to carefully dissect the essential signals downstream of FGFR signaling during lens development.

      (2) The authors made a convincing case that something other than FRS2 binding mediates FGFR signaling in the juxtamembrane domain.

      (3) The authors demonstrated that despite the requirement of both the adaptor function and phosphatase activity of SHP2 are required for embryonic survival, neither of these activities is absolutely required for lens development.

      (4) The authors provide more information as to why FGFR loss has a phenotype much more severe than the loss of FRS2 alone during lens development.

      (5) The authors followed up their work analyzing various signaling molecules in the context of lens development with biochemical analyses of FGF-induced phosphorylation in murine embryonic fibroblasts (MEFs).

      (6) In general, this manuscript represents a Herculean effort to dissect FGFR signaling in vivo with biochemical backing with cell culture experiments in vitro.

      Weaknesses:

      (1) The authors demonstrate that the loss of FGFR1 and FGFR2 can be compensated by a constitutive active KRAS allele in the lens and suggest that FGFRs largely support lens development only by driving ERK activation. However, the authors also saw that lens development was substantially rescued by preventing apoptosis through the deletion of BAK and BAX. To my knowledge, the deletion of BAK and BAX should not independently activate ERK. The authors do not show whether ERK activation is restored in the BAK/BAX deficient lenses. Do the authors suggest the FGFR3 and/or FGFR4 provide sufficient RAS and ERK activation for lens development when apoptosis is suppressed? Alternatively, is it the survival function of FGFR-signaling as much as a direct effect on lens differentiation?

      (2) Do the authors suggest that GRB2 is required for RAS activation and ultimately ERK activation? If so, do the authors suggest that ERK activation is not required for FGFR-signaling to mediate lens induction? This would follow considering that the GRB2 deficient lenses lack a problem with lens induction.

      (3) The increase in p-Shc is only slightly higher in the Cre FGFR1f/f FGFR2r/LR than in the FGFR1f/Δfrs FGFR2f/f. Can the authors provide quantification?

      (4) The authors have not shown directly that Shc1 binds to the juxtamembrane region of either Fgfr1 or Fgfr2.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the group of Glickman expands on their previous studies on the function of chalkophores during the growth of and infection by Mycobacterium tuberculosis. Previously, the group had shown that chalkophores, which are metallophores specific for the scavenging of copper, are induced by M. tuberculosis under copper deprivation conditions. Here, they show that chalkophores, under copper limiting conditions, are essential for the uptake of copper and maturation of a terminal oxidase, the heme-copper oxidase, cytochrome bcc:aa3. As M. tuberculosis has two redundant terminal oxidases, growth of and infection by M. tuberculosis is only moderated if both the chalkophores and the second terminal oxidase, cytochrome bd, are inhibited.

      Strengths:

      A strength of this work is that the lab-culture experiments are expanded upon with mice infection models, providing strong indications that host-inflicted copper deprivation is a condition that M. tuberculosis has adapted to for virulence.

      Weaknesses:

      Because the phenotype of M. tuberculosis lacking chalkophores is similar, if not identical, to using Q203, an inhibitor of cytochrome bcc:aa3, the authors propose that the copper-containing cytochrome bcc:aa3 is the only recipient of copper-uptake by chalkophores. A minor weakness of the work is that this latter conclusion is not verified under infection conditions and other copper-enzymes might still be functionally required during one or more stages of infection.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript studies intracellular changes and immune processes during early HIV-1 infection with an additional focus on the small CD4+ T cell subsets. The authors used single-cell omics to achieve high resolution of transcriptomic and epigenomic data on the infected cells which were verified by viral RNA expression. The results add to understanding of transcriptional regulation which may allow progression or HIV latency later in infected cells. The biosamples were derived from early HIV infection cases, providing particularly valuable data for the HIV research field.

      Strengths:

      The authors examined the heterogeneity of infected cells within CD4 T cell populations, identified a significant and unexpected difference between naive and effector CD4 T cells, and highlighted the differences in Th2 and Th17 cells. Multiple methods were used to show the role of the increased KLF2 factor in infected cells. This is a valuable finding of a new role for the major transcription factor in further disease progression and/or persistence.

      The methods employed by the authors are robust. Single-cell RNA-Seq from PBMC samples was followed by a comprehensive annotation of immune cell subsets, 16 in total. This manuscript presents to the scientific community a valuable multi-omics dataset of good quality, which could be further analyzed in the context of larger studies.

      Weaknesses:

      Methods and Supplementary materials<br /> Some technical aspects could be described in more detail. For example, it is unclear how the authors filtered out cells that did not pass quality control, such as doublets and cells with low transcript/UMI content. Next, in cell annotation, what is the variability in cell types between donors? This information is important to include in the supplementary materials, especially with such a small sample size. Without this, it is difficult to determine, whether the differences between subsets on transcriptomic level, viral RNA expression level, and chromatin assessment are observed due to cell type variations or individual patient-specific variations. For the DEG analysis, did the authors exclude the most variable genes?

      The annotation of 16 cell types from PBMC samples is impressive and of good quality, however, not all cell types get attention for further analysis. It's natural to focus primarily on the CD4 T cells according to the research objectives. The authors also study potential interactions between CD4 and CD8 T cells by cell communication inference. It would be interesting to ask additional questions for other underexplored immune cell subsets, such as: 1) Could viral RNA be detected in monocytes or macrophages during early infection? 2) What are the inferred interactions between NK cells and infected CD4 T cells, are interactions similar to CD4-CD8 results? 3) What are the inferred interactions between monocytes or macrophages and infected CD4 T cells?

      Discussion<br /> It would be interesting to see more discussion of the observation of how naïve T cells produce more viral RNA compared to effector T cells. It seems counterintuitive according to general levels of transcriptional and translational activity in subsets.<br /> Another discussion block could be added regarding the results and conclusion comparison with Ashokkumar et al. paper published earlier in 2024 (10.1093/gpbjnl/qzae003). This earlier publication used both a cell line-based HIV infection model and primary infected CD4 T cells and identified certain transcription factors correlated with viral RNA expression.

    1. Reviewer #3 (Public review):

      Summary:

      This study provides significant insights into how host metabolism, specifically of lipids, influences the pathogenesis of Mycobacterium tuberculosis (Mtb). It builds on existing knowledge about Mtb's reliance on host lipids and emphasizes the potential of targeting fatty acid metabolism for therapeutic intervention.

      Strengths:

      To generate the data, the authors use CRISPR technology to precisely disrupt the genes involved in lipid import (CD36, FATP1), lipid droplet formation (PLIN2) and fatty acid oxidation (CPT1A, CPT2) in mouse primary macrophages. The Mtb Erdman strain is used to infect the macrophage mutants. The study, revealsspecific roles of different lipid-related genes. Importantly, results challenge previous assumptions about lipid droplet formation and show that macrophage responses to lipid metabolism impairments are complex and multifaceted. The experiments are well-controlled and the data is convincing.

      Overall, this well-written paper makes a meaningful contribution to the field of tuberculosis research, particularly in the context of host-directed therapies (HDTs). It suggests that manipulating macrophage metabolism could be an effective strategy to limit Mtb growth.

      Weaknesses:

      None noted. The manuscript provides important new knowledge that will lead mpvel to host-directed therapies to control Mtb infections.

      Comments on revisions: The authors have addressed the concerns of the reviewers.

    1. Reviewer #3 (Public review):

      Summary:

      Bone morphogenetic protein (BMP) signaling instructs multiple processes during development including cell proliferation and differentiation. The authors set out to understand the role of PRDM16 in these various functions of BMP signaling. They find that PRDM16 and BMP co-operate to repress stem cell proliferation by regulating the genomic distribution of BMP pathway transcription factors. They additionally show that PRDM16 impacts choroid plexus epithelial cell specification. The authors provide evidence for a regulatory circuit (constituting of BMP, PRDM16, and Wnt) that influences stem cell proliferation/differentiation.

      Strengths:

      I find the topics studied by the authors in this study of general interest to the field, the experiments well-controlled and the analysis in the paper sound.

      Weaknesses:

      I have no major scientific concerns. I have some minor recommendations that will help improve the paper (regarding the discussion).

    1. Reviewer #3 (Public review):

      This manuscript examines the role of pdgfrb-positive pericytes in the establishment and maintenance of the blood-brain barrier (BBB) in the zebrafish. Previous studies in PDGFB- or PDGFRB-deficient mice have suggested that loss of pericytes results in disruption of the BBB. The authors show that zebrafish pdgfrb mutant larvae have an intact BBB and that pdgfrb mutant adult fish show large vessel defects and hemorrhage but do not exhibit substantial leakage from brain capillaries, suggesting loss of pericytes is not sufficient to "open" the BBB. The authors use beautiful and compelling images and rigorous quantification to back up most of their conclusions. The imaging of the adult brain is particularly nice. The authors rigorously document the lack of BBB leakage in pdgfrbuq30bh mutant larvae and large vessel phenotypes (eg, enlargement and rupture) in pdgfrbuq30bh mutant adults. A few points would help the authors to further strengthen their findings contradicting the current dogma from rodent models.

      Major point:

      The authors document pericyte loss using a single TgBAC(pdgfrb:egfp)ncv22 transgenic line driven by the promoter of the same gene mutated in their pdgfrbuq30bh mutants. Given their findings on the consequences of pericyte loss directly contradict current dogma from rodent studies, it would be useful to further validate the absence of brain pericytes in these mutants using one of several other transgenic lines marking pericytes currently available in the zebrafish. This could be done using pdgfrb crispants, which the authors show nicely phenocopy the germline mutants, at least in larvae. This would help nail down the absence of any currently identifiable pericyte population or sub-population in the loss of pdgfrb animals and substantially strengthen the authors' conclusions.

      Other issues:

      The authors should provide more information about the pdgfrbuq30bh mutant and how it was generated (including a diagram in a supplemental figure would be useful).

      It would be helpful to show some data on whether mutants show morphological phenotypes or developmental delay at 7 and 14 dpf, to provide some context to better assess the reduced branching and vessel length vascular phenotypes (see Figures 1c-e).

      If available, it would be helpful to have a positive control for the tracer leakage experiments - a genetic manipulation that does cause disruption of the BBB and leakage at 2 hours post-tracer injection (see Figures 1f and g).

      Quantification of the findings in Figure 4c,d would be useful, as would the use of germline fish for these experiments if these are now available. If this is not possible, it would be helpful to document that the crispants used in these experiments lack pdgfrb:egfp pericytes at adult stages (this is only shown for 5 dpf larvae, in Extended Data Figure 4b).

      Adult mutants clearly show less dye leakage in the more superficial capillary regions than WT siblings, but dextran intensity is a bit higher, although this could well be diffusion from more central brain regions where overt hemorrhage is occurring. Along similar lines though, the authors' TEM data in Extended Data Figure 4d hints that there may be more caveolae in mutant brain capillaries, although the N number was lower here than for the measurements from TEM of larger central vessels (Figure 4g). It would be useful to carry out additional measurements to increase the N number in Figure 4d to see whether the difference between wild-type sibling and mutant capillary caveolae numbers remains as not significant.

      It might be helpful to include some orienting labels and/or additional descriptions in the figure legends to help readers who are not used to looking at zebrafish brain vessels have an easier time figuring out what they are looking at and where it is in the brain.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript describes an extensive application of the Yeast (SATAY) transposon mutagenesis and sequencing method to explore loss- and gain-of-function mutations conferring resistance to 20 different antifungal compounds. Impressively, the authors demonstrate that SATAY can be used to identify mutations that lead to antifungal resistance, including promoter mutations that include the direct targets of antifungal compounds and drug efflux pumps. Because SATAY is not tied to a specific genetic background, the sensitivity of an S. cerevisiae strain, AD1-8, that specifically displays Chitosan susceptibility was examined in detail, and the results suggest that Chitosan acts through interactions with the fungal cell wall. Through a series of experiments that expand upon SATAY analysis, the novel antifungal ATI-2307, the authors clearly show that the transporter Hol1 concentrates this compound within yeast.

      General Comments:

      This is a very impressive application of SATAY, highlighting many different strategies for exploring the mechanism of action of various antifungal compounds. It's clear from the findings presented that SATAY is a powerful and potentially highly productive approach for chemical-genetic analysis.

    1. Reviewer #3 (Public review):

      Summary:

      This study examines prediction errors, information gain (Kullback-Leibler [KL] divergence), and uncertainty (entropy) from an information-theory perspective using two experimental tasks and pupillometry. The authors aim to test a theoretical proposal by Zénon (2019) that the pupil response reflects information gain (KL divergence). In particular, the study defines the prediction error in terms of KL divergence and speculates that changes in pupil size associated with KL divergence depend on entropy. Moreover, the authors examine the temporal characteristics of pupil correlates of prediction errors, which differed considerably across previous studies that employed different experimental paradigms. In my opinion, the study does not achieve these aims due to several methodological and theoretical issues.

      Strengths:

      (1) Use of an established Bayesian model to compute KL divergence and entropy.

      (2) Pupillometry data preprocessing, including deconvolution.

      Weaknesses:

      (1) Definition of the prediction error in terms of KL divergence:

      I'm concerned about the authors' theoretical assumption that the prediction error is defined in terms of KL divergence. The authors primarily refer to a review article by Zénon (2019): "Eye pupil signals information gain". It is my understanding that Zénon argues that KL divergence quantifies the update of a belief, not the prediction error: "In short, updates of the brain's internal model, quantified formally as the Kullback-Leibler (KL) divergence between prior and posterior beliefs, would be the common denominator to all these instances of pupillary dilation to cognition." (Zénon, 2019).

      From my perspective, the update differs from the prediction error. Prediction error refers to the difference between outcome and expectation, while update refers to the difference between the prior and the posterior. The prediction error can drive the update, but the update is typically smaller, for example, because the prediction error is weighted by the learning rate to compute the update. My interpretation of Zénon (2019) is that they explicitly argue that KL divergence defines the update in terms of the described difference between prior and posterior, not the prediction error.

      The authors also cite a few other papers, including Friston (2010), where I also could not find a definition of the prediction error in terms of KL divergence. For example [KL divergence:] "A non-commutative measure of the non-negative difference between two probability distributions." Similarly, Friston (2010) states: Bayesian Surprise - "A measure of salience based on the Kullback-Leibler divergence between the recognition density (which encodes posterior beliefs) and the prior density. It measures the information that can be recognized in the data." Finally, also in O'Reilly (2013), KL divergence is used to define the update of the internal model, not the prediction error.

      The authors seem to mix up this common definition of the model update in terms of KL divergence and their definition of prediction error along the same lines. For example, on page 4: "KL divergence is a measure of the difference between two probability distributions. In the context of predictive processing, KL divergence can be used to quantify the mismatch between the probability distributions corresponding to the brain's expectations about incoming sensory input and the actual sensory input received, in other words, the prediction error (Friston, 2010; Spratling, 2017)."

      Similarly (page 23): "In the current study, we investigated whether the pupil's response to decision outcome (i.e., feedback) in the context of associative learning reflects a prediction error as defined by KL divergence."

      This is problematic because the results might actually have limited implications for the authors' main perspective (i.e., that the pupil encodes prediction errors) and could be better interpreted in terms of model updating. In my opinion, there are two potential ways to deal with this issue:

      a) Cite work that unambiguously supports the perspective that it is reasonable to define the prediction error in terms of KL divergence and that this has a link to pupillometry. In this case, it would be necessary to clearly explain the definition of the prediction error in terms of KL divergence and dissociate it from the definition in terms of model updating.

      b) If there is no prior work supporting the authors' current perspective on the prediction error, it might be necessary to revise the entire paper substantially and focus on the definition in terms of model updating.

      (2) Operationalization of prediction errors based on frequency, accuracy, and their interaction:

      The authors also rely on a more model-agnostic definition of the prediction error in terms of stimulus frequency ("unsigned prediction error"), accuracy, and their interaction ("signed prediction error"). While I see the point here, I would argue that this approach offers a simple approximation to the prediction error, but it is possible that factors like difficulty and effort can influence the pupil signal at the same time, which the current approach does not take into account. I recommend computing prediction errors (defined in terms of the difference between outcome and expectation) based on a simple reinforcement-learning model and analyzing the data using a pupillometry regression model in which nuisance regressors are controlled, and results are corrected for multiple comparisons.

      (3) The link between model-based (KL divergence) and model-agnostic (frequency- and accuracy-based) prediction errors:

      I was expecting a validation analysis showing that KL divergence and model-agnostic prediction errors are correlated (in the behavioral data). This would be useful to validate the theoretical assumptions empirically.

      (4) Model-based analyses of pupil data:

      I'm concerned about the authors' model-based analyses of the pupil data. The current approach is to simply compute a correlation for each model term separately (i.e., KL divergence, surprise, entropy). While the authors do show low correlations between these terms, single correlational analyses do not allow them to control for additional variables like outcome valence, prediction error (defined in terms of the difference between outcome and expectation), and additional nuisance variables like reaction time, as well as x and y coordinates of gaze.

      Moreover, including entropy and KL divergence in the same regression model could, at least within each task, provide some insights into whether the pupil response to KL divergence depends on entropy. This could be achieved by including an interaction term between KL divergence and entropy in the model.

      (5) Major differences between experimental tasks:

      More generally, I'm not convinced that the authors' conclusion that the pupil response to KL divergence depends on entropy is sufficiently supported by the current design. The two tasks differ on different levels (stimuli, contingencies, when learning takes place), not just in terms of entropy. In my opinion, it would be necessary to rely on a common task with two conditions that differ primarily in terms of entropy while controlling for other potentially confounding factors. I'm afraid that seemingly minor task details can dramatically change pupil responses. The positive/negative difference in the correlation with KL divergence that the authors interpret to be driven by entropy may depend on another potentially confounding factor currently not controlled.

      (6) Model validation:

      My impression is that the ideal learner model should work well in this case. However, the authors don't directly compare model behavior to participant behavior ("posterior predictive checks") to validate the model. Therefore, it is currently unclear if the model-derived terms like KL divergence and entropy provide reasonable estimates for the participant data.

      (7) Discussion:

      The authors interpret the directional effect of the pupil response w.r.t. KL divergence in terms of differences in entropy. However, I did not find a normative/computational explanation supporting this interpretation. Why should the pupil (or the central arousal system) respond differently to KL divergence depending on differences in entropy?

      The current suggestion (page 24) that might go in this direction is that pupil responses are driven by uncertainty (entropy) rather than learning (quoting O'Reilly et al. (2013)). However, this might be inconsistent with the authors' overarching perspective based on Zénon (2019) stating that pupil responses reflect updating, which seems to imply learning, in my opinion. To go beyond the suggestion that the relationship between KL divergence and pupil size "needs more context" than previously assumed, I would recommend a deeper discussion of the computational underpinnings of the result.

    1. Reviewer #3 (Public review):

      Summary:

      This work aims to investigate how perceptual and attentional processes affect conscious access in humans. By using multivariate decoding analysis of electroencephalography (EEG) data, the authors explored the neural temporal dynamics of visual processing across different levels of complexity (local contrast, collinearity, and illusory perception). This is achieved by comparing the decidability of an illusory percept in matched conditions of perceptual (i.e., degrading the strength of sensory input using visual masking) and attentional impairment (i.e., impairing top-down attention using attentional blink, AB). The decoding results reveal three distinct temporal responses associated with the three levels of visual processing. Interestingly, the early stage of local contrast processing remains unaffected by both masking and AB. However, the later stage of collinearity and illusory percept processing are impaired by the perceptual manipulation but remained unaffected by the attentional manipulation. These findings contribute to the understanding of the unique neural dynamics of perceptual and attentional functions and how they interact with the different stages of conscious access.

      Strengths:

      The study investigates perceptual and attentional impairments across multiple levels of visual processing in a single experiment. Local contrast, collinearity, and illusory perception were manipulated using different configurations of the same visual stimuli. This clever design allows for the investigation of different levels of visual processing under similar low-level conditions.

      Moreover, behavioural performance was matched between perceptual and attentional manipulations. One of the main problems when comparing perceptual and attentional manipulations on conscious access is that they tend to impact performance at different levels, with perceptual manipulations like masking producing larger effects. The study utilizes a staircasing procedure to find the optimal contrast of the mask stimuli to produce a performance impairment to the illusory perception comparable to the attentional condition, both in terms of perceptual performance (i.e., indicating whether the target contained the Kanizsa illusion) and metacognition (i.e., confidence in the response).

      The results show a clear dissociation between the three levels of visual processing in terms of temporal dynamics. Local contrast was represented at an early stage (~80 ms), while collinearity and illusory perception were associated with later stages (~200-250 ms). Furthermore, the results provide clear evidence in support of a dissociation between the effects of perceptual and attentional processes on conscious access: while the former affected both neuronal correlates of collinearity and illusory perception, the latter did not have any effect on the processing of the more complex visual features involved in the illusion perception.

      Weaknesses:

      The design of the study and the results presented are very similar to those in Fahrenfort et al. (2017), reducing its novelty. Similar to the current study, Fahrenfort et al. (2017) tested the idea that if both masking and AB impact perceptual integration, they should affect the neural markers of perceptual integration in a similar way. They found that behavioural performance (hit/false alarm rate) was affected by both masking and AB, even though only the latter was significant in the unmasked condition. In contrast, an early classification peak was exclusively affected by masking. A later classification peak mirrored the behavioural findings, with classification performance impacted by both masking and AB.

      The interpretation of the results primarily relies on the recurrent processing theory of consciousness (Lamme, 2020), which lead to the assumption that local contrast and illusory perception reflect feedforward and (lateral and feedback) recurrent connections, respectively. It should be mentioned, however, that this theoretical prediction is not directly tested in the study. Moreover, the evidence for the dissociation between illusion and collinearity in terms of lateral and feedback connections seems at least limited. For instance, Kok et al. (2016) found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers. Lee & Nguyen (2001), instead, found that V1 neurons respond to illusory contours of the Kanizsa figures, particularly in the superficial layers. Although both studies reference feedback connections, neither provides clear evidence for the involvement of lateral connections.

      The evidence in favour of primarily lateral connections driving collinearity seems mixed as well. On one hand, Liang et al. (2017) showed that feedback and lateral connections closely interact to mediate image grouping and segmentation. On the other hand, Stettler et al. (2002) showed that, whereas the intrinsic connections link similarly oriented domains in V1, V2 to V1 feedback displays no such specificity. Additionally, the other studies cited in the manuscript focused solely on lateral connections without examining feedback pathways, making it challenging to draw definitive conclusions.

      Comments on revisions:

      The authors have thoroughly addressed all my comments and provided comprehensive responses to each point raised.

    1. Reviewer #3 (Public review):

      The current manuscript investigates the effect of 2-oxoglutarate (2OG) as modulator of glutamine synthetase (GS). To do this, the authors rely of mass photometry, specific activity measurements and single particle cryo-EM data.<br /> From the results, the authors conclude that the GS from Methanosarcina mazei shifts from a dimeric, non-active state under low concentrations of 2OG, to a dodecameric and fully active complex at saturating concentrations of 2OG.

      GS is a crucial enzyme in all domains of life. The dodecameric fold of GS is recurrent amongst prokaryotic and archaea organisms but the enzyme activity can be regulated in distinct ways. This is a very interesting work combining protein biochemistry with structural biology.

      A novel role for 2OG is presented for this mesophilic methanoarchaeon, as a crucial effector for the enzyme oligomerization and full reactivity.

      The conclusions of this paper are mostly well supported by data, but some aspects of this GS regulation and interaction with known partners like Glnk1 and sp26 need to be clarified and extended.

    1. Reviewer #3 (Public review):

      Summary:

      Wang et al., examined the brain activity patterns during sleep, especially when locked to those canonical sleep rhythms such as SO, spindle, and their coupling. Analyzing data from a large sample, the authors found significant coupling between spindles and SOs, particularly during the upstate of the SO. Moreover, the authors examined the patterns of whole-brain activity locked to these sleep rhythms. To understand the functional significance of these brain activities, the authors further conducted open-ended cognitive state decoding and found a variety of cognitive processing may be involved during SO-spindle coupling and during other sleep events. The authors next investigated the functional connectivity analyses and found enhanced connectivity between the hippocampus, the thalamus, and the medial PFC. These results reinforced the theoretical model of sleep-dependent memory consolidation, such that SO-spindle coupling is conducive to systems-level memory reactivation and consolidation.

      Strengths:

      There are obvious strengths in this work, including the large sample size, state-of-the-art neuroimaging and neural oscillation analyses, and the richness of results.

      Weaknesses:

      Despite these strengths and the insights gained, there are weaknesses in the design, the analyses, and inferences.

      A repeating statement in the manuscript is that brain activity could indicate memory reactivation and thus consolidation. This is indeed a highly relevant question that could be informed by the current data/results. However, an inherent weakness of the design is that there is no memory task before and after sleep. Thus, it is difficult (if not impossible) to make a strong argument linking SO/spindle/coupling-locked brain activity with memory reactivation or consolidation.

      Relatedly, to understand the functional implications of the sleep rhythm-locked brain activity, the authors employed the "open-ended cognitive state decoding" method. While this method is interesting, it is rather indirect given that there were no behavioral indices in the manuscript. Thus, discussions based on these analyses are speculative at best. Please either tone down the language or find additional evidence to support these claims.

      Moreover, the results from this method are difficult to understand. Figure 3e showed that for all three types of sleep events (SO, spindle, SO-spindle), the same mental states (e.g., working memory, episodic memory, declarative memory) showed opposite directions of activation (left and right panels showed negative and positive activation, respectively). How to interpret these conflicting results? This ambiguity is also reflected by the term used: declarative memory and episodic memories are both indexed in the results. Yet these two processes can be largely overlapped. So which specific memory processes do these brain activity patterns reflect? The Discussion shall discuss these results and the limitations of this method.

      The coupling strength is somehow inconsistent with prior results (Hahn et al., 2020, eLife, Helfrich et al., 2018, Neuron). Specifically, Helfrich et al. showed that among young adults, the spindle is coupled to the peak of the SO. Here, the authors reported that the spindles were coupled to down-to-up transitions of SO and before the SO peak. It is possible that participants' age may influence the coupling (see Helfrich et al., 2018). Please discuss the findings in the context of previous research on SO-spindle coupling.

      The discussion is rather superficial with only two pages, without delving into many important arguments regarding the possible functional significance of these results. For example, the author wrote, "This internal processing contrasts with the brain patterns associated with external tasks, such as working memory." Without any references to working memory, and without delineating why WM is considered as an external task even working memory operations can be internal. Similarly, for the interesting results on SO and reduced DMN activity, the authors wrote "The DMN is typically active during wakeful rest and is associated with self-referential processes like mind-wandering, daydreaming, and task representation (Yeshurun, Nguyen, & Hasson, 2021). Its reduced activity during SOs may signal a shift towards endogenous processes such as memory consolidation." This argument is flawed. DMN is active during self-referential processing and mind-wandering, i.e., when the brain shifts from external stimuli processing to internal mental processing. During sleep, endogenous memory reactivation and consolidation are also part of the internal mental processing given the lack of external environmental stimulation. So why during SO or during memory consolidation, the DMN activity would be reduced? Were there differences in DMN activity between SO and SO-spindle coupling events?

    1. Reviewer #3 (Public review):

      Summary:

      The authors used powerful and novel reagents to carefully assess the roles of the voltage gated sodium channel (NaV) isoforms in regulating the neural excitability of principal neurons of the cerebral cortex. Using this approach, they were able to confirm that two different isoforms, NaV1.2 and NaV1.6 have distinct roles in electrogenesis of neocortical pyramidal neurons.

      Strengths:

      Development of very powerful transgenic mice in which NaV1.2 and/or NaV1.6 were modified to be insensitive to ASCs, a particular class of NaV blocker. This allowed them to test for roles of the two isoforms in an acute setting, without concerns of genetic or functional compensation that might result from a NaV channel knockout.

      Careful biophysical analysis of ASC effects on different NaV isoforms.

      Extensive and rigorous analysis of electrogenesis - action potential production - under conditions of blockade of either NaV1.2 or NaV1 or both.

      Weaknesses:

      Some results are overstated in that the representative example records provided do not directly support the conclusions.

      Results from a computational model are provided to make predictions of outcomes, but the computational approach is highly underdeveloped.

    1. Reviewer #3 (Public review):

      Summary:

      Shiqiang Xu and colleagues have examined the importance of ICAM-1 and ALCAM internalization and retrograde transport in cancer cells on the formation of a polarized immunological synapse with cytotoxic CD8+ T cells. They find that internalization is mediated by Endophilin A3 (EndoA3) while retrograde transport to the Golgi apparatus is mediated by the retromer complex. The paper is building on previous findings from corresponding author Henri-François Renard showing that ALCAM is an EndoA3-dependent cargo in clathrin-independent endocytosis.

      Strengths:

      The work is interesting as it describes a novel mechanism by which cancer cells might influence CD8+ T cell activation and immunological synapse formation, and the authors have used a variety of cell biology and immunology methods to study this. However, there are some aspects of the paper that should be addressed more thoroughly to substantiate the conclusions made by the authors.

      Weaknesses:

      In Figure 2A-B, the authors show micrographs from live TIRF movies of HeLa and LB33-MEL cells stably expressing EndoA3-GFP and transiently expressing ICAM-1-mScarlet. The ICAM-1 signal appears diffuse across the plasma membrane while the EndoA3 signal is partially punctate and partially lining the edge of membrane patches. Previous studies of EndoA3-mediated endocytosis have indicated that this can be observed as transient cargo-enriched puncta on the cell surface. In the present study, there is only one example of such an ICAM-1 and EndoA3 positive punctate event. Other examples of overlapping signals between ICAM-1 and EndoA3 are shown, but these either show retracting ICAM-1 positive membrane protrusions or large membrane patches encircled by EndoA3. While these might represent different modes of EndoA3-mediated ICAM-1 internalization, any conclusion on this would require further investigation.

      Moreover, in Figure 2C-E, uptake of the previously established EndoA3 endocytic cargo ALCAM is analyzed by quantifying total internal fluorescence in LB33-MEL cells of antibody labelled ALCAM following both overexpression and siRNA-mediated knockdown of EndoA3, showing increased and decreased uptake respectively. Why has not the same quantification been done for the proposed novel EndoA3 endocytic cargo ICAM-1? Furthermore, if endocytosis of ICAM-1 and ALCAM is diminished following EndoA3 knockdown, the expression level on the cell surface would presumably increase accordingly. This has been shown for ALCAM previously and should also be quantified for ICAM-1.

      In Figure 4A the authors show micrographs from a live-cell Airyscan movie (Movie S6) of a CD8+ T cell incubated with HeLa cells stably expressing HLA-A*68012 and transiently expressing ICAM1-EGFP. From the movie, it seems that some ICAM-1 positive vesicles in one of the HeLa cells are moving towards the T cell. However, it does not appear like the T cell has formed a stable immunological synapse but rather perhaps a motile kinapse. Furthermore, to conclude that the ICAM-1 positive vesicles are transported toward the T cell in a polarized manner, vesicles from multiple cells should be tracked and their overall directionality should be analyzed. It would also strengthen the paper if the authors could show additional evidence for polarization of the cancer cells in response to T-cell interaction.

      Finally, in Figures 4D-G, the authors show that the contact area between CD8+ T cells and LB33-MEL cells is increased in response to siRNA-mediated knockdown of EndoA3 and VPS26A. While this could be caused by reduced polarized delivery of ICAM-1 and ALCAM to the interface between the cells, it could also be caused by other factors such as increased cell surface expression of these proteins due to diminished endocytosis, and/or morphological changes in the cancer cells resulting from disrupted membrane traffic. More experimental evidence is needed to support the working model in Figure 4H.

    1. Reviewer #3 (Public review):

      Summary:

      In the manuscript by Lapao et al., the authors uncover a role for the RAB27A effector protein SYTL5 in regulating mitochondrial function and turnover. The authors find that SYTL5 localizes to mitochondria in a RAB27A-dependent way and that loss of SYTL5 (or RAB27A) impairs lysosomal turnover of an inner mitochondrial membrane mitophagy reporter but not a matrix-based one. As the authors see no co-localization of GFP/mScarlet tagged versions of SYTL5 or RAB27A with LC3 or p62, they propose that lysosomal turnover is independent of the conventional autophagy machinery. Finally, the authors go on to show that loss of SYTL5 impacts mitochondrial respiration and ECAR and as such may influence the Warburg effect and tumorigenesis. Of relevance here, the authors go on to show that SYTL5 expression is reduced in adrenocortical carcinomas and this correlates with reduced survival rates.

      Strengths:

      There are clearly interesting and new findings here that will be relevant to those following mitochondrial function, the endocytic pathway, and cancer metabolism.

      Weaknesses:

      The data feel somewhat preliminary in that the conclusions rely on exogenously expressed proteins and reporters, which do not always align.

      As the authors note there are no commercially available antibodies that recognize endogenous SYTL5, hence they have had to stably express GFP-tagged versions. However, it appears that the level of expression dictates co-localization from the examples the authors give (though it is hard to tell as there is a lack of any kind of quantitation for all the fluorescent figures). Therefore, the authors may wish to generate an antibody themselves or tag the endogenous protein using CRISPR.

      In relation to quantitation, the authors found that SYTL5 localizes to multiple compartments or potentially a few compartments that are positive for multiple markers. Some quantitation here would be very useful as it might inform on function.

      The authors find that upon hypoxia/hypoxia-like conditions that punctate structures of SYTL5 and RAB27A form that are positive for Mitotracker, and that a very specific mitophagy assay based on pSu9-Halo system is impaired by siRNA of SYTL5/RAB27A, but another, distinct mitophagy assay (Matrix EGFP-mCherry) shows no change. I think this work would strongly benefit from some measurements with endogenous mitochondrial proteins, both via immunofluorescence and western blot-based flux assays.

      A really interesting aspect is the apparent independence of this mitophagy pathway on the conventional autophagy machinery. However, this is only based on a lack of co-localization between p62 or LC3 with LAMP1 and GFP/mScarlet tagged SYTL5/RAB27A. However, I would not expect them to greatly colocalize in lysosomes as both the p62 and LC3 will become rapidly degraded, while the eGFP and mScarlet tags are relatively resistant to lysosomal hydrolysis. -/+ a lysosome inhibitor might help here and ideally, the functional mitophagy assays should be repeated in autophagy KOs.

      The link to tumorigenesis and cancer survival is very interesting but it is not clear if this is due to the mitochondrially-related aspects of SYTL5 and RAB27A. For example, increased ECAR is seen in the SYTL5 KO cells but not in the RAB27A KO cells (Fig.5D), implying that mitochondrial localization of SYTL5 is not required for the ECAR effect. More work to strengthen the link between the two sections in the paper would help with future directions and impact with respect to future cancer treatment avenues to explore.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have studied the mechanics of bolalipid and archaeal mixed-lipid membranes via comprehensive molecular dynamics simulations. The Cooke-Deserno 3-bead-per-lipid model is extended to bolalipids with 6 beads. Phase diagrams, bending rigidity, mechanical stability of curved membranes, and cargo uptake are studied. Effects such as the formation of U-shaped bolalipids, pore formation in highly curved regions, and changes in membrane rigidity are studied and discussed. The main aim has been to show how the mixture of bolalipids and regular bilayer lipids in archaeal membrane models enhances the fluidity and stability of these membranes.

      Strengths:

      The authors have presented a wide range of simulation results for different membrane conditions and conformations. For the most part, the analyses and their results are presented clearly and concisely. Figures, supplementary information, and movies very well present what has been studied. The manuscript is well-written and is easy to follow.

      Major issues:

      The Cooke-Deserno model, while very powerful for biophysical analysis of membranes at the mesoscale, is very much void of chemical information. It is parameterized such that it is good in producing fluid membranes and predicting values for bending rigidity, compressibility, and even thermal expansion coefficient falling in the accepted range of values for bilayer membranes. But it still represents a generic membrane. Now, the authors have suggested a similar model for the archaeal bolalipids, which have chemically different lipids (the presence of cyclopentane rings for one), and there is no good justification for using the same pairwise interactions between their representative beads in the coarse-grained model. This does not necessarily diminish the worth of all the authors' analyses. What is at risk here is the confusion between "what we observe this model of bolalipid- or mixed-membranes do" and "how real bolalipid-containing archaeal membranes behave at these mechanical and thermal conditions.".

      Another more specific, major issue has to do with using the Hamm-Kozlov model for fitting the power spectrum of thermal undulations. The 1/q^2 term can very well be attributed to membrane tension. While a barostat is indeed used, have the authors made absolutely sure that the deviation from 1/q^4 behavior does not correspond to lateral tension? I got more worried when I noticed in the SI that the simulations had been done with combined "fix langevin" and "fix nph" LAMMPS commands. This combination does not result in a proper isothermal-isobaric ensemble. The importance of tilt terms for bolalipids is indeed very interesting, but I believe more care is needed to establish that.

      This issue is reinforced when considering Figure 3B. These results suggest that increasing the fraction of regular lipids increases the tilt modulus, with the maximum value achieved for a normal Cooke-Deserno bilayer void of bolalipids. But this is contradictory. For these bilayers, we don't need the tilt modulus in the first place.

      Also, from the SI, I gathered that the authors have neglected the longest wavelength mode because it is not equilibrated. If this is indeed the case, it is a dangerous thing to do, because with a small membrane patch, this mode can very well change the general trend of the power spectrum. As a lot of other analyses in the manuscript rely on these measurements, I believe more elaboration is in order.

      The authors have found that "there is a strong dependency of the bending rigidity on the membrane mean curvature of stiffer bolalipids." The effect is negative, with the membrane becoming less stiff at higher mean curvatures. Why is that? I would assume that with more flexible bolalipids, the possibility of reorganization into U-shaped chains should affect the bending rigidity more (as Figure 2E suggests). While for a stiff bolalipid, not much would change if you increase the mean curvature. This should be either a tilt effect, or have to do with asymmetry between the leaflets. But on the other hand, the tilt modulus is shown to decrease with increasing bolalipid rigidity. The authors get back to this issue only on page 10, when they consider U-shaped lipids in the inner and outer leaflets and write, "this suggested that an additional membrane-curving mechanism must be involved." But then again, in the Discussion, the authors write, "It is striking that membranes made from stiffer bolalipids showed a curvature-dependent bending modulus, which is a clear signature that bolalipid membranes exhibit plastic behavior during membrane reshaping," adding to the confusion.

      This issue is repeated when the authors study nanoparticle uptake. They write: "to reconcile these seemingly conflicting observations we reason that the bending rigidity, similar to Figure 2F, is not constant but softens upon increasing membrane curvature, due to dynamic change in the ratio between bolalipids in straight and U-shaped conformation. Hence, bolalipid membranes show stroking plastic behavior as they soften during reshaping." But the softening effect that they refer to, as shown in Figure 4B, occurs for very stiff bolalipids, for which not much switching to U-shaped conformation should occur.

      Another major issue is with what the authors refer to as the "effective temperature". While plotting phase diagrams for kT/eps value is absolutely valid, I'm not a fan of calling this effective temperature. It is a dimensionless quantity that scales linearly with temperature, but is not a temperature. It is usually called a "reduced temperature". Then the authors refer to their findings as studying the stability of archaeal membranes at high temperatures. I have to disagree because eps is not the only potential parameter in the simulations (there are at least space exclusion and angle-bending stiffnesses) so one cannot identify changing eps with changing the global simulation temperature. This only works when you have one potential parameter, like an LJ gas.

      Minor issues:

      As the authors have noted, the fact that the membrane curvature can change the ratio of U-shaped to straight bolalipids would render the curvature elasticity non-linear (though the term "plastic" should not be used, as this is still structurally reversible when the stress is removed. Technically, it is hypoelastic behavior, possibly with hysteresis.) With this in mind, when the authors use essentially linear elastic models for fluctuation analysis, they should make a comparison of maximum curvatures occurring in simulations with a range that causes significant changes in bolalipid conformational ratios.

      The Introduction section of the manuscript is written with a biochemical approach, with very minor attention to the simulation works on this system. Some molecular dynamics works are only cited as existing previous work, without mentioning what has already been studied in archaeal membranes. While some information, like the binding of ESCRT proteins to archaeal membranes, though interesting, helps little to place the study within the discipline. The Introduction should be revised to show what has already been studied with simulations (as the authors mention in the Discussion) and how the presented research complements it.

      The authors have been a bit loose with using the term "stability". I'd like to see the distinction in each case, as in "chemical/thermal/mechanical/conformational stability".

      In the original Cooke-Deserno model, a so-called "poorman's angle-bending term" is used, which is essentially a bond-stretching term between the first and third particle. However, I notice the authors using the full harmonic angle-bending potential. This should be mentioned.

      The analysis of energy of U-shaped lipids with the linear model E=c_0 + c_1 * k_bola is indeed very interesting. I am curious, can this also be corroborated with mean energy measurements? The minor issue is calling the source of the favorability of U-shaped lipids "entropic", while clearly an energetic contribution is found. The two conformations, for example, might differ in the interactions with the neighboring lipids.

      The authors write in the Discussion, "In any case, our results indicate that membrane remodelling, such as membrane fission during membrane traffic, is much more difficult in bolalipid membranes [34]." Firstly, I'm not sure if studying the dependence of budding behavior on adhesion energy with nanoparticles is enough to make claims about membrane fission. Secondly, why is the 2015 paper by Markus Deserno cited here?

      In the SI, where the measurement of the diffusion coefficient is discussed, the expression for D is missing the power 2 of displacement.

      Where cargo uptake is discussed, the term "adsorption energy" is used. I think the more appropriate term would be "adhesion energy".

      Typos:<br /> Page 1, paragraph 2: Adaption → Adaptation.<br /> Page 10, paragraph 1: Stroking → Striking.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Squiers and colleagues uncovers a Commander-independent function for COMMD3 in endosomal recycling. The authors identified COMMD3 as a regulator of endosomal recycling for GLUT4-SPR through unbiased genetic screens. Subsequently, the authors performed COMMD3 knockout experiments to assess endosomal morphology and trafficking, demonstrating that COMMD3 regulates endosomal trafficking in a Commander-independent manner. Furthermore, the authors identified and confirmed that the N-terminal domain (NTD) of COMMD3 interacts with the GTPase Arf1. Using structure-guided mutations, they demonstrated that the COMMD3-Arf1 interaction is critical for the Commander-independent function of COMMD3.

      Overall, the manuscript presents compelling evidence for a Commander-independent role of COMMD3, and I agree with the author's interpretations. The manuscript uses a combination of genetic screening, microscopy, and structural and biochemical approaches to examine and support the conclusions. This is an excellent and intriguing study and I have only a few comments and suggestions to improve the manuscript further.

    1. Reviewer #2 (Public review):

      This manuscript addresses an important question which has not yet been solved in the field, what is the contribution of different gamma oscillatory inputs to the development of "theta sequences" in the hippocampal CA1 region. Theta sequences have received much attention due to their proposed roles in encoding short-term behavioral predictions, mediating synaptic plasticity, and guiding flexible decision making. Gamma oscillations in CA1 offer a readout of different inputs to this region and have been proposed to synchronize neuronal assemblies and modulate spike timing and temporal coding. However, the interactions between these two important phenomena have not been sufficiently investigated. The authors conducted place cell and local field potential (LFP) recordings in the CA1 region of rats running on a circular track. They then analyzed the phase locking of place cell spikes to slow and fast gamma rhythms, the evolution of theta sequences during behavior and the interaction between these two phenomena. They found that place cell with the strongest modulation by fast gamma oscillations were the most important contributors to the early development of theta sequences and that they also displayed a faster form of phase precession within slow gamma cycles nested with theta. The results reported are interesting and support the main conclusions of the authors. However, the manuscript needs significant improvement in several aspects regarding data analysis, description of both experimental and analytical methods and alternative interpretations, as I detail below.

      • The experimental paradigm and recordings should be explained at the beginning of the Results section. Right now, there is no description whatsoever which makes it harder to understand the design of the study.<br /> • An important issue that needs to be addressed is the very small fraction of CA1 cells phased-locked to slow gamma rhythms (3.7%). This fraction is much lower than in many previous studies, that typically report it in the range of 20-50 %. However, this discrepancy is not discussed by the authors. This needs to be explained and additional analysis considered. One analysis that I would suggest, although there are also other valid approaches, is to, instead of just analyze the phase locking in two discrete frequency bands, to compute the phase locking will all LFP frequencies from 25-100 Hz. This will offer a more comprehensive and unbiased view of the gamma modulation of place cell firing. Alternative metrics to mean vector length that are less sensitive to firing rates, such as pairwise phase consistency index (Vinck et a., Neuroimage, 2010), could be implemented. This may reveal whether the low fraction of phase locked cells could be due to a low number of spikes entering the analysis.<br /> • From the methods, it is not clear to me whether the reference LFP channel was consistently selected to be a different one that where the spikes analyzed were taken. This is the better practice to reduce the contribution of spike leakage that could substantially inflate the coupling with faster gamma frequencies. These analyses need to be described in more detail.<br /> • The initial framework of the authors of classifying cells into fast gamma and not fast gamma modulated implies a bimodality that may be artificial. The authors should discuss the nuances and limitations of this framework. For example, several previous work has shown that the same place cell can couple to different gamma oscillations (e.g., Lastoczni et al., Neuron, 2016; Fernandez-Ruiz et al., Neuron, 2017; Sharif et al., Neuron,2021).<br /> • It would be useful to provide a more through characterization of the physiological properties of FG and NFG cells, as this distinction is the basis of the paper. Only very little characterization of some place cell properties is provided in Figure 5. Important characteristics that should be very feasible to compare include average firing rate, burstiness, estimated location within the layer (i.e., deep vs superficial sublayers) and along the transverse axis (i.e., proximal vs distal), theta oscillation frequency, phase precession metrics (given their fundamental relationship with theta sequences), etc.<br /> • It is not clear to me how the analysis in Figure 6 was performed. In Fig. 6B I would think that the grey line should connect with the bottom white dot in the third panel, which would the interpretation of the results.

      Comments on revisions:

      The authors have conducted new analysis to address the issues I and the other reviewers raised in our original revision. As a result, the revised manuscript has been substantially improved.

    1. Reviewer #3 (Public review):

      Summary:

      The authors describe a new method for measuring DNA torsion in cells using the photoactivatable intrastrand cross-linker trimethyl psoralen (TMP). However, their method differs from previous TMP-based torsion mapping methods by comparing formaldehyde cross-linked and torsionally trapped chromatin to torsion-relieved (zero-torsion) chromatin in parallel. Comparison between the two datasets reveals a very slight difference, but enough to provide extremely high resolution genome-wide maps of torsion in the yeast genome. This direct comparison of the two maps confirms that blockage of TMP binding by nucleosomes and some DNA-binding proteins from TMP intercalation is a major complication of previous methods, and analysis of the data provides a glimpse of chromatin-based processes from within the DNA gyre.

      Strengths:

      In addition to providing direct evidence for the twin-supercoiled domain model and for torsional effects at transcription start (TSS) and end (TES) sites, the authors' analyses reveal some novel features of yeast higher-order structure. These include the cohesin-dependent anchoring of DNA loops at sites of positive supercoiling and the insulation of torsion between closely spaced divergent genes by general transcription factors, which implies that these factors resist free rotation. The fact that method should be generalizable to complex eukaryotic cells with large genomes, and the implications for understanding how torsion impacts transcription and gene regulation will be of substantial interest to a broad community.

      Weaknesses:

      No serious weaknesses.

    1. Reviewer #3 (Public review):

      Summary:

      This intriguing paper addresses a special case of a fundamental statistical question: how to distinguish between stochastic point processes that derive from a single "state" (or single process) and more than one state/process. In the language of the paper, a "state" (perhaps more intuitively called a strategy/process) refers to a set of rules that determine the temporal statistics of the system. The rules give rise to probability distributions (here, the probability for turning events). The difficulty arises when the sampling time is finite, and hence, the empirical data is finite, and affected by the sampling of the underlying distribution(s). The specific problem being tackled is the foraging behavior of C. elegans nematodes, removed from food. Such foraging has been studied for decades, and described by a transition over time from 'local'/'area-restricted' search'(roughly in the initial 10-30 minutes of the experiments, in which animals execute frequent turns) to 'dispersion', or 'global search' (characterized by a low frequency of turns). The authors propose an alternative to this two-state description - a potentially more parsimonious single 'state' with time-changing parameters, which they claim can account for the full-time course of these observations.

      Figure 1a shows the mean rate of turning events as a function of time (averaged across the population). Here, we see a rapid transient, followed by a gradual 4-5 fold decay in the rate, and then levels off. This picture seems consistent with the two-state description. However, the authors demonstrate that individual animals exhibit different "transition" statistics (Figure 1e) and wish to explain this. They do so by fitting this mean with a single function (Equations 1-3).

      Strengths:

      As a qualitative exercise, the paper might have some merit. It demonstrates that apparently discrete states can sometimes be artifacts of sampling from smoothly time-changing dynamics. However, as a generic point, this is not novel, and so without the grounding in C. elegans data, is less interesting.

      Weaknesses:

      (1) The authors claim that only about half the animals tested exhibit discontinuity in turning rates. Can they automatically separate the empirical and model population into these two subpopulations (with the same method), and compare the results?

      (2) The equations consider an exponentially decaying rate of turning events. If so, Figure 2b should be shown on a semi-logarithmic scale.

      (3) The variables in Equations 1-3 and the methods for simulating them are not well defined, making the method difficult to follow. Assuming my reading is correct, Omega should be defined as the cumulative number of turning events over time (Omega(t)), not as a "turn" or "reorientation", which has no derivative. The relevant entity in Figure 1a is apparently , i.e. the mean number of events across a population which can be modelled by an expectation value. The time derivative would then give the expected rate of turning events as a function of time.

      (4) Equations 1-3 are cryptic. The authors need to spell out up front that they are using a pair of coupled stochastic processes, sampling a hidden state M (to model the dynamic turning rate) and the actual turn events, Omega(t), separately, as described in Figure 2a. In this case, the model no longer appears more parsimonious than the original 2-state model. What then is its benefit or explanatory power (especially since the process involving M is not observable experimentally)?

      (5) Further, as currently stated in the paper, Equations 1-3 are only for the mean rate of events. However, the expectation value is not a complete description of a stochastic system. Instead, the authors need to formulate the equations for the probability of events, from which they can extract any moment (they write something in Figure 2a, but the notation there is unclear, and this needs to be incorporated here).

      (6) Equations 1-3 have three constants (alpha and gamma which were fit to the data, and M0 which was presumably set to 1000). How does the choice of M0 affect the results?

      (7) M decays to near 0 over 40 minutes, abolishing omega turns by the end of the simulations. Are omega turns entirely abolished in worms after 30-40 minutes off food? How do the authors reconcile this decay with the leveling of the turning rate in Figure 1a?

      (8) The fit given in Figure 2b does not look convincing. No statistical test was used to compare the two functions (empirical and fit). No error bars were given (to either). These should be added. In the discussion, the authors explain the discrepancy away as experimental limitations. This is not unreasonable, but on the flip side, makes the argument inconclusive. If the authors could model and simulate these limitations, and show that they account for the discrepancies with the data, the model would be much more compelling. To do this, I would imagine that the authors would need to take the output of their model (lists of turning times) and convert them into simulated trajectories over time. These trajectories could be used to detect boundary events (for a given size of arena), collisions between individuals, etc. in their simulations and to see their effects on the turn statistics.

      (9) The other figures similarly lack any statistical tests and by eye, they do not look convincing. The exception is the 6 anecdotal examples in Figure 2e. Those anecdotal examples match remarkably closely, almost suspiciously so. I'm not sure I understood this though - the caption refers to "different" models of M decay (and at least one of the 6 examples clearly shows a much shallower exponential). If different M models are allowed for each animal, this is no longer parsimonious. Are the results in Figure 2d for a single M model? Can Figure 2e explain the data with a single (stochastic) M model?

      (10) The left axes of Figure 2e should be reverted to cumulative counts (without the normalization).

      (11) The authors give an alternative model of a Levy flight, but do not give the obvious alternative models:<br /> a) the 1-state model in which P(t) = alpha exp (-gamma t) dt (i.e. a single stochastic process, without a hidden M, collapsing equations 1-3 into a single equation).<br /> b) the originally proposed 2-state model (with 3 parameters, a high turn rate, a low turn rate, and the local-to-global search transition time, which can be taken from the data, or sampled from the empirical probability distributions). Why not? The former seems necessary to justify the more complicated 2-process model, and the latter seems necessary since it's the model they are trying to replace. Including these two controls would allow them to compare the number of free parameters as well as the model results. I am also surprised by the Levy model since Levy is a family of models. How were the parameters of the Levy walk chosen?

      (12) One point that is entirely missing in the discussion is the individuality of worms. It is by now well known that individual animals have individual behaviors. Some are slow/fast, and similarly, their turn rates vary. This makes this problem even harder. Combined with the tiny number of events concerned (typically 20-40 per experiment), it seems daunting to determine the underlying model from behavioral statistics alone.

      (13) That said, it's well-known which neurons underpin the suppression of turning events (starting already with Gray et al 2005, which, strangely, was not cited here). Some discussion of the neuronal predictions for each of the two (or more) models would be appropriate.

      (14) An additional point is the reliance entirely on simulations. A rigorous formulation (of the probability distribution rather than just the mean) should be analytically tractable (at least for the first moment, and possibly higher moments). If higher moments are not obtainable analytically, then the equations should be numerically integrable. It seems strange not to do this.

      In summary, while sample simulations do nicely match the examples in the data (of discontinuous vs continuous turning rates), this is not sufficient to demonstrate that the transition from ARS to dispersion in C. elegans is, in fact, likely to be a single 'state', or this (eq 1-3) single state. Of course, the model can be made more complicated to better match the data, but the approach of the authors, seeking an elegant and parsimonious model, is in principle valid, i.e. avoiding a many-parameter model-fitting exercise.

      As a qualitative exercise, the paper might have some merit. It demonstrates that apparently discrete states can sometimes be artifacts of sampling from smoothly time-changing dynamics. However, as a generic point, this is not novel, and so without the grounding in C. elegans data, is less interesting.

    1. Reviewer #3 (Public review):

      Summary:

      In this set of experiments, the authors describe a novel research tool for studying complex cognitive tasks in mice, the HABITS automated training apparatus, and a novel "machine teaching" approach they use to accelerate training by algorithmically providing trials to animals that provide the most information about the current rule state for a given task.

      Strengths:

      There is much to be celebrated in an inexpensively constructed, replicable training environment that can be used with mice, which have rapidly become the model species of choice for understanding the roles of distinct circuits and genetic factors in cognition. Lingering challenges in developing and testing cognitive tasks in mice remain, however, and these are often chalked up to cognitive limitations in the species. The authors' findings, however, suggest that instead, we may need to work creatively to meet mice where they live. In some cases, it may be that mice may require durations of training far longer than laboratories are able to invest with manual training (up to over 100k trials, over months of daily testing) but the tasks are achievable. The "machine teaching" approach further suggests that this duration could be substantially reduced by algorithmically optimizing each trial presented during training to maximize learning.

      Weaknesses:

      Cognitive training and testing in rodent models fill a number of roles. Sometimes, investigators are interested in within-subjects questions - querying a specific circuit, genetically defined neuron population, or molecule/drug candidate, by interrogating or manipulating its function in a highly trained animal. In this scenario, a cohort of highly trained animals that have been trained via a method that aims to make their behavior as similar as possible is a strength.

      However, often investigators are interested in between-subjects questions - querying a source of individual differences that can have long-term and/or developmental impacts, such as sex differences or gene variants. This is likely to often be the case in mouse models especially, because of their genetic tractability. In scenarios where investigators have examined cognitive processes between subjects in mice who vary across these sources of individual difference, the process of learning a task has been repeatedly shown to be different. The authors do not appear to have considered individual differences except perhaps as an obstacle to be overcome.

      The authors have perhaps shown that their main focus is highly-controlled within-subjects questions, as their dataset is almost exclusively made up of several hundred young adult male mice, with the exception of 6 females in a supplemental figure. It is notable that these female mice do appear to learn the two-alternative forced-choice task somewhat more rapidly than the males in their cohort.

      Considering the implications for mice modeling relevant genetic variants, it is unclear to what extent the training protocols and especially the algorithmic machine teaching approach would be able to inform investigators about the differences between their groups during training. For investigators examining genetic models, it is unclear whether this extensive training experience would mitigate the ability to observe cognitive differences, or select the animals best able to overcome them - eliminating the animals of interest. Likewise, the algorithmic approach aims to mitigate features of training such as side biases, but it is worth noting that the strategic uses of side biases in mice, as in primates, can benefit learning, rather than side biases solely being a problem. However, the investigators may be able to highlight variables selected by the algorithm that are associated with individual strategies in performing their tasks, and this would be a significant contribution.

      A final, intriguing finding in this manuscript is that animal self-paced training led to much slower learning than "manual" training, by having the experimenter introduce the animal to the apparatus for a few hours each day. Manual training resulted in significantly faster learning, in almost half the number of trials on average, and with significantly fewer omitted trials. This finding does not necessarily argue that manual training is universally a better choice because it leads to more limited water consumption. However, it suggests that there is a distinct contribution of experimenter interactions and/or switching contexts in cognitive training, for example by activating an "occasion setting" process to accelerate learning for a distinct period of time. Limiting experimenter interactions with mice may be a labor-saving intervention, but may not necessarily improve performance. This could be an interesting topic of future investigation, of relevance to understanding how animals of all species learn.

    1. Reviewer #3 (Public review):

      Summary

      In this work, the authors asked how mating experience impacts reward perception and processing. For this, they employ fruit flies as a model, with a combination of behavioral, immunostaining, and live calcium imaging approaches.

      Their study allowed them to demonstrate that courtship failure decreases the fraction of flies motivated to eat sweet compounds, revealing a link between reproductive stress and reward-related behaviors. This effect is mediated by a small group of dopaminergic neurons projecting to the SEZ. After courtship failure, these dopaminergic neurons exhibit reduced activity, leading to decreased Gr5a+ neuron activity via Dop1R1 and Dop2R signaling, and leading to reduced sweet sensitivity. The authors therefore showed how mating failure influences broader behavioral outputs through suppression of the dopamine-mediated reward system and underscores the interactions between reproductive and reward pathways.

      Concern

      My main concern regarding this study lies in the way the authors chose to present their results. If I understood correctly, they provided evidence that mating failure induces a decrease in the fraction of flies exhibiting PER. However, they also showed that food consumption was not affected (Fig. 1, supplement), suggesting that individuals who did eat consumed more. This raises questions about the analysis and interpretation of the results. Should we consider the group as a whole, with a reduced sensitivity to sweetness, or should we focus on individuals, with each one eating more? I am also concerned about how this could influence the results obtained using live imaging approaches, as the flies being imaged might or might not have been motivated to eat during the feeding assays. I would like the authors to clarify their choice of analysis and discuss this critical point, as the interpretation of the results could potentially be the opposite of what is presented in the manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      Krishnan et al. present a novel contextual fear conditioning (CFC) paradigm using a virtual reality (VR) apparatus to evaluate whether conditioned context-induced freezing can be elicited in head-fixed mice. By combining this approach with two-photon imaging, the authors aim to provide high-resolution insights into the neural mechanisms underlying learning, memory, and fear. Their experiments demonstrate that head-fixed mice can discriminate between threat and non-threat contexts, exhibit fear-related behavior in VR, and show context-dependent variability during extinction. Supplemental analyses further explore alternative behaviors and the influence of experimental parameters, while hippocampal neuron remapping is tracked throughout the experiments, showcasing the paradigm's potential for studying memory formation and extinction processes.

      Strengths:

      Methodological Innovation: The integration of a VR-based CFC paradigm with real-time two-photon imaging offers a powerful, high-resolution tool for investigating the neural circuits underlying fear, learning, and memory.

      Versatility and Utility: The paradigm provides a controlled and reproducible environment for studying contextual fear learning, addressing challenges associated with freely moving paradigms.

      Potential for Broader Applications: By demonstrating hippocampal neuron remapping during fear learning and extinction, the study highlights the paradigm's utility for exploring memory dynamics, providing a strong foundation for future studies in behavioral neuroscience.

      Comprehensive Data Presentation: The inclusion of supplemental figures and behavioral analyses (e.g., licking behaviors and variability in extinction) strengthens the manuscript by addressing additional dimensions of the experimental outcomes.

      Weaknesses:

      Characterization of Freezing Behavior: The evidence supporting freezing behavior as the primary defensive response in VR is unclear. Supplementary videos suggest the observed behaviors may include avoidance-like actions (e.g., backing away or stopping locomotion) rather than true freezing. Additional physiological measurements, such as EMG or heart rate, are necessary to substantiate the claim that freezing is elicited in the paradigm.

      Analysis of Extinction: Extinction dynamics are only analyzed through between-group comparisons within each Recall day, without addressing within-group changes in behavior across days. Statistical comparisons within groups would provide a more robust demonstration of extinction processes.

      Low Sample Sizes: Paradigm 1 includes conditions with very low sample sizes (N=1-3), limiting the reliability of statistical comparisons regarding the effects of shock number and intensity. Increasing sample sizes or excluding data from mice that do not match the conditions used in Paradigms 2 and 3 would improve the rigor of the analysis.

      Potential Confound of Water Reward: The authors critique the use of reward in conjunction with fear conditioning in prior studies but do not fully address the potential confound introduced by using water reward during the training phase in their own paradigm.

    1. Reviewer #3 (Public review):

      Summary:

      This paper by Esmaeili and co-authors presents a connectome prediction study to predict episodic memory and relate prediction errors to other phonotypic variables.

      Strengths:

      (1) A primary and external validation dataset.

      (2) Novel use of prediction errors (i.e., brain-cognitive gap).

      (3) A wide range of data was investigated.

      Weaknesses:

      (1) Lack of comparisons to other methods for prediction.

      (2) Several different points are being investigated that don't allow any particular one to shine through.

      (3) Some choices of analysis are not well-motivated.

      (4) How do the n-back connectomes perform for prediction if the authors do not regress task activations from the n-back task?

      (5) I am a little concerned about overfitting with the convolutional neural net. For example, the drop-off in prediction performance in the external sample is stark. How does the deep learning approach used here compare to something simpler, like a connectome-based predictive model or ridge regression?

      (6) It may be nice to try the other models in the validation dataset. This would also provide a sense of the overfitting that may be going on with overfitting.

      (7) While predictive models increase the power over association studies, they still require large samples to prevent overfitting. Do the authors have a sense of the power their main and external validation sample sizes provide?

      (8) I am not sure that the Mann-Whitney is the correct test for comparing the distributions of prediction performances. The distributions are dependent on each other as they are each predicting the same outcomes. Using the typical degrees of freedom formula would overestimate the degrees of freedom.

      (9) The brain cognition gap is interesting. It is very similar conceptually to the brain age gap. When associating the brain age gap with other phenotypes, typically age is regressed from the brain age gap and the other phenotype. In other words, age is typically associated with a brain age gap as individuals at the tail ages often show the largest gaps. Is the brain cognition gap correlated with episodic memory and do the group differences hold if episodic memory is controlled for?

      (10) I have the same question for the dopamine results. Particularly, in the correlations that are divided by brain cognition gap sign. I could see these types of patterns arise due to a correlation with a third variable.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript by Guo and colleagues features the documentation and interpretation of three successions of continental to marginal marine deposits spanning the P/T transition and their respective ichnofaunas. Based on these new data inferences concerning end-Permian mass extinction and Triassic recovery in the tropical realm are discussed.

      Strengths:

      The manuscript is well-written and organized and includes a large amount of new lithological and ichnological data that illuminate ecosystem evolution in a time of large-scale transition. The lithological documentations, facies interpretations, and ichnotaxonomic assignments look okay (with a few exceptions).

      Weaknesses:

      Some interpretations in Table 1 could be questioned: For facies association FA2 the interpretation as „terrestrial facies with periodical flooding" should be put into the right column and, given the fossil content, other interpretations, such as "marine facies" or "lagoonal environment" with some plant debris and (terrestrial) animal remains washed in, could also be possible. For FA3 the statement "bioturbation is absent" is in conflict with the next statement "strata are moderately reworked". For FA5 the observation of a "monospecific ichnoassemblage" contradicts the listing of several ichnotaxa.

      Concerning the structure of the manuscript, certain hypotheses related to the end-Permian mass extinction and the process of the P/T extinction and recovery, namely the existence of a long-persisting "tropic dead zone" are introduced as a foregone conclusion to which the new data seemingly shall be fit as corroborating evidence. Some of the data - e.g. the presence of a supposedly Smithian-age ichnofauna are interpreted as a fast recovery shortening the duration of the "tropic dead zone" episode - but these interpretations could also be interpreted as contradicting the idea of a "dead zone" sensu stricto in favour of a "normal" post-extinction environment with low diversity and occurrence of typical disaster taxa. Due to their large error bars the early Triassic radiometric ages did not put much of a constraint on the age determination of the earliest post-extinction ichnofaunas discussed here.

      Considering the somewhat equivocal evidence and controversial ideas about the P/T transition, the introduction could be improved by describing how the idea of a "tropic dead zone" arose against the background of earlier ideas, alternative views, and conflicting data. In the discussion section, alternative interpretations of the extensive data presented here - e.g. proximal-distal shifts in lithofacies with respect to the sediment source, sea level changes, preservation bias, the local occurrence of hostile environments instead of a regional scale, etc. should be discussed, also to avoid the impression that the author's conclusion was driven by confirmation bias.

      Contrary to the authors' claim, Figures S7 and S8 suggest that burrow size does not vary much within the studied sections. Size decreases and increases in the Shichuanhe and Liulin sections do not contemporaneously, are usually within the error-bar range, and might be driven by ichnotaxa composition, i.e. the presence or absence of larger ichnotaxa, rather than by size changes in the same ichnotaxon (and producer group). Here the measurement data would be needed as well to check the basis of the authors' interpretations.

      Some arthropod tracks assigned here to Kouphichnium might not represent limulid traces but other (non-marine) arthropod taxa in accordance with their occurrence in terrestrial facies/non-marine units of the succession. More generally, the ichnotaxonomy of arthropod trackways is not yet well reserved - beyond Kouphichnium and Diplichnites various similar-looking types may occur that can have a variety of distinct insect, crustacean, millipede, etc. producers (including larval stages).

    1. Reviewer #3 (Public review):

      In this manuscript, the authors use HiC to study the 3D genome of CD14+ CD16+ monocytes from the blood of healthy and those from patients with Alcohol-associated Hepatitis.

      Overall, the authors perform a cursory analysis of the HiC data and conclude that there are a large number of changes in 3D genome architecture between healthy and AH patient monocytes. They highlight some specific examples that are linked to changes in gene expression. The analysis is of such a preliminary nature that I would usually expect to see the data from all figures in just one or two figures.

      In addition, I have a number of concerns regarding the experimental design and the depth of the analyses performed that I think must be addressed.

      (1) There is a myriad of literature that describes the existence of cell type-specific 3D genome architecture. In this manuscript, there is an assumption by the authors that the CD14+ CD16+ monocytes represent the same population from both healthy and diseased patients. Therefore, the authors conclude that the differences they see in the HiC data are due to disease-related changes in the equivalent cell types. However, I am concerned that the AH patient monocytes may have differentiated due to their environment so that they are in fact akin to a different cell type and the 3D genome changes they describe reflect this. This is supported by published articles for example: Dhanda et al., Intermediate Monocytes in Acute Alcoholic Hepatitis Are Functionally Activated and Induce IL-17 Expression in CD4+ T Cells. J Immunol (2019) 203 (12): 3190-3198, in which they show an increased frequency of CD14+ CD16+ intermediate monocytes in AH patients that are functionally distinct.

      I suggest that if the authors would like to study the specific effects of AH on 3D genome architecture then they should carefully FACsort the equivalent monocyte populations from the healthy and AH patients.

      (2) The analysis of the HiC data is quite preliminary. In the 3D genome field, it is usual to report the different scales of genome architecture, for example, compartments, topologically associated domains (TADs), and loops. I think that reporting this information and how it changes in AH patients in the appropriate cell types would be of great interest to the field.

    1. Reviewer #3 (Public review):

      Summary:

      The study highlights how the initiation, reversal, and cessation of movements are linked to changes in beta synchronization within the basal ganglia-cortex loops. It was observed that different movement phases, such as starting, stopping briefly, and stopping completely, affect beta oscillations in the motor system.

      It was found that unpredictable cues lead to stronger changes in STN-cortex beta coherence. Additionally, specific patterns of beta and gamma oscillations related to different movement actions and contexts were observed. Stopping movements was associated with a lack of the expected beta rebound during brief pauses within a movement sequence.

      Overall, the results underline the complex and context-dependent nature of motor control and emphasize the role of beta oscillations in managing movement according to changing external cues.

      Strengths:

      The paper is very well written, clear and appears methodologically sound.

      Although the use of continuous movement (turning) with reversals is more naturalistic than many previous button push paradigms.

      Weaknesses:

      The generalizability of the findings are somewhat curtailed by the fact that this was performed peri-operatively during the period of the microlesion effect. Given the availability of sensing enabled DBS devices now and HD-EEG, does MEG offer a significant enough gain in spatial localizability to offset the fact that it has to be done shortly postoperatively with externalized leads, with attendant stun effect? Specifically, for paradigms that are not asking very spatially localized questions as a primary hypothesis?

      Further investigation of the gamma signal seems warranted, even though it has a slightly lower proportional change in amplitude in beta. Given that the changes in gamma here are relatively wide band, this could represent a marker of neural firing that could be interestingly contrasted against the rhythm account presented.

      Comments on revisions: I congratulate the authors on their paper and their revisions and I have no further comments. I look forward to seeing the continuous analyses in the future. Good luck!

    1. Reviewer #3 (Public review):

      The authors tested whether: 1. The number of stimulus-stimulus pairings alters whether preconditioned fear depends on online integration during formation of the stimulus-outcome memory or during the probe test/mobilization phase, when the original stimulus, which was never paired with aversive events, elicits fear via chaining of stimulus-stimulus and stimulus-outcome memories. They found that sensory preconditioning was successful with either 8 or 32 stimulus-stimulus pairings. Perirhinal cortex NMDA receptor blockade during stimulus-outcome learning impaired preconditioning following 8 but not 32 pairings during preconditioning. Therefore, perirhinal cortex NMDA activity is required for online integration or mediated learning. Perirhinal-basolateral amygdala had nearly identical effects with the same interpretation: these areas communicate during stimulus-outcome learning, and this online communication is required for later expressing preconditioned fear. Disconnection prior to the probe test, when chaining might occur, had different effects: it impaired the expression of preconditioned fear in rats that received 32, but not 8, pairings during preconditioning. The study has several strengths and provides a thoughtful discussion of future experiments. The study is highly impactful and significant; the authors were successful in describing the behavioral and neurobiological mechanisms of mediated learning versus chaining in sensory preconditioning, which is often debated in the learning field. Therefore this study will have a significant impact on the behavioral neurobiology and learning fields.

      Strengths:

      Careful, rigorous experimental design and statistics

      The discussion leaves open questions that are very much worth exploring. For example - why did perirhinal-amygdala disconnection prior to the probe have no effect in the 8-pairing group, when bilateral perirhinal inactivation did (in Wong et al, 2019)? The authors propose that perirhinal cortex outputs bypass the amygdala during the probe test, which is an excellent hypothesis to test.

      The experiments are very explicitly hypothesis-driven, and the authors provide evidence of how and why mediated learning and chaining occur during sensory-sensory learning.

    1. Reviewer #3 (Public review):

      Summary:

      Ishii et al used molecular genetics, behavioral analyses, in vivo neural activity imaging, and neural activity manipulations in mice to study the functional role of a subset of medial preoptic area (MPOA) neurons in the regulation of female sexual drive. They first employed a self-paced mating assay during which a female could control the amount of interaction time with a male to assess female sexual drive after completion of mating. The authors observed that after mating completion (i.e., male ejaculation) females spend significantly less time interacting with males, indicating that their sexual drive is reduced. Next, the authors performed a brain-wide analysis of neurons activated following male ejaculation and identified the MPOA as a strong candidate region. One caveat is that the activity labeling was not exclusive to neurons activated following male ejaculation but included all neurons activated before, during, and after the mating encounter. However, in this revised version of the manuscript, the authors have included a key control group that labels all neurons activated up to but not including male ejaculation. Comparison of the number of activated neurons in these two groups revealed a significant additional set of neurons in the female MPOA following ejaculation. Importantly, the authors also provided in vivo calcium imaging data showing that a subset of MPOA neurons responds significantly and specifically to male ejaculation and not other behaviors during the social encounter. The authors performed these studies in both excitatory and inhibitory populations of the MPOA. Their analysis identified a subpopulation of inhibitory neurons that exhibit sustained increased activity for 90 sec following male ejaculation. Finally, the authors used chemogenetics to activate MPOA neurons during home cage mating, condition place preference, pup retrieval, and the self-paced mating assay. They found that activation of female MPOA neurons that were previously activated following male ejaculation significantly reduces mating behaviors and time spent interacting with a male during the self-paced mating assay. Whereas, activation of female MPOA neurons that were previously activated during consummatory behaviors but not male ejaculation does not alter mating behaviors and time spent interacting with a male. Therefore, MPOA neurons activated following ejaculation are sufficient to suppress female sexual motivation.

      The authors' experimental execution is rigorous and well performed. Their data identify inhibitory neurons in the female MPOA as a neural locus that is activated following male ejaculation and whose prolonged activity plays a key role in the regulation of female sexual motivation. The addition of some key control groups to this revised version of the manuscript greatly strengthens the interpretation of the authors' findings.

      Strengths:

      (1) The use of the self-paced mating assay in combination with neural imaging and manipulation to assess female sexual drive is innovative. The authors correctly assert that relatively little is known about how male ejaculation affects sexual motivation in females as compared to males. Therefore, the data collected from these studies is important and valuable.

      (2) The authors provide convincing histological data and analyses to verify and validate their brain-wide activity labeling, neural imaging, and chemogenetic studies.

      (3) The single cell in vivo calcium imaging data are well performed and analyzed. They provide key insights into the activity profiles of both excitatory and inhibitory neurons in the female MPOA during mating encounters. The authors identification of an inhibitory subpopulation of female MPOA neurons that is selectively activated following completion of mating is fundamental for future experiments which could potentially find a molecular marker for this population and specifically manipulate these neurons to understand their role in female sexual motivation in greater detail.

      (4) The authors provide convincing evidence that activation of female MPOA neurons activated following male ejaculation is sufficient to suppress female sexual motivation. Importantly, the authors addition of the consummatory-hM3Dq group demonstrates that activation of female MPOA neurons activated during mating behaviors prior to male ejaculation is not sufficient to suppress female sexual motivation.

      Weaknesses:

      In this revised version of the manuscript, the authors have added important controls as well as additional clarifying text that adequately address the weaknesses that were present in the original version of the manuscript.

    1. Reviewer #3 (Public review):

      This manuscript presents a number of interesting findings that have the potential to increase our understanding of the mechanism underlying homeostatic synaptic plasticity (HSP). The data broadly support that Rab3A plays a role in HSP, although the site and mechanism of action remain uncertain.

      The authors clearly demonstrate that Rab3A plays a role in HSP at excitatory synapses, with substantially less plasticity occurring in the Rab3A KO neurons. There is also no apparent HSP in the Earlybird Rab3A mutation, although baseline synaptic strength is already elevated. In this context, it is unclear if the plasticity is absent, already induced by this mutation, or just occluded by a ceiling effect due to the synapses already being strengthened. Occlusion may also occur in the mixed cultures when Rab3A is missing from neurons but not astrocytes. The authors do appropriately discuss these options. The authors have solid data showing that Rab3A is unlikely to be active in astrocytes, Finally, they attempt to study the linkage between changes in synaptic strength and AMPA receptor trafficking during HSP, and conclude that trafficking may not be solely responsible for the changes in synaptic strength during HSP.

      Strengths:

      This work adds another player into the mechanisms underlying an important form of synaptic plasticity. The plasticity is likely only reduced, suggesting Rab3A is only partially required and perhaps multiple mechanisms contribute. The authors speculate about some possible novel mechanisms, including whether Rab3A is active pre-synaptically to regulate quantal amplitude.

      As Rab3A is primarily known as a pre-synaptic molecule, this possibility is intriguing. However, it is based on the partial dissociation of AMPAR trafficking and synaptic response and lacks strong support. On average, they saw a similar magnitude of change in mEPSC amplitude and GluA2 cluster area and integral, but the GluA2 data was not significant due to higher variability. It is difficult to determine if this is due to biology or methodology - the imaging method involves assessing puncta pairs (GluA2/VGlut1) clearly associated with a MAP2 labeled dendrite. This is a small subset of synapses, with usually less than 20 synapses per neuron analyzed, which would be expected to be more variable than mEPSC recordings averaged across several hundred events. However, when they reduce the mEPSC number of events to similar numbers as the imaging, the mESPC amplitudes are still less variable than the imaging data. The reason for this remains unclear. The pool of sampled synapses is still different between the methods and recent data has shown that synapses have variable responses during HSP. Further, there could be variability in the subunit composition of newly inserted AMPARs, and only assessing GluA2 could mask this (see below). It is intriguing that pre-synaptic changes might contribute to HSP, especially given the likely localization of Rab3A. But it remains difficult to distinguish if the apparent difference in imaging and electrophysiology is a methodological issue rather than a biological one. Stronger data, especially positive data on changes in release, will be necessary to conclude that pre-synaptic factors are required for HSP, beyond the established changes in post-synaptic receptor trafficking.

      Other questions arise from the NASPM experiments, used to justify looking at GluA2 (and not GluA1) in the immunostaining. First, there is a strong frequency effect that is unclear in origin. One would expect NASPM to merely block some fraction of the post-synaptic current, and not affect pre-synaptic release or block whole synapses. But the change in frequency seems to argue (as the authors do) that some synapses only have CP-AMPARs, while the rest of the synapses have few or none. Another possibility is that there are pre-synaptic NASPM-sensitive receptors that influence release probability. Further, the amplitude data show a strong trend towards smaller amplitude following NASPM treatment (Fig 3B). The p value for both control and TTX neurons was 0.08 - it is very difficult to argue that there is no effect. The decrease on average is larger in the TTX neurons, and some cells show a strong effect. It is possible there is some heterogeneity between neurons on whether GluA1/A2 heteromers or GluA1 homomers are added during HSP. This would impact the conclusions about the GluA2 imaging as compared to the mEPSC amplitude data.

      To understand the role of Rab3A in HSP will require addressing two main issues:

      (1) Is Rab3A acting pre-synaptically, post-synaptically or both? The authors provide good evidence that Rab3A is acting within neurons and not astrocytes. But where it is acting (pre or post) would aid substantially in understanding its role. The general view in the field has been that HSP is regulated post-synaptically via regulation of AMPAR trafficking, and considerable evidence supports this view. More concrete support for the authors' suggestion of a pre-synaptic site of control would be helpful.

      (2) Rab3A is also found at inhibitory synapses. It would be very informative to know if HSP at inhibitory synapses is similarly affected. This is particularly relevant as at inhibitory synapses, one expects a removal of GABARs or a decrease in GABA release (ie the opposite of whatever is happening at excitatory synapses). If both processes are regulated by Rab3A, this might suggest a role for this protein more upstream in the signaling; an effect only at excitatory synapses would argue for a more specific role just at those synapses.

    1. Reviewer #3 (Public review):

      Huang et al. investigated the phenotype of Bend2 mutant mice which expressed truncated isoform. Bend2 deletion in male showed fertility and this enabled them to analyze the BEND2 function in females. They showed that Bend2 deletion in females showed decreasing follicle number which may lead to loss of ovarian reserve.

      Strengths:

      They found the truncated isoform of Bend2 and the depletion of this isoform showed decreasing follicle number at birth.

      Weaknesses:

      The authors showed novel factors that impact ovarian reserve. Although the number of follicles and conception rate are reduced in mutant mice, the in vitro fertilization rate is normal and follicles remain at 40 weeks of age. It is difficult to know how critical this is when applied to the human case.

    1. Reviewer #3 (Public review):

      Summary:

      The authors performed a detailed single-cell analysis of the early embryonic cranial neural plate with unprecedented temporal resolution between embryonic days 7.5 and 8.75. They employed diffusion analysis to identify genes that correspond to different temporal and spatial locations within the embryo. Finally, they also examined the global response of cranial tissue to a Smoothened agonist.

      Strengths:

      Overall, this is an impressive resource, well-validated against sets of genes with known temporal and spatial patterns of expression. It will be of great value to investigators examining early stages of neural plate patterning, neural progenitor diversity, and the roles of signaling molecules and gene regulatory networks controlling regionalization and diversification of the neural plate.

      Weaknesses:

      The manuscript should be considered a resource. Experimental manipulation is limited to analysis of neural plate cells that were cultured in vitro for 12 hours with SAG. They have identified a significant set of previously unreported genes that are differentially expressed in the cranial neural plate. Some additional analyses might help to highlight novel hypotheses arising from this remarkable resource.

      Comments on revisions: I am satisfied with the responses of the authors and do not have any further concerns.

    1. Reviewer #3 (Public review):

      Summary:

      This study from Oriol et al. first uses transgenic animals to examine projection targets of specific subtypes of VTA GABA neurons (expressing PV, SST, MOR, or NTS). They follow this with a set of optogenetic experiments showing that VTA projection neurons (regardless of genetic subtype) make local functional connections within the VTA itself. Both of these findings are important advances in the field. Notably, both GABAergic and glutamatergic neurons in the VTA likely exhibit these combined long/short-range projections.

      Strengths:

      The main strength of this study is the series of optogenetic/electrophysiological experiments that provide detailed circuit connectivity of VTA neurons. The long-range projections to the VP (but not other targets) are also verified to have functional excitatory and inhibitory components. Overall, the experiments are well executed and the results are very relevant in light of the rapidly growing knowledge about the complexity and heterogeneity of VTA circuitry.

      Another strength of this study is the well-written and thoughtful discussion regarding the current findings in the context of the long-standing question of whether the VTA does or does not have true interneurons.

      Comments on revisions:

      The authors have addressed all of my questions admirably, and the final result is considerably improved and remains a valuable contribution to the field.

    1. Reviewer #3 (Public review):

      Summary:

      Mutations that result in consistent RAS activation constitute a major driver of cancer. Therefore, RAS is a favorable target for cancer therapy. However, since normal RAS activity is essential for the function of normal cells, a mechanism that differentiates aberrant RAS activity from normal one is required to avoid severe adverse effects. To this end, the authors designed and optimized a synthetic gene circuit that is induced by active RAS-GTP. The circuit components, such as RAS-GTP sensors, dimerization domains, and linkers. To enhance the circuit selectivity and dynamic range, the authors designed a synthetic promoter comprised of MAPK-responsive elements to regulate the expression of the RAS sensors, thus generating a feed-forward loop regulating the circuit components. Circuit outputs with respect to circuit design modification were characterized in standard model cell lines using basal RAS activity, active RAS mutants, and RAS inactivation.

      This approach is interesting. The design is novel and could be implemented for other RAS-mediated applications. The data support the claims, and while this circuit may require further optimization for clinical application, it is an interesting proof of concept for targeting aberrant RAS activity.

      Strengths:

      Novel circuit design, through optimization and characterization of the circuit components, solid data.

      Weaknesses:

      This manuscript could significantly benefit from testing the circuit performance in more realistic cell lines, such as patient-derived cells driven by RAS mutations, as well as in corresponding non-cancer cell lines with normal RAS activity. Furthermore, testing with therapeutic output proteins in vitro, and especially in vivo, would significantly strengthen the findings and claims.

    1. Reviewer #3 (Public review):

      Summary:

      The laboratory mouse is an ideal animal to study the neural and psychological underpinnings of social dominance behavior because of its economic cost and the animals' readiness to display dominant and subordinate behaviors in simple and testable environments. Here, a new and novel method for measuring dominance and the individual social status of mice is presented using a food competition assay. Historically, food competition assays have been avoided because they occur in an open arena or the home cage, and it can be difficult to assess who gets priority access to the resource and to avoid aggressive interactions such as bite wounding. Now, the authors have designed a narrow rectangular arena separated in half by a sliding floor-to-ceiling obstacle, where the mice placed at opposite sides of the obstacle compete by pushing the obstacle to gain priority access to a food pellet resting on the arena floor under the obstacle. One can also place the food pellet within the obstacle to restrict priority access to the food and measure the time or effort spent pushing the obstacle back and forth. As hypothesized, the outcomes in the food competition test were significantly consistent with those of the more common tube test (space competition) and warm spot competition test. This suggests that these animals have a stereotypic dominance organization that exists across multiple resource domains (i.e., food, space, and temperature). Only male and female C57 mice in same-sex pairs or triads were tested.

      Strengths:

      The design of the apparatus and the inclusion of females are significant strengths within the study.

      Weaknesses:

      There are at least two major weaknesses of the study: neglecting the value of test inconsistency and not providing the mice time to recognize who they are competing with.

      Several studies have demonstrated that although inbred mice in laboratory housing share similar genetics and environment, they can form diverse types of hierarchical organizations (e.g., loose, stable, despotic, linear, etc.) and there are multiple resource domains in the home cage that mice compete over (e.g., space, food, water, temperature, etc.). The advantage of using multiple dominance assays is to understand the nuances of hierarchical organizations better. For example, some groups may have clear dominant and subordinate individuals when competing for food, but the individuals may "change or switch" social status when competing for space. Indeed, social relationships are dynamic, not static. Here, the authors have provided another test to measure another dimension of dominance: food competition. Rather than highlight this advantage, the authors highlight that the test is in agreement with the standard tube test and warm spot test and that C57 mice have stereotypic dominance across multiple domains. While some may find this great, it will leave many to continue using the tube test only (which measures the dimension of space competition) and avoid measuring food competition. If the reader looks at Figures 6E, F, and G they will see examples of inconsistency across the food competition test, tube test, and warm spot test in triads of mice. These groups are quite interesting and demonstrate the diversity of social dynamics in groups of inbred mice in highly standardized environmental conditions. Scientists interested in dominance should study groups that are consistent and inconsistent across multiple dimensions of dominance (e.g., space, food, mates, etc.).

      Unlike the tube test and warm spot test, the food competition test presented here provides no opportunity for the animals to identify their opponent. That is, they cannot sniff their opponent's fur or anogenital region, which would allow them an opportunity to identify them individually. Thus, as the authors state, the test only measures psychological motivation to get a food reward. Notably, the outcome in the direct and indirect testing of food competition is in agreement, leaving many to wonder whether they are measuring the social relationship or the effort an individual puts forth in attaining a food reward regardless of the social opponent. Specifically, in the direct test, an individual can retrieve the food reward by pushing the obstacle out of the way first. In the indirect test, the animals cannot retrieve the reward and can only push the obstacle back and forth, which contains the reward inside. In Figure 4E, you can see that winners spent more time pushing the block in the indirect test. Thus, whether the test measures a social relationship or just the likelihood of gaining priority access to food is unclear. To rectify this issue, the authors could provide an opportunity for the animals to interact before lowering the obstacle and raising(?) a food reward. They may also create a very long one-sided apparatus to measure the amount of effort an individual mouse puts forth in the indirect test with only one individual - or any situation with just one mouse where the moving obstacle is not pushed back, and the animal can just keep pushing until they stop. This would require another experiment. It also may not tell us much more since it remains unclear whether inbred mice can individually identify one another (see https://doi.org/10.1098/rspb.2000.1057 for more details).

      A minor issue is that the write-up of the history of food competition assays and female dominance research is inaccurate. Food competition assays have a long history since at least the 1950s and many people study female dominance now.

      Food competition: https://doi.org/10.1080/00223980.1950.9712776, https://psycnet.apa.org/fulltext/1953-03267-001.pdf, https://doi.org/10.1016/j.bbi.2003.11.007, https://doi.org/10.1038/s41586-022-04507-5

      Female dominance: https://doi.org/10.1016/0031-9384(87)90269-1, https://doi.org/10.1016/j.cub.2023.03.020, https://doi.org/10.1016/S0031-9384(01)00494-2, https://doi.org/10.1037/0735-7036.99.4.411

    1. Reviewer #3 (Public review):

      In this study, the authors used RNAscope and immunostaining to confirm the expression of RTN4RL2 RNA and protein in hair cells and spiral ganglia. Through RTN4RL2 gene knockout mice, they demonstrated that the absence of RTN4RL2 leads to an increase in the size of presynaptic ribbons and a depolarized shift in the activation of calcium channels in inner hair cells. Additionally, they observed a reduction in GluA2/3 AMPA receptors in postsynaptic neurons and identified additional "orphan PSDs" not paired with presynaptic ribbons. These synaptic alterations ultimately resulted in an increased hearing threshold in mice, confirming that the RTN4RL2 gene is essential for normal hearing. These data are intriguing as they suggest that RTN4RL2 contributes to the proper formation and function of auditory afferent synapses and is critical for normal hearing. However, a thorough understanding of the known or postulated roles of RTN4Rl2 is lacking.

      While the conclusions of this paper are generally well supported by the data, several aspects of the data analysis warrant further clarification and expansion.

      (1) A quantitative assessment is necessary in Figure 1 when discussing RNA and protein expression. It would be beneficial to show that expression levels are quantitatively reduced in KO mice compared to wild-type mice. This suggestion also applies to Figure 2-supplement 3.D, which examines expression levels.

      (2) In Figure 2, the authors present a morphological analysis of synapses and discuss the presence of "orphan PSDs." I agree that Homer1 not juxtaposed with Ctbp2 is increased in KO mice compared to the control group. However, in quantifying this, they opted to measure the number of Homer1 juxtaposed with Ctbp2 rather than directly quantifying the number of Homer1 not juxtaposed with Ctbp2. Quantifying the number of Homer1 not juxtaposed with Ctbp2 would more clearly represent "orphan PSDs" and provide stronger support for the discussion surrounding their presence.

      (3) In Figure 2, Supplementary 3, the authors discuss GluA2/3 puncta reduction and note that Gria2 RNA expression remains unchanged. However, there is an issue with the lack of quantification for Gria2 RNA expression. Additionally, it is noted that RNA expression was measured at P4. While the timing for GluA2/3 puncta assessment is not specified, if it was assessed at 3 weeks old as in Figure 2's synaptic puncta analysis, it would be inappropriate to link Gria2 RNA expression with GluA2/3 protein expression at P4. If RNA and protein expression were assessed at P4, please indicate this timing for clarity.

      (4) In Figure 3, the authors indicate that RTN4RL2 deficiency reduces the number of type 1 SGNs connected to ribbons. Given that the number of ribbons remains unchanged (Figure 2), it is important to clearly explain the implications of this finding. It is already known that each type I SGN forms a single synaptic contact with a single IHC. The fact that the number of ribbons remains constant while additional "orphan PSDs" are present suggests that the overall number of SGNs might need to increase to account for these findings. An explanation addressing this would be helpful.

      (5) In Figure 4F and 5Cii, could you clarify how voltage sensitivity (k) was calculated? Additionally, please provide an explanation for the values presented in millivolts (mV).

      (6) In Figure 6, the author measured the threshold of ABR at 2-4 months old. Since previous figures confirming synaptic morphology and function were all conducted on 3-week-old mice, it would be better to measure ABR at 3 weeks of age if possible.

    1. Reviewer #3 (Public review):

      Summary:

      The rete ovarii (RO) has long been disregarded as a non-functional structure within the ovary. In their study, Anbarci and colleagues have delineated the markers and developmental dynamics of three distinct regions of the RO - the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). Notably focusing on the EOR, the authors presented evidence illustrating that the EOR forms a convoluted tubular structure culminating in a dilated tip. Intriguingly, microinjections into this tip revealed luminal flow towards the ovary containing potentially secreted functional proteins. Additionally, the EOR cells exhibit associations with vasculature, macrophages, and neuronal projections, proposing the notion that the RO may play a functional role in ovarian development during critical ovariogenesis stages. By identifying marker genes within the RO, the authors have also suggested that the RO could serve as a potential structure linking the ovary with the neuronal system.

      Strengths:

      Overall, the reviewer commends the authors for their systematic research on the RO, shedding light on this overlooked structure in developing ovaries. Furthermore, the authors have proposed a series of hypotheses that are both captivating and scientifically significant, with the potential to reshape our understanding of ovarian development through future investigations.

      Weaknesses:

      Although the manuscript lacks conclusive data to support many of its conclusions, the authors provide highly constructive discussions that offer valuable insights for future research on the rete ovarii in the field.

    1. Reviewer #3 (Public review):

      In this study, the authors employ a mouse ES-derived "hemogenic gastruloid" model which they generated and which they claim to be able to deconvolute YS and AGM stages of blood production in vitro. This work could represent a valuable resource for the field. However, in general, I find the conclusions in this manuscript poorly supported by the data presented. Importantly, it isn't clear what exactly are the "YS" and the "AGM"-like stages identified in the culture and where is the data that backs up this claim. In my opinion, the data in this manuscript lack convincing evidence that can enable us to identify what kind of hematopoietic progenitor cells are generated in this system. Therefore, the statement that "our study has positioned the MNX1-OE target cell within the YS-EMP stage (line 540)" is not supported by the evidence presented in this study. Overall, the system seems to be very preliminary and requires further optimization before those claims can be made.

      Specific comments below:

      (1) The flow cytometric analysis of gastruloids presented in Figure 1 C-D is puzzling. There is a large % of c-Kit+ cells generated, but few VE-Cad+ Kit+ double positive cells. Similarly, there are many CD41+ cells, but very few CD45+ cells, which one would expect to appear toward the end of the differentiation process if blood cells are actually generated. It would be useful to present this analysis as consecutive gating (i.e. evaluating CD41 and CD45 within VE-Cad+ Kit+ cells, especially if the authors think that the presence of VE-Cad+ Kit+ cells is suggestive of EHT). The quantification presented in D is misleading as the scale of each graph is different.

      (2) The imaging presented in Figure 1E is very unconvincing. C-Kit and CD45 signals appear as speckles and not as membrane/cell surfaces as they should. This experiment should be repeated and nuclear stain (i.e. DAPI) should be included.

      (3) Overall, I am not convinced that hematopoietic cells are consistently generated in these organoids. The authors should sort hematopoietic cells and perform May-Grunwald Giemsa stainings as they did in Figure 6 to confirm the nature of the blood cells generated.

      (4) The scRNAseq in Figure 2 is very difficult to interpret. Specific points related to this:<br /> - Cluster annotation in Figure 2a is missing and should be included.<br /> - Why do the heatmaps show the expression of genes within sorted cells? Couldn't the authors show expression within clusters of hematopoietic cells as identified transcriptionally (which ones are they? See previous point)? Gene names are illegible.<br /> - I see no expression of Hlf or Myb in CD45+ cells (Figure 2G). Hlf is not expressed by any of the populations examined (panels E, F, G). This suggests no MPP or pre-HSC are generated in the culture, contrary to what is stated in lines 242-245. (PMID 31076455 and 34589491).<br /> Later on, it is again stated that "hGx cells... lacked detection of HSC genes like Hlf, Gfi1, or Hoxa9" (lines 281-283). To me, this is proof of the absence of AGM-like hematopoiesis generated in those gastruloids.

      (5) Mapping of scRNA-Seq data onto the dataset by Thambyrajah et al. is not proof of the generation of AGM HE. The dataset they are mapping to only contains AGM cells, therefore cells do not have the option to map onto something that is not AGM. The authors should try mapping to other publicly available datasets also including YS cells.

      (6) Conclusions in Figure 3, named "hGx specify cells with preHSC characteristics" are not supported by the data presented here. Again, I am not convinced that hematopoietic cells can be efficiently generated in this system, and certainly not HSCs or pre-HSCs.<br /> - FACS analysis in 3A is again very unconvincing. I do not think the population identified as c-Kit+ CD144+ is real. Also, why not try gating the other way around, as commonly done (e.g. VE-Cad+ Kit+ and then CD41/CD45)?<br /> - The authors must have tried really hard, but the lack of short- or long-engraftment in a number of immunodeficient mouse models (lines 305-313) really suggests that no blood progenitors are generated in their system. I am not familiar with the adrenal gland transplant system, but it seems like a very non-physiological system for trying to assess the maturation of putative pre-HSCs. The data supporting the engraftment of these mice, essentially seen only by PCR and in some cases with a very low threshold for detection, are very weak, and again unconvincing. It is stated that "BFP engraftment of the Spl and BM by flow cytometry was very low level albeit consistently above control (Fig. S4E)" (lines 337-338). I do not think that two dots in a dot plot can be presented as evidence of engraftment.

      (7) Given the above, I find that the foundations needed for extracting meaningful data from the system when perturbed are very shaky at best. Nevertheless, the authors proceed to overexpress MNX1 by LV transduction, a system previously shown to transform fetal liver cells, mimicking the effect of the t(7;12) AML-associated translocation. Comments on this section:<br /> - The increase in the size of the organoid when MNX1 is expressed is a very unspecific finding and not necessarily an indication of any hematopoietic effect of MNX1 OE.<br /> - The mild increase of cKit+ cells (Figure 4E) at the 144hr timepoint and the lack of any changes in CD41+ or CD45+ cells suggests that the increase in Kit+ cells % is not due to any hematopoietic effect of MNX1 OE. No hematopoietic GO categories are seen in RNA seq analysis, which supports this interpretation. Could it be that just endothelial cells are being generated?

      (8) There seems to be a relatively convincing increase in replating potential upon MNX1-OE, but this experiment has been poorly characterized. What type of colonies are generated? What exactly is the "proportion of colony forming cells" in Figures 5B-D? The colony increase is accompanied by an increase in Kit+ cells; however, the flow cytometry analysis has not been quantified.

      (9) Do hGx cells engraft upon MNX1-OE? This experiment, which appears not to have been performed, is essential to conclude that leukemic transformation has occurred.

    1. Reviewer #3 (Public review):

      Genetic manipulation of Leishmania has some challenges, including some limitations in the DNA repair strategies that are present in the organism and the absence of RNA interference in many species. The senior author has contributed significantly to expanding the available routes towards Leishmania genetic manipulation by developing and adapting CRISPR-Cas9 tools to allow gene manipulation via DNA double strand break repair and, more recently, base modification. This work seeks to improve on some limitations in the tools previously described for the latter approach of base modification leading to base change.

      The work in the paper is meticulously described, with solid evidence for the improvements that are claimed: Fig.1 clearly describes reduced impairment in growth of parasites expressing sgRNAs via changes in promoters; Figs.2 and 3 compellingly document the usefulness of using AsCas12a for integration after transformation; Figs.1 and 4 demonstrate the capacity of the combined modifications to efficiently edit a gene in three different Leishmania species; and Fig. 5 shows that this approach can be conducted at scale, providing a means of assessing the fitness of mutant pools. There is little doubt these new tools will be adopted by the Leishmania community, adding to the growing arsenal of approaches for genetic manipulation.

      Two weaknesses suggested in the initial submission have been completely addressed.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chen and colleagues explores the connections from cerebellar purkinje cells to various brainstem nuclei. They combine two methods - presynaptic puncta labeling as putative presynaptic markers, and optogenetics, to test the anatomical projections and functional connectivity from purkinje cells onto a variety of brainstem nuclei. Overall, their study provides an atlas of sorts of purkinje cell connectivity to the brainstem, which includes a critical analysis of some of their own data from another publication. Overall, the value of this work is to both provide neural substrates by which purkinje cells may influence the brainstem and subsequent brain regions independent of the deep cerebellar nuclei, and also, to provide a critical analysis of viral-based methods to explore neuronal connectivity.

      Strengths:

      The strengths lie in the simplicity of the study, the number of cells patched, and the relationship between the presence of putative presynaptic puncta and electrophysiological results. This type of study is important and should provide a foundation for future work exploring cerebellar inputs and outputs. Overall, I think that the critique of viral-based methods to define connectivity, and a more holistic assessment of what connectivity is and how it should be defined is timely and warranted, as I think this is under-appreciated by many groups and overall, there is a good deal of research being published that do not properly consider the issues that this manuscript raises about what viral-based connectivity maps do and do not tell us.

      Weaknesses:

      While I overall liked the manuscript, I do have a few concerns which relate to interpretation of results, and discussion of technological limitations. The main concerns I have relate to the techniques that the authors use, and an insufficient discussion of their limitations. The authors use a Cre-dependent mouse line that expresses a synaptophysin-tdtomato marker, which the authors confidently state is a marker of synapses. This is misleading. Synaptophysin is a vesicle marker, and as such, labels axons, where vesicles are present in transit, and likely cell bodies where the protein is being produced. As such, the presence of tdtomato should not be interpreted definitively as the presence of a synapse. The use of vGAT as a marker, while this helps to constrain the selection of putative pre-synaptic sites, is also a vesicle marker and will likely suffer the same limitations (though in this case the expression is endogenous and not driven by the ROSA locus). A more conservative interpretation of the data would be that the authors are assessing putative pre-synaptic sites with their analysis. This interpretation is wholly consistent with their findings showing the presence of tdtomato in some regions but only sparse connectivity - this would be expected in the event that axons are passing through. If the authors wish to strongly assert that they are specifically assessing synapses, a marker better restricted to synapses and not vesicles may be more appropriate.

      Similarly, while optogenetics/slice electrophysiology remains the state of the art for assessing connectivity between cell populations, it is not without limitations. For example, connections that are not contained within the thickness of the slice (here, 200 um, which is not particularly thick for slice ephys preps) will not be detected. As such, the absence of connections are harder to interpret than the presence of connections. Slices were only made in the coronal plane, which means if that if there is a particular topology to certain connections that is orthogonal to that plane, those connections may be under-represented. As such, all connectivity analyses likely are under-representations of the actual connectivity that exists in the intact brain. Therefore, perhaps the authors should consider revising their assessments of connections, or lack thereof, of purkinje cells to e.g., LC cells. While their data do make a compelling case that the connections between purkinje cells and LC cells are not particularly strong or numerous, especially compared to other nearby brainstem nuclei, their analyses do indicate that at least some such connections do exist. Thus, rather than saying that the viral methods such as rabies virus are not accurate reflections of connectivity - perhaps a more circumspect argument would be that the quantitative connectivity maps reported by other groups using rabies virus do not always reflect connectivity defined by other means e.g., functional connections with optogenetics. In some cases the authors do suggest this (e.g., "Together, these findings indicate that reliance on anatomical tracing experiments alone is insufficient to establish the presence and important of a synaptic connection"), but in other cases they are more dismissive of viral tracing results (e.g., "it further suggests that these neurons project to the cerebellum and were not retrogradely labeled"). Furthermore, some statements are a bit misleading e.g., mentioning that rabies methods are critically dependent on starter cell identity immediately following the citation of studies mapping inputs onto LC cells. While in general this claim has merit, the studies cited (19-21) use Dbh-Cre to define LC-NE cells which does have good fidelity to the cells of interest in the LC. Therefore, rewording this section in order to raise these issues generally without proximity to the citations in the previous sentence may maintain the authors' intention without suggesting that perhaps the rabies studies from LC-NE cells that identified inputs from purkinje cells were inaccurate due to poor fidelity of the Cre line. Overall, this manuscript would certainly not be the first report indicating that rabies virus does not provide a quantitative map of input connections. In my opinion this is still under-appreciated by the broad community and should be explicitly discussed. Thus, an acknowledgement of previous literature on this topic and how their work contributes to that argument is warranted.

      Comments on revisions:

      The responses the authors offer in theory are good, but they still use terms such as synapses and putative presynaptic boutons relatively interchangeably - if the authors make the correction to the more conservative terminology, which I think better reflects the data, this should be more consistent throughout the manuscript.

    1. Reviewer #3 (Public review):

      Lloyd, Xia et al. utilised the existence of surface-dwelling and cave-dwelling morphs of Astyanax mexicanus to explore a proposed link between DNA damage, aging, and the evolution of sleep. Key to this exploration is the behavioural and physiological differences between cavefish and surface fish, with cavefish having been previously shown to have low levels of sleep behaviour, along with metabolic alterations (for example chronically elevated blood glucose levels) in comparison to fish from surface populations. Sleep deprivation, metabolic dysfunction and DNA damage are thought to be linked, and to all contribute to aging processes. Given that cavefish seem to show no apparent health consequences of low sleep levels, the authors suggest that they have evolved resilience to sleep loss. Furthermore, as extended wake and loss of sleep is associated with increased rates of damage to DNA (mainly double-strand breaks) and sleep is linked to repair of damaged DNA, the authors propose that changes in DNA damage and repair might underlie the reduced need for sleep in the cavefish morphs relative to their surface-dwelling conspecifics.

      To fulfil their aim of exploring links between DNA damage, aging, and the evolution of sleep, the authors employ methods that are largely appropriate, and comparison of cavefish and surface fish morphs from the same species certainly provides a lens by which cellular, physiological and behavioural adaptations can be interrogated. Fluorescence and immunofluorescence are used to measure gut reactive oxygen species and markers of DNA damage and repair processes in the different fish morphs, and measurements of gene expression and protein levels are appropriately used. However, although the sleep tracking and quantification employed is quite well established, issues with the experimental design relating to attempts to link induced DNA damage to sleep regulation (outlined below). Moreover, although the methods used are appropriate for the study of the questions at hand, there are issues with the interpretation of the data and with these results being over-interpreted as evidence to support the paper's conclusions.

      This study shows that a marker of DNA repair molecular machinery that is recruited to DNA double-strand breaks (γH2AX) is elevated in brain cells of the cavefish relative to the surface fish, and that reactive oxygen species are higher in most areas of the digestive tract of the cavefish than in that of the surface fish. As sleep deprivation has been previously linked to increases in both these parameters in other organisms (both vertebrates and invertebrates), their elevation in the cavefish morph is taken to indicated that the cavefish show signs of the physiological effects of chronic sleep deprivation.

      It has been suggested that induction of DNA damage can directly drive sleep behaviour, with a notable study describing both the induction of DNA damage and an increase in sleep/immobility in zebrafish (Danio rerio) larvae by exposure to UV radiation (Zada et al. 2021 doi:10.1016/j.molcel.2021.10.026). In the present study, an increase in sleep/immobility is induced in surface fish larvae by exposure to UV light, but there is no effect on behaviour in cavefish larvae. This finding is interpreted as representing a loss of a sleep-promoting response to DNA damage in the cavefish morph. However, induction of DNA damage is not measured in this experiment, so it is not certain if similar levels of DNA damage are induced in each group of intact larvae, nor how the amount of damage induced compares to the pre-existing levels of DNA damage in the cavefish versus the surface fish larvae. In both this study with A. mexicanus surface morphs and the previous experiments from Zada et al. in zebrafish, observed increases in immobility following UV radiation exposure are interpreted as following from UV-induced DNA damage. However, in interpreting these experiments it is important to note that the cavefish morphs are eyeless and blind. Intense UV radiation is aversive to fish, and it has previously been shown in zebrafish larvae that (at least some) behavioural responses to UV exposure depend on the presence of an intact retina and UV-sensitive cone photoreceptors (Guggiana-Nilo and Engert, 2016, doi:10.3389/fnbeh.2016.00160). It is premature to conclude that the lack of behavioural response to UV exposure is in the cavefish is due to a difference response to DNA damage, as their lack of eyes will likely inhibit a response to the UV stimulus. Indeed, were the equivalent zebrafish experiment from Zada et al. to be repeated with mutant larvae fish lacking the retinal basis for UV detection it might be found that, in this case too, the effects of UV on behaviour are dependent on visual function. Such a finding should prompt a reappraisal of the interpretation that UV exposure's effects on fish sleep/locomotor behaviour are mediated by DNA damage. An additional note, relating to both Lloyd, Xia et al. and Zada et al., is that though increases in immobility are induced following UV exposure, in neither study have assays of sensory responsiveness been performed during this period. As a decrease in sensory responsiveness is a key behavioural criterion for defining sleep, it is therefore unclear that this post-UV behaviour is genuinely increased sleep as opposed to a stress-linked suppression of locomotion due to the intensely aversive UV stimulus. While it is true that behavioural immobility is used by many studies as a criterion to identify sleep in non-mammalian species, this is only fully appropriate when other elements of the behavioural criteria of sleep (e.g. reduced responsiveness to sensory stimuli, rapid reversibility, homeostatic regulation, circadian regulation) have been shown to be associated with these periods of behavioural quiescence. In both Lloyd, Xia et al. and Zada et al., only an increased immobility has been demonstrated, occurring at a period where the circadian clock would be promoting wake and natural homeostatic sleep drive would be expected to be at the low end of its normal range. At a minimum, testing sensory threshold would be advisable to ensure that the classification of this behaviour as sleep is accurate and to avoid the risk of being misled in the interpretation of these experiments.

      The effects of UV exposure, in terms of causing damage to DNA, inducing DNA damage response and repair mechanisms, and in causing broader changes in gene expression are assessed in both surface and cavefish larvae, as well as in cell lines derived from these different morphs. Differences in the suite of DNA damage response mechanisms that are upregulated are shown to exist between surface fish and cavefish larvae, though at least some of this difference is likely to be due to differences gene expression that may exist even without UV exposure (this is discussed further below).

      UV exposure induced DNA damage (as measured by levels of cyclobutene pyrimidine dimers) to a similar degree in cell lines derived from both surface fish and cave fish. However, γH2AX shows increased expression only in cells from the surface fish, suggesting an induction of an increased DNA repair response in these surface morphs, corroborated by their cells' increased ability to repair damaged DNA constructs experimentally introduced to the cells in a subsequent experiment. This "host cell reactivation assay" is a very interesting assay for measuring DNA repair in cell lines, but the power of this approach might be enhanced by introducing these DNA constructs into larval neurons in vivo (perhaps by electroporation) and by tracking DNA repair in living animals. Indeed, in such a preparation, the relationship between DNA repair and sleep/wake state could be assayed.

      Comparing gene expression in tissues from young (here 1 year) and older (here 7-8 years) fish from both cavefish and surface fish morphs, the authors found that there are significant differences in the transcriptional profiles in brain and gut between young and old surface fish, but that for cavefish being 1 year old versus being 7-8 years old did not have a major effect on transcriptional profile. The authors take this as suggesting that there is a reduced transcriptional change occurring during aging and that the transcriptome of the cavefish is resistant to age-linked changes. This seems to be only one of the equally plausible interpretations of the results; it could also be the case that alterations in metabolic cellular and molecular mechanisms, and particularly in responses to DNA damage, in the cavefish mean that these fish adopt their "aged" transcriptome within the first year of life. This would mean that rather than the findings revealing that "the transcriptome of the cavefish is resilient to age-associated changes despite sleep loss, elevated ROS and elevated DNA damage", it would suggest that the cavefish transcriptome is sensitive to age-associated changes, potentially being driven by this low level of sleep, elevated reactive oxygen species, and elevated DNA damage. This alternative interpretation greatly changes the understanding of the present findings. One way in which the more correct interpretation could be determined would be by adding a further, younger group of fish to the comparison (perhaps a group in the age range of 1-3 months, relatively shortly after metamorphosis).

      A major weakness of the study in its current form is the absence of sleep deprivation experiments to assay the effects of sleep loss on the cellular and molecular parameters in question. Without such experiments, the supposed link of sleep to the molecular, cellular and "aging" phenotypes remains tenuous. Although the argument might be made that the cavefish represent a naturally "sleep deprived" population, the cavefish in this study are not sleep deprived, rather they are adapted to a condition of reduced sleep relative to fish from surface populations. Comparing the effects of depriving fish from each morph on markers of DNA damage and repair, on gut reactive oxygen species, and on gene expression will be necessary to solidify any proposed link of these phenotypes to sleep.

      A second important aspect that limits the interpretability and impact of this study is the absence of information about circadian variations in the parameters measured. A relationship between circadian phase, light exposure and DNA damage/repair mechanisms is known to exist in A. mexicanus and other teleosts, and for differences to exist between the cave and surface morphs in there phenomena (Beale et al. 2013, doi: 10.1038/ncomms3769). Although the present study mentions that their experiments do not align with these previous findings, they do not perform the appropriate experiments to determine if this such a misalignment is genuine. Specifically, Beale et al. 2013 showed that white light exposure drove enhanced expression of DNA repair genes (including cpdp which is prominent in the current study) in both surface fish and cavefish morphs, but that the magnitude of this change was less in the cave fish because they maintained an elevated expression of these genes in the dark, whereas darkness supressed the expression of these genes in the surface fish. If such a phenomenon is present in the setting of the current study, this would likely be a significant confound for the UV-induced gene expression experiments in intact larvae, and undermine the interpretation of the results derived from these experiments: as samples are collected 90 minutes after the dark-light transition (ZT 1.5) it would be expected that both cavefish and surface fish larvae should have a clear induction of DNA repair genes (including cpdp) regardless of 90s of UV exposure. The data in supplementary figure 3 is not sufficient to discount this potentially serious confound, as for larvae there is only gene expression data for timepoints from ZT2 to ZT 14, with all of these timepoints being in the light phase and not capturing any dynamics that would occur at the most important timepoints from ZT0-ZT1.5, in the relevant period after dark-light transition. Indeed, an appropriate control for this experiment would involve frequent sampling at least across 48 hours to assess light-linked and developmentally-related changes in gene expression that would occur in 5-6dpf larvae of each morph independently of the exposure to UV.<br /> On a broader point, given the effects of both circadian rhythm and lighting conditions that are thought to exist in A. mexicanus (e.g. Beale et al. 2013) experiments involving measurements of DNA damage and repair, gene expression, and reactive oxygen species etc. at multiple times across >1 24 hour cycle, in both light-dark and constant illumination conditions (e.g. constant dark) would be needed to substantiate the authors' interpretation that their findings indicate consistently altered levels of these parameters in the cave fish relative to the surface fish. Most of the data in this study is taken at only single timepoints.

      In summary, the authors show that there are differences in gene expression, activity of DNA damage response and repair pathways, response to UV radiation, and gut reactive oxygen species between the Pachón cavefish morph and the surface morph of Astyanax mexicanus. However, the data presented does not make the precise nature of these differences very clear, and the interpretation of the results appears to be overly strong. Furthermore, the evidence of a link between these morph specific differences and sleep is unconvincing.

      Comments on revisions:

      I thank the authors for their engagement with the notes and recommendations I made in my original comments. I have no further recommendations to make here.

    1. Reviewer #3 (Public review):

      Summary:

      In the present manuscript, the authors use a few minutes of voltage imaging of CA1 pyramidal cells in head-fixed mice running on a track while local field potentials (LFPs) are recorded. The authors suggest that synchronous ensembles of neurons are differentially associated with different types of LFP patterns, theta and ripples. The experiments are flawed in that the LFP is not "local" but rather collected the other side of the brain.

      Strengths:

      The authors use a cutting-edge technique.

      Weaknesses:

      The two main messages of the manuscript indicated in the title are not supported by the data. The title gives two messages that relate to CA1 pyramidal neurons in behaving head-fixed mice: (1) synchronous ensembles are associated with theta (2) synchronous ensembles are not associated with ripples. The main problem with the work is that the theta and ripple signals were recorded using electrophysiology from the opposite hemisphere to the one in which the spiking was monitored. However, both rhythms exhibit profound differences as a function of location.

      Theta phase changes with the precise location along the proximo-distal and dorso-ventral axes, and importantly, even reverses with depth. Because the LFP was recorded using a single-contact tungsten electrode, there is no way to know whether the electrode was exactly in the CA1 pyramidal cell layer, or in the CA1 oriens, CA1 radiatum, or perhaps even CA3 - which exhibits ripples and theta which are weakly correlated and in anti-phase with the CA1 rhythms, respectively. Thus, there is no way to know whether the theta phase used in the analysis is the phase of the local CA1 theta.

      Although the occurrence of CA1 ripples is often correlated across parts of the hippocampus, ripples are inherently a locally-generated rhythm. Independent ripples occur within a fraction of a millimeter within the same hemisphere. Ripples are also very sensitive to the precise depth - 100 micrometers up or down, and only a positive deflection/sharp wave is evident. Thus, even if the LFP was recorded from the center of the CA1 pyramidal layer in the contralateral hemisphere, it would not suffice for the claim made in the title.

    1. Reviewer #4 (Public review):

      Summary:

      Using immunostaining for the immediate early gene Fos, and employing TRAP2-mediated chemogenetic and optogenetic perturbations, the authors provide evidence that neurons in the preoptic hypothalamus, identified as 'POA-social neurons,' promote social behaviors in mice - particularly in socially isolated (or deprived) mice, who exhibit an increased motivation for social investigations.

      Strengths:

      The focus on female-female social interactions is a valuable contribution to the field, as these interactions are less studied and the underlying neural mechanisms are less understood. The authors should be commended for their comprehensive approach in performing and reporting multiple perturbation experiments, including optogenetics, chemogenetics, and ablation. The authors also deserve recognition for their thoughtful discussion of the nuances in the phenotypes observed across these various perturbation experiments.

      Weaknesses:

      A limitation of the paper, however, is the insufficient clarification of the specific functions of these POA-social neurons. In my interpretation of the results, the neurons may be crucial for motivated social behaviors in females and motivated mounting of females in males, regardless of whether the test mice are housed singly or in groups. For group-housed mice, the motivation to interact with stimulus mice was likely low in their behavioral paradigm, which may explain the reduced interactions observed in the resident-intruder assay and why these neurons were not tagged (TRAPed) in that setting. Tagging these neurons in singly housed mice following a social interaction, followed by imaging in a group setting where motivated social behaviors do occur, could elucidate whether these neurons are specifically activated during social interactions in socially deprived mice or are generally crucial for motivated social behaviors in any setting. I understand that such calcium imaging may be beyond the scope of this version of the paper, but incorporating these results in a future version would significantly enhance the paper's impact. Depending on the outcomes of such experiments, the title 'Short-term social isolation acts on hypothalamic neurons to promote social behaviors in a sex- and context-dependent manner' may need to be revised to more accurately reflect the findings.

    1. Reviewer #3 (Public review):

      In this manuscript, Masson, Scandola, et al investigate how interactions between megakaryocytes and the extracellular matrix contribute to the regulation of thrombopoiesis using primary murine bone marrow MK cultures, integrin B1/B3 knock-out mice, and high-resolution 2D and 3D imaging. They find that laminin and collagen iv create a 3D "cage" of ECM surrounding MKs and anchor them at the sinusoidal basement membrane, which contributes to MK maturation and proplatelet intravasation into circulation. Deletion of laminin a4 disrupts the localization of MKs and the endothelial basement membrane, reducing the number of MKs associated with the sinusoid while having no effect on MK-associated collagen IV. Deletion of B1/B3 integrin reduces the quantity, localization, and structural organization of multiple ECM components surrounding MKs, and reduces MK adhesion when subject to conditions of sinusoidal flow.

      Further, using intravital microscopy of calvarial bone marrow and the pulmonary vasculature, they provide data suggesting that the stabilization of ECM around MKs (either in the BM or lung) prevents MKs from entering circulation as intact cells. Interestingly, deletion of B1 integrin reduces MK coverage in laminin y1, but deletion of both B1 and B3 independently results in increased MK intravasation into the sinusoidal space. Comparison of integrin KO MKs with GPVI KO MKs suggests that ECM cage formation, vessel adhesion, and intravasation are likely dependent on integrin activation/signaling rather than GPVI signals.

      Further, they provide data that the balance of ECM synthesis and degradation is essential for MK maturation and also provide data showing that inhibition of ECM turnover (in vivo inhibition of MMPs) results in increased ECM cage components that correspond with reduced MK maturation, and reduced demarcation membrane development.

      The conclusions of the paper are supported by the data, but there are some areas that would benefit from clarification or expansion.

      (1) The data linking ECM cage formation to MK maturation raises several interesting questions. As the authors mention, MKs have been suggested to mature rapidly at the sinusoids, and both integrin KO and laminin KO MKs appear mislocalized away from the sinusoids. Additionally, average MK distances from the sinusoid may also help separate whether the maturation defects could be in part due to impaired migration towards CXCL12 at the sinusoid. Presumably, MKs could appear mislocalized away from the sinusoid given the data presented suggesting they leaving the BM and entering circulation. Additional data or commentary on intrinsic (ex-vivo) MK maturation phenotypes may help strengthen the author's conclusions and shed light on whether an essential function of the ECM cage is integrin activation at the sinusoid.

      (2) The data demonstrating intact MKs inter circulation is intriguing - can the authors comment or provide evidence as to whether MKs are detectable in blood? A quantitative metric may strengthen these observations.

      (3) Supplementary Figure 6 - shows no effect on in vitro MK maturation and proplt, or MK area - But Figures 6B/6C demonstrate an increase in total MK number in MMP-inhibitor treated mice compared to control. Some additional clarification in the text may substantiate the author's conclusions as to either the source of the MMPs or the in vitro environment not fully reflecting the complex and dynamic niche of the BM ECM in vivo.

      (4) Similarly, one function of the ECM discussed relates to MK maturation but in the B1/3 integrin KO mice, the presence of the ECM cage is reduced but there appears to be no significant impact upon maturation (Supplementary Figure 4). By contrast, MMP inhibition in vivo (but not in vitro) reduces MK maturation. These data could be better clarified in the text, or by the addition of experiments addressing whether the composition and quantity of ECM cage components directly inhibit maturation versus whether effects of MMP-inhibitors perhaps lead to over-activation of the integrins (as with the B4galt KO in the discussion) are responsible for the differences in maturation.

    1. Reviewer #3 (Public review):

      Summary:

      In this study the authors set out to investigate whether GPRC6A mediates kokumi taste initiated by the amino acid L-ornithine. They used Wistar rats, a standard laboratory strain, as the primary model and also performed an informative taste test in humans, in which miso soup was supplemented with various concentrations of L-ornithine. The findings are valuable and overall the evidence is solid. L-Ornithine should be considered to be a useful test substance in future studies of kokumi taste and the class C G protein coupled receptor known as GPRC6A (C6A) along with its homolog, the calcium-sensing receptor (CaSR) should be considered candidate mediators of kokumi taste. The researchers confirmed in rats their previous work on Ornithine and C6A in mice (Mizuta et al Nutrients 2021).

      Strengths:

      The overall experimental design is solid based on two bottle preference tests in rats. After determining the optimal concentration for L-Ornithine (1 mM) in the presence of MSG, it was added to various tastants including: inosine 5'-monophosphate; monosodium glutamate (MSG); mono-potassium glutamate (MPG); intralipos (a soybean oil emulsion); sucrose; sodium chloride (NaCl; salt); citric acid (sour) and quinine hydrochloride (bitter). Robust effects of ornithine were observed in the cases of IMP, MSG, MPG and sucrose; and little or no effects were observed in the cases of sodium chloride, citric acid; quinine HCl. The researchers then focused on the preference for Ornithine-containing MSG solutions. Inclusion of the C6A inhibitors Calindol (0.3 mM but not 0.06 mM) or the gallate derivative EGCG (0.1 mM but not 0.03 mM) eliminated the preference for solutions that contained Ornithine in addition to MSG. The researchers next performed transections of the chord tympani nerves (with sham operation controls) in anesthetized rats to identify a role of the chorda tympani branches of the facial nerves (cranial nerve VII) in the preference for Ornithine-containing MSG solutions. This finding implicates the anterior half-two thirds of the tongue in ornithine-induced kokumi taste. They then used electrical recordings from intact chorda tympani nerves in anesthetized rats to demonstrate that ornithine enhanced MSG-induced responses following the application of tastants to the anterior surface of the tongue. They went on to show that this enhanced response was insensitive to amiloride, selected to inhibit 'salt tastant' responses mediated by the epithelial Na+ channel, but eliminated by Calindol. Finally they performed immunohistochemistry on sections of rat tongue demonstrating C6A positive spindle-shaped cells in fungiform papillae that partially overlapped in its distribution with the IP3 type-3 receptor, used as a marker of Type-II cells, but not with (i) gustducin, the G protein partner of Tas1 receptors (T1Rs), used as a marker of a subset of type-II cells; or (ii) 5-HT (serotonin) and Synaptosome-associated protein 25 kDa (SNAP-25) used as markers of Type-III cells.

      At least two other receptors in addition to C6A might mediate taste responses to ornithine: (i) the CaSR, which binds and responds to multiple L-amino acids (Conigrave et al, PNAS 2000), and which has been previously reported to mediate kokumi taste (Ohsu et al., JBC 2010) as well as responses to Ornithine (Shin et al., Cell Signaling 2020); and (ii) T1R1/T1R3 heterodimers which also respond to L-amino acids and exhibit enhanced responses to IMP (Nelson et al., Nature 2001). These alternatives are appropriately discussed and, taken together, the experimental results favor the authors' interpretation that C6A mediates the Ornithine responses. The authors provide preliminary data in Suppl. 3 for the possibility of co-expression of C6A with the CaSR.

      Weaknesses:

      The authors point out that animal models pose some difficulties of interpretation in studies of taste and raise the possibility in the Discussion that umami substances may enhance the taste response to ornithine (Line 271, Page 9).

      One issue that is not addressed, and could be usefully addressed in the Discussion, relates to the potential effects of kokumi substances on the threshold concentrations of key tastants such as glutamate. Thus, an extension of taste distribution to additional areas of the mouth (previously referred to as 'mouthfulness') and persistence of taste/flavor responses (previously referred to as 'continuity') could arise from a reduction in the threshold concentrations of umami and other substances that evoke taste responses.

      The status of one of the compounds used as an inhibitor of C6A, the gallate derivative EGCG, as a potential inhibitor of the CaSR or T1R1/T1R3 is unknown. It would have been helpful to show that a specific inhibitor of the CaSR failed to block the ornithine response.

      It would have been helpful to include a positive control kokumi substance in the two bottle preference experiment (e.g., one of the known gamma glutamyl peptides such as gamma-glu-Val-Gly or glutathione), to compare the relative potencies of the control kokumi compound and Ornithine, and to compare the sensitivities of the two responses to C6A and CaSR inhibitors.

    1. Reviewer #3 (Public review):

      Summary:

      Childers et al. address a fundamental question about the complex relationship within the gut: the link between nutrient absorption, microbial presence, and intestinal physiology. They focus on the role of lysosome-rich enterocytes (LREs) and the microbiota in protein absorption within the intestinal epithelium. By using germ-free and conventional zebrafishes, they demonstrate that microbial association leads to a reduction in protein uptake by LREs. Through impressive in vivo imaging of gavaged fluorescent proteins, they detail the degradation rate within the LRE region, positioning these cells as key players in the process. Additionally, the authors map protein absorption in the gut using single-cell sequencing analysis, extensively describing LRE subpopulations in terms of clustering and transcriptomic patterns. They further explore the monoassociation of ex-germ-free animals with specific bacterial strains, revealing that the reduction in protein absorption in the LRE region is strain-specific.

      Strengths:

      The authors employ state-of-the-art imaging to provide clear evidence of the protein absorption rate phenotype, focusing on a specific intestinal region. This innovative method of fluorescent protein tracing expands the field of in vivo gut physiology.

      Using both conventional and germ-free animals for single-cell sequencing analysis, they offer valuable epithelial datasets for researchers studying host-microbe interactions. By capitalizing on fluorescently labelled proteins in vivo, they create a new and specific atlas of cells involved in protein absorption, along with a detailed LRE single-cell transcriptomic dataset.

      Weaknesses:

      While the authors present tangible hypotheses, the data are primarily correlative, and the statistical methods are inadequate. They examine protein absorption in a specific, normalized intestinal region but do not address confounding factors between germ-free and conventional animals, such as size differences, transit time, and oral gavage, which may impact their in vivo observations. This oversight can lead to bold conclusions, where the data appear valuable but require more nuance.

      The sections of the study describing the microbiota or attempting functional analysis are elusive, with related data being overinterpreted. The microbiome field has long used 16S sequencing to characterize the microbiota, but its variability due to experimental parameters limits the ability to draw causative conclusions about the link between LRE activity, dietary protein, and microbial composition. Additionally, the complex networks involved in dopamine synthesis and signalling cannot be fully represented by RNA levels alone. The authors' conclusions on this biological phenomenon based on single-cell data need support from functional and in vivo experiments.

    1. Reviewer #3 (Public review):

      Summary:

      The authors investigate the kinase activity of IKK2, a crucial regulator of inflammatory cell signaling. They describe a novel tyrosine kinase activity of this well-studied enzyme and a highly unusual phosphotransfer from phosphorylated IKK2 onto substrate proteins in the absence of ATP as a substrate.

      Strengths:

      The authors provide an extensive biochemical characterization of the processes with recombinant protein, western blot, autoradiography, protein engineering and provide MS data now.

      Weaknesses:

      The identity and purity of the used proteins has improved in the revised work. Since the findings are so unexpected and potentially of wide-reaching interest - this is important. Similar specific detection of phospho-Ser/Thr vs phospho-Tyr relies largely on antibodies which can have varying degrees of specificity. Using multiple antibodies and MS improves the quality of the data.

    1. Reviewer #3 (Public review):

      Summary:

      The obligate intracellular bacterium Chlamydia trachomatis (Ct) divides by binary fission. It lacks FtsZ, but still has many other proteins that regulate synthesis of septal peptidoglycan, including FtsW and FtsI (PBP3) as well as divisome proteins that recruit and activate them, such as FtsK and FtsQLB. Interestingly, MreB is also required for division of Ct cells, perhaps by polymerizing to form an FtsZ-like scaffold. Here, Harpring et al. show that MreB does not act early in division and instead is recruited to a protein complex that includes FtsK and PBP2/PBP3. This indicates that Ct cell division is organized by a chimera between conserved divisome and elongasome proteins. Their work also shows convincingly that FtsK is the earliest known step of divisome activity, potentially nucleating the divisome as a single protein complex at the future division site. This is reminiscent of the activity of FtsZ, yet fundamentally different.

      Strengths:

      The study is very well written and presented, and the data are convincing and rigorous. The data underlying the proposed localization dependency order of the various proteins for cell division is well justified by several different approaches using small molecule inhibitors, knockdowns, and fluorescent protein fusions. The proposed dependency pathway of divisome assembly is consistent with the data and with a novel mechanism for MreB in septum synthesis in Ct.

      Weaknesses:

      The authors have addressed the weaknesses brought up in my previous review.

    1. Reviewer #3 (Public review):

      Childers et al. address a fundamental question about the complex relationship within the gut: the link between nutrient absorption, microbial presence, and intestinal physiology. They focus on the role of lysosome-rich enterocytes (LREs) and the microbiota in protein absorption within the intestinal epithelium. By using germ-free and conventional zebrafishes, they demonstrate that microbial association leads to a reduction in protein uptake by LREs. Through impressive in vivo imaging of gavaged fluorescent proteins, they detail the degradation rate within the LRE region, positioning these cells as key players in the process. Additionally, the authors map protein absorption in the gut using single-cell sequencing analysis, extensively describing LRE subpopulations in terms of clustering and transcriptomic patterns. They further explore the monoassociation of ex-germ-free animals with specific bacterial strains, revealing that the reduction in protein absorption in the LRE region is strain-specific.

      Strengths:

      - The authors employ state-of-the-art imaging to provide clear evidence of the protein absorption rate phenotype, focusing on a specific intestinal region. This innovative method of fluorescent protein tracing expands the field of in vivo gut physiology.<br /> - Using both conventional and germ-free animals for single-cell sequencing analysis, they offer valuable epithelial datasets for researchers studying host-microbe interactions. By capitalizing on fluorescently labelled proteins in vivo, they create a new and specific atlas of cells involved in protein absorption, along with a detailed LRE single-cell transcriptomic dataset.<br /> - Their robust and convincing microbiota analysis puts forward a diet-dependent mechanism of community change upon low-protein diet, intricately linked with the host.

      Comments on revisions:

      The authors have improved the manuscript following the revision work. No further recommendations.

    1. Reviewer #3 (Public review):

      Summary:

      This important paper describes improvements to the measurement of enkephalins in vivo using microdialysis and LC-MS. The key improvement is oxidation of met- to prevent having a mix of reduced and oxidized methionine the sample which make quantification more difficult. It then shows measurements of enkephalins in the nucleus accumbens in two different stress situations-handling and exposure to predator odor. It also reports the ratio of released met- and leu-enkephalin matching that expected from digestion of proenkephalin. Measurements are also made by photometry of Ca2+ changes for the fox odor stressor. Some key takeaways are: 1) reliable measurement of met-enkephalin, significance of directly measuring peptides as opposed to proxy measurements, and the opening of a new avenue into research of enkephalins due to stress based on these direct measurements.

      Strengths:

      - Improved methods for measurement of enkephalins in vivo<br /> - Compelling examples of using this method<br /> - Opening a new area of looking at stress responses through the lens of enkephalin concentrations

      Comments on revisions:

      This revision has been improved upon in most ways. As I mentioned in the original review, there is a great deal of work here on showing the capability of measuring met- and leu-enk in different contexts. There is a technical improvement in the control of met oxidation which likely improves the detection of met-enk.

    1. Reviewer #3 (Public review):

      Summary:

      This study indicates that connections across human cortical pyramidal cells have identical latencies despite a larger mean dendritic and axonal length between somas in human cortex. A precise demonstration combining detailed electrophysiology and modeling, indicates that this property is due to faster propagation of signals in proximal human dendrites. This faster propagation is itself due to a slightly thicker dendrite, to a larger capacitive load, and to stronger hyperpolarizing currents. Hence, the biophysical properties of human pyramidal cells are adapted such that they do not compromise information transfer speed.

      Strengths:

      The manuscript is clear and very detailed. The authors have experimentally verified a large number of aspects that could affect propagation speed and have pinpointed the most important one. This paper provides an excellent comparision of biophysical properties between rat and human pyramidal cells. Thanks to this approach a comprehensive description of the mechanisms underlying the acceleration of propagation in human dendrite is provided.

      Weaknesses:

      The weaknesses I had identified have been addressed by the authors.

    1. Reviewer #3 (Public review):

      Summary:

      The authors used a novel technique to treat male infertility. In a proof-of-concept study, the authors were able to rescue the phenotype of a knockout mouse model with immotile sperm using this technique. This could also be a promising treatment option for infertile men.

      Strengths:

      In their proof-of-concept study, the authors were able to show that the novel technique rescues the infertility phenotype of Armc2 knockout spermatozoa. In the revised version of the manuscript, the authors have added data on in vitro fertilisation experiments with Armc2 mRNA-rescued sperm. The authors show that Armc2 mRNA-rescued sperm can successfully fertilise oocytes that develop to the blastocyst stage. This adds another level of reliability to the data.

      Weaknesses:

      Some minor weaknesses identified in my previous report have already been fixed. The technique is new and may not yet be fully established for all issues. Nevertheless, the data presented in this manuscript opens the way for several approaches to immotile spermatozoa to ensure successful fertilisation of oocytes and subsequent appropriate embryo development.

      [Editors' note: The images in Figure 12 do not support the authors' interpretation that 2-cell embryos resulted from in vitro fertilization. Instead, the cells shown appear to be fragmented, unfertilized eggs. Combined with the lack of further development, it seems highly unlikely that fertilization was successful.]

    1. Reviewer #3 (Public review):

      Summary:

      Protein-DNA interactions and sequence readout represent a challenging and rapidly evolving field of study. Recognizing the complexity of this task, the authors have developed a compact and elegant model. They have applied well-established approaches to address a difficult problem, effectively enhancing the information extracted from sparse contact maps by integrating artificial sequences decoy set and available experimental data. This has resulted in the creation of a practical tool that can be adapted for use with other proteins.

      Strengths:

      (1) The authors integrate sparse information with available experimental data to construct a model whose utility extends beyond the limited set of structures used for training.

      (2) A comprehensive methods section is included, ensuring that the work can be reproduced. Additionally, the authors have shared their model as a GitHub project, reflecting their commitment to transparency of research.

      Weaknesses:

      (1) The coarse-graining procedure appears artificial, if not confusing, given that full-atom crystal structures provide more detailed information about residue-residue contacts. While the selection procedure for distance threshold values is explained, the overall motivation for adopting this approach remains unclear. Furthermore, since this model is later employed as an empirical potential for molecular modeling, the use of P and C5 atoms raises concerns, as the interactions in 3SPN are modeled between Cα and the nucleic base, represented by its center of mass rather than P or C5 atoms.

      (2) Although the authors use a standard set of metrics to assess model quality and predictive power, some ΔΔG predictions compared to MITOMI-derived ΔΔG values appear nonlinear, which casts doubt on the interpretation of the correlation coefficient.

      (3) The discussion section lacks information about the model's limitations and a comprehensive comparison with other models. Additionally, differences in model performance across various proteins and their respective predictive powers are not addressed.

    1. Reviewer #3 (Public review):

      Summary:

      This work from Hira et al leverages mesoscopic 2-photon imaging to study large neural populations in different higher visual areas, in particular areas A and AM of the parietal cortex. The focus of the study is to obtain a better understanding of the representation of different task-related parameters, such as choice formation and short-term history, as well as visual responses in large neural populations across different cortical regions to obtain a better understanding of the functional specialization of neural populations in each region as well as the interaction of neural populations across regions. The authors image a large number of neurons in animals that either perform visual discrimination or a history-dependent task to test how task demands affect neural responses and population dynamics. Furthermore, by including a behavioral perturbation of animal posture they aim to dissociate the neural representation of history signals from body posture. Lastly, they relate their functional findings to anatomical data from the Allen connectivity atlas and show a strong relation between functional correlations on anatomical connectivity patterns.

      Strengths:

      Overall, the study is very well done and tackles a problem that should be of high interest to the field by aiming to obtain a better understanding of the function and spatial structure of different regions in the parietal cortex. The experimental approach and analyses are sound and of high quality and the main conclusions are well supported by the results. Aside from the detailed analyses, a particular strength is the additional experimental perturbation of posture to isolate history-related activity which supports the conclusion that both posture and history signals are represented in different neurons within the same region.

      Weaknesses:

      The main point that I found hard to understand was the fairly strong language on functional clusters of neurons while also stating that neurons encoded combinations of different types of information and leveraging the encoding model to dissociate these contributions. Do the authors find mixed selectivity or rather functional segregation of neural tuning in their data? More details on this and some other points are below.

    1. Reviewer #3 (Public review):

      Summary

      The study presents an investigation into how hypothalamic orexin neurons (HONs) track body movement with high precision. Using techniques including fiber photometry, video-based movement metrics, and empirical mode decomposition (EMD), the authors demonstrate that HONs encode net body movement consistently across a range of behaviors and metabolic states. They test the ability of HONs to track body movement to that of other subcortical neural populations, from which they distinguish HONs activity from other subcortical neural populations.

      Strengths:

      The study characterizes HONs activity as key indicators of movement and arousal, and this method may have potential implications for understanding sleep disorders, energy regulation, and brain-body coordination. Overall, I think this is a very interesting story, with novel findings and implications about sensorimotor systems in animals. The manuscript is clearly written and the evidence presented is rigorous. The conclusions are well supported by experimental data with clear statistical analyses.

      Weaknesses/suggestions:

      There are a couple of issues I think the authors could address to make the paper better and more complete:

      (1) The study primarily focuses on steady-state behaviors. It would be interesting if the authors' current dataset allows analyses of HON dynamics during transitions between behavioral states (e.g., resting to running or grooming to sniffing). This could provide additional insights into how HONs adapt to rapid changes in body movement.

      (2) Given the established role of HONs in arousal and wakefulness, the study could further investigate how movement-related HON dynamics interact with arousal states. For example, does HON encoding of movement differ during sleep versus wakefulness?

      (3) Although HON ablation experiments suggest that HONs do not shape movement frequency profiles. It would be more compelling if the authors could investigate whether HONs contribute to specific types of movements (e.g., fine motor vs. gross motor movements) or modulate movement initiation thresholds.

      (4) The heterogeneous movement-related orexin dynamics observed in the LC and SNc raise intriguing questions about the circuit-level mechanisms underlying these differences. Optogenetic or chemogenetic manipulation of these projections could validate the functional implications of these dynamics.

    1. Reviewer #4 (Public review):

      The manuscript examines how patterns of selection on gene expression differ between a normal field environment and a field environment with elevated salinity based upon transcript abundances obtained from leaves of a diverse panel of rice germplasm. In addition, the manuscript also maps expression QTL (eQTL) that explains variation in each environment. One highlight from the mapping is that a small group of trans-mapping regulators explains some gene expression variation for large sets of transcripts in each environment.

      The overall scope of the datasets is impressive, combining large field studies that capture information about fecundity, gene expression, and trait variation at multiple sites. The finding related to patterns indicating increased LD among eQTLs that have cis-trans compensatory or reinforcing effects in interesting in the context of other recent work finding patterns of epistatic selection. The authors have made some changes that address previous comments. However, some analyses in the manuscript remain less compelling or do not make the most from the value of collected data. Although the authors have made several improvements to the precision with which field-specific terminology is applied and to the language chosen when interpreting analytical findings, additional changes to improve these aspects of the manuscript remain necessary.

      Selection of gene expression: One strength of the dataset is that gene expression and fecundity were measured for the same genotypes in multiple environments. However, the selection analyses are largely conducted within environments. Addition of phenotypic selection analyses that jointly analyze gene expression across environments and or selection on reaction norms would be worthwhile.

      Gene expression trade-offs: The terminology and possibly methods involved in the section on gene expression trade-offs need amendment. I specifically recommend discontinuing reference to the analysis presented as an analysis of antagonistic pleiotropy (rather than more general as trade-offs) because pleiotropy is defined as a property of a genotype, not a phenotype. Gene expression levels are a molecular phenotype, influenced by both genotype and the environment. By conducting analyses of selection within environments as reported, the analysis does not account for the fact that the distribution of phenotypic values, the fitness surface, or both may differ across environments. Thus, this presents a very different situation than asking whether the genotypic effect of a QTL on fitness differs across environments, which is the context in which the contrasting terms antagonistic pleiotropy and conditional neutrality have been traditionally applied. The results reported do not persuasively support the assertion made in the response to reviewers that the terminology is reasonable due to strong coupling between genotype and phenotype. A more interesting analysis would be to examine whether the covariance of phenotype with fitness has truly changed between environments or whether the phenotypic distribution has just shifted to a different area of a static fitness surface.

      Biological processes under selection / Decoherence: In the initial review, it was noted that PCA is likely not the most ideal way to cluster genes to generate consolidated metrics for a selection gradient analysis. Because individual genes will contribute to multiple PCs, the current fractional majority-rule method applied to determine whether a PC is under direct or indirect selection for increased or decreased expression comes across as arbitrary and with the potential for double-counting genes. A gene co-expression network analysis could be more appropriate, as genes only belong to one module and one can examine how selection is acting on the eigengene of a co-expression module. Building gene co-expression modules would also provide a complementary and more concrete framework for evaluating whether salinity stress induces "decoherence" and which functional groups of genes are most impacted. Although results of co-expression network analyses are now briefly discussed in the response to reviewers, the findings and their relationship to the PCA/"decoherence" analyses are not reported in the manuscript.

      Selection of traits: Having paired organismal and molecular trait data is a strength of the manuscript, but the organismal trait data are underutilized. The manuscript as written only makes weak indirect inferences based on GO categories or assumed gene functions to connect selection at the organismal and molecular levels. After prompted by the initial reviews to test for correspondence between SNPs that explain organismal and gene expression trait variation or co-variance of co-expression module variation and trait variation, the response to reviewers indicates finding negative results. These findings should be included in the manuscript text and discussed.

      Genetic architecture of gene expression variation: More descriptive statistics of the eQTL analysis have been included, although additional information about the variation in these measures within environments would be useful. The motivation for featuring patterns of cis-trans compensation specifically for the results obtained under high salinity conditions remains unclear to me. If the lines sampled have predominantly evolved under low salinity conditions, and the hypothesis being evaluated relates to historical experience of stabilizing selection, then evaluating the eQTL patterns under normal conditions provides the more relevant test of the hypothesis.

      Lines 280-282: The revised sentence continues to read as an overstatement and merits additional revision with citations.

      Lines 379-381: Following revision, it still remains unclear how the interpretation follows from the above analysis; the inference as written goes significantly beyond what may be specifically inferable from the result.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript describes an in-depth analysis of the effect of the AAA+ ATPase PCH-2 on meiotic crossover formation in C. elegant. The authors reach several conclusions and attempt to synthesize a 'universal' framework for the role of this factor in eukaryotic meiosis.

      Strengths:

      The manuscript makes use of the advantages of the 'conveyor' belt system within the c.elegans reproductive tract, to enable a series of elegant genetic experiments

      Weaknesses:

      A weakness of this manuscript is that it heavily relies on certain genetic/cell biological assays that can report on distinct crossover outcomes, without clear and directed control over other aspects and variables that might also impact the final repair outcome. Such assays are currently out of reach in this model system.

    1. Reviewer #3 (Public review):

      Summary:

      The authors submitted a revised manuscript that reports findings from a series of experiments suggesting that bovine oviductal fluid and species-specific oviductal glycoprotein (OVGP1 or oviductin) from bovine, murine, or human sources modulate the species specificity of bovine and murine oocytes.

      Strengths:

      The study reported in the manuscript deals with an important topic of interest in reproductive biology.

      Weaknesses:

      The authors have submitted a revised manuscript with much improvement and have answered many of this reviewer's questions. However, some of the previous questions have been dealt with inadequately. There are still several issues that need to be dealt with. In particular, there are questions regarding the specificity and/or purity of the recombinant human and mouse OVGP1 which could be detrimental to the reliability of the recombinant human and mouse OVGP1s used in the study and the validity of the results presented. This Discussion should cover more broadly what has already been published in literature.

    1. Reviewer #3 (Public Review):

      Summary:

      Out of the 20 Neglected Tropical Diseases (NTD) highlighted by the WHO, three are caused by members of the trypanosomatids, namely Leishmanaisis, Trypanosomiasis, and Chagas disease. Trypanosomal glycolytic enzymes including pyruvate kinase (PyK) have long been recognised as potential targets. In this important study, single-chain camelid antibodies have been developed as novel and potent inhibitors of PyK from the T, congolense. To gain structural insight into the mode of action, binding was further characterised by biophysical and structural methods, including crystal structure determination of the enzyme-nanobody complex. The results revealed a novel allosteric mechanism/pathway with significant potential for the future development of novel drugs targeting allosteric and/or cryptic binding sites.

      Strengths:

      This paper covers an important area of science towards the development of novel therapies for three of the Neglected Tropical Diseases. The manuscript is very clearly written with excellent graphics making it accessible to a wide readership beyond experts. Particular strengths are the wide range of experimental and computational techniques applied to an important biological problem. The use of nanobodies in all areas from biophysical binding experiments and X-ray crystallography to in-vivo studies is particularly impressive. This is likely to inspire researchers from many areas to consider the use of nanobodies in their fields.

      Weaknesses:

      There is no particular weakness, but I think the computational analysis of allostery, which basically relies on a single server could have been more detailed.

    1. Reviewer #3 (Public review):

      Summary:

      The authors established an experimental system that reproduced three-dimensional triphasic epithelia, i.e., the original epithelium, its EMT, and MET. Keratinocytes (KCs), skin epithelial cells, placed on a microporous membrane migrated through 3.0-um or larger micropores. The 3.0-um-pored membrane induced an epithelial structure with three states: stratified KCs above the membrane, KCs showing EMT within the micropores, and a new stratified epithelium under the membrane. The membrane with larger micropores failed to maintain this triphasic epithelium. Live imaging revealed that KCs moved in a reciprocating manner, with actin-rich filopodia-like KC structures extending into and out of the 3.0-um micropores, while the cells migrated unidirectionally into larger micropores. KO of Piezo1 and keratin 6 increased KC entry to and exit from the 3.0-um micropores. Their results demonstrate that benign keratinocytes migrate through confined spaces in a reciprocating manner, which might help form triphasic epithelia, recapitulating wound healing processes.

      Strengths:

      Careful observation of the behaviour of keratinocytes on the different-sized pores. CrispR-Cas9 gene editing to KO Piezo 1 and keratin 6 isoforms in HaCaT keratinocytes.

      Weaknesses:

      There is no analysis of the matrix produced by the keratinocytes on the different pore sizes as this may influence migration.

      HaCaT cells are quite different from normal keratinocytes in terms of migration. Pilcher et al. PMID: 9182674

    1. Reviewer #3 (Public review):

      Strengths:

      This work focuses on a problem of deep significance: quantifying the structure-tension relationship and underlying mechanism for the mechanosensitive Piezo 1 and 2 channels. This objective presents a few technical challenges for molecular dynamics simulations, due to the relatively large size of each membrane-protein system. Nonetheless, the technical approach chosen is based on the methodology that is, in principle, established and widely accessible. Therefore, another group of practitioners would likely be able to reproduce these findings with reasonable effort.

      Weaknesses:

      The two main results of this paper are (1) that both channels exhibit a flatter structure compared to cryo-EM measurements, and (2) their estimated force vs. displacement relationship. Although the former correlates at least quantitatively with prior experimental work, the latter relies exclusively on simulation results and model parameters.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Wu D. et al. explores an innovative approach in immunometabolism and obesity by investigating the potential of targeting macrophage Inositol-requiring enzyme 1α (IRE1α) in cases of overnutrition. Their findings suggest that pharmacological inhibition of IRE1α could influence key aspects such as adipose tissue inflammation, insulin resistance, and thermogenesis. Notable discoveries include the identification of High-Fat Diet (HFD)-induced CD9+ Trem2+ macrophages and the reversal of metabolically active macrophages' activity with IRE1α inhibition using STF. These insights could significantly impact future obesity treatments.

      Strengths:

      The study's key strengths lie in its identification of specific macrophage subsets and the demonstration that inhibiting IRE1α can reverse the activity of these macrophages. This provides a potential new avenue for developing obesity treatments and contributes valuable knowledge to the field.

      Weaknesses:

      The research lacks an in-depth exploration of the broader metabolic mechanisms involved in controlling diet-induced obesity (DIO). Addressing this gap would strengthen the understanding of how targeting IRE1α might fit into the larger metabolic landscape.

      Impact and Utility:

      The findings have the potential to advance the field of obesity treatment by offering a novel target for intervention. However, further research is needed to fully elucidate the metabolic pathways involved and to confirm the long-term efficacy and safety of this approach. The methods and data presented are useful, but additional context and exploration are required for broader application and understanding.

      Comments on revisions:

      The author has revised the manuscript and addressed the most relevant comments raised by the reviewers. The paper is now significantly improved, though two minor issues remain.

      (1) Studies were limited to male mice; this should be mentioned in the paper's Title.<br /> (2) Please include the sample size (n=) in all provided tables in the main manuscript and supplementary tables.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Piersma et al. successfully generated a mouse model with all Ly49 genes knocked out, resulting in the complete absence of Ly49 receptor expression on the cell surface. The absence of Ly49 expression led to the loss of NK cell education/licensing and consequently, a failure in responsiveness against missing-self target cells. The authors demonstrate the restoration of NK cell licensing by knocking in a single Ly49 gene, Ly49A, in a mouse expressing the H-2Dd ligand for this receptor, which is a novel and important finding.

      Strengths:

      The authors established a novel mouse model enabling them to have a clean and thorough study on the function of Ly49 on NK cell licensing. Also, by knock in a single Ly49, they were able to investigate the function of a given Ly49 receptor excluding the "contamination" of co-expression any other Ly49 genes. The experiment designing and data interpretation were logically clear and the evidence was solid.

      Weaknesses:

      The mouse model was somehow genetically similar to a previous study. The experimental work and findings are partially overlapping with the previous work by Zhang et al. (2019), who also performed knockout of the entire Ly49 locus in mice and demonstrated that loss of NK responsiveness was due to the removal of inhibitory, and not activating Ly49 genes.

      Potential achievements and discussions: The mouse model developed by the authors holds great potential for advancing NK cell functional studies, particularly regarding the regulation of NK cell functions through receptor-ligand interactions. Moreover, it provides a valuable tool for investigating NK cell education and the development of checkpoint inhibitors. These applications could significantly contribute to the broader research efforts in cancer therapy utilizing NK cells.

      Comments on revisions: The authors have successfully addressed all the concerns raised in my previous feedback. They have significantly improved the logical structure, making it clearer and more coherent. Additionally, they have ensured consistency in the use of specific terminology throughout the manuscript. The substantial revisions and re-writing efforts are commendable and have greatly enhanced the overall quality of the manuscript.

    1. Reviewer #3 (Public Review):

      Summary:

      The paper aims at providing a neurocomputational account on how social perception translates in prosocial behaviors. Participants first completed a novel social perception task during fMRI scanning, in which were asked to judge the merit or need of people depicted in different situations. Second , a separate altruistic choice task was used to examine how the perception of merit and need influences the weights people place on themselves, others and fairness when deciding to provide help. Finally, a link between perception and action was drawn in those participants who completed both tasks.

      Strengths:

      The paper is overall very well written and presented, leaving the reader at ease when describing complex methods and results. The approach used by the author is very compelling, as it combines computational modeling of behavior and neuroimaging data analyses. Despite not being able to comment on the computational model, I find the approach used (to disentangle sensitivity and biases, for merit and need) very well described and derived from previous theoretical work. Results are also clearly described and interpreted.

      Weaknesses:

      In the social perception task, merit and need are evaluated by means of very different cues that rely on different cognitive processes (more abstract thinking for merit than need). Despite this limitation of the task, the authors were able to argue convincingly in the revised version about the solidity of their findings. Sample size is quite small for study 2, nevertheless the results provide convincing evidence.

    1. Reviewer #3 (Public review):

      Summary:

      Inoshita and Kawaguchi investigated the effects of GPR55 activation on synaptic transmission in vitro. To address this question, they performed direct patch-clamp recordings from axon terminals of cerebellar Purkinje cells and fluorescent imaging of vesicular exocytosis utilizing synapto-pHluorin. They found that exogenous activation of GPR55 suppresses GABA release at Purkinje cell to deep cerebellar nuclei (PC-DCN) synapses by reducing the readily releasable pool (RRP) of vesicles. This mechanism may also operate at other synapses.

      Strengths:

      The main strength of this study lies in combining patch-clamp recordings from axon terminals with imaging of presynaptic vesicular exocytosis to reveal a novel mechanism by which activation of GPR55 suppresses inhibitory synaptic strength. The results strongly suggest that GPR55 activation reduces the RRP size without altering presynaptic calcium influx.

      Weaknesses:

      The study relies on the exogenous application of GPR55 agonists. It remains unclear whether endogenous ligands released due to physiological or pathological activities would have similar effects. There is no information regarding the time course of the agonist-induced suppression. There is also little evidence that GPR55 is expressed in Purkinje cells. This study would benefit from using GPR55 knockout (KO) mice. The downstream mechanism by which GPR55 mediates the suppression of GABA release remains unknown.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Edwards et al. describe hamFISH, a customizable and cost-efficient method for performing targeted spatial transcriptomics. hamFISH utilizes highly amplified multiplexed branched DNA amplification, and the authors extensively describe hamFISH development and its advantages over prior variants of this approach.

      The authors then used hamFISH to investigate an important circuit in the mouse brain for social behavior, the medial amygdala (MeA). To develop a hamFISH probe set capable of distinguishing MeA neurons, the authors mined published single-cell RNA-sequencing datasets of the MeA, ultimately creating a panel of 32 hamFISH probes that mostly cover the identified MeA cell types. They evaluated over 600,000 MeA cells and classified neurons into 16 inhibitory and 10 excitatory types, many of which are spatially clustered. The authors combined hamFISH with viral and other circuit tracer injections to determine whether the identified MeA cell populations sent and/or received unique inputs from connected brain regions, finding evidence that several cell types had unique patterns of input and output. Finally, the authors performed hamFISH on the brains of male mice that were placed in behavioral conditions that elicit aggressive, infanticidal, or mating behaviors, finding that some cell populations are selectively activated (as assessed by c-fos mRNA expression) in specific social contexts.

      Strengths:

      (1) The authors developed an optimized tissue preparation protocol for hamFISH and implemented oligopools instead of individually synthesized oligonucleotides to reduce costs. The branched DNA amplification scheme improved smFISH signal compared to previous methods, and multiple variants provide additional improvements in signal intensity and specificity. Compared to other spatial transcriptomics methods, the pipeline for imaging and analysis is streamlined and is compatible with other techniques like fluorescence-based circuit tracing. This approach is cost-effective and has several advantages that make it a valuable addition to the list of spatial transcriptomics toolkits.

      (2) Using 31 probes, hamFISH was able to detect 16 inhibitory and 10 excitatory neuron types in the MeA subregions, including the vast majority of cell types identified by other transcriptomics approaches. The authors quantified the distributions of these cell types along the anterior-posterior, dorsal-ventral, and medial-lateral axes, finding spatial segregation among some, but not all, MeA excitatory and inhibitory cell types. The authors additionally identified a class of inhibitory neurons expressing Ndnf (and a subset of these that express Chrna7) that project multiple social chemosensory circuits.

      (3) The authors combined hamFISH with MeA input and output mapping, finding cell-type biases in the projections to the MPOA, BNST, and VMHvl, and inputs from multiple regions.

      (4) The authors identified excitatory and inhibitory cell types, and patterns of activity across cell types, that were selectively activated during various social behaviors, including aggression, mating, and infanticide, providing new insights and avenues for future research into MeA circuit function.

      Weaknesses:

      (1) Gene selection for hamFISH is likely to still be a limiting factor, even with the expanded (32-probe) capacity. This may have contributed to the lack of ability to identify sexually dimorphic cell types (Figure S2B). This is an expected tradeoff for a method that has major advantages in terms of cost and adaptability.

      (2) Adaptation of hamFISH, for example, to adapt it to other brain regions or tissues, may require extensive optimization.

      (3) Pairing this method with behavioral experiments is likely to require further optimization, as c-fos mRNA expression is an indirect and incomplete survey of neuronal activity (e.g. not all cell types upregulate c-fos when electrically active). As such, there is a risk of false negative results that limit its utility for understanding circuit function.

      (4) The limited compatibility of hamFISH with thicker tissue samples and lack of optical sectioning introduce additional technical limitations. For example, it would be difficult to densely sample larger neural circuits using serial 20 micron sections. Also, because the imaging modality is not clear from the methods, it is difficult to know whether the analysis methods introduce the risk of misattributing gene expression to overlapping cells.

    1. Reviewer #3 (Public review):

      In this study, Bison et al. analyzed the role of the GATA6 transcription factor in patterning the early mesoderm and generating cardiomyocytes, using human embryonic stem cell differentiation assays and patient-derived hiPSCs with heart defects associated with mutations in the GATA6 gene. They identified a novel role for GATA6 in regulating genes involved in the WNT and BMP pathways. Modulation of the WNT and BMP pathways partially rescue early cardiac mesoderm defects in GATA6 mutant hESCs. These results provide significant insights into how GATA6 loss-of-function and heterozygous mutations contribute to heart defects.

      Comments on revised version:

      The authors have addressed all the concerns, using new data and modifications to the text to further strengthen the manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      Human cells deficient in delta-tubulin or epsilon-tubulin form unstable centrioles, which lack triplet microtubules and undergo a futile formation and disintegration cycle. In this study, the authors show that human cells lacking the associated proteins TEDC1 or TEDC2 have these identical phenotypes. They use genetics to knockout TEDC1 or TEDC2 in p53-negative RPE-1 cells and expansion microscopy to structurally characterize mutant centrioles. Biochemical methods and AlphaFold-multimer prediction software are used to investigate interactions between tubulins and TEDC1 and TEDC2.

      The study shows that mutant centrioles are built only of A tubules, which elongate and extend their proximal region, fail to incorporate structural components, and finally disintegrate in mitosis. In addition, they demonstrate that delta-tubulin or epsilon-tubulin and TEDC1 and TEDC2 form one complex and that TEDC1 TEDC2 can interact independently of tubulins. Finally, they show that localization of four proteins is mutually dependent.

      Strengths:

      The results presented here are convincing, exciting, and important, and the manuscript is well-written. The study shows that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to build a stable and functional centriole, significantly contributing to the field and our understanding of the centriole assembly process.

      Weaknesses:

      The ultrastructural characterization of TEDC1 and TEDC2 in centrosomes remains challenging. Nevertheless, it is evident that these proteins occupy growing centrioles and the proximal parts of mother centrioles.

      Comments on revisions:

      The authors have done a great job extending the original experiments and measurements and answering outstanding questions.

    1. Reviewer #3 (Public review):

      The authors find that HERV expression patterns can be used as new criteria for differential diagnosis of FM and ME/CFS and patient subtyping. The data are based on transcriptome analysis by microarray for HERVs using patient blood samples, followed by differential expression of ERVs and bioinformatic analyses. This is a standard and solid data processing pipeline, and the results are well presented and support the authors' claim.

    1. Reviewer #3 (Public review):

      Summary:

      The authors are showing evidence that they claim establishes the controversial epigenetic mark, DNA 6mA, as promoting genome stability.

      Strengths:

      The identification of a poorly understood protein, METTL3, and its subsequent characterization in DDR is of high quality and interesting.

      Weaknesses:

      (1) The very presence of 6mA (DNA) in mammalian DNA is still highly controversial and numerous studies have been conclusively shown to have reported the presence of 6mA due to technical artifacts and bacterial contamination. Thus, to my knowledge there is no clear evidence for 6mA as an epigenetic mark in mammals, and consequently, no evidence of writers and readers of 6mA. None of this is mentioned in the introduction. Much of the introduction can be reduced, but a paragraph clearly stating the controversy and lack of evidence for 6mA in mammals needs to be added, otherwise, the reader is given an entirely distorted view of the field.

      These concerns must also be clearly in the limitations section and even in the results section which fails to nuance the authors' findings.

      (2) What is the motivation for using HT-29 cells? Moreover, the materials and methods do not state how the authors controlled for bacterial contamination, which has been the most common cause of erroneous 6mA signals to date. Did the authors routinely check for mycoplasma?

      (3) The single cell imaging of 6mA in various cells is nice. The results are confirmed by mass spec as an orthogonal approach. Another orthogonal and quantitative approach to assessing 6mA levels would be PacBio. Similarly, it is unclear why the authors have not performed dot-blots of 6mA for genomic DNA from the given cell lines.

      (4) The results of Figure 3 need further investigation and validation. If the results are correct the authors are suggesting that the majority of 6mA in their cell lines is present in the DNA, and not the RNA, which is completely contrary to every other study of 6mA in mammalian cells that I am aware of. This could suggest that the antibody is not, in fact, binding to 6mA, but to unmodified adenine, which would explain why the signal disappears after DNAse treatment. Indeed, binding of 6mA to unmethylated DNA is a commonly known problem with most 6mA antibodies and is well described elsewhere.

      (5) Given the lack of orthologous validation of the observed DNA 6mA and the lack of evidence supporting the presence of 6mA in mammalian DNA and consequently any functional role for 6mA in mammalian biology, the manuscript's conclusions need to be toned down significantly, and the inherent difficulty in assessing 6mA accurately in mammals acknowledged throughout.

    1. Reviewer #3 (Public review):

      Summary:

      Redman and colleagues analyze grid cell data obtained from public databases. They show that there is significant variability in spacing and orientation within a module. They show that the difference in spacing and orientation for a pair of cells is larger than the one obtained for two independent maps of the same cell. They speculate that this variability could be useful to disambiguate the rat position if only information from a single module is used by a decoder.

      Strengths:

      The strengths of this work lie in its conciseness, clarity, and the potential significance of its findings for the grid cell community, which has largely overlooked this issue for the past two decades. Their hypothesis is well stated and the analyses are solid.

      Weaknesses:

      Major weaknesses identified in the original version have been addressed.

      The authors have addressed all of our concerns, providing control analyses that strengthen their claim.

    1. Reviewer #3 (Public review):

      Summary:

      The paper investigates the TMEM16 family of membrane proteins, which play roles in lipid scrambling and ion transport. A total of 27 experimental structures from five TMEM16 family members were analyzed, including mammalian and fungal homologs (e.g., TMEM16A, TMEM16F, TMEM16K, nhTMEM16, afTMEM16). The identified structures were in both Ca²⁺-bound (open) and Ca²⁺-free (closed) states to compare conformations and were preprocessed (e.g., modeling missing loops) and equilibrated. Coarse-grain simulations were performed in DOPC membranes for 10 microseconds to capture the scrambling events. These events were identified by tracking lipids transitioning between the two membrane leaflets and they analysed the correlation between scrambling rates, in addition, structural properties such as groove dilation and membrane thinning were calculated. They report 700 scrambling events across structures and Figure 2 elaborates on how open structures show higher activity, also as expected. The authors also address how structures may require open grooves, this and other mechanisms around scrambling are a bit controversial in the field.

      Strengths:

      The strength of this study emerges from a comparative analysis of multiple structural starting points and understanding global/local motions of the protein with respect to lipid movement. Although the protein is well-studied, both experimentally and computationally, the understanding of conformational events in different family members, especially membrane thickness less compared to fungal scramblases offers good insights.

      Weaknesses:

      The weakness of the work is to fully reconcile with experimental evidence of Ca²⁺-independent scrambling rates observed in prior studies, but this part is also challenging using coarse-grain molecular simulations. Previous reports have identified lipid crossing, packing defects, and other associated events, so it is difficult to place this paper in that context. However, the absence of validation leaves certain claims, like alternative scrambling pathways, speculative.

    1. Reviewer #3 (Public review):

      Summary:

      Fahrenfort et al. investigate how liberal or conservative criterion placement in a detection task affects the construct validity of neural measures of unconscious cognition and conscious processing. Participants identified instances of "seen" or "unseen" in a detection task, a method known as post hoc sorting. Simulation data convincingly demonstrate that, counterintuitively, a conservative criterion inflates effect sizes of neural measures compared to a liberal criterion. While the impact of criterion shifts on effect size is suggested by signal detection theory, this study is the first to address this explicitly within the consciousness literature. Decoding analysis of data from two EEG experiments further shows that different criteria lead to differential effects on classifier performance in post hoc sorting. The findings underscore the pervasive influence of experimental design and participant reports on neural measures of consciousness, revealing that criterion placement poses a critical challenge for researchers.

      Strengths and Weaknesses

      One of the strengths of this study is the inclusion of the Perceptual Awareness Scale (PAS), which allows participants to provide more nuanced responses regarding their perceptual experiences. This approach ensures that responses at the lowest awareness level (selection 0) are made only when trials are genuinely unseen. This methodological choice is important as it helps prevent the overestimation of unconscious processing, enhancing the validity of the findings.<br /> The authors also do a commendable job in the discussion by addressing alternative paradigms, such as wagering paradigms, as a possible remedy to the criterion problem (Peters & Lau, 2015; Dienes & Seth, 2010). Their consideration of these alternatives provides a balanced view and strengthens the overall discussion.

      Our initial review identified a lack of measures of variance as one potential weakness of this work. However we agree with the authors' response that plotting individual datapoints for each condition is indeed a good visualization of variance within a dataset.

      Impact of the Work:

      This study effectively demonstrates a phenomenon that, while understood within the context of signal detection theory, has been largely unexplored within the consciousness literature. Subjective measures may not reliably capture the construct they aim to measure due to criterion confounds. Future research on neural measures of consciousness should account for this issue, and no-report measures may be necessary until the criterion problem is resolved.

    1. Reviewer #3 (Public review):

      Summary:

      Tubert et al. investigate the mechanisms underlying the pause response in striatal cholinergic interneurons (SCINs). The authors demonstrate that optogenetic activation of thalamic axons in the striatum induces burst activity in SCINs, followed by a brief pause in firing. They show that the duration of this pause correlates with the number of elicited action potentials, suggesting a burst-dependent pause mechanism. The authors demonstrated this burst-dependent pause relied on Kv1 channels. The pause is blocked by a SKF81297 and partially by sulpiride and mecamylamine, implicating D1/D5 receptor involvement. The study also shows that the ZD7288 does not reduce the duration of the pause, and that lesioning dopamine neurons abolishes this response, which can be restored by clozapine.

      Weaknesses:

      While this study presents an interesting mechanism for SCIN pausing after burst activity, there are several major concerns that should be addressed:

      (1) Scope of the Mechanism: It is important to clarify that the proposed mechanism may apply specifically to the pause in SCINs following burst activity. The manuscript does not provide clear evidence that this mechanism contributes to the pause response observed in behavioral animals. While the thalamus is crucial for SCIN pauses in behavioral contexts, the exact mechanism remains unclear. Activating thalamic input triggers burst activity in SCINs, leading to a subsequent pause, but this mechanism may not be generalizable across different scenarios. For instance, approximately half of TANs do not exhibit initial excitation but still pause during behavior, suggesting that the burst-dependent pause mechanism is unlikely to explain this phenomenon. Furthermore, in behavioral animals, the duration of the pause seems consistent, whereas the proposed mechanism suggests it depends on the prior burst, which is not aligned with in vivo observations. Additionally, many in vivo recordings show that the pause response is a reduction in firing rate, not complete silence, which the mechanism described here does not explain. Please address these in the manuscript.

      (2) Terminology: The use of "pause response" throughout the manuscript is misleading. The pause induced by thalamic input in brain slices is distinct from the pause observed in behavioral animals. Given the lack of a clear link between these two phenomena in the manuscript, it is essential to use more precise terminology throughout, including in the title, bullet points, and body of the manuscript.

      (3) Kv1 Blocker Specificity: It is unclear how the authors ruled out the possibility that the Kv1 blocker did not act directly on SCINs. Could there be an indirect effect contributing to the burst-dependent pause? Clarification on this point would strengthen the interpretation of the results.

      (4) Role of D1 Receptors: While it is well-established that activating thalamic input to SCINs triggers dopamine release, contributing to SCIN pausing (as shown in Figure 3), it would be helpful to assess the extent to which D1 receptors contribute to this burst-dependent pause. This could be achieved by applying the D1 agonist SKF81297 after blocking nAChRs and D2 receptors.

      (5) Clozapine's Mechanism of Action: The restoration of the burst-dependent pause by clozapine following dopamine neuron lesioning is interesting, but clozapine acts on multiple receptors beyond D1 and D5. Although it may be challenging to find a specific D5 antagonist or inverse agonist, it would be more accurate to state that clozapine restores the burst-dependent pause without conclusively attributing this effect to D5 receptors.

      Comments on revisions:

      The authors have addressed many of my concerns. However, I remain unconvinced that adding an 'ex vivo' experiment fully resolves the fundamental differences between the burst-dependent pause observed in slices - defined by the duration of a single AHP - and the pause response in CHINs observed in vivo, which may involve contributions from more than one prolonged AHP. In vivo, neurons can still fire action potentials during the pause, albeit at a lower frequency. Moreover, in behaving animals, pause duration does not vary with or without initial excitation. The mechanism proposed demonstrates that the pause duration, defined by the length of a single AHP, is positively correlated with preceding burst activity.

      To improve clarity, I recommend using the term 'SCIN pause' to describe the ex vivo findings, distinguishing them more explicitly from the 'pause response' observed in behaving animals. This distinction would help contextualize the ex vivo findings as potentially contributing to, but not fully representing, the pause response in vivo.

      Again, it would be helpful to present raw data for pause durations rather than relying solely on ratios. This approach would provide the audience with a clearer understanding of the absolute duration of the burst-dependent pause and allow for better comparison to the ~200 ms pause observed in behaving animals.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have studied a previously published large dataset on the fitness landscape of a 9 base-pair region of the folA gene. The objective of the paper is to understand various aspects of epistasis in this system, which the authors have achieved through detailed and computationally expensive exploration of the landscape. The authors describe epistasis in this system as "fluid", meaning that it depends sensitively on the genetic background, thereby reducing the predictability of evolution at the genetic level. However, the study also finds two robust patterns. The first is the existence of a "pivot point" for a majority of mutations, which is a fixed growth rate at which the effect of mutations switches from beneficial to deleterious (consistent with a previous study on the topic). The second is the observation that the distribution of fitness effects (DFE) of mutations is predicted quite well by the fitness of the genotype, especially for high-fitness genotypes. While the work does not offer a synthesis of the multitude of reported results, the information provided here raises interesting questions for future studies in this field.

      Strengths:

      A major strength of the study is its detailed and multifaceted approach, which has helped the authors tease out a number of interesting epistatic properties. The study makes a timely contribution by focusing on topical issues like the prevalence of global epistasis, the existence of pivot points, and the dependence of DFE on the background genotype and its fitness. The methodology is presented in a largely transparent manner, which makes it easy to interpret and evaluate the results.

      The authors have classified pairwise epistasis into six types and found that the type of epistasis changes depending on background mutations. Switches happen more frequently for mutations at functionally important sites. Interestingly, the authors find that even synonymous mutations in stop codons can alter the epistatic interaction between mutations in other codons. Consistent with these observations of "fluidity", the study reports limited instances of global epistasis (which predicts a simple linear relationship between the size of a mutational effect and the fitness of the genetic background in which it occurs). Overall, the work presents some evidence for the genetic context-dependent nature of epistasis in this system.

      Weaknesses:

      Despite the wealth of information provided by the study, there are some shortcomings of the paper which must be mentioned.

      (1) In the Significance Statement, the authors say that the "fluid" nature of epistasis is a previously unknown property. This is not accurate. What the authors describe as "fluidity" is essentially the prevalence of certain forms of higher-order epistasis (i.e., epistasis beyond pairwise mutational interactions). The existence of higher-order epistasis is a well-known feature of many landscapes. For example, in an early work, (Szendro et. al., J. Stat. Mech., 2013), the presence of a significant degree of higher-order epistasis was reported for a number of empirical fitness landscapes. Likewise, (Weinreich et. al., Curr. Opin. Genet. Dev., 2013) analysed several fitness landscapes and found that higher-order epistatic terms were on average larger than the pairwise term in nearly all cases. They further showed that ignoring higher-order epistasis leads to a significant overestimate of accessible evolutionary paths. The literature on higher-order epistasis has grown substantially since these early works. Any future versions of the present preprint will benefit from a more thorough contextual discussion of the literature on higher-order epistasis.

      (2) In the paper, the term 'sign epistasis' is used in a way that is different from its well-established meaning. (Pairwise) sign epistasis, in its standard usage, is said to occur when the effect of a mutation switches from beneficial to deleterious (or vice versa) when a mutation occurs at a different locus. The authors require a stronger condition, namely that the sum of the individual effects of two mutations should have the opposite sign from their joint effect. This is a sufficient condition for sign epistasis, but not a necessary one. The property studied by the authors is important in its own right, but it is not equivalent to sign epistasis.

      (3) The authors have looked for global epistasis in all 108 (9x12) mutations, out of which only 16 showed a correlation of R^2 > 0.4. 14 out of these 16 mutations were in the functionally important nucleotide positions. Based on this, the authors conclude that global epistasis is rare in this landscape, and further, that mutations in this landscape can be classified into one of two binary states - those that exhibit global epistasis (a small minority) and those that do not (the majority). I suspect, however, that a biologically significant binary classification based on these data may be premature. Unsurprisingly, mutational effects are stronger at the functional sites as seen in Figure 5 and Figure 2, which means that even if global epistasis is present for all mutations, a statistical signal will be more easily detected for the functionally important sites. Indeed, the authors show that the means of DFEs decrease linearly with background fitness, which hints at the possibility that a weak global epistatic effect may be present (though hard to detect) in the individual mutations. Given the high importance of the phenomenon of global epistasis, it pays to be cautious in interpreting these results.

      (4) The study reports that synonymous mutations frequently change the nature of epistasis between mutations in other codons. However, it is unclear whether this should be surprising, because, as the authors have already noted, synonymous mutations can have an impact on cellular functions. The reader may wonder if the synonymous mutations that cause changes in epistatic interactions in a certain background also tend to be non-neutral in that background. Unfortunately, the fitness effect of synonymous mutations has not been reported in the paper.

      (5) The authors find that DFEs of high-fitness genotypes tend to depend only on fitness and not on genetic composition. This is an intriguing observation, but unfortunately, the authors do not provide any possible explanation or connect it to theoretical literature. I am reminded of work by (Agarwala and Fisher, Theor. Popul. Biol., 2019) as well as (Reddy and Desai, eLife, 2023) where conditions under which the DFE depends only on the fitness have been derived. Any discussion of possible connections to these works could be a useful addition.

  3. Jan 2025
    1. Reviewer #3 (Public review):

      Summary:

      Overall, this is a clearly written manuscript with nice hypothesis testing in a non-model organism that addresses the mechanism of Wolbachia-mediated male killing. The authors aim to determine how five previously identified male-killing genes (encoded in the prophage region of the wHm Wolbachia strain) impact the native host, Homona magnanima moths. This work builds on the authors' previous studies in which<br /> (1) they tested the impact of these same wHm genes via heterologous expression in Drosophila melanogaster<br /> (2) also examined the activity of other male-killing genes (e.g., from the wFur Wolbachia strain in its native host: Ostrinia furnacalis moths).

      Advances here include identifying which wHm gene most strongly recapitulates the male-killing phenotype in the native host (rather than in Drosophila), and the finding that the Hm-Oscar protein has the potential for male-killing in a diverse set of lepidopterans, as inferred by the cell-culture assays.

      Strengths:

      Strengths of the manuscript include the reverse genetics approaches to dissect the impact of specific male-killing loci, and use of a "masculinization" assay in Lepidopteran cell lines to determine the impact of interactions between specific masc and oscar homologs.

      Weaknesses:

      It is clear from Figure 1 that the combinations of wmk homologs do not cause male killing on their own here. While I largely agree with the author's conclusions that oscar is the primary MK factor in this system, I don't think we can yet rule out that wmk(s) may work synergistically or interactively with oscar in vivo. This might be worth a small note in the discussion. (eg at line 294 'indicating that wmk likely targets factors other than masc." - this could be downstream of the impacts of oscar; perhaps dependent on oscar-mediated impacts on masc first).

      Regarding the perceived male-bias in Figure 2a: I think readers might be interpreting "unhatched" as "total before hatching". You could eliminate ambiguity by perhaps splitting the bars into male and female, and then within a bar, coloring by hatched versus unhatched. But this is a minor point, and I think the updated text helps clarify this.

      The new Figure 4b looks to be largely redundant with the oscar information in Figure 1a.

      Updated statistical comparisons for the RNA-seq analysis are helpful. However these analyses are based on single libraries (albeit each a pool of many individuals), so this is still a weaker aspect of the manuscript.

      The new information on masc similarity is useful (Fig 4d) - if the authors could please include a heatmap legend for the colors, that would be helpful. Also, please avoid green and red in the same figure when key for interpretation.

      Figure 1A "helix-turn-helix" is misspelled. ("tern").

    1. Reviewer #3 (Public review):

      Summary

      The manuscript investigates the role of norepinephrine (NE) release in the rodent hippocampus during event boundaries, such as transitions between spatial contexts and the introduction of novel objects. It also explores how NE release is altered by experience and how novelty drives the amplitude and decay times of extracellular NE. By utilizing the GRABNE sensor for sub-second resolution measurement of NE, the authors demonstrate that NE release is driven primarily by the time elapsed since an event boundary and is independent of behaviors like movement or reward. The study further explores how hippocampal neural representations are altered over time, showing that these representations stabilize shortly after event transitions, potentially linking NE release to episodic memory encoding.

      Strengths

      Overall, the work provides novel insights into the interplay between NE signaling and hippocampal activity and presents an intriguing hypothesis on how NE release may help push hippocampal activity into unique attractor states to encode novel experiences. The experiments are well-controlled, and the analysis is well-presented, with a detailed and engaging discussion that points towards several new and exciting research directions. The use of several behavioral paradigms to demonstrate the strongest predictor of NE release is a strength, as well as the regression analysis to disambiguate the contribution of other correlated variables. The suggestion that NE does not select ensembles for subsequent replay is also an interesting result.

      Weaknesses

      The authors have not convincingly established a link between hippocampal neural activity and NE release, showing qualitative rather than quantitative correlations. Therefore, at this stage, the role of NE on hippocampal function remains speculative.

      Another general concern is that the smoothing/ kinetics of the sensor impacts the regression analyses. Most of the other variables, such as speed, acceleration, and even reward time points are highly dynamic and it is possible that the limitations of the sensor decorrelate the signal from (potentially) causal variables, therefore resulting in the time since the event start having the most explanatory power for most of the analyses.

      More broadly, the figure legends should be expanded to better describe error bounds, mean vs median, sample sizes, and averaging choices for plots.

      There are also some concerns regarding the nearest neighbor analysis and the reported differences in the rate of reactivations after familiar and novel environments, as outlined below.

      (1) Lines 657-658. How far away in time can the top three nearest neighbor time points be? Must they lie in different trials, or can they also be within the same trial? Is there a systematic difference in the average time lags for the nearest neighbors over the course of the session?

      The authors should only allow nearest neighbors to be in a different lap because systematic changes in behavior (running fast initially) might force earlier time bins in a certain location to match with a different trial, while the later time bins can be from within the same trial if the mice are moving slower and stay in the same spatial bin location longer. The authors should also provide information on how the averaging is performed because there are several axes of variability - spatial bin locations, sessions, different environments, and animals.

      (2) Figure 8: These results are very interesting. However, I am confused by the differences between Figure 8B and D because the significant reactivations in A and C are very similar. The 1-minute and 10-minute windows seem somewhat arbitrary and prone to noise and variability. Perhaps the authors should fit a slope for the curves on A and C and compare whether the slope/ intercept are significantly different between the novel and familiar environments.

    1. Reviewer #3 (Public review):

      Summary:

      This study examines neural activity recorded simultaneously in the hippocampus, dorsal striatum, and orbitofrontal cortex as rats performed an interval timing task. The analyses primarily focus on the activity of "time cells" which are neurons that fire at specific moments during the intervals. In this experiment, the intervals consist of periods when animals are running on a treadmill before selecting the arm associated with the interval duration. The results show that the theta oscillations induced by this running behavior were observed across the three regions and that this strong oscillation modulated the activity of neurons across regions. While these findings are correlative in nature, they provide an important characterization of activity patterns across regions during complex behavior. However, more research is needed to determine whether these activity patterns specifically contribute to temporal coding.

      Strengths:

      (1) Overall, the paper is very well written. Although I have specific concerns about the review of the relevant literature and the interpretation of the results (see below), I do want to commend the authors for their efforts toward presenting this complex work in an accessible manner.

      (2) The study is well designed and the quality of the electrophysiological data collected from multiple brain regions in such a challenging behavioral experiment is impressive. This work is a technical tour de force.

      (3) The analyses are very thorough, statistically rigorous, and clearly explained and visualized. The authors provide a thoughtful mixture of example data (at the level of individual cells or animals) and aggregated data (at the group or session level) to properly explain and quantify the activity patterns of interest.

    1. Reviewer #3 (Public review):

      Summary:

      This is a solid study of stimulus-evoked neural activity dynamics in the feedforward pathway from mouse hand/forelimb mechanoreceptor afferents to S1 and M1 cortex. The conclusions are generally well supported, and match expectations from previous studies of hand/forelimb circuits by this same group (Yamawaki et al., 2021), from the well-studied whisker tactile pathway to whisker S1 and M1, and from the corresponding pathway in primates. The study uses the novel approach of optogenetic stimulation of PV afferents in the periphery, which provides an impulse-like volley of peripheral spikes, which is useful for studying feedforward circuit dynamics. These are primarily proprioceptors, so results could differ for specific mechanoreceptor populations, but this is a reasonable tool to probe basic circuit activation. Mice are awake but not engaged in a somatosensory task, which is sufficient for the study goals.

      The main results are:<br /> (1) brief peripheral activation drives brief sensory-evoked responses at ~ 15 ms latency in S1 and ~25 ms latency in M1, which is consistent with classical fast propagation on the subcortical pathway to S1, followed by slow propagation on the polysynaptic, non-myelinated pathway from S1 to M1;<br /> (2) each peripheral impulse evokes a triphasic activation-suppression-rebound response in both S1 and M1;<br /> (3) PV interneurons carry the major component of spike modulation for each of these phases;<br /> (4) activation of PV neurons in each area (M1 or S1) drives suppression and rebound both in the local area and in the other downstream area;<br /> (5) peripheral-evoked neural activity in M1 is at least partially dependent on transmission through S1.

      All conclusions are well-supported and reasonably interpreted. There are no major new findings that were not expected from standard models of somatosensory pathways or from prior work in the whisker system.

      Strengths:

      This is a well-conducted and analyzed study in which the findings are clearly presented. This will provide important baseline knowledge from which studies of more complex sensorimotor processing can build.

      Weaknesses:

      A few minor issues should be addressed to improve clarity of presentation and interpretation:

      (1) It is critical for interpretation that the stimulus does not evoke a motor response, which could induce reafference-based activity that could drive, or mask, some of the triphasic response. Figure S1 shows that no motor response is evoked for one example session, but this would be stronger if results were analyzed over several mice.

      (2) The recordings combine single and multi-units, which is fine for measures of response modulation, but not for absolute evoked firing rate, which is only interpretable for single units. For example, evoked firing rate in S1 could be higher than M1, if spike sorting were more difficult in S1, resulting in a higher fraction of multi-units relative to M1. Because of this, if reporting of absolute firing rates is an essential component of the paper, Figs 3D and 4E should be recalculated just for single units.

      (3) In Figure 5B, the average light-evoked firing rate of PV neurons seems to come up before time 0, unlike the single-trial rasters above it. Presumably, this reflects binning for firing rate calculation. This should be corrected to avoid confusion.

      (4) In Figure 6A bottom, please clarify what legends "W. suppression" and "W. rebound" mean.

    1. Reviewer #3 (Public review):

      The manuscript entitled "SMARCAD1 and TOPBP1 contribute to heterochromatin maintenance at the transition from the 2C-like to the pluripotent state" by Sebastian-Perez et al. adopted the iPOTD method to compare the chromatin-bound proteome in ESCs and 2CLCs induced by Dux overexpression. The authors identified 397 chromatin-bound proteins enriched specifically in non-2CLCs, among which they further investigated TOPBP1 due to its potential role in chromocenter reorganization. SMARCD1, a known interacting protein of TOPBP1, was also investigated in parallel. The authors report increased size and decreased number of H3K9me3-heterochromatin foci in Dux-induced 2CLCs. Remarkably, depletion of either TOPBP1 or SMARCD1 resulted in similar phenotypes. However, the absence of these proteins did not affect the entry into or exit from the 2C-like state. The authors further showed that both TOPBP1 and SMARCD1 are essential for early embryonic development.

      This manuscript provides valuable insights into the features of 2CLCs regarding H3K9me3-heterochromatin reorganization. However, the findings are largely descriptive. Mechanistic studies are required in future studies, such as: 1) how SMARCD1 associates with H3K9me3 and contributes to heterochromatin maintenance, 2) how TOPBP1 regulates the expression of SMARCD1 and facilitates its localization in heterochromatin foci, 3) whether the remodelling of chromocenter directly influence the transitions between ESCs and 2CLCs.

    1. Reviewer #3 (Public review):

      Summary:

      Papagiannakis et al. present a detailed study exploring the relationship between DNA/polysome phase separation and nucleoid segregation in Escherichia coli. Using a combination of experiments and modelling, the authors aim to link physical principles with biological processes to better understand nucleoid organisation and segregation during cell growth.

      Strengths:

      The authors have conducted a large number of experiments under different growth conditions and physiological perturbations (using antibiotics) to analyse the biophysical factors underlying the spatial organisation of nucleoids within growing E. coli cells. A simple model of ribosome-nucleoid segregation has been developed to explain the observations.

      Weaknesses:

      While the study addresses an important topic, several aspects of the modelling, assumptions, and claims warrant further consideration.

      Major Concerns:

      Oversimplification of Modelling Assumptions:

      The model simplifies nucleoid organisation by focusing on the axial (long-axis) dimension of the cell while neglecting the radial dimension (cell width). While this approach simplifies the model, it fails to explain key experimental observations, such as:

      (1) Inconsistencies with Experimental Evidence:

      The simplified model presented in this study predicts that translation-inhibiting drugs like chloramphenicol would maintain separated nucleoids due to increased polysome fractions. However, experimental evidence shows the opposite-separated nucleoids condense into a single lobe post-treatment (Bakshi et al 2014), indicating limitations in the model's assumptions/predictions. For the nucleoids to coalesce into a single lobe, polysomes must cross the nucleoid zones via the radial shells around the nucleoid lobes.

      (2) The peripheral localisation of nucleoids observed after A22 treatment in this study and others (e.g., Japaridze et al., 2020; Wu et al., 2019), which conflicts with the model's assumptions and predictions. The assumption of radial confinement would predict nucleoids to fill up the volume or ribosomes to go near the cell wall, not the nucleoid, as seen in the data.

      (3) The radial compaction of the nucleoid upon rifampicin or chloramphenicol treatment, as reported by Bakshi et al. (2014) and Spahn et al. (2023), also contradicts the model's predictions. This is not expected if the nucleoid is already radially confined.

      (4) Radial Distribution of Nucleoid and Ribosomal Shell:

      The study does not account for well-documented features such as the membrane attachment of chromosomes and the ribosomal shell surrounding the nucleoid, observed in super-resolution studies (Bakshi et al., 2012; Sanamrad et al., 2014). These features are critical for understanding nucleoid dynamics, particularly under conditions of transcription-translation coupling or drug-induced detachment. Work by Yongren et al. (2014) has also shown that the radial organisation of the nucleoid is highly sensitive to growth and the multifork nature of DNA replication in bacteria.

      The omission of organisation in the radial dimension and the entropic effects it entails, such as ribosome localisation near the membrane and nucleoid centralisation in expanded cells, undermines the model's explanatory power and predictive ability. Some observations have been previously explained by the membrane attachment of nucleoids (a hypothesis proposed by Rabinovitch et al., 2003, and supported by experiments from Bakshi et al., 2014, and recent super-resolution measurements by Spahn et al.).

      Ignoring the radial dimension and membrane attachment of nucleoid (which might coordinate cell growth with nucleoid expansion and segregation) presents a simplistic but potentially misleading picture of the underlying factors.

      This reviewer suggests that the authors consider an alternative mechanism, supported by strong experimental evidence, as a potential explanation for the observed phenomena:<br /> Nucleoids may transiently attach to the cell membrane, possibly through transertion, allowing for coordinated increases in nucleoid volume and length alongside cell growth and DNA replication. Polysomes likely occupy cellular spaces devoid of the nucleoid, contributing to nucleoid compaction due to mutual exclusion effects. After the nucleoids separate following ter separation, axial expansion of the cell membrane could lead to their spatial separation.

      Incorporating this perspective into the discussion or future iterations of the model may provide a more comprehensive framework that aligns with the experimental observations in this study and previous work.

      Simplification of Ribosome States:<br /> Combining monomeric and translating ribosomes into a single 'polysome' category may overlook spatial variations in these states, particularly during ribosome accumulation at the mid-cell. Without validating uniform mRNA distribution or conducting experimental controls such as FRAP or single-molecule measurements to estimate the proportions of ribosome states based on diffusion, this assumption remains speculative.

    1. Reviewer #3 (Public review):

      Summary:

      This study profiled the single-cell transcriptome of human spermatogenesis and provided many potentials molecular markers for developing testicular puncture specific marker kits for NOA patients.

      Strengths:

      Perform single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on testicular tissues from two OA patients and three NOA patients

      Weaknesses:

      Most results are analytical and lack specific experiments to support these analytical results and hypotheses.

      Comments on revisions:

      In the revised version of the manuscript, the authors made some effort to revise their manuscript according to reviewers' comments and addressed the problems that I had raised before.

      I have no other serious criticisms regarding the revised manuscript.

    1. Reviewer #3 (Public review):

      The authors offer an interesting computational study on the dynamics of PROTAC-driven protein degradation. They employed a combination of protein-protein docking, structural alignment, atomistic MD simulations, and post-analysis to model a series of CRBN-dBET-BRD4 ternary complexes, as well as the entire degradation machinery complex. These degraders, with different linker properties, were all capable of forming stable ternary complexes but had been shown experimentally to exhibit different degradation capabilities. While in the initial models of the degradation machinery complex, no surface Lys residue(s) of BRD4 were exposed sufficiently for the crucial ubiquitination step, MD simulations illustrated protein functional dynamics of the entire complex and local side-chain arrangements to bring Lys residue(s) to the catalytic pocket of E2/Ub for reactions. Using these simulations, the authors were able to present a hypothesis as to how linker property affects degradation potency. They were able to roughly correlate the distance of Lys residues to the catalytic pocket of E2/Ub with observed DC50/5h values. This is an interesting and timely study that presents interesting tools that could be used to guide future PROTAC design or optimization.

    1. Reviewer #3 (Public review):

      This manuscript examines the accuracy of DNA methylation-based epigenetic clocks across multiple cohorts of varying genetic ancestry. The authors find that clocks were generally less accurate at predicting age in cohorts with large proportions of non-European (especially African) ancestry, compared to cohorts with high European ancestry proportions. They suggest that some of this effect might be explained by meQTLs that occur near CpG sites included in clocks, because these variants may be at higher frequencies (or at least different frequencies) in cohorts with high proportions of non-European ancestry relative to the training set. They also provide discussions of potential paths forward to alleviate bias and improve portability for future clock algorithms.

      The topic is timely due to the increasing popularity of DNA methylation-based clocks and the acknowledgment that many algorithms (e.g., polygenic risk scores) lack portability when applied to cohorts that substantially differ in ancestry or other characteristics from the training set. This has been discussed to some degree for DNA methylation-based clocks, but could of course use more discussion and empirical attention which the authors nicely provide using an impressive and diverse collection of data.

      The manuscript is clear and well-written, however, some key background was missing (e.g., what we know already about the ancestry composition of clock training sets) and most importantly several analyses would benefit from being taken one step further. For example, the main argument of the paper is that ancestry impacts clock predictions, but this is determined by subsetting the data by recruitment cohort rather than analyzing ancestry as a continuous variable. Extending some of the analyses could really help the authors nail down their hypothesized sources of lack of portability, which is critical for making recommendations to the community and understanding the best paths forward.

    1. Reviewer #3 (Public review):

      This is a very interesting paper bringing truly fascinating insight into the genomic processes underlying the famous adaptive radiation seen in cichlid fishes from Lake Malawi. The authors use structural and sequence information from species belonging to distinct ecotypic categories, representing subclades of the radiation, to document structural variation across the evolutionary tree, infer introgression of inversions among branches of the clade, and even suggest that certain rearrangements constitute new sex-determining loci. The insight is intriguing and is likely to make a substantial contribution to the field and to seed new hypotheses about the ecological processes and adaptive traits involved in this radiation.

      I think the paper could be clarified in its prose, and that the discussion could be more informative regarding the putative roles of the inversions in adaptation to each ecotypic niche. Identifying key, large inversions shared in various ways across the different taxa is really a great step forward. However, the population genomics analysis requires further work to describe and decipher in a more systematic way the evolutionary forces at play and their consequences on the various inversions identified.

      The model of evolution involving multiple inversions putatively linking together co-adapted "cassettes" could be better spelled out since it is not entirely clear how the existing theory on the recruitment of inversions in local adaptation (e.g. Kirkpatrick and Barton) operates on multiple unlinked inversions. How such loci correspond to distinct suites of integrated traits, or not, is not very easy to envision in the current state of the manuscript.

      The role of one inversion in sex determination is apparent and truly intriguing. However, the implication of such locus on ecological adaptation is somewhat puzzling. Also, whether sex determination loci can flow across species via introgression seems quite important as a route to chromosomal sex determination, so this could be discussed further.

    1. Reviewer #3 (Public review):

      Summary:

      Zacharia et al report on the molecular function of the C-terminal domain of the intraflagellar transport IFT-B complex component IFT172 by structure determination and biochemical in vitro and cell culture-based assays. The authors identify an IFT-A binding site that mediates a mutually exclusive interaction to two different IFT-A subunits, IFT144 and IFT140, consistent with interactions suggested in anterograde and retrograde IFT trains by previous cryo-electron tomography studies. Additionally, the authors identify a U-box-like domain that binds ubiquitin and conveys ubiquitin conjugation activity in the presence of the UbcH5a E2 enzyme in vitro. RPE1 cell lines that lack the U-box domain show a reduction in ciliation rate with shorter cilia, and heterozygous cells manifest TGF-beta signaling defects, suggesting an involvement of the U-box domain in cilium-dependent signaling.

      Strengths:

      (1) The structural analyses of the C-terminal domain of IFT172 combine crystallography with structure prediction using state-of-the-art algorithms, which gives high confidence in the presented protein structures. The structure-based predictions of protein interactions are validated by further biochemical experiments to assess the specific binding of the IFT172 C-terminal domains with other proteins.

      (2) The finding that the IFT172 C-terminus interactions with the IFT-A components IFT140 and IFT144 appear mutually exclusive confirm a suggested role in mediating the binding of IFT-B to IFT-A in anterograde and retrograde IFT trains, which is of very high scientific value.

      (3) The suggested molecular mechanism of IFT train coordination explains previous findings in Chlamydomonas IFT172 mutants, in particular an IFT172 mutant that appeared defective in retrograde IFT, as well as mutations identified in ciliopathy patients.

      (4) The identification of other IFT172 interactors by unbiased mass spectrometry-based proteomics is very exciting. Analysis of stoichiometries between IFT components suggests that these interactors could be part of IFT trains, either as cargos or additional components that may fulfill interesting functions in cilia and flagella.

      (5) The authors unexpectedly identify a U-box-like fold in the IFT172 C-terminus and thoroughly dissect it by sequence and mutational analyses to reveal unexpected ubiquitin binding and potential intrinsic ubiquitination activity.

      (6) The overall data quality is very high. The use of IFT172 proteins from different organisms suggests a conserved function.

      Weaknesses:

      (1) Interaction studies were carried out by pulldown experiments, which identified more IFT172 interaction partners. Whether these interactions can be seen in living cells remains to be elucidated in subsequent studies.

      (2) The cell culture-based experiments in the IFT172 mutants are exciting and show that the U-box domain is important for protein stability and point towards involvement of the U-box domain in cellular signaling processes. However, the characterization of the generated cell lines falls behind the very rigorous analysis of other aspects of this work.

      Overall, the authors achieved to characterize an understudied protein domain of the ciliary intraflagellar transport machinery and gained important molecular insights into its role in primary cilia biology, beyond IFT. By identifying an unexpected functional protein domain and novel interaction partners the work makes an important contribution to further our understanding of how ciliary processes might be regulated by ubiquitination on a molecular level. Based on this work it will be important for future studies in the cilia community to consider direct ubiquitin binding by IFT complexes.

      Conceptually, the study highlights that protein transport complexes can exhibit additional intrinsic structural features for potential auto-regulatory processes. Moreover, the study adds to the functional diversity of small U-box and ubiquitin-binding domains, which will be of interest to a broader cell biology and structural biology audience.

      Additional comments:

      The authors investigate the consequences of the U-box deletion on ciliary TGF-beta signaling. While a cilium-dependent effect of TGF-beta signaling on the phosphorylation of SMAD2 has been demonstrated, the precise function of cilia in AKT signaling has not been fully established in the field. Therefore, the relevance of this finding is somewhat unclear. It may help to discuss relevant literature on the topic, such as Shim et al., PNAS, 2020.

    1. Reviewer #3 (Public review):

      Summary:

      This article provides a model for early diagnosis and prognostic prediction of Colorectal Cancer and demonstrates its accuracy and usability. However, there are still some minor issues that need to be revised and paid attention to.

      Strengths:

      A large amount of external datasets were used for verification, thus demonstrating robustness and accuracy. Meanwhile, various influencing factors of multiple samples were taken into account, providing usability.

      Weaknesses:

      There are notable language issues that hinder readability, as well as a lack of some key conclusions provided.

    1. Reviewer #3 (Public review):

      Summary:

      In this experiment, the authors use a probe method along with time-frequency analyses to ascertain the attentional priority map prior to a visual search display in which one location is more likely to contain a salient distractor.  The main finding is that neural responses to the probe indicate that the high probability location is attended, rather than suppressed, prior to the search display onset.  The authors conclude that suppression of distractors at high probability locations is a result of reactive, rather than proactive, suppression.

      Strengths:

      This was a creative approach to a difficult and important question about attention.  The use of this "pinging" method to assess the attentional priority map has a lot of potential value for a number of questions related to attention and visual search. Here as well, the authors have used it to address a question about distractor suppression that has been the subject of competing theories for many years in the field. The authors have also conducted additional behavioral analyses to examine the relationship between memory and search. The paper is well-written, and the authors have done a good job placing their data in the larger context of recent findings in the field.

      Weaknesses:

      The authors addressed a number of weaknesses in a thorough revision during the review process. The present study raises important questions for future research - this is not a weakness, since one study cannot answer all questions, but points to the importance of the questions raised by this study and the value of additional future research in the area.

    1. Reviewer #3 (Public review):

      Summary:

      In their paper the authors tackle three things at once in a theoretical model: how can spiking neural networks perform efficient coding, how can such networks limit the energy use at the same time, and how can this be done in a more biologically realistic way than previous work.

      They start by working from a long-running theory on how networks operating in a precisely balanced state can perform efficient coding. First, they assume split networks of excitatory (E) and inhibitory (I) neurons. The E neurons have the task to represent some lower dimensional input signal, and the I neurons have the task to represent the signal represented by the E neurons. Additionally, the E and I populations should minimize an energy cost represented by the sum of all spikes. All this results in two loss functions for the E and I populations, and the networks are then derived by assuming E and I neurons should only spike if this improves their respective loss. This results in networks of spiking neurons that live in a balanced state, and can accurately represent the network inputs.

      They then investigate in depth different aspects of the resulting networks, such as responses to perturbations, the effect of following Dale's law, spiking statistics, the excitation (E)/inhibition (I) balance, optimal E/I cell ratios, and others. Overall, they expand on previous work by taking a more biological angle on the theory and show the networks can operate in a biologically realistic regime.

      Strengths:

      * The authors take a much more biological angle on the efficient spiking networks theory than previous work, which is an essential contribution to the field<br /> * They make a very extensive investigation of many aspects of the network in this context, and do so thoroughly<br /> * They put sensible constraints on their networks, while still maintaining the good properties these networks should have

      Weaknesses:

      * One of the core goals of the paper is to make a more biophysically realistic network than previous work using similar optimization principles. One of the important things they consider is a split into E and I neurons. While this works fine, and they consider the coding consequences of this, it is not clear from an optimization perspective why the split into E and I neurons and following Dale's law would be beneficial. This would be out of scope for the current paper however.<br /> * The theoretical advances in the paper are not all novel by themselves, as most of them (in particular the split into E and I neurons and the use of biophysical constants) had been achieved in previous models. However, the authors discuss these links thoroughly and do more in-depth follow-up experiments with the resulting model.

      Assessment and context:

      Overall, although much of the underlying theory is not necessarily new, the work provides an important addition to the field. The authors succeeded well in their goal of making the networks more biologically realistic, and incorporate aspects of energy efficiency. For computational neuroscientists this paper is a good example of how to build models that link well to experimental knowledge and constraints, while still being computationally and mathematically tractable. For experimental readers the model provides a clearer link of efficient coding spiking networks to known experimental constraints and provides a few predictions.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Costa and colleagues investigate how asymmetry in dorsal root ganglion (DRG) neurons is established. The authors developed an in vitro system that mimics the pseudo-unipolar morphology and asymmetry of DRG neurons during the regeneration of the peripheral and central branch axons. They suggest that central-like DRG axons exhibit a higher density of growing microtubules. By reducing the polymerization of microtubules in these central-like axons, they were able to eliminate the asymmetry in DRG neurons.

      Strengths:

      The authors point out a distinct microtubule-associated protein signature that differentiates between DRG neurons' central and peripheral axonal branches. Experimental results demonstrate that genetic deletion of spastin eliminated the differences in microtubule dynamics and axon regeneration between the central and peripheral branches.

      Weaknesses:

      While some of the data are compelling, experimental evidence does not fully support the main claims.

      In its current form, the study is primarily descriptive and lacks convincing mechanistic insights. It misses important controls and further validation using 3D in vitro models.

      The significance of studying microtubule polymerization to DRG asymmetry in vitro is questionable, especially considering the model's validity. Classifying the central and peripheral-like branches in cultured DRG neurons will require further in-depth characterization. Additional validation using adult DRG neuron cultures not aged in vitro will be required in future studies.

      The comparison of asymmetry associated with a regenerative response between in vitro and in vivo paradigms has significant limitations due to the nature of the in vitro culture system. When cultured in isolation, DRG neurons fail to form functional connections with appropriate postsynaptic target neurons (the central branch) or to differentiate the peripheral domains associated with the innervation of target organs. Rather than growing neurons on a flat, hard surface like glass, more physiologically relevant substrates and/or culturing conditions should be considered. This approach could help eliminate potential artifacts caused by plating adult DRG neurons on a flat surface. Additionally, the authors should consider replicating their findings in a 3D culture model or using dorsal root ganglia explants, where both centrally and peripherally projecting axons are present.

      Panels 5H-J require additional processing with astrocyte markers to accurately define the lesion borders. Furthermore, including a lower magnification would facilitate a direct comparison of the lesion site. The use of cholera toxin subunit B (CTB) to trace dorsal column sensory axons is prone to misinterpretation, as the tracer accumulates at the axon's tip. This limitation makes it extremely challenging to distinguish between regenerating and degenerating axons.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Troyer et al quantitatively measured the membrane localization and diffusion of RNase E, an essential ribonuclease for mRNA turnover as well as tRNA and rRNA processing in bacteria cells. Using single-molecule tracking in live E. coli cells, the authors investigated the impact of membrane targeting sequence (MTS) and the C-terminal domain (CTD) on the membrane localization and diffusion of RNase E under various perturbations. Finally, the authors tried to correlate the membrane localization of RNase E to its function on co- and post-transcriptional mRNA decay using lacZ mRNA as a model.

      The major findings of the manuscripts include:

      (1) WT RNase E is mostly membrane localized via MTS, confirming previous results. The diffusion of RNase E is increased upon removal of MTS or CTD, and more significantly increased upon removal of both regions.

      (2) By tagging RNase E MTS and different lengths of LacY transmembrane domain (LacY2, LacY6, or LacY12) to mEos3.2, the results demonstrate that short LacY transmembrane sequence (LacY2 and LacY6) can increase the diffusion of mEos3.2 on the membrane compared to MTS, further supported by the molecular dynamics simulation. A similar trend was roughly observed in RNase E mutants with MTS switched to LacY transmembrane domains.

      (3) The removal of RNase E MTS significantly increases the co-transcriptional degradation of lacZ mRNA, but has minimal effect on the post-transcriptional degradation of lacZ mRNA. Removal of CTD of RNase E overall decreases the mRNA decay rates, suggesting the synergistic effect of CTD on RNase E activity.

      Strengths:

      (1) The manuscript is clearly written with very detailed method descriptions and analysis parameters.

      (2) The conclusions are mostly supported by the data and analysis.

      (3) Some of the main conclusions are interesting and important for understanding the cellular behavior and function of RNase E.

      Weaknesses:

      (1) Some of the observations show inconsistent or context-dependent trends that make it hard to generalize certain conclusions. Those points are worth discussion at least. Examples include:

      (a) The authors conclude that MTS segment exhibits reduced MB% when succinate is used as a carbon source compared to glycerol, whereas LacY2 segment maintains 100% membrane localization, suggesting that MTS can lose membrane affinity in the former growth condition (Ln 341-342). However, the opposite case was observed for the WT RNase E and RNase E-LacY2-CTD, in which RNase E-LacY2-CTD showed reduced MB% in the succinate-containing M9 media compared to the WT RNase E (Ln 264-267). This opposite trend was not discussed. In the absence of CTD, would the media-dependent membrane localization be similar to the membrane localization sequence or to the full-length RNase E?

      (b) When using mEos3.2 reporter only, LacY2 and LacY6 both increase the diffusion of mEos3.2 compared to MTS. However, when inserting the LacY transmembrane sequence into RNase E or RNase E without CTD, only the LacY2 increases the diffusion of RNase E. This should also be discussed.

      (2) The authors interpret that in some cases the increase in the diffusion coefficient is related to the increase in the cytoplasm localization portion, such as for the LacY2 inserted RNase E with CTD, which is rational. However, the authors can directly measure the diffusion coefficient of the membrane and cytoplasm portion of RNase E by classifying the trajectories based on their localizations first, rather than just the ensemble calculation.

      (3) The error bars of the diffusion coefficient and MB% are all SEM from bootstrapping, which are very small. I am wondering how much of the difference is simply due to a batch effect. Were the data mixed from multiple biological replicates? The number of biological replicates should also be reported.

      (4) Some figures lack p-values, such as Figures 4 and 5C-D. Also, adding p-values directly to the bar graphs will make it easier to read.

    1. Reviewer #3 (Public review):

      Summary:

      Alexander et al. reported the gene-regulatory networks underpinning sex determination of murine primordial germ cells (PGCs) through single-nucleus multiomics, offering a detailed chromatin accessibility and gene expression map across three embryonic stages in both male (XY) and female (XX) mice. It highlights how regulatory element accessibility may precede gene expression, pointing to chromatin accessibility as a primer for lineage commitment before differentiation. Sexual dimorphism in these elements and gene expression increases over time, and the study maps transcription factors regulating sexually dimorphic genes in PGCs, identifying sex-specific enrichment in various transcription factors.

      Strengths:

      The study includes step-wise multiomic analysis with some computational approach to identify candidate TFs regulating XX and XY PGC gene expression, providing a detailed timeline of chromatin accessibility and gene expression during PGC development, which identifies previously unknown PGC subpopulations and offers a multimodal reference atlas of differentiating PGC clusters. Furthermore, the study maps a complex network of transcription factors associated with sex determination in PGCs, adding depth to our understanding of these processes.

      Weaknesses:

      While the multiomics approach is powerful, it primarily offers correlational insights between chromatin accessibility, gene expression, and transcription factor activity, without direct functional validation of identified regulatory networks.

      Comments on revised version:

      The authors have answered my questions and concerns in the revised manuscript and correspondence.

    1. Reviewer #3 (Public review):

      Summary:

      In their manuscript, "Disentangling acute motor deficits and adaptive responses evoked by the loss of cerebellar output," Sinha and colleagues aim to identify distinct causes of motor impairments seen when perturbing cerebellar circuits. This goal is an important one, given the diversity of movement-related phenotypes in patients with cerebellar lesions or injuries, which are especially difficult to dissect given the chronic nature of the circuit damage. To address this goal, the authors use high-frequency stimulation (HFS) of the superior cerebellar peduncle in monkeys performing reaching movements. HFS provides an attractive approach for transiently disrupting cerebellar function previously published by this group. First, they found a reduction in hand velocities during reaching, which was more pronounced for outward versus inward movements. By modeling inverse dynamics, they find evidence that shoulder muscle torques are especially affected. Next, the authors examine the temporal evolution of movement phenotypes over successive blocks of HFS trials. Using this analysis, they find that in addition to the acute, specific effects on muscle torques in early HFS trials, there was an additional progressive reduction in velocity during later trials, which they interpret as an adaptive response to the inability to effectively compensate for interaction torques during cerebellar block. Finally, the authors examine movement decomposition and trajectory, finding that even when low-velocity reaches are matched to controls, HFS produces abnormally decomposed movements and higher than expected variability in trajectory.

      Strengths:

      Overall, this work provides important insight into how perturbation of cerebellar circuits can elicit diverse effects on movement across multiple timescales.

      The HFS approach provides temporal resolution and enables analysis that would be hard to perform in the context of chronic lesions or slow pharmacological interventions. Thus, this study describes an important advance over prior methods of circuit disruption, and their approach can be used as a framework for future studies that delve deeper into how additional aspects of sensorimotor control are disrupted (e.g., response to limb perturbations).

      In addition, the authors use well-designed behavioral approaches and analysis methods to distinguish immediate from longer-term adaptive effects of HFS on behavior. Moreover, inverse dynamics modeling provides important insight into how movements with different kinematics and muscle dynamics might be differentially disrupted by cerebellar perturbation.

      Weaknesses:

      The argument that there are acute and adaptive effects to perturbing cerebellar circuits is compelling, but there seems to be a lost opportunity to leverage the fast and reversible nature of the perturbations to further test this idea and strengthen the interpretation. Specifically, the authors could have bolstered this argument by looking at the effects of terminating HFS - one might hypothesize that the acute impacts on muscle torques would quickly return to baseline in the absence of HFS, whereas the longer-term adaptive component would persist in the form of aftereffects during the 'washout' period. As is, the reversible nature of the perturbation seems underutilized in testing the authors' ideas.

      The analysis showing that there is a gradual reduction in velocity during what the authors call an adaptive phase is convincing. That said, the argument is made that this is due to difficulty in compensating for interaction torques. Even if the inward targets (i.e., targets 6-8) do not show a deficit during the acute phase, these targets still have significant interaction torques (Figure 3c). Given the interpretation of the data as presented, it is not clear why disruption of movement during the adaptive phase would not be seen for these targets as well since they also have large interaction torques. Moreover, it is difficult to delve into this issue in more detail, as the analyses in Figures 4 and 5 omit the inward targets.

      The text in the Introduction and in the prior work developing the HFS approach overstates the selectivity of the perturbations. First, there is an emphasis on signals transmitted to the neocortex. As the authors state several times in the Discussion, there are many subcortical targets of the cerebellar nuclei as well, and thus it is difficult to disentangle target-specific behavioral effects using this approach. Second, the superior cerebellar peduncle contains both cerebellar outputs and inputs (e.g., spinocerebellar). Therefore, the selectivity in perturbing cerebellar output feels overstated. Readers would benefit from a more agnostic claim that HFS affects cerebellar communication with the rest of the nervous system, which would not affect the major findings of the study.

      The text implies that increased movement decomposition and variability must be due to noise. However, this assumption is not tested. It is possible that the impairments observed are caused by disrupted commands, independent of whether these command signals are noisy. In other words, commands could be low noise but still faulty.

      Throughout the text, the use of the term 'feedforward control' seems unnecessary. To dig into the feedforward component of the deficit, the authors could quantify the trajectory errors only at the earliest time points (e.g., in Figure 5d), but even with this analysis, it is difficult to disentangle feedforward- and feedback-mediated effects when deficits are seen throughout the reach. While outside the scope of this study, it would be interesting to explore how feedback responses to limb perturbation are affected in control versus HFS conditions. However, as is, these questions are not explored, and the claim of impaired feedforward control feels overstated.

      The terminology 'single-joint' movement is a bit confusing. At a minimum, it would be nice to show kinematics during different target reaches to demonstrate that certain targets are indeed single joint movements. More of an issue, however, is that it seems like these are not actually 'single-joint' movements. For example, Figure 2c shows that target 1 exhibits high elbow and shoulder torques, but in the text, T1 is described as a 'single-joint' reach (e.g. lines 155-156). The point that I think the authors are making is that these targets have low interaction torques. If that is the case, the terminology should be changed or clarified to avoid confusion.

      The labels in Figure 3d are confusing and could use more explanation in the figure legend.

      In Figure 3d, it is stated that data from all monkeys is pooled. However, if there is a systematic bias between animals, this could generate spurious correlations. Were correlations also calculated for each animal separately to confirm the same trend between velocity and coupling torques holds for each animal?

      In Table S1, it would be nice to see target-specific success rates. The data would suggest that targets with the highest interaction torques will have the largest reduction in success rates, especially during later HFS trials. Is this the case?

    1. Reviewer #3 (Public review):

      Summary:

      In this paper the authors conduct two experiments an fMRI experiment and intracranial recordings of neurons in two patients P1 and P2. In both experiments, they employ a SSVEP paradigm in which they show images at a fast rate (e.g. 6Hz) and then they show face images at a slower rate (e.g. 1.2Hz), where the rest of the images are a variety of object images. In the first patient, they record from neurons over a region in the mid fusiform gyrus that is face-selective and in the second patient, they record neurons from a region more medially that is not face selective (it responds more strongly to objects than faces). Results find similar selectivity between the electrophysiology data and the fMRI data in that the location which shows higher fMRI to faces also finds face-selective neurons and the location which finds preference to non faces also shows non face preferring neurons.

      Strengths:

      The data is important in that it shows that there is a relationship between category selectivity measured from electrophysiology data and category-selective from fMRI. The data is unique as it contains a lot of single and multiunit recordings (245 units) from the human fusiform gyrus - which the authors point out - is a humanoid specific gyrus.

      Weaknesses:

      My major concerns are two-fold:<br /> (i) There is a paucity of data; Thus, more information (results and methods) is warranted; and in particular there is no comparison between the fMRI data and the SEEG data.

      (ii) One main claim of the paper is that there is evidence for suppressed responses to faces in the non-face selective region. That is, the reduction in activation to faces in the non-face selective region is interpreted as a suppression in the neural response and consequently the reduction in fMRI signal is interpreted as suppression. However, the SSVEP paradigm has no baseline (it alternates between faces and objects) and therefore it cannot distinguish between lower firing rate to faces vs suppression of response to faces.

      (1) Additional data: the paper has 2 figures: figure 1 which shows the experimental design and figure 2 which presents data, the latter shows one example neuron raster plot from each patient and group average neural data from each patient. In this reader's opinion this is insufficient data to support the conclusions of the paper. The paper will be more impactful if the researchers would report the data more comprehensively.

      (a) There is no direct comparison between the fMRI data and the SEEG data, except for a comparison of the location of the electrodes relative to the statistical parametric map generated from a contrast (Fig 2a,d). It will be helpful to build a model linking between the neural responses to the voxel response in the same location - i.e., estimate from the electrophysiology data the fMRI data (e.g. Logothetis & Wandell, 2004)

      (b) More comprehensive analyses of the SSVEP neural data: It will be helpful to show the results of the frequency analyses of the SSVEP data for all neurons to show that there are significant visual responses and significant face responses. It will be also useful to compare and quantify the magnitude of the face responses compared to the visual responses.

      (c) The neuron shown in E shows cyclical responses tied to the onset of the stimuli, is this the visual response? If so, why is there an increase in the firing rate of the neuron before the face stimulus is shown in time 0? The neuron's data seems different than the average response across neurons; This raises a concern about interpreting the average response across neurons in panel F which seems different than the single neuron responses

      (d) Related to (c) it would be useful to show raster plots of all neurons and quantify if the neural responses within a region are homogeneous or heterogeneous. This would add data relating the single neuron response to the population responses measured from fMRI. See also Nir 2009.

      (e) When reporting group average data (e.g., Fig 2C,F) it is necessary to show standard deviation of the response across neurons.

      (f) Is it possible to estimate the latency of the neural responses to face and object images from the phase data? If so, this will add important information on the timing of neural responses in the human fusiform gyrus to face and object images.

      (g) Related to (e) In total the authors recorded data from 245 units (some single units and some multiunits) and they found that both in the face and nonface selective most of the recoded neurons exhibited face -selectivity, which this reader found confusing: They write " Among all visually responsive neurons, we 87 found a very high proportion of face-selective neurons (p < 0.05) in both activated 88 and deactivated MidFG regions (P1: 98.1%; N = 51/52; P2: 86.6%; N = 110/127)'. Is the face selectivity in P1 an increase in response to faces and P2 a reduction in response to faces or in both it's an increase in response to faces

      (1) Additional methods<br /> (a) it is unclear if the SSVEP analyses of neural responses were done on the spikes or the raw electrical signal. If the former, how is the SSVEP frequency analysis done on discrete data like action potentials?<br /> (b) it is unclear why the onset time was shifted by 33ms; one can measure the phase of the response relative to the cycle onset and use that to estimate the delay between the onset of a stimulus and the onset of the response. Adding phase information will be useful.

      (2) Interpretation of suppression:

      The SSVEP paradigm alternates between 2 conditions: faces and objects and has no baseline; In other words, responses to faces are measured relative to the baseline response to objects so that any region that contains neurons that have a lower firing rate to faces than objects is bound to show a lower response in the SSVEP signal. Therefore, because the experiment does not have a true baseline (e.g. blank screen, with no visual stimulation) this experimental design cannot distinguish between lower firing rate to faces vs suppression of response to faces.<br /> The strongest evidence put forward for suppression is the response of non-visual neurons that was also reduced when patients looked at faces, but since these are non-visual neurons, it is unclear how to interpret the responses to faces.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, the authors made a sincere effort to show the effects of strip cropping, a technique of alternating crops in small strips of several meters wide, on ground beetle diversity. They state that strip cropping can be a useful tool for bending the curve of biodiversity loss in agricultural systems as strip cropping shows a relative increase in species diversity (i.e. abundance and species richness) of the ground beetle communities compared to monocultures. Moreover, strip cropping has the added advantage of not having to compromise on agricultural yields.

      Strengths:

      The article is well written; it has an easily readable tone of voice without too much jargon or overly complicated sentence structure. Moreover, as far as reviewing the models in depth without raw data and R scripts allows, the statistical work done by the authors looks good. They have well thought out how to handle heterogenous, yet spatially and temporarily correlated field data. The models applied and the model checks performed are appropriate for the data at hand. Combining RDA and PCA axes together is a nice touch.

      Weaknesses:

      The evidence for strip cropping bringing added value for biodiversity is mixed at best. Yes, there is an increase in relative abundance and species richness at the field level, but it is not convincingly shown this difference is robust or can be linked to clear structural and hypothesised advantages of the strip cropping system. The same results could have been used to conclude that there are only very limited signs of real added value of strip cropping compared to monocultures.

      There are a number of reasons for this:

      (1) Significant differences disappear at crop level, as the authors themselves clearly acknowledge, meaning that there are no differences between pairs of similar crops in the strip cropping fields and their respective monoculture. This would mean the strips effectively function as "mini-monocultures". The significant relative differences at the field level could be an artifact of aggregation instead of structural differences between strip cropping and monocultures; with enough data points things tend to get significant despite large variance. This should have been elaborated further upon by the authors with additional analyses, designed to find out where differences originate and what it tells about the functioning of the system. Or it should have provided ample reason for cautioning in drawing conclusions about the supposed effectiveness of strip cropping based on these findings.

      (2) The authors report percentages calculated as relative change of species richness and abundance in strip cropping compared to monocultures after rarefaction. This is in itself correct, however, it can be rather tricky to interpret because the perspective on actual species richness and abundance in the fields and treatments is completely lost; the reported percentages are dimensionless. The authors could have provided the average cumulative number of species and abundance after rarefaction. Also, range and/or standard error would have been useful to provide information as to the scale of differences between treatments. This could provide a new perspective on the magnitude of differences between the two treatments which a dimensionless percentage cannot.

      (3) The authors appear to not have modelled the abundance of any of the dominant ground beetle species themselves. Therefore it becomes impossible to assess which important species are responsible (if any) for the differences found in activity density between stripcropping and monocultures and the possible life history traits related reasons for the differences, or lack thereof, that are found. A big advantage of using ground beetles is that many life history traits are well studied and these should be used whenever there is reason, as there clearly is in this case. Moreover, it is unclear which species are responsible for the difference in species richness found at the field level. Are these dominant species or singletons? Do the strip cropping fields contain species that are absent in the monoculture fields and are not the cause of random variation or sampling? Unfortunately, the authors do not report on any of these details of the communities that were found, which makes the results much less robust.

      (4) In the discussion they conclude that there is only a limited amount of interstrip movement by ground beetles. Otherwise, the results of the crop-level statistical tests would have shown significant deviation from corresponding monocultures. This is a clear indication that the strips function more like mini-monocultures instead of being more than the sum of its parts.

      (5) The RDA results show a modelled variable of differences in community composition between strip cropping and monoculture. Percentages of explained variation of the first RDA axis are extremely low, and even then, the effect of location and/or year appear to peak through (Figure S3), even though these are not part of the modelling. Moreover, there is no indication of clustering of strip cropping on the RDA axis, or in fact on the first principal component axis in the larger RDA models. This means the explanatory power of different treatments is also extremely low. The crop level RDA's show some clustering, but hardly any consistent pattern in either communities of crops or species correlations, indicating that differences between strip cropping and monocultures are very small.

      Furthermore, there are a number of additional weaknesses in the paper that should be addressed:

      The introduction lacks focus on the issues at hand. Too much space is taken up by facts on insect decline and land sharing vs. land sparing and not enough attention is spent on the scientific discussion underlying the statements made about crop diversification as a restoration strategy. They are simply stated as facts or as hypotheses with many references that are not mentioned or linked to in the text. An explicit link to the results found in the large number of references should be provided.

      The mechanistic understanding of strip cropping is what is at stake here. Does strip cropping behave similarly to intercropping, a technique that has been proven to be beneficial to biodiversity because of added effects due to increased resource efficiency and greater plant species richness? This should be the main testing point and agenda of strip cropping. Do the biodiversity benefits that have been shown for intercropping also work in strip cropping fields? The ground beetles are one way to test this. Hypotheses should originate from this and should be stated clearly and mechanistically.

      One could question how useful indicator species analysis (ISA) is for a study in which predominantly highly eurytopic species are found. These are by definition uncritical of their habitat. Is there any mechanistic hypothesis underlying a suspected difference to be found in preferences for either strip cropping or monocultures of the species that were expected to be caught? In other words, did the authors have any a priori reasons to suspect differences, or has this been an exploratory exercise from which unexplained significant results should be used with great caution?

      However, setting these objections aside there are in fact significant results with strong species associations both with monocultures and strip cropping. Unfortunately, the authors do not dig deeper into the patterns found a posteriori either. Why would some species associate so strongly with strip cropping? Do these species show a pattern of pitfall catches that deviate from other species, in that they are found in a wide range of strips with different crops in one strip cropping field and therefore may benefit from an increased abundance of food or shelter? Also, why would so many species associate with monocultures? Is this in any way logical? Could it be an artifact of the data instead of a meaningful pattern? Unfortunately, the authors do not progress along these lines in the methods and discussion at all.

      A second question raised in the introduction is whether the arable fields that form part of this study contain rare species. Unfortunately, the authors do not elaborate further on this. Do they expect rare species to be more prevalent in the strip cropping fields? Why? Has it been shown elsewhere that intercropping provides room for additional rare species?

      Considering the implications the results of this research can have on the wider discussion of bending the curve and the effects of agroecological measures, bold claims should be made with extreme restraint and be based on extensive proof and robust findings. I am not convinced by the evidence provided in this article that the claim made by the authors that strip cropping is a useful tool for bending the curve of biodiversity loss is warranted.

    1. Reviewer #3 (Public review):

      Summary:

      Eapen and coworkers use a rational design approach to generate new peptide-inspired ligands at the D-box interface of cdc20. These new peptides serve as new starting points for blocking APC/C in the context of cancer, as well as manipulating APC/C for targeted protein degradation therapeutic approaches.

      Strengths:

      The characterization of new peptide-like ligands is generally solid and multifaceted, including binding assays, thermal stability enhancement in vitro and in cells, X-ray crystallography, and degradation assays.

      Weaknesses:

      One important finding of the study is that the strongest binders did not correlate with the fastest degradation in a cellular assay, but explanations for this behavior were not supported experimentally. Some minor issues regarding experimental replicates and details were also noted.

    1. Reviewer #3 (Public review):

      This study explores sensory prediction errors in sensory cortex. It focuses on the question of how these signals are shaped by non-hierarchical interactions, specifically multimodal signals arising from same level cortical areas. The authors used 2-photon imaging of mouse auditory cortex in head-fixed mice that were presented with sounds and/or visual stimuli while moving on a ball. First, responses to pure tones, visual stimuli and movement onset were characterized. The authors then made the running speed of the mouse predictive of sound intensity and/or visual flow (closed loop). Mismatches were created through the interruption of sound and/or visual flow for 1 second, disrupting the expected sensory signal. As a control, sensory stimuli recorded during the close loop phase were presented again decoupled from the movement (open loop). The authors suggest that auditory responses to the unpredicted interruption of the sound, which affected neither running speed nor pupil size, reflect mismatch responses. That these mismatch responses were enhanced when the visual flow was congruently interrupted, indicates cross-modal influence of prediction error signals.

      This study's strengths are the relevance of the question and the design of the experiment. The authors are experts in the techniques used. Responses to the interruption of the sound are similar in quality, if not quantity, in the predictive and the control situation, yet the contribution of sound offset sensitivity to the observed mismatch responses is not discussed.

    1. Reviewer #3 (Public review):

      Summary:

      Ai et al. studied texture, color and disparity selectivity in human visual cortex at mesoscale level using high-resolution fMRI. They reproduced earlier monkey and human studies showing interdigitated color-selective and disparity-selective sub-compartments within area V2, likely corresponding to thin and thick stripes, respectively. At least with the stimuli used, no clear evidence for texture-selective mesoscale activations were observed in area V2. The most interesting and novel part of this study focused on cortical-depth-dependent connectivity analyses across areas. The data suggest feedback and feedforward functional connectivity between V1 and V3A for disparity signals and feedback from V4 to the deep layers of V2 for textures.

      Strengths:

      High-resolution fMRI and highly interesting layer-specific informational connectivity analyses.

      Weaknesses:

      The authors tend to overclaim their results. Too few data to make conclusive inferences.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Outla Z et al described the analysis of Plectin in HCC pathogenesis. Specifically, it was found that elevated Plectin levels in liver tumors, correlated with poor prognosis for HCC patients. Mechanistically, it showed that Plectin-dependent disruption of cytoskeletal networks leads to the attenuation of oncogenic FAK, MAPK/Erk, and PI3K/AKT signals. Finally, the authors showed that Plectin inhibitor plecstatin-1 (PST) is well-tolerated and capable of overcoming therapy resistance in HCC.

      Strengths:

      The studies of Plectin are not entirely novel (Pubmed: 36613521). Nevertheless, the current manuscript provides a much more detailed mechanistic study and the results have translational implications. Additional strengths include convincing cell biology data, such as Plectin regulates cytoskeletal networks, and HCC migration/invasion.

      Comments on latest version:

      The authors have addressed my comments.

    1. Reviewer #3 (Public review):

      Summary:

      The study explores a molecular mechanism by which C. elegans detects low-quality food through neuron-digestive crosstalk, offering new insights into food quality control systems. Liu and colleagues demonstrated that NSY-1, expressed in AWC neurons, is a key regulator for sensing Staphylococcus saprophyticus (SS), inducing avoidance behavior and shutting down the digestive system via intestinal BCF-1. They further revealed that INS-23, an insulin peptide, interacts with the DAF-2 receptor in the gut to modulate SS digestion. The study uncovers a food quality control system connecting neural and intestinal responses, enabling C. elegans to adapt to environmental challenges.

      Strengths:

      The study employs a genetic screening approach to identify nsy-1 as a critical regulator in detecting food quality and initiating adaptive responses in C. elegans. The use of RNA-seq analysis is particularly noteworthy, as it reveals distinct regulatory pathways involved in food sensing (Figure 4) and digestion of Staphylococcus saprophyticus (Figure 5). The strategic application of both positive and negative data mining enhances the depth of analysis. Importantly, the discovery that C. elegans halts digestion in response to harmful food and employs avoidance behavior highlights a physiological adaptation mechanism.

      Weaknesses:

      Major points:

      (1) While NSY-1 positively regulates str-130 expression in AWC neurons and is critical for SS avoidance and survival, the authors should examine whether similar phenotypes are observed in str-130 mutants.

      (2) NSY-1 promotes the AWC-OFF state through str-130, inhibiting SS digestion. The authors should investigate whether STR-130 in AWC neurons regulates bcf-1 expression levels in the intestine.

      (3) The current results rely on str-2 expression levels to indicate the AWC state. Ablating AWC neurons and testing the effects on digestion would provide stronger evidence for their role in digestive regulation.

      (4) The claim that NSY-1 inhibits INS-23 and that INS-23 interacts with DAF-2 to regulate bcf-1 expression (Line 339-340) requires further validation. Neuron-specific disruption of INS-23 and gut-specific rescue of DAF-2 should be tested.

      (5) Figure Reference Errors: Lines 296-297 mention Figure 6E, which does not exist in the main text. This appears to refer to Figure 5E, which has not been described.

    1. Reviewer #3 (Public review):

      This is a very interesting study that aims to examine the effect of stress induction across about two hours on physiological, behavioral, and neural measures in several brain areas. This aim is of importance for the study of stress response and recovery and their neural bases. There are several strengths to the design, including a within-subject design, adequate sample size, and multiple levels of assessment (including lab-based and real-life), and the authors should really be commended for that. The results indicate an acute cortisol response following stress induction, although HR data show that the manipulation may have been effective only among those who did the stress scan first. Behaviorally, stress induction resulted in effects on one of the tasks. Neurally, temporal changes in response were observed in what is referred to as SN and DMN networks, and associations with real-life stress were evident for SN during early stress response. Together, evidence emerged for some temporal changes in stress response on neural function and its associations with behavior and real-life stress response as indicated by self-report EMA.

      These findings, both positive and null, provide important insight to the field, and the authors should be praised for that. At the same time, it is important to emphasize that some aspects or findings complicate interpretation and limit the extent of inference, that many places in the manuscript could benefit from clarification, and that more discussion should be given to the null findings.

      All in all, given the importance of the questions and the strengths of the design, this study could provide a major contribution to future research. But, to accurately and optimally guide research, it is important to accurately describe and interpret both what was tested and found, and what was not found. Some more specific points are noted below, where improvements could be made to facilitate extraction of insight by the reader, and thus increase the impact of the study on the field.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript from Nichols, Lee, and Shen tackles an important question of how unc6/netrin promotes axon guidance: i.e. haptotaxis vs chemotaxis. This has recently been a large topic of investigation and discussion in the axon guidance field. Using live cell imaging of unc6/netrin and unc40/DCC in several neurons that extend axons ventrally during development, as well as TM localized mutants of Unc6, they suggest that unc6 promotes first haptotaxis of the emerging growth cone followed by chemotaxis of the growth cone. This is timely, as a recent preprint from the Lundquist group, using a similar strategy to make only a TM anchored unc6 similarly found that this could rescue only the haptotaxis like growth of the PDE neuron, but not the second phase of growth. However, their conclusions were quite different based on the overexpression of unc6 everywhere rescuing the second phase, and thus they conclude that a gradient is not present.

      Strengths:

      As this has been quite a controversy in both the invertebrate and vertebrate fields, one strength of this paper is that they use a unc6-neon green to demonstrate unc6 localization, and show localization. Further, they provide localisation of the transmembrane tether version of netrin, showing its restriction to nerve cords.

    1. Reviewer #3 (Public review):

      Summary:

      The authors assessed the potential involvement of fmo-4 in a diverse set of longevity interventions, showing that this gene is required for DR and S6 kinase knockdown related lifespan extension. Using comprehensive epistasis experiments they find this gene to be a required downstream player in the longevity and stress resistance provided by fmo-2 overexpression. They further showed that fmo-4 ubiquitous overexpression is sufficient to provide longevity and paraquat (mitochondrial) stress resistance, and that overexpression specifically in the hypodermis is sufficient to recapitulate most of these effects.

      Interestingly, they find that fmo-4 overexpression sensitizes worms to thapsigargin during development, an effect that they link with a potential dysregulation in calcium signalling. They go on to show that fmo-4 expression is sensitive to drugs that both increase or decrease calcium levels, and these drugs differentially affect lifespan of fmo-4 mutants compared to wild-type worms. Similarly, knockdown of genes involved in calcium binding and signalling also differentially affect lifespan and paraquat resistance of fmo-4 mutants.

      Finally, they suggest that atf-6 limits the expression of fmo-4, and that fmo-4 is also acting downstream of benefits produced by atf-6 knockdown.

      Strengths:

      • comprehensive lifespans experiments: clear placement of fmo-4 within established longevity interventions.<br /> • clear distinction in functions and epistatic interactions between fmo-2 and fmo-4 which lays a strong foundation for a longevity pathway regulated by this enzyme family.

      Weaknesses:

      • no obvious transcriptomic evidence supporting a link between fmo-4 and calcium signalling: either for knockout worms or fmo-4 overexpressing strains.<br /> • no direct measures of alterations in calcium flux, signalling or binding that strongly support a connection with fmo-4.<br /> • no measures of mitochondrial morphology or activity that strongly support a connection with fmo-4.<br /> • lack of a complete model that places fmo-4 function downstream of DR and mTOR signalling (first Results section), fmo-2 (second Results section) and at the same time explains connection with calcium signalling.

      Comments on revisions:

      The authors have addressed and fixed all the private comments we had made. In terms of the public comments, I think nothing has changed in terms of strengths and weaknesses. They have multiple independent results (drugs, RNAi and transcriptomics) that suggest a connection between fmo-4 and calcium regulation, but there is no strong evidence for what this connection is. The work still lacks direct measures of calcium, ER or mitochondrial function in relation to fmo-4 (which they acknowledge in the discussion). The first four sections strongly place fmo-4 within established longevity interventions, but their model doesn't explain how calcium regulation would fit into these.

    1. Reviewer #3 (Public review):

      Summary:

      Aguirre-Botero et al have studied the effect of a potent monoclonal antibody against the circumsporozoite protein, the major surface protein of the malaria sporozoite. This is an elegantly designed, performed, and analyzed study. They have efficiently delineated the mode of action of anti-CSP repeat mAb and confirmed previous in vitro work (not cited) that demonstrated the same intracellular effect.

      Major comments from the previous round of review:

      Line 51: The authors claim a correlation between high antibody levels and protection. However, they did not provide direct proof that these antibodies were responsible for protection, nor did they establish a cut-off level of anti-CSP antibodies that would distinguish between protected and unprotected individuals.

      Line 326: The late intrahepatic effect of mAb against the CSP repeat has been previously reported (see Figure 2, Nudelman et al, J Immunol, 1989). The effect was shown to affect the transition from liver trophozoites to liver schizonts. This study should be cited and discussed.

      Significance:

      A well-done study that elucidates the mechanisms of a protective monoclonal antibody against malaria sporozoites. These data are important and will interest a large audience of researchers working in infectious diseases and immunology.

      Comments on latest version:

      With the addition of new experiments and proper addition of missing references and minor text correction, the manuscript has been improved.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Kaya et al. explores the effects of feeding on sharp wave-ripples (SWRs) in the hippocampus, which could reveal a better understanding of how metabolism is regulated by neural processes. Expanding on prior work that showed that SWRs trigger a decrease in peripheral glucose levels, the authors further tested the relationship between SWRs and meal consumption by recording LFPs from the dorsal CA1 region of the hippocampus before and after meal consumption. They found an increase in SWR magnitude during sleep after food intake, in both food restricted and ad libitum fed conditions. Using fiber photometry to detect GABAergic neuron activity in the lateral hypothalamus, they found increased activity locked to the onset of SWRs. They conclude that the animal's satiety state modulates the amplitude and rate of SWRs, and that SWRs modulate downstream circuits involved in regulating feeding. These experiments provide an important step forward in understanding how metabolism is regulated in the brain. However, currently, the paper lacks sufficient analyses to control for factors related to sleep quality and duration; adding these analyses would further support the claim that food intake itself, as opposed to sleep quality, is primarily responsible for changes in SWR activity. Adding this, along with some minor clarifications and edits, would lead to a compelling case for SWRs being modulated by a satiety state. The study will likely be of great interest in the field of learning and memory while carrying broader implications for understanding brain-body physiology.

      Strengths:

      The paper makes an innovative foray into the emerging field of brain-body research, asking how sharp wave-ripples are affected by metabolism and hunger. The authors use a variety of advanced techniques including LFP recordings and fiber photometry to answer this question. Additionally, they perform comprehensive and logical follow-up experiments to the initial food-restricted paradigm to account for deeper sleep following meal times and the difference between consumption of calories versus the experience of eating. These experiments lay the groundwork for future studies in this field, as the authors pose several follow-up questions regarding the role of metabolic hormones and downstream brain regions.

      Weaknesses:

      Major comments:

      (1) The authors conclude that food intake regulates SWR power during sleep beyond the effect of food intake on sleep quality. Specifically, they made an attempt to control for the confounding effect of delta power on SWRs through a mediation analysis. However, a similar analysis is not presented for SWR rate. Moreover, this does not seem to be a sufficient control. One alternative way to address this confound would be to subsample the sleep data from the ad lib and food restricted conditions (or high calorie and low calorie, etc), to match the delta power in each condition. When periods of similar mean delta power (i.e. similar sleep quality) are matched between datasets, the authors can then determine if a significant effect on SWR amplitude and rate remains in the subsampled data.

      (2) Relatedly, are the animals spending the same amount of time sleeping in the ad lib vs. food restricted conditions? The amount of time spent sleeping could affect the probability of entering certain stages of sleep and thus affect SWR properties. A recent paper (Giri et al., Nature, 2024) demonstrated that sleep deprivation can alter the magnitude and frequency of SWRs. Could the authors quantify sleep quantity and control for the amount of time spent sleeping by subsampling the data, similar to the suggestion above?

      (3) Plot 5I only reports significance but does not clearly show the underlying quantification of LH GABAergic activity. Upon reading the methods for how this analysis was conducted, it would be informative to see a plot of the pre-SWR and post-SWR integral values used for the paired t-test whose p-values are currently shown. For example, these values could be displayed as individual points overlaid on a pair of box-and-whisker plots of the pre- and post-distribution within the session (perhaps for one example session per mouse with the p-value reported, to supplement a plot of the distribution of p-values across sessions and mice). If these data are non-normal, the authors should also use a non-parametric statistical test.

      Minor comments:

      (4) A brief explanation (perhaps in the discussion) of what each change in SWR property (magnitude, rate, duration) could indicate in the context of the hypothesis may be helpful in bridging the fields of metabolism and memory. For example, by describing the hypothesized mechanistic consequence of each change, could the authors speculate on why ripple rate may not increase in all the instances where ripple power increases after feeding? Why do the authors speculate that ripple duration does not increase, given that prior work (Fernandez-Ruiz et al. 2019) has shown that prolonged ripples support enhanced memory?

      (5) The authors suggest that "SWRs could modulate peripheral metabolism" as a future implication of their work. However, the lack of clear effects from GLP-1, leptin and insulin complicates this interpretation. It might be informative for readers if the authors expanded their discussion of what specific role they speculate that SWRs could play in regulating metabolism, given these negative results.

    1. Reviewer #3 (Public review):

      Summary:

      In their manuscript, Armand and colleagues investigate the potential of continuing CDK4/6 inhibitors or combining them with CDK2 inhibitors in the treatment of breast cancer that has developed resistance to initial therapy. Utilizing cellular and animal models, the research examines whether maintaining CDK4/6 inhibition or adding CDK2 inhibitors can effectively control tumor growth after resistance has set in. The key findings from the study indicate that the sustained use of CDK4/6 inhibitors can slow down the proliferation of cancer cells that have become resistant, and the combination of CDK2 inhibitors with CDK4/6 inhibitors can further enhance the suppression of tumor growth. Additionally, the study identifies that high levels of Cyclin E play a significant role in resistance to the combined therapy. These results suggest that continuing CDK4/6 inhibitors along with the strategic use of CDK2 inhibitors could be an effective strategy to overcome treatment resistance in hormone receptor-positive breast cancer.

      Strengths:

      (1) Continuous CDK4/6 Inhibitor Treatment Significantly Suppresses the Growth of Drug-Resistant HR+ Breast Cancer: The study demonstrates that the continued use of CDK4/6 inhibitors, even after disease progression, can significantly inhibit the growth of drug-resistant breast cancer.

      (2) Potential of Combined Use of CDK2 Inhibitors with CDK4/6 Inhibitors: The research highlights the potential of combining CDK2 inhibitors with CDK4/6 inhibitors to effectively suppress CDK2 activity and overcome drug resistance.

      (3) Discovery of Cyclin E Overexpression as a Key Driver: The study identifies overexpression of cyclin E as a key driver of resistance to the combination of CDK4/6 and CDK2 inhibitors, providing insights for future cancer treatments.

      (4) Consistency of In Vitro and In Vivo Experimental Results: The study obtained supportive results from both in vitro cell experiments and in vivo tumor models, enhancing the reliability of the research.

      (5) Validation with Multiple Cell Lines: The research utilized multiple HR+/HER2- breast cancer cell lines (such as MCF-7, T47D, CAMA-1) and triple-negative breast cancer cell lines (such as MDA-MB-231), validating the broad applicability of the results.

      Weaknesses:

      (1) The manuscript presents intriguing findings on the sustained use of CDK4/6 inhibitors and the potential incorporation of CDK2 inhibitors in breast cancer treatment. However, I would appreciate a more detailed discussion of how these findings could be translated into clinical practice, particularly regarding the management of patients with drug-resistant breast cancer.

      (2) While the emergence of resistance is acknowledged, the manuscript could benefit from a deeper exploration of the molecular mechanisms underlying resistance development. A more thorough understanding of how CDK2 inhibitors may overcome this resistance would be valuable.

      (3) The manuscript supports the continued use of CDK4/6 inhibitors, but it lacks a discussion on the long-term efficacy and safety of this approach. Additional studies or data to support the safety profile of prolonged CDK4/6 inhibitor use would strengthen the manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors set out to test the "force from lipids" mechanism of mechanosensitive channel gating, which posits that mechanical properties of the membrane are directly responsible for converting membrane tension into useful energy for channel gating. They employ amphiphilic polymers called poloxamers to alter membrane mechanical properties and relate those to the threshold of mechanical activation of the MscL channel of E.coli.

      The authors heterologously express the channel, perform electrical recordings, and assess the mechanical properties of vesicles derived from the same membranes. This allows them to directly compare derived mechanical parameters to channel gating in the same environment.

      They further repeat experiments in an eukaryotic mechano-channel and show that the same principles apply to gating in this very different protein, providing support for the force from lipids hypothesis.

      Strengths:

      In this work, characterization of the mechanical properties of the plasma membrane and electrical recordings of channel activity are carried out in membranes derived from the same cells. This is a nice contribution to these experiments since usually these two properties are measured in separate membranes with differing compositions. The experiments are of high quality and the data analysis and interpretation are careful.

      Weaknesses:

      It is not clear to this reviewer what the relationship is between the mechanical properties the authors measure, the membrane area expansion modulus, and bending rigidity, to what they call "interfacial tension".

    1. Reviewer #3 (Public review):

      Summary:

      Avila and colleagues investigate the role of glutamate signaling in the dorsomedial striatum in a treadmill-based task where rats learn to turn or stop their walking based on learning cue-associations that allow them to acquire rewards. Phenotypic variation in Pavlovian conditioned sign and goal-tracking behavior was examined, where behavioral differences in stopping and turning were observed. Glutamate signals in the DMS were recording during the treadmill task, and were related to features of cue-controlled movement, with a stronger relationship seen for goal trackers. Finally, chemogenic inhibition of prelimbic neurons projecting to the DMS (the predicted source of those glutamate signals), preferentially affected cued movement in goal trackers. The authors couch these experiments in the context of cognitive control-attentional mechanisms, movement disorders, and individual differences in cue reactivity.

      Strengths:

      Overall these studies are interesting and are of general relevance to a number of research questions in neurology and psychiatry. The assessment of intersection of individual differences in cue-related learning strategies with movement-related questions - in this case cued turning behavior - is interesting and understudied question. The link between this work and growing notions of corticostriatal control of action selection makes it timely.

      Weaknesses:

      The clarity of the manuscript could be improved in several places, including in the graphical visualization of data. It is difficult to interpret the glutamate results, as presented, in the context of specific behaviors. It is difficult to assess how many trials/subjects are represented in the data shown, and too much emphasis is placed on representative examples. Averages traces of the glutamate data and other standard analysis approaches would improve the paper and allow for easier interpretation of the data.

    1. Reviewer #3 (Public review):

      In this project, Garber and Fiser examined how the structure of incidentally learned regularities influences subsequent learning of regularities, that either have the same structure or a different one. Over a series of six online experiments, it was found that the structure (spatial arrangement) of the first set of regularities affected learning of the second set, indicating that it has indeed been abstracted away from the specific items that have been learned. The effect was found to depend on the explicitness of the original learning: Participants who noticed regularities in the stimuli were better at learning subsequent regularities of the same structure than of a different one. On the other hand, participants whose learning was only implicit had an opposite pattern: they were better in learning regularities of a novel structure than of the same one. However, when an overnight sleep separated the first and second learning phases, this opposite effect was reversed and came to match the pattern of the explicit group, suggesting that the abstraction and transfer in the implicit case were aided by memory consolidation.

      In their revision the authors addressed my major comments successfully and I commend them for that.

    1. Reviewer #3 (Public review):

      The manuscript by Talbi R et al. generated transgenic mice to assess the reproduction function of MC4R in Kiss1 neurons in vivo and used electrophysiology to test how MC4R activation regulated Kiss1 neuronal firing in ARH and AVPV/PeN. This timely study is highly significant in neuroendocrinology research for the following reasons.

      (1) The authors' findings are significant in the field of reproductive research. Despite the known presence of MC4R signaling in Kiss1 neurons, the exact mechanisms of how MC4R signaling regulates different Kiss1 neuronal populations in the context of sex hormone fluctuations are not entirely understood. The authors reported that knocking out Mc4r from Kiss1 neurons replicates the reproductive impairment of MC4RKO mice, and Mc4r expression in Kiss1 neurons in the MC4R null background partially restored the reproductive impairment. MC4R activation excites Kiss1 ARH neurons and inhibits Kiss1 AVPV/PeN neurons (except for elevated estradiol).

      (2) Reproduction dysfunction is one of obesity comorbidities. MC4R loss-of-function mutations cause obesity phenotype and impaired reproduction. However, it is hard to determine the causality. The authors carefully measured the body weight of the different mouse models (Figure 1C, Figure 2A, Figure 3B). For example, the Kiss1-MC4RKO females showed no body weight difference at puberty onset. This clearly demonstrated the direct function of MC4R signaling in reproduction but was not a consequence of excessive adiposity.

      (3) Gene expression findings in the "KNDy" system align with the reproduction phenotype.

      (4) The electrophysiology results reported in this manuscript are innovative and provide more details of MC4R activation and Kiss1 neuronal activation.

      Overall, the authors have presented sufficient background in a clear, logical, and organized structure, clearly stated the key question to be addressed, used the appropriate methodology, produced significant and innovative main findings, and made a justified conclusion.

      Comments on revisions:

      The authors have addressed my comments.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aim to explore whether other subunits besides MED1 exert specific functions during the process of terminal erythropoiesis with global gene repression, and finally they demonstrated that MED26-enriched condensates drive erythropoiesis through modulating transcription pausing.

      Strengths:

      Through both in vitro and in vivo models, the authors showed that while MED1 and MED26 co-occupy a plethora of genes important for cell survival and proliferation at the HSPC stage, MED26 preferentially marks erythroid genes and recruits pausing-related factors for cell fate specification. Gradually, MED26 becomes the dominant factor in shaping the composition of transcription condensates and transforms the chromatin towards a repressive yet permissive state, achieving global transcription repression in erythropoiesis.

      Weaknesses:

      In the in vitro model, the author only used CD34+ cell-derived erythropoiesis as the validation, which is relatively simple, and more in vitro erythropoiesis models need to be used to strengthen the conclusion.

    1. Reviewer #3 (Public review):

      This study was focused on the conserved mechanisms across the Transmembrane Channel/Scramblase superfamily, which includes members of the TMEM16, TMEM63/OSCA, and TMC families. In previous work, the authors have studied the role of the inner activation gate of these proteins. Here, the authors show that the introduction of mutations at the TM4-TM6 interface, which are close to the inactivation gate, can disrupt gating and confer scramblase activity to non-scramblases proteins.

      Overall, the confocal imaging experiments, patch clamping experiments, and data analysis are performed well and in line with standard methods. The molecular dynamics simulation work is focused but adds supportive evidence to their findings. Although there could have been more extensive molecular analysis to bolster the authors' arguments on the role of the TM4-TM6 interface (e.g. evaluate effects of size/hydrophobicity, double mutants, cross-linking, more in-depth simulation data), there is adequate evidence to conclude that certain residues at this interface is critical to ion conduction and phospholipid scramblase activity. The data presented only adds incremental depth of knowledge for each individual channel, but together, they show this to be true for conserved TM4 residues across TMEM16F, TMEM16A, OSCA1.2, and TMEM63A proteins. This breadth of data is a major strength of this paper, and provides strong evidence for a coupled pathway for ion conduction and phospholipid transport, though the underlying biophysical mechanism is still speculative and remains to be elucidated.

    1. Reviewer #3 (Public review):

      Summary:

      The previously described reporter SPOTlight is a fluorescence-based reporter of the integrated stress response, specifically, protein synthesis initiation dynamics. In the current study from the same lab, the authors describe the creation and characterization of a transgenic mouse that expresses SPOTlight.

      Strengths:

      The previously described reporter has now been made into a Cre-dependent transgene in mice. The authors replicate previous findings from their lab that were acquired using viral vector-mediated delivery of their reporter.

      Weaknesses:

      There is not a clear advantage to having the Cre-dependent SPOTlight reporter in a transgenic mouse over using a viral vector to deliver the same Cre-dependent SPOTlight based on the experiments presented. There are potential general advantages and disadvantages to virus vs transgenic mouse but no side-by-side comparisons are performed here.

      It is not clear whether overexpressing the reporter alters basal ISR/UPR function and gene expression. The CAG is a strong promoter and overexpression of fluorescent proteins (or any protein) can potentially stress protein synthesis and processing mechanisms. The use of the animal as a reporter may be misleading if the presence of the reporter is already altering ISR/UPR.

    1. Reviewer #3 (Public review):

      The authors were interested in how Ankle2 regulates nuclear envelope reformation after cell division. They show that Ankle2 can bind in a PP2A complex without other known regulatory subunits of PP2A. The authors also identity a novel interaction with ER protein Vap33 that could be important for localization. This manuscript is a useful finding linking Ankle2 function during nuclear envelope reformation to the PP2A complex. The authors present solid data showing that Ankle2 can form a complex with PP2A-29B and Mts and generate a phosphoproteomic resource that is fundamentally important to understand Ankle2 biology. The caveat should be remembered that most experiments, including subcellular localization, are based on overexpression data. Keeping this in mind, the manuscript is a valuable resource.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, McAllester and Pool develop a new model to explain the maintenance of balanced inversion polymorphism, based on (sexually) antagonistic alleles and a trade-off between male reproduction and survival (in females or both sexes). Simulations of this model support the plausibility of this mechanism. In addition, the authors use experiments on four naturally occurring inversion polymorphisms in D. melanogaster and find tentative evidence for one aspect of their theoretical model, namely the existence of the above-mentioned trade-off in two out of the four inversions.

      Strengths:

      (1) The study develops and analyzes a new (Drosophila melanogaster-inspired) model for the maintenance of balanced inversion polymorphism, combining elements of (sexually) antagonistically (pleiotropic) alleles, negative frequency-dependent selection and synergistic epistasis. Simulations of the model suggest that the hypothesized mechanism might be plausible.

      (2) The above-mentioned model assumes, as a specific example, a trade-off between male reproductive display and survival; in the second part of their study, the authors perform laboratory experiments on four common D. melanogaster inversions to study whether these polymorphisms may be subject to such a trade-off. The authors observe that two of the four inversions show suggestive evidence that is consistent with a trade-off between male reproduction and survival.

      Open issues:

      (1) A gap in the current modeling is that, while a diploid situation is being studied, the model does not investigate the effects of varying degrees of dominance. It would thus be important and interesting, as the authors mention, to fill this gap in future work,

      (2) It will also be important to further explore and corroborate the potential importance and generality of trade-offs between different fitness components in maintaining inversion polymorphisms in future work.

    1. Reviewer #3 (Public review):

      Summary:

      The migration of primordial germ cells (PGCs) to the developing gonad is a poorly understood, yet essential step in reproductive development. Here, the authors examine whether there are differences in leading and lagging migratory PGCs using single-cell RNA sequencing of mouse embryos. Cleverly, the authors dissected embryonic trunks along the anterior-to-posterior axis prior to scRNAseq in order to distinguish leading and lagging migratory PGCs. After batch corrections, their analyses revealed several known and novel differences in gene expression within and around leading and lagging PGCs, intercellular signaling networks, as well as number of genes upregulated upon gonad colonization. The authors then compared their datasets with publicly available human datasets to identify common biological themes. Altogether, this rigorous study reveals several differences between leading and lagging migratory PGCs, hints at signatures for different fates among the population of migratory PGCs, and provides new potential markers for post-migratory PGCs in both humans and mice. While many of the interesting hypotheses that arise from this work are not extensively tested, these data provide a rich platform for future investigations.

      Strengths:

      -The authors have successfully navigated significant technical challenges to obtain a substantial number of mouse migratory primordial germ cells for robust transcriptomic analysis. Here the authors were able to collect quality data on ~13,000 PGCs and ~7,800 surrounding somatic cells, which is ten times more PGCs than previous studies.

      - The decision to physically separate leading and lagging primordial germ cells was clever and well-validated based on expected anterior-to-posterior transcriptional signatures.

      - Within the PGCs and surrounding tissues, the authors found many gene expression dynamics they would expect to see both along the PGC migratory path as well as across developmental time, increasing confidence in the new differentially expressed genes they found.

      - The comparison of their mouse-based migratory PGC datasets with existing human migratory PGC datasets is appreciated.

      - The quality control, ambient RNA contamination elimination, batch correction, cell identification and analysis of scRNAseq data were thorough and well-done such that the new hypotheses and markers found through this study are dependable.

      - The subsetting of cells in their trajectory analysis is appreciated, further strengthening their cell terminal state predictions.

      Weaknesses:

      - Although it is useful to compare their mouse-based dataset with human datasets, the authors used two different analysis pipelines for each dataset. While this may have been due to the small number of cells in the human dataset as mentioned, it does make it difficult to compare them.

      - There were few validation experiments within this study. For one such experiment, whether there is a difference in pSMAD2/3 along the AP axis is unclear and not quantified as was nicely done for Lefty1/2.

    1. Reviewer #3 (Public review):

      Summary:

      The paper describes the molecular pathway to regulate germ cell differentiation in zebrafish through ribosomal RNA biogenesis. Meioc sequesters Piwil1, a Piwi homolog, which suppresses the transcription of the 45S pre-rDNA by the formation of heterochromatin, to the perinuclear bodies. The key results are solid and useful to researchers in the field of germ cell/meiosis as well as RNA biosynthesis and chromatin.

      Strengths:

      The authors nicely provided the molecular evidence on the antagonism of Meioc to Piwil1 in the rRNA synthesis, which supported by the genetic evidence that the inability of the meioc mutant to enter meiosis is suppressed by the piwil1 heterozygosity.

      Weaknesses:

      (1) Although the paper provides very convincing evidence for the authors' claim, the scientific contents are poorly written and incorrectly described. As a result, it is hard to read the text. Checking by scientific experts would be highly recommended. For example, on line 38, "the global translation activity is generally [inhibited]", is incorrect and, rather, a sentence like "the activity is lowered relative to other cells" is more appropriate here. See minor points for more examples.<br /> (2) In some figures, it is hard for readers outside of zebrafish meiosis to evaluate the results without more explanation and drawing.<br /> (3) Figure 1E, F, cycloheximide experiments: Please mention the toxicity of the concentration of the drug in cell proliferation and viability.

    1. Reviewer #3 (Public review):

      Summary:

      The authors provide an in-depth analysis of the function of Numb in adult Drosophila midgut. Based on RNAi combinations and double mutant clonal analyses, they propose that Numb has a function in inhibiting Notch pathway to maintain intestinal stem cells, and is a backup mechanism with BMP pathway in maintaining midgut stem cell mediated homeostasis.

      Strengths:

      Overall, this is a carefully constructed series of experiments, and the results and statistical analyses provides believable evidence that Numb has a role, albeit weak compared to other pathways, in sustaining ISC and in promoting regeneration especially after damage by bleomycin, which may damage enterocytes and therefore disrupt BMP pathway more. The results overall support their claim.

      The data are highly coherent, and support a genetic function of Numb, in collaborating with BMP signaling, to maintain the number and proliferative function of ISCs in adult midguts. The authors used appropriate and sophisticated genetic tools of double RNAi, mutant clonal analysis and dual marker stem cell tracing approaches to ensure the results are reproducible and consistent. The statistical analyses provide confidence that the phenotypic changes are reliable albeit weaker than many other mutants previously studied.

      Weaknesses:<br /> In the absence of Numb itself, the midgut has a weak reduction of ISC number (Fig. 3 and 5), as well as weak albeit not statistically significant reduction of ISC clone size/proliferation. I think the authors published similar experiments with BMP pathway mutants. The mad1-2 allele used here as stated below may not be very representative of other BMP pathway mutants. Therefore, it could be beneficial to compare the number of ISC number and clone sizes between other BMP experiments to provide the readers with a clearer picture of how these two pathways individually contribute (stronger/weaker effects) to the ISC number and gut homeostasis.

      The main weakness of this manuscript is the analysis of the BMP pathway components, especially the mad1-2 allele. The mad RNAi and mad1-2 alleles (P insertion) are supposed to be weak alleles and that might be suitable for genetic enhancement assays here together with numb RNAi. However, the mad1-2 allele, and sometimes the mad RNAi, showed weakly increased ISC clone size. This is kind of counter-intuitive that they should have a similar ISC loss and ISC clone size reduction.

      A much stronger phenotype was observed when numb mutants were subject to treatment of tissue damaging agents Bleomycin, which causes damage in different ways than DSS. Bleomycin as previously shown to be causing mainly enterocyte damage, and therefore disrupt BMP signaling from ECs more likely. Therefore, this treatment together with loss of numb led to a highly significant reduction of ISC in clones and reduction of clone size/proliferation. One improvement is that it is not clear whether the authors discussed the nature of the two numb mutant alleles used in this study and the comparison to the strength of the RNAi allele. Because the phenotypes are weak and more variable, the use of specific reagents is important.

      Furthermore, the use of possible activating alleles of either or both pathways to test genetic enhancement or synergistic activation will provide strong support for the claims.

    1. Reviewer #3 (Public review):

      Summary:<br /> This study advances the field of β cell dysfunction by unveiling an epigenetic mechanism of β cell senescence. By connecting TET2-mediated DNA methylation to histone acetylation and cellular aging, it opens promising new avenues for therapeutic intervention. In particular, the authors aimed at identifying the mechanisms of pancreatic β cell senescence by epigenetic regulation. They conclude that increased TET2 expression in β cells is associated with ageing and metabolic dysfunction in type 2 diabetes by inducing β cell senescence. The authors further propose that TET2-mediated PTEN promoter methylation promotes β cell senescence by regulating H4K16ac. Last, the authors suggest that this could represent new molecular mechanism and therapeutic target against β cell senescence during type 2 diabetes.

      Strengths:<br /> The major strengths of the study are the use of both biased and unbiased experimental tools to approach the topic. The authors also provide in vivo and in vitro mechanistic approaches to answer their questions. All of these approaches are valuable and provides robustness to their study. The authors provide solid evidence that TET2 is associated with ageing and that its absence improves glucose metabolism in ageing and β cell senescence. In addition, the mechanistic studies showing that TET2 regulates the PTEN/MOF/H4K16ac signaling pathway in β cell lines is convincing.

      Weaknesses:<br /> Although the use of such a variety of tools is a strength, the outcome of each individual tool is somehow superficial. For instance, the authors focus on very specific targets emanating from their omics studies without a clear or logical justification. In addition, the metabolic studies are inaccurate and the authors do not follow an understandable and rational examination of the ageing versus their obesity cohorts. Last, the mechanistic studies using model cell lines are not validated in the available mouse models.

      In my opinion, the evidence that TET2 regulates β cell senescence during obesity is not very strong. This is because the effect of deletion of TET2 in senescence markers is the same under 24weeks of age or 52 weeks of age (16 weeks HFD). Both ageing and HFD promoted the same extent of reduction of senescent markers and increase in β cell markers in the absence of TET2. There is no comparison between young glucose tolerant mice and old glucose intolerant mice. There is also no direct comparison of aged matched lean or obese mice. It may seem as if the mechanism by which TET2 regulates senescence in β cells is independent of the diabetic status but it is more related to ageing. Given that there is evidence that TET2 expression in β cells coordinates inflammatory responses in autoimmune diabetes, it would have been interested to check whether this is also the case for T2DM. Also, considering that expression of TET2 in Figure 3 does not seem to be in β cells in db/db mice but rather in the exocrine pancreas. In addition, senescent marker p16 in Figure 5 in the presence of TET2, seems to be localized in alpha cells or immune cells but not in β cells.<br /> Regarding the mechanistic studies, the authors convincingly show that TET2 regulates the PTEN/MOF/H4K16ac signaling pathway in β cell lines and that this is important for β cell senescence. However, there is no validation of whether this holds true in aged, or prediabetic, mice. Given the availability of mice and model samples, this should be possible and meaningful. Last, in the genome-wide bisulfite sequencing (Figure 7), it seems that the authors are cherry picking for PTEN and in the RNAseq, the same applies for MOF. Thus, although the mechanism seems valid, the lack of in vivo validation, and a proper rational for the selected targets in the omics studies, renders the mechanistic studies rather correlative.

      In sum, I believe that the study in its current version, unfortunately, does not bear the conceptual advance or the robustness that is required to offer a strong impact on the field. The methods, on the other hand, mainly the omics analyses provided here, could be of potential benefit for the field of epigenetics in β cell biology. However, in the benefit of the current study, the relevance of this data could be more rigorously assessed experimentally. I believe that the study has the potential to provide the required impact, should the authors work on it further to provide more solid functional and mechanistic validation.

    1. Reviewer #3 (Public review):

      Summary:

      In their paper the authors tackle three things at once in a theoretical model: how can spiking neural networks perform efficient coding, how can such networks limit the energy use at the same time, and how can this be done in a more biologically realistic way than previous work.

      They start by working from a long-running theory on how networks operating in a precisely balanced state can perform efficient coding. First, they assume split networks of excitatory (E) and inhibitory (I) neurons. The E neurons have the task to represent some lower dimensional input signal, and the I neurons have the task to represent the signal represented by the E neurons. Additionally, the E and I populations should minimize an energy cost represented by the sum of all spikes. All this results in two loss functions for the E and I populations, and the networks are then derived by assuming E and I neurons should only spike if this improves their respective loss. This results in networks of spiking neurons that live in a balanced state, and can accurately represent the network inputs.

      They then investigate in depth different aspects of the resulting networks, such as responses to perturbations, the effect of following Dale's law, spiking statistics, the excitation (E)/inhibition (I) balance, optimal E/I cell ratios, and others. Overall, they expand on previous work by taking a more biological angle on the theory and show the networks can operate in a biologically realistic regime.

      Strengths:

      * The authors take a much more biological angle on the efficient spiking networks theory than previous work, which is an essential contribution to the field<br /> * They make a very extensive investigation of many aspects of the network in this context, and do so thoroughly<br /> * They put sensible constraints on their networks, while still maintaining the good properties these networks should have

      Weaknesses:

      * One of the core goals of the paper is to make a more biophysically realistic network than previous work using similar optimization principles. One of the important things they consider is a split into E and I neurons. While this works fine, and they consider the coding consequences of this, it is not clear from an optimization perspective why the split into E and I neurons and following Dale's law would be beneficial. This would be out of scope for the current paper however.<br /> * The theoretical advances in the paper are not all novel by themselves, as most of them (in particular the split into E and I neurons and the use of biophysical constants) had been achieved in previous models. However, the authors discuss these links thoroughly and do more in-depth follow-up experiments with the resulting model.

      Assessment and context:

      Overall, although much of the underlying theory is not necessarily new, the work provides an important addition to the field. The authors succeeded well in their goal of making the networks more biologically realistic, and incorporate aspects of energy efficiency. For computational neuroscientists this paper is a good example of how to build models that link well to experimental knowledge and constraints, while still being computationally and mathematically tractable. For experimental readers the model provides a clearer link of efficient coding spiking networks to known experimental constraints and provides a few predictions.

    1. Reviewer #3 (Public review):

      Summary:

      Rollenhagen at al. offer a detailed description of layer 1 of the human neocortex. They use electron microscopy to assess the morphological parameters of presynaptic terminals, active zones, vesicle density/distribution, mitochondrial morphology and astrocytic coverage. The data is collected from tissue from four patients undergoing epilepsy surgery. As the epileptic focus was localized in all patients to the hippocampus, the tissue examined in this manuscript is considered non-epileptic (access) tissue.

      Strengths:

      The quality of the electron microscopic images is very high, and the data is analyzed carefully. Data from human tissue is always precious and the authors here provide a detailed analysis using adequate approaches, and the data is clearly presented.

      Weaknesses:

      The text connects functional and morphological characteristics in a very direct way. For example, connecting plasticity to any measurement the authors present would be rather difficult without any additional functional experiments. References to various vesicle pools based on the location of the vesicles is also more complex than it is suggested in the manuscript. The text should better reflect the limitations of the conclusions that can be drawn from the authors' data.

    1. Reviewer #3 (Public review):

      Summary:

      This paper uses a new chemogenetic tool to investigate the role of cerebellar Purkinje cells in postural control. Using a high-throughput behavioral assay, they show that activation or ablation of Purkinje cells affects various aspects of postural control in zebrafish larvae during spontaneous swimming, and that the effects are more pronounced at later developmental time points, where the Purkinje cell number is much greater. Using a sophisticated imaging assay, they record Purkinje cell activity in response to tilt of the fish, and show that some Purkinje cells are tuned to tilt direction, and that the direction can even be decoded from untuned neurons.

      Strengths:

      Overall the study is nice, using a variety of genetic tools and behavioral analysis to address a fundamental question about the role of the cerebellum in postural control in fish

    1. Reviewer #3 (Public review):

      This study is a part of the ongoing series of rigorous work from this group exploring neural coding deficits in the auditory nerve, and dissociating the effects of cochlear synaptopathy from other age-related deficits. They have previously shown no evidence of phase-locking deficits in the remaining auditory nerve fibers in quiet-aged gerbils. Here, they study the effects of aging on the perception and neural coding of temporal fine structure cues in the same Mongolian gerbil model.

      They measure TFS coding in the auditory nerve using the TFS1 task which uses a combination of harmonic and tone-shifted inharmonic tones which differ primarily in their TFS cues (and not the envelope). They then follow this up with a behavioral paradigm using the TFS1 task in these gerbils. They test young normal hearing gerbils, aged gerbils, and young gerbils with cochlear synaptopathy induced using the neurotoxin ouabain to mimic synapse losses seen with age.

      In the behavioral paradigm, they find that aging is associated with decreased performance compared to the young gerbils, whereas young gerbils with similar levels of synapse loss do not show these deficits. When looking at the auditory nerve responses, they find no differences in neural coding of TFS cues across any of the groups. However, aged gerbils show an increase in the representation of periodicity envelope cues (around f0) compared to young gerbils or those with induced synapse loss. The authors hence conclude that synapse loss by itself doesn't seem to be important for distinguishing TFS cues, and rather the behavioral deficits with age are likely having to do with the misrepresented envelope cues instead.

      The manuscript is well written, and the data presented are robust. Some of the points below will need to be considered while interpreting the results of the study, in its current form. These considerations are addressable if deemed necessary, with some additional analysis in future versions of the manuscript.

      Spontaneous rates - Figure S2 shows no differences in median spontaneous rates across groups. But taking the median glosses over some of the nuances there. Ouabain (in the Bourien study) famously affects low spont rates first, and at a higher degree than median or high spont rates. It seems to be the case (qualitatively) in Figure S2 as well, with almost no units in the low spont region in the ouabain group, compared to the other groups. Looking at distributions within each spont rate category and comparing differences across the groups might reveal some of the underlying causes for these changes. Given that overall, the study reports that low-SR fibers had a higher ENV/TFS log-z-ratio, the distribution of these fibers across groups may reveal specific effects of TFS coding by group.

      Threshold shifts - It is unclear from the current version if the older gerbils have changes in hearing thresholds, and whether those changes may be affecting behavioral thresholds. The behavioral stimuli appear to have been presented at a fixed sound level for both young and aged gerbils, similar to the single unit recordings. Hence, age-related differences in behavior may have been due to changes in relative sensation level. Approaches such as using hearing thresholds as covariates in the analysis will help explore if older gerbils still show behavioral deficits.

      Task learning in aged gerbils - It is unclear if the aged gerbils really learn the task well in two of the three TFS1 test conditions. The d' of 1 which is usually used as the criterion for learning was not reached in even the easiest condition for aged gerbils in all but one condition for the aged gerbils (Fig. 5H) and in that condition, there doesn't seem to be any age-related deficits in behavioral performance (Fig. 6B). Hence dissociating the inability to learn the task from the inability to perceive TFS 1 cues in those animals becomes challenging.

      Increased representation of periodicity envelope in the AN - the mechanisms for increased representation of periodicity envelope cues is unclear. The authors point to some potential central mechanisms but given that these are recordings from the auditory nerve what central mechanisms these may be is unclear. If the authors are suggesting some form of efferent modulation only at the f0 frequency, no evidence for this is presented. It appears more likely that the enhancement may be due to outer hair cell dysfunction (widened tuning, distorted tonotopy). Given this increased envelope coding, the potential change in sensation level for the behavior (from the comment above), and no change in neural coding of TFS cues across any of the groups, a simpler interpretation may be -TFS coding is not affected in remaining auditory nerve fibers after age-related or ouabain induced synapse loss, but behavioral performance is affected by altered outer hair cell dysfunction with age.

      Emerging evidence seems to suggest that cochlear synaptopathy and/or TFS encoding abilities might be reflected in listening effort rather than behavioral performance. Measuring some proxy of listening effort in these gerbils (like reaction time) to see if that has changed with synapse loss, especially in the young animals with induced synaptopathy, would make an interesting addition to explore perceptual deficits of TFS coding with synapse loss.

    1. Reviewer #3 (Public review):

      Summary:

      The authors employ a series of well-conceived and well-executed experiments involving photometric imaging of the dentate gyrus and raphe nucleus, as well as cell-type specific genetic manipulations of serotonergic receptors that together serve to directly implicate serotonergic regulation of dentate gyrus (DG) granule (GC) and mossy cell (MC) activity in association with an infra slow oscillation (ISO) of neural activity has been previously linked to general cortical regulation during NREM sleep and microarousals.

      Strengths:

      There are a number of novel and important results, including the modulation of dentage granule cell activity by the infraslow oscillation during NREM sleep, the selective association of different subpopulations of granule cells to microarousals (MA), the anticorrelation of raphe activity with infraslow dentate activity.

      The discussion includes a general survey of ISOs and recent work relating to their expression in other brain areas and other potential neuromodulatory system involvement, as well as possible connections with infraslow oscillations, micro arousals, and sensory sensitivity.

      Weaknesses:

      - The behavioral results showing contextual memory impairment resulting from 5-HT1a knockdown are fine, but are over-interpreted. The term memory consolidation is used several times, as well as references to sleep-dependence. This is not what was tested. The receptor was knocked down, and then 2 weeks later animals were found to have fear conditioning deficits. They can certainly describe this result as indicating a connection between 5-HT1a receptor function and memory performance, but the connection to sleep and consolidation would just be speculation. The fact that 5-HT1a knockdown also impacted DG ISOs does not establish dependency. Some examples of this are:<br /> o The final conclusion asserts "Together, our study highlights the role of neuromodulation in organizing neuronal activity during sleep and sleep-dependent brain functions, such as memory.", but the reported memory effects (impairment of fear conditioning) were not shown to be explicitly sleep-dependent.<br /> o Earlier in the discussion it mentions "Finally, we showed that local genetic ablation of 5-HT1a receptors in GCs impaired the ISO and memory consolidation". The effect shown was on general memory performance - consolidation was not specifically implicated.

      - The assertion on page 9 that the results demonstrate "that the 5-HT is directly acting in the DG to gate the oscillations" is a bit strong given the magnitude of effect shown in Fig. 6D, and the absence of demonstration of negative effect on cortical areas that also show ISO activity and could impact DG activity (see requested cortical sigma power analysis).

      - Recent work has shown that abnormal DG GC activity can result from the use of the specific Ca indicator being used (GCaMP6s). (Teng, S., Wang, W., Wen, J.J.J. et al. Expression of GCaMP6s in the dentate gyrus induces tonic-clonic seizures. Sci Rep 14, 8104 (2024). https://doi.org/10.1038/s41598-024-58819-9). The authors of that study found that the effect seemed to be specific to GCaMP6s and that GCaMP6f did not lead to abnormal excitability. Note this is of particular concern given similar infraslow variation of cortical excitability in epilepsy (cf Vanhatalo et al. PNAS 2004). While I don't think that the experiments need to be repeated with a different indicator to address this concern, you should be able to use the 2p GCaMP7 experiments that have already been done to provide additional validation by repeating the analyses done for the GCaMP6s photometry experiments. This should be done anyway to allow appropriate comparison of the 2p and photometry results.

      - While the discussion mentions previous work that has linked ISOs during sleep with regulation of cortical oscillations in the sigma band, oddly no such analysis is performed in the current work even though it is presumably available and would be highly relevant to the interpretation of a number of primary results including the relationship between the ISOs and MAs observed in the DG and similar results reported in other areas, as well as the selective impact of DG 5-HT1a knockdown on DG ISOs. For example, in the initial results describing the cross correlation of calcium activity and EMG/EEG with MA episodes (paragraph 1, page 4), similar results relating brief arousals to the infraslow fluctuation in sleep spindles (sigma band) have been reported also at .02 Hz associated with variation in sensory arousability (cf. Cardis et al., "Cortico-autonomic local arousals and heightened somatosensory arousability during NREMS of mice in neuropathic pain", eLife 2021). It would be important to know whether the current results show similar cortical sigma band correlations. Also, in the results on ISO attenuation following 5-HT1 knockdown on page 7 (fig. 6), how is cortical EEG affected? is ISO still seen in EEG but attenuated in DG?

      - The illustrations of the effect of 5-HT1a knockdown shown in Figure 6 are somewhat misleading. The examples in panels B and C show an effect that is much more dramatic than the overall effect shown in panel D. Panels B and C do not appear to be representative examples. Which of the sample points in panel D are illustrated in panels B, C? it is not appropriate to arbitrarily select two points from different animals for comparison, or worse, to take points from the extremes of the distributions. If the intent is to illustrate what the effect shown in D looks like in the raw data, then you need to select examples that reflect the means shown in panel D. It is also important to show the effect on cortical EEG, particularly in sigma band to see if the effects are restricted to the DG ISOs. It would also be helpful to show that MAs and their correlations as shown in Fig 1 or G as well as broader sleep architecture are not affected.

      - On page 9 of the results it states that GCs and MCs are upregulated during NREM and their activity is abruptly terminated by MAs through a 5-HT mediated mechanism. I didn't see anything showing the 5-HT dependence of the MA activity correlation. The results indicate a reduction in ISO modulation of GC activity but not the MA correlated activity. I would like to see the equivalent of Fig 1,2 G panels with the 5-HT1a manipulation.

    1. Reviewer #4 (Public review):

      The work by Yingying Chen, Jeong Han Lee, and co-authors summarizes the morphological and functional outcomes of Cldn9 loss in the inner ear, particularly in the organ of Corti. While the study does not provide mechanistic insights into how the developmental loss of Cldn9 leads to ectopic hair cell formation, the phenomenon itself is curious. The work primarily focuses on a detailed characterization of the ectopic hair cells, which is well done. Despite the lack of mechanistic insights, the study will be of interest to the inner ear field if several major issues with the manuscript are addressed.

      (1) The title, "Genetic and pharmacologic alterations of claudin9 levels suffice to induce functional and mature inner hair cells," is misleading. First, both manipulations (knockout and knockdown) are genetic, and no pharmacology is involved. Second, both manipulations are carried out during the embryonic and neonatal periods, and there is no evidence of mature hair cell regeneration in this study. The title should be revised to reflect this. A more accurate title could be: "Developmental loss of Cldn9 results in functional ectopic inner hair cells that persist through adulthood."<br /> (2) Contact-mediated lateral inhibition in hair cell fate determination is one of the most well-studied phenomena in the inner ear field, and numerous groups have shown that it is mediated by Notch signaling. This must be added to the introduction.<br /> (3) A large body of literature has demonstrated that Notch inhibition alone is not sufficient to regenerate hair cells in adult mice. Therefore, if the loss of claudins disrupts Notch signaling-the proposed mechanisms in the discussion - it is unlikely to be a viable therapeutic strategy for hair cell regeneration in the adult ear. Furthermore, no hair cell ablation experiments were conducted to demonstrate what could be considered true regeneration. These speculative statements should be removed or revised accordingly.<br /> (4) Cldn9 is a tight junction protein and should localize to the membrane. Yet, the data presented show what appears to be diffuse cytoplasmic staining, which is concerning.

    1. Reviewer #3 (Public review):

      In this paper, the authors use a three-phase economic game to examine the tendency to engage in prosocial versus competitive exchanges with three anonymous partners. In particular, they consider individual differences in the tendency to infer about others' tendencies based on one's preferences and to update one's preferences based on observations of others' behavior. The study includes a sample of individuals diagnosed with borderline personality disorder and a matched sample of psychiatrically healthy control participants.

      On the whole, the experimental design is well-suited to the questions and the computational model analyses are thorough, including modern model-fitting procedures. I particularly appreciated the clear exposition regarding model parameterization and the descriptive Table 2 for qualitative model comparison. My broad question about the experiment (in terms of its clinical and cognitive process relevance): Does the task encourage competition or give participants a reason to take advantage of others? I don't think it does, so it would be useful to clarify the normative account for prosociality in the introduction (e.g., some of Robin Dunbar's work).

      The finding that individuals with BPD do not engage in self-other generalization on this task of social intentions is novel and potentially clinically relevant. The authors find that BPD participants' tendency to be prosocial when splitting points with a partner does not transfer into their expectations of how a partner will treat them in a task where they are the passive recipient of points chosen by the partner. In the discussion, the authors reasonably focus on model differences between groups (Bayesian model comparison), yet I thought this finding -- BPD participants not assuming prosocial tendencies in phase 2 while CON participant did -- merited greater attention. Although the BPD group was close to 0 on the \beta prior in Phase 2, their difference from CON is still in the direction of being more mistrustful (or at least not assuming prosociality). This may line up with broader clinical literature on mistrustfulness and attributions of malevolence in the BPD literature (e.g., a 1992 paper by Nigg et al. in Journal of Abnormal Psychology). My broad point is to consider further the Phase 2 findings in terms of the clinical interpretation of the shift in \beta relative to controls.

      On the conceptual level, I had two additional concerns. First, the authors note that they have "proposed a theory with testable predictions" (p. 4 but also elsewhere) but they do not state any clear predictions in the introduction, nor do they consider what sort of patterns will be observed in the BPD group in view of extant clinical and computational literature. Rather, the paper seems to be somewhat exploratory, largely looking at group differences (BPD vs. CON) on all of the shared computational parameters and additional indices such as belief updating and reaction times. Given this, I would suggest that the authors make stronger connections between extant research on intention representation in BPD and their framework (model and paradigm). In particular, the authors do not address related findings from Ereira (2020) and Story (2024) finding that in a false belief task that BPD participants *overgeneralize* from self to other. A critical comparison of this work to the present study, including an examination of the two tasks differ in the processes they measure, is important.

      In addition, perhaps it is fairer to note more explicitly the exploratory nature of this work. Although the analyses are thorough, many of them are not argued for a priori (e.g., rate of belief updating in Figure 2C) and the reader amasses many individual findings that need to by synthesized.

      Second, in the discussion, the authors are too quick to generalize to broad clinical phenomena in BPD that are not directly connected to the task at hand. For example, on p. 22: "Those with a diagnosis of BPD also show reduced permeability in generalising from other to self. While prior research has predominantly focused on how those with BPD use information to form impressions, it has not typically examined whether these impressions affect the self." Here, it's not self-representation per se (typically, identity or one's view of oneself), but instead cooperation and prosocial tendencies in an economic context. It is important to clarify what clinical phenomena may be closely related to the task and which are more distal and perhaps should not be approached here.

      On a more technical level, I had two primary concerns. First, although the authors consider alternative models within a hierarchical Bayesian framework, some challenges arise when one analyzes parameter estimates fit separately to two groups, particularly when the best-fitting model is not shared. In particular, although the authors conduct a model confusion analysis, they do not as far I could tell (and apologies if I missed it) demonstrate that the dynamics of one model are nested within the other. Given that M4 has free parameters governing the expectations on the absolute and relative reward preferences in Phase 2, is it necessarily the case that the shared parameters between M1 and M4 can be interpreted on the same scale? Relatedly, group-specific model fitting has virtues when believes there to be two distinct populations, but there is also a risk of overfitting potentially irrelevant sample characteristics when parameters are fit group by group.

      To resolve these issues, I saw one straightforward solution (though in modeling, my experience is that what seems straightforward on first glance may not be so upon further investigation). M1 assumes that participants' own preferences (posterior central tendency) in Phase 1 directly transfer to priors in Phase 2, but presumably the degree of transfer could vary somewhat without meriting an entirely new model (i.e., the authors currently place this question in terms of model selection, not within-model parameter variation). I would suggest that the authors consider a model parameterization fit to the full dataset (both groups) that contains free parameters capturing the *deviations* in the priors relative to the preceding phase's posterior. That is, the free parameters $\bar{\alpha}_{par}^m$ and $\bar{\beta}_{par}^m$ govern the central tendency of the Phase 2 prior parameter distributions directly, but could be reparametrized as deviations from Phase 1 $\theta^m_{ppt}$ parameters in an additive form. This allows for a single model to be fit all participants that encompasses the dynamics of interest such that between-group parameter comparisons are not biased by the strong assumptions imposed by M1 (that phase 1 preferences and phase 2 observations directly transfer to priors). In the case of controls, we would expect these deviation parameters to be centred on 0 insofar as the current M1 fit them best, whereas for BPD participants should have significant deviations from earlier-phase posteriors (e.g., the shift in \beta toward prior neutrality in phase 2 compared to one's own prosociality in phase 1). I think it's still valid for the authors to argue for stronger model constraints for Bayesian model comparison, as they do now, but inferences regarding parameter estimates should ideally be based on a model that can encompass the full dynamics of the entire sample, with simpler dynamics (like posterior -> prior transfer) being captured by near-zero parameter estimates.

      My second concern pertains to the psychometric individual difference analyses. These were not clearly justified in the introduction, though I agree that they could offer potentially meaningful insight into which scales may be most related to model parameters of interest. So, perhaps these should be earmarked as exploratory and/or more clearly argued for. Crucially, however, these analyses appear to have been conducted on the full sample without considering the group structure. Indeed, many of the scales on which there are sizable group differences are also those that show correlations with psychometric scales. So, in essence, it is unclear whether most of these analyses are simply recapitulating the between-group tests reported earlier in the paper or offer additional insights. I think it's hard to have one's cake and eat it, too, in this regard and would suggest the authors review Preacher et al. 2005, Psychological Methods for additional detail. One solution might be to always include group as a binary covariate in the symptom dimension-parameter analyses, essentially partialing the correlations for group status. I remain skeptical regarding whether there is additional signal in these analyses, but such controls could convince the reader. Nevertheless, without such adjustments, I would caution against any transdiagnostic interpretations such as this one in the Highlights: "Higher reported childhood trauma, paranoia, and poorer trait mentalizing all diminish other-to-self information transfer irrespective of diagnosis." Since many of these analyses relate to scales on which the groups differ, the transdiagnostic relevance remains to be demonstrated.

    1. Reviewer #3 (Public review):

      The manuscript of Kowalewski et al. titled "Machine learning of honey bee olfactory behavior identifies repellent odorants in free flying bees in the field" did machine learning to predict potential candidates for honeybee repellents, which may keep foraging bees from pesticides. This is a pilot research with strong significance in the research of olfactory behavior and in pest control. However, some major issues need to be addressed to enhance the manuscript's clarity, strength, and overall coherence.

      (1) Drosophila melanogaster is not considered as a true agricultural pest. The manuscript would be more compelling if using true pests, for example, Drosophila suzukii or others.<br /> (2) For repellency test, the result relies on dosage. An attractant may become a repellent at high concentration. Test a range of concentrations for each chemicals and compare responses between honeybees and pests.<br /> (3) Be more clear about bee behavior data and their scores (as in Page 4 Results "184 training chemicals and later for 203 chemicals" and Page 10 Methods). I suggest that authors add a supplemental table with each chemical and its behavioral score, feature and reference - which ones were used for training, and which ones for testing. Also add your own behavioral test data (second input) to this table.<br /> (4) The AUC in the first validation was 0.88 (Page 4), and in Page 5, "As expected, the computational validation results based on the AUC values, show an improvement." However, there were no other AUC values to show improvement.<br /> (5) Show plots of ROC AUC curves from Round 1 and Round 2.<br /> (6) In the Discussion, the authors mentioned olfactory receptors in honeybees. It would be useful to provide a general review of the current understanding of these receptors and their (potential) functions.<br /> (7) I suggest combining Fig. 1 and Fig. 3A as one pipeline for this work.<br /> (8) Figure 2C, some sample sizes are very small, such as 2-piperidone: 1 first-choice control vs 0 first-choice repellent? Increase sample size and do statistical analysis.<br /> (9) In general, to assist reviewers, include line numbers to the manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      The authors created and characterized genetic tools that allow for precise manipulation of individual or small subsets of central complex (CX) cell types in the Drosophila brain. They developed split-GAL4 driver lines and integrated this with a detailed survey of neurotransmitter and neuropeptide expression and receptor localization in the central brain. The manuscript also explores the functional relevance of CX cell types by evaluating their roles in sleep regulation and linking circadian clock signals to the CX. This work represents an ambitious and comprehensive effort to provide both molecular and functional insights into the CX, offering tools and data that will serve as a critical resource for researchers.

      Strengths:

      (1) The extensive collection of split-GAL4 lines targeting specific CX cell types fills a critical gap in the genetic toolkit for the Drosophila neuroscience community.<br /> (2) By combining anatomical, molecular, and functional analyses, the authors provide a holistic view of CX cell types that is both informative and immediately useful for researchers across diverse disciplines.<br /> (3) The identification of CX cell types involved in sleep regulation and their connection to circadian clock mechanisms highlights the functional importance of the CX and its integrative role in regulating behavior and physiological states.<br /> (4) The authors' decision to present this work as a single, comprehensive manuscript rather than fragmenting it into smaller publications each focusing on separate central complex components is commendable. This decision prioritizes accessibility and utility for the broader neuroscience community, which will enable researchers to approach CX-related questions with a ready-made toolkit.

      Weaknesses:

      While the manuscript is an outstanding resource, it leaves room for more detailed mechanistic exploration in some areas. Nonetheless, this does not diminish the immediate value of the tools and data provided.

      Appraisal:

      The authors have succeeded in achieving their aims of creating well-characterized genetic tools and providing a detailed survey of neurochemical and functional properties in the CX. The results strongly support their conclusions and open numerous avenues for future research. The work effectively bridges the gap between genetic manipulation, molecular characterization, and functional assessment, enabling a deeper understanding of the CX's diverse roles.

      Impact and Utility

      This manuscript will have a significant and lasting impact on the field, providing tools and data that facilitate new discoveries in the study of the CX, sleep regulation, circadian biology, and beyond. The genetic tools developed here are likely to become a standard resource for Drosophila researchers, and the comprehensive dataset on neurotransmitter and neuropeptide expression will inspire investigations into the interplay between neuromodulation and classical neurotransmission.

      Additional Context

      By delivering an integrated dataset that spans anatomy, molecular properties, and functional relevance, the authors have created a resource that will serve the neuroscience community for years to come.

    1. Reviewer #3 (Public review):

      The central goal of this paper as I understand it is to extract the "integration hierarchy" of stimulus in the dorsal and ventrolateral visual fields. The segregation of these responses is different from what is thought to occur in bees and flies and was established in the authors' prior work. Showing how the stimuli combine and are prioritized goes beyond the authors' prior conclusions that separated the response into two visual regions. The data presented do indeed support the hierarchy reported in Figure 5 and that is a nice summary of the authors' work. The moths respond to combinations of dorsal and lateral cues in a mixed way but also seem to strongly prioritize avoiding dorsal optic flow which the authors interpret as a closed and potentially dangerous ecological context for these animals. The authors use clever combinations of stimuli to put cues into conflict to reveal the response hierarchy.

      My most significant concern is that this hierarchy of stimulus responses might be limited to the specific parameters chosen in this study. Presumably, there are parameters of these stimuli that modulate the response (spatial frequency, different amounts of optic flow, contrast, color, etc). While I agree that the hierarchy in Figure 5 is consistent for the particular stimuli given, this may not extend to other parameter combinations of the same cues. For example, as the contrast of the dorsal stimuli is reduced, the inequality may shift. This does not preclude the authors' conclusions but it does mean that they may not generalize, even within this species. For example, other cue conflict studies have quantified the responses to ranges of the parameters (e.g. frequency) and shown that one cue might be prioritized or up-weighted in one frequency band but not in others. I could imagine ecological signatures of dorsal clutter and translational positioning cues could depend on the dynamic range of the optic flow, or even having spatial-temporal frequency-dependent integration independent of net optic flow.

      The second part of this concern is that there seems to be a missed opportunity to quantify the integration, especially when the optic flow magnitude is already calculated. The discussion even highlights that an advantage of the conflict paradigm is that the weights of the integration hierarchy can be compared. But these weights, which I would interpret as stimulus-responses gains, are not reported. What is the ratio of moth response to optic flow in the different regions? When the moth balances responses in the dorsal and ventrolateral region, is it a simple weighted average of the two? When it prioritizes one over the other is the response gain unchanged? This plays into the first concern because such gain responses could strongly depend on the specific stimulus parameters rather than being constant.

      The authors do explain the choice of specific stimuli in the context of their very nice natural scene analysis in Fig. 1 and there is an excellent discussion of the ecological context for the behaviors. However, I struggled to directly map the results from the natural scenes to the conclusions of the paper. How do they directly inform the methods and conclusions for the laboratory experiments? Most important is the discussion in the middle paragraph of page 12, which suggests a relationship with Figure 1B, but seems provocative but lacking a quantification with respect to the laboratory stimuli.

      The central conclusion of the first section of the results is that there are likely two different pathways mediating the dorsal and the ventrolateral response. This seems reasonable given the data, however, this was also the message that I got from the authors' prior paper (ref 11). There are certainly more comparisons being done here than in that paper and it is perfectly reasonable to reinforce the conclusion from that study but I think what is new about these results needs to be highlighted in this section and differentiated from prior results. Perhaps one way to help would be to be more explicit with the open hypotheses that remain from that prior paper.

    1. Reviewer #3 (Public review):

      Summary:

      This study by Glica and colleagues utilized EEG (i.e., Beta power, Gamma power, and aperiodic activity) and 7T MRS (i.e., MRS IE ratio, IE balance) to reevaluate the neural noise hypothesis in Dyslexia. Supported by Bayesian statistics, their results show convincing evidence of no differences in EI balance between groups, challenging the neural noise hypothesis.

      Strengths:

      Combining EEG and 7T MRS, this study utilized both the indirect (i.e., Beta power, Gamma power, and aperiodic activity) and direct (i.e., MRS IE ratio, IE balance) measures to reevaluate the neural noise hypothesis in Dyslexia.

    1. Reviewer #3 (Public review):

      The manuscript contains a carefully designed fMRI study, using MVPA pattern analysis to investigate which high-level associate cortices contain target-related information to guide visual search. A special focus is hereby on so-called 'target-associated' information, that has previously been shown to help in guiding attention during visual search. For this purpose the author trained their participants and made them learn specific target-associations, in order to then test which brain regions may contain neural representations of those learnt associations. They found that at least some of the associations tested were encoded in prefrontal cortex during the cue and delay period.

      The manuscript is very carefully prepared. As far as I can see, the statistical analyses are all sound and the results integrate well with previous findings.

      I have no strong objections against the presented results and their interpretation.

    1. Reviewer #3 (Public review):

      Summary:

      The authors optogenetically stimulate 5 neurons all preferring the same pure tone frequency (16 or 54 kHz) in the mouse auditory cortex using a holography-based single cell resolution optogenetics during sound presentation. They demonstrate that the response boosting of target neurons leads to a broad suppression of surrounding neurons, which is significantly more pronounced in neurons that have the same pure tone tuning as the target neurons. This effect is immediate and spans several hundred micrometers. This suggests that the auditory cortical network balances its activity in response to excess spikes, a phenomenon already seen in visual cortex.

      Strengths:

      The study is based on a technologically very solid approach based on single-cell resolution two-photon optogenetics. The authors demonstrate the potency and resolution of this approach. The inhibitory effects observed upon targeted stimulation are clear and the relative specificity to co-tuned neurons is statistically clear although the effect size is moderate.

      Weaknesses:

      The evaluation of the results is brief and some aspects of the observed homeostatic are not quantified. For example, it is unclear whether stimulation produces a net increase or decrease of population activity, or if the homeostatic phenomenon fully balances activity. A comparison of population activity for all imaged neurons with and without stimulation would be instructive. The selectivity for co-tuned neurons is significant but weak. Although it is difficult to evaluate this issue, this result may be trivial, as co-tuned neurons fire more strongly. Therefore, the net activity decrease is expected to be larger, in particular, for the number of non-co-tuned neurons which actually do not fire to the target sound. The net effect for the latter neurons will be zero just because they do not respond. The authors do not make a very strong case for a specific inhibition model in comparison to a broad and non-specific inhibitory effect. Complementary modeling work would be needed to fully establish this point.

    1. Reviewer #3 (Public review):

      In this work, the authors present an open-source system called behaviourMate for acquiring data related to animal behavior. The temporal alignment of recorded parameters across various devices is highlighted as crucial to avoid delays caused by electronics dependencies. This system not only addresses this issue but also offers an adaptable solution for VR setups. Given the significance of well-designed open-source platforms, this paper holds importance.

      Advantages of behaviorMate:

      The cost-effectiveness of the system provided.<br /> The reliability of PCBs compared to custom-made systems.<br /> Open-source nature for easy setup.<br /> Plug & Play feature requiring no coding experience for optimizing experiment performance (only text based Json files, 'context List' required for editing).

    1. Reviewer #3 (Public review):

      Summary:

      The study uses structural MRI to identify how the number, degree of experience, and phonemic diversity of language(s) that a speaker knows can influence the thickness of different sub-segments of auditory cortex. In both a primary and replication sample of adult speakers, the authors find key differences in cortical thickness within specific subregions of cortex due to either the age at which languages are acquired (degree of experience) or the diversity of the phoneme inventories carried by that/those language(s) (breadth of experience).

      Strengths:

      The results are first and foremost quite fascinating and I do think they make a compelling case for the different ways in which linguistic experience shapes auditory cortex.

      The study uses a number of different measures to quantify linguistic experience, related to how many languages a person knows (taking into account the age at which each was learned) as well as the diversity of the phoneme inventories contained within those languages. The primary sample is moderately large for a study that focuses on brain-behaviour relationships; a somewhat smaller replication sample is also deployed in order to test the generality of the effects.

      Analytic approaches benefit from the careful use of brain segmentation techniques that nicely capture key landmarks and account for vagaries in the structure of STG that can vary across individuals (e.g., the number of transverse temporal gyri varies from 1-4 across individuals).

      Weaknesses:

      The specificity of these effects is interesting; some effects really do appear to be localized to left hemisphere and specific subregions of auditory cortex e.g., TTG. There is an ancillary analysis that examines regions outside auditory cortex to examine whether these are the only brain regions for which such effects occur. Expanding the search space to a whole-brain analysis, and a more lenient statistical threshold, does reveal only small patches of the brain outside auditory cortex show similar effects. Notably, these could be due to inflated type-1 error, but overall we would need a much larger sample to be certain.

      Discussion of potential genetic differences underlying the findings is interesting. It does represent one alternative account that does not have to do with plasticity/experience, as the authors acknowledge.

      The replication sample is useful and a great idea. It does however feature roughly half the number of participants. As the authors are careful to point out, that statistical power is weaker and given small effects in some cases we should not be surprised that the results only partially replicated in that sample.

    1. Reviewer #3 (Public review):

      Summary:

      m6Am is an abundant mRNA modification present on the TSN. Unlike the structurally similar and abundant internal mRNA modification m6A, m6Am's function has been controversial. One way to resolve controversies surrounding mRNA modification functions has been to develop new ways to better profile said mRNA modification. Here, Liu et al. developed a new method (based on GLORI-seq for m6A-sequencing), for antibody-independent sequencing of m6Am (CROWN-seq). Using appropriate spike-in controls and knockout cell lines, Liu et al. clearly demonstrated CROWN-seq's precision and quantitative accuracy for profiling transcriptome-wide m6Am. Subsequently, the authors used CROWN-seq to greatly expand the number of known m6Am sites in various cell lines and also determine m6Am stoichiometry to generally be high for most genes. CROWN-seq identified gene promoter motifs that correlate best with high stoichiometry m6Am sites, thereby identifying new determinants of m6Am stoichiometry. CROWN-seq also helped reveal that m6Am does not regulate mRNA stability or translation (as opposed to past reported functions). Rather, m6Am stoichiometry correlates well with transcription levels. Finally, Liu et al. reaffirmed that FTO mainly demethylates m6Am, not of mRNA but of snRNAs and snoRNAs.

      Strengths:

      This is a well-written manuscript that describes and validates a new m6Am-sequencing method: CROWN-seq as the first m6Am-sequencing method that can both quantify m6Am stoichiometry and profile m6Am at single-base resolution. These advantages facilitated Liu et al. to uncover new potential findings related to m6Am regulation and function. I am confident that CROWN-seq will likely be the gold standard for m6Am-sequencing henceforth.

      Weaknesses:

      Though the authors have uncovered a potentially new function for m6Am, they need to be clear that without identifying a mechanism, their data might only be demonstrating a correlation between the presence of m6Am and transcriptional regulation rather than causality.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, Chang and Meliala et al. demonstrate that PEBP1 is a modulator of the ISR, specifically through the induction of mitochondrial stress. The authors utilize thermal proteome profiling (TPP) by which they identify PEPB1 as a thermally stabilized protein upon oligomycin treatment, indicating its role in mitochondrial stress. Moreover, RNA-sequencing analysis indicated that PEBP1 may be specifically modulating the mitochondrial stress-induced ISR, as PEBP1 knock-out reduces phosphorylation of eIF2α. They also show that PEBP1 function is independent of ER stress specifically tunicamycin treatment and loss of PEBP1 does affect mitochondrial ISR but in an OMA1, DELE1 independent manner. Thus, the authors hypothesized that PEBP1 interacts directly with eIF2α, functioning as a scaffolding protein. However, direct co-immunoprecipitation failed to demonstrate PEBP1 and eIF2α potential interaction. The authors then used a NanoBiT luminescence complementation assay to show the PEBP1-eIF2a interaction and its disruption by S51 phosphorylation.

      Strengths:

      Taken together, this work is novel, and the data presented suggests PEBP1 has a role as a modulator of the mitochondrial ISR, enhancing the signal to elicit the necessary response.

      Weaknesses:

      The one major issue of this work is the lack of a mechanism showing precisely how PEBP1 amplifies the mitochondrial integrated stress response. The work, as it is described, presents data suggesting PEBP1's role in the ISR but fails to present a more conclusive mechanism.

    1. Reviewer #3 (Public Review):

      This work addresses an important question aimed at understanding how membrane docking to the distal appendages is regulated during ciliogenesis. In this study, Tomoharu and colleagues identified interactions between CEP89 (important for RAB34-positive membrane localization to the mother centriole) and NCS1 and C3ORF14. Both these CEP89 interacting proteins were characterized as distal appendage localized proteins between CEP89 and RAB34 based on super-resolution microscopy. Ciliogenesis investigations using knockout cells indicated that NCS1 and CEP89 have similar impaired ciliation due to disruption in vesicle recruitment/RAB34 to the mother centriole, while C3ORF14 had less effect on ciliogenesis. The authors refer to the ciliogenesis requirement for CEP89/NCS1 as ciliary vesicles, which has been previously referred to as preciliary vesicle or distal appendage vesicles. NCS1 distal appendage localization was dependent on CEP89 and TTBK2, but it is not clear how TTBK2 affects NCS1. The authors subsequently performed double knockouts with NCS1 and other distal appendage proteins and showed stronger effects on mother centriole RAB34 levels, suggesting efficient membrane docking during ciliogenesis requires several distal appendage proteins. This is consistent with NCS1 knockout mice which do not display typical ciliopathy phenotypes. These mice do display obesity, which is associated with cilia dysfunction, and show reduced ciliary protein levels. As noted by the authors, the in vivo results for NCS1 knockouts could be affected by the mouse background which was not evaluated. The authors demonstrate the NCS1 myristoylation motif is required for RAB34 localization to the mother centrioles, providing a mechanistic explanation for how distal appendage proteins could interact with membranes during ciliogenesis. Overall the authors' findings support an important role for NCS1 in regulating ciliogenesis via myristoylation-dependent interaction with RAB34-positive membranes docked at the mother centriole.

    1. Reviewer #3 (Public review):

      The superfamily I 3'-5' DNA helicase Srs2 is well known for its role as an anti-recombinase, stripping Rad51 from ssDNA, as well as an anti-crossover factor, dissociating extended D-loops and favoring non-crossover outcome during recombination. In addition, Srs2 plays a key role in in ribonucleotide excision repair. Besides DNA repair defects, srs2 mutants also show a reduced recovery after DNA damage that is related to its role in downregulating the DNA damage signaling or checkpoint response. Recent work from the Zhao laboratory (PMID: 33602817) identified a role of Srs2 in downregulating the DNA damage signaling response by removing RPA from ssDNA. This manuscript reports further mechanistic insights into the signaling downregulation function of Srs2.

      Using the genetic interaction with mutations in RPA1, mainly rfa1-zm2, the authors test a panel of mutations in Srs2 that affect CDK sites (srs2-7AV), potential Mec1 sites (srs2-2SA), known sumoylation sites (srs2-3KR), Rad51 binding (delta 875-902), PCNA interaction (delta 1159-1163), and SUMO interaction (srs2-SIMmut). All mutants were generated by genomic replacement and the expression level of the mutant proteins was found to be unchanged. This alleviates some concern about the use of deletion mutants compared to point mutations. Double mutant analysis identified that PCNA interaction and SUMO sites were required for the Srs2 checkpoint dampening function, at least in the context of the rfa1-zm2 mutant. There was no effect of this mutants in a RFA1 wild type background. This latter result is likely explained by the activity of the parallel pathway of checkpoint dampening mediated by Slx4, and genetic data with an Slx4 point mutation affecting Rtt107 interaction and checkpoint downregulation support this notion. Further analysis of Srs2 sumoylation showed that Srs2 sumoylation depended on PCNA interaction, suggesting sequential events of Srs2 recruitment by PCNA and subsequent sumoylation. Kinetic analysis showed that sumoylation peaks after maximal Mec1 induction by DNA damage (using the Top1 poison camptothecin (CPT)) and depended on Mec1. This data are consistent with a model that Mec1 hyperactivation is ultimately leading to signaling downregulation by Srs2 through Srs2 sumoylation. Mec1-S1964 phosphorylation, a marker for Mec1 hyperactivation and a site found to be needed for checkpoint downregulation after DSB induction, did not appear to be involved in checkpoint downregulation after CPT damage. The data are in support of the model that Mec1 hyperactivation when targeted to RPA-covered ssDNA by its Ddc2 (human ATRIP) targeting factor, favors Srs2 sumoylation after Srs2 recruitment to PCNA to disrupt the RPA-Ddc2-Mec1 signaling complex. Presumably, this allows gap filling and disappearance of long-lived ssDNA as the initiator of checkpoint signaling, although the study does not extend to this step.

      Strengths<br /> (1) The manuscript focuses on the novel function of Srs2 to downregulate the DNA damage signaling response and provide new mechanistic insights.<br /> (2) The conclusions that PCNA interaction and ensuing Srs2-sumoylation are involved in checkpoint downregulation are well supported by the data.

      Weaknesses<br /> (1) Additional mutants of interest could have been tested, such as the recently reported Pin mutant, srs2-Y775A (PMID: 38065943), and the Rad51 interaction point mutant, srs2-F891A (PMID: 31142613).<br /> (2) The use of deletion mutants for PCNA and RAD51 interaction is inferior to using specific point mutants, as done for the SUMO interaction and the sites for post-translational modifications.<br /> (3) Figure 4D and Figure 5A report data with standard deviations, which is unusual for n=2. Maybe the individual data points could be plotted with a color for each independent experiment to allow the reader to evaluate the reproducibility of the results.

      Comments on revisions:

      In this revision, the authors adequately addressed my concerns. The only issue I see remaining is the site of Srs2 action. The authors argue in favor of gaps and against R-loops and ssDNA resulting from excessive supercoiling. The authors do not discuss ssDNA resulting from processing of one-sided DSBs, which are expected to result from replication run-off after CPT damage but are not expected to provide the 3'-junction for preferred PCNA loading. Can the authors exclude PCNA at the 5'-junction at a resected DSB?

    1. Reviewer #3 (Public Review):

      Summary:

      This study characterizes classical and nonclassical osteoblasts as both types were analyzed independently (integrated ATAC-seq and RNAseq). It was found that gene expression in classical and nonclassical osteoblasts is not regulated in the same way. In classical osteoblasts, Dlx family factors seem to play an important role, while Hox family factors are involved in the regulation of spinal ossification by nonclassical osteoblasts. In the second part of the study, the authors focus on the promoter structure of entpd5a. Through the identification of enhancers, they reveal complex modes of regulation of the gene. The authors suggest candidate transcription factors that likely act on the identified enhancer elements. All the results taken together provide comprehensive new insights into the process of bone development, and point to spatio-temporally regulated promoter/enhancer interactions taking place at the entpd5a locus.

      Strengths:

      The authors have succeeded in justifying a sound and consistent buildup of their experiments, and meaningfully integrating the results into the design of each of their follow-up experiments. The data are solid, insightfully presented, and the conclusion valid. This makes this manuscript of great value and interest to those studying (fundamental) skeletal biology.

      Weaknesses:

      The study is solidly constructed, the manuscript is clearly written and the discussion is meaningful - I see no real weaknesses.

    1. Reviewer #4 (Public review):

      Summary:

      The manuscript by Graça et al. explores the role of MftG in the ethanol metabolism of mycobacteria. The authors hypothesise that MftG functions as a mycofactocin dehydrogenase, regenerating mycofactocin by shuttling electrons to the respiratory chain of mycobacteria. Although the study primarily uses M. smegmatis as a model microorganism, the findings have more general implications for understanding mycobacterial metabolism. Identifying the specific partner to which MftG transfers its electrons within the respiratory chain of mycobacteria would be an important next step, as pointed out by the authors.

      Strengths

      The authors have used a wide range of tools to support their hypothesis, including co-occurrence analyses, gene knockout and complementation experiments, as well as biochemical assays and transcriptomics studies.<br /> An interesting observation that the mftG deletion mutant grown on ethanol as the sole carbon source exhibited a growth defect resembling a starvation phenotype.<br /> MftG was shown to catalyse the electron transfer from mycofactocinol to components of the respiratory chain, highlighting the flexibility and complexity of mycobacterial redox metabolism.

      The authors have taken on the majority of recommendations by the reviewers and made changes in the manuscript accordingly. I don't have any further suggestions.

    1. Reviewer #3 (Public review):

      Summary:

      This is a valuable study providing solid evidence that the putative non-canonical initiation factor eIF2A has little or no role in the translation of any expressed mRNAs in cultured human (primarily HeLa) cells. Previous studies have implicated eIF2A in GTP-independent recruitment of initiator tRNA to the small (40S) ribosomal subunit, a function analogous to canonical initiation factor eIF2, and in supporting initiation on mRNAs that do not require scanning to select the AUG codon or that contain near-cognate start codons, especially upstream ORFs with non-AUG start codons, and may use the cognate elongator tRNA for initiation. Moreover, the detected functions for eIF2A were limited to, or enhanced by, stress conditions where canonical eIF2 is phosphorylated and inactivated, suggesting that eIF2A provides a back-up function for eIF2 in such stress conditions. CRISPR gene editing was used to construct two different knock-out cell lines that were compared to the parental cell line in a large battery of assays for bulk or gene-specific translation in both unstressed conditions and when cells were treated with inhibitors that induce eIF2 phosphorylation. None of these assays identified any effects of eIF2A KO on translation in unstressed or stressed cells, indicating little or no role for eIF2A as a back-up to eIF2 and in translation initiation at near-cognate start codons, in these cultured cells.

      The study is very thorough and generally well executed, examining bulk translation by puromycin labeling and polysome analysis and translational efficiencies of all expressed mRNAs by ribosome profiling, with extensive utilization of reporters equipped with the 5'UTRs of many different native transcripts to follow up on the limited number of genes whose transcripts showed significant differences in translational efficiencies (TEs) in the profiling experiments. They also looked for differences in translation of uORFs in the profiling data and examined reporters of uORF-containing mRNAs known to be translationally regulated by their uORFs in response to stress, going so far as to monitor peptide production from a uORF itself. The high precision and reproducibility of the replicate measurements instil strong confidence that the myriad of negative results they obtained reflects the lack of eIF2A function in these cells rather than data that would be too noisy to detect small effects on the eIF2A mutations. They also tested and found no evidence for a recent claim that eIF2A localizes to the cytoplasm in stress and exerts a global inhibition of translation. Given the numerous papers that have been published reporting functions of eIF2A in specific and general translational control, this study is important in providing abundant, high-quality data to the contrary, at least in these cultured cells.

      Strengths:

      The paper employed two CRISPR knock-out cell lines and subjected them to a combination of high-quality ribosome profiling experiments, interrogating both main coding sequences and uORFs throughout the translatome, which was complemented by extensive reporter analysis, and cell imaging in cells both unstressed and subjected to conditions of eIF2 phosphorylation, all in an effort to test previous conclusions about eIF2A functioning as an alternative to eIF2.

      Weaknesses:

      There is some question about whether their induction of eIF2 phosphorylation using tunicamycin was extensive enough to state forcefully that eIF2A has little or no role in the translatome when eIF2 function is strongly impaired. Also, similar conclusions regarding the minimal role of eIF2A were reached previously for a different human cell line from a study that also enlisted ribosome profiling under conditions of extensive eIF2 phosphorylation; although that study lacked the extensive use of reporters to confirm or refute the identification by ribosome profiling of a small group of mRNAs regulated by eIF2A during stress.

    1. Reviewer #3 (Public review):

      Summary:

      Mitochondrial injury activates eiF2α kinases-PERK, GCN2, HRI and PKR-which collectively regulate the Integrated Stress Response (ISR) to preserve mitochondrial function and integrity. Previous work has demonstrated that stress-induced and pharmacologic stress-independent ISR activation promotes adaptive mitochondrial elongation via the PERK and GCN2 kinases, respectively. Here, the authors demonstrate that pharmacologic ISR inducers of HRI and GCN2 enhance mitochondrial elongation and suppress mitochondrial fragmentation in two disease models, illustrating the therapeutic potential of pharmacologic ISR activators. Specifically, the authors first used an innovative ISR translational reporter to screen for nucleoside mimetic compounds that induce ISR signaling, and identified two compounds, 0357 and 3610, that preferentially activate HRI. Using a mitochondrial-targeted GFP MEF cell line, the authors next determined that these compounds (as well as the GCN2 activator, halofuginone) enhance mitochondrial elongation in an ISR-dependent manner. Moreover, pretreatment of MEFs with these ISR kinase activators suppressed pathological mitochondrial fragmentation caused by a calcium ionophore. Finally, pharmacologic HRI and GCN2 activation was found to preserve mitochondrial morphology in human fibroblasts expressing a pathologic variant in MFN2, a defect that leads to mitochondrial fragmentation and is a cause of Charcot Marie Tooth Type 2A disease.

      Strengths:

      This well-written manuscript has several notable strengths, including the demonstration of the potential therapeutic benefit of ISR modulation. New chemical entities with which to further interrogate this stress response pathway are also reported. In addition, the authors used an elegant screen to isolate compounds that selectively activate the ISR and identify which of the four kinases was responsible for activation. Special attention was also paid to a thorough evaluation of the effect of their compounds on other stress response pathways (i.e. the UPR, and heat and oxidative stress responses), thereby minimizing the potential for off-target effects. The implementation of automated image analysis rather than manual scoring to quantify mitochondrial elongation is not only practical but also adds to the scientific rigor, as does the complementary use of both the calcium ionophore and MFN2 models to enhance confidence and the broad therapeutic potential for pharmacology ISR manipulation.

      Weaknesses:

      The only minor concerns are with regard to effects on cell health and the timing of pharmacological administration.

      Comments on revisions:

      In this revised manuscript the authors demonstrate that pharmacological activation of the eiF2α kinases, HRI and GCN2, induce adaptive mitochondrial elongation and suppress mitochondrial fragmentation in two disease models, illustrating the translational potential of pharmacological ISR modulation.

      In revising their manuscript the authors adequately addressed the concerns. In response to comments about the potential toxicity of their compounds, 0357 and 3610, the authors furnish evidence that neither compound significantly reduced viability of HEK293 cells (Figure S1G). Understandably, the authors focused the present work on the acute effects of their compounds. Several other attributes are noteworthy: First, that injury attributable to chronic ISR activation in cell culture may ultimately be circumvented by altering the in vivo pharmacodynamic and pharmacodynamic properties of the compounds, thereby preserving the translation potential for these (and related) compounds. Second, the authors also reasonably explain that the rapidity of ionomycin-induced injury, necessitating that the inducers are administered prior to treatment. Their assessment of the effects of the compounds on mitochondrial fragmentation in MFN2 mutant fibroblasts-in combination with the preserved viability of HEK293 cells-is sufficient to demonstrate the practical pharmacological potential for these (or related) agents.

    1. Reviewer #3 (Public review):

      Summary:

      This study characterizes classical and nonclassical osteoblasts as both types were analyzed independently (integrated ATAC-seq and RNAseq). It was found that gene expression in classical and nonclassical osteoblasts is not regulated in the same way. In classical osteoblasts Dlx family factors seem to play an important role, while Hox family factors are involved in the regulation of spinal ossification by nonclassical osteoblasts. In the second part of the study, the authors focus on the promoter structure of entpd5a. Through the identification of enhancers they reveal complex modes of regulation of the gene. The authors suggest candidate transcription factors that likely act on the identified enhancer elements. All the results taken together provide comprehensive new insights into the process of bone development, and point to spatio-temporally regulated promoter/enhancer interactions taking place at the entpd5a locus.

      Strengths:

      The authors have succeeded in justifying a sound and consistent buildup of their experiments, and meaningfully integrate the results into the design of each of their follow-up experiments. The data are solid, insightfully presented, and the conclusion valid. This makes this manuscript of great value and interest to those studying (fundamental) skeletal biology.

      Weaknesses:

      The study is solidly constructed, the manuscript is clearly written and the discussion is meaningful - I see no real weaknesses.

    1. Reviewer #3 (Public review):

      Summary:

      The relationships of proteins and lipids: it's complicated. This paper illustrates how cardiolipins can stabilize membrane protein subunits - and not surprisingly, positively charged residues play an important role here. But more and stronger binding of such structural lipids does not necessarily translate to stabilization of oligomeric states, since many proteins have alternative binding sites for lipids which may be intra- rather than intermolecular. Mutations which abolish primary binding sites can cause redistribution to (weaker) secondary sites which nevertheless stabilize interactions between subunits. This may be at first sight counterintuitive but actually matches expectations from structural data and MD modelling. An analogous cardiolipin binding site between subunits is found in E.coli tetrameric GlpG, with cardiolipin (thermally) stabilizing the protein against aggregation.

      Strengths:

      The use of the artificial scaffold allows testing of hypothesis about the different roles of cardiolipin binding. It reveals effects which are at first sight counterintuitive and are explained by the existence of a weaker, secondary binding site which unlike the primary one allows easy lipid-mediated interaction between two subunits of the protein. Introducing different mutations either changes the balance between primary and secondary binding sites or introduced a kink in a helix - thus affecting subunit interactions which are experimentally verified by native mass spectrometry.

      Weaknesses:

      The artificial scaffold is not necessarily reflecting the conformational dynamics and local flexibility of real, functional membrane proteins. The example of GlpG, while also showing interesting cardiolipin dependency, illustrates the case of a binding site across helices further but does not add much to the main story. It should be evident that structural lipids can be stabilizing in more than one way depending on how they bind, leading to different and possibly opposite functional outcomes.

    1. Reviewer #3 (Public review):

      Summary:

      The authors investigated the role of secretory leukocyte protease inhibitors (SLPI) in developing Lyme disease in mice infected with Borrelia burgdorferi. Using a combination of histological, gene expression, and flow cytometry analyses, they demonstrated significantly higher bacterial burden and elevated neutrophil and macrophage infiltration in SLPI-deficient mouse ankle joints. Furthermore, they also showed direct interaction of SLPI with B. burgdorferi, which likely depletes the local environment of SLPI and causes excessive protease activity. These results overall suggest ankle tissue inflammation in B. burgdorferi-infected mice is driven by unchecked protease activity.

      Strengths:

      Utilizing a comprehensive suite of techniques, this is the first study showing the importance of anti-protease-protease balance in the development of periarticular joint inflammation in Lyme disease.

      Weaknesses:

      Due to the limited sample availability, the authors investigated the serum level of SLPI in both in Lyme arthritis patients and patients with earlier disease manifestations.

    1. Reviewer #3 (Public review):

      Summary:

      In this report, De Franceschi et al. purify components of the Cdv machinery in archaeon M. sedula and probe their interactions with membrane and with one-another in vitro using two main assays - liposome flotation and fluorescent imaging of encapsulated proteins. This has the potential to add to the field by showing how the order of protein recruitment seen in cells is related to the differential capacity of individual proteins to bind membranes when alone or when combined.

      Strengths:

      Using the floatation assay, they demonstrate that CdvA and CdvB bind liposomes when combined. While CdvB1 also binds liposomes under these conditions, in the floatation assay, CdvB2 lacking its C-terminus is not efficiently recruited to membranes unless CdvAB or CdvB1 are present. The authors then employ a clever liposome assay that generates chained spherical liposomes connected by thin membrane necks, which allows them to accurately control the buffer composition inside and outside of the liposome. With this, they show that all four proteins accumulate in necks of dumbbell-shaped liposomes that mimic the shape of constricting necks in cell division. Taken altogether, these data lead them to propose that Cdv proteins are sequentially recruited to the membrane as has also been suggested by in vivo studies of ESCRT-III dependent cell division in crenarchaea.

      Weaknesses:

      These experiments provide a good starting point for the in vitro study the interaction of Cdv system components with the membrane and their consecutive recruitment. However, several experimental controls are missing that complicate their ability to draw strong conclusions. Moreover, some results are inconsistent across the two main assays which make the findings difficult to interpret.

      (1) Missing controls.

      Various protein mixtures are assessed for their membrane-binding properties in different ways. However, it is difficult to interpret the effect of any specific protein combination, when the same experiment is not presented in a way that includes separate tests for all individual components. In this sense, the paper lacks important controls.

      For example, Fig 1C is missing the CdvB-only control. The authors remark that CdvB did not polymerise (data not shown) but do not comment on whether it binds membrane in their assays. In the introduction, Samson et al., 2011 is cited as a reference to show that CdvB does not bind membrane. However, here the authors are working with protein from a different organism in a different buffer, using a different membrane composition and a different assay. Given that so many variables are changing, it would be good to present how M. sedula CdvB behaves under these conditions.

      Similarly, there is no data showing how CdvB alone or CdvA alone behave in the dumbbell liposome assay. Without these controls, it's impossible to say whether CdvA recruits CdvB or the other way around.

      The manuscript would be much stronger if such data could be added.

      (2) Some of the discrepancies in the data generated using different assays are not discussed.

      The authors show that CdvB2∆C binds membrane and localizes to membrane necks in the dumbbell liposome assay, but no membrane binding is detected in the flotation assay. The discrepancy between these results further highlights the need for CdvB-only and CdvA-only controls.

      (3) Validation of the liposome assay.

      The experimental setup to create dumbbell-shaped liposomes seems great and is a clever novel approach pioneered by the team. Not only can the authors manipulate liposome shape, they also state that this allows them to accurately control the species present on the inside and outside of the liposome. Interpreting the results of the liposome assay, however, depends on the geometry being correct. To make this clearer, it would seem important to include controls to prove that all the protein imaged at membrane necks lie on the inside of liposomes. In the images in SFig3 there appears to be protein outside of the liposome. It would also be helpful to present data to show test whether the necks are open, as suggested in the paper, by using FRAP or some other related technique.

      (4) Quantification of results from the liposome assay.

      The paper would be strengthened by the inclusion of more quantitative data relating to the liposome assay. Firstly, only a single field of view is shown for each condition. Because of this, the reader cannot know whether this is a representative image, or an outlier? Can the authors do some quantification of the data to demonstrate this? The line scan profiles in the supplemental figures would be an example of this, but again in these Figures only a single image is analyzed.

      We would recommend that the authors present quantitative data to show the extent of co-localization at the necks in each case. They also need a metric to report instances in which protein is not seen at the neck, e.g. CdvB2 but not CdvB1 in Fig2I, which rules out a simple curvature preference for CdvB2 as stated in line 182.

      Secondly, the authors state that they see CdvB2∆C recruited to the membrane by CdvB1 (lines 184-187, Fig 2I). However, this simple conclusion is not borne out in the data. Inspecting the CdvB2∆C panels of Fig 2I, Fig3C, and Fig3D, CdvB2∆C signal can be seen at positions which don't colocalize with other proteins. The authors also observe CdvB2∆C localizing to membrane necks by itself (Fig 2E). Therefore, while CdvB1 and CdvB2∆C colocalize in the flotation assay, there is no strong evidence for CdvB2∆C recruitment by CdvB1 in dumbbells. This is further underscored by the observation that in the presented data, all Cdv proteins always appear to localize at dumbbell necks, irrespective of what other components are present inside the liposome. Although one nice control is presented (ZipA), this suggests that more work is required to be sure that the proteins are behaving properly in this assay. For example, if membrane binding surfaces of Cdv proteins are mutated, does this lead to the accumulation of proteins in the bulk of the liposome as expected?

      (5) Rings.

      The authors should comment on why they never observe large Cdv rings in their experiments. In crenarchaeal cell division, CdvA and CdvB have been observed to form large rings in the middle of the 1 micron cell, before constriction. Only in the later stages of division are the ESCRTs localized to the constricting neck, at a time when CdvA is no longer present in the ring. Therefore, if the in vitro assay used by the authors really recapitulated the biology, one would expect to see large CdvAB rings in Figs 1EF. This is ignored in the model. In the proposed model of ring assembly (line 252), CdvAB ring formation is mentioned, but authors do not discuss the fact that they do not observe CdvAB rings - only foci at membrane necks. The discussion section would benefit from the authors commenting on this.

      (6) Stoichiometry

      It is not clear why 100% of the visible CdvA and 100% of the the visible CdvB are shifted to the lipid fraction in 1C. Perhaps this is a matter of quantification. Can the authors comment on the stoichiometry here?

      (7) Significance of quantification of MBP-tagged filaments.

      Authors use tagging and removal of MBP as a convenient, controllable system to trigger polymerisation of various Cdv proteins. However, it is unclear what is the value and significance of reporting the width and length of the short linear filaments that are formed by the MBP-tagged proteins. Presumably they are artefactual assemblies generated by the presence of the tag? Similar Figure 2C doesn't seem a useful addition to the paper.

    1. Reviewer #3 (Public review):

      Summary:<br /> In this paper, Xu, Dantu and coworkers report a protocol for analyzing coevolutionary and dynamical information to identify a subset of communities that capture functionally relevant sites in beta-lactamases.

      Strengths:<br /> The combination of coevolutionary information and metrics from MD simulations is interesting for capturing functionally relevant sites, which can have implications in the fields of drug discovery but also in protein design.

      Weaknesses:<br /> The combination of coevolutionary information and metrics from MD simulations is not new as other protocols have been proposed along the years (the current version of the paper neglects some of them, see below), and there are a few parameters of the protocol that, in my opinion, should be better analyzed and discussed.

      (1) As mentioned, the introduction of the paper lacks some important publications in the field of using graph theory to represent important interaction networks extracted from MD simulations (DOI: 10.1002/pro.4911), and also combining MD data with MSA to identify functionally relevant sites for enzyme design (doi: 10.1021/acscatal.4c04587, 10.1093/protein/gzae005).<br /> (2) The matrix used to apply graph theory (J_ij) is built from summing the scaled coevolution and degree of correlation values. The alpha and beta weights are defined, and the authors mention that alpha is set to 0.5, thus beta as well to fulfil with the alpha + beta = 1. Why a value of 0.5 has been selected? How this affects the overall results and conclusions extracted? The finding that many catalytically relevant residues are identified in the communities is not surprising given that such sites usually present a high conservation score.<br /> (3) Another important point that needs further explanation is the selection of the relevant descriptor of protein dynamics. In this study two different strategies have been used (one more global the other more local), but more details should be provided regarding their choice. What is the best strategy according to the authors? Why not using the same strategy for both related systems? The obtained results using one methodology or the other will have a large impact on the dynamical score. Another related point is: what is the impact of the MD simulation length, how the MSA is generated and number of sequences used for MSA construction?

    1. Reviewer #3 (Public review):

      Summary:

      Fibroblast growth factor receptor 2 (FGFR2) is a receptor tyrosine kinase that can be amplified in gastric cancer and serves as a potential therapeutic target for this patient population. However, targeting FGFR2 has shown limited efficacy. Thus, this study seeks to identify additional molecules that can be effectively targeted in FGFR2 amplified gastric cancer, with a focus on Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). The authors first demonstrate that 6% of gastric cancer patients in a cohort of human patient samples exhibit FGFR2 amplification. Furthermore, they demonstrate that FGFR2 mRNA expression is positively correlated with PTPN11 gene expression (which is the gene that encodes the SHP2 protein). Using human gastric cancer cell lines with amplified FGFR2, the authors then test the effects of combining the FGFR inhibitor AZD4547 with the SHP2 inhibitor SHP099 on tumor cell death and signaling molecules. They demonstrate that combining the two inhibitors is more effective at tumor cell killing and reducing activation of downstream signaling pathways than either inhibitor alone. In further studies, the authors obtained gastric cancer cells with FGFR2 amplification from a patient that was treated with FGFR2 inhibitor. While this patient initially showed a partial response, the patient ultimately progressed, demonstrating resistance to FGFR2 inhibition. Following isolation of tumor cells from the patient's ascites, the authors demonstrate that these cells are sensitive to the combination treatment of AZD4547 and SHP099. Further studies were performed using a xenograft model using athymic nude mice in which the combination of SHP099 and AZD4547 were found to reduce tumor growth more significantly than either treatment alone. Finally, the authors demonstrate using an in vitro culture model that this combination treatment enhances T cell mediated cytotoxicity. The authors conclude that targeting FGFR2 and SHP2 represents a potential combination strategy in gastric patients with FGFR2 amplification.

      Strengths:

      The authors demonstrate that FGFR2 amplification positively correlates with PTPN11 in human gastric cancer samples, providing rationale for combination therapies. Furthermore, convincing data are provided demonstrating that targeting both FGFR and SHP2 is more effective than targeting either pathway alone using in vitro and in vivo models. The use of cells derived from a gastric cancer patient that progressed following treatment with an FGFR inhibitor is also a strength. The findings from this study support the conclusion that SHP2 inhibitors enhance the efficacy of FGFR-targeted therapies in cancer patients. This study also suggests that targeting SHP2 may also be an effective strategy for targeting cancers that are resistant to FGFR-targeted therapies.

      Weaknesses:

      The main caveat with these studies is the lack of an immune competent model with which to test the finding that this combination therapy enhances T cell cytotoxicity in vivo. Discussing this limitation within the context of these findings and future directions for this work, particularly since the combination therapy appears to work quite well without the presence of T cells in the environment, would be beneficial.

    1. Reviewer #3 (Public review):

      Xiaoyu Wu and colleagues examined the potential role in sleep of a Drosophila ribosomal RNA methyltransferase, mettl5. Based on sleep defects reported in CRISPR generated mutants, the authors performed both RNA-seq and Ribo-seq analyses of head tissue from mutants and compared to control animals collected at the same time point. While these data were subjected to a thorough analysis, it was difficult to understand the relative direction of differential expression between the two genotypes. In any case, a major conclusion was that the mutant showed altered expression of circadian clock genes, and that the altered expression of the period gene in particular accounted for the sleep defect reported in the mettl5 mutant. As noted above, a strength of this work is its relevance to a human developmental disorder as well as the transcriptomic and ribosomal profiling of the mutant. However, there are numerous weaknesses in the manuscript, most of which stem from misinterpretation of the findings, some methodological approaches, and also a lack of method detail provided. The authors seemed to have missed a major phenotype associated with the mettl5 mutant, which is that it caused a significant increase in period length, which was apparent even in a light: dark cycle. Thus the effect of the mutant on clock gene expression more likely contributed to this phenotype than any associated with changes in sleep behavior.

    1. Reviewer #3 (Public review):

      Summary:

      The authors describe important new biochemical elements in the synthesis of a class of critical developmental signaling molecules, BMP4. They also present a highly detailed description of developmental anomalies in mice bearing known human mutations at these specific elements.

      Strengths:

      Exceptionally detailed descriptions of pathologies occurring in mutant mice. Novel findings regarding the interaction of propeptide phosphorylation and convertase cleavage, both of which will move the field forward. Provocative hypothesis regarding furin access to cleavage sites, supported by Alphafold predictions.

      Weaknesses:

      Figure 6A presents two testable models for pre-release access of furin to cleavage sites since physical separation of enzyme from substrate only occurs in one model; could immunocytochemistry resolve?

    1. Reviewer #3 (Public review):

      Summary:

      In this report, the authors tested how manipulating the contiguous set of stimuli on the screen that should be used to guide behavior - that is, the scope of visual spatial attention - impacts the magnitude and profile of well-established attentional enhancements in visual retinotopic cortex. During fMRI scanning, participants attended to a cued section of the screen for blocks of trials and performed a letter vs digit discrimination task at each attended location (and judged whether the majority of characters were letters/digits). Importantly, the visual stimulus was identical across attention conditions, so any observed response modulations are due to top-down task demands rather than visual input. The authors employ population receptive field (pRF) models, which are used to sort voxel activation with respect to the location and scope of spatial attention and fit a Gaussian-like function to the profile of attentional enhancement from each region and condition. The authors find that attending to a broader region of space expands the profile of attentional enhancement across the cortex (with a larger effect in higher visual areas), but does not strongly impact the magnitude of this enhancement, such that each attended stimulus is enhanced to a similar degree. Interestingly, these modulations, overall, mimic changes in response properties caused by changes to the stimulus itself (increase in contrast matching the attended location in the primary experiment). The finding that attentional enhancement primarily broadens, but does not substantially weaken in most regions, is an important addition to our understanding of the impact of distributed attention on neural responses, and will provide meaningful constraints to neural models of attentional enhancement.

      Strengths:

      - Well-designed manipulations (changing location and scope of spatial attention), and careful retinotopic/pRF mapping, allow for a robust assay of the spatial profile of attentional enhancement, which has not been carefully measured in previous studies<br /> - Results are overall clear, especially concerning width of the spatial region of attentional enhancement, and lack of clear and consistent evidence for reduction in the amplitude of enhancement profile<br /> - Model-fitting to characterize spatial scope of enhancement improves interpretability of findings

      Weaknesses:

      - Task difficulty seems to vary as a function of spatial scope of attention, with varying ratios of letters/digits across spatial scope conditions, which may complicate interpretations of neural modulation results<br /> - Some aspects of analysis/data sorting are unclear (e.g., how are voxels selected for analyses?)<br /> - While the focus of this report is on modulations of visual cortex responses due to attention, the lack of inclusion of results from other retinotopic areas (e.g. V3AB, hV4, IPS regions like IPS0/1) is a weakness<br /> - Additional analyses comparing model fits across amounts of data analyzed suggest the model fitting procedure is biased, with some parameters (e.g., FWHM, error, gain) scaling with noise.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript describes the characterization of mycobacterial cytoskeleton protein Wag31, examining its role in orchestrating protein-lipid and protein-protein interactions essential for mycobacterial survival. The most significant finding is that Wag31, which directs polar elongation and maintains the intracellular membrane domain, was revealed to have membrane tethering capabilities.

      Strengths:

      The authors provided a detailed analysis of Wag31 domain architecture, revealing distinct functional roles: the N-terminal domain facilitates lipid binding and membrane tethering, while the C-terminal domain mediates protein-protein interactions. Overall, this study offers a robust and new understanding of Wag31 function.

      Weaknesses:

      The following major concerns should be addressed.

      • Authors use 10-N-Nonyl-acridine orange (NAO) as a marker for cardiolipin localization. However, given that NAO is known to bind to various anionic phospholipids, how do the authors know that what they are seeing is specifically visualizing cardiolipin and not a different anionic phospholipid? For example, phosphatidylinositol is another abundant anionic phospholipid in mycobacterial plasma membrane.

      • Authors' data show that the N-terminal region of Wag31 is important for membrane tethering. The authors' data also show that the N-terminal region is important for sustaining mycobacterial morphology. However, the authors' statement in Line 256 "These results highlight the importance of tethering for sustaining mycobacterial morphology and survival" requires additional proof. It remains possible that the N-terminal region has another unknown activity, and this yet-unknown activity rather than the membrane tethering activity drives the morphological maintenance. Similarly, the N-terminal region is important for lipid homeostasis, but the statement in Line 270, "the maintenance of lipid homeostasis by Wag31 is a consequence of its tethering activity" requires additional proof. The authors should tone down these overstatements, or provide additional data to support their claims.

      • Authors suggest that Wag31 acts as a scaffold for the IMD (Fig. 8). However, Meniche et. al. has shown that MurG as well as GlfT2, two well-characterized IMD proteins, do not colocalize with Wag31 (DivIVA) (https://doi.org/10.1073/pnas.1402158111). IMD proteins are always slightly subpolar while Wag31 is located to the tip of the cell. Therefore, the authors' biochemical data cannot be easily reconciled with microscopic observations in the literature. This raises a question regarding the validity of protein-protein interaction shown in Figure 7. Since this pull-down assay was conducted by mixing E. coli lysate expressing Wag31 and Msm lysate expression Wag31 interactors like MurG, it is possible that the interactions are not direct. Authors should interpret their data more cautiously. If authors cannot provide additional data and sufficient justifications, they should avoid proposing a confusing model like Figure 8 that contradicts published observations.

    1. Reviewer #3 (Public review):

      Summary:

      In their manuscript titled "Multiplexed Assays of Human Disease‐relevant Mutations Reveal UTR Dinucleotide Composition as a Major Determinant of RNA Stability" the authors aim to investigate the effect of sequence variations in 3'UTR and 5'UTRs on the stability of mRNAs in two different human cell lines.

      To do so, the authors use a massively parallel reporter assay (MPRA). They transfect cells with a set of mRNA reporters that contain sequence variants in their 3' or 5' UTRs, which were previously reported in human diseases. They follow their clearance from cells over time relative to the matching non-variant sequence. To analyze their results, they define a set of factors (RBP and miRNA binding sites, sequence features, secondary structure etc.) and test their association with differences in mRNA stability. For features with a significant association, they use clustering to select a subset of factors for LASSO regression and identify factors that affect mRNA stability.<br /> They conclude that the TA dinucleotide content of UTRs is the strongest destabilizing sequence feature. Within that context, elevated GC content and protein binding can protect susceptible mRNAs from degradation. They also show that TA dinucleotide content of UTRs affects native mRNA stability and that it is associated with specific functional groups. Finally, they link disease associated sequence variants with differences in mRNA stability of reporters.

      Strengths:

      (1) This work introduces a different MPRA approach to analyze the effect of genetic variants. While previous works in tissue culture use DNA transfections that require normalization for transcription efficiency, here the mRNA is directly introduced into cells at fixed amounts, allowing a more direct view of the mRNA regulation.

      (2) The authors also introduce a unique analysis approach, which takes into account multiple factors that might affect mRNA stability. This approach allows them to identify general sequence features that affect mRNA stability beyond specific genetic variants, and reach important insights on mRNA stability regulation. Indeed, while the conclusions to genetic variants identified in this work are interesting, the main strength of the work involves general effect of sequence features rather than specific variants.

      (3) The authors provide adequate support for their claims and validate their analysis using both their reporter data and native genes. For the main feature identified, TA di-nucleotides, they perform follow-up experiments with modified reporters that further strengthen their claims, and also validate the effect on native cellular transcripts (beyond reporters), demonstrating its validity also within native scenarios.

      (4) The work provides a broad analysis of mRNA stability, across two mRNA regulatory segments (3'UTR and 5'UTR) and is performed in two separate cell-types. Comparison between two different cell-types is adequate, and the results demonstrate, as expected, the dependence of mRNA stability on the cellular context. Analysis of 3'UTR and 5'UTR regulatory effects also shows interesting differences and similarities between these two regulatory regions.

      Weaknesses:

      In their revised manuscripts, the authors successfully address many of the weaknesses raised in the original review, including the effect of possible confounding effects, and additional methodology details. Notably, two of the issues raised in the original report, have only been partially addressed in the revision.

      (1) The analysis and regression models built in this work are not thoroughly investigated relative to native genes within cells.<br /> While using MPRAs indeed allows to isolate regulatory effects that are less influential in-vivo, the resulting effects still provide some regulatory function in-vivo. The goal of such an analysis would not be to demonstrate the predictive power of the models, or to make any claims regarding using these models to fully explain or predict the stability of native transcripts. Clearly, additional more prominent factors could function in controlling endogenous RNA stability.<br /> Instead, the goal of such an investigation is to simply assess the fraction of in-vivo regulation that the factors identified in this work contribute in native contexts, and what is the relative contribution of the phenomena captured by the well-controlled MPRA study.<br /> This reviewer believes that even if the effects identified by the current MPRA study only contribute a small fraction of in-vivo variation, an analysis that aim to estimate what this fraction is, will be very relevant to this study for several reasons. First, in order to appreciate the results of this study within their in-vivo context. Second, in light of the questions raised as motivation for this study, and particularly the need to identify the effect of disease-associated 3'UTR variants, which clearly have an in-vivo effect.

      (2) Methodology validation can be performed with simulated data (generated in-silico by the authors) to provide an independent support for the ability of the current methodology to correctly extract regulatory effects from the data.

    1. Reviewer #3 (Public review):

      Summary:

      Li et al. describe an audiovisual temporal recalibration experiment in which participants perform baseline sessions of ternary order judgments about audiovisual stimulus pairs with various stimulus-onset asynchronies (SOAs). These are followed by adaptation at several adapting SOAs (each on a different day), followed by post-adaptation sessions to assess changes in psychometric functions. The key novelty is the formal specification and application/fit of a causal-inference model for the perception of relative timing, providing simulated predictions for the complete set of psychometric functions both pre and post adaptation.

      Strengths:

      (1) Formal models are preferable to vague theoretical statements about a process, and prior to this work, certain accounts of temporal recalibration (specifically those that do not rely on a population code) had only qualitative theoretical statements to explain how/why the magnitude of recalibration changes non-linearly with the stimulus-onset asynchrony of the adaptor.<br /> (2) The experiment is appropriate, the methods are well described, and the average model prediction is a good match to the average data (Figure 4). Conclusions are supported by the data and modelling.<br /> (3) The work should be impactful. There seems a good chance that this will become the go-to modelling framework for those exploring non population-code accounts of temporal recalibration (or comparing them with population-code accounts).<br /> (4) Key issues for the generality of the model, such as recalibration asymmetries reported by other authors that are inconsistent with those reported here, are thoughtfully discussed.

      Weaknesses:

      (1) Models are not compared using a gold-standard measure such as leave-one-out cross validation. However, this is legitimate given lengthy model fitting times, and a sensible approximation is presented.<br /> (2) The model misses in a systematic way for the psychometric functions of some participants/conditions. In addition to misses relating to occasional failures to estimate the magnitude of recalibration, some of the misses are because all functions are only permitted to shift in central tendency (whereas some participants show changes better characterized at one or both decision criteria). Given the fact that the modelling in general embraces individual differences, it might have been worth allowing different kinds of change for different participants. However, this is not really critical for the central concern (changes in the magnitude of recalibration for different adaptors) and there is a limit to how much can be done along these lines without making the model too flexible to test.<br /> (3) As a minor point, the model relies on simulation, which may limit its take-up/application by others in the field (although open access code will be provided).

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Bimbard and colleagues describe a new implant apparatus called "Apollo Implant", which should facilitate recording in freely moving rodents (both mice and rats) using Neuropixels probes. The authors collected data from both mice and rats, they used 3 different versions of Neuropixels, multiple labs have already adopted this method, which is impressive. They openly share their CAD designs and surgery protocol to further facilitate the adaptation of their method.

      Strengths:

      Overall, the "Apollo Implant" is easy to use and adapt, as it has been used in other laboratories successfully and custom modifications are already available. The device is reproducible using common 3D printing services and can be easily modified thanks to its CAD design (the video explaining this is extremely helpful). The weight and price are amazing compared to other systems for rigid silicon probes allowing a wide range of use of the "Apollo Implant".

      Weaknesses:

      The "Apollo Implant" can only handle Neuropixels probes. It cannot hold other widely used and commercially available silicon probes. Certain angles and distances may be better served by 2 implants.

    1. Reviewer #3 (Public review):

      Summary:

      This study is focused on testing whether statistical learning (a mechanism for parsing the speech signal into smaller chunks) preferentially operates over certain features of the speech at birth in humans. The features under investigation are phonetic content and speaker identity. Newborns are tested in an EEG paradigm in which they are exposed to a long stream of syllables. In Experiment 1, newborns are familiarized with a sound stream that comprises regularities (transitional probabilities) over syllables (e.g., "pe" followed by "tu" in "petu" with 1.0 probability) while the voices uttering the syllables remain random. In Experiment 2, newborns are familiarized with the same sound stream but, this time, the regularities are built over voices (e.g., "green voice" followed by "red voice" with 1.0 probability) while the concatenation of syllables stays random. At the test, all newborns listened to duplets (individual chunks) that either matched or violated the structure of the familiarization. In both experiments, newborns showed neural entrainment to the regularities implemented in the stream, but only the duplets defined by transitional probabilities over syllables (aka word forms) elicited a N400 ERP component. These results suggest that statistical learning operates in parallel and independently on different dimensions of the speech already at birth and that there seems to be an advantage for processing statistics defining word forms rather than voice patterns.

      Strengths:

      This paper presents an original experimental design that combines two types of statistical regularities in a speech input. The design is robust and appropriate for EEG with newborns. I appreciated the clarity of the Methods section. There is also a behavioral experiment with adults that acts like a control study for newborns. The research question is interesting, and the results add new information about how statistical learning works at the beginning of postnatal life, and on which features of the speech. The figures are clear and helpful in understanding the methods, especially the stimuli and how the regularities were implemented.

      Weaknesses:

      I appreciated how the authors addressed my previous comments and concerns. I am satisfied with the changes made by the authors. I believe the paper reads much better. Also, the adjustment to the theoretical framework suits well.

    1. Reviewer #3 (Public Review):

      Distal appendages are multiprotein complexes that are only present on the mother centriole as a 9-fold symmetric structure that functions in ciliogenesis. How distal appendage proteins are organized and assembled still remains poorly understood. In this manuscript, Kanie et al. comprehensively analyzed the localizations of known and newly described distal appendage proteins using super-resolution microscopy. They investigated mechanisms associated with distal appendage assembly and their roles in the early stages of ciliogenesis in CRISPR-Cas9 knockout cells, which enabled a clearer investigation of these structures compared to previous RNAi depletion studies. These studies confirm previous findings for distal appendage protein ciliogenesis function and demonstrate the CEP83-SCLT1-CEP164-TTBK2 module is critical for both distal appendage assembly and the initiation of ciliogenesis. Notably, they find that CEP89 is dispensable for distal appendage assembly, but is needed for the recruitment of RAB34-positive ciliary vesicles to the mother centriole for ciliogenesis. Finally, this work introduces the application of single-molecule 3D super-resolution microscopy as a tool for interrogating the relationship between membranes and distal appendages. Overall this work extends our fundamental understanding of distal appendage structure/function in ciliogenesis.

      An interesting observation from this work is that CEP83 is found localized both at the innermost region and the outermost region of the distal appendages when detected by antibodies that recognize a different epitope of CEP83 (Figure 1A), suggesting a helical structure that could serve as a platform for distal appendage assembly. A previous study using STORM imaging also showed that another distal appendage protein CEP164 occupies a wider region of the distal appendages when using an antibody recognizing the N-terminal residues of Cep164 (M Bowler et al. 2019). Together these studies show the importance of evaluating the structure of distal appendage proteins and the challenges of using antibody detection to reveal distal appendage hierarchy.

      This work also highlights the potential differences in functional conclusions that can be drawn when comparing RNAi and CRISPR knockout depletion approaches. The latter which expectedly can lead to a more precise functional analysis of these small distal appendage structures, albeit with the potential for knockout cells to display compensatory regulation. Although not directly addressed in the text, the authors find that RPE-1 MYO5A knockout cells could ciliate which differs from a report by Wu et al. (2018). Furthermore, in the case of RAB34 knockout cells, the authors find CP110 removal from the mother centriole, while in previously published RAB34 KO studies this was not observed. In the case of the. RAB34 data a plausible explanation for the results given by the authors is that different assay conditions were used as was noted by the authors.

    1. Reviewer #3 (Public review):

      Summary:

      The authors show that ELS induces a number of brain and behavioral changes in the adult lateral amygdala. These changes include enduring astrocytic dysfunction, and inducing astrocytic dysfunction via genetic interventions is sufficient to phenocopy the behavioral and neural phenotypes suggesting astrocyte dysfunction may play a causal role in ELS-associated pathologies.

      Strengths:

      A strength is the shift in focus to astrocytes to understand how ELS alters adult behavior.

      Weaknesses:

      The mechanistic links between some of the correlates - altered astrocytic function, changes in neural excitability and synaptic plasticity in the lateral amygdala and behavior - are underdeveloped.

      Comments on revisions:

      The authors have significantly improved the paper with the addition of new experimental data, analyses, and textual changes.

    1. Reviewer #3 (Public review):

      Summary:

      The paper studies learning rules in a simple sigmoidal recurrent neural network setting. The recurrent network has a single layer of 10 to 40 units. It is first confirmed that feedback alignment (FA) can learn a value function in this setting. Then so-called bio-plausible constraints are added: (1) when value weights (readout) is non-negative, (2) when the activity is non-negative (normal sigmoid rather than downscaled between -0.5 and 0.5), (3) when the feedback weights are non-negative, (4) when the learning rule is revised to be monotic: the weights are not downregulated. In the simple task considered all four biological features do not appear to impair totally the learning.

      Strengths:

      (1) The learning rules are implemented in a low-level fashion of the form: (pre-synaptic-activity) x (post-synaptic-activity) x feedback x RPE. Which is therefore interpretable in terms of measurable quantities in the wet-lab.

      (2) I find that non-negative FA (FA with non negative c and w) is the most valuable theoretical insight of this paper: I understand why the alignment between w and c is automatically better at initialization.

      (3) The task choice is relevant since it connects with experimental settings of reward conditioning with possible plasticity measurements.

      Weaknesses:

      (4) The task is rather easy, so it's not clear that it really captures the computational gap that exists with FA (gradient-like learning) and simpler learning rule like a delta rule: RPE x (pre-synpatic) x (post-synaptic). To control if the task is not too trivial, I suggest adding a control where the vector c is constant c_i=1.

      (5) Related to point 3), the main strength of this paper is to draw potential connection with experimental data. It would be good to highlight more concretely the prediction of the theory for experimental findings. (Ideally, what should be observed with non-negative FA that is not expected with FA or a delta rule (constant global feedback) ?).

      (6a) Random feedback with RNN in RL have been studied in the past, so it is maybe worth giving some insights how the results and the analyzes compare to this previous line of work (for instance in this paper [1]). For instance, I am not very surprised that FA also works for value prediction with TD error. It is also expected from the literature that the RL + RNN + FA setting would scale to tasks that are more complex than the conditioning problem proposed here, so is there a more specific take-home message about non-negative FA? or benefits from this simpler toy task?<br /> (6b) Related to task complexity, it is not clear to me if non-negative value and feedback weights would generally scale to harder tasks. If the task in so simple that a global RPE signal is sufficient to learn (see 4 and 5), then it could be good to extend the task to find a substantial gap between: global RPE, non-negative FA, FA, BP. For a well chosen task, I expect to see a performance gap between any pair of these four learning rules. In the context of the present paper, this would be particularly interesting to study the failure mode of non-negative FA and the cases where it does perform as well as FA.

      (7) I find that the writing could be improved, it mostly feels more technical and difficult than it should. Here are some recommendations:<br /> (7a) for instance the technical description of the task (CSC) is not fully described and requires background knowledge from other paper which is not desirable.<br /> (7b) Also the rationale for the added difficulty with the stochastic reward and new state is not well explained.<br /> (7c) In the technical description of the results I find that the text dives into descriptive comments of the figures but high-level take home messages would be helpful to guide the reader. I got a bit lost, although I feel that there is probably a lot of depth in these paragraphs.

      (8) Related to the writing issue and 5), I wished that "bio-plausibility" was not the only reason to study positive feedback and value weights. Is it possible to develop a bit more specifically what and why this positivity is interesting? Is there an expected finding with non-negative FA both in the model capability? or maybe there is a simpler and crisp take-home message to communicate the experimental predictions to the community would be useful?

      (1) https://www.nature.com/articles/s41467-020-17236-y

    1. Reviewer #3 (Public review):

      Summary:

      This study reveals that sound exposure enhances drug delivery to the cochlea through the non-selective action of outer hair cells. The efficiency of sound-facilitated drug delivery is reduced when outer hair cell motility is inhibited. Additionally, low-frequency tones were found to be more effective than broadband noise for targeting substances to the cochlear apex. Computational model simulations support these findings.

      Strengths:

      The study provides compelling evidence that the broad action of outer hair cells is crucial for cochlear fluid circulation, offering a novel perspective on their function beyond frequency-selective amplification. Furthermore, these results could offer potential strategies for targeting and optimizing drug delivery throughout the cochlear spiral.

    1. Reviewer #3 (Public review):

      Summary:

      The article provides the most comprehensive overview of primate MHC class I and class II genes to date, combining published data with an exploration of the available genome assemblies in a coherent phylogenetic framework and formulating new hypotheses about the evolution of the primate MHC genomic region.

      Strengths:

      I think this is a solid piece of work that will be the reference for years to come, at least until population-scale haplotype-resolved whole-genome resequencing of any mammalian species becomes standard. The work is timely because there is an obvious need to move beyond short amplicon-based polymorphism surveys and classical comparative genomic studies. The paper is data-rich and the approach taken by the authors, i.e. an integrative phylogeny of all MHC genes within a given class across species and the inclusion of often ignored pseudogenes, makes a lot of sense. The focus on primates is a good idea because of the wealth of genomic and, in some cases, functional data, and the relatively densely populated phylogenetic tree facilitates the reconstruction of rapid evolutionary events, providing insights into the mechanisms of MHC evolution. Appendices 1-2 may seem unusual at first glance, but I found them helpful in distilling the information that the authors consider essential, thus reducing the need for the reader to wade through a vast amount of literature. Appendix 3 is an extremely valuable companion in navigating the maze of primate MHC genes and associated terminology.

      Weaknesses:

      I have not identified major weaknesses and my comments are mostly requests for clarification and justification of some methodological choices.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, Alonso-Caraballo et al. investigate sex-specific differences in oxycodone self-administration, withdrawal, and relapse behaviors in rats, as well as associated synaptic plasticity in the paraventricular thalamus to nucleus accumbens shell (PVT-NAcSh) circuit. The authors employ a combination of behavioral paradigms and ex vivo electrophysiology to examine how acute (1-day) and prolonged (14-day) abstinence from oxycodone self-administration affect cue-induced drug-seeking and synaptic transmission in male and female rats. Their findings reveal that while both sexes show similar oxycodone self-administration and acute withdrawal symptoms, females exhibit enhanced cue-induced relapse after prolonged abstinence. Furthermore, they show that prolonged abstinence is associated with increased synaptic strength in the PVT-NAcSh circuit (reduced paired-pulse ratio) and enhanced intrinsic excitability of NAcSh medium spiny neurons in both sexes. This study provides important insights into the sex-specific neural adaptations that may underlie vulnerability to opioid relapse and highlights the PVT-NAcSh circuit as a potential target for therapeutic interventions. However, although this study is well designed, no sex differences were observed in the synaptic activity within this pathway that could explain increased oxycodone seeking in females versus male rats. Additional experiments could strengthen the results and help clarify synaptic mechanisms underpinning behavioral sex differences.

      Strengths:

      The study exhibits several strengths. It provides a comprehensive behavioral analysis of oxycodone self-administration, withdrawal, and cue-induced relapse in both male and female rats at different time points (acute vs. protracted withdrawal) offering valuable insights into sex-specific differences (i.e., increased oxycodone seeking in females over time but not males). The authors examine synaptic plasticity in the PVT-NAcSh circuit at different abstinence time points, integrating behavioral and electrophysiological data to link circuit adaptations with relapse behaviors, although no sex differences in the electrophysiological parameters examined were evident. The investigation of intrinsic excitability changes in NAcSh medium spiny neurons further enhances the study's depth. Overall, the well-designed experiments provide important insights into the neural adaptations that may underlie vulnerability to opioid relapse, highlighting the PVT-NAcSh circuit as a potential target for therapeutic interventions in opioid use disorder.

      Weaknesses:

      Despite its strengths, the study has several notable limitations. A key weakness is the lack of observed sex differences in synaptic activity within the PVT-NAcSh pathway that could explain the behavioral results. The authors' failure to differentiate between D1 and D2 medium spiny neurons (MSNs) in the nucleus accumbens represents a missed opportunity to identify potential sex-specific differences at the cellular level, although they do discuss reasons for this omission. The only significant synaptic change observed - reduced paired-pulse ratio indicating increased synaptic strength - occurs in both males and females, failing to explain the sex-specific behavioral differences. Furthermore, the investigation of intrinsic excitability in NAc MSNs adds complexity to data interpretation, as the authors neither differentiate between D1 and D2 MSNs nor confirm that recorded neurons receive direct inputs from the PVT. This assumption potentially confounds the results. Overall, while the study provides valuable insights, additional experiments targeting specific cell populations and more detailed synaptic analyses are needed to elucidate the mechanisms underlying the observed behavioral sex differences in opioid relapse vulnerability.

    1. Reviewer #3 (Public review):

      Summary:

      Jin, Briggs et al. made use of light-sheet 3D imaging and data analysis to assess the collective network activity in isolated mouse islets. The major advantage of using whole islet imaging, despite compromising on a speed of acquisition, is that it provides a complete description of the network, while 2D networks are only an approximation of the islet network. In static-incubation conditions, excluding the effects of perfusion, they assessed two subpopulations of beta cells and their spatial consistency and metabolic dependence.

      Strengths:

      The authors confirmed that coordinated Ca2+ oscillations are important for glycemic control. In addition, they definitively disproved the role of individual privileged cells, which were suggested to lead or coordinate Ca²⁺ oscillations. They provided evidence for differential regional stability, confirming the previously described stochastic nature of the beta cells that act as strongly connected hubs as well as beta cells in initiating regions (doi.org/10.1103/PhysRevLett.127.168101). This has not been a surprise to the reviewer.

      The fact that islet cores contain beta cells that are more active and more coordinated has also been readily observed in high-frequency 2D recordings (e.g. DOI: 10.2337/db22-0952), suggesting that the high-speed capture of fast activity can partially compensate for incomplete topological information.

      They also found an increased metabolic sensitivity of mantle regions of an islet with subpopulation of beta cells with a high probability of leading the islet activity and which can be entrained by fuel input. They discuss a potential role of alpha/delta cell interaction, however relative lack of beta cells in the islet border region could also be a factor contributing to less connectivity and higher excitability.

      The Methods section contains a useful series of direct instructions on how to approach fast 3D imaging with currently available hardware and software.

      The Discussion is clear and includes most of the issues regarding the interpretation of the presented results.

      Taken together it is a strong technical paper to demonstrate the stochasticity regarding the functions subpopulations of beta cells in the islets may have and how less well-resolved approaches (both missing spatial resolution as well as missing temporal resolution) led us to jump to unjustified conclusions regarding the fixed roles of individual beta cells within an islet.

      Weaknesses:

      There are a few relevant issues that need to be addressed.

      (1) The study is not internally consistent regarding the Results section. In the text the authors discuss changes in membrane potential (not been measured in this study), while in the figures they exclusively describe Ca2+ oscillations (which were measured). Examples are on lines 149, 150, 153, 154, 263... It is recommended that the silent and active phase in the Results section describe processes actually measured in this study as shown 6A.

      (2) There are in fact no radially oriented networks in the core of an islet (l. 130, Fig. 4) apart from the fact that every hub has somewhat radially oriented edges. For radiality to have some general meaning, the normalized distance from the geometric center would need to be lower than 0.4. The networks are centrally located, which does not change the major conclusions of the study.

      (3) The study would profit from acknowledging that Ca2+ influx is not a sole mechanism to drive insulin secretion and that KATP channels are not the sole target sensitive to changes in the cytosolic (global or local) ADP and ATP concentration or that there is an absolute concentration-dependence of these ligands on KATP channels. The relatively small conductance changes that have been found associated to active and silent phases (closing and opening of the KATP channels as interpreted by the authors, respectively, doi: 10.1152/ajpendo.00046.2013) and should be due to metabolic factors, could be also associated to desensitization of KATP channels to ATP due to the increase in cytosolic Ca2+ changes after intracellular Ca2+ flux (DOI: 10.1210/endo.143.2.8625) as they have been found to operate also at time scales, significantly faster (DOI: 10.2337/db22-0952) than reported before (refs. 21,22). Metabolic changes influence intracellular Ca2+ flux as well.

      (4) There is no explanation for why KL divergence is so different between the pre-test regional consistency of the islets used to test the vehicle compared to those where GKa and PKa have been tested.