3,354 Matching Annotations
  1. Last 7 days
    1. Reviewer #3 (Public review):

      The current manuscript investigates the effect of 2-oxoglutarate (2OG) as modulator of glutamine synthetase (GS). To do this, the authors rely of mass photometry, specific activity measurements and single particle cryo-EM data.<br /> From the results, the authors conclude that the GS from Methanosarcina mazei shifts from a dimeric, non-active state under low concentrations of 2OG, to a dodecameric and fully active complex at saturating concentrations of 2OG.

      GS is a crucial enzyme in all domains of life. The dodecameric fold of GS is recurrent amongst prokaryotic and archaea organisms but the enzyme activity can be regulated in distinct ways. This is a very interesting work combining protein biochemistry with structural biology.

      A novel role for 2OG is presented for this mesophilic methanoarchaeon, as a crucial effector for the enzyme oligomerization and full reactivity.

      The conclusions of this paper are mostly well supported by data, but some aspects of this GS regulation and interaction with known partners like Glnk1 and sp26 need to be clarified and extended.

    1. Reviewer #3 (Public review):

      Summary:

      Wang et al., examined the brain activity patterns during sleep, especially when locked to those canonical sleep rhythms such as SO, spindle, and their coupling. Analyzing data from a large sample, the authors found significant coupling between spindles and SOs, particularly during the upstate of the SO. Moreover, the authors examined the patterns of whole-brain activity locked to these sleep rhythms. To understand the functional significance of these brain activities, the authors further conducted open-ended cognitive state decoding and found a variety of cognitive processing may be involved during SO-spindle coupling and during other sleep events. The authors next investigated the functional connectivity analyses and found enhanced connectivity between the hippocampus, the thalamus, and the medial PFC. These results reinforced the theoretical model of sleep-dependent memory consolidation, such that SO-spindle coupling is conducive to systems-level memory reactivation and consolidation.

      Strengths:

      There are obvious strengths in this work, including the large sample size, state-of-the-art neuroimaging and neural oscillation analyses, and the richness of results.

      Weaknesses:

      Despite these strengths and the insights gained, there are weaknesses in the design, the analyses, and inferences.

      A repeating statement in the manuscript is that brain activity could indicate memory reactivation and thus consolidation. This is indeed a highly relevant question that could be informed by the current data/results. However, an inherent weakness of the design is that there is no memory task before and after sleep. Thus, it is difficult (if not impossible) to make a strong argument linking SO/spindle/coupling-locked brain activity with memory reactivation or consolidation.

      Relatedly, to understand the functional implications of the sleep rhythm-locked brain activity, the authors employed the "open-ended cognitive state decoding" method. While this method is interesting, it is rather indirect given that there were no behavioral indices in the manuscript. Thus, discussions based on these analyses are speculative at best. Please either tone down the language or find additional evidence to support these claims.

      Moreover, the results from this method are difficult to understand. Figure 3e showed that for all three types of sleep events (SO, spindle, SO-spindle), the same mental states (e.g., working memory, episodic memory, declarative memory) showed opposite directions of activation (left and right panels showed negative and positive activation, respectively). How to interpret these conflicting results? This ambiguity is also reflected by the term used: declarative memory and episodic memories are both indexed in the results. Yet these two processes can be largely overlapped. So which specific memory processes do these brain activity patterns reflect? The Discussion shall discuss these results and the limitations of this method.

      The coupling strength is somehow inconsistent with prior results (Hahn et al., 2020, eLife, Helfrich et al., 2018, Neuron). Specifically, Helfrich et al. showed that among young adults, the spindle is coupled to the peak of the SO. Here, the authors reported that the spindles were coupled to down-to-up transitions of SO and before the SO peak. It is possible that participants' age may influence the coupling (see Helfrich et al., 2018). Please discuss the findings in the context of previous research on SO-spindle coupling.

      The discussion is rather superficial with only two pages, without delving into many important arguments regarding the possible functional significance of these results. For example, the author wrote, "This internal processing contrasts with the brain patterns associated with external tasks, such as working memory." Without any references to working memory, and without delineating why WM is considered as an external task even working memory operations can be internal. Similarly, for the interesting results on SO and reduced DMN activity, the authors wrote "The DMN is typically active during wakeful rest and is associated with self-referential processes like mind-wandering, daydreaming, and task representation (Yeshurun, Nguyen, & Hasson, 2021). Its reduced activity during SOs may signal a shift towards endogenous processes such as memory consolidation." This argument is flawed. DMN is active during self-referential processing and mind-wandering, i.e., when the brain shifts from external stimuli processing to internal mental processing. During sleep, endogenous memory reactivation and consolidation are also part of the internal mental processing given the lack of external environmental stimulation. So why during SO or during memory consolidation, the DMN activity would be reduced? Were there differences in DMN activity between SO and SO-spindle coupling events?

    1. Reviewer #3 (Public review):

      Summary:

      The authors used powerful and novel reagents to carefully assess the roles of the voltage gated sodium channel (NaV) isoforms in regulating the neural excitability of principal neurons of the cerebral cortex. Using this approach, they were able to confirm that two different isoforms, NaV1.2 and NaV1.6 have distinct roles in electrogenesis of neocortical pyramidal neurons.

      Strengths:

      Development of very powerful transgenic mice in which NaV1.2 and/or NaV1.6 were modified to be insensitive to ASCs, a particular class of NaV blocker. This allowed them to test for roles of the two isoforms in an acute setting, without concerns of genetic or functional compensation that might result from a NaV channel knockout.

      Careful biophysical analysis of ASC effects on different NaV isoforms.

      Extensive and rigorous analysis of electrogenesis - action potential production - under conditions of blockade of either NaV1.2 or NaV1 or both.

      Weaknesses:

      Some results are overstated in that the representative example records provided do not directly support the conclusions.

      Results from a computational model are provided to make predictions of outcomes, but the computational approach is highly underdeveloped.

    1. Reviewer #3 (Public Review):

      This manuscript by Akabuogu et al. investigates membrane potential dynamics in E. coli. Membrane potential fluctuations have been observed in bacteria by several research groups in recent years, including in the context of bacterial biofilms where they have been proposed to play a role in cellular communication. Here, these authors investigate membrane potential in E. coli, in both single cells and biofilms. I have reviewed the revised manuscript provided by the authors, as well as their responses to the initial reviews; my opinion about the manuscript is largely unchanged. I have focused my public review on those issues that I believe to be most pressing, with additional comments included in the review to authors. Although these authors are working in an exciting research area, the evidence they provide for their claims is inadequate, and several key control experiments are still missing. In some cases, the authors allude to potentially relevant data in their responses to the initial reviews, but unfortunately these data are not shown. Furthermore, I cannot identify any traveling wavefronts in the data included in this manuscript. In addition to the challenges associated with the use of Thioflavin-T (ThT) raised by the second reviewer, these caveats make the work presented in this manuscript difficult to interpret.

      First, some of the key experiments presented in the paper lack required controls:

      (1) This paper asserts that the observed ThT fluorescence dynamics are induced by blue light. This is a fundamental claim in the paper, since the authors go on to argue that these dynamics are part of a blue light response. This claim must be supported by the appropriate negative control experiment measuring ThT fluorescence dynamics in the absence of blue light- if this idea is correct, these dynamics should not be observed in the absence of blue light exposure. If this experiment cannot be performed with ThT since blue light is used for its excitation, TMRM can be used instead.

      In response to this, the authors wrote that "the fluorescent baseline is too weak to measure cleanly in this experiment." If they observe no ThT signal above noise in their time lapse data in the absence of blue light, this should be reported in the manuscript- this would be a satisfactory negative control. They then wrote that "It appears the collective response of all the bacteria hyperpolarization at the same time appears to dominate the signal." I am not sure what they mean by this- perhaps that ThT fluorescence changes strongly only in response to blue light? This is a fundamental control for this experiment that ought to be presented to the reader.

      (2) The authors claim that a ∆kch mutant is more susceptible to blue light stress, as evidenced by PI staining. The premise that the cells are mounting a protective response to blue light via these channels rests on this claim. However, they do not perform the negative control experiment, conducting PI staining for WT the ∆kch mutant in the absence of blue light. In the absence of this control it is not possible to rule out effects of the ∆kch mutation on overall viability and/or PI uptake. The authors do include a growth curve for comparison, but planktonic growth is a very different context than surface-attached biofilm growth. Additionally, the ∆kch mutation may have impacts on PI permeability specifically that are not addressed by a growth curve. The negative control experiment is of key importance here.

      Second, the ideas presented in this manuscript rely entirely on analysis of ThT fluorescence data, specifically a time course of cellular fluorescence following blue light treatment. However, alternate explanations for and potential confounders of the observed dynamics are not sufficiently addressed:

      (1) Bacterial cells are autofluorescent, and this fluorescence can change significantly in response to stress (e.g. blue light exposure). To characterize and/or rule out autofluorescence contributions to the measurement, the authors should present time lapse fluorescence traces of unstained cells for comparison, acquired under the same imaging conditions in both wild type and ∆kch mutant cells. In their response to reviewers the authors suggested that they have conducted this experiment and found that the autofluorescence contribution is negligible, which is good, but these data should be included in the manuscript along with a description of how these controls were conducted.

      (2) Similarly, in my initial review I raised a concern about the possible contributions of photobleaching to the observed fluorescence dynamics. This is particularly relevant for the interpretation of the experiment in which catalase appears to attenuate the decay of the ThT signal; this attenuation could alternatively be due to catalase decreasing ThT photobleaching. In their response, the authors indicated that photobleaching is negligible, which would be good, but they do not share any evidence to support this claim. Photobleaching can be assessed in this experiment by varying the light dosage (illumination power, frequency, and/or duration) and confirming that the observed fluorescence dynamics are unaffected.

      Third, the paper claims in two instances that there are propagating waves of ThT fluorescence that move through biofilms, but I do not observe these waves in any case:

      (1) The first wavefront claim relates to small cell clusters, in Fig. 2A and Video S2 and S3 (with Fig. 2A and Video S2 showing the same biofilm.) I simply do not see any evidence of propagation in either case- rather, all cells get brighter and dimmer in tandem. I downloaded and analyzed Video S3 in several ways (plotting intensity profiles for different regions at different distances from the cluster center, drawing a kymograph across the cluster, etc.) and in no case did I see any evidence of a propagating wavefront. (I attempted this same analysis on the biofilm shown in Fig. 2A and Video S2 with similar results, but the images shown in the figure panels and especially the video are still both so saturated that the quantification is difficult to interpret.) If there is evidence for wavefronts, it should be demonstrated explicitly by analysis of several clusters. For example, a figure of time-to-peak vs. position in the cluster demonstrating a propagating wave would satisfy this. Currently, I do not see any wavefronts in this data.

      (2) The other wavefront claim relates to biofilms, and the relevant data is presented in Fig. S4 (and I believe also in what is now Video S8, but no supplemental video legends are provided, and this video is not cited in text.) As before, I cannot discern any wavefronts in the image and video provided; Reviewer 1 was also not able to detect wave propagation in this video by kymograph. Some mean squared displacements are shown in Fig. 7. As before, the methods for how these were obtained are not clearly documented either in this manuscript or in the BioRXiv preprint linked in the initial response to reviewers, and since wavefronts are not evident in the video it is hard to understand what is being measured here- radial distance from where? (The methods section mentions radial distance from the substrate, this should mean Z position above the imaging surface, and no wavefronts are evident in Z in the figure panels or movie.) Thus, clear demonstration of these wavefronts is still missing here as well.

      Fourth, I have some specific questions about the study of blue light stress and the use of PI as a cell viability indicator:

      (1) The logic of this paper includes the premise that blue light exposure is a stressor under the experimental conditions employed in the paper. Although it is of course generally true that blue light can be damaging to bacteria, this is dependent on light power and dosage. The control I recommended above, staining cells with PI in the presence and absence of blue light, will also allow the authors to confirm that this blue light treatment is indeed a stressor- the PI staining would be expected to increase in the presence of blue light if this is so.

      (2) The presence of ThT may complicate the study of the blue light stress response, since ThT enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). The authors could investigate ThT toxicity under these conditions by staining cells with PI after exposing them to blue light with or without ThT staining.

      (3) In my initial review, I wrote the following: "In Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3[BC]), this complicates the interpretation of this experiment." In their response, the authors suggested that these results are not relevant in this case because "In our experiment methodology, cell death was not forced on the cells by introducing an extra burden or via anoxia." However, the logic of the paper is that the cells are in fact dying due to an imposed external stressor, which presumably also confers an increased burden as the cells try to deal with the stress. Instead, the authors should simply use a parallel method to confirm the results of PI staining. For example, the experiment could be repeated with other stains, or the viability of blue light-treated cells could be addressed more directly by outgrowth or colony-forming unit assays.

      The CFU assay suggested above has the additional advantage that it can also be performed on planktonic cells in liquid culture that are exposed to blue light. If, as the paper suggests, a protective response to blue light is being coordinated at the biofilm level by these membrane potential fluctuations, the WT strain might be expected to lose its survival advantage vs. the ∆kch mutant in the absence of a biofilm.

      Fifth, in several cases the data are presented in a way that are difficult to interpret, or the paper makes claims that are different to observe in the data:

      (1) The authors suggest that the ThT and TMRM traces presented in Fig. S1D have similar shapes, but this is not obvious to me- the TMRM curve has very little decrease after the initial peak and only a modest, gradual rise thereafter. The authors suggest that this is due to increased TMRM photobleaching, but I would expect that photobleaching should exacerbate the signal decrease after the initial peak. Since this figure is used to support the use of ThT as a membrane potential indicator, and since this is the only alternative measurement of membrane potential presented in text, the authors should discuss this discrepancy in more detail.

      (2) The comparison of single cells to microcolonies presented in figures 1B and D still needs revision:

      First, both reviewer 1 and I commented in our initial reviews that the ThT traces, here and elsewhere, should not be normalized- this will help with the interpretation of some of the claims throughout the manuscript.

      Second, the way these figures are shown with all traces overlaid at full opacity makes it very difficult to see what is being compared. Since the point of the comparison is the time to first peak (and the standard deviation thereof), histograms of the distributions of time to first peak in both cases should be plotted as a separate figure panel.<br /> Third, statistical significance tests ought to be used to evaluate the statistical strength of the comparisons between these curves. The authors compare both means and standard deviations of the time to first peak, and there are appropriate statistical tests for both types of comparisons.

      (3) The authors claim that the curve shown in Fig. S4B is similar to the simulation result shown in Fig. 7B. I remain unconvinced that this is so, particularly with respect to the kinetics of the second peak- at least it seems to me that the differences should be acknowledged and discussed. In any case, the best thing to do would be to move Fig. S4B to the main text alongside Fig. 7B so that the readers can make the comparison more easily.

      (4) As I wrote in my first review, in the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, these fluctuations cannot be distinguished from measurement noise. A no-light control could help clarify this.

      (5) In the lower irradiance conditions in Fig. 4A, the ThT dynamics are slower overall, and it looks like the ThT intensity is beginning to rise at the end of the measurement. The authors write that no second peak is observed below an irradiance threshold of 15.99 µW/mm2. However, could a more prominent second peak be observed in these cases if the measurement time was extended? Additionally, the end of these curves looks similar to the curve in Fig. S4B, in which the authors write that the slow rise is evidence of the presence of a second peak, in contrast to their interpretation here.

      Additional considerations:

      (1) The analysis and interpretation of the first peak, and particularly of the time-to-fire data is challenging throughout the manuscript the time resolution of the data set is quite limited. It seems that a large proportion of cells have already fired after a single acquisition frame. It would be ideal to increase the time resolution on this measurement to improve precision. This could be done by imaging more quickly, but that would perhaps necessitate more blue light exposure; an alternative is to do this experiment under lower blue light irradiance where the first spike time is increased (Figure 4A).

      (2) The authors suggest in the manuscript that "E. coli biofilms use electrical signalling to coordinate long-range responses to light stress." In addition to the technical caveats discussed above, I am missing a discussion about what these responses might be. What constitutes a long-range response to light stress, and are there known examples of such responses in bacteria?

      (3) The presence of long-range blue light responses can also be interrogated experimentally, for example, by repeating the Live/Dead experiment in planktonic culture or the single-cell condition. If the protection from blue light specifically emerges due to coordinated activity of the biofilm, the ∆kch mutant would not be expected to show a change in Live/Dead staining in non-biofilm conditions. The CFU experiment I mentioned above could also implicate coordinated long-range responses specifically, if biofilms and liquid culture experiments can be compared (although I know that recovering cells from biofilms is challenging.)

      4. At the end of the results section, the authors suggest a critical biofilm size of only 4 μm for wavefront propagation (not much larger than a single cell!) The authors show responses for various biofilm sizes in Fig. 2C, but these are all substantially larger (and this figure also does not contain wavefront information.) Are there data for cell clusters above and below this size that could support this claim more directly?

      (5) In Fig. 4C, the overall trajectories of extracellular potassium are indeed similar, but the kinetics of the second peak of potassium are different than those observed by ThT (it rises minutes earlier)- is this consistent with the idea that Kch is responsible for that peak? Additionally, the potassium dynamics also include the first ThT peak- is this surprising given that the Kch channel has no effect on this peak according to the model?

      Detailed comments:

      Why are Fig. 2A and Video S2 called a microcluster, whereas Video S3, which is smaller, is called a biofilm?

      "We observed a spontaneous rapid rise in spikes within cells in the center of the biofilm" (Line 140): What does "spontaneous" mean here?

      "This demonstrates that the ion-channel mediated membrane potential dynamics is a light stress relief process.", "E. coli cells employ ion-channel mediated dynamics to manage ROS-induced stress linked to light irradiation." (Line 268 and the second sentence of the Fig. 4F legend): This claim is not well-supported. There are several possible interpretations of the catalase experiment (which should be discussed); this experiment perhaps suggests that ROS impacts membrane potential but does not indicate that these membrane potential fluctuations help the cells respond to blue light stress. The loss of viability in the ∆kch mutant might indicate a link between these membrane potential experiments and viability, but it is hard to interpret without the no light controls I mention above.

      "The model also predicts... the external light stress" (Lines 338-341): Please clarify this section. Where does this prediction arise from in the modeling work? Second, I am not sure what is meant by "modulates the light stress" or "keeps the cell dynamics robust to the intensity of external light stress" (especially since the dynamics clearly vary with irradiance, as seen in Figure 4A).

      "We hypothesized that E. coli not only modulates the light-induced stress but also handles the increase of the ROS by adjusting the profile of the membrane potential dynamics" (Line 347): I am not sure what "handles the ROS by adjusting the profile of the membrane potential dynamics" means. What is meant by "handling" ROS? Is the hypothesis that membrane potential dynamics themselves are protective against ROS, or that they induce a ROS-protective response downstream, or something else? Later the authors write that changes in the response to ROS in the model agree with the hypothesis, but just showing that ROS impacts the membrane potential does not seem to demonstrate that this has a protective effect against ROS.

      "Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli." (Line 391): This is misleading- mechanosensitive ion channels totally ablate membrane potential dynamics, they don't have a specific effect on the first hyperpolarization event. The claim that mechanonsensitive ion channels are specifically involved in the first event also appears in the abstract.

      Also, the apparent membrane potential is much lower even at the start of the experiment in these mutants (Fig. 6C-D)- is this expected? This seems to imply that these ion channels also have a blue light-independent effect.

      Throughout the paper, there are claims that the initial ThT spike is involved in "registering the presence of the light stress" and similar. What is the evidence for this claim?

      "We have presented much better quantitative agreement of our model with the propagating wavefronts in E. coli biofilms..." (Line 619): It is not evident to me that the agreement between model and prediction is "much better" in this work than in the cited work (reference 57, Hennes et al. 2023). The model in Figure 4 of ref. 57 seems to capture the key features of their data.

      In methods, "Only cells that are hyperpolarized were counted in the experiment as live" (Line 745): what percentage of cells did not hyperpolarize in these experiments?

      Some indication of standard deviation (error bars or shading) should be added to all figures where mean traces are plotted.

      Video S8 is very confusing- why does the video play first forwards and then backwards? It is easy to misinterpret this as a rise in the intensity at the end of the experiment.

    1. Reviewer #3 (Public review):

      Summary:

      Shiqiang Xu and colleagues have examined the importance of ICAM-1 and ALCAM internalization and retrograde transport in cancer cells on the formation of a polarized immunological synapse with cytotoxic CD8+ T cells. They find that internalization is mediated by Endophilin A3 (EndoA3) while retrograde transport to the Golgi apparatus is mediated by the retromer complex. The paper is building on previous findings from corresponding author Henri-François Renard showing that ALCAM is an EndoA3-dependent cargo in clathrin-independent endocytosis.

      Strengths:

      The work is interesting as it describes a novel mechanism by which cancer cells might influence CD8+ T cell activation and immunological synapse formation, and the authors have used a variety of cell biology and immunology methods to study this. However, there are some aspects of the paper that should be addressed more thoroughly to substantiate the conclusions made by the authors.

      Weaknesses:

      In Figure 2A-B, the authors show micrographs from live TIRF movies of HeLa and LB33-MEL cells stably expressing EndoA3-GFP and transiently expressing ICAM-1-mScarlet. The ICAM-1 signal appears diffuse across the plasma membrane while the EndoA3 signal is partially punctate and partially lining the edge of membrane patches. Previous studies of EndoA3-mediated endocytosis have indicated that this can be observed as transient cargo-enriched puncta on the cell surface. In the present study, there is only one example of such an ICAM-1 and EndoA3 positive punctate event. Other examples of overlapping signals between ICAM-1 and EndoA3 are shown, but these either show retracting ICAM-1 positive membrane protrusions or large membrane patches encircled by EndoA3. While these might represent different modes of EndoA3-mediated ICAM-1 internalization, any conclusion on this would require further investigation.

      Moreover, in Figure 2C-E, uptake of the previously established EndoA3 endocytic cargo ALCAM is analyzed by quantifying total internal fluorescence in LB33-MEL cells of antibody labelled ALCAM following both overexpression and siRNA-mediated knockdown of EndoA3, showing increased and decreased uptake respectively. Why has not the same quantification been done for the proposed novel EndoA3 endocytic cargo ICAM-1? Furthermore, if endocytosis of ICAM-1 and ALCAM is diminished following EndoA3 knockdown, the expression level on the cell surface would presumably increase accordingly. This has been shown for ALCAM previously and should also be quantified for ICAM-1.

      In Figure 4A the authors show micrographs from a live-cell Airyscan movie (Movie S6) of a CD8+ T cell incubated with HeLa cells stably expressing HLA-A*68012 and transiently expressing ICAM1-EGFP. From the movie, it seems that some ICAM-1 positive vesicles in one of the HeLa cells are moving towards the T cell. However, it does not appear like the T cell has formed a stable immunological synapse but rather perhaps a motile kinapse. Furthermore, to conclude that the ICAM-1 positive vesicles are transported toward the T cell in a polarized manner, vesicles from multiple cells should be tracked and their overall directionality should be analyzed. It would also strengthen the paper if the authors could show additional evidence for polarization of the cancer cells in response to T-cell interaction.

      Finally, in Figures 4D-G, the authors show that the contact area between CD8+ T cells and LB33-MEL cells is increased in response to siRNA-mediated knockdown of EndoA3 and VPS26A. While this could be caused by reduced polarized delivery of ICAM-1 and ALCAM to the interface between the cells, it could also be caused by other factors such as increased cell surface expression of these proteins due to diminished endocytosis, and/or morphological changes in the cancer cells resulting from disrupted membrane traffic. More experimental evidence is needed to support the working model in Figure 4H.

    1. Reviewer #3 (Public review):

      Summary:

      In the manuscript by Lapao et al., the authors uncover a role for the RAB27A effector protein SYTL5 in regulating mitochondrial function and turnover. The authors find that SYTL5 localizes to mitochondria in a RAB27A-dependent way and that loss of SYTL5 (or RAB27A) impairs lysosomal turnover of an inner mitochondrial membrane mitophagy reporter but not a matrix-based one. As the authors see no co-localization of GFP/mScarlet tagged versions of SYTL5 or RAB27A with LC3 or p62, they propose that lysosomal turnover is independent of the conventional autophagy machinery. Finally, the authors go on to show that loss of SYTL5 impacts mitochondrial respiration and ECAR and as such may influence the Warburg effect and tumorigenesis. Of relevance here, the authors go on to show that SYTL5 expression is reduced in adrenocortical carcinomas and this correlates with reduced survival rates.

      Strengths:

      There are clearly interesting and new findings here that will be relevant to those following mitochondrial function, the endocytic pathway, and cancer metabolism.

      Weaknesses:

      The data feel somewhat preliminary in that the conclusions rely on exogenously expressed proteins and reporters, which do not always align.

      As the authors note there are no commercially available antibodies that recognize endogenous SYTL5, hence they have had to stably express GFP-tagged versions. However, it appears that the level of expression dictates co-localization from the examples the authors give (though it is hard to tell as there is a lack of any kind of quantitation for all the fluorescent figures). Therefore, the authors may wish to generate an antibody themselves or tag the endogenous protein using CRISPR.

      In relation to quantitation, the authors found that SYTL5 localizes to multiple compartments or potentially a few compartments that are positive for multiple markers. Some quantitation here would be very useful as it might inform on function.

      The authors find that upon hypoxia/hypoxia-like conditions that punctate structures of SYTL5 and RAB27A form that are positive for Mitotracker, and that a very specific mitophagy assay based on pSu9-Halo system is impaired by siRNA of SYTL5/RAB27A, but another, distinct mitophagy assay (Matrix EGFP-mCherry) shows no change. I think this work would strongly benefit from some measurements with endogenous mitochondrial proteins, both via immunofluorescence and western blot-based flux assays.

      A really interesting aspect is the apparent independence of this mitophagy pathway on the conventional autophagy machinery. However, this is only based on a lack of co-localization between p62 or LC3 with LAMP1 and GFP/mScarlet tagged SYTL5/RAB27A. However, I would not expect them to greatly colocalize in lysosomes as both the p62 and LC3 will become rapidly degraded, while the eGFP and mScarlet tags are relatively resistant to lysosomal hydrolysis. -/+ a lysosome inhibitor might help here and ideally, the functional mitophagy assays should be repeated in autophagy KOs.

      The link to tumorigenesis and cancer survival is very interesting but it is not clear if this is due to the mitochondrially-related aspects of SYTL5 and RAB27A. For example, increased ECAR is seen in the SYTL5 KO cells but not in the RAB27A KO cells (Fig.5D), implying that mitochondrial localization of SYTL5 is not required for the ECAR effect. More work to strengthen the link between the two sections in the paper would help with future directions and impact with respect to future cancer treatment avenues to explore.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have studied the mechanics of bolalipid and archaeal mixed-lipid membranes via comprehensive molecular dynamics simulations. The Cooke-Deserno 3-bead-per-lipid model is extended to bolalipids with 6 beads. Phase diagrams, bending rigidity, mechanical stability of curved membranes, and cargo uptake are studied. Effects such as the formation of U-shaped bolalipids, pore formation in highly curved regions, and changes in membrane rigidity are studied and discussed. The main aim has been to show how the mixture of bolalipids and regular bilayer lipids in archaeal membrane models enhances the fluidity and stability of these membranes.

      Strengths:

      The authors have presented a wide range of simulation results for different membrane conditions and conformations. For the most part, the analyses and their results are presented clearly and concisely. Figures, supplementary information, and movies very well present what has been studied. The manuscript is well-written and is easy to follow.

      Major issues:

      The Cooke-Deserno model, while very powerful for biophysical analysis of membranes at the mesoscale, is very much void of chemical information. It is parameterized such that it is good in producing fluid membranes and predicting values for bending rigidity, compressibility, and even thermal expansion coefficient falling in the accepted range of values for bilayer membranes. But it still represents a generic membrane. Now, the authors have suggested a similar model for the archaeal bolalipids, which have chemically different lipids (the presence of cyclopentane rings for one), and there is no good justification for using the same pairwise interactions between their representative beads in the coarse-grained model. This does not necessarily diminish the worth of all the authors' analyses. What is at risk here is the confusion between "what we observe this model of bolalipid- or mixed-membranes do" and "how real bolalipid-containing archaeal membranes behave at these mechanical and thermal conditions.".

      Another more specific, major issue has to do with using the Hamm-Kozlov model for fitting the power spectrum of thermal undulations. The 1/q^2 term can very well be attributed to membrane tension. While a barostat is indeed used, have the authors made absolutely sure that the deviation from 1/q^4 behavior does not correspond to lateral tension? I got more worried when I noticed in the SI that the simulations had been done with combined "fix langevin" and "fix nph" LAMMPS commands. This combination does not result in a proper isothermal-isobaric ensemble. The importance of tilt terms for bolalipids is indeed very interesting, but I believe more care is needed to establish that.

      This issue is reinforced when considering Figure 3B. These results suggest that increasing the fraction of regular lipids increases the tilt modulus, with the maximum value achieved for a normal Cooke-Deserno bilayer void of bolalipids. But this is contradictory. For these bilayers, we don't need the tilt modulus in the first place.

      Also, from the SI, I gathered that the authors have neglected the longest wavelength mode because it is not equilibrated. If this is indeed the case, it is a dangerous thing to do, because with a small membrane patch, this mode can very well change the general trend of the power spectrum. As a lot of other analyses in the manuscript rely on these measurements, I believe more elaboration is in order.

      The authors have found that "there is a strong dependency of the bending rigidity on the membrane mean curvature of stiffer bolalipids." The effect is negative, with the membrane becoming less stiff at higher mean curvatures. Why is that? I would assume that with more flexible bolalipids, the possibility of reorganization into U-shaped chains should affect the bending rigidity more (as Figure 2E suggests). While for a stiff bolalipid, not much would change if you increase the mean curvature. This should be either a tilt effect, or have to do with asymmetry between the leaflets. But on the other hand, the tilt modulus is shown to decrease with increasing bolalipid rigidity. The authors get back to this issue only on page 10, when they consider U-shaped lipids in the inner and outer leaflets and write, "this suggested that an additional membrane-curving mechanism must be involved." But then again, in the Discussion, the authors write, "It is striking that membranes made from stiffer bolalipids showed a curvature-dependent bending modulus, which is a clear signature that bolalipid membranes exhibit plastic behavior during membrane reshaping," adding to the confusion.

      This issue is repeated when the authors study nanoparticle uptake. They write: "to reconcile these seemingly conflicting observations we reason that the bending rigidity, similar to Figure 2F, is not constant but softens upon increasing membrane curvature, due to dynamic change in the ratio between bolalipids in straight and U-shaped conformation. Hence, bolalipid membranes show stroking plastic behavior as they soften during reshaping." But the softening effect that they refer to, as shown in Figure 4B, occurs for very stiff bolalipids, for which not much switching to U-shaped conformation should occur.

      Another major issue is with what the authors refer to as the "effective temperature". While plotting phase diagrams for kT/eps value is absolutely valid, I'm not a fan of calling this effective temperature. It is a dimensionless quantity that scales linearly with temperature, but is not a temperature. It is usually called a "reduced temperature". Then the authors refer to their findings as studying the stability of archaeal membranes at high temperatures. I have to disagree because eps is not the only potential parameter in the simulations (there are at least space exclusion and angle-bending stiffnesses) so one cannot identify changing eps with changing the global simulation temperature. This only works when you have one potential parameter, like an LJ gas.

      Minor issues:

      As the authors have noted, the fact that the membrane curvature can change the ratio of U-shaped to straight bolalipids would render the curvature elasticity non-linear (though the term "plastic" should not be used, as this is still structurally reversible when the stress is removed. Technically, it is hypoelastic behavior, possibly with hysteresis.) With this in mind, when the authors use essentially linear elastic models for fluctuation analysis, they should make a comparison of maximum curvatures occurring in simulations with a range that causes significant changes in bolalipid conformational ratios.

      The Introduction section of the manuscript is written with a biochemical approach, with very minor attention to the simulation works on this system. Some molecular dynamics works are only cited as existing previous work, without mentioning what has already been studied in archaeal membranes. While some information, like the binding of ESCRT proteins to archaeal membranes, though interesting, helps little to place the study within the discipline. The Introduction should be revised to show what has already been studied with simulations (as the authors mention in the Discussion) and how the presented research complements it.

      The authors have been a bit loose with using the term "stability". I'd like to see the distinction in each case, as in "chemical/thermal/mechanical/conformational stability".

      In the original Cooke-Deserno model, a so-called "poorman's angle-bending term" is used, which is essentially a bond-stretching term between the first and third particle. However, I notice the authors using the full harmonic angle-bending potential. This should be mentioned.

      The analysis of energy of U-shaped lipids with the linear model E=c_0 + c_1 * k_bola is indeed very interesting. I am curious, can this also be corroborated with mean energy measurements? The minor issue is calling the source of the favorability of U-shaped lipids "entropic", while clearly an energetic contribution is found. The two conformations, for example, might differ in the interactions with the neighboring lipids.

      The authors write in the Discussion, "In any case, our results indicate that membrane remodelling, such as membrane fission during membrane traffic, is much more difficult in bolalipid membranes [34]." Firstly, I'm not sure if studying the dependence of budding behavior on adhesion energy with nanoparticles is enough to make claims about membrane fission. Secondly, why is the 2015 paper by Markus Deserno cited here?

      In the SI, where the measurement of the diffusion coefficient is discussed, the expression for D is missing the power 2 of displacement.

      Where cargo uptake is discussed, the term "adsorption energy" is used. I think the more appropriate term would be "adhesion energy".

      Typos:<br /> Page 1, paragraph 2: Adaption → Adaptation.<br /> Page 10, paragraph 1: Stroking → Striking.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Squiers and colleagues uncovers a Commander-independent function for COMMD3 in endosomal recycling. The authors identified COMMD3 as a regulator of endosomal recycling for GLUT4-SPR through unbiased genetic screens. Subsequently, the authors performed COMMD3 knockout experiments to assess endosomal morphology and trafficking, demonstrating that COMMD3 regulates endosomal trafficking in a Commander-independent manner. Furthermore, the authors identified and confirmed that the N-terminal domain (NTD) of COMMD3 interacts with the GTPase Arf1. Using structure-guided mutations, they demonstrated that the COMMD3-Arf1 interaction is critical for the Commander-independent function of COMMD3.

      Overall, the manuscript presents compelling evidence for a Commander-independent role of COMMD3, and I agree with the author's interpretations. The manuscript uses a combination of genetic screening, microscopy, and structural and biochemical approaches to examine and support the conclusions. This is an excellent and intriguing study and I have only a few comments and suggestions to improve the manuscript further.

    1. Reviewer #2 (Public review):

      This manuscript addresses an important question which has not yet been solved in the field, what is the contribution of different gamma oscillatory inputs to the development of "theta sequences" in the hippocampal CA1 region. Theta sequences have received much attention due to their proposed roles in encoding short-term behavioral predictions, mediating synaptic plasticity, and guiding flexible decision making. Gamma oscillations in CA1 offer a readout of different inputs to this region and have been proposed to synchronize neuronal assemblies and modulate spike timing and temporal coding. However, the interactions between these two important phenomena have not been sufficiently investigated. The authors conducted place cell and local field potential (LFP) recordings in the CA1 region of rats running on a circular track. They then analyzed the phase locking of place cell spikes to slow and fast gamma rhythms, the evolution of theta sequences during behavior and the interaction between these two phenomena. They found that place cell with the strongest modulation by fast gamma oscillations were the most important contributors to the early development of theta sequences and that they also displayed a faster form of phase precession within slow gamma cycles nested with theta. The results reported are interesting and support the main conclusions of the authors. However, the manuscript needs significant improvement in several aspects regarding data analysis, description of both experimental and analytical methods and alternative interpretations, as I detail below.

      • The experimental paradigm and recordings should be explained at the beginning of the Results section. Right now, there is no description whatsoever which makes it harder to understand the design of the study.<br /> • An important issue that needs to be addressed is the very small fraction of CA1 cells phased-locked to slow gamma rhythms (3.7%). This fraction is much lower than in many previous studies, that typically report it in the range of 20-50 %. However, this discrepancy is not discussed by the authors. This needs to be explained and additional analysis considered. One analysis that I would suggest, although there are also other valid approaches, is to, instead of just analyze the phase locking in two discrete frequency bands, to compute the phase locking will all LFP frequencies from 25-100 Hz. This will offer a more comprehensive and unbiased view of the gamma modulation of place cell firing. Alternative metrics to mean vector length that are less sensitive to firing rates, such as pairwise phase consistency index (Vinck et a., Neuroimage, 2010), could be implemented. This may reveal whether the low fraction of phase locked cells could be due to a low number of spikes entering the analysis.<br /> • From the methods, it is not clear to me whether the reference LFP channel was consistently selected to be a different one that where the spikes analyzed were taken. This is the better practice to reduce the contribution of spike leakage that could substantially inflate the coupling with faster gamma frequencies. These analyses need to be described in more detail.<br /> • The initial framework of the authors of classifying cells into fast gamma and not fast gamma modulated implies a bimodality that may be artificial. The authors should discuss the nuances and limitations of this framework. For example, several previous work has shown that the same place cell can couple to different gamma oscillations (e.g., Lastoczni et al., Neuron, 2016; Fernandez-Ruiz et al., Neuron, 2017; Sharif et al., Neuron,2021).<br /> • It would be useful to provide a more through characterization of the physiological properties of FG and NFG cells, as this distinction is the basis of the paper. Only very little characterization of some place cell properties is provided in Figure 5. Important characteristics that should be very feasible to compare include average firing rate, burstiness, estimated location within the layer (i.e., deep vs superficial sublayers) and along the transverse axis (i.e., proximal vs distal), theta oscillation frequency, phase precession metrics (given their fundamental relationship with theta sequences), etc.<br /> • It is not clear to me how the analysis in Figure 6 was performed. In Fig. 6B I would think that the grey line should connect with the bottom white dot in the third panel, which would the interpretation of the results.

      Comments on revisions:

      The authors have conducted new analysis to address the issues I and the other reviewers raised in our original revision. As a result, the revised manuscript has been substantially improved.

    1. Reviewer #3 (Public review):

      Summary:

      The authors describe a new method for measuring DNA torsion in cells using the photoactivatable intrastrand cross-linker trimethyl psoralen (TMP). However, their method differs from previous TMP-based torsion mapping methods by comparing formaldehyde cross-linked and torsionally trapped chromatin to torsion-relieved (zero-torsion) chromatin in parallel. Comparison between the two datasets reveals a very slight difference, but enough to provide extremely high resolution genome-wide maps of torsion in the yeast genome. This direct comparison of the two maps confirms that blockage of TMP binding by nucleosomes and some DNA-binding proteins from TMP intercalation is a major complication of previous methods, and analysis of the data provides a glimpse of chromatin-based processes from within the DNA gyre.

      Strengths:

      In addition to providing direct evidence for the twin-supercoiled domain model and for torsional effects at transcription start (TSS) and end (TES) sites, the authors' analyses reveal some novel features of yeast higher-order structure. These include the cohesin-dependent anchoring of DNA loops at sites of positive supercoiling and the insulation of torsion between closely spaced divergent genes by general transcription factors, which implies that these factors resist free rotation. The fact that method should be generalizable to complex eukaryotic cells with large genomes, and the implications for understanding how torsion impacts transcription and gene regulation will be of substantial interest to a broad community.

      Weaknesses:

      No serious weaknesses.

    1. Reviewer #3 (Public review):

      Summary:

      This intriguing paper addresses a special case of a fundamental statistical question: how to distinguish between stochastic point processes that derive from a single "state" (or single process) and more than one state/process. In the language of the paper, a "state" (perhaps more intuitively called a strategy/process) refers to a set of rules that determine the temporal statistics of the system. The rules give rise to probability distributions (here, the probability for turning events). The difficulty arises when the sampling time is finite, and hence, the empirical data is finite, and affected by the sampling of the underlying distribution(s). The specific problem being tackled is the foraging behavior of C. elegans nematodes, removed from food. Such foraging has been studied for decades, and described by a transition over time from 'local'/'area-restricted' search'(roughly in the initial 10-30 minutes of the experiments, in which animals execute frequent turns) to 'dispersion', or 'global search' (characterized by a low frequency of turns). The authors propose an alternative to this two-state description - a potentially more parsimonious single 'state' with time-changing parameters, which they claim can account for the full-time course of these observations.

      Figure 1a shows the mean rate of turning events as a function of time (averaged across the population). Here, we see a rapid transient, followed by a gradual 4-5 fold decay in the rate, and then levels off. This picture seems consistent with the two-state description. However, the authors demonstrate that individual animals exhibit different "transition" statistics (Figure 1e) and wish to explain this. They do so by fitting this mean with a single function (Equations 1-3).

      Strengths:

      As a qualitative exercise, the paper might have some merit. It demonstrates that apparently discrete states can sometimes be artifacts of sampling from smoothly time-changing dynamics. However, as a generic point, this is not novel, and so without the grounding in C. elegans data, is less interesting.

      Weaknesses:

      (1) The authors claim that only about half the animals tested exhibit discontinuity in turning rates. Can they automatically separate the empirical and model population into these two subpopulations (with the same method), and compare the results?

      (2) The equations consider an exponentially decaying rate of turning events. If so, Figure 2b should be shown on a semi-logarithmic scale.

      (3) The variables in Equations 1-3 and the methods for simulating them are not well defined, making the method difficult to follow. Assuming my reading is correct, Omega should be defined as the cumulative number of turning events over time (Omega(t)), not as a "turn" or "reorientation", which has no derivative. The relevant entity in Figure 1a is apparently , i.e. the mean number of events across a population which can be modelled by an expectation value. The time derivative would then give the expected rate of turning events as a function of time.

      (4) Equations 1-3 are cryptic. The authors need to spell out up front that they are using a pair of coupled stochastic processes, sampling a hidden state M (to model the dynamic turning rate) and the actual turn events, Omega(t), separately, as described in Figure 2a. In this case, the model no longer appears more parsimonious than the original 2-state model. What then is its benefit or explanatory power (especially since the process involving M is not observable experimentally)?

      (5) Further, as currently stated in the paper, Equations 1-3 are only for the mean rate of events. However, the expectation value is not a complete description of a stochastic system. Instead, the authors need to formulate the equations for the probability of events, from which they can extract any moment (they write something in Figure 2a, but the notation there is unclear, and this needs to be incorporated here).

      (6) Equations 1-3 have three constants (alpha and gamma which were fit to the data, and M0 which was presumably set to 1000). How does the choice of M0 affect the results?

      (7) M decays to near 0 over 40 minutes, abolishing omega turns by the end of the simulations. Are omega turns entirely abolished in worms after 30-40 minutes off food? How do the authors reconcile this decay with the leveling of the turning rate in Figure 1a?

      (8) The fit given in Figure 2b does not look convincing. No statistical test was used to compare the two functions (empirical and fit). No error bars were given (to either). These should be added. In the discussion, the authors explain the discrepancy away as experimental limitations. This is not unreasonable, but on the flip side, makes the argument inconclusive. If the authors could model and simulate these limitations, and show that they account for the discrepancies with the data, the model would be much more compelling. To do this, I would imagine that the authors would need to take the output of their model (lists of turning times) and convert them into simulated trajectories over time. These trajectories could be used to detect boundary events (for a given size of arena), collisions between individuals, etc. in their simulations and to see their effects on the turn statistics.

      (9) The other figures similarly lack any statistical tests and by eye, they do not look convincing. The exception is the 6 anecdotal examples in Figure 2e. Those anecdotal examples match remarkably closely, almost suspiciously so. I'm not sure I understood this though - the caption refers to "different" models of M decay (and at least one of the 6 examples clearly shows a much shallower exponential). If different M models are allowed for each animal, this is no longer parsimonious. Are the results in Figure 2d for a single M model? Can Figure 2e explain the data with a single (stochastic) M model?

      (10) The left axes of Figure 2e should be reverted to cumulative counts (without the normalization).

      (11) The authors give an alternative model of a Levy flight, but do not give the obvious alternative models:<br /> a) the 1-state model in which P(t) = alpha exp (-gamma t) dt (i.e. a single stochastic process, without a hidden M, collapsing equations 1-3 into a single equation).<br /> b) the originally proposed 2-state model (with 3 parameters, a high turn rate, a low turn rate, and the local-to-global search transition time, which can be taken from the data, or sampled from the empirical probability distributions). Why not? The former seems necessary to justify the more complicated 2-process model, and the latter seems necessary since it's the model they are trying to replace. Including these two controls would allow them to compare the number of free parameters as well as the model results. I am also surprised by the Levy model since Levy is a family of models. How were the parameters of the Levy walk chosen?

      (12) One point that is entirely missing in the discussion is the individuality of worms. It is by now well known that individual animals have individual behaviors. Some are slow/fast, and similarly, their turn rates vary. This makes this problem even harder. Combined with the tiny number of events concerned (typically 20-40 per experiment), it seems daunting to determine the underlying model from behavioral statistics alone.

      (13) That said, it's well-known which neurons underpin the suppression of turning events (starting already with Gray et al 2005, which, strangely, was not cited here). Some discussion of the neuronal predictions for each of the two (or more) models would be appropriate.

      (14) An additional point is the reliance entirely on simulations. A rigorous formulation (of the probability distribution rather than just the mean) should be analytically tractable (at least for the first moment, and possibly higher moments). If higher moments are not obtainable analytically, then the equations should be numerically integrable. It seems strange not to do this.

      In summary, while sample simulations do nicely match the examples in the data (of discontinuous vs continuous turning rates), this is not sufficient to demonstrate that the transition from ARS to dispersion in C. elegans is, in fact, likely to be a single 'state', or this (eq 1-3) single state. Of course, the model can be made more complicated to better match the data, but the approach of the authors, seeking an elegant and parsimonious model, is in principle valid, i.e. avoiding a many-parameter model-fitting exercise.

      As a qualitative exercise, the paper might have some merit. It demonstrates that apparently discrete states can sometimes be artifacts of sampling from smoothly time-changing dynamics. However, as a generic point, this is not novel, and so without the grounding in C. elegans data, is less interesting.

    1. Reviewer #3 (Public review):

      Summary:

      In this set of experiments, the authors describe a novel research tool for studying complex cognitive tasks in mice, the HABITS automated training apparatus, and a novel "machine teaching" approach they use to accelerate training by algorithmically providing trials to animals that provide the most information about the current rule state for a given task.

      Strengths:

      There is much to be celebrated in an inexpensively constructed, replicable training environment that can be used with mice, which have rapidly become the model species of choice for understanding the roles of distinct circuits and genetic factors in cognition. Lingering challenges in developing and testing cognitive tasks in mice remain, however, and these are often chalked up to cognitive limitations in the species. The authors' findings, however, suggest that instead, we may need to work creatively to meet mice where they live. In some cases, it may be that mice may require durations of training far longer than laboratories are able to invest with manual training (up to over 100k trials, over months of daily testing) but the tasks are achievable. The "machine teaching" approach further suggests that this duration could be substantially reduced by algorithmically optimizing each trial presented during training to maximize learning.

      Weaknesses:

      Cognitive training and testing in rodent models fill a number of roles. Sometimes, investigators are interested in within-subjects questions - querying a specific circuit, genetically defined neuron population, or molecule/drug candidate, by interrogating or manipulating its function in a highly trained animal. In this scenario, a cohort of highly trained animals that have been trained via a method that aims to make their behavior as similar as possible is a strength.

      However, often investigators are interested in between-subjects questions - querying a source of individual differences that can have long-term and/or developmental impacts, such as sex differences or gene variants. This is likely to often be the case in mouse models especially, because of their genetic tractability. In scenarios where investigators have examined cognitive processes between subjects in mice who vary across these sources of individual difference, the process of learning a task has been repeatedly shown to be different. The authors do not appear to have considered individual differences except perhaps as an obstacle to be overcome.

      The authors have perhaps shown that their main focus is highly-controlled within-subjects questions, as their dataset is almost exclusively made up of several hundred young adult male mice, with the exception of 6 females in a supplemental figure. It is notable that these female mice do appear to learn the two-alternative forced-choice task somewhat more rapidly than the males in their cohort.

      Considering the implications for mice modeling relevant genetic variants, it is unclear to what extent the training protocols and especially the algorithmic machine teaching approach would be able to inform investigators about the differences between their groups during training. For investigators examining genetic models, it is unclear whether this extensive training experience would mitigate the ability to observe cognitive differences, or select the animals best able to overcome them - eliminating the animals of interest. Likewise, the algorithmic approach aims to mitigate features of training such as side biases, but it is worth noting that the strategic uses of side biases in mice, as in primates, can benefit learning, rather than side biases solely being a problem. However, the investigators may be able to highlight variables selected by the algorithm that are associated with individual strategies in performing their tasks, and this would be a significant contribution.

      A final, intriguing finding in this manuscript is that animal self-paced training led to much slower learning than "manual" training, by having the experimenter introduce the animal to the apparatus for a few hours each day. Manual training resulted in significantly faster learning, in almost half the number of trials on average, and with significantly fewer omitted trials. This finding does not necessarily argue that manual training is universally a better choice because it leads to more limited water consumption. However, it suggests that there is a distinct contribution of experimenter interactions and/or switching contexts in cognitive training, for example by activating an "occasion setting" process to accelerate learning for a distinct period of time. Limiting experimenter interactions with mice may be a labor-saving intervention, but may not necessarily improve performance. This could be an interesting topic of future investigation, of relevance to understanding how animals of all species learn.

    1. Reviewer #3 (Public review):

      Summary

      In this work, the authors asked how mating experience impacts reward perception and processing. For this, they employ fruit flies as a model, with a combination of behavioral, immunostaining, and live calcium imaging approaches.

      Their study allowed them to demonstrate that courtship failure decreases the fraction of flies motivated to eat sweet compounds, revealing a link between reproductive stress and reward-related behaviors. This effect is mediated by a small group of dopaminergic neurons projecting to the SEZ. After courtship failure, these dopaminergic neurons exhibit reduced activity, leading to decreased Gr5a+ neuron activity via Dop1R1 and Dop2R signaling, and leading to reduced sweet sensitivity. The authors therefore showed how mating failure influences broader behavioral outputs through suppression of the dopamine-mediated reward system and underscores the interactions between reproductive and reward pathways.

      Concern

      My main concern regarding this study lies in the way the authors chose to present their results. If I understood correctly, they provided evidence that mating failure induces a decrease in the fraction of flies exhibiting PER. However, they also showed that food consumption was not affected (Fig. 1, supplement), suggesting that individuals who did eat consumed more. This raises questions about the analysis and interpretation of the results. Should we consider the group as a whole, with a reduced sensitivity to sweetness, or should we focus on individuals, with each one eating more? I am also concerned about how this could influence the results obtained using live imaging approaches, as the flies being imaged might or might not have been motivated to eat during the feeding assays. I would like the authors to clarify their choice of analysis and discuss this critical point, as the interpretation of the results could potentially be the opposite of what is presented in the manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      Krishnan et al. present a novel contextual fear conditioning (CFC) paradigm using a virtual reality (VR) apparatus to evaluate whether conditioned context-induced freezing can be elicited in head-fixed mice. By combining this approach with two-photon imaging, the authors aim to provide high-resolution insights into the neural mechanisms underlying learning, memory, and fear. Their experiments demonstrate that head-fixed mice can discriminate between threat and non-threat contexts, exhibit fear-related behavior in VR, and show context-dependent variability during extinction. Supplemental analyses further explore alternative behaviors and the influence of experimental parameters, while hippocampal neuron remapping is tracked throughout the experiments, showcasing the paradigm's potential for studying memory formation and extinction processes.

      Strengths:

      Methodological Innovation: The integration of a VR-based CFC paradigm with real-time two-photon imaging offers a powerful, high-resolution tool for investigating the neural circuits underlying fear, learning, and memory.

      Versatility and Utility: The paradigm provides a controlled and reproducible environment for studying contextual fear learning, addressing challenges associated with freely moving paradigms.

      Potential for Broader Applications: By demonstrating hippocampal neuron remapping during fear learning and extinction, the study highlights the paradigm's utility for exploring memory dynamics, providing a strong foundation for future studies in behavioral neuroscience.

      Comprehensive Data Presentation: The inclusion of supplemental figures and behavioral analyses (e.g., licking behaviors and variability in extinction) strengthens the manuscript by addressing additional dimensions of the experimental outcomes.

      Weaknesses:

      Characterization of Freezing Behavior: The evidence supporting freezing behavior as the primary defensive response in VR is unclear. Supplementary videos suggest the observed behaviors may include avoidance-like actions (e.g., backing away or stopping locomotion) rather than true freezing. Additional physiological measurements, such as EMG or heart rate, are necessary to substantiate the claim that freezing is elicited in the paradigm.

      Analysis of Extinction: Extinction dynamics are only analyzed through between-group comparisons within each Recall day, without addressing within-group changes in behavior across days. Statistical comparisons within groups would provide a more robust demonstration of extinction processes.

      Low Sample Sizes: Paradigm 1 includes conditions with very low sample sizes (N=1-3), limiting the reliability of statistical comparisons regarding the effects of shock number and intensity. Increasing sample sizes or excluding data from mice that do not match the conditions used in Paradigms 2 and 3 would improve the rigor of the analysis.

      Potential Confound of Water Reward: The authors critique the use of reward in conjunction with fear conditioning in prior studies but do not fully address the potential confound introduced by using water reward during the training phase in their own paradigm.

    1. Reviewer #3 (Public review):

      Summary:

      This paper by Esmaeili and co-authors presents a connectome prediction study to predict episodic memory and relate prediction errors to other phonotypic variables.

      Strengths:

      (1) A primary and external validation dataset.

      (2) Novel use of prediction errors (i.e., brain-cognitive gap).

      (3) A wide range of data was investigated.

      Weaknesses:

      (1) Lack of comparisons to other methods for prediction.

      (2) Several different points are being investigated that don't allow any particular one to shine through.

      (3) Some choices of analysis are not well-motivated.

      (4) How do the n-back connectomes perform for prediction if the authors do not regress task activations from the n-back task?

      (5) I am a little concerned about overfitting with the convolutional neural net. For example, the drop-off in prediction performance in the external sample is stark. How does the deep learning approach used here compare to something simpler, like a connectome-based predictive model or ridge regression?

      (6) It may be nice to try the other models in the validation dataset. This would also provide a sense of the overfitting that may be going on with overfitting.

      (7) While predictive models increase the power over association studies, they still require large samples to prevent overfitting. Do the authors have a sense of the power their main and external validation sample sizes provide?

      (8) I am not sure that the Mann-Whitney is the correct test for comparing the distributions of prediction performances. The distributions are dependent on each other as they are each predicting the same outcomes. Using the typical degrees of freedom formula would overestimate the degrees of freedom.

      (9) The brain cognition gap is interesting. It is very similar conceptually to the brain age gap. When associating the brain age gap with other phenotypes, typically age is regressed from the brain age gap and the other phenotype. In other words, age is typically associated with a brain age gap as individuals at the tail ages often show the largest gaps. Is the brain cognition gap correlated with episodic memory and do the group differences hold if episodic memory is controlled for?

      (10) I have the same question for the dopamine results. Particularly, in the correlations that are divided by brain cognition gap sign. I could see these types of patterns arise due to a correlation with a third variable.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript by Guo and colleagues features the documentation and interpretation of three successions of continental to marginal marine deposits spanning the P/T transition and their respective ichnofaunas. Based on these new data inferences concerning end-Permian mass extinction and Triassic recovery in the tropical realm are discussed.

      Strengths:

      The manuscript is well-written and organized and includes a large amount of new lithological and ichnological data that illuminate ecosystem evolution in a time of large-scale transition. The lithological documentations, facies interpretations, and ichnotaxonomic assignments look okay (with a few exceptions).

      Weaknesses:

      Some interpretations in Table 1 could be questioned: For facies association FA2 the interpretation as „terrestrial facies with periodical flooding" should be put into the right column and, given the fossil content, other interpretations, such as "marine facies" or "lagoonal environment" with some plant debris and (terrestrial) animal remains washed in, could also be possible. For FA3 the statement "bioturbation is absent" is in conflict with the next statement "strata are moderately reworked". For FA5 the observation of a "monospecific ichnoassemblage" contradicts the listing of several ichnotaxa.

      Concerning the structure of the manuscript, certain hypotheses related to the end-Permian mass extinction and the process of the P/T extinction and recovery, namely the existence of a long-persisting "tropic dead zone" are introduced as a foregone conclusion to which the new data seemingly shall be fit as corroborating evidence. Some of the data - e.g. the presence of a supposedly Smithian-age ichnofauna are interpreted as a fast recovery shortening the duration of the "tropic dead zone" episode - but these interpretations could also be interpreted as contradicting the idea of a "dead zone" sensu stricto in favour of a "normal" post-extinction environment with low diversity and occurrence of typical disaster taxa. Due to their large error bars the early Triassic radiometric ages did not put much of a constraint on the age determination of the earliest post-extinction ichnofaunas discussed here.

      Considering the somewhat equivocal evidence and controversial ideas about the P/T transition, the introduction could be improved by describing how the idea of a "tropic dead zone" arose against the background of earlier ideas, alternative views, and conflicting data. In the discussion section, alternative interpretations of the extensive data presented here - e.g. proximal-distal shifts in lithofacies with respect to the sediment source, sea level changes, preservation bias, the local occurrence of hostile environments instead of a regional scale, etc. should be discussed, also to avoid the impression that the author's conclusion was driven by confirmation bias.

      Contrary to the authors' claim, Figures S7 and S8 suggest that burrow size does not vary much within the studied sections. Size decreases and increases in the Shichuanhe and Liulin sections do not contemporaneously, are usually within the error-bar range, and might be driven by ichnotaxa composition, i.e. the presence or absence of larger ichnotaxa, rather than by size changes in the same ichnotaxon (and producer group). Here the measurement data would be needed as well to check the basis of the authors' interpretations.

      Some arthropod tracks assigned here to Kouphichnium might not represent limulid traces but other (non-marine) arthropod taxa in accordance with their occurrence in terrestrial facies/non-marine units of the succession. More generally, the ichnotaxonomy of arthropod trackways is not yet well reserved - beyond Kouphichnium and Diplichnites various similar-looking types may occur that can have a variety of distinct insect, crustacean, millipede, etc. producers (including larval stages).

    1. Reviewer #3 (Public review):

      In this manuscript, the authors use HiC to study the 3D genome of CD14+ CD16+ monocytes from the blood of healthy and those from patients with Alcohol-associated Hepatitis.

      Overall, the authors perform a cursory analysis of the HiC data and conclude that there are a large number of changes in 3D genome architecture between healthy and AH patient monocytes. They highlight some specific examples that are linked to changes in gene expression. The analysis is of such a preliminary nature that I would usually expect to see the data from all figures in just one or two figures.

      In addition, I have a number of concerns regarding the experimental design and the depth of the analyses performed that I think must be addressed.

      (1) There is a myriad of literature that describes the existence of cell type-specific 3D genome architecture. In this manuscript, there is an assumption by the authors that the CD14+ CD16+ monocytes represent the same population from both healthy and diseased patients. Therefore, the authors conclude that the differences they see in the HiC data are due to disease-related changes in the equivalent cell types. However, I am concerned that the AH patient monocytes may have differentiated due to their environment so that they are in fact akin to a different cell type and the 3D genome changes they describe reflect this. This is supported by published articles for example: Dhanda et al., Intermediate Monocytes in Acute Alcoholic Hepatitis Are Functionally Activated and Induce IL-17 Expression in CD4+ T Cells. J Immunol (2019) 203 (12): 3190-3198, in which they show an increased frequency of CD14+ CD16+ intermediate monocytes in AH patients that are functionally distinct.

      I suggest that if the authors would like to study the specific effects of AH on 3D genome architecture then they should carefully FACsort the equivalent monocyte populations from the healthy and AH patients.

      (2) The analysis of the HiC data is quite preliminary. In the 3D genome field, it is usual to report the different scales of genome architecture, for example, compartments, topologically associated domains (TADs), and loops. I think that reporting this information and how it changes in AH patients in the appropriate cell types would be of great interest to the field.

    1. Reviewer #3 (Public review):

      Summary:

      The study highlights how the initiation, reversal, and cessation of movements are linked to changes in beta synchronization within the basal ganglia-cortex loops. It was observed that different movement phases, such as starting, stopping briefly, and stopping completely, affect beta oscillations in the motor system.

      It was found that unpredictable cues lead to stronger changes in STN-cortex beta coherence. Additionally, specific patterns of beta and gamma oscillations related to different movement actions and contexts were observed. Stopping movements was associated with a lack of the expected beta rebound during brief pauses within a movement sequence.

      Overall, the results underline the complex and context-dependent nature of motor control and emphasize the role of beta oscillations in managing movement according to changing external cues.

      Strengths:

      The paper is very well written, clear and appears methodologically sound.

      Although the use of continuous movement (turning) with reversals is more naturalistic than many previous button push paradigms.

      Weaknesses:

      The generalizability of the findings are somewhat curtailed by the fact that this was performed peri-operatively during the period of the microlesion effect. Given the availability of sensing enabled DBS devices now and HD-EEG, does MEG offer a significant enough gain in spatial localizability to offset the fact that it has to be done shortly postoperatively with externalized leads, with attendant stun effect? Specifically, for paradigms that are not asking very spatially localized questions as a primary hypothesis?

      Further investigation of the gamma signal seems warranted, even though it has a slightly lower proportional change in amplitude in beta. Given that the changes in gamma here are relatively wide band, this could represent a marker of neural firing that could be interestingly contrasted against the rhythm account presented.

      Comments on revisions: I congratulate the authors on their paper and their revisions and I have no further comments. I look forward to seeing the continuous analyses in the future. Good luck!

    1. Reviewer #3 (Public review):

      The authors tested whether: 1. The number of stimulus-stimulus pairings alters whether preconditioned fear depends on online integration during formation of the stimulus-outcome memory or during the probe test/mobilization phase, when the original stimulus, which was never paired with aversive events, elicits fear via chaining of stimulus-stimulus and stimulus-outcome memories. They found that sensory preconditioning was successful with either 8 or 32 stimulus-stimulus pairings. Perirhinal cortex NMDA receptor blockade during stimulus-outcome learning impaired preconditioning following 8 but not 32 pairings during preconditioning. Therefore, perirhinal cortex NMDA activity is required for online integration or mediated learning. Perirhinal-basolateral amygdala had nearly identical effects with the same interpretation: these areas communicate during stimulus-outcome learning, and this online communication is required for later expressing preconditioned fear. Disconnection prior to the probe test, when chaining might occur, had different effects: it impaired the expression of preconditioned fear in rats that received 32, but not 8, pairings during preconditioning. The study has several strengths and provides a thoughtful discussion of future experiments. The study is highly impactful and significant; the authors were successful in describing the behavioral and neurobiological mechanisms of mediated learning versus chaining in sensory preconditioning, which is often debated in the learning field. Therefore this study will have a significant impact on the behavioral neurobiology and learning fields.

      Strengths:

      Careful, rigorous experimental design and statistics

      The discussion leaves open questions that are very much worth exploring. For example - why did perirhinal-amygdala disconnection prior to the probe have no effect in the 8-pairing group, when bilateral perirhinal inactivation did (in Wong et al, 2019)? The authors propose that perirhinal cortex outputs bypass the amygdala during the probe test, which is an excellent hypothesis to test.

      The experiments are very explicitly hypothesis-driven, and the authors provide evidence of how and why mediated learning and chaining occur during sensory-sensory learning.

    1. Reviewer #3 (Public review):

      Summary:

      This study identifies confirmational fingerprints of amylodogenic light chains, that set them apart from the non-amylodogenic ones.

      Strengths:

      The research employs a comprehensive combination of structural and dynamic analysis techniques, providing evidence that conformational dynamics at VL-CL interface and structural expansion are distinguished features of amylodogenic LCs.

      Weaknesses:

      The sample size is limited, which may affect the generalizability of the findings. Additionally, the study could benefit from deeper analysis of specific mutations driving this unique conformation to further strengthen therapeutic relevance.

      Furthermore. p-value (statistical significance) of Rg difference should be computer. Finally, significance of mutations (SHM?) at the interface, such as A40G should be compared with previous observations. (Garofalo et al., 2021)

    1. Reviewer #3 (Public review):

      Summary:

      Ishii et al used molecular genetics, behavioral analyses, in vivo neural activity imaging, and neural activity manipulations in mice to study the functional role of a subset of medial preoptic area (MPOA) neurons in the regulation of female sexual drive. They first employed a self-paced mating assay during which a female could control the amount of interaction time with a male to assess female sexual drive after completion of mating. The authors observed that after mating completion (i.e., male ejaculation) females spend significantly less time interacting with males, indicating that their sexual drive is reduced. Next, the authors performed a brain-wide analysis of neurons activated following male ejaculation and identified the MPOA as a strong candidate region. One caveat is that the activity labeling was not exclusive to neurons activated following male ejaculation but included all neurons activated before, during, and after the mating encounter. However, in this revised version of the manuscript, the authors have included a key control group that labels all neurons activated up to but not including male ejaculation. Comparison of the number of activated neurons in these two groups revealed a significant additional set of neurons in the female MPOA following ejaculation. Importantly, the authors also provided in vivo calcium imaging data showing that a subset of MPOA neurons responds significantly and specifically to male ejaculation and not other behaviors during the social encounter. The authors performed these studies in both excitatory and inhibitory populations of the MPOA. Their analysis identified a subpopulation of inhibitory neurons that exhibit sustained increased activity for 90 sec following male ejaculation. Finally, the authors used chemogenetics to activate MPOA neurons during home cage mating, condition place preference, pup retrieval, and the self-paced mating assay. They found that activation of female MPOA neurons that were previously activated following male ejaculation significantly reduces mating behaviors and time spent interacting with a male during the self-paced mating assay. Whereas, activation of female MPOA neurons that were previously activated during consummatory behaviors but not male ejaculation does not alter mating behaviors and time spent interacting with a male. Therefore, MPOA neurons activated following ejaculation are sufficient to suppress female sexual motivation.

      The authors' experimental execution is rigorous and well performed. Their data identify inhibitory neurons in the female MPOA as a neural locus that is activated following male ejaculation and whose prolonged activity plays a key role in the regulation of female sexual motivation. The addition of some key control groups to this revised version of the manuscript greatly strengthens the interpretation of the authors' findings.

      Strengths:

      (1) The use of the self-paced mating assay in combination with neural imaging and manipulation to assess female sexual drive is innovative. The authors correctly assert that relatively little is known about how male ejaculation affects sexual motivation in females as compared to males. Therefore, the data collected from these studies is important and valuable.

      (2) The authors provide convincing histological data and analyses to verify and validate their brain-wide activity labeling, neural imaging, and chemogenetic studies.

      (3) The single cell in vivo calcium imaging data are well performed and analyzed. They provide key insights into the activity profiles of both excitatory and inhibitory neurons in the female MPOA during mating encounters. The authors identification of an inhibitory subpopulation of female MPOA neurons that is selectively activated following completion of mating is fundamental for future experiments which could potentially find a molecular marker for this population and specifically manipulate these neurons to understand their role in female sexual motivation in greater detail.

      (4) The authors provide convincing evidence that activation of female MPOA neurons activated following male ejaculation is sufficient to suppress female sexual motivation. Importantly, the authors addition of the consummatory-hM3Dq group demonstrates that activation of female MPOA neurons activated during mating behaviors prior to male ejaculation is not sufficient to suppress female sexual motivation.

      Weaknesses:

      In this revised version of the manuscript, the authors have added important controls as well as additional clarifying text that adequately address the weaknesses that were present in the original version of the manuscript.

    1. Reviewer #3 (Public review):

      This manuscript presents a number of interesting findings that have the potential to increase our understanding of the mechanism underlying homeostatic synaptic plasticity (HSP). The data broadly support that Rab3A plays a role in HSP, although the site and mechanism of action remain uncertain.

      The authors clearly demonstrate that Rab3A plays a role in HSP at excitatory synapses, with substantially less plasticity occurring in the Rab3A KO neurons. There is also no apparent HSP in the Earlybird Rab3A mutation, although baseline synaptic strength is already elevated. In this context, it is unclear if the plasticity is absent, already induced by this mutation, or just occluded by a ceiling effect due to the synapses already being strengthened. Occlusion may also occur in the mixed cultures when Rab3A is missing from neurons but not astrocytes. The authors do appropriately discuss these options. The authors have solid data showing that Rab3A is unlikely to be active in astrocytes, Finally, they attempt to study the linkage between changes in synaptic strength and AMPA receptor trafficking during HSP, and conclude that trafficking may not be solely responsible for the changes in synaptic strength during HSP.

      Strengths:

      This work adds another player into the mechanisms underlying an important form of synaptic plasticity. The plasticity is likely only reduced, suggesting Rab3A is only partially required and perhaps multiple mechanisms contribute. The authors speculate about some possible novel mechanisms, including whether Rab3A is active pre-synaptically to regulate quantal amplitude.

      As Rab3A is primarily known as a pre-synaptic molecule, this possibility is intriguing. However, it is based on the partial dissociation of AMPAR trafficking and synaptic response and lacks strong support. On average, they saw a similar magnitude of change in mEPSC amplitude and GluA2 cluster area and integral, but the GluA2 data was not significant due to higher variability. It is difficult to determine if this is due to biology or methodology - the imaging method involves assessing puncta pairs (GluA2/VGlut1) clearly associated with a MAP2 labeled dendrite. This is a small subset of synapses, with usually less than 20 synapses per neuron analyzed, which would be expected to be more variable than mEPSC recordings averaged across several hundred events. However, when they reduce the mEPSC number of events to similar numbers as the imaging, the mESPC amplitudes are still less variable than the imaging data. The reason for this remains unclear. The pool of sampled synapses is still different between the methods and recent data has shown that synapses have variable responses during HSP. Further, there could be variability in the subunit composition of newly inserted AMPARs, and only assessing GluA2 could mask this (see below). It is intriguing that pre-synaptic changes might contribute to HSP, especially given the likely localization of Rab3A. But it remains difficult to distinguish if the apparent difference in imaging and electrophysiology is a methodological issue rather than a biological one. Stronger data, especially positive data on changes in release, will be necessary to conclude that pre-synaptic factors are required for HSP, beyond the established changes in post-synaptic receptor trafficking.

      Other questions arise from the NASPM experiments, used to justify looking at GluA2 (and not GluA1) in the immunostaining. First, there is a strong frequency effect that is unclear in origin. One would expect NASPM to merely block some fraction of the post-synaptic current, and not affect pre-synaptic release or block whole synapses. But the change in frequency seems to argue (as the authors do) that some synapses only have CP-AMPARs, while the rest of the synapses have few or none. Another possibility is that there are pre-synaptic NASPM-sensitive receptors that influence release probability. Further, the amplitude data show a strong trend towards smaller amplitude following NASPM treatment (Fig 3B). The p value for both control and TTX neurons was 0.08 - it is very difficult to argue that there is no effect. The decrease on average is larger in the TTX neurons, and some cells show a strong effect. It is possible there is some heterogeneity between neurons on whether GluA1/A2 heteromers or GluA1 homomers are added during HSP. This would impact the conclusions about the GluA2 imaging as compared to the mEPSC amplitude data.

      To understand the role of Rab3A in HSP will require addressing two main issues:

      (1) Is Rab3A acting pre-synaptically, post-synaptically or both? The authors provide good evidence that Rab3A is acting within neurons and not astrocytes. But where it is acting (pre or post) would aid substantially in understanding its role. The general view in the field has been that HSP is regulated post-synaptically via regulation of AMPAR trafficking, and considerable evidence supports this view. More concrete support for the authors' suggestion of a pre-synaptic site of control would be helpful.

      (2) Rab3A is also found at inhibitory synapses. It would be very informative to know if HSP at inhibitory synapses is similarly affected. This is particularly relevant as at inhibitory synapses, one expects a removal of GABARs or a decrease in GABA release (ie the opposite of whatever is happening at excitatory synapses). If both processes are regulated by Rab3A, this might suggest a role for this protein more upstream in the signaling; an effect only at excitatory synapses would argue for a more specific role just at those synapses.

    1. Reviewer #3 (Public review):

      Huang et al. investigated the phenotype of Bend2 mutant mice which expressed truncated isoform. Bend2 deletion in male showed fertility and this enabled them to analyze the BEND2 function in females. They showed that Bend2 deletion in females showed decreasing follicle number which may lead to loss of ovarian reserve.

      Strengths:

      They found the truncated isoform of Bend2 and the depletion of this isoform showed decreasing follicle number at birth.

      Weaknesses:

      The authors showed novel factors that impact ovarian reserve. Although the number of follicles and conception rate are reduced in mutant mice, the in vitro fertilization rate is normal and follicles remain at 40 weeks of age. It is difficult to know how critical this is when applied to the human case.

    1. Reviewer #3 (Public review):

      Summary:

      The authors performed a detailed single-cell analysis of the early embryonic cranial neural plate with unprecedented temporal resolution between embryonic days 7.5 and 8.75. They employed diffusion analysis to identify genes that correspond to different temporal and spatial locations within the embryo. Finally, they also examined the global response of cranial tissue to a Smoothened agonist.

      Strengths:

      Overall, this is an impressive resource, well-validated against sets of genes with known temporal and spatial patterns of expression. It will be of great value to investigators examining early stages of neural plate patterning, neural progenitor diversity, and the roles of signaling molecules and gene regulatory networks controlling regionalization and diversification of the neural plate.

      Weaknesses:

      The manuscript should be considered a resource. Experimental manipulation is limited to analysis of neural plate cells that were cultured in vitro for 12 hours with SAG. They have identified a significant set of previously unreported genes that are differentially expressed in the cranial neural plate. Some additional analyses might help to highlight novel hypotheses arising from this remarkable resource.

      Comments on revisions: I am satisfied with the responses of the authors and do not have any further concerns.

    1. Reviewer #3 (Public review):

      Summary:

      Borghi and colleagues present results from 4 experiments aimed at investigating the effects of dual γtACS and iTBS stimulation of the precuneus on behavioral and neural markers of memory formation. In their first experiment (n = 20), they found that a 3-minute offline (i.e., prior to task completion) stimulation that combines both techniques leads to superior memory recall performance in an associative memory task immediately after learning associations between pictures of faces, names, and occupation, as well as after a 15-minute delay, compared to iTBS alone (+ tACS sham) or no stimulation (sham for both iTBS and tACS). Performance in a second task probing short-term memory was unaffected by the stimulation condition. In a second experiment (n = 10), they show that these effects persist over 24 hours and up to a full week after initial stimulation. A third (n = 14) and fourth (n = 16) experiment were conducted to investigate the neural effects of the stimulation protocol. The authors report that, once again, only combined iTBS and γtACS increase gamma oscillatory activity and neural excitability (as measured by concurrent TMS-EEG) specific to the stimulated area at the precuneus compared to a control region, as well as precuneus-hippocampus functional connectivity (measured by resting-state MRI), which seemed to be associated with structural white matter integrity of the bilateral middle longitudinal fasciculus (measured by DTI).

      Strengths:

      Combining non-invasive brain stimulation techniques is a novel, potentially very powerful method to maximize the effects of these kinds of interventions that are usually well-tolerated and thus accepted by patients and healthy participants. It is also very impressive that the stimulation-induced improvements in memory performance resulted from a short (3 min) intervention protocol. If the effects reported here turn out to be as clinically meaningful and generalizable across populations as implied, this approach could represent a promising avenue for the treatment of impaired memory functions in many conditions.

      Methodologically, this study is expertly done! I don't see any serious issues with the technical setup in any of the experiments (with the only caveat that I am not an expert in fMRI functional connectivity measures and DTI). It is also very commendable that the authors conceptually replicated the behavioral effects of experiment 1 in experiment 2 and then conducted two additional experiments to probe the neural mechanisms associated with these effects. This certainly increases the value of the study and the confidence in the results considerably.

      The authors used a within-subject approach in their experiments, which increases statistical power and allows for stronger inferences about the tested effects. They are also used to individualize stimulation locations and intensities, which should further optimize the signal-to-noise ratio.

      Weaknesses:

      I want to state clearly that I think the strengths of this study far outweigh the concerns I have. I still list some points that I think should be clarified by the authors or taken into account by readers when interpreting the presented findings.

      I think one of the major weaknesses of this study is the overall low sample size in all of the experiments (between n = 10 and n = 20). This is, as I mentioned when discussing the strengths of the study, partly mitigated by the within-subject design and individualized stimulation parameters. The authors mention that they performed a power analysis but this analysis seemed to be based on electrophysiological readouts similar to those obtained in experiment 3. It is thus unclear whether the other experiments were sufficiently powered to reliably detect the behavioral effects of interest. That being said, the authors do report significant effects, so they were per definition powered to find those. However, the effect sizes reported for their main findings are all relatively large and it is known that significant findings from small samples may represent inflated effect sizes, which may hamper the generalizability of the current results. Ideally, the authors would replicate their main findings in a larger sample. Alternatively, I think running a sensitivity analysis to estimate the smallest effect the authors could have detected with a power of 80% could be very informative for readers to contextualize the findings. At the very least, however, I think it would be necessary to address this point as a potential limitation in the discussion of the paper.

      It seems that the statistical analysis approach differed slightly between studies. In experiment 1, the authors followed up significant effects of their ANOVAs by Bonferroni-adjusted post-hoc tests whereas it seems that in experiment 2, those post-hoc tests where "exploratory", which may suggest those were uncorrected. In experiment 3, the authors use one-tailed t-tests to follow up their ANOVAs. Given some of the reported p-values, these choices suggest that some of the comparisons might have failed to reach significance if properly corrected. This is not a critical issue per se, as the important test in all these cases is the initial ANOVA but non-significant (corrected) post-hoc tests might be another indicator of an underpowered experiment. My assumptions here might be wrong, but even then, I would ask the authors to be more transparent about the reasons for their choices or provide additional justification. Finally, the authors sometimes report exact p-values whereas other times they simply say p < .05. I would ask them to be consistent and recommend using exact p-values for every result where p >= .001.

      While the authors went to great lengths trying to probe the neural changes likely associated with the memory improvement after stimulation, it is impossible from their data to causally relate the findings from experiments 3 and 4 to the behavioral effects in experiments 1 and 2. This is acknowledged by the authors and there are good methodological reasons for why TMS-EEG and fMRI had to be collected in sperate experiments, but it is still worth pointing out to readers that this limits inferences about how exactly dual iTBS and γtACS of the precuneus modulate learning and memory.

      There were no stimulation-related performance differences in the short-term memory task used in experiments 1 and 2. The authors argue that this demonstrates that the intervention specifically targeted long-term associative memory formation. While this is certainly possible, the STM task was a spatial memory task, whereas the LTM task relied (primarily) on verbal material. It is thus also possible that the stimulation effects were specific to a stimulus domain instead of memory type. In other words, could it be possible that the stimulation might have affected STM performance if the task taxed verbal STM instead? This is of course impossible to know without an additional experiment, but the authors could mention this possibility when discussing their findings regarding the lack of change in the STM task.

      While the authors discuss the potential neural mechanisms by which the combined stimulation conditions might have helped memory formation, the psychological processes are somewhat neglected. For example, do the authors think the stimulation primarily improves the encoding of new information or does it also improve consolidation processes? Interestingly, the beneficial effect of dual iTBS and γtACS on recall performance was very stable across all time points tested in experiments 1 and 2, as was the performance in the other conditions. Do the authors have any explanation as to why there seems to be no further forgetting of information over time in either condition when even at immediate recall, accuracy is below 50%? Further, participants started learning the associations of the FNAT immediately after the stimulation protocol was administered. What would happen if learning started with a delay? In other words, do the authors think there is an ideal time window post-stimulation in which memory formation is enhanced? If so, this might limit the usability of this procedure in real-life applications.

    1. Reviewer #3 (Public review):

      Summary:

      This study from Oriol et al. first uses transgenic animals to examine projection targets of specific subtypes of VTA GABA neurons (expressing PV, SST, MOR, or NTS). They follow this with a set of optogenetic experiments showing that VTA projection neurons (regardless of genetic subtype) make local functional connections within the VTA itself. Both of these findings are important advances in the field. Notably, both GABAergic and glutamatergic neurons in the VTA likely exhibit these combined long/short-range projections.

      Strengths:

      The main strength of this study is the series of optogenetic/electrophysiological experiments that provide detailed circuit connectivity of VTA neurons. The long-range projections to the VP (but not other targets) are also verified to have functional excitatory and inhibitory components. Overall, the experiments are well executed and the results are very relevant in light of the rapidly growing knowledge about the complexity and heterogeneity of VTA circuitry.

      Another strength of this study is the well-written and thoughtful discussion regarding the current findings in the context of the long-standing question of whether the VTA does or does not have true interneurons.

      Comments on revisions:

      The authors have addressed all of my questions admirably, and the final result is considerably improved and remains a valuable contribution to the field.

    1. Reviewer #3 (Public review):

      Summary:

      Mutations that result in consistent RAS activation constitute a major driver of cancer. Therefore, RAS is a favorable target for cancer therapy. However, since normal RAS activity is essential for the function of normal cells, a mechanism that differentiates aberrant RAS activity from normal one is required to avoid severe adverse effects. To this end, the authors designed and optimized a synthetic gene circuit that is induced by active RAS-GTP. The circuit components, such as RAS-GTP sensors, dimerization domains, and linkers. To enhance the circuit selectivity and dynamic range, the authors designed a synthetic promoter comprised of MAPK-responsive elements to regulate the expression of the RAS sensors, thus generating a feed-forward loop regulating the circuit components. Circuit outputs with respect to circuit design modification were characterized in standard model cell lines using basal RAS activity, active RAS mutants, and RAS inactivation.

      This approach is interesting. The design is novel and could be implemented for other RAS-mediated applications. The data support the claims, and while this circuit may require further optimization for clinical application, it is an interesting proof of concept for targeting aberrant RAS activity.

      Strengths:

      Novel circuit design, through optimization and characterization of the circuit components, solid data.

      Weaknesses:

      This manuscript could significantly benefit from testing the circuit performance in more realistic cell lines, such as patient-derived cells driven by RAS mutations, as well as in corresponding non-cancer cell lines with normal RAS activity. Furthermore, testing with therapeutic output proteins in vitro, and especially in vivo, would significantly strengthen the findings and claims.

    1. Reviewer #3 (Public review):

      Summary:

      The laboratory mouse is an ideal animal to study the neural and psychological underpinnings of social dominance behavior because of its economic cost and the animals' readiness to display dominant and subordinate behaviors in simple and testable environments. Here, a new and novel method for measuring dominance and the individual social status of mice is presented using a food competition assay. Historically, food competition assays have been avoided because they occur in an open arena or the home cage, and it can be difficult to assess who gets priority access to the resource and to avoid aggressive interactions such as bite wounding. Now, the authors have designed a narrow rectangular arena separated in half by a sliding floor-to-ceiling obstacle, where the mice placed at opposite sides of the obstacle compete by pushing the obstacle to gain priority access to a food pellet resting on the arena floor under the obstacle. One can also place the food pellet within the obstacle to restrict priority access to the food and measure the time or effort spent pushing the obstacle back and forth. As hypothesized, the outcomes in the food competition test were significantly consistent with those of the more common tube test (space competition) and warm spot competition test. This suggests that these animals have a stereotypic dominance organization that exists across multiple resource domains (i.e., food, space, and temperature). Only male and female C57 mice in same-sex pairs or triads were tested.

      Strengths:

      The design of the apparatus and the inclusion of females are significant strengths within the study.

      Weaknesses:

      There are at least two major weaknesses of the study: neglecting the value of test inconsistency and not providing the mice time to recognize who they are competing with.

      Several studies have demonstrated that although inbred mice in laboratory housing share similar genetics and environment, they can form diverse types of hierarchical organizations (e.g., loose, stable, despotic, linear, etc.) and there are multiple resource domains in the home cage that mice compete over (e.g., space, food, water, temperature, etc.). The advantage of using multiple dominance assays is to understand the nuances of hierarchical organizations better. For example, some groups may have clear dominant and subordinate individuals when competing for food, but the individuals may "change or switch" social status when competing for space. Indeed, social relationships are dynamic, not static. Here, the authors have provided another test to measure another dimension of dominance: food competition. Rather than highlight this advantage, the authors highlight that the test is in agreement with the standard tube test and warm spot test and that C57 mice have stereotypic dominance across multiple domains. While some may find this great, it will leave many to continue using the tube test only (which measures the dimension of space competition) and avoid measuring food competition. If the reader looks at Figures 6E, F, and G they will see examples of inconsistency across the food competition test, tube test, and warm spot test in triads of mice. These groups are quite interesting and demonstrate the diversity of social dynamics in groups of inbred mice in highly standardized environmental conditions. Scientists interested in dominance should study groups that are consistent and inconsistent across multiple dimensions of dominance (e.g., space, food, mates, etc.).

      Unlike the tube test and warm spot test, the food competition test presented here provides no opportunity for the animals to identify their opponent. That is, they cannot sniff their opponent's fur or anogenital region, which would allow them an opportunity to identify them individually. Thus, as the authors state, the test only measures psychological motivation to get a food reward. Notably, the outcome in the direct and indirect testing of food competition is in agreement, leaving many to wonder whether they are measuring the social relationship or the effort an individual puts forth in attaining a food reward regardless of the social opponent. Specifically, in the direct test, an individual can retrieve the food reward by pushing the obstacle out of the way first. In the indirect test, the animals cannot retrieve the reward and can only push the obstacle back and forth, which contains the reward inside. In Figure 4E, you can see that winners spent more time pushing the block in the indirect test. Thus, whether the test measures a social relationship or just the likelihood of gaining priority access to food is unclear. To rectify this issue, the authors could provide an opportunity for the animals to interact before lowering the obstacle and raising(?) a food reward. They may also create a very long one-sided apparatus to measure the amount of effort an individual mouse puts forth in the indirect test with only one individual - or any situation with just one mouse where the moving obstacle is not pushed back, and the animal can just keep pushing until they stop. This would require another experiment. It also may not tell us much more since it remains unclear whether inbred mice can individually identify one another (see https://doi.org/10.1098/rspb.2000.1057 for more details).

      A minor issue is that the write-up of the history of food competition assays and female dominance research is inaccurate. Food competition assays have a long history since at least the 1950s and many people study female dominance now.

      Food competition: https://doi.org/10.1080/00223980.1950.9712776, https://psycnet.apa.org/fulltext/1953-03267-001.pdf, https://doi.org/10.1016/j.bbi.2003.11.007, https://doi.org/10.1038/s41586-022-04507-5

      Female dominance: https://doi.org/10.1016/0031-9384(87)90269-1, https://doi.org/10.1016/j.cub.2023.03.020, https://doi.org/10.1016/S0031-9384(01)00494-2, https://doi.org/10.1037/0735-7036.99.4.411

    1. Reviewer #3 (Public review):

      In this study, the authors used RNAscope and immunostaining to confirm the expression of RTN4RL2 RNA and protein in hair cells and spiral ganglia. Through RTN4RL2 gene knockout mice, they demonstrated that the absence of RTN4RL2 leads to an increase in the size of presynaptic ribbons and a depolarized shift in the activation of calcium channels in inner hair cells. Additionally, they observed a reduction in GluA2/3 AMPA receptors in postsynaptic neurons and identified additional "orphan PSDs" not paired with presynaptic ribbons. These synaptic alterations ultimately resulted in an increased hearing threshold in mice, confirming that the RTN4RL2 gene is essential for normal hearing. These data are intriguing as they suggest that RTN4RL2 contributes to the proper formation and function of auditory afferent synapses and is critical for normal hearing. However, a thorough understanding of the known or postulated roles of RTN4Rl2 is lacking.

      While the conclusions of this paper are generally well supported by the data, several aspects of the data analysis warrant further clarification and expansion.

      (1) A quantitative assessment is necessary in Figure 1 when discussing RNA and protein expression. It would be beneficial to show that expression levels are quantitatively reduced in KO mice compared to wild-type mice. This suggestion also applies to Figure 2-supplement 3.D, which examines expression levels.

      (2) In Figure 2, the authors present a morphological analysis of synapses and discuss the presence of "orphan PSDs." I agree that Homer1 not juxtaposed with Ctbp2 is increased in KO mice compared to the control group. However, in quantifying this, they opted to measure the number of Homer1 juxtaposed with Ctbp2 rather than directly quantifying the number of Homer1 not juxtaposed with Ctbp2. Quantifying the number of Homer1 not juxtaposed with Ctbp2 would more clearly represent "orphan PSDs" and provide stronger support for the discussion surrounding their presence.

      (3) In Figure 2, Supplementary 3, the authors discuss GluA2/3 puncta reduction and note that Gria2 RNA expression remains unchanged. However, there is an issue with the lack of quantification for Gria2 RNA expression. Additionally, it is noted that RNA expression was measured at P4. While the timing for GluA2/3 puncta assessment is not specified, if it was assessed at 3 weeks old as in Figure 2's synaptic puncta analysis, it would be inappropriate to link Gria2 RNA expression with GluA2/3 protein expression at P4. If RNA and protein expression were assessed at P4, please indicate this timing for clarity.

      (4) In Figure 3, the authors indicate that RTN4RL2 deficiency reduces the number of type 1 SGNs connected to ribbons. Given that the number of ribbons remains unchanged (Figure 2), it is important to clearly explain the implications of this finding. It is already known that each type I SGN forms a single synaptic contact with a single IHC. The fact that the number of ribbons remains constant while additional "orphan PSDs" are present suggests that the overall number of SGNs might need to increase to account for these findings. An explanation addressing this would be helpful.

      (5) In Figure 4F and 5Cii, could you clarify how voltage sensitivity (k) was calculated? Additionally, please provide an explanation for the values presented in millivolts (mV).

      (6) In Figure 6, the author measured the threshold of ABR at 2-4 months old. Since previous figures confirming synaptic morphology and function were all conducted on 3-week-old mice, it would be better to measure ABR at 3 weeks of age if possible.

    1. Reviewer #3 (Public review):

      Summary:

      The rete ovarii (RO) has long been disregarded as a non-functional structure within the ovary. In their study, Anbarci and colleagues have delineated the markers and developmental dynamics of three distinct regions of the RO - the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). Notably focusing on the EOR, the authors presented evidence illustrating that the EOR forms a convoluted tubular structure culminating in a dilated tip. Intriguingly, microinjections into this tip revealed luminal flow towards the ovary containing potentially secreted functional proteins. Additionally, the EOR cells exhibit associations with vasculature, macrophages, and neuronal projections, proposing the notion that the RO may play a functional role in ovarian development during critical ovariogenesis stages. By identifying marker genes within the RO, the authors have also suggested that the RO could serve as a potential structure linking the ovary with the neuronal system.

      Strengths:

      Overall, the reviewer commends the authors for their systematic research on the RO, shedding light on this overlooked structure in developing ovaries. Furthermore, the authors have proposed a series of hypotheses that are both captivating and scientifically significant, with the potential to reshape our understanding of ovarian development through future investigations.

      Weaknesses:

      Although the manuscript lacks conclusive data to support many of its conclusions, the authors provide highly constructive discussions that offer valuable insights for future research on the rete ovarii in the field.

    1. Reviewer #3 (Public review):

      In this study, the authors employ a mouse ES-derived "hemogenic gastruloid" model which they generated and which they claim to be able to deconvolute YS and AGM stages of blood production in vitro. This work could represent a valuable resource for the field. However, in general, I find the conclusions in this manuscript poorly supported by the data presented. Importantly, it isn't clear what exactly are the "YS" and the "AGM"-like stages identified in the culture and where is the data that backs up this claim. In my opinion, the data in this manuscript lack convincing evidence that can enable us to identify what kind of hematopoietic progenitor cells are generated in this system. Therefore, the statement that "our study has positioned the MNX1-OE target cell within the YS-EMP stage (line 540)" is not supported by the evidence presented in this study. Overall, the system seems to be very preliminary and requires further optimization before those claims can be made.

      Specific comments below:

      (1) The flow cytometric analysis of gastruloids presented in Figure 1 C-D is puzzling. There is a large % of c-Kit+ cells generated, but few VE-Cad+ Kit+ double positive cells. Similarly, there are many CD41+ cells, but very few CD45+ cells, which one would expect to appear toward the end of the differentiation process if blood cells are actually generated. It would be useful to present this analysis as consecutive gating (i.e. evaluating CD41 and CD45 within VE-Cad+ Kit+ cells, especially if the authors think that the presence of VE-Cad+ Kit+ cells is suggestive of EHT). The quantification presented in D is misleading as the scale of each graph is different.

      (2) The imaging presented in Figure 1E is very unconvincing. C-Kit and CD45 signals appear as speckles and not as membrane/cell surfaces as they should. This experiment should be repeated and nuclear stain (i.e. DAPI) should be included.

      (3) Overall, I am not convinced that hematopoietic cells are consistently generated in these organoids. The authors should sort hematopoietic cells and perform May-Grunwald Giemsa stainings as they did in Figure 6 to confirm the nature of the blood cells generated.

      (4) The scRNAseq in Figure 2 is very difficult to interpret. Specific points related to this:<br /> - Cluster annotation in Figure 2a is missing and should be included.<br /> - Why do the heatmaps show the expression of genes within sorted cells? Couldn't the authors show expression within clusters of hematopoietic cells as identified transcriptionally (which ones are they? See previous point)? Gene names are illegible.<br /> - I see no expression of Hlf or Myb in CD45+ cells (Figure 2G). Hlf is not expressed by any of the populations examined (panels E, F, G). This suggests no MPP or pre-HSC are generated in the culture, contrary to what is stated in lines 242-245. (PMID 31076455 and 34589491).<br /> Later on, it is again stated that "hGx cells... lacked detection of HSC genes like Hlf, Gfi1, or Hoxa9" (lines 281-283). To me, this is proof of the absence of AGM-like hematopoiesis generated in those gastruloids.

      (5) Mapping of scRNA-Seq data onto the dataset by Thambyrajah et al. is not proof of the generation of AGM HE. The dataset they are mapping to only contains AGM cells, therefore cells do not have the option to map onto something that is not AGM. The authors should try mapping to other publicly available datasets also including YS cells.

      (6) Conclusions in Figure 3, named "hGx specify cells with preHSC characteristics" are not supported by the data presented here. Again, I am not convinced that hematopoietic cells can be efficiently generated in this system, and certainly not HSCs or pre-HSCs.<br /> - FACS analysis in 3A is again very unconvincing. I do not think the population identified as c-Kit+ CD144+ is real. Also, why not try gating the other way around, as commonly done (e.g. VE-Cad+ Kit+ and then CD41/CD45)?<br /> - The authors must have tried really hard, but the lack of short- or long-engraftment in a number of immunodeficient mouse models (lines 305-313) really suggests that no blood progenitors are generated in their system. I am not familiar with the adrenal gland transplant system, but it seems like a very non-physiological system for trying to assess the maturation of putative pre-HSCs. The data supporting the engraftment of these mice, essentially seen only by PCR and in some cases with a very low threshold for detection, are very weak, and again unconvincing. It is stated that "BFP engraftment of the Spl and BM by flow cytometry was very low level albeit consistently above control (Fig. S4E)" (lines 337-338). I do not think that two dots in a dot plot can be presented as evidence of engraftment.

      (7) Given the above, I find that the foundations needed for extracting meaningful data from the system when perturbed are very shaky at best. Nevertheless, the authors proceed to overexpress MNX1 by LV transduction, a system previously shown to transform fetal liver cells, mimicking the effect of the t(7;12) AML-associated translocation. Comments on this section:<br /> - The increase in the size of the organoid when MNX1 is expressed is a very unspecific finding and not necessarily an indication of any hematopoietic effect of MNX1 OE.<br /> - The mild increase of cKit+ cells (Figure 4E) at the 144hr timepoint and the lack of any changes in CD41+ or CD45+ cells suggests that the increase in Kit+ cells % is not due to any hematopoietic effect of MNX1 OE. No hematopoietic GO categories are seen in RNA seq analysis, which supports this interpretation. Could it be that just endothelial cells are being generated?

      (8) There seems to be a relatively convincing increase in replating potential upon MNX1-OE, but this experiment has been poorly characterized. What type of colonies are generated? What exactly is the "proportion of colony forming cells" in Figures 5B-D? The colony increase is accompanied by an increase in Kit+ cells; however, the flow cytometry analysis has not been quantified.

      (9) Do hGx cells engraft upon MNX1-OE? This experiment, which appears not to have been performed, is essential to conclude that leukemic transformation has occurred.

    1. Reviewer #3 (Public review):

      Genetic manipulation of Leishmania has some challenges, including some limitations in the DNA repair strategies that are present in the organism and the absence of RNA interference in many species. The senior author has contributed significantly to expanding the available routes towards Leishmania genetic manipulation by developing and adapting CRISPR-Cas9 tools to allow gene manipulation via DNA double strand break repair and, more recently, base modification. This work seeks to improve on some limitations in the tools previously described for the latter approach of base modification leading to base change.

      The work in the paper is meticulously described, with solid evidence for the improvements that are claimed: Fig.1 clearly describes reduced impairment in growth of parasites expressing sgRNAs via changes in promoters; Figs.2 and 3 compellingly document the usefulness of using AsCas12a for integration after transformation; Figs.1 and 4 demonstrate the capacity of the combined modifications to efficiently edit a gene in three different Leishmania species; and Fig. 5 shows that this approach can be conducted at scale, providing a means of assessing the fitness of mutant pools. There is little doubt these new tools will be adopted by the Leishmania community, adding to the growing arsenal of approaches for genetic manipulation.

      Two weaknesses suggested in the initial submission have been completely addressed.

  2. Feb 2025
    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chen and colleagues explores the connections from cerebellar purkinje cells to various brainstem nuclei. They combine two methods - presynaptic puncta labeling as putative presynaptic markers, and optogenetics, to test the anatomical projections and functional connectivity from purkinje cells onto a variety of brainstem nuclei. Overall, their study provides an atlas of sorts of purkinje cell connectivity to the brainstem, which includes a critical analysis of some of their own data from another publication. Overall, the value of this work is to both provide neural substrates by which purkinje cells may influence the brainstem and subsequent brain regions independent of the deep cerebellar nuclei, and also, to provide a critical analysis of viral-based methods to explore neuronal connectivity.

      Strengths:

      The strengths lie in the simplicity of the study, the number of cells patched, and the relationship between the presence of putative presynaptic puncta and electrophysiological results. This type of study is important and should provide a foundation for future work exploring cerebellar inputs and outputs. Overall, I think that the critique of viral-based methods to define connectivity, and a more holistic assessment of what connectivity is and how it should be defined is timely and warranted, as I think this is under-appreciated by many groups and overall, there is a good deal of research being published that do not properly consider the issues that this manuscript raises about what viral-based connectivity maps do and do not tell us.

      Weaknesses:

      While I overall liked the manuscript, I do have a few concerns which relate to interpretation of results, and discussion of technological limitations. The main concerns I have relate to the techniques that the authors use, and an insufficient discussion of their limitations. The authors use a Cre-dependent mouse line that expresses a synaptophysin-tdtomato marker, which the authors confidently state is a marker of synapses. This is misleading. Synaptophysin is a vesicle marker, and as such, labels axons, where vesicles are present in transit, and likely cell bodies where the protein is being produced. As such, the presence of tdtomato should not be interpreted definitively as the presence of a synapse. The use of vGAT as a marker, while this helps to constrain the selection of putative pre-synaptic sites, is also a vesicle marker and will likely suffer the same limitations (though in this case the expression is endogenous and not driven by the ROSA locus). A more conservative interpretation of the data would be that the authors are assessing putative pre-synaptic sites with their analysis. This interpretation is wholly consistent with their findings showing the presence of tdtomato in some regions but only sparse connectivity - this would be expected in the event that axons are passing through. If the authors wish to strongly assert that they are specifically assessing synapses, a marker better restricted to synapses and not vesicles may be more appropriate.

      Similarly, while optogenetics/slice electrophysiology remains the state of the art for assessing connectivity between cell populations, it is not without limitations. For example, connections that are not contained within the thickness of the slice (here, 200 um, which is not particularly thick for slice ephys preps) will not be detected. As such, the absence of connections are harder to interpret than the presence of connections. Slices were only made in the coronal plane, which means if that if there is a particular topology to certain connections that is orthogonal to that plane, those connections may be under-represented. As such, all connectivity analyses likely are under-representations of the actual connectivity that exists in the intact brain. Therefore, perhaps the authors should consider revising their assessments of connections, or lack thereof, of purkinje cells to e.g., LC cells. While their data do make a compelling case that the connections between purkinje cells and LC cells are not particularly strong or numerous, especially compared to other nearby brainstem nuclei, their analyses do indicate that at least some such connections do exist. Thus, rather than saying that the viral methods such as rabies virus are not accurate reflections of connectivity - perhaps a more circumspect argument would be that the quantitative connectivity maps reported by other groups using rabies virus do not always reflect connectivity defined by other means e.g., functional connections with optogenetics. In some cases the authors do suggest this (e.g., "Together, these findings indicate that reliance on anatomical tracing experiments alone is insufficient to establish the presence and important of a synaptic connection"), but in other cases they are more dismissive of viral tracing results (e.g., "it further suggests that these neurons project to the cerebellum and were not retrogradely labeled"). Furthermore, some statements are a bit misleading e.g., mentioning that rabies methods are critically dependent on starter cell identity immediately following the citation of studies mapping inputs onto LC cells. While in general this claim has merit, the studies cited (19-21) use Dbh-Cre to define LC-NE cells which does have good fidelity to the cells of interest in the LC. Therefore, rewording this section in order to raise these issues generally without proximity to the citations in the previous sentence may maintain the authors' intention without suggesting that perhaps the rabies studies from LC-NE cells that identified inputs from purkinje cells were inaccurate due to poor fidelity of the Cre line. Overall, this manuscript would certainly not be the first report indicating that rabies virus does not provide a quantitative map of input connections. In my opinion this is still under-appreciated by the broad community and should be explicitly discussed. Thus, an acknowledgement of previous literature on this topic and how their work contributes to that argument is warranted.

      Comments on revisions:

      The responses the authors offer in theory are good, but they still use terms such as synapses and putative presynaptic boutons relatively interchangeably - if the authors make the correction to the more conservative terminology, which I think better reflects the data, this should be more consistent throughout the manuscript.

    1. Reviewer #3 (Public review):

      Lloyd, Xia et al. utilised the existence of surface-dwelling and cave-dwelling morphs of Astyanax mexicanus to explore a proposed link between DNA damage, aging, and the evolution of sleep. Key to this exploration is the behavioural and physiological differences between cavefish and surface fish, with cavefish having been previously shown to have low levels of sleep behaviour, along with metabolic alterations (for example chronically elevated blood glucose levels) in comparison to fish from surface populations. Sleep deprivation, metabolic dysfunction and DNA damage are thought to be linked, and to all contribute to aging processes. Given that cavefish seem to show no apparent health consequences of low sleep levels, the authors suggest that they have evolved resilience to sleep loss. Furthermore, as extended wake and loss of sleep is associated with increased rates of damage to DNA (mainly double-strand breaks) and sleep is linked to repair of damaged DNA, the authors propose that changes in DNA damage and repair might underlie the reduced need for sleep in the cavefish morphs relative to their surface-dwelling conspecifics.

      To fulfil their aim of exploring links between DNA damage, aging, and the evolution of sleep, the authors employ methods that are largely appropriate, and comparison of cavefish and surface fish morphs from the same species certainly provides a lens by which cellular, physiological and behavioural adaptations can be interrogated. Fluorescence and immunofluorescence are used to measure gut reactive oxygen species and markers of DNA damage and repair processes in the different fish morphs, and measurements of gene expression and protein levels are appropriately used. However, although the sleep tracking and quantification employed is quite well established, issues with the experimental design relating to attempts to link induced DNA damage to sleep regulation (outlined below). Moreover, although the methods used are appropriate for the study of the questions at hand, there are issues with the interpretation of the data and with these results being over-interpreted as evidence to support the paper's conclusions.

      This study shows that a marker of DNA repair molecular machinery that is recruited to DNA double-strand breaks (γH2AX) is elevated in brain cells of the cavefish relative to the surface fish, and that reactive oxygen species are higher in most areas of the digestive tract of the cavefish than in that of the surface fish. As sleep deprivation has been previously linked to increases in both these parameters in other organisms (both vertebrates and invertebrates), their elevation in the cavefish morph is taken to indicated that the cavefish show signs of the physiological effects of chronic sleep deprivation.

      It has been suggested that induction of DNA damage can directly drive sleep behaviour, with a notable study describing both the induction of DNA damage and an increase in sleep/immobility in zebrafish (Danio rerio) larvae by exposure to UV radiation (Zada et al. 2021 doi:10.1016/j.molcel.2021.10.026). In the present study, an increase in sleep/immobility is induced in surface fish larvae by exposure to UV light, but there is no effect on behaviour in cavefish larvae. This finding is interpreted as representing a loss of a sleep-promoting response to DNA damage in the cavefish morph. However, induction of DNA damage is not measured in this experiment, so it is not certain if similar levels of DNA damage are induced in each group of intact larvae, nor how the amount of damage induced compares to the pre-existing levels of DNA damage in the cavefish versus the surface fish larvae. In both this study with A. mexicanus surface morphs and the previous experiments from Zada et al. in zebrafish, observed increases in immobility following UV radiation exposure are interpreted as following from UV-induced DNA damage. However, in interpreting these experiments it is important to note that the cavefish morphs are eyeless and blind. Intense UV radiation is aversive to fish, and it has previously been shown in zebrafish larvae that (at least some) behavioural responses to UV exposure depend on the presence of an intact retina and UV-sensitive cone photoreceptors (Guggiana-Nilo and Engert, 2016, doi:10.3389/fnbeh.2016.00160). It is premature to conclude that the lack of behavioural response to UV exposure is in the cavefish is due to a difference response to DNA damage, as their lack of eyes will likely inhibit a response to the UV stimulus. Indeed, were the equivalent zebrafish experiment from Zada et al. to be repeated with mutant larvae fish lacking the retinal basis for UV detection it might be found that, in this case too, the effects of UV on behaviour are dependent on visual function. Such a finding should prompt a reappraisal of the interpretation that UV exposure's effects on fish sleep/locomotor behaviour are mediated by DNA damage. An additional note, relating to both Lloyd, Xia et al. and Zada et al., is that though increases in immobility are induced following UV exposure, in neither study have assays of sensory responsiveness been performed during this period. As a decrease in sensory responsiveness is a key behavioural criterion for defining sleep, it is therefore unclear that this post-UV behaviour is genuinely increased sleep as opposed to a stress-linked suppression of locomotion due to the intensely aversive UV stimulus. While it is true that behavioural immobility is used by many studies as a criterion to identify sleep in non-mammalian species, this is only fully appropriate when other elements of the behavioural criteria of sleep (e.g. reduced responsiveness to sensory stimuli, rapid reversibility, homeostatic regulation, circadian regulation) have been shown to be associated with these periods of behavioural quiescence. In both Lloyd, Xia et al. and Zada et al., only an increased immobility has been demonstrated, occurring at a period where the circadian clock would be promoting wake and natural homeostatic sleep drive would be expected to be at the low end of its normal range. At a minimum, testing sensory threshold would be advisable to ensure that the classification of this behaviour as sleep is accurate and to avoid the risk of being misled in the interpretation of these experiments.

      The effects of UV exposure, in terms of causing damage to DNA, inducing DNA damage response and repair mechanisms, and in causing broader changes in gene expression are assessed in both surface and cavefish larvae, as well as in cell lines derived from these different morphs. Differences in the suite of DNA damage response mechanisms that are upregulated are shown to exist between surface fish and cavefish larvae, though at least some of this difference is likely to be due to differences gene expression that may exist even without UV exposure (this is discussed further below).

      UV exposure induced DNA damage (as measured by levels of cyclobutene pyrimidine dimers) to a similar degree in cell lines derived from both surface fish and cave fish. However, γH2AX shows increased expression only in cells from the surface fish, suggesting an induction of an increased DNA repair response in these surface morphs, corroborated by their cells' increased ability to repair damaged DNA constructs experimentally introduced to the cells in a subsequent experiment. This "host cell reactivation assay" is a very interesting assay for measuring DNA repair in cell lines, but the power of this approach might be enhanced by introducing these DNA constructs into larval neurons in vivo (perhaps by electroporation) and by tracking DNA repair in living animals. Indeed, in such a preparation, the relationship between DNA repair and sleep/wake state could be assayed.

      Comparing gene expression in tissues from young (here 1 year) and older (here 7-8 years) fish from both cavefish and surface fish morphs, the authors found that there are significant differences in the transcriptional profiles in brain and gut between young and old surface fish, but that for cavefish being 1 year old versus being 7-8 years old did not have a major effect on transcriptional profile. The authors take this as suggesting that there is a reduced transcriptional change occurring during aging and that the transcriptome of the cavefish is resistant to age-linked changes. This seems to be only one of the equally plausible interpretations of the results; it could also be the case that alterations in metabolic cellular and molecular mechanisms, and particularly in responses to DNA damage, in the cavefish mean that these fish adopt their "aged" transcriptome within the first year of life. This would mean that rather than the findings revealing that "the transcriptome of the cavefish is resilient to age-associated changes despite sleep loss, elevated ROS and elevated DNA damage", it would suggest that the cavefish transcriptome is sensitive to age-associated changes, potentially being driven by this low level of sleep, elevated reactive oxygen species, and elevated DNA damage. This alternative interpretation greatly changes the understanding of the present findings. One way in which the more correct interpretation could be determined would be by adding a further, younger group of fish to the comparison (perhaps a group in the age range of 1-3 months, relatively shortly after metamorphosis).

      A major weakness of the study in its current form is the absence of sleep deprivation experiments to assay the effects of sleep loss on the cellular and molecular parameters in question. Without such experiments, the supposed link of sleep to the molecular, cellular and "aging" phenotypes remains tenuous. Although the argument might be made that the cavefish represent a naturally "sleep deprived" population, the cavefish in this study are not sleep deprived, rather they are adapted to a condition of reduced sleep relative to fish from surface populations. Comparing the effects of depriving fish from each morph on markers of DNA damage and repair, on gut reactive oxygen species, and on gene expression will be necessary to solidify any proposed link of these phenotypes to sleep.

      A second important aspect that limits the interpretability and impact of this study is the absence of information about circadian variations in the parameters measured. A relationship between circadian phase, light exposure and DNA damage/repair mechanisms is known to exist in A. mexicanus and other teleosts, and for differences to exist between the cave and surface morphs in there phenomena (Beale et al. 2013, doi: 10.1038/ncomms3769). Although the present study mentions that their experiments do not align with these previous findings, they do not perform the appropriate experiments to determine if this such a misalignment is genuine. Specifically, Beale et al. 2013 showed that white light exposure drove enhanced expression of DNA repair genes (including cpdp which is prominent in the current study) in both surface fish and cavefish morphs, but that the magnitude of this change was less in the cave fish because they maintained an elevated expression of these genes in the dark, whereas darkness supressed the expression of these genes in the surface fish. If such a phenomenon is present in the setting of the current study, this would likely be a significant confound for the UV-induced gene expression experiments in intact larvae, and undermine the interpretation of the results derived from these experiments: as samples are collected 90 minutes after the dark-light transition (ZT 1.5) it would be expected that both cavefish and surface fish larvae should have a clear induction of DNA repair genes (including cpdp) regardless of 90s of UV exposure. The data in supplementary figure 3 is not sufficient to discount this potentially serious confound, as for larvae there is only gene expression data for timepoints from ZT2 to ZT 14, with all of these timepoints being in the light phase and not capturing any dynamics that would occur at the most important timepoints from ZT0-ZT1.5, in the relevant period after dark-light transition. Indeed, an appropriate control for this experiment would involve frequent sampling at least across 48 hours to assess light-linked and developmentally-related changes in gene expression that would occur in 5-6dpf larvae of each morph independently of the exposure to UV.<br /> On a broader point, given the effects of both circadian rhythm and lighting conditions that are thought to exist in A. mexicanus (e.g. Beale et al. 2013) experiments involving measurements of DNA damage and repair, gene expression, and reactive oxygen species etc. at multiple times across >1 24 hour cycle, in both light-dark and constant illumination conditions (e.g. constant dark) would be needed to substantiate the authors' interpretation that their findings indicate consistently altered levels of these parameters in the cave fish relative to the surface fish. Most of the data in this study is taken at only single timepoints.

      In summary, the authors show that there are differences in gene expression, activity of DNA damage response and repair pathways, response to UV radiation, and gut reactive oxygen species between the Pachón cavefish morph and the surface morph of Astyanax mexicanus. However, the data presented does not make the precise nature of these differences very clear, and the interpretation of the results appears to be overly strong. Furthermore, the evidence of a link between these morph specific differences and sleep is unconvincing.

      Comments on revisions:

      I thank the authors for their engagement with the notes and recommendations I made in my original comments. I have no further recommendations to make here.

    1. Reviewer #3 (Public review):

      Summary:

      In the present manuscript, the authors use a few minutes of voltage imaging of CA1 pyramidal cells in head-fixed mice running on a track while local field potentials (LFPs) are recorded. The authors suggest that synchronous ensembles of neurons are differentially associated with different types of LFP patterns, theta and ripples. The experiments are flawed in that the LFP is not "local" but rather collected the other side of the brain.

      Strengths:

      The authors use a cutting-edge technique.

      Weaknesses:

      The two main messages of the manuscript indicated in the title are not supported by the data. The title gives two messages that relate to CA1 pyramidal neurons in behaving head-fixed mice: (1) synchronous ensembles are associated with theta (2) synchronous ensembles are not associated with ripples. The main problem with the work is that the theta and ripple signals were recorded using electrophysiology from the opposite hemisphere to the one in which the spiking was monitored. However, both rhythms exhibit profound differences as a function of location.

      Theta phase changes with the precise location along the proximo-distal and dorso-ventral axes, and importantly, even reverses with depth. Because the LFP was recorded using a single-contact tungsten electrode, there is no way to know whether the electrode was exactly in the CA1 pyramidal cell layer, or in the CA1 oriens, CA1 radiatum, or perhaps even CA3 - which exhibits ripples and theta which are weakly correlated and in anti-phase with the CA1 rhythms, respectively. Thus, there is no way to know whether the theta phase used in the analysis is the phase of the local CA1 theta.

      Although the occurrence of CA1 ripples is often correlated across parts of the hippocampus, ripples are inherently a locally-generated rhythm. Independent ripples occur within a fraction of a millimeter within the same hemisphere. Ripples are also very sensitive to the precise depth - 100 micrometers up or down, and only a positive deflection/sharp wave is evident. Thus, even if the LFP was recorded from the center of the CA1 pyramidal layer in the contralateral hemisphere, it would not suffice for the claim made in the title.

    1. Reviewer #4 (Public review):

      Summary:

      Using immunostaining for the immediate early gene Fos, and employing TRAP2-mediated chemogenetic and optogenetic perturbations, the authors provide evidence that neurons in the preoptic hypothalamus, identified as 'POA-social neurons,' promote social behaviors in mice - particularly in socially isolated (or deprived) mice, who exhibit an increased motivation for social investigations.

      Strengths:

      The focus on female-female social interactions is a valuable contribution to the field, as these interactions are less studied and the underlying neural mechanisms are less understood. The authors should be commended for their comprehensive approach in performing and reporting multiple perturbation experiments, including optogenetics, chemogenetics, and ablation. The authors also deserve recognition for their thoughtful discussion of the nuances in the phenotypes observed across these various perturbation experiments.

      Weaknesses:

      A limitation of the paper, however, is the insufficient clarification of the specific functions of these POA-social neurons. In my interpretation of the results, the neurons may be crucial for motivated social behaviors in females and motivated mounting of females in males, regardless of whether the test mice are housed singly or in groups. For group-housed mice, the motivation to interact with stimulus mice was likely low in their behavioral paradigm, which may explain the reduced interactions observed in the resident-intruder assay and why these neurons were not tagged (TRAPed) in that setting. Tagging these neurons in singly housed mice following a social interaction, followed by imaging in a group setting where motivated social behaviors do occur, could elucidate whether these neurons are specifically activated during social interactions in socially deprived mice or are generally crucial for motivated social behaviors in any setting. I understand that such calcium imaging may be beyond the scope of this version of the paper, but incorporating these results in a future version would significantly enhance the paper's impact. Depending on the outcomes of such experiments, the title 'Short-term social isolation acts on hypothalamic neurons to promote social behaviors in a sex- and context-dependent manner' may need to be revised to more accurately reflect the findings.

    1. Reviewer #3 (Public review):

      In this manuscript, Masson, Scandola, et al investigate how interactions between megakaryocytes and the extracellular matrix contribute to the regulation of thrombopoiesis using primary murine bone marrow MK cultures, integrin B1/B3 knock-out mice, and high-resolution 2D and 3D imaging. They find that laminin and collagen iv create a 3D "cage" of ECM surrounding MKs and anchor them at the sinusoidal basement membrane, which contributes to MK maturation and proplatelet intravasation into circulation. Deletion of laminin a4 disrupts the localization of MKs and the endothelial basement membrane, reducing the number of MKs associated with the sinusoid while having no effect on MK-associated collagen IV. Deletion of B1/B3 integrin reduces the quantity, localization, and structural organization of multiple ECM components surrounding MKs, and reduces MK adhesion when subject to conditions of sinusoidal flow.

      Further, using intravital microscopy of calvarial bone marrow and the pulmonary vasculature, they provide data suggesting that the stabilization of ECM around MKs (either in the BM or lung) prevents MKs from entering circulation as intact cells. Interestingly, deletion of B1 integrin reduces MK coverage in laminin y1, but deletion of both B1 and B3 independently results in increased MK intravasation into the sinusoidal space. Comparison of integrin KO MKs with GPVI KO MKs suggests that ECM cage formation, vessel adhesion, and intravasation are likely dependent on integrin activation/signaling rather than GPVI signals.

      Further, they provide data that the balance of ECM synthesis and degradation is essential for MK maturation and also provide data showing that inhibition of ECM turnover (in vivo inhibition of MMPs) results in increased ECM cage components that correspond with reduced MK maturation, and reduced demarcation membrane development.

      The conclusions of the paper are supported by the data, but there are some areas that would benefit from clarification or expansion.

      (1) The data linking ECM cage formation to MK maturation raises several interesting questions. As the authors mention, MKs have been suggested to mature rapidly at the sinusoids, and both integrin KO and laminin KO MKs appear mislocalized away from the sinusoids. Additionally, average MK distances from the sinusoid may also help separate whether the maturation defects could be in part due to impaired migration towards CXCL12 at the sinusoid. Presumably, MKs could appear mislocalized away from the sinusoid given the data presented suggesting they leaving the BM and entering circulation. Additional data or commentary on intrinsic (ex-vivo) MK maturation phenotypes may help strengthen the author's conclusions and shed light on whether an essential function of the ECM cage is integrin activation at the sinusoid.

      (2) The data demonstrating intact MKs inter circulation is intriguing - can the authors comment or provide evidence as to whether MKs are detectable in blood? A quantitative metric may strengthen these observations.

      (3) Supplementary Figure 6 - shows no effect on in vitro MK maturation and proplt, or MK area - But Figures 6B/6C demonstrate an increase in total MK number in MMP-inhibitor treated mice compared to control. Some additional clarification in the text may substantiate the author's conclusions as to either the source of the MMPs or the in vitro environment not fully reflecting the complex and dynamic niche of the BM ECM in vivo.

      (4) Similarly, one function of the ECM discussed relates to MK maturation but in the B1/3 integrin KO mice, the presence of the ECM cage is reduced but there appears to be no significant impact upon maturation (Supplementary Figure 4). By contrast, MMP inhibition in vivo (but not in vitro) reduces MK maturation. These data could be better clarified in the text, or by the addition of experiments addressing whether the composition and quantity of ECM cage components directly inhibit maturation versus whether effects of MMP-inhibitors perhaps lead to over-activation of the integrins (as with the B4galt KO in the discussion) are responsible for the differences in maturation.

    1. Reviewer #3 (Public review):

      Summary:

      In this study the authors set out to investigate whether GPRC6A mediates kokumi taste initiated by the amino acid L-ornithine. They used Wistar rats, a standard laboratory strain, as the primary model and also performed an informative taste test in humans, in which miso soup was supplemented with various concentrations of L-ornithine. The findings are valuable and overall the evidence is solid. L-Ornithine should be considered to be a useful test substance in future studies of kokumi taste and the class C G protein coupled receptor known as GPRC6A (C6A) along with its homolog, the calcium-sensing receptor (CaSR) should be considered candidate mediators of kokumi taste. The researchers confirmed in rats their previous work on Ornithine and C6A in mice (Mizuta et al Nutrients 2021).

      Strengths:

      The overall experimental design is solid based on two bottle preference tests in rats. After determining the optimal concentration for L-Ornithine (1 mM) in the presence of MSG, it was added to various tastants including: inosine 5'-monophosphate; monosodium glutamate (MSG); mono-potassium glutamate (MPG); intralipos (a soybean oil emulsion); sucrose; sodium chloride (NaCl; salt); citric acid (sour) and quinine hydrochloride (bitter). Robust effects of ornithine were observed in the cases of IMP, MSG, MPG and sucrose; and little or no effects were observed in the cases of sodium chloride, citric acid; quinine HCl. The researchers then focused on the preference for Ornithine-containing MSG solutions. Inclusion of the C6A inhibitors Calindol (0.3 mM but not 0.06 mM) or the gallate derivative EGCG (0.1 mM but not 0.03 mM) eliminated the preference for solutions that contained Ornithine in addition to MSG. The researchers next performed transections of the chord tympani nerves (with sham operation controls) in anesthetized rats to identify a role of the chorda tympani branches of the facial nerves (cranial nerve VII) in the preference for Ornithine-containing MSG solutions. This finding implicates the anterior half-two thirds of the tongue in ornithine-induced kokumi taste. They then used electrical recordings from intact chorda tympani nerves in anesthetized rats to demonstrate that ornithine enhanced MSG-induced responses following the application of tastants to the anterior surface of the tongue. They went on to show that this enhanced response was insensitive to amiloride, selected to inhibit 'salt tastant' responses mediated by the epithelial Na+ channel, but eliminated by Calindol. Finally they performed immunohistochemistry on sections of rat tongue demonstrating C6A positive spindle-shaped cells in fungiform papillae that partially overlapped in its distribution with the IP3 type-3 receptor, used as a marker of Type-II cells, but not with (i) gustducin, the G protein partner of Tas1 receptors (T1Rs), used as a marker of a subset of type-II cells; or (ii) 5-HT (serotonin) and Synaptosome-associated protein 25 kDa (SNAP-25) used as markers of Type-III cells.

      At least two other receptors in addition to C6A might mediate taste responses to ornithine: (i) the CaSR, which binds and responds to multiple L-amino acids (Conigrave et al, PNAS 2000), and which has been previously reported to mediate kokumi taste (Ohsu et al., JBC 2010) as well as responses to Ornithine (Shin et al., Cell Signaling 2020); and (ii) T1R1/T1R3 heterodimers which also respond to L-amino acids and exhibit enhanced responses to IMP (Nelson et al., Nature 2001). These alternatives are appropriately discussed and, taken together, the experimental results favor the authors' interpretation that C6A mediates the Ornithine responses. The authors provide preliminary data in Suppl. 3 for the possibility of co-expression of C6A with the CaSR.

      Weaknesses:

      The authors point out that animal models pose some difficulties of interpretation in studies of taste and raise the possibility in the Discussion that umami substances may enhance the taste response to ornithine (Line 271, Page 9).

      One issue that is not addressed, and could be usefully addressed in the Discussion, relates to the potential effects of kokumi substances on the threshold concentrations of key tastants such as glutamate. Thus, an extension of taste distribution to additional areas of the mouth (previously referred to as 'mouthfulness') and persistence of taste/flavor responses (previously referred to as 'continuity') could arise from a reduction in the threshold concentrations of umami and other substances that evoke taste responses.

      The status of one of the compounds used as an inhibitor of C6A, the gallate derivative EGCG, as a potential inhibitor of the CaSR or T1R1/T1R3 is unknown. It would have been helpful to show that a specific inhibitor of the CaSR failed to block the ornithine response.

      It would have been helpful to include a positive control kokumi substance in the two bottle preference experiment (e.g., one of the known gamma glutamyl peptides such as gamma-glu-Val-Gly or glutathione), to compare the relative potencies of the control kokumi compound and Ornithine, and to compare the sensitivities of the two responses to C6A and CaSR inhibitors.

    1. Reviewer #3 (Public review):

      Summary:

      Childers et al. address a fundamental question about the complex relationship within the gut: the link between nutrient absorption, microbial presence, and intestinal physiology. They focus on the role of lysosome-rich enterocytes (LREs) and the microbiota in protein absorption within the intestinal epithelium. By using germ-free and conventional zebrafishes, they demonstrate that microbial association leads to a reduction in protein uptake by LREs. Through impressive in vivo imaging of gavaged fluorescent proteins, they detail the degradation rate within the LRE region, positioning these cells as key players in the process. Additionally, the authors map protein absorption in the gut using single-cell sequencing analysis, extensively describing LRE subpopulations in terms of clustering and transcriptomic patterns. They further explore the monoassociation of ex-germ-free animals with specific bacterial strains, revealing that the reduction in protein absorption in the LRE region is strain-specific.

      Strengths:

      The authors employ state-of-the-art imaging to provide clear evidence of the protein absorption rate phenotype, focusing on a specific intestinal region. This innovative method of fluorescent protein tracing expands the field of in vivo gut physiology.

      Using both conventional and germ-free animals for single-cell sequencing analysis, they offer valuable epithelial datasets for researchers studying host-microbe interactions. By capitalizing on fluorescently labelled proteins in vivo, they create a new and specific atlas of cells involved in protein absorption, along with a detailed LRE single-cell transcriptomic dataset.

      Weaknesses:

      While the authors present tangible hypotheses, the data are primarily correlative, and the statistical methods are inadequate. They examine protein absorption in a specific, normalized intestinal region but do not address confounding factors between germ-free and conventional animals, such as size differences, transit time, and oral gavage, which may impact their in vivo observations. This oversight can lead to bold conclusions, where the data appear valuable but require more nuance.

      The sections of the study describing the microbiota or attempting functional analysis are elusive, with related data being overinterpreted. The microbiome field has long used 16S sequencing to characterize the microbiota, but its variability due to experimental parameters limits the ability to draw causative conclusions about the link between LRE activity, dietary protein, and microbial composition. Additionally, the complex networks involved in dopamine synthesis and signalling cannot be fully represented by RNA levels alone. The authors' conclusions on this biological phenomenon based on single-cell data need support from functional and in vivo experiments.

    1. Reviewer #3 (Public review):

      Summary:

      The authors investigate the kinase activity of IKK2, a crucial regulator of inflammatory cell signaling. They describe a novel tyrosine kinase activity of this well-studied enzyme and a highly unusual phosphotransfer from phosphorylated IKK2 onto substrate proteins in the absence of ATP as a substrate.

      Strengths:

      The authors provide an extensive biochemical characterization of the processes with recombinant protein, western blot, autoradiography, protein engineering and provide MS data now.

      Weaknesses:

      The identity and purity of the used proteins has improved in the revised work. Since the findings are so unexpected and potentially of wide-reaching interest - this is important. Similar specific detection of phospho-Ser/Thr vs phospho-Tyr relies largely on antibodies which can have varying degrees of specificity. Using multiple antibodies and MS improves the quality of the data.

    1. Reviewer #3 (Public review):

      Summary:

      The obligate intracellular bacterium Chlamydia trachomatis (Ct) divides by binary fission. It lacks FtsZ, but still has many other proteins that regulate synthesis of septal peptidoglycan, including FtsW and FtsI (PBP3) as well as divisome proteins that recruit and activate them, such as FtsK and FtsQLB. Interestingly, MreB is also required for division of Ct cells, perhaps by polymerizing to form an FtsZ-like scaffold. Here, Harpring et al. show that MreB does not act early in division and instead is recruited to a protein complex that includes FtsK and PBP2/PBP3. This indicates that Ct cell division is organized by a chimera between conserved divisome and elongasome proteins. Their work also shows convincingly that FtsK is the earliest known step of divisome activity, potentially nucleating the divisome as a single protein complex at the future division site. This is reminiscent of the activity of FtsZ, yet fundamentally different.

      Strengths:

      The study is very well written and presented, and the data are convincing and rigorous. The data underlying the proposed localization dependency order of the various proteins for cell division is well justified by several different approaches using small molecule inhibitors, knockdowns, and fluorescent protein fusions. The proposed dependency pathway of divisome assembly is consistent with the data and with a novel mechanism for MreB in septum synthesis in Ct.

      Weaknesses:

      The authors have addressed the weaknesses brought up in my previous review.

    1. Reviewer #3 (Public review):

      Childers et al. address a fundamental question about the complex relationship within the gut: the link between nutrient absorption, microbial presence, and intestinal physiology. They focus on the role of lysosome-rich enterocytes (LREs) and the microbiota in protein absorption within the intestinal epithelium. By using germ-free and conventional zebrafishes, they demonstrate that microbial association leads to a reduction in protein uptake by LREs. Through impressive in vivo imaging of gavaged fluorescent proteins, they detail the degradation rate within the LRE region, positioning these cells as key players in the process. Additionally, the authors map protein absorption in the gut using single-cell sequencing analysis, extensively describing LRE subpopulations in terms of clustering and transcriptomic patterns. They further explore the monoassociation of ex-germ-free animals with specific bacterial strains, revealing that the reduction in protein absorption in the LRE region is strain-specific.

      Strengths:

      - The authors employ state-of-the-art imaging to provide clear evidence of the protein absorption rate phenotype, focusing on a specific intestinal region. This innovative method of fluorescent protein tracing expands the field of in vivo gut physiology.<br /> - Using both conventional and germ-free animals for single-cell sequencing analysis, they offer valuable epithelial datasets for researchers studying host-microbe interactions. By capitalizing on fluorescently labelled proteins in vivo, they create a new and specific atlas of cells involved in protein absorption, along with a detailed LRE single-cell transcriptomic dataset.<br /> - Their robust and convincing microbiota analysis puts forward a diet-dependent mechanism of community change upon low-protein diet, intricately linked with the host.

      Comments on revisions:

      The authors have improved the manuscript following the revision work. No further recommendations.

    1. Reviewer #3 (Public review):

      Summary:

      This important paper describes improvements to the measurement of enkephalins in vivo using microdialysis and LC-MS. The key improvement is oxidation of met- to prevent having a mix of reduced and oxidized methionine the sample which make quantification more difficult. It then shows measurements of enkephalins in the nucleus accumbens in two different stress situations-handling and exposure to predator odor. It also reports the ratio of released met- and leu-enkephalin matching that expected from digestion of proenkephalin. Measurements are also made by photometry of Ca2+ changes for the fox odor stressor. Some key takeaways are: 1) reliable measurement of met-enkephalin, significance of directly measuring peptides as opposed to proxy measurements, and the opening of a new avenue into research of enkephalins due to stress based on these direct measurements.

      Strengths:

      - Improved methods for measurement of enkephalins in vivo<br /> - Compelling examples of using this method<br /> - Opening a new area of looking at stress responses through the lens of enkephalin concentrations

      Comments on revisions:

      This revision has been improved upon in most ways. As I mentioned in the original review, there is a great deal of work here on showing the capability of measuring met- and leu-enk in different contexts. There is a technical improvement in the control of met oxidation which likely improves the detection of met-enk.

    1. Reviewer #3 (Public review):

      Summary:

      This study indicates that connections across human cortical pyramidal cells have identical latencies despite a larger mean dendritic and axonal length between somas in human cortex. A precise demonstration combining detailed electrophysiology and modeling, indicates that this property is due to faster propagation of signals in proximal human dendrites. This faster propagation is itself due to a slightly thicker dendrite, to a larger capacitive load, and to stronger hyperpolarizing currents. Hence, the biophysical properties of human pyramidal cells are adapted such that they do not compromise information transfer speed.

      Strengths:

      The manuscript is clear and very detailed. The authors have experimentally verified a large number of aspects that could affect propagation speed and have pinpointed the most important one. This paper provides an excellent comparision of biophysical properties between rat and human pyramidal cells. Thanks to this approach a comprehensive description of the mechanisms underlying the acceleration of propagation in human dendrite is provided.

      Weaknesses:

      The weaknesses I had identified have been addressed by the authors.

    1. Reviewer #3 (Public review):

      Summary:

      The authors used a novel technique to treat male infertility. In a proof-of-concept study, the authors were able to rescue the phenotype of a knockout mouse model with immotile sperm using this technique. This could also be a promising treatment option for infertile men.

      Strengths:

      In their proof-of-concept study, the authors were able to show that the novel technique rescues the infertility phenotype of Armc2 knockout spermatozoa. In the revised version of the manuscript, the authors have added data on in vitro fertilisation experiments with Armc2 mRNA-rescued sperm. The authors show that Armc2 mRNA-rescued sperm can successfully fertilise oocytes that develop to the blastocyst stage. This adds another level of reliability to the data.

      Weaknesses:

      Some minor weaknesses identified in my previous report have already been fixed. The technique is new and may not yet be fully established for all issues. Nevertheless, the data presented in this manuscript opens the way for several approaches to immotile spermatozoa to ensure successful fertilisation of oocytes and subsequent appropriate embryo development.

      [Editors' note: The images in Figure 12 do not support the authors' interpretation that 2-cell embryos resulted from in vitro fertilization. Instead, the cells shown appear to be fragmented, unfertilized eggs. Combined with the lack of further development, it seems highly unlikely that fertilization was successful.]

    1. Reviewer #3 (Public review):

      Summary:

      Protein-DNA interactions and sequence readout represent a challenging and rapidly evolving field of study. Recognizing the complexity of this task, the authors have developed a compact and elegant model. They have applied well-established approaches to address a difficult problem, effectively enhancing the information extracted from sparse contact maps by integrating artificial sequences decoy set and available experimental data. This has resulted in the creation of a practical tool that can be adapted for use with other proteins.

      Strengths:

      (1) The authors integrate sparse information with available experimental data to construct a model whose utility extends beyond the limited set of structures used for training.

      (2) A comprehensive methods section is included, ensuring that the work can be reproduced. Additionally, the authors have shared their model as a GitHub project, reflecting their commitment to transparency of research.

      Weaknesses:

      (1) The coarse-graining procedure appears artificial, if not confusing, given that full-atom crystal structures provide more detailed information about residue-residue contacts. While the selection procedure for distance threshold values is explained, the overall motivation for adopting this approach remains unclear. Furthermore, since this model is later employed as an empirical potential for molecular modeling, the use of P and C5 atoms raises concerns, as the interactions in 3SPN are modeled between Cα and the nucleic base, represented by its center of mass rather than P or C5 atoms.

      (2) Although the authors use a standard set of metrics to assess model quality and predictive power, some ΔΔG predictions compared to MITOMI-derived ΔΔG values appear nonlinear, which casts doubt on the interpretation of the correlation coefficient.

      (3) The discussion section lacks information about the model's limitations and a comprehensive comparison with other models. Additionally, differences in model performance across various proteins and their respective predictive powers are not addressed.

    1. Reviewer #3 (Public review):

      Summary:

      This work from Hira et al leverages mesoscopic 2-photon imaging to study large neural populations in different higher visual areas, in particular areas A and AM of the parietal cortex. The focus of the study is to obtain a better understanding of the representation of different task-related parameters, such as choice formation and short-term history, as well as visual responses in large neural populations across different cortical regions to obtain a better understanding of the functional specialization of neural populations in each region as well as the interaction of neural populations across regions. The authors image a large number of neurons in animals that either perform visual discrimination or a history-dependent task to test how task demands affect neural responses and population dynamics. Furthermore, by including a behavioral perturbation of animal posture they aim to dissociate the neural representation of history signals from body posture. Lastly, they relate their functional findings to anatomical data from the Allen connectivity atlas and show a strong relation between functional correlations on anatomical connectivity patterns.

      Strengths:

      Overall, the study is very well done and tackles a problem that should be of high interest to the field by aiming to obtain a better understanding of the function and spatial structure of different regions in the parietal cortex. The experimental approach and analyses are sound and of high quality and the main conclusions are well supported by the results. Aside from the detailed analyses, a particular strength is the additional experimental perturbation of posture to isolate history-related activity which supports the conclusion that both posture and history signals are represented in different neurons within the same region.

      Weaknesses:

      The main point that I found hard to understand was the fairly strong language on functional clusters of neurons while also stating that neurons encoded combinations of different types of information and leveraging the encoding model to dissociate these contributions. Do the authors find mixed selectivity or rather functional segregation of neural tuning in their data? More details on this and some other points are below.

    1. Reviewer #3 (Public review):

      Summary

      The study presents an investigation into how hypothalamic orexin neurons (HONs) track body movement with high precision. Using techniques including fiber photometry, video-based movement metrics, and empirical mode decomposition (EMD), the authors demonstrate that HONs encode net body movement consistently across a range of behaviors and metabolic states. They test the ability of HONs to track body movement to that of other subcortical neural populations, from which they distinguish HONs activity from other subcortical neural populations.

      Strengths:

      The study characterizes HONs activity as key indicators of movement and arousal, and this method may have potential implications for understanding sleep disorders, energy regulation, and brain-body coordination. Overall, I think this is a very interesting story, with novel findings and implications about sensorimotor systems in animals. The manuscript is clearly written and the evidence presented is rigorous. The conclusions are well supported by experimental data with clear statistical analyses.

      Weaknesses/suggestions:

      There are a couple of issues I think the authors could address to make the paper better and more complete:

      (1) The study primarily focuses on steady-state behaviors. It would be interesting if the authors' current dataset allows analyses of HON dynamics during transitions between behavioral states (e.g., resting to running or grooming to sniffing). This could provide additional insights into how HONs adapt to rapid changes in body movement.

      (2) Given the established role of HONs in arousal and wakefulness, the study could further investigate how movement-related HON dynamics interact with arousal states. For example, does HON encoding of movement differ during sleep versus wakefulness?

      (3) Although HON ablation experiments suggest that HONs do not shape movement frequency profiles. It would be more compelling if the authors could investigate whether HONs contribute to specific types of movements (e.g., fine motor vs. gross motor movements) or modulate movement initiation thresholds.

      (4) The heterogeneous movement-related orexin dynamics observed in the LC and SNc raise intriguing questions about the circuit-level mechanisms underlying these differences. Optogenetic or chemogenetic manipulation of these projections could validate the functional implications of these dynamics.

    1. Reviewer #4 (Public review):

      The manuscript examines how patterns of selection on gene expression differ between a normal field environment and a field environment with elevated salinity based upon transcript abundances obtained from leaves of a diverse panel of rice germplasm. In addition, the manuscript also maps expression QTL (eQTL) that explains variation in each environment. One highlight from the mapping is that a small group of trans-mapping regulators explains some gene expression variation for large sets of transcripts in each environment.

      The overall scope of the datasets is impressive, combining large field studies that capture information about fecundity, gene expression, and trait variation at multiple sites. The finding related to patterns indicating increased LD among eQTLs that have cis-trans compensatory or reinforcing effects in interesting in the context of other recent work finding patterns of epistatic selection. The authors have made some changes that address previous comments. However, some analyses in the manuscript remain less compelling or do not make the most from the value of collected data. Although the authors have made several improvements to the precision with which field-specific terminology is applied and to the language chosen when interpreting analytical findings, additional changes to improve these aspects of the manuscript remain necessary.

      Selection of gene expression: One strength of the dataset is that gene expression and fecundity were measured for the same genotypes in multiple environments. However, the selection analyses are largely conducted within environments. Addition of phenotypic selection analyses that jointly analyze gene expression across environments and or selection on reaction norms would be worthwhile.

      Gene expression trade-offs: The terminology and possibly methods involved in the section on gene expression trade-offs need amendment. I specifically recommend discontinuing reference to the analysis presented as an analysis of antagonistic pleiotropy (rather than more general as trade-offs) because pleiotropy is defined as a property of a genotype, not a phenotype. Gene expression levels are a molecular phenotype, influenced by both genotype and the environment. By conducting analyses of selection within environments as reported, the analysis does not account for the fact that the distribution of phenotypic values, the fitness surface, or both may differ across environments. Thus, this presents a very different situation than asking whether the genotypic effect of a QTL on fitness differs across environments, which is the context in which the contrasting terms antagonistic pleiotropy and conditional neutrality have been traditionally applied. The results reported do not persuasively support the assertion made in the response to reviewers that the terminology is reasonable due to strong coupling between genotype and phenotype. A more interesting analysis would be to examine whether the covariance of phenotype with fitness has truly changed between environments or whether the phenotypic distribution has just shifted to a different area of a static fitness surface.

      Biological processes under selection / Decoherence: In the initial review, it was noted that PCA is likely not the most ideal way to cluster genes to generate consolidated metrics for a selection gradient analysis. Because individual genes will contribute to multiple PCs, the current fractional majority-rule method applied to determine whether a PC is under direct or indirect selection for increased or decreased expression comes across as arbitrary and with the potential for double-counting genes. A gene co-expression network analysis could be more appropriate, as genes only belong to one module and one can examine how selection is acting on the eigengene of a co-expression module. Building gene co-expression modules would also provide a complementary and more concrete framework for evaluating whether salinity stress induces "decoherence" and which functional groups of genes are most impacted. Although results of co-expression network analyses are now briefly discussed in the response to reviewers, the findings and their relationship to the PCA/"decoherence" analyses are not reported in the manuscript.

      Selection of traits: Having paired organismal and molecular trait data is a strength of the manuscript, but the organismal trait data are underutilized. The manuscript as written only makes weak indirect inferences based on GO categories or assumed gene functions to connect selection at the organismal and molecular levels. After prompted by the initial reviews to test for correspondence between SNPs that explain organismal and gene expression trait variation or co-variance of co-expression module variation and trait variation, the response to reviewers indicates finding negative results. These findings should be included in the manuscript text and discussed.

      Genetic architecture of gene expression variation: More descriptive statistics of the eQTL analysis have been included, although additional information about the variation in these measures within environments would be useful. The motivation for featuring patterns of cis-trans compensation specifically for the results obtained under high salinity conditions remains unclear to me. If the lines sampled have predominantly evolved under low salinity conditions, and the hypothesis being evaluated relates to historical experience of stabilizing selection, then evaluating the eQTL patterns under normal conditions provides the more relevant test of the hypothesis.

      Lines 280-282: The revised sentence continues to read as an overstatement and merits additional revision with citations.

      Lines 379-381: Following revision, it still remains unclear how the interpretation follows from the above analysis; the inference as written goes significantly beyond what may be specifically inferable from the result.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript describes an in-depth analysis of the effect of the AAA+ ATPase PCH-2 on meiotic crossover formation in C. elegant. The authors reach several conclusions and attempt to synthesize a 'universal' framework for the role of this factor in eukaryotic meiosis.

      Strengths:

      The manuscript makes use of the advantages of the 'conveyor' belt system within the c.elegans reproductive tract, to enable a series of elegant genetic experiments

      Weaknesses:

      A weakness of this manuscript is that it heavily relies on certain genetic/cell biological assays that can report on distinct crossover outcomes, without clear and directed control over other aspects and variables that might also impact the final repair outcome. Such assays are currently out of reach in this model system.

    1. Reviewer #3 (Public review):

      Summary:

      The authors submitted a revised manuscript that reports findings from a series of experiments suggesting that bovine oviductal fluid and species-specific oviductal glycoprotein (OVGP1 or oviductin) from bovine, murine, or human sources modulate the species specificity of bovine and murine oocytes.

      Strengths:

      The study reported in the manuscript deals with an important topic of interest in reproductive biology.

      Weaknesses:

      The authors have submitted a revised manuscript with much improvement and have answered many of this reviewer's questions. However, some of the previous questions have been dealt with inadequately. There are still several issues that need to be dealt with. In particular, there are questions regarding the specificity and/or purity of the recombinant human and mouse OVGP1 which could be detrimental to the reliability of the recombinant human and mouse OVGP1s used in the study and the validity of the results presented. This Discussion should cover more broadly what has already been published in literature.

    1. Reviewer #3 (Public Review):

      Summary:

      Out of the 20 Neglected Tropical Diseases (NTD) highlighted by the WHO, three are caused by members of the trypanosomatids, namely Leishmanaisis, Trypanosomiasis, and Chagas disease. Trypanosomal glycolytic enzymes including pyruvate kinase (PyK) have long been recognised as potential targets. In this important study, single-chain camelid antibodies have been developed as novel and potent inhibitors of PyK from the T, congolense. To gain structural insight into the mode of action, binding was further characterised by biophysical and structural methods, including crystal structure determination of the enzyme-nanobody complex. The results revealed a novel allosteric mechanism/pathway with significant potential for the future development of novel drugs targeting allosteric and/or cryptic binding sites.

      Strengths:

      This paper covers an important area of science towards the development of novel therapies for three of the Neglected Tropical Diseases. The manuscript is very clearly written with excellent graphics making it accessible to a wide readership beyond experts. Particular strengths are the wide range of experimental and computational techniques applied to an important biological problem. The use of nanobodies in all areas from biophysical binding experiments and X-ray crystallography to in-vivo studies is particularly impressive. This is likely to inspire researchers from many areas to consider the use of nanobodies in their fields.

      Weaknesses:

      There is no particular weakness, but I think the computational analysis of allostery, which basically relies on a single server could have been more detailed.

    1. Reviewer #3 (Public review):

      Summary:

      The authors established an experimental system that reproduced three-dimensional triphasic epithelia, i.e., the original epithelium, its EMT, and MET. Keratinocytes (KCs), skin epithelial cells, placed on a microporous membrane migrated through 3.0-um or larger micropores. The 3.0-um-pored membrane induced an epithelial structure with three states: stratified KCs above the membrane, KCs showing EMT within the micropores, and a new stratified epithelium under the membrane. The membrane with larger micropores failed to maintain this triphasic epithelium. Live imaging revealed that KCs moved in a reciprocating manner, with actin-rich filopodia-like KC structures extending into and out of the 3.0-um micropores, while the cells migrated unidirectionally into larger micropores. KO of Piezo1 and keratin 6 increased KC entry to and exit from the 3.0-um micropores. Their results demonstrate that benign keratinocytes migrate through confined spaces in a reciprocating manner, which might help form triphasic epithelia, recapitulating wound healing processes.

      Strengths:

      Careful observation of the behaviour of keratinocytes on the different-sized pores. CrispR-Cas9 gene editing to KO Piezo 1 and keratin 6 isoforms in HaCaT keratinocytes.

      Weaknesses:

      There is no analysis of the matrix produced by the keratinocytes on the different pore sizes as this may influence migration.

      HaCaT cells are quite different from normal keratinocytes in terms of migration. Pilcher et al. PMID: 9182674

    1. Reviewer #3 (Public review):

      Strengths:

      This work focuses on a problem of deep significance: quantifying the structure-tension relationship and underlying mechanism for the mechanosensitive Piezo 1 and 2 channels. This objective presents a few technical challenges for molecular dynamics simulations, due to the relatively large size of each membrane-protein system. Nonetheless, the technical approach chosen is based on the methodology that is, in principle, established and widely accessible. Therefore, another group of practitioners would likely be able to reproduce these findings with reasonable effort.

      Weaknesses:

      The two main results of this paper are (1) that both channels exhibit a flatter structure compared to cryo-EM measurements, and (2) their estimated force vs. displacement relationship. Although the former correlates at least quantitatively with prior experimental work, the latter relies exclusively on simulation results and model parameters.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Wu D. et al. explores an innovative approach in immunometabolism and obesity by investigating the potential of targeting macrophage Inositol-requiring enzyme 1α (IRE1α) in cases of overnutrition. Their findings suggest that pharmacological inhibition of IRE1α could influence key aspects such as adipose tissue inflammation, insulin resistance, and thermogenesis. Notable discoveries include the identification of High-Fat Diet (HFD)-induced CD9+ Trem2+ macrophages and the reversal of metabolically active macrophages' activity with IRE1α inhibition using STF. These insights could significantly impact future obesity treatments.

      Strengths:

      The study's key strengths lie in its identification of specific macrophage subsets and the demonstration that inhibiting IRE1α can reverse the activity of these macrophages. This provides a potential new avenue for developing obesity treatments and contributes valuable knowledge to the field.

      Weaknesses:

      The research lacks an in-depth exploration of the broader metabolic mechanisms involved in controlling diet-induced obesity (DIO). Addressing this gap would strengthen the understanding of how targeting IRE1α might fit into the larger metabolic landscape.

      Impact and Utility:

      The findings have the potential to advance the field of obesity treatment by offering a novel target for intervention. However, further research is needed to fully elucidate the metabolic pathways involved and to confirm the long-term efficacy and safety of this approach. The methods and data presented are useful, but additional context and exploration are required for broader application and understanding.

      Comments on revisions:

      The author has revised the manuscript and addressed the most relevant comments raised by the reviewers. The paper is now significantly improved, though two minor issues remain.

      (1) Studies were limited to male mice; this should be mentioned in the paper's Title.<br /> (2) Please include the sample size (n=) in all provided tables in the main manuscript and supplementary tables.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Piersma et al. successfully generated a mouse model with all Ly49 genes knocked out, resulting in the complete absence of Ly49 receptor expression on the cell surface. The absence of Ly49 expression led to the loss of NK cell education/licensing and consequently, a failure in responsiveness against missing-self target cells. The authors demonstrate the restoration of NK cell licensing by knocking in a single Ly49 gene, Ly49A, in a mouse expressing the H-2Dd ligand for this receptor, which is a novel and important finding.

      Strengths:

      The authors established a novel mouse model enabling them to have a clean and thorough study on the function of Ly49 on NK cell licensing. Also, by knock in a single Ly49, they were able to investigate the function of a given Ly49 receptor excluding the "contamination" of co-expression any other Ly49 genes. The experiment designing and data interpretation were logically clear and the evidence was solid.

      Weaknesses:

      The mouse model was somehow genetically similar to a previous study. The experimental work and findings are partially overlapping with the previous work by Zhang et al. (2019), who also performed knockout of the entire Ly49 locus in mice and demonstrated that loss of NK responsiveness was due to the removal of inhibitory, and not activating Ly49 genes.

      Potential achievements and discussions: The mouse model developed by the authors holds great potential for advancing NK cell functional studies, particularly regarding the regulation of NK cell functions through receptor-ligand interactions. Moreover, it provides a valuable tool for investigating NK cell education and the development of checkpoint inhibitors. These applications could significantly contribute to the broader research efforts in cancer therapy utilizing NK cells.

      Comments on revisions: The authors have successfully addressed all the concerns raised in my previous feedback. They have significantly improved the logical structure, making it clearer and more coherent. Additionally, they have ensured consistency in the use of specific terminology throughout the manuscript. The substantial revisions and re-writing efforts are commendable and have greatly enhanced the overall quality of the manuscript.

    1. Reviewer #3 (Public Review):

      Summary:

      The paper aims at providing a neurocomputational account on how social perception translates in prosocial behaviors. Participants first completed a novel social perception task during fMRI scanning, in which were asked to judge the merit or need of people depicted in different situations. Second , a separate altruistic choice task was used to examine how the perception of merit and need influences the weights people place on themselves, others and fairness when deciding to provide help. Finally, a link between perception and action was drawn in those participants who completed both tasks.

      Strengths:

      The paper is overall very well written and presented, leaving the reader at ease when describing complex methods and results. The approach used by the author is very compelling, as it combines computational modeling of behavior and neuroimaging data analyses. Despite not being able to comment on the computational model, I find the approach used (to disentangle sensitivity and biases, for merit and need) very well described and derived from previous theoretical work. Results are also clearly described and interpreted.

      Weaknesses:

      In the social perception task, merit and need are evaluated by means of very different cues that rely on different cognitive processes (more abstract thinking for merit than need). Despite this limitation of the task, the authors were able to argue convincingly in the revised version about the solidity of their findings. Sample size is quite small for study 2, nevertheless the results provide convincing evidence.

    1. Reviewer #3 (Public review):

      Summary:

      Inoshita and Kawaguchi investigated the effects of GPR55 activation on synaptic transmission in vitro. To address this question, they performed direct patch-clamp recordings from axon terminals of cerebellar Purkinje cells and fluorescent imaging of vesicular exocytosis utilizing synapto-pHluorin. They found that exogenous activation of GPR55 suppresses GABA release at Purkinje cell to deep cerebellar nuclei (PC-DCN) synapses by reducing the readily releasable pool (RRP) of vesicles. This mechanism may also operate at other synapses.

      Strengths:

      The main strength of this study lies in combining patch-clamp recordings from axon terminals with imaging of presynaptic vesicular exocytosis to reveal a novel mechanism by which activation of GPR55 suppresses inhibitory synaptic strength. The results strongly suggest that GPR55 activation reduces the RRP size without altering presynaptic calcium influx.

      Weaknesses:

      The study relies on the exogenous application of GPR55 agonists. It remains unclear whether endogenous ligands released due to physiological or pathological activities would have similar effects. There is no information regarding the time course of the agonist-induced suppression. There is also little evidence that GPR55 is expressed in Purkinje cells. This study would benefit from using GPR55 knockout (KO) mice. The downstream mechanism by which GPR55 mediates the suppression of GABA release remains unknown.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Edwards et al. describe hamFISH, a customizable and cost-efficient method for performing targeted spatial transcriptomics. hamFISH utilizes highly amplified multiplexed branched DNA amplification, and the authors extensively describe hamFISH development and its advantages over prior variants of this approach.

      The authors then used hamFISH to investigate an important circuit in the mouse brain for social behavior, the medial amygdala (MeA). To develop a hamFISH probe set capable of distinguishing MeA neurons, the authors mined published single-cell RNA-sequencing datasets of the MeA, ultimately creating a panel of 32 hamFISH probes that mostly cover the identified MeA cell types. They evaluated over 600,000 MeA cells and classified neurons into 16 inhibitory and 10 excitatory types, many of which are spatially clustered. The authors combined hamFISH with viral and other circuit tracer injections to determine whether the identified MeA cell populations sent and/or received unique inputs from connected brain regions, finding evidence that several cell types had unique patterns of input and output. Finally, the authors performed hamFISH on the brains of male mice that were placed in behavioral conditions that elicit aggressive, infanticidal, or mating behaviors, finding that some cell populations are selectively activated (as assessed by c-fos mRNA expression) in specific social contexts.

      Strengths:

      (1) The authors developed an optimized tissue preparation protocol for hamFISH and implemented oligopools instead of individually synthesized oligonucleotides to reduce costs. The branched DNA amplification scheme improved smFISH signal compared to previous methods, and multiple variants provide additional improvements in signal intensity and specificity. Compared to other spatial transcriptomics methods, the pipeline for imaging and analysis is streamlined and is compatible with other techniques like fluorescence-based circuit tracing. This approach is cost-effective and has several advantages that make it a valuable addition to the list of spatial transcriptomics toolkits.

      (2) Using 31 probes, hamFISH was able to detect 16 inhibitory and 10 excitatory neuron types in the MeA subregions, including the vast majority of cell types identified by other transcriptomics approaches. The authors quantified the distributions of these cell types along the anterior-posterior, dorsal-ventral, and medial-lateral axes, finding spatial segregation among some, but not all, MeA excitatory and inhibitory cell types. The authors additionally identified a class of inhibitory neurons expressing Ndnf (and a subset of these that express Chrna7) that project multiple social chemosensory circuits.

      (3) The authors combined hamFISH with MeA input and output mapping, finding cell-type biases in the projections to the MPOA, BNST, and VMHvl, and inputs from multiple regions.

      (4) The authors identified excitatory and inhibitory cell types, and patterns of activity across cell types, that were selectively activated during various social behaviors, including aggression, mating, and infanticide, providing new insights and avenues for future research into MeA circuit function.

      Weaknesses:

      (1) Gene selection for hamFISH is likely to still be a limiting factor, even with the expanded (32-probe) capacity. This may have contributed to the lack of ability to identify sexually dimorphic cell types (Figure S2B). This is an expected tradeoff for a method that has major advantages in terms of cost and adaptability.

      (2) Adaptation of hamFISH, for example, to adapt it to other brain regions or tissues, may require extensive optimization.

      (3) Pairing this method with behavioral experiments is likely to require further optimization, as c-fos mRNA expression is an indirect and incomplete survey of neuronal activity (e.g. not all cell types upregulate c-fos when electrically active). As such, there is a risk of false negative results that limit its utility for understanding circuit function.

      (4) The limited compatibility of hamFISH with thicker tissue samples and lack of optical sectioning introduce additional technical limitations. For example, it would be difficult to densely sample larger neural circuits using serial 20 micron sections. Also, because the imaging modality is not clear from the methods, it is difficult to know whether the analysis methods introduce the risk of misattributing gene expression to overlapping cells.

    1. Reviewer #3 (Public review):

      In this study, Bison et al. analyzed the role of the GATA6 transcription factor in patterning the early mesoderm and generating cardiomyocytes, using human embryonic stem cell differentiation assays and patient-derived hiPSCs with heart defects associated with mutations in the GATA6 gene. They identified a novel role for GATA6 in regulating genes involved in the WNT and BMP pathways. Modulation of the WNT and BMP pathways partially rescue early cardiac mesoderm defects in GATA6 mutant hESCs. These results provide significant insights into how GATA6 loss-of-function and heterozygous mutations contribute to heart defects.

      Comments on revised version:

      The authors have addressed all the concerns, using new data and modifications to the text to further strengthen the manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      Human cells deficient in delta-tubulin or epsilon-tubulin form unstable centrioles, which lack triplet microtubules and undergo a futile formation and disintegration cycle. In this study, the authors show that human cells lacking the associated proteins TEDC1 or TEDC2 have these identical phenotypes. They use genetics to knockout TEDC1 or TEDC2 in p53-negative RPE-1 cells and expansion microscopy to structurally characterize mutant centrioles. Biochemical methods and AlphaFold-multimer prediction software are used to investigate interactions between tubulins and TEDC1 and TEDC2.

      The study shows that mutant centrioles are built only of A tubules, which elongate and extend their proximal region, fail to incorporate structural components, and finally disintegrate in mitosis. In addition, they demonstrate that delta-tubulin or epsilon-tubulin and TEDC1 and TEDC2 form one complex and that TEDC1 TEDC2 can interact independently of tubulins. Finally, they show that localization of four proteins is mutually dependent.

      Strengths:

      The results presented here are convincing, exciting, and important, and the manuscript is well-written. The study shows that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to build a stable and functional centriole, significantly contributing to the field and our understanding of the centriole assembly process.

      Weaknesses:

      The ultrastructural characterization of TEDC1 and TEDC2 in centrosomes remains challenging. Nevertheless, it is evident that these proteins occupy growing centrioles and the proximal parts of mother centrioles.

      Comments on revisions:

      The authors have done a great job extending the original experiments and measurements and answering outstanding questions.

    1. Reviewer #3 (Public review):

      The authors find that HERV expression patterns can be used as new criteria for differential diagnosis of FM and ME/CFS and patient subtyping. The data are based on transcriptome analysis by microarray for HERVs using patient blood samples, followed by differential expression of ERVs and bioinformatic analyses. This is a standard and solid data processing pipeline, and the results are well presented and support the authors' claim.

    1. Reviewer #3 (Public review):

      Summary:

      The authors are showing evidence that they claim establishes the controversial epigenetic mark, DNA 6mA, as promoting genome stability.

      Strengths:

      The identification of a poorly understood protein, METTL3, and its subsequent characterization in DDR is of high quality and interesting.

      Weaknesses:

      (1) The very presence of 6mA (DNA) in mammalian DNA is still highly controversial and numerous studies have been conclusively shown to have reported the presence of 6mA due to technical artifacts and bacterial contamination. Thus, to my knowledge there is no clear evidence for 6mA as an epigenetic mark in mammals, and consequently, no evidence of writers and readers of 6mA. None of this is mentioned in the introduction. Much of the introduction can be reduced, but a paragraph clearly stating the controversy and lack of evidence for 6mA in mammals needs to be added, otherwise, the reader is given an entirely distorted view of the field.

      These concerns must also be clearly in the limitations section and even in the results section which fails to nuance the authors' findings.

      (2) What is the motivation for using HT-29 cells? Moreover, the materials and methods do not state how the authors controlled for bacterial contamination, which has been the most common cause of erroneous 6mA signals to date. Did the authors routinely check for mycoplasma?

      (3) The single cell imaging of 6mA in various cells is nice. The results are confirmed by mass spec as an orthogonal approach. Another orthogonal and quantitative approach to assessing 6mA levels would be PacBio. Similarly, it is unclear why the authors have not performed dot-blots of 6mA for genomic DNA from the given cell lines.

      (4) The results of Figure 3 need further investigation and validation. If the results are correct the authors are suggesting that the majority of 6mA in their cell lines is present in the DNA, and not the RNA, which is completely contrary to every other study of 6mA in mammalian cells that I am aware of. This could suggest that the antibody is not, in fact, binding to 6mA, but to unmodified adenine, which would explain why the signal disappears after DNAse treatment. Indeed, binding of 6mA to unmethylated DNA is a commonly known problem with most 6mA antibodies and is well described elsewhere.

      (5) Given the lack of orthologous validation of the observed DNA 6mA and the lack of evidence supporting the presence of 6mA in mammalian DNA and consequently any functional role for 6mA in mammalian biology, the manuscript's conclusions need to be toned down significantly, and the inherent difficulty in assessing 6mA accurately in mammals acknowledged throughout.

    1. Reviewer #3 (Public review):

      Summary:

      Redman and colleagues analyze grid cell data obtained from public databases. They show that there is significant variability in spacing and orientation within a module. They show that the difference in spacing and orientation for a pair of cells is larger than the one obtained for two independent maps of the same cell. They speculate that this variability could be useful to disambiguate the rat position if only information from a single module is used by a decoder.

      Strengths:

      The strengths of this work lie in its conciseness, clarity, and the potential significance of its findings for the grid cell community, which has largely overlooked this issue for the past two decades. Their hypothesis is well stated and the analyses are solid.

      Weaknesses:

      Major weaknesses identified in the original version have been addressed.

      The authors have addressed all of our concerns, providing control analyses that strengthen their claim.

    1. Reviewer #3 (Public review):

      Summary:

      The paper investigates the TMEM16 family of membrane proteins, which play roles in lipid scrambling and ion transport. A total of 27 experimental structures from five TMEM16 family members were analyzed, including mammalian and fungal homologs (e.g., TMEM16A, TMEM16F, TMEM16K, nhTMEM16, afTMEM16). The identified structures were in both Ca²⁺-bound (open) and Ca²⁺-free (closed) states to compare conformations and were preprocessed (e.g., modeling missing loops) and equilibrated. Coarse-grain simulations were performed in DOPC membranes for 10 microseconds to capture the scrambling events. These events were identified by tracking lipids transitioning between the two membrane leaflets and they analysed the correlation between scrambling rates, in addition, structural properties such as groove dilation and membrane thinning were calculated. They report 700 scrambling events across structures and Figure 2 elaborates on how open structures show higher activity, also as expected. The authors also address how structures may require open grooves, this and other mechanisms around scrambling are a bit controversial in the field.

      Strengths:

      The strength of this study emerges from a comparative analysis of multiple structural starting points and understanding global/local motions of the protein with respect to lipid movement. Although the protein is well-studied, both experimentally and computationally, the understanding of conformational events in different family members, especially membrane thickness less compared to fungal scramblases offers good insights.

      Weaknesses:

      The weakness of the work is to fully reconcile with experimental evidence of Ca²⁺-independent scrambling rates observed in prior studies, but this part is also challenging using coarse-grain molecular simulations. Previous reports have identified lipid crossing, packing defects, and other associated events, so it is difficult to place this paper in that context. However, the absence of validation leaves certain claims, like alternative scrambling pathways, speculative.

    1. Reviewer #3 (Public review):

      Summary:

      Fahrenfort et al. investigate how liberal or conservative criterion placement in a detection task affects the construct validity of neural measures of unconscious cognition and conscious processing. Participants identified instances of "seen" or "unseen" in a detection task, a method known as post hoc sorting. Simulation data convincingly demonstrate that, counterintuitively, a conservative criterion inflates effect sizes of neural measures compared to a liberal criterion. While the impact of criterion shifts on effect size is suggested by signal detection theory, this study is the first to address this explicitly within the consciousness literature. Decoding analysis of data from two EEG experiments further shows that different criteria lead to differential effects on classifier performance in post hoc sorting. The findings underscore the pervasive influence of experimental design and participant reports on neural measures of consciousness, revealing that criterion placement poses a critical challenge for researchers.

      Strengths and Weaknesses

      One of the strengths of this study is the inclusion of the Perceptual Awareness Scale (PAS), which allows participants to provide more nuanced responses regarding their perceptual experiences. This approach ensures that responses at the lowest awareness level (selection 0) are made only when trials are genuinely unseen. This methodological choice is important as it helps prevent the overestimation of unconscious processing, enhancing the validity of the findings.<br /> The authors also do a commendable job in the discussion by addressing alternative paradigms, such as wagering paradigms, as a possible remedy to the criterion problem (Peters & Lau, 2015; Dienes & Seth, 2010). Their consideration of these alternatives provides a balanced view and strengthens the overall discussion.

      Our initial review identified a lack of measures of variance as one potential weakness of this work. However we agree with the authors' response that plotting individual datapoints for each condition is indeed a good visualization of variance within a dataset.

      Impact of the Work:

      This study effectively demonstrates a phenomenon that, while understood within the context of signal detection theory, has been largely unexplored within the consciousness literature. Subjective measures may not reliably capture the construct they aim to measure due to criterion confounds. Future research on neural measures of consciousness should account for this issue, and no-report measures may be necessary until the criterion problem is resolved.

    1. Reviewer #3 (Public review):

      Summary:

      Tubert et al. investigate the mechanisms underlying the pause response in striatal cholinergic interneurons (SCINs). The authors demonstrate that optogenetic activation of thalamic axons in the striatum induces burst activity in SCINs, followed by a brief pause in firing. They show that the duration of this pause correlates with the number of elicited action potentials, suggesting a burst-dependent pause mechanism. The authors demonstrated this burst-dependent pause relied on Kv1 channels. The pause is blocked by a SKF81297 and partially by sulpiride and mecamylamine, implicating D1/D5 receptor involvement. The study also shows that the ZD7288 does not reduce the duration of the pause, and that lesioning dopamine neurons abolishes this response, which can be restored by clozapine.

      Weaknesses:

      While this study presents an interesting mechanism for SCIN pausing after burst activity, there are several major concerns that should be addressed:

      (1) Scope of the Mechanism: It is important to clarify that the proposed mechanism may apply specifically to the pause in SCINs following burst activity. The manuscript does not provide clear evidence that this mechanism contributes to the pause response observed in behavioral animals. While the thalamus is crucial for SCIN pauses in behavioral contexts, the exact mechanism remains unclear. Activating thalamic input triggers burst activity in SCINs, leading to a subsequent pause, but this mechanism may not be generalizable across different scenarios. For instance, approximately half of TANs do not exhibit initial excitation but still pause during behavior, suggesting that the burst-dependent pause mechanism is unlikely to explain this phenomenon. Furthermore, in behavioral animals, the duration of the pause seems consistent, whereas the proposed mechanism suggests it depends on the prior burst, which is not aligned with in vivo observations. Additionally, many in vivo recordings show that the pause response is a reduction in firing rate, not complete silence, which the mechanism described here does not explain. Please address these in the manuscript.

      (2) Terminology: The use of "pause response" throughout the manuscript is misleading. The pause induced by thalamic input in brain slices is distinct from the pause observed in behavioral animals. Given the lack of a clear link between these two phenomena in the manuscript, it is essential to use more precise terminology throughout, including in the title, bullet points, and body of the manuscript.

      (3) Kv1 Blocker Specificity: It is unclear how the authors ruled out the possibility that the Kv1 blocker did not act directly on SCINs. Could there be an indirect effect contributing to the burst-dependent pause? Clarification on this point would strengthen the interpretation of the results.

      (4) Role of D1 Receptors: While it is well-established that activating thalamic input to SCINs triggers dopamine release, contributing to SCIN pausing (as shown in Figure 3), it would be helpful to assess the extent to which D1 receptors contribute to this burst-dependent pause. This could be achieved by applying the D1 agonist SKF81297 after blocking nAChRs and D2 receptors.

      (5) Clozapine's Mechanism of Action: The restoration of the burst-dependent pause by clozapine following dopamine neuron lesioning is interesting, but clozapine acts on multiple receptors beyond D1 and D5. Although it may be challenging to find a specific D5 antagonist or inverse agonist, it would be more accurate to state that clozapine restores the burst-dependent pause without conclusively attributing this effect to D5 receptors.

      Comments on revisions:

      The authors have addressed many of my concerns. However, I remain unconvinced that adding an 'ex vivo' experiment fully resolves the fundamental differences between the burst-dependent pause observed in slices - defined by the duration of a single AHP - and the pause response in CHINs observed in vivo, which may involve contributions from more than one prolonged AHP. In vivo, neurons can still fire action potentials during the pause, albeit at a lower frequency. Moreover, in behaving animals, pause duration does not vary with or without initial excitation. The mechanism proposed demonstrates that the pause duration, defined by the length of a single AHP, is positively correlated with preceding burst activity.

      To improve clarity, I recommend using the term 'SCIN pause' to describe the ex vivo findings, distinguishing them more explicitly from the 'pause response' observed in behaving animals. This distinction would help contextualize the ex vivo findings as potentially contributing to, but not fully representing, the pause response in vivo.

      Again, it would be helpful to present raw data for pause durations rather than relying solely on ratios. This approach would provide the audience with a clearer understanding of the absolute duration of the burst-dependent pause and allow for better comparison to the ~200 ms pause observed in behaving animals.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have studied a previously published large dataset on the fitness landscape of a 9 base-pair region of the folA gene. The objective of the paper is to understand various aspects of epistasis in this system, which the authors have achieved through detailed and computationally expensive exploration of the landscape. The authors describe epistasis in this system as "fluid", meaning that it depends sensitively on the genetic background, thereby reducing the predictability of evolution at the genetic level. However, the study also finds two robust patterns. The first is the existence of a "pivot point" for a majority of mutations, which is a fixed growth rate at which the effect of mutations switches from beneficial to deleterious (consistent with a previous study on the topic). The second is the observation that the distribution of fitness effects (DFE) of mutations is predicted quite well by the fitness of the genotype, especially for high-fitness genotypes. While the work does not offer a synthesis of the multitude of reported results, the information provided here raises interesting questions for future studies in this field.

      Strengths:

      A major strength of the study is its detailed and multifaceted approach, which has helped the authors tease out a number of interesting epistatic properties. The study makes a timely contribution by focusing on topical issues like the prevalence of global epistasis, the existence of pivot points, and the dependence of DFE on the background genotype and its fitness. The methodology is presented in a largely transparent manner, which makes it easy to interpret and evaluate the results.

      The authors have classified pairwise epistasis into six types and found that the type of epistasis changes depending on background mutations. Switches happen more frequently for mutations at functionally important sites. Interestingly, the authors find that even synonymous mutations in stop codons can alter the epistatic interaction between mutations in other codons. Consistent with these observations of "fluidity", the study reports limited instances of global epistasis (which predicts a simple linear relationship between the size of a mutational effect and the fitness of the genetic background in which it occurs). Overall, the work presents some evidence for the genetic context-dependent nature of epistasis in this system.

      Weaknesses:

      Despite the wealth of information provided by the study, there are some shortcomings of the paper which must be mentioned.

      (1) In the Significance Statement, the authors say that the "fluid" nature of epistasis is a previously unknown property. This is not accurate. What the authors describe as "fluidity" is essentially the prevalence of certain forms of higher-order epistasis (i.e., epistasis beyond pairwise mutational interactions). The existence of higher-order epistasis is a well-known feature of many landscapes. For example, in an early work, (Szendro et. al., J. Stat. Mech., 2013), the presence of a significant degree of higher-order epistasis was reported for a number of empirical fitness landscapes. Likewise, (Weinreich et. al., Curr. Opin. Genet. Dev., 2013) analysed several fitness landscapes and found that higher-order epistatic terms were on average larger than the pairwise term in nearly all cases. They further showed that ignoring higher-order epistasis leads to a significant overestimate of accessible evolutionary paths. The literature on higher-order epistasis has grown substantially since these early works. Any future versions of the present preprint will benefit from a more thorough contextual discussion of the literature on higher-order epistasis.

      (2) In the paper, the term 'sign epistasis' is used in a way that is different from its well-established meaning. (Pairwise) sign epistasis, in its standard usage, is said to occur when the effect of a mutation switches from beneficial to deleterious (or vice versa) when a mutation occurs at a different locus. The authors require a stronger condition, namely that the sum of the individual effects of two mutations should have the opposite sign from their joint effect. This is a sufficient condition for sign epistasis, but not a necessary one. The property studied by the authors is important in its own right, but it is not equivalent to sign epistasis.

      (3) The authors have looked for global epistasis in all 108 (9x12) mutations, out of which only 16 showed a correlation of R^2 > 0.4. 14 out of these 16 mutations were in the functionally important nucleotide positions. Based on this, the authors conclude that global epistasis is rare in this landscape, and further, that mutations in this landscape can be classified into one of two binary states - those that exhibit global epistasis (a small minority) and those that do not (the majority). I suspect, however, that a biologically significant binary classification based on these data may be premature. Unsurprisingly, mutational effects are stronger at the functional sites as seen in Figure 5 and Figure 2, which means that even if global epistasis is present for all mutations, a statistical signal will be more easily detected for the functionally important sites. Indeed, the authors show that the means of DFEs decrease linearly with background fitness, which hints at the possibility that a weak global epistatic effect may be present (though hard to detect) in the individual mutations. Given the high importance of the phenomenon of global epistasis, it pays to be cautious in interpreting these results.

      (4) The study reports that synonymous mutations frequently change the nature of epistasis between mutations in other codons. However, it is unclear whether this should be surprising, because, as the authors have already noted, synonymous mutations can have an impact on cellular functions. The reader may wonder if the synonymous mutations that cause changes in epistatic interactions in a certain background also tend to be non-neutral in that background. Unfortunately, the fitness effect of synonymous mutations has not been reported in the paper.

      (5) The authors find that DFEs of high-fitness genotypes tend to depend only on fitness and not on genetic composition. This is an intriguing observation, but unfortunately, the authors do not provide any possible explanation or connect it to theoretical literature. I am reminded of work by (Agarwala and Fisher, Theor. Popul. Biol., 2019) as well as (Reddy and Desai, eLife, 2023) where conditions under which the DFE depends only on the fitness have been derived. Any discussion of possible connections to these works could be a useful addition.

  3. Jan 2025
    1. Reviewer #3 (Public review):

      Summary:

      Overall, this is a clearly written manuscript with nice hypothesis testing in a non-model organism that addresses the mechanism of Wolbachia-mediated male killing. The authors aim to determine how five previously identified male-killing genes (encoded in the prophage region of the wHm Wolbachia strain) impact the native host, Homona magnanima moths. This work builds on the authors' previous studies in which<br /> (1) they tested the impact of these same wHm genes via heterologous expression in Drosophila melanogaster<br /> (2) also examined the activity of other male-killing genes (e.g., from the wFur Wolbachia strain in its native host: Ostrinia furnacalis moths).

      Advances here include identifying which wHm gene most strongly recapitulates the male-killing phenotype in the native host (rather than in Drosophila), and the finding that the Hm-Oscar protein has the potential for male-killing in a diverse set of lepidopterans, as inferred by the cell-culture assays.

      Strengths:

      Strengths of the manuscript include the reverse genetics approaches to dissect the impact of specific male-killing loci, and use of a "masculinization" assay in Lepidopteran cell lines to determine the impact of interactions between specific masc and oscar homologs.

      Weaknesses:

      It is clear from Figure 1 that the combinations of wmk homologs do not cause male killing on their own here. While I largely agree with the author's conclusions that oscar is the primary MK factor in this system, I don't think we can yet rule out that wmk(s) may work synergistically or interactively with oscar in vivo. This might be worth a small note in the discussion. (eg at line 294 'indicating that wmk likely targets factors other than masc." - this could be downstream of the impacts of oscar; perhaps dependent on oscar-mediated impacts on masc first).

      Regarding the perceived male-bias in Figure 2a: I think readers might be interpreting "unhatched" as "total before hatching". You could eliminate ambiguity by perhaps splitting the bars into male and female, and then within a bar, coloring by hatched versus unhatched. But this is a minor point, and I think the updated text helps clarify this.

      The new Figure 4b looks to be largely redundant with the oscar information in Figure 1a.

      Updated statistical comparisons for the RNA-seq analysis are helpful. However these analyses are based on single libraries (albeit each a pool of many individuals), so this is still a weaker aspect of the manuscript.

      The new information on masc similarity is useful (Fig 4d) - if the authors could please include a heatmap legend for the colors, that would be helpful. Also, please avoid green and red in the same figure when key for interpretation.

      Figure 1A "helix-turn-helix" is misspelled. ("tern").

    1. Reviewer #3 (Public review):

      Summary

      The manuscript investigates the role of norepinephrine (NE) release in the rodent hippocampus during event boundaries, such as transitions between spatial contexts and the introduction of novel objects. It also explores how NE release is altered by experience and how novelty drives the amplitude and decay times of extracellular NE. By utilizing the GRABNE sensor for sub-second resolution measurement of NE, the authors demonstrate that NE release is driven primarily by the time elapsed since an event boundary and is independent of behaviors like movement or reward. The study further explores how hippocampal neural representations are altered over time, showing that these representations stabilize shortly after event transitions, potentially linking NE release to episodic memory encoding.

      Strengths

      Overall, the work provides novel insights into the interplay between NE signaling and hippocampal activity and presents an intriguing hypothesis on how NE release may help push hippocampal activity into unique attractor states to encode novel experiences. The experiments are well-controlled, and the analysis is well-presented, with a detailed and engaging discussion that points towards several new and exciting research directions. The use of several behavioral paradigms to demonstrate the strongest predictor of NE release is a strength, as well as the regression analysis to disambiguate the contribution of other correlated variables. The suggestion that NE does not select ensembles for subsequent replay is also an interesting result.

      Weaknesses

      The authors have not convincingly established a link between hippocampal neural activity and NE release, showing qualitative rather than quantitative correlations. Therefore, at this stage, the role of NE on hippocampal function remains speculative.

      Another general concern is that the smoothing/ kinetics of the sensor impacts the regression analyses. Most of the other variables, such as speed, acceleration, and even reward time points are highly dynamic and it is possible that the limitations of the sensor decorrelate the signal from (potentially) causal variables, therefore resulting in the time since the event start having the most explanatory power for most of the analyses.

      More broadly, the figure legends should be expanded to better describe error bounds, mean vs median, sample sizes, and averaging choices for plots.

      There are also some concerns regarding the nearest neighbor analysis and the reported differences in the rate of reactivations after familiar and novel environments, as outlined below.

      (1) Lines 657-658. How far away in time can the top three nearest neighbor time points be? Must they lie in different trials, or can they also be within the same trial? Is there a systematic difference in the average time lags for the nearest neighbors over the course of the session?

      The authors should only allow nearest neighbors to be in a different lap because systematic changes in behavior (running fast initially) might force earlier time bins in a certain location to match with a different trial, while the later time bins can be from within the same trial if the mice are moving slower and stay in the same spatial bin location longer. The authors should also provide information on how the averaging is performed because there are several axes of variability - spatial bin locations, sessions, different environments, and animals.

      (2) Figure 8: These results are very interesting. However, I am confused by the differences between Figure 8B and D because the significant reactivations in A and C are very similar. The 1-minute and 10-minute windows seem somewhat arbitrary and prone to noise and variability. Perhaps the authors should fit a slope for the curves on A and C and compare whether the slope/ intercept are significantly different between the novel and familiar environments.

    1. Reviewer #3 (Public review):

      Summary:

      This study examines neural activity recorded simultaneously in the hippocampus, dorsal striatum, and orbitofrontal cortex as rats performed an interval timing task. The analyses primarily focus on the activity of "time cells" which are neurons that fire at specific moments during the intervals. In this experiment, the intervals consist of periods when animals are running on a treadmill before selecting the arm associated with the interval duration. The results show that the theta oscillations induced by this running behavior were observed across the three regions and that this strong oscillation modulated the activity of neurons across regions. While these findings are correlative in nature, they provide an important characterization of activity patterns across regions during complex behavior. However, more research is needed to determine whether these activity patterns specifically contribute to temporal coding.

      Strengths:

      (1) Overall, the paper is very well written. Although I have specific concerns about the review of the relevant literature and the interpretation of the results (see below), I do want to commend the authors for their efforts toward presenting this complex work in an accessible manner.

      (2) The study is well designed and the quality of the electrophysiological data collected from multiple brain regions in such a challenging behavioral experiment is impressive. This work is a technical tour de force.

      (3) The analyses are very thorough, statistically rigorous, and clearly explained and visualized. The authors provide a thoughtful mixture of example data (at the level of individual cells or animals) and aggregated data (at the group or session level) to properly explain and quantify the activity patterns of interest.

    1. Reviewer #3 (Public review):

      Summary:

      This is a solid study of stimulus-evoked neural activity dynamics in the feedforward pathway from mouse hand/forelimb mechanoreceptor afferents to S1 and M1 cortex. The conclusions are generally well supported, and match expectations from previous studies of hand/forelimb circuits by this same group (Yamawaki et al., 2021), from the well-studied whisker tactile pathway to whisker S1 and M1, and from the corresponding pathway in primates. The study uses the novel approach of optogenetic stimulation of PV afferents in the periphery, which provides an impulse-like volley of peripheral spikes, which is useful for studying feedforward circuit dynamics. These are primarily proprioceptors, so results could differ for specific mechanoreceptor populations, but this is a reasonable tool to probe basic circuit activation. Mice are awake but not engaged in a somatosensory task, which is sufficient for the study goals.

      The main results are:<br /> (1) brief peripheral activation drives brief sensory-evoked responses at ~ 15 ms latency in S1 and ~25 ms latency in M1, which is consistent with classical fast propagation on the subcortical pathway to S1, followed by slow propagation on the polysynaptic, non-myelinated pathway from S1 to M1;<br /> (2) each peripheral impulse evokes a triphasic activation-suppression-rebound response in both S1 and M1;<br /> (3) PV interneurons carry the major component of spike modulation for each of these phases;<br /> (4) activation of PV neurons in each area (M1 or S1) drives suppression and rebound both in the local area and in the other downstream area;<br /> (5) peripheral-evoked neural activity in M1 is at least partially dependent on transmission through S1.

      All conclusions are well-supported and reasonably interpreted. There are no major new findings that were not expected from standard models of somatosensory pathways or from prior work in the whisker system.

      Strengths:

      This is a well-conducted and analyzed study in which the findings are clearly presented. This will provide important baseline knowledge from which studies of more complex sensorimotor processing can build.

      Weaknesses:

      A few minor issues should be addressed to improve clarity of presentation and interpretation:

      (1) It is critical for interpretation that the stimulus does not evoke a motor response, which could induce reafference-based activity that could drive, or mask, some of the triphasic response. Figure S1 shows that no motor response is evoked for one example session, but this would be stronger if results were analyzed over several mice.

      (2) The recordings combine single and multi-units, which is fine for measures of response modulation, but not for absolute evoked firing rate, which is only interpretable for single units. For example, evoked firing rate in S1 could be higher than M1, if spike sorting were more difficult in S1, resulting in a higher fraction of multi-units relative to M1. Because of this, if reporting of absolute firing rates is an essential component of the paper, Figs 3D and 4E should be recalculated just for single units.

      (3) In Figure 5B, the average light-evoked firing rate of PV neurons seems to come up before time 0, unlike the single-trial rasters above it. Presumably, this reflects binning for firing rate calculation. This should be corrected to avoid confusion.

      (4) In Figure 6A bottom, please clarify what legends "W. suppression" and "W. rebound" mean.

    1. Reviewer #3 (Public review):

      The manuscript entitled "SMARCAD1 and TOPBP1 contribute to heterochromatin maintenance at the transition from the 2C-like to the pluripotent state" by Sebastian-Perez et al. adopted the iPOTD method to compare the chromatin-bound proteome in ESCs and 2CLCs induced by Dux overexpression. The authors identified 397 chromatin-bound proteins enriched specifically in non-2CLCs, among which they further investigated TOPBP1 due to its potential role in chromocenter reorganization. SMARCD1, a known interacting protein of TOPBP1, was also investigated in parallel. The authors report increased size and decreased number of H3K9me3-heterochromatin foci in Dux-induced 2CLCs. Remarkably, depletion of either TOPBP1 or SMARCD1 resulted in similar phenotypes. However, the absence of these proteins did not affect the entry into or exit from the 2C-like state. The authors further showed that both TOPBP1 and SMARCD1 are essential for early embryonic development.

      This manuscript provides valuable insights into the features of 2CLCs regarding H3K9me3-heterochromatin reorganization. However, the findings are largely descriptive. Mechanistic studies are required in future studies, such as: 1) how SMARCD1 associates with H3K9me3 and contributes to heterochromatin maintenance, 2) how TOPBP1 regulates the expression of SMARCD1 and facilitates its localization in heterochromatin foci, 3) whether the remodelling of chromocenter directly influence the transitions between ESCs and 2CLCs.

    1. Reviewer #3 (Public review):

      Summary:

      Papagiannakis et al. present a detailed study exploring the relationship between DNA/polysome phase separation and nucleoid segregation in Escherichia coli. Using a combination of experiments and modelling, the authors aim to link physical principles with biological processes to better understand nucleoid organisation and segregation during cell growth.

      Strengths:

      The authors have conducted a large number of experiments under different growth conditions and physiological perturbations (using antibiotics) to analyse the biophysical factors underlying the spatial organisation of nucleoids within growing E. coli cells. A simple model of ribosome-nucleoid segregation has been developed to explain the observations.

      Weaknesses:

      While the study addresses an important topic, several aspects of the modelling, assumptions, and claims warrant further consideration.

      Major Concerns:

      Oversimplification of Modelling Assumptions:

      The model simplifies nucleoid organisation by focusing on the axial (long-axis) dimension of the cell while neglecting the radial dimension (cell width). While this approach simplifies the model, it fails to explain key experimental observations, such as:

      (1) Inconsistencies with Experimental Evidence:

      The simplified model presented in this study predicts that translation-inhibiting drugs like chloramphenicol would maintain separated nucleoids due to increased polysome fractions. However, experimental evidence shows the opposite-separated nucleoids condense into a single lobe post-treatment (Bakshi et al 2014), indicating limitations in the model's assumptions/predictions. For the nucleoids to coalesce into a single lobe, polysomes must cross the nucleoid zones via the radial shells around the nucleoid lobes.

      (2) The peripheral localisation of nucleoids observed after A22 treatment in this study and others (e.g., Japaridze et al., 2020; Wu et al., 2019), which conflicts with the model's assumptions and predictions. The assumption of radial confinement would predict nucleoids to fill up the volume or ribosomes to go near the cell wall, not the nucleoid, as seen in the data.

      (3) The radial compaction of the nucleoid upon rifampicin or chloramphenicol treatment, as reported by Bakshi et al. (2014) and Spahn et al. (2023), also contradicts the model's predictions. This is not expected if the nucleoid is already radially confined.

      (4) Radial Distribution of Nucleoid and Ribosomal Shell:

      The study does not account for well-documented features such as the membrane attachment of chromosomes and the ribosomal shell surrounding the nucleoid, observed in super-resolution studies (Bakshi et al., 2012; Sanamrad et al., 2014). These features are critical for understanding nucleoid dynamics, particularly under conditions of transcription-translation coupling or drug-induced detachment. Work by Yongren et al. (2014) has also shown that the radial organisation of the nucleoid is highly sensitive to growth and the multifork nature of DNA replication in bacteria.

      The omission of organisation in the radial dimension and the entropic effects it entails, such as ribosome localisation near the membrane and nucleoid centralisation in expanded cells, undermines the model's explanatory power and predictive ability. Some observations have been previously explained by the membrane attachment of nucleoids (a hypothesis proposed by Rabinovitch et al., 2003, and supported by experiments from Bakshi et al., 2014, and recent super-resolution measurements by Spahn et al.).

      Ignoring the radial dimension and membrane attachment of nucleoid (which might coordinate cell growth with nucleoid expansion and segregation) presents a simplistic but potentially misleading picture of the underlying factors.

      This reviewer suggests that the authors consider an alternative mechanism, supported by strong experimental evidence, as a potential explanation for the observed phenomena:<br /> Nucleoids may transiently attach to the cell membrane, possibly through transertion, allowing for coordinated increases in nucleoid volume and length alongside cell growth and DNA replication. Polysomes likely occupy cellular spaces devoid of the nucleoid, contributing to nucleoid compaction due to mutual exclusion effects. After the nucleoids separate following ter separation, axial expansion of the cell membrane could lead to their spatial separation.

      Incorporating this perspective into the discussion or future iterations of the model may provide a more comprehensive framework that aligns with the experimental observations in this study and previous work.

      Simplification of Ribosome States:<br /> Combining monomeric and translating ribosomes into a single 'polysome' category may overlook spatial variations in these states, particularly during ribosome accumulation at the mid-cell. Without validating uniform mRNA distribution or conducting experimental controls such as FRAP or single-molecule measurements to estimate the proportions of ribosome states based on diffusion, this assumption remains speculative.

    1. Reviewer #3 (Public review):

      Summary:

      This study profiled the single-cell transcriptome of human spermatogenesis and provided many potentials molecular markers for developing testicular puncture specific marker kits for NOA patients.

      Strengths:

      Perform single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on testicular tissues from two OA patients and three NOA patients

      Weaknesses:

      Most results are analytical and lack specific experiments to support these analytical results and hypotheses.

      Comments on revisions:

      In the revised version of the manuscript, the authors made some effort to revise their manuscript according to reviewers' comments and addressed the problems that I had raised before.

      I have no other serious criticisms regarding the revised manuscript.

    1. Reviewer #3 (Public review):

      The authors offer an interesting computational study on the dynamics of PROTAC-driven protein degradation. They employed a combination of protein-protein docking, structural alignment, atomistic MD simulations, and post-analysis to model a series of CRBN-dBET-BRD4 ternary complexes, as well as the entire degradation machinery complex. These degraders, with different linker properties, were all capable of forming stable ternary complexes but had been shown experimentally to exhibit different degradation capabilities. While in the initial models of the degradation machinery complex, no surface Lys residue(s) of BRD4 were exposed sufficiently for the crucial ubiquitination step, MD simulations illustrated protein functional dynamics of the entire complex and local side-chain arrangements to bring Lys residue(s) to the catalytic pocket of E2/Ub for reactions. Using these simulations, the authors were able to present a hypothesis as to how linker property affects degradation potency. They were able to roughly correlate the distance of Lys residues to the catalytic pocket of E2/Ub with observed DC50/5h values. This is an interesting and timely study that presents interesting tools that could be used to guide future PROTAC design or optimization.

    1. Reviewer #3 (Public review):

      This manuscript examines the accuracy of DNA methylation-based epigenetic clocks across multiple cohorts of varying genetic ancestry. The authors find that clocks were generally less accurate at predicting age in cohorts with large proportions of non-European (especially African) ancestry, compared to cohorts with high European ancestry proportions. They suggest that some of this effect might be explained by meQTLs that occur near CpG sites included in clocks, because these variants may be at higher frequencies (or at least different frequencies) in cohorts with high proportions of non-European ancestry relative to the training set. They also provide discussions of potential paths forward to alleviate bias and improve portability for future clock algorithms.

      The topic is timely due to the increasing popularity of DNA methylation-based clocks and the acknowledgment that many algorithms (e.g., polygenic risk scores) lack portability when applied to cohorts that substantially differ in ancestry or other characteristics from the training set. This has been discussed to some degree for DNA methylation-based clocks, but could of course use more discussion and empirical attention which the authors nicely provide using an impressive and diverse collection of data.

      The manuscript is clear and well-written, however, some key background was missing (e.g., what we know already about the ancestry composition of clock training sets) and most importantly several analyses would benefit from being taken one step further. For example, the main argument of the paper is that ancestry impacts clock predictions, but this is determined by subsetting the data by recruitment cohort rather than analyzing ancestry as a continuous variable. Extending some of the analyses could really help the authors nail down their hypothesized sources of lack of portability, which is critical for making recommendations to the community and understanding the best paths forward.

    1. Reviewer #3 (Public review):

      This is a very interesting paper bringing truly fascinating insight into the genomic processes underlying the famous adaptive radiation seen in cichlid fishes from Lake Malawi. The authors use structural and sequence information from species belonging to distinct ecotypic categories, representing subclades of the radiation, to document structural variation across the evolutionary tree, infer introgression of inversions among branches of the clade, and even suggest that certain rearrangements constitute new sex-determining loci. The insight is intriguing and is likely to make a substantial contribution to the field and to seed new hypotheses about the ecological processes and adaptive traits involved in this radiation.

      I think the paper could be clarified in its prose, and that the discussion could be more informative regarding the putative roles of the inversions in adaptation to each ecotypic niche. Identifying key, large inversions shared in various ways across the different taxa is really a great step forward. However, the population genomics analysis requires further work to describe and decipher in a more systematic way the evolutionary forces at play and their consequences on the various inversions identified.

      The model of evolution involving multiple inversions putatively linking together co-adapted "cassettes" could be better spelled out since it is not entirely clear how the existing theory on the recruitment of inversions in local adaptation (e.g. Kirkpatrick and Barton) operates on multiple unlinked inversions. How such loci correspond to distinct suites of integrated traits, or not, is not very easy to envision in the current state of the manuscript.

      The role of one inversion in sex determination is apparent and truly intriguing. However, the implication of such locus on ecological adaptation is somewhat puzzling. Also, whether sex determination loci can flow across species via introgression seems quite important as a route to chromosomal sex determination, so this could be discussed further.

    1. Reviewer #3 (Public review):

      Summary:

      Zacharia et al report on the molecular function of the C-terminal domain of the intraflagellar transport IFT-B complex component IFT172 by structure determination and biochemical in vitro and cell culture-based assays. The authors identify an IFT-A binding site that mediates a mutually exclusive interaction to two different IFT-A subunits, IFT144 and IFT140, consistent with interactions suggested in anterograde and retrograde IFT trains by previous cryo-electron tomography studies. Additionally, the authors identify a U-box-like domain that binds ubiquitin and conveys ubiquitin conjugation activity in the presence of the UbcH5a E2 enzyme in vitro. RPE1 cell lines that lack the U-box domain show a reduction in ciliation rate with shorter cilia, and heterozygous cells manifest TGF-beta signaling defects, suggesting an involvement of the U-box domain in cilium-dependent signaling.

      Strengths:

      (1) The structural analyses of the C-terminal domain of IFT172 combine crystallography with structure prediction using state-of-the-art algorithms, which gives high confidence in the presented protein structures. The structure-based predictions of protein interactions are validated by further biochemical experiments to assess the specific binding of the IFT172 C-terminal domains with other proteins.

      (2) The finding that the IFT172 C-terminus interactions with the IFT-A components IFT140 and IFT144 appear mutually exclusive confirm a suggested role in mediating the binding of IFT-B to IFT-A in anterograde and retrograde IFT trains, which is of very high scientific value.

      (3) The suggested molecular mechanism of IFT train coordination explains previous findings in Chlamydomonas IFT172 mutants, in particular an IFT172 mutant that appeared defective in retrograde IFT, as well as mutations identified in ciliopathy patients.

      (4) The identification of other IFT172 interactors by unbiased mass spectrometry-based proteomics is very exciting. Analysis of stoichiometries between IFT components suggests that these interactors could be part of IFT trains, either as cargos or additional components that may fulfill interesting functions in cilia and flagella.

      (5) The authors unexpectedly identify a U-box-like fold in the IFT172 C-terminus and thoroughly dissect it by sequence and mutational analyses to reveal unexpected ubiquitin binding and potential intrinsic ubiquitination activity.

      (6) The overall data quality is very high. The use of IFT172 proteins from different organisms suggests a conserved function.

      Weaknesses:

      (1) Interaction studies were carried out by pulldown experiments, which identified more IFT172 interaction partners. Whether these interactions can be seen in living cells remains to be elucidated in subsequent studies.

      (2) The cell culture-based experiments in the IFT172 mutants are exciting and show that the U-box domain is important for protein stability and point towards involvement of the U-box domain in cellular signaling processes. However, the characterization of the generated cell lines falls behind the very rigorous analysis of other aspects of this work.

      Overall, the authors achieved to characterize an understudied protein domain of the ciliary intraflagellar transport machinery and gained important molecular insights into its role in primary cilia biology, beyond IFT. By identifying an unexpected functional protein domain and novel interaction partners the work makes an important contribution to further our understanding of how ciliary processes might be regulated by ubiquitination on a molecular level. Based on this work it will be important for future studies in the cilia community to consider direct ubiquitin binding by IFT complexes.

      Conceptually, the study highlights that protein transport complexes can exhibit additional intrinsic structural features for potential auto-regulatory processes. Moreover, the study adds to the functional diversity of small U-box and ubiquitin-binding domains, which will be of interest to a broader cell biology and structural biology audience.

      Additional comments:

      The authors investigate the consequences of the U-box deletion on ciliary TGF-beta signaling. While a cilium-dependent effect of TGF-beta signaling on the phosphorylation of SMAD2 has been demonstrated, the precise function of cilia in AKT signaling has not been fully established in the field. Therefore, the relevance of this finding is somewhat unclear. It may help to discuss relevant literature on the topic, such as Shim et al., PNAS, 2020.

    1. Reviewer #3 (Public review):

      Summary:

      This article provides a model for early diagnosis and prognostic prediction of Colorectal Cancer and demonstrates its accuracy and usability. However, there are still some minor issues that need to be revised and paid attention to.

      Strengths:

      A large amount of external datasets were used for verification, thus demonstrating robustness and accuracy. Meanwhile, various influencing factors of multiple samples were taken into account, providing usability.

      Weaknesses:

      There are notable language issues that hinder readability, as well as a lack of some key conclusions provided.

    1. Reviewer #3 (Public review):

      Summary:

      In this experiment, the authors use a probe method along with time-frequency analyses to ascertain the attentional priority map prior to a visual search display in which one location is more likely to contain a salient distractor.  The main finding is that neural responses to the probe indicate that the high probability location is attended, rather than suppressed, prior to the search display onset.  The authors conclude that suppression of distractors at high probability locations is a result of reactive, rather than proactive, suppression.

      Strengths:

      This was a creative approach to a difficult and important question about attention.  The use of this "pinging" method to assess the attentional priority map has a lot of potential value for a number of questions related to attention and visual search. Here as well, the authors have used it to address a question about distractor suppression that has been the subject of competing theories for many years in the field. The authors have also conducted additional behavioral analyses to examine the relationship between memory and search. The paper is well-written, and the authors have done a good job placing their data in the larger context of recent findings in the field.

      Weaknesses:

      The authors addressed a number of weaknesses in a thorough revision during the review process. The present study raises important questions for future research - this is not a weakness, since one study cannot answer all questions, but points to the importance of the questions raised by this study and the value of additional future research in the area.

    1. Reviewer #3 (Public review):

      Summary:

      In their paper the authors tackle three things at once in a theoretical model: how can spiking neural networks perform efficient coding, how can such networks limit the energy use at the same time, and how can this be done in a more biologically realistic way than previous work.

      They start by working from a long-running theory on how networks operating in a precisely balanced state can perform efficient coding. First, they assume split networks of excitatory (E) and inhibitory (I) neurons. The E neurons have the task to represent some lower dimensional input signal, and the I neurons have the task to represent the signal represented by the E neurons. Additionally, the E and I populations should minimize an energy cost represented by the sum of all spikes. All this results in two loss functions for the E and I populations, and the networks are then derived by assuming E and I neurons should only spike if this improves their respective loss. This results in networks of spiking neurons that live in a balanced state, and can accurately represent the network inputs.

      They then investigate in depth different aspects of the resulting networks, such as responses to perturbations, the effect of following Dale's law, spiking statistics, the excitation (E)/inhibition (I) balance, optimal E/I cell ratios, and others. Overall, they expand on previous work by taking a more biological angle on the theory and show the networks can operate in a biologically realistic regime.

      Strengths:

      * The authors take a much more biological angle on the efficient spiking networks theory than previous work, which is an essential contribution to the field<br /> * They make a very extensive investigation of many aspects of the network in this context, and do so thoroughly<br /> * They put sensible constraints on their networks, while still maintaining the good properties these networks should have

      Weaknesses:

      * One of the core goals of the paper is to make a more biophysically realistic network than previous work using similar optimization principles. One of the important things they consider is a split into E and I neurons. While this works fine, and they consider the coding consequences of this, it is not clear from an optimization perspective why the split into E and I neurons and following Dale's law would be beneficial. This would be out of scope for the current paper however.<br /> * The theoretical advances in the paper are not all novel by themselves, as most of them (in particular the split into E and I neurons and the use of biophysical constants) had been achieved in previous models. However, the authors discuss these links thoroughly and do more in-depth follow-up experiments with the resulting model.

      Assessment and context:

      Overall, although much of the underlying theory is not necessarily new, the work provides an important addition to the field. The authors succeeded well in their goal of making the networks more biologically realistic, and incorporate aspects of energy efficiency. For computational neuroscientists this paper is a good example of how to build models that link well to experimental knowledge and constraints, while still being computationally and mathematically tractable. For experimental readers the model provides a clearer link of efficient coding spiking networks to known experimental constraints and provides a few predictions.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Costa and colleagues investigate how asymmetry in dorsal root ganglion (DRG) neurons is established. The authors developed an in vitro system that mimics the pseudo-unipolar morphology and asymmetry of DRG neurons during the regeneration of the peripheral and central branch axons. They suggest that central-like DRG axons exhibit a higher density of growing microtubules. By reducing the polymerization of microtubules in these central-like axons, they were able to eliminate the asymmetry in DRG neurons.

      Strengths:

      The authors point out a distinct microtubule-associated protein signature that differentiates between DRG neurons' central and peripheral axonal branches. Experimental results demonstrate that genetic deletion of spastin eliminated the differences in microtubule dynamics and axon regeneration between the central and peripheral branches.

      Weaknesses:

      While some of the data are compelling, experimental evidence does not fully support the main claims.

      In its current form, the study is primarily descriptive and lacks convincing mechanistic insights. It misses important controls and further validation using 3D in vitro models.

      The significance of studying microtubule polymerization to DRG asymmetry in vitro is questionable, especially considering the model's validity. Classifying the central and peripheral-like branches in cultured DRG neurons will require further in-depth characterization. Additional validation using adult DRG neuron cultures not aged in vitro will be required in future studies.

      The comparison of asymmetry associated with a regenerative response between in vitro and in vivo paradigms has significant limitations due to the nature of the in vitro culture system. When cultured in isolation, DRG neurons fail to form functional connections with appropriate postsynaptic target neurons (the central branch) or to differentiate the peripheral domains associated with the innervation of target organs. Rather than growing neurons on a flat, hard surface like glass, more physiologically relevant substrates and/or culturing conditions should be considered. This approach could help eliminate potential artifacts caused by plating adult DRG neurons on a flat surface. Additionally, the authors should consider replicating their findings in a 3D culture model or using dorsal root ganglia explants, where both centrally and peripherally projecting axons are present.

      Panels 5H-J require additional processing with astrocyte markers to accurately define the lesion borders. Furthermore, including a lower magnification would facilitate a direct comparison of the lesion site. The use of cholera toxin subunit B (CTB) to trace dorsal column sensory axons is prone to misinterpretation, as the tracer accumulates at the axon's tip. This limitation makes it extremely challenging to distinguish between regenerating and degenerating axons.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Troyer et al quantitatively measured the membrane localization and diffusion of RNase E, an essential ribonuclease for mRNA turnover as well as tRNA and rRNA processing in bacteria cells. Using single-molecule tracking in live E. coli cells, the authors investigated the impact of membrane targeting sequence (MTS) and the C-terminal domain (CTD) on the membrane localization and diffusion of RNase E under various perturbations. Finally, the authors tried to correlate the membrane localization of RNase E to its function on co- and post-transcriptional mRNA decay using lacZ mRNA as a model.

      The major findings of the manuscripts include:

      (1) WT RNase E is mostly membrane localized via MTS, confirming previous results. The diffusion of RNase E is increased upon removal of MTS or CTD, and more significantly increased upon removal of both regions.

      (2) By tagging RNase E MTS and different lengths of LacY transmembrane domain (LacY2, LacY6, or LacY12) to mEos3.2, the results demonstrate that short LacY transmembrane sequence (LacY2 and LacY6) can increase the diffusion of mEos3.2 on the membrane compared to MTS, further supported by the molecular dynamics simulation. A similar trend was roughly observed in RNase E mutants with MTS switched to LacY transmembrane domains.

      (3) The removal of RNase E MTS significantly increases the co-transcriptional degradation of lacZ mRNA, but has minimal effect on the post-transcriptional degradation of lacZ mRNA. Removal of CTD of RNase E overall decreases the mRNA decay rates, suggesting the synergistic effect of CTD on RNase E activity.

      Strengths:

      (1) The manuscript is clearly written with very detailed method descriptions and analysis parameters.

      (2) The conclusions are mostly supported by the data and analysis.

      (3) Some of the main conclusions are interesting and important for understanding the cellular behavior and function of RNase E.

      Weaknesses:

      (1) Some of the observations show inconsistent or context-dependent trends that make it hard to generalize certain conclusions. Those points are worth discussion at least. Examples include:

      (a) The authors conclude that MTS segment exhibits reduced MB% when succinate is used as a carbon source compared to glycerol, whereas LacY2 segment maintains 100% membrane localization, suggesting that MTS can lose membrane affinity in the former growth condition (Ln 341-342). However, the opposite case was observed for the WT RNase E and RNase E-LacY2-CTD, in which RNase E-LacY2-CTD showed reduced MB% in the succinate-containing M9 media compared to the WT RNase E (Ln 264-267). This opposite trend was not discussed. In the absence of CTD, would the media-dependent membrane localization be similar to the membrane localization sequence or to the full-length RNase E?

      (b) When using mEos3.2 reporter only, LacY2 and LacY6 both increase the diffusion of mEos3.2 compared to MTS. However, when inserting the LacY transmembrane sequence into RNase E or RNase E without CTD, only the LacY2 increases the diffusion of RNase E. This should also be discussed.

      (2) The authors interpret that in some cases the increase in the diffusion coefficient is related to the increase in the cytoplasm localization portion, such as for the LacY2 inserted RNase E with CTD, which is rational. However, the authors can directly measure the diffusion coefficient of the membrane and cytoplasm portion of RNase E by classifying the trajectories based on their localizations first, rather than just the ensemble calculation.

      (3) The error bars of the diffusion coefficient and MB% are all SEM from bootstrapping, which are very small. I am wondering how much of the difference is simply due to a batch effect. Were the data mixed from multiple biological replicates? The number of biological replicates should also be reported.

      (4) Some figures lack p-values, such as Figures 4 and 5C-D. Also, adding p-values directly to the bar graphs will make it easier to read.

    1. Reviewer #3 (Public review):

      Summary:

      Alexander et al. reported the gene-regulatory networks underpinning sex determination of murine primordial germ cells (PGCs) through single-nucleus multiomics, offering a detailed chromatin accessibility and gene expression map across three embryonic stages in both male (XY) and female (XX) mice. It highlights how regulatory element accessibility may precede gene expression, pointing to chromatin accessibility as a primer for lineage commitment before differentiation. Sexual dimorphism in these elements and gene expression increases over time, and the study maps transcription factors regulating sexually dimorphic genes in PGCs, identifying sex-specific enrichment in various transcription factors.

      Strengths:

      The study includes step-wise multiomic analysis with some computational approach to identify candidate TFs regulating XX and XY PGC gene expression, providing a detailed timeline of chromatin accessibility and gene expression during PGC development, which identifies previously unknown PGC subpopulations and offers a multimodal reference atlas of differentiating PGC clusters. Furthermore, the study maps a complex network of transcription factors associated with sex determination in PGCs, adding depth to our understanding of these processes.

      Weaknesses:

      While the multiomics approach is powerful, it primarily offers correlational insights between chromatin accessibility, gene expression, and transcription factor activity, without direct functional validation of identified regulatory networks.

      Comments on revised version:

      The authors have answered my questions and concerns in the revised manuscript and correspondence.

    1. Reviewer #3 (Public review):

      Summary:

      In their manuscript, "Disentangling acute motor deficits and adaptive responses evoked by the loss of cerebellar output," Sinha and colleagues aim to identify distinct causes of motor impairments seen when perturbing cerebellar circuits. This goal is an important one, given the diversity of movement-related phenotypes in patients with cerebellar lesions or injuries, which are especially difficult to dissect given the chronic nature of the circuit damage. To address this goal, the authors use high-frequency stimulation (HFS) of the superior cerebellar peduncle in monkeys performing reaching movements. HFS provides an attractive approach for transiently disrupting cerebellar function previously published by this group. First, they found a reduction in hand velocities during reaching, which was more pronounced for outward versus inward movements. By modeling inverse dynamics, they find evidence that shoulder muscle torques are especially affected. Next, the authors examine the temporal evolution of movement phenotypes over successive blocks of HFS trials. Using this analysis, they find that in addition to the acute, specific effects on muscle torques in early HFS trials, there was an additional progressive reduction in velocity during later trials, which they interpret as an adaptive response to the inability to effectively compensate for interaction torques during cerebellar block. Finally, the authors examine movement decomposition and trajectory, finding that even when low-velocity reaches are matched to controls, HFS produces abnormally decomposed movements and higher than expected variability in trajectory.

      Strengths:

      Overall, this work provides important insight into how perturbation of cerebellar circuits can elicit diverse effects on movement across multiple timescales.

      The HFS approach provides temporal resolution and enables analysis that would be hard to perform in the context of chronic lesions or slow pharmacological interventions. Thus, this study describes an important advance over prior methods of circuit disruption, and their approach can be used as a framework for future studies that delve deeper into how additional aspects of sensorimotor control are disrupted (e.g., response to limb perturbations).

      In addition, the authors use well-designed behavioral approaches and analysis methods to distinguish immediate from longer-term adaptive effects of HFS on behavior. Moreover, inverse dynamics modeling provides important insight into how movements with different kinematics and muscle dynamics might be differentially disrupted by cerebellar perturbation.

      Weaknesses:

      The argument that there are acute and adaptive effects to perturbing cerebellar circuits is compelling, but there seems to be a lost opportunity to leverage the fast and reversible nature of the perturbations to further test this idea and strengthen the interpretation. Specifically, the authors could have bolstered this argument by looking at the effects of terminating HFS - one might hypothesize that the acute impacts on muscle torques would quickly return to baseline in the absence of HFS, whereas the longer-term adaptive component would persist in the form of aftereffects during the 'washout' period. As is, the reversible nature of the perturbation seems underutilized in testing the authors' ideas.

      The analysis showing that there is a gradual reduction in velocity during what the authors call an adaptive phase is convincing. That said, the argument is made that this is due to difficulty in compensating for interaction torques. Even if the inward targets (i.e., targets 6-8) do not show a deficit during the acute phase, these targets still have significant interaction torques (Figure 3c). Given the interpretation of the data as presented, it is not clear why disruption of movement during the adaptive phase would not be seen for these targets as well since they also have large interaction torques. Moreover, it is difficult to delve into this issue in more detail, as the analyses in Figures 4 and 5 omit the inward targets.

      The text in the Introduction and in the prior work developing the HFS approach overstates the selectivity of the perturbations. First, there is an emphasis on signals transmitted to the neocortex. As the authors state several times in the Discussion, there are many subcortical targets of the cerebellar nuclei as well, and thus it is difficult to disentangle target-specific behavioral effects using this approach. Second, the superior cerebellar peduncle contains both cerebellar outputs and inputs (e.g., spinocerebellar). Therefore, the selectivity in perturbing cerebellar output feels overstated. Readers would benefit from a more agnostic claim that HFS affects cerebellar communication with the rest of the nervous system, which would not affect the major findings of the study.

      The text implies that increased movement decomposition and variability must be due to noise. However, this assumption is not tested. It is possible that the impairments observed are caused by disrupted commands, independent of whether these command signals are noisy. In other words, commands could be low noise but still faulty.

      Throughout the text, the use of the term 'feedforward control' seems unnecessary. To dig into the feedforward component of the deficit, the authors could quantify the trajectory errors only at the earliest time points (e.g., in Figure 5d), but even with this analysis, it is difficult to disentangle feedforward- and feedback-mediated effects when deficits are seen throughout the reach. While outside the scope of this study, it would be interesting to explore how feedback responses to limb perturbation are affected in control versus HFS conditions. However, as is, these questions are not explored, and the claim of impaired feedforward control feels overstated.

      The terminology 'single-joint' movement is a bit confusing. At a minimum, it would be nice to show kinematics during different target reaches to demonstrate that certain targets are indeed single joint movements. More of an issue, however, is that it seems like these are not actually 'single-joint' movements. For example, Figure 2c shows that target 1 exhibits high elbow and shoulder torques, but in the text, T1 is described as a 'single-joint' reach (e.g. lines 155-156). The point that I think the authors are making is that these targets have low interaction torques. If that is the case, the terminology should be changed or clarified to avoid confusion.

      The labels in Figure 3d are confusing and could use more explanation in the figure legend.

      In Figure 3d, it is stated that data from all monkeys is pooled. However, if there is a systematic bias between animals, this could generate spurious correlations. Were correlations also calculated for each animal separately to confirm the same trend between velocity and coupling torques holds for each animal?

      In Table S1, it would be nice to see target-specific success rates. The data would suggest that targets with the highest interaction torques will have the largest reduction in success rates, especially during later HFS trials. Is this the case?

    1. Reviewer #3 (Public review):

      Summary:

      In this paper the authors conduct two experiments an fMRI experiment and intracranial recordings of neurons in two patients P1 and P2. In both experiments, they employ a SSVEP paradigm in which they show images at a fast rate (e.g. 6Hz) and then they show face images at a slower rate (e.g. 1.2Hz), where the rest of the images are a variety of object images. In the first patient, they record from neurons over a region in the mid fusiform gyrus that is face-selective and in the second patient, they record neurons from a region more medially that is not face selective (it responds more strongly to objects than faces). Results find similar selectivity between the electrophysiology data and the fMRI data in that the location which shows higher fMRI to faces also finds face-selective neurons and the location which finds preference to non faces also shows non face preferring neurons.

      Strengths:

      The data is important in that it shows that there is a relationship between category selectivity measured from electrophysiology data and category-selective from fMRI. The data is unique as it contains a lot of single and multiunit recordings (245 units) from the human fusiform gyrus - which the authors point out - is a humanoid specific gyrus.

      Weaknesses:

      My major concerns are two-fold:<br /> (i) There is a paucity of data; Thus, more information (results and methods) is warranted; and in particular there is no comparison between the fMRI data and the SEEG data.

      (ii) One main claim of the paper is that there is evidence for suppressed responses to faces in the non-face selective region. That is, the reduction in activation to faces in the non-face selective region is interpreted as a suppression in the neural response and consequently the reduction in fMRI signal is interpreted as suppression. However, the SSVEP paradigm has no baseline (it alternates between faces and objects) and therefore it cannot distinguish between lower firing rate to faces vs suppression of response to faces.

      (1) Additional data: the paper has 2 figures: figure 1 which shows the experimental design and figure 2 which presents data, the latter shows one example neuron raster plot from each patient and group average neural data from each patient. In this reader's opinion this is insufficient data to support the conclusions of the paper. The paper will be more impactful if the researchers would report the data more comprehensively.

      (a) There is no direct comparison between the fMRI data and the SEEG data, except for a comparison of the location of the electrodes relative to the statistical parametric map generated from a contrast (Fig 2a,d). It will be helpful to build a model linking between the neural responses to the voxel response in the same location - i.e., estimate from the electrophysiology data the fMRI data (e.g. Logothetis & Wandell, 2004)

      (b) More comprehensive analyses of the SSVEP neural data: It will be helpful to show the results of the frequency analyses of the SSVEP data for all neurons to show that there are significant visual responses and significant face responses. It will be also useful to compare and quantify the magnitude of the face responses compared to the visual responses.

      (c) The neuron shown in E shows cyclical responses tied to the onset of the stimuli, is this the visual response? If so, why is there an increase in the firing rate of the neuron before the face stimulus is shown in time 0? The neuron's data seems different than the average response across neurons; This raises a concern about interpreting the average response across neurons in panel F which seems different than the single neuron responses

      (d) Related to (c) it would be useful to show raster plots of all neurons and quantify if the neural responses within a region are homogeneous or heterogeneous. This would add data relating the single neuron response to the population responses measured from fMRI. See also Nir 2009.

      (e) When reporting group average data (e.g., Fig 2C,F) it is necessary to show standard deviation of the response across neurons.

      (f) Is it possible to estimate the latency of the neural responses to face and object images from the phase data? If so, this will add important information on the timing of neural responses in the human fusiform gyrus to face and object images.

      (g) Related to (e) In total the authors recorded data from 245 units (some single units and some multiunits) and they found that both in the face and nonface selective most of the recoded neurons exhibited face -selectivity, which this reader found confusing: They write " Among all visually responsive neurons, we 87 found a very high proportion of face-selective neurons (p < 0.05) in both activated 88 and deactivated MidFG regions (P1: 98.1%; N = 51/52; P2: 86.6%; N = 110/127)'. Is the face selectivity in P1 an increase in response to faces and P2 a reduction in response to faces or in both it's an increase in response to faces

      (1) Additional methods<br /> (a) it is unclear if the SSVEP analyses of neural responses were done on the spikes or the raw electrical signal. If the former, how is the SSVEP frequency analysis done on discrete data like action potentials?<br /> (b) it is unclear why the onset time was shifted by 33ms; one can measure the phase of the response relative to the cycle onset and use that to estimate the delay between the onset of a stimulus and the onset of the response. Adding phase information will be useful.

      (2) Interpretation of suppression:

      The SSVEP paradigm alternates between 2 conditions: faces and objects and has no baseline; In other words, responses to faces are measured relative to the baseline response to objects so that any region that contains neurons that have a lower firing rate to faces than objects is bound to show a lower response in the SSVEP signal. Therefore, because the experiment does not have a true baseline (e.g. blank screen, with no visual stimulation) this experimental design cannot distinguish between lower firing rate to faces vs suppression of response to faces.<br /> The strongest evidence put forward for suppression is the response of non-visual neurons that was also reduced when patients looked at faces, but since these are non-visual neurons, it is unclear how to interpret the responses to faces.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, the authors made a sincere effort to show the effects of strip cropping, a technique of alternating crops in small strips of several meters wide, on ground beetle diversity. They state that strip cropping can be a useful tool for bending the curve of biodiversity loss in agricultural systems as strip cropping shows a relative increase in species diversity (i.e. abundance and species richness) of the ground beetle communities compared to monocultures. Moreover, strip cropping has the added advantage of not having to compromise on agricultural yields.

      Strengths:

      The article is well written; it has an easily readable tone of voice without too much jargon or overly complicated sentence structure. Moreover, as far as reviewing the models in depth without raw data and R scripts allows, the statistical work done by the authors looks good. They have well thought out how to handle heterogenous, yet spatially and temporarily correlated field data. The models applied and the model checks performed are appropriate for the data at hand. Combining RDA and PCA axes together is a nice touch.

      Weaknesses:

      The evidence for strip cropping bringing added value for biodiversity is mixed at best. Yes, there is an increase in relative abundance and species richness at the field level, but it is not convincingly shown this difference is robust or can be linked to clear structural and hypothesised advantages of the strip cropping system. The same results could have been used to conclude that there are only very limited signs of real added value of strip cropping compared to monocultures.

      There are a number of reasons for this:

      (1) Significant differences disappear at crop level, as the authors themselves clearly acknowledge, meaning that there are no differences between pairs of similar crops in the strip cropping fields and their respective monoculture. This would mean the strips effectively function as "mini-monocultures". The significant relative differences at the field level could be an artifact of aggregation instead of structural differences between strip cropping and monocultures; with enough data points things tend to get significant despite large variance. This should have been elaborated further upon by the authors with additional analyses, designed to find out where differences originate and what it tells about the functioning of the system. Or it should have provided ample reason for cautioning in drawing conclusions about the supposed effectiveness of strip cropping based on these findings.

      (2) The authors report percentages calculated as relative change of species richness and abundance in strip cropping compared to monocultures after rarefaction. This is in itself correct, however, it can be rather tricky to interpret because the perspective on actual species richness and abundance in the fields and treatments is completely lost; the reported percentages are dimensionless. The authors could have provided the average cumulative number of species and abundance after rarefaction. Also, range and/or standard error would have been useful to provide information as to the scale of differences between treatments. This could provide a new perspective on the magnitude of differences between the two treatments which a dimensionless percentage cannot.

      (3) The authors appear to not have modelled the abundance of any of the dominant ground beetle species themselves. Therefore it becomes impossible to assess which important species are responsible (if any) for the differences found in activity density between stripcropping and monocultures and the possible life history traits related reasons for the differences, or lack thereof, that are found. A big advantage of using ground beetles is that many life history traits are well studied and these should be used whenever there is reason, as there clearly is in this case. Moreover, it is unclear which species are responsible for the difference in species richness found at the field level. Are these dominant species or singletons? Do the strip cropping fields contain species that are absent in the monoculture fields and are not the cause of random variation or sampling? Unfortunately, the authors do not report on any of these details of the communities that were found, which makes the results much less robust.

      (4) In the discussion they conclude that there is only a limited amount of interstrip movement by ground beetles. Otherwise, the results of the crop-level statistical tests would have shown significant deviation from corresponding monocultures. This is a clear indication that the strips function more like mini-monocultures instead of being more than the sum of its parts.

      (5) The RDA results show a modelled variable of differences in community composition between strip cropping and monoculture. Percentages of explained variation of the first RDA axis are extremely low, and even then, the effect of location and/or year appear to peak through (Figure S3), even though these are not part of the modelling. Moreover, there is no indication of clustering of strip cropping on the RDA axis, or in fact on the first principal component axis in the larger RDA models. This means the explanatory power of different treatments is also extremely low. The crop level RDA's show some clustering, but hardly any consistent pattern in either communities of crops or species correlations, indicating that differences between strip cropping and monocultures are very small.

      Furthermore, there are a number of additional weaknesses in the paper that should be addressed:

      The introduction lacks focus on the issues at hand. Too much space is taken up by facts on insect decline and land sharing vs. land sparing and not enough attention is spent on the scientific discussion underlying the statements made about crop diversification as a restoration strategy. They are simply stated as facts or as hypotheses with many references that are not mentioned or linked to in the text. An explicit link to the results found in the large number of references should be provided.

      The mechanistic understanding of strip cropping is what is at stake here. Does strip cropping behave similarly to intercropping, a technique that has been proven to be beneficial to biodiversity because of added effects due to increased resource efficiency and greater plant species richness? This should be the main testing point and agenda of strip cropping. Do the biodiversity benefits that have been shown for intercropping also work in strip cropping fields? The ground beetles are one way to test this. Hypotheses should originate from this and should be stated clearly and mechanistically.

      One could question how useful indicator species analysis (ISA) is for a study in which predominantly highly eurytopic species are found. These are by definition uncritical of their habitat. Is there any mechanistic hypothesis underlying a suspected difference to be found in preferences for either strip cropping or monocultures of the species that were expected to be caught? In other words, did the authors have any a priori reasons to suspect differences, or has this been an exploratory exercise from which unexplained significant results should be used with great caution?

      However, setting these objections aside there are in fact significant results with strong species associations both with monocultures and strip cropping. Unfortunately, the authors do not dig deeper into the patterns found a posteriori either. Why would some species associate so strongly with strip cropping? Do these species show a pattern of pitfall catches that deviate from other species, in that they are found in a wide range of strips with different crops in one strip cropping field and therefore may benefit from an increased abundance of food or shelter? Also, why would so many species associate with monocultures? Is this in any way logical? Could it be an artifact of the data instead of a meaningful pattern? Unfortunately, the authors do not progress along these lines in the methods and discussion at all.

      A second question raised in the introduction is whether the arable fields that form part of this study contain rare species. Unfortunately, the authors do not elaborate further on this. Do they expect rare species to be more prevalent in the strip cropping fields? Why? Has it been shown elsewhere that intercropping provides room for additional rare species?

      Considering the implications the results of this research can have on the wider discussion of bending the curve and the effects of agroecological measures, bold claims should be made with extreme restraint and be based on extensive proof and robust findings. I am not convinced by the evidence provided in this article that the claim made by the authors that strip cropping is a useful tool for bending the curve of biodiversity loss is warranted.

    1. Reviewer #3 (Public review):

      Summary:

      Eapen and coworkers use a rational design approach to generate new peptide-inspired ligands at the D-box interface of cdc20. These new peptides serve as new starting points for blocking APC/C in the context of cancer, as well as manipulating APC/C for targeted protein degradation therapeutic approaches.

      Strengths:

      The characterization of new peptide-like ligands is generally solid and multifaceted, including binding assays, thermal stability enhancement in vitro and in cells, X-ray crystallography, and degradation assays.

      Weaknesses:

      One important finding of the study is that the strongest binders did not correlate with the fastest degradation in a cellular assay, but explanations for this behavior were not supported experimentally. Some minor issues regarding experimental replicates and details were also noted.

    1. Reviewer #3 (Public review):

      This study explores sensory prediction errors in sensory cortex. It focuses on the question of how these signals are shaped by non-hierarchical interactions, specifically multimodal signals arising from same level cortical areas. The authors used 2-photon imaging of mouse auditory cortex in head-fixed mice that were presented with sounds and/or visual stimuli while moving on a ball. First, responses to pure tones, visual stimuli and movement onset were characterized. The authors then made the running speed of the mouse predictive of sound intensity and/or visual flow (closed loop). Mismatches were created through the interruption of sound and/or visual flow for 1 second, disrupting the expected sensory signal. As a control, sensory stimuli recorded during the close loop phase were presented again decoupled from the movement (open loop). The authors suggest that auditory responses to the unpredicted interruption of the sound, which affected neither running speed nor pupil size, reflect mismatch responses. That these mismatch responses were enhanced when the visual flow was congruently interrupted, indicates cross-modal influence of prediction error signals.

      This study's strengths are the relevance of the question and the design of the experiment. The authors are experts in the techniques used. Responses to the interruption of the sound are similar in quality, if not quantity, in the predictive and the control situation, yet the contribution of sound offset sensitivity to the observed mismatch responses is not discussed.

    1. Reviewer #3 (Public review):

      Summary:

      Ai et al. studied texture, color and disparity selectivity in human visual cortex at mesoscale level using high-resolution fMRI. They reproduced earlier monkey and human studies showing interdigitated color-selective and disparity-selective sub-compartments within area V2, likely corresponding to thin and thick stripes, respectively. At least with the stimuli used, no clear evidence for texture-selective mesoscale activations were observed in area V2. The most interesting and novel part of this study focused on cortical-depth-dependent connectivity analyses across areas. The data suggest feedback and feedforward functional connectivity between V1 and V3A for disparity signals and feedback from V4 to the deep layers of V2 for textures.

      Strengths:

      High-resolution fMRI and highly interesting layer-specific informational connectivity analyses.

      Weaknesses:

      The authors tend to overclaim their results. Too few data to make conclusive inferences.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Outla Z et al described the analysis of Plectin in HCC pathogenesis. Specifically, it was found that elevated Plectin levels in liver tumors, correlated with poor prognosis for HCC patients. Mechanistically, it showed that Plectin-dependent disruption of cytoskeletal networks leads to the attenuation of oncogenic FAK, MAPK/Erk, and PI3K/AKT signals. Finally, the authors showed that Plectin inhibitor plecstatin-1 (PST) is well-tolerated and capable of overcoming therapy resistance in HCC.

      Strengths:

      The studies of Plectin are not entirely novel (Pubmed: 36613521). Nevertheless, the current manuscript provides a much more detailed mechanistic study and the results have translational implications. Additional strengths include convincing cell biology data, such as Plectin regulates cytoskeletal networks, and HCC migration/invasion.

      Comments on latest version:

      The authors have addressed my comments.

  4. www.biorxiv.org www.biorxiv.org