3,983 Matching Annotations
  1. Last 7 days
    1. Reviewer #3 (Public Review):

      The manuscript by Carayon and Strutt addresses the role of cell-scale signaling during the establishment of planar cell polarity (PCP) in the Drosophila pupal wing. The authors induce locally the expression of a tagged core PCP protein, Frizzled, and observe and analyze the de novo establishment of planar cell polarity. Using this system, the authors show that PCP can be established within several hours, that PCP is robust towards variation in core PCP protein levels, that PCP proteins do not orient microtubules, and that PCP is robust towards 'extrinsic' re-polarization. The authors conclude that the polarization at the cell-scale is strongly intrinsic and only weakly affected by the polarity of neighboring cells.

      Major comments:

      The data are clearly presented and the manuscript is well written. The conclusions are well supported by the data. 

      (1) The authors use a system to de novo establish PCP, which has the advantage of excluding global cues orienting PCP and thus to focus on the cell-intrinsic mechanisms. At the same time, the system has the limitation that it is unclear to what extent de novo PCP establishment reflects 'normal' cell scale PCP establishment, in particular because the Gal4/UAS expression system that is used to induce Fz expression will likely result in much higher Fz levels compared with the endogenous levels. The authors should briefly discuss this limitation.

      (2) Fig. 3. The authors use heterozygous mutant backgrounds to test the robustness of de novo PCP establishment towards (partial) depletion in core PCP proteins. The authors conclude that de novo polarization is 'extremely robust to variation in protein level'. Since the authors (presumably) lowered protein levels by 50%, this conclusion appears to be somewhat overstated. The authors should tune down their conclusion.

      Significance: 

      The manuscript contributes to our understanding of how planar cell polarity is established. It extends previous work by the authors (Strutt and Strutt, 2002,2007) that already showed that induction of core PCP pathway activity by itself is sufficient to induce de novo PCP. This manuscript further explores the underlying mechanisms. The authors test whether de novo PCP establishment depends on an 'inhibitory signal', as previously postulated (Meinhardt, 2007), but do not find evidence. They also test whether core PCP proteins help to orient microtubules (which could enhance cell intrinsic polarization of core PCP proteins), but, again, do not find evidence, corroborating previous work (Harumoto et al, 2010). The most significant finding of this manuscript, perhaps, is the observation that local de novo PCP establishment does not propagate far through the tissue. A limitation of the study is that the mechanisms establishing intrinsic cell scale polarity remain unknown. The work will likely be of interest to specialists in the field of PCP.

    1. Reviewer #3 (Public review):

      Summary:

      The study explores a molecular mechanism by which C. elegans detects low-quality food through neuron-digestive crosstalk, offering new insights into food quality control systems. Liu and colleagues demonstrated that NSY-1, expressed in AWC neurons, is a key regulator for sensing Staphylococcus saprophyticus (SS), inducing avoidance behavior and shutting down the digestive system via intestinal BCF-1. They further revealed that INS-23, an insulin peptide, interacts with the DAF-2 receptor in the gut to modulate SS digestion. The study uncovers a food quality control system connecting neural and intestinal responses, enabling C. elegans to adapt to environmental challenges.

      Strengths:

      The study employs a genetic screening approach to identify nsy-1 as a critical regulator in detecting food quality and initiating adaptive responses in C. elegans. The use of RNA-seq analysis is particularly noteworthy, as it reveals distinct regulatory pathways involved in food sensing (Figure 4) and digestion of Staphylococcus saprophyticus (Figure 5). The strategic application of both positive and negative data mining enhances the depth of analysis. Importantly, the discovery that C. elegans halts digestion in response to harmful food and employs avoidance behavior highlights a physiological adaptation mechanism.

      Weaknesses:

      Major weaknesses have been addressed.

    1. Reviewer #3 (Public review):

      Hawes et al. combined behavioral, optical imaging, and activity manipulation techniques to investigate the role of striatal patch SPNs in locomotion regulation. Using Sepw1-Cre transgenic mice, they found that patch SPNs encode locomotion deceleration in a light-dark box procedure through optical imaging techniques. Moreover, genetic ablation of patch SPNs increased locomotion speed, while chemogenetic activation of these neurons decreased it. The authors concluded that a subtype of patch striatonigral neurons modulates locomotion speed based on external environmental cues.

      In the revision, the authors have largely addressed my concerns with additional explanation and discussion, although some of the key experiments to strengthen the authors' claim by identifying the function of specific cell populations remain to be conducted due to technical challenges. Nevertheless, the current results remain valuable and interesting to a wide audience in the field.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present a novel method to measure passive joint torques - torques due to internal forces other than active muscle contraction - in the fruit fly: genetically inactivating all motor neurons in intact limb acted upon by a gravitational load results in a change in limb configuration; evaluating the moment equilibrium condition about the limb joints then yields a direct estimate of the passive joint torques. Deactivating all motor neurons in an intact standing fly provided two further conclusions: First, because deactivation causes the fly to drop to the floor, the passive joint torques are deemed insufficient to maintain rotational equilibrium against the body weight; using a multi-body-dynamics simulation, the authors estimate that the passive torques would need to be about 40-80 times higher to maintain a typical posture without active muscle action. Second, a delay between the motor neuron inactivation and the onset of the "free fall" motivates the authors to invoke a simple exponential decay model, which is then used to derive a time constant for muscle deactivation, in robust agreement with direct electro-physiological recordings.

      Strengths:

      The experimental design that permits determination of passive joint torques is elegant, effective, novel, and altogether excellent; it permits measurements previously impossible. A careful error analysis is presented, and a spectrum of technically challenging methods, including multi-body dynamics and e-phys, is deployed to further interpret and contextualise the results.

      Weaknesses:

      (1) Passive torques are measured, but only some short speculative statements, largely based on previous work, are offered on their functional significance; some of these claims are not well supported by experimental evidence or theoretical arguments. Passive forces are judged as "large" compared to the weight force of the limb, but the arguably more relevant force is the force limb muscles can generate, which, even in equilibrium conditions, is already about two orders of magnitude larger. The conclusion that passive forces are dynamically irrelevant seems natural, but contrasts with the assertion that "passive forces [...] will have a strong influence on limb kinematics". As a result, the functional significance of passive joint torques in the fruit fly, if any, remains unclear, and this ambiguity represents a missed opportunity. We now know the magnitude of passive joint torques - do they matter and for what? Are they helpful, for example, to maintain robust neuronal control, or a mechanical constraint that negatively impacts performance, e.g., because they present a sink for muscle work?

      (2) The work is framed with a scaling argument, but the assumptions that underpin the associated claims are not explicit and can thus not be evaluated. This is problematic because at least some arguments appear to contradict textbook scaling theory or everyday experience. For example, active forces are assumed to scale with limb volume, when every textbook would have them scale with area instead; and the asserted scaling of passive forces involves some hidden assumptions that demand more explicit discussion to alert the reader to associated limitations. Passive forces are said to be important only in small animals, but a quick self-experiment confirms that they are sufficient to stabilize human fingers or ankles against gravity, systems orders of magnitude larger than an insect limb, in seeming contradiction with the alleged dominance of scale. Throughout the manuscript, there are such and similar inaccuracies or ambiguities in the mechanical framing and interpretation, making it hard to fairly evaluate some claims, and rendering others likely incorrect.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript Pinon et al. describe the development of a 3D model of human vasculature within a microchip to study Neisseria meningitidis (Nm)- host interactions and validate it through its comparison to the current gold-standard model consisting of human skin engrafted onto a mouse. There is a pressing need for robust biomimetic models with which to study Nm-host interactions because Nm is a human-specific pathogen for which research has been primarily limited to simple 2D human cell culture assays. Their investigation relies primarily on data derived from microscopy and its quantitative analysis, which support the authors' goal of validating their Vessel-on-Chip (VOC) as a useful tool for studying vascular infections by Nm, and by extension, other pathogens associated with blood vessels.

      Strengths:<br /> • Introduces a novel human in vitro system that promotes control of experimental variables and permits greater quantitative analysis than previous models<br /> • The VOC model is validated by direct comparison to the state-of-the-art human skin graft on mouse model<br /> • The authors make significant efforts to quantify, model, and statistically analyze their data<br /> • The laser ablation approach permits defining custom vascular architecture<br /> • The VOC model permits the addition and/or alteration of cell types and microbes added to the model<br /> • The VOC model permits the establishment of an endothelium developed by shear stress and active infusion of reagents into the system

      Weaknesses:<br /> • The work presented here is mostly descriptive, with little new information that is learned about the biology of Nm or endothelial cells. However, the goal of this study was to establish the VOC model, and the validation presented here is necessary for follow-on studies on Nm pathogenesis and host response.<br /> • The VOC model contains one cell type, human umbilical cord vascular endothelial cells (HUVECs), while true vasculature contains a number of other cell types that associate with and affect the endothelium, such as smooth muscle cells, pericytes, and components of the immune system. These and other shortcomings of the VOC model as it currently stands warrant additional discussion.

      Impact:<br /> The VOC model presented by Pinon et al. is an exciting advancement in the set of tools available to study human pathogens interacting with the vasculature. This manuscript focuses on validating the model, and as such sets the foundation for impactful research in the future. Of particular value is the photoablation technique that permits the custom design of vascular architecture without the use of artificial scaffolding structures described in previously published works.

    1. Reviewer #3 (Public review):

      Summary:

      This paper investigates changes in brain oscillations in V1 in response to experimentally manipulating visual stimulus features (size, contrast at optimal size) and examines whether these effects are of perceptual relevance. The results reveal prominent stimulus-related theta oscillations in V1 that match in frequency the rhythms of behavioural performance (response speed in detecting targets in the visual display). Phase analyses relate these fluctuations of detection performance more formally to opposite theta phase angles in V1.

      Strengths:

      The non-human primate model provides unique findings on how brain oscillations relate to rhythms in perception (in two rhesus monkeys) that align well with findings from human studies (as occurring in the theta band). However, theta rhythms in humans are typically associated with fronto-parietal activity in the domain of spatial orienting, attentional sampling, while here the focus is on V1. Importantly, microsaccade-controls seem to speak against a spatial orienting/ attentional sampling mechanism to explain the observed effects (at least regarding overt attention).

      Weaknesses:

      This study provides interesting clues on perceptually relevant brain oscillations. Despite the microsaccade-control, I believe it remains an open question whether the V1 rhythmicity is of pure V1 origin, or driven by top-down input, as it is conceivable that specific stimuli capture attention differently (and hence induce specific covert attentional (re)orienting patterns). For perceptually relevant (yet beta) rhythmicity over occipital areas that are top-down generated, see e.g., Veniero et al., 2019.

    1. Reviewer #3 (Public review):

      Summary:

      This paper demonstrates that membrane depolarization induces a small increase in cell entry into mitosis. Based on previous work from another lab, the authors propose that ERK activation might be involved. They show convincingly using a combination of assays that ERK is activated by membrane depolarization. They show this is Ca2+ independent and is a result of activation of the whole K-Ras/ERK cascade which results from changed dynamics of phosphatidylserine in the plasma membrane that activates K-Ras. Although the activation of the Ras/ERK pathway by membrane depolarization is not new, linking it to an increase in cell proliferation is novel.

      Strengths

      A major strength of the study is the use of different techniques - live imaging with ERK reporters, as well as Western blotting to demonstrate ERK activation as well as different methods for inducing membrane depolarization. They also use a number of different cell lines. Via Western blotting the authors are also able to show that the whole MAPK cascade is activated.

      Weaknesses

      A weakness of the study is the data in Figure 1 showing that membrane depolarization results in an increase of cells entering mitosis. There are very few cells entering mitosis in their sample in any condition. This should be done with many more cells to increase the confidence in the results. The study also lacks a mechanistic link between ERK activation by membrane depolarization and increased cell proliferation.

      The authors did achieve their aims with the caveat that the cell proliferation results could be strengthened. The results, for the most par,t support the conclusions.

      This work suggests that alterations in membrane potential may have more physiological functions than action potential in the neural system as it has an effect on intracellular signalling and potentially cell proliferation.

      In the revised manuscript, the authors have now addressed the issues with Figure 1, and the data presented are much clearer. They did also attempt to pinpoint when in the cell cycle ERK is having its activity, but unfortunately, this was not conclusive.

    1. Reviewer #3 (Public review):

      Summary:

      The tissue regeneration enhancer elements (TREEs) identified in zebrafish have been shown to drive injury-activated temporal-spatial gene expression in mice and large animals. These findings increase the translational potential of findings in zebrafish to mammals. In this manuscript, the authors tested TREEs in combination with different adeno-associated viral (AAV) vectors using in vivo luciferase bioluminescent imaging that allows for longitudinal tracking. The TREE-driven luciferase delivered by a liver de-targeted AAV.cc84 decreased off-target transduction in liver. They further screened an AAV library to identify capsid variants that display enhanced transduction for infarcted myocardium post ischemia reperfusion and myocardial infarction. A new capsid variant, AAV.IR41, was found to show increased transduction post I/R and MI.

      Strengths:

      The authors injected AAV-cargo several days after ischemia/reperfusion (I/R) injury as a clinically relevant approach. Overall, this study is significant in that it identifies new AAV vectors that can be used to deliver promising genes as potential new gene therapies in the future. The manuscript is well-written and the data are also of high quality.

      Weaknesses:

      The authors have addressed my previous concerns.

    1. Reviewer #3 (Public review):

      Summary:

      The authors seek to determine the underlying traits that support the exceptional capacity of Aspergillus oryzae to secrete enzymes and heterologous proteins. To do so, they leverage the availability of multiple domesticated isolates of A. oryzae along with other Aspergillus species to perform comparative imaging and genomic analysis.

      Strengths:

      The strength of this study lies in the use of multifaceted approaches to identify significant differences in hyphal morphology that correlate with enzyme secretion, which is then followed by the use of genomics to identify candidate functions that underlie these differences.

      Weaknesses:

      Although the image analysis and data interpretation is convincing, the genetic data supporting the author's model is somewhat more speculative and will likely require additional investigation.

      Overall, the authors have achieved their aims in that they are able to clearly document the presence of two distinct hyphal forms in A. oryzae and other Aspergillus species, and to correlate the presence of the thicker rapidly growing form with enhanced enzyme secretion. The image analysis is convincing. The discovery that addition of yeast extract and specific amino acids can stimulate formation of the novel hyphal form is also notable. Although the conclusions are generally supported by the results, this is perhaps less so for the genetic analysis as it remains unclear how direct the role of RseA and the calcium transporters might be in supporting the formation of the thicker hyphae.

      The results presented here will impact the field. The complexity of hyphal morphology and how it affects secretion are not well understood despite the importance of these processes for the fungal lifestyle. In addition, the description of approaches that can be used to facilitate the study of these different hyphal forms (i.e., stimulation using yeast extract or specific animo acids) will benefit future efforts to understand the molecular basis of their formation.

    1. Reviewer #3 (Public review):

      The manuscript is focused on local bulbar mechanisms to solve the flexibility-stability dilemma in contrast to long range interactions documented in other systems (hippocampus-cortex). The network performance is assessed in a perceptual learning task: the network is presented with alternating, similar artificial stimuli (defined as enrichment) and the authors assess its ability to discriminate between these stimuli by comparing the mitral cell representations quantified by Fisher discriminant analysis. The authors use enhancement in discriminability between stimuli as function of the degree of specificity of connectivity in the network to quantify the formation of an odor-specific network structure which as such has memory - they quantify memory as the specificity of that connectivity.

      The focus on neurogenesis, excitability and synaptic connectivity of abGCs is topical, and the authors systematically built their model, clearly stating their assumptions and setting up the questions and answers. In my opinion, the combination of latent dendritic representations, excitability and apoptosis in an age-dependent manner is interesting and as the authors point out leads to experimentally testable hypotheses.

      In the revised manuscript, the authors have systematically addressed my previous concerns. In particular, they now refer to previous work on granule cells-mitral cell interactions more generally, they explain the pros and cons for usage of specificity in connectivity as a proxy for memory capacity, and the biological plausibility of the model.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript by Fontana et al. sets out to fill a critical gap in our understanding of how individuality in fear responses corresponds to changes in brain activity. Previous work has shown in myriad species that fear behaviors are highly variable, and these variabilities correlate with sex and strain, with epigenetic modifications, and neural activity in specific regions of the brain, such as the amygdala. However, a whole-brain functional assessment of whether activity in different regions of the brain is associated with fear behavior has been difficult to assess, in part due to the large size and opacity of the brain. The Kenney group overcomes these limitations using the zebrafish, together with powerful behavioral and brain imaging approaches pioneered by their lab. To overcome the technical obstacles of delivering a reproducible unconditioned stimulus in water and quantifying nuanced behavioral responses, the authors developed a three-day conditioning paradigm in which fish were repeatedly exposed to CAS in one tank context and to control water in another. Leveraging automated cluster analysis across over 300 individuals from four inbred strains, they identified four distinct memory-recall phenotypes - non-reactive, evaders, evading freezers, and freezers - demonstrating both the robustness of their assay and the influence of genetic background and sex on fear learning. Finally, whole-brain imaging using the AZBA atlas (Kenney et al. eLife) and cfos mapping coupled with multivariate analysis revealed that although all fish reengaged telencephalic regions during recall, high-freezing phenotypes uniquely recruited cerebellar, preglomerular, and pretectal nuclei, whereas mixed evasion-freezing fish showed preferential activation of preoptic and hypothalamic areas - a finding that lays the groundwork for dissecting the distributed neural substrates of associative fear in zebrafish.

      Strengths:

      The strengths of the study lie in the use of zeberarish and the innovative behavioral, modeling, and brain imaging tools applied to address this question. The question of how brain-wide activity correlates with variations in fear behavior is fundamental, and arguably, this system is the only system that could be used to address this. The statistics are appropriate, and the study is well reasoned. Overall, I like this manuscript very much and think it adds invaluable information to the field of fear/anxiety.

      Weaknesses:

      I have a few questions and suggestions.

      (1) The three-day contextual fear paradigm, as implemented - one CAS pairing on day 2 followed by a single recall test on day 3 - inevitably conflates acquisition and long-term memory, making it impossible to know whether strains like TU truly recall the association poorly or simply learn it more slowly. For example, given that TU fish extinguish fear faster than AB or TL strains in extended protocols, they may simply require additional or repeated CAS pairings to achieve the same asymptotic performance. To disentangle learning kinetics from recall strength, the assay could be revised to include multiple acquisition trials (e.g., conditioning on two or more consecutive days) with an immediate post-conditioning probe to assess acquisition independent of consolidation, and continuous measurement of freezing and evasive behaviors across each trial to fit learning curves for each strain. Such refinements - even if on a subset of the strains - would reveal whether "non-reactive" phenotypes reflect genuine recall deficits or merely delayed acquisition.

      (2) My second major question is with respect to Figure 3 panel B. This is a complex figure, and I can understand the gist of what the authors are attempting to show, but it is difficult to understand as it is. Can this be represented in a way that is clearer and explained a bit more easily?

      (3) The brain mapping is by far one of the most interesting aspects of this study, and the methods that the group used are interesting. The brain mapping, however, relies on generating "contrasting" groups (Figure 6A), and I was not clear as to how these two groups were formed. Could the authors elaborate a bit?

    1. Reviewer #3 (Public review):

      Summary:

      The heat shock response (HSR) is an inducible transcriptional program that has provided paradigmatic insight into how stress cues feed information into the control of gene expression. The recent elucidation that the chaperone Hsp70 controls the DNA binding activity of the central HSR transcription factor Hsf1 by direct binding has spurred the question how such a general chaperone obtains specificity. This study has addressed the next logical question, how J-domain proteins execute this task in budding yeast, the leading cell model for studying the HSR. While an involvement and in part overlapping function of general class A and B J-domain proteins, Ydj1 and Sis1 are indicated by the genetic analysis a highly specific role for the class A Apj1 in displacing Hsf1 from the promoters is found unveiling specificity in the system.

      Strengths

      The central strong point of the paper is the identification of class A J-domain protein Apj1 as a specific regulator of the attenuation of the HSR by removing Hsf1 from HSEs at the promoters. The genetic evidence and the ChIP data strongly support this claim. This identification of a specific role for a lowly expressed nuclear J-domain protein changes how the wiring of the HSR should be viewed. It also raises important questions regarding the model of chaperone titration, the concept that a chaperone with limiting availability is involved in a thug of war involving competing interactions with misfolded protein substrates and regulatory interactions with Hsf1. Perhaps Apj1 with its low levels and interactions with misfolded and aggregated proteins in the nucleus is the titrated Hsp70 (co)chaperone that determines the extent of the HSR? This would mean that Apj1 is at the nexus of the chaperone titration mechanism. Although Apj1 is not a highly conserved J domain protein among eukaryotes the strength of the study is that is provides a conceptual framework for what may be required for chaperone titration in other eukaryotes: One or more nuclear J-domain proteins with low nuclear levels that has an affinity for Hsf1 and that can become limiting due to interactions with misfolded Hsp70 proteins. The provides a pathway for how these may be identified using for example ChIP-seq.

      Weakness

      A built-in challenge when studying the mechanism of the HSR is the general role of Hsp70 chaperone system and its J domain proteins. Indeed, a weakness of the study is that it is unclear what of the phenotypic effects have to do with directly recruiting Hsp70 to Hsf1 dependent on a J domain protein and what instead is an indirect effect of protein misfolding caused by the mutation. This interpretation problem is clearly and appropriately dealt with in the manuscript text and in experiments but is of such fundamental nature that it cannot easily be fully ruled out.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, it is established that high fever-like 39{degree sign}C temperatures cause parasite-infected red blood cells to become stickier. It is thought that high temperatures might help the spleen to destroy parasite-infected cells, and they become stickier in order to remain trapped in blood vessels, so they stop passing through the spleen.

      Strengths:

      The strength of this research is that it shows that fever-like temperatures can cause parasite-infected red blood cells to stick to surfaces designed to mimic the walls of small blood vessels. In a natural infection, this would cause parasite-infected red blood cells to stop circulating through the spleen, where the parasites would be destroyed by the immune system. It is thought that fevers could lead to infected red blood cells becoming stiffer and therefore more easily destroyed in the spleen. Parasites respond to fevers by making their red blood cells stickier, so they stop flowing around the body and into the spleen. The experiments here prove that fever temperatures increase the export of Velcro-like sticky proteins onto the surface of the infected red blood cells and are very thorough and convincing.

      Weaknesses:

      A minor weakness of the paper is that the effects of fever on the stiffness of infected red blood cells were not measured. This can be easily done in the laboratory by measuring how the passage of infected red blood cells through a bed of tiny metal balls is delayed under fever-like temperatures.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chen et al examines the structure of the inactive LRRK2 bound to microtubules using cryo-EM tomography. Mutations in this protein have been shown to be linked to Parkinson's Disease. It is already shown that the active-like conformation of LRRK2 binds to the MT lattice, but this investigation shows that full-length LRRk2 can oligomerize on MTs in its autoinhibited state with different helical parameters than were observed with active-like state. The structural studies suggest that the autoinhibited state is less stable on MTs.

      Strengths:

      The protein of interest is very important biomedically and a novel conformational binding to microtubules in proposed

      The authors have addressed my original critique.

    1. Reviewer #3 (Public review):

      Summary:

      The authors build and analyze recurrent neural network (RNN) models of brain-computer interface (BCI) multi-task learning, developing a valuable theoretical understanding of learning-related neural population phenomena ("memory traces" and "uniform shifts") that have been reported in recent experimental studies of BCI and motor learning. The authors find that both phenomena emerge in their RNN models, and both correlate in some manner to learning-related behavioral phenomena ("savings" and "forgetting"). The authors also reveal that RNN training details, in particular, incorporating a task-indicating contextual input, can impact these population-level signatures of learning in RNN activity and their relation to those behavioral phenomena.

      Strengths:

      The text is well written, and the figures are clearly composed to convey the core concepts and findings. The RNN studies are elegant in their ability to recapitulate the memory trace and uniform shift phenomena, and further allow evaluations of novel scenarios that were not tested in the original corpus of the modeled animal experiments. The authors assess the sensitivity of their results to multiple approaches to RNN training, including training connectivity within a model of motor cortex, training only an upstream model that provides inputs to the motor cortex model, and providing task-indicating contextual inputs.

      Weaknesses:

      (1) It is unclear to what extent these RNN models operate in regimes relevant to biological neural networks (e.g., motor cortex), even at the neural-population level of abstraction studied here. Can the authors speak to how sensitive their results are to details that might speak to these operating regimes (e.g., signal-to-noise ratios or dimensionality of the RNN activities)?

      (2) The work could be further strengthened by analyses demonstrating a more direct link between the neural population phenomena (memory trace and uniform shift) and the behavioral phenomena (savings, forgetting, etc). While in animal experiments, it can be exceedingly difficult to demonstrate links beyond correlative effects, the promise of a model is the relative tractability of implementing manipulations that might establish something closer to a causal link between phenomena. Is it the case that the memory trace is a task-dependent, mean-preserving rotation of the across-target task-relevant activity space? And that the uniform shift is a translation (non-mean-preserving) of that space? If so, could the authors design regularization schemes that specifically target each of these effects, enabling a more direct test of the functional role the effects play in driving behavioral phenomena?

      Minor Comments:

      The current study is based on BCI learning of center-out tasks, analogous to the Losey et al. task that initially reported the memory trace phenomena. However, a rather different behavioral task - involving arm movements through curl force fields - was employed by the Sun, O'Shea, et al. study that originally reported the uniform shift phenomena. How should readers interpret the current study's findings related to the uniform shift? To what extent might the behavioral implications of the uniform shift depend on the demands of the task, e.g., the biomechanics, day-to-day experiencing of different curl-field perturbations, etc.?

    1. Reviewer #3 (Public review):

      Summary:

      In this well-written manuscript, Unitt and colleagues propose a new, hierarchical nomenclature system for the pathogen Neisseria gonorrhoeae. The proposed nomenclature addresses a longstanding problem in N. gonorrhoeae genomics, namely that the highly recombinant population complicates typing schemes based on only a few loci and that previous typing systems, even those based on the core genome, group strains at only one level of genomic divergence without a system for clustering sequence types together. In this work, the authors have revised the core genome MLST scheme for N. gonorrhoeae and devised life identification numbers (LIN) codes to describe the N. gonorrhoeae population structure.

      Strengths:

      The LIN codes proposed in this manuscript are congruent with previous typing methods for Neisseria gonorrhoeae, like cgMLST groups, Ng-STAR, and NG-MAST. Importantly, they improve upon many of these methods as the LIN codes are also congruent with the phylogeny and represent monophyletic lineages/sublineages.

      The LIN code assignment has been implemented in PubMLST, allowing other researchers to assign LIN codes to new assemblies and put genomes of interest in context with global datasets.

      Weaknesses:

      The authors correctly highlight that cgMLST-based clusters can be fused due to "intermediate isolates" generated through processes like horizontal gene transfer. However, the LIN codes proposed here are also based on single linkage clustering of cgMLST at multiple levels. It is unclear if future recombination or sequencing of previously unsampled diversity within N. gonorrhoeae merges together higher-level clusters, and if so, how this will impact the stability of the nomenclature.

      The authors have defined higher resolution thresholds for the LIN code scheme. However, they do not investigate how these levels correspond to previously identified transmission clusters from genomic epidemiology studies. It would be useful for future users of the scheme to know the relevant LIN code thresholds for these investigations.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Atchou et al. investigates the role of the microtubule cytoskeleton in sporozoites of Plasmodium berghei, including possible functions of microtubule post-translational modifications (tyrosination and polyglutamylation) in the development of sporozoites in the liver. They also assessed the development of sporozoites in the mosquito. Using cell culture models and in vivo infections with parasites that contain tubulin mutants deficient in certain PTMs, they show that may aspects of the life cycle progression are impaired. The main conclusion is that microtubule PTMs play a major role in the differentiation processes of the parasites.

      However, there are a number of major and minor points of criticism that relate to the interpretation of some of the data.

      Comments:

      (1) The first paragraph of "Results" almost suggests that the presence of a subpellicular MT-array in sporozoites is a new discovery. This is not the case, see e.g. the recent publication by Ferreira et al. (Nature Communications, 2023).

      (2) Why were HeLa cells and not hepatocytes (as in Figure 3) used for measuring infection rates of the mutants in Figure 5H and 5L? As I understand, HeLa cells are not natural host cells for invading sporozoites. HeLa cells are epithelial cells derived from a cervical tumour. I am not an expert in Plasmodium biology, but is a HeLa infection an accepted surrogate model for liver stage development?

      (3) The tubulin staining in Figures 1A and 1B is confusing and doesn't seem to make sense. Whereas in 1A the antibody nicely stains host and parasite tubulin, in 1B, only parasite tubulin is visible. If the same antibody and the same host cells have been used, HeLa cytoplasmic microtubules should be visible in 1B. In fact, they should be the predominant antigen. The same applies to Figure 2, where host microtubules are also not visible.

      (4) In Figures 2A and B, the host nuclei appear to have very different sizes in the DMSO controls and in the drug-treated cells. For example, in the 20 µM (-) image (bottom right), the nuclei are much larger than in the DMSO (-) control (top left). If this is the case, expansion microscopy hasn't worked reproducibly, and therefore, quantification of fluorescence is problematic. The scalebar is the same for all panels.

      (5) I don't quite follow the argument that spindles and the LSPMB are dynamic structures (e.g., lines 145, 174). That is a trivial statement for the spindle, as it is always dynamic, but beyond that, it has only been shown that the structure is sensitive to oryzalin. That says little about any "natural" dynamic behaviour. Any microtubule structure can be destroyed by a particular physical or chemical treatment, but that doesn't mean all structures are dynamic. It also depends on the definition of "dynamic" in a particular context, for example, the time scale of dynamic behaviour (changes within seconds, minutes, or hours).

      (6) I am not sure what part in the story EB1 plays. The data are only shown in the Supplements and don't seem to be of particular relevance. EB1 is a ubiquitous protein associated with microtubule plus ends. The statement (line 192) that it "may play a broader role..." is unsubstantiated and cannot be based merely on the observation that it is expressed in a particular life cycle stage.

      (7) Line 196 onwards: The antibody IN105 is better known in the field as polyE. Maybe that should be added in Materials and Methods. Also, the antibody T9028 against tyrosinated tubulin is poorly validated in the literature and rarely used. Usually, researchers in this field use the monoclonal antibody YL1/2. I am not sure why this unusual antibody was chosen in this study. In fact, has its specificity against tyrosinated α-tubulin from Plasmodium berghei ever been shown? The original antigen was human and had the sequence EGEEY. The Plasmodium sequence is YEADY and hence very different. It is stated that the LSPMB is both polyglutamylated and tyrosinated. This is unusual because polyglutamylated microtubules are usually indicative of stable microtubules, whereas tyrosinated microtubules are found on freshly polymerised and dynamic microtubules. However, a co-localisation within the same cell has not been attempted. This is, however, possible since polyE is a rabbit antibody and T9028 is a mouse antibody. I suspect that differences or gradients along the LSPMB would have been noticed. Also, in lines 207/208, it is said that tyrosination disappears after hepatocyte invasion, which is shown in Figure 3. However, in Figure 3A, quite a lot of positive signals for tyrosination are visible in the 54 and 56 hpi panels.

      (8) In line 229, it is stated that tyrosination "has previously been associated with stable microtubule in motility". This statement is not correct. In fact, none of the cited references that apparently support this statement show that this is the case. On the contrary, stable microtubules, such as flagellar axonemes, are almost completely detyrosinated. Therefore, tyrosination is a marker for dynamic microtubules, whereas detyrosinated microtubules are indicative of stable microtubules. This is an established fact, and it is odd that the authors claim the opposite.

      (9) Line 236 onwards: Concerning the generation of tubulin mutants, I think it is necessary to demonstrate successful replacement of the wild-type allele by the mutant allele. I am sure the authors have done this by amplification and subsequent sequencing of the genomic locus using PCR primers outside the plasmid sequences. I suggest including this information, e.g., by displaying the chromatograph trace in a supplementary figure. Or are the sequences displayed in Figure S3B already derived from sequenced genomic DNA? This is not described in the Legend or in Materials and Methods. The left PCR products obtained for Figure S3 B would be a suitable template for sequencing.

      (10) It is also important to be aware of the fact that glutamylation also occurs on β-tubulin. This signal will also be detected by polyE (IN105). Therefore, it is surprising that IN105 immunofluorescence is negative on the C-term Δ cells (Figure S3 D). Is there anything known about confirmed polyglutamylation sites on both α- and β-tubulins in Plasmodium, e.g., by MS? In Toxoplasma, both α- and β-tubulin have been shown to be polyglutamylated.

      (11) Figure S3 is very confusing. In the legend, certain intron deletions are mentioned. How does this relate to posttranslational tubulin modifications? The corresponding section in Results (lines 288-292) is also not very helpful in understanding this.

      (12) Figure 4E doesn't look like brightfield microscopy but like some sort of fluorescent imaging. In Figure 4C, were the control (NoΔ) cells with an integrated cassette, but no mutations, or non-transgenic cells?

      (13) It is difficult to understand why the TyΔ and the CtΔ mutants still show quite a strong signal using the anti-tyrosination antibody. If the mutants have replaced all wild-type alleles, the signal should be completely absent, unless the antibody (see my comment above concerning T9028) cross-reacts with detyrosinated microtubules. Therefore, the quantitation in Figures 5F and 5G is actually indicative of something that shouldn't be like that. The quantitation of 5F is at odds with the microscopy image in 5D. If this image is representative, the anti-Ty staining in TyΔ is as strong as in the control NoΔ.

      (14) The statement that the failure of CtΔ mutants to generate viable sporozoites is due to the lack of microtubule PTMs (lines 295-296) is speculative. The lack of the entire C-terminal tail could have a number of consequences, such as impaired microtubule assembly or failure to recruit and bind associated proteins. This is not necessarily linked to PTMs. Also, it has been shown in yeast that for microtubules to form properly and exquisite regulation (proteostasis) of the ratio between α- and β-tubulin is essential (Wethekam and Moore, 2023). I am not sure, but according to Materials and Methods (line 423), the gene cassettes for replacing the wild-type tubulin gene with the mutant versions contain a selectable marker gene for pyrimethamine selection. Are there qPCR data that show that expression levels of mutant α-tubulin are more or less the same as the wild-type levels?

      (15) In the Discussion, my impression is that two recent studies, the superb Expansion Microscopy study by Bertiaux et al. (2021) and the cryo-EM study by Ferreira et al. (2023), are not sufficiently recognised (although they are cited elsewhere in the manuscript). The latter study includes a detailed description of the microtubule cytoskeleton in sporozoites. However, the present study clearly expands the knowledge about the structure of the cytoskeleton in liver stage parasites and is one of the few studies addressing the distribution and function of microtubule post-translational modifications in Plasmodium.

      (16) I somewhat disagree with the statement of a co-occurrence of polyglutamylated and tyrosinated microtubules. I think the resolution is too low to reach that conclusion. As this is a bold claim, and would be contrary to what is known from other organisms, it would require a more rigorous validation. Given the apparent problems with the anti-Ty antibody (signal in the TyΔ mutant), one should be very cautious with this claim.

      (17) In the Discussion (lines 311 and 377), it is again claimed that tyrosinated microtubules are "a well-known marker of stable microtubules". This statement is completely incorrect, and I am surprised by this serious mistake. A few lines later, the authors say that polyglutamylated is "commonly associated with dynamic microtubule behaviour". Again, this is completely incorrect and is the opposite of what is firmly established in the literature. Polyglutamylation and detyrosination are markers of stable microtubules.

      (18) In line 339, the authors interpret the residual antibody staining after the introduction of the mutant tubulin as a compensatory mechanism. There is no evidence for this. More likely explanations are firstly the quality of the anti-Ty-antibody used (see comment above), and the fact that also β-tubulin carries C-terminal polyglutamylation sites, which haven't been investigated in this study. PTMs on β-tubulin are not compensatory, but normal PTMs, at least in all other organisms where microtubule PTMs have been investigated.

    1. Reviewer #3 (Public review):

      Asthma is a complex disease that includes endogenous epithelial, immune and neural components that respond to environmental stimuli. Small airborne particles with diameters in the range of 2.5 micrometers or less, so-called PM2.5, are thought to contribute to some forms of asthma. These forms of asthma may have neutrophils, eosinophils and macrophages in bronchoalveolar lavage. Here, Wang and colleagues build on a recent model that incorporated PM2.5 which was found to have a neutrophilic component. Wang altered the model to provide an extra kick via the incorporation of ovalbumin. The major strength of this work is that silencing TRPV1-expressing neurons either pharmacologically or genetically, modulated inflammation and the motility of neutrophils. By examining bronchoalveolar lavage fluid, they found not only that levels of a number of cytokines were increased, but also that artemin, a protein that supports neuronal development and function, was elevated, which did not occur in nociceptor- ablated mice. Their data strengthens links between pollutants, immune and neural interactions.

      Comments on revisions:

      The manuscript has been revised extensively, including the addition of new experiments, such as intravital microscopy. Did the comments from the reviewers, manifest by additional experiments and modifying how some of the data was presented, result in any changes in the hypotheses or the interpretation of such?

    1. Reviewer #3 (Public review):

      Genetically encoded calcium indicators (GECIs) are essential tools in neurobiology and physiology. Technological constraints in targeting and kinetics of previous versions of GECIs have limited their application at the subcellular level. Chen et al. present a set of novel tools that overcome many of these limitations. Through systematic testing in the Drosophila NMJ, they demonstrate improved targeting of GCaMP variants to synaptic compartments and report enhanced brightness and temporal fidelity using members of the GCaMP8 series. These advancements are likely to facilitate more precise investigation of synaptic physiology.

      This is a comprehensive and detailed manuscript that introduces and validates new GECI tools optimized for the study of neurotransmission and neuronal excitability. These tools are likely to be highly impactful across neuroscience subfields. The authors are commended for publicly sharing their imaging software.

      This manuscript could be improved by further testing the GECIs across physiologically relevant ranges of activity, including at high frequency and over long imaging sessions. The authors provide a custom software package (CaFire) for Ca2+ imaging analysis; however, to improve clarity and utility for future users, we recommend providing references to existing Ca2+ imaging tools for context and elaborating on some conceptual and methodological aspects, with more guidance for broader usability. These enhancements would strengthen this already strong manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      The authors in this paper introduce BuzzWatch, an open-source, low-cost (200-300 Euros) platform for long-term monitoring of mosquito flight and behavior. They use a Raspberry Pi with a Noirv2 Camera set up under laboratory conditions to observe 3 different species of mosquitoes. The system captures a variety of multimodal data, like flight activity, sugar feeding, and host-seeking responses, with the help of external modules like CO2 and fructose-soaked cottons. They also release a GUI in addition to automated tracking and behaviour analysis, which doesn't run on Pi but rather on a personal laptop.

      Four main use cases are demonstrated:

      (1) Characterizing diel rhythms in various Aedes aegypti populations.

      (2) Differentiating behaviors of native African vs. invasive human-adapted subspecies.

      (3) Assessing physiological (blood-feeding) and environmental (light regime) perturbations.

      (4) Testing time-of-day variation in responses to host-associated cues like CO₂ and heat.

      Description (Strengths):

      (1) The authors introduce a low-cost, scalable system that uses flight tracking in 2D as an alternative to 3D multi-camera systems.

      (2) Due to the low pixel quality required by the system, they can record for weeks at a time, capturing long temporal and behavioral activities.

      (3) They also integrate external modules such as lights, CO2, and heat as a way to measure responses to a variety of stimuli.

      (4) They also introduce a wiki as a guide for building replication and a help in using the GUI module.

      (5) They implement both GLMM hourly and PCA of behavior data.

      Limitations - Major Comments:

      (1) Most experiments are only done with single replicates per colony. If the setup is claimed to be cheap and replicable, there should be clearer replicates across experiments.

      (2) No external validation for the flight tracking algorithm using manual annotation or comparison with field data. The authors focus early on biological proof of principle, but the validity of the tracking algorithm is not presented. How accurate is the algorithm at classifying behaviours (e.g., vs human ground truth)? How reliable is tracking?

      (3) Why develop a custom GUI instead of using established packages such as rethomics (https://rethomics.github.io/) that are already available for behavioral analysis?

      (4) Why use RGB light strips when perceptual white light for humans is not relevant for mosquitoes? The choice of lighting should be based on the mosquito's visual perception. - https://pmc.ncbi.nlm.nih.gov/articles/PMC12077400/ .

      (5) Why use GLMMs instead of GAMs (with explicit periodic components)? With GLMMs, you do not account for temporal structure, which is highly relevant and autocorrelated in behavioral time series data.

      (6) What is the proportion of mosquitoes that stay alive throughout the experiments? How do you address dead animals in tracking? No data are available on whether all mosquitoes made it through the monitoring period. No survival data is mentioned in the paper, and in the wiki, it is not clear how it is used or how it affects the analyses - https://theomaire.github.io/buzzwatch/analyze.html#diff-cond .

      (7 )The sugar feeding behavior is not manually validated.

      (8) Figure 4d is difficult to understand - how did you align time? Why is ZT4 aligning with ZT0? Should you "warp" the time series to compare them (e.g., from dawn to dusk)?

      (9) No video recordings are made available for demonstration or validation purposes.

      Appraisal

      (1) The core conclusions---that BuzzWatch can capture multiscale mosquito behavioral rhythms and quantify the effect of genetic, environmental, and physiological variation - show promise but require stronger validation.

      (2) Statistical approaches (GLMM, PCA) are chosen but may not be optimal for temporal data with autocorrelation.

      (3) The host-seeking module shows a differential response, which is a potentially valuable feature.

    1. Reviewer #3 (Public review):

      Summary:

      The authors use a combination of a head-fixed grooming paradigm, single-photon mesoscale, and wide-field-of-view two-photon calcium imaging to characterize cortical activity patterns during evoked grooming. Previous work has shown that grooming behavior does not require cortex, but that there are neuronal representations of grooming in motor cortex. The authors extend these findings by showing cortex-wide activation patterns at the meso-scale that relate to distinct grooming elements. This activation is strongest at grooming onset, but declines over the course of extended grooming periods. They also find similar activity patterns during licking/drinking behavior. Two-photon imaging further revealed that individual neurons across the cortex are preferentially activated by grooming. While their activity also declines after grooming onset, they remain active throughout grooming periods. This work extends previous findings by revealing that grooming and other subcortically-generated behaviors may be represented not only in motor cortex, but across dorsal cortex, both on the mesoscale and single neuron levels. These findings may lead to further investigation into the role of cortical activity during subcortically generated behaviors.

      Strengths:

      (1) Detailed characterization of grooming behavior in a head-fixed paradigm.

      (2) Combination of single photon mesoscale and two-photon wide field-of-view imaging to characterize grooming (and licking)-related activity across dorsal cortex on multiple levels

      Weaknesses:

      (1) The behavior observed in the head-fixed grooming paradigm only partially resembles spontaneous grooming, lacking typical elements of the syntactic chain, while additionally evoking non-typical behaviors, resembling unilateral reaches, making the interpretation of the observations and their relevance to natural behaviors difficult. Furthermore, the nature of the non-typical movements (which may be cortex-dependent while typical grooming is not) is not explored.

      (2) Two important findings in relation to the neural representations of individual grooming behaviors remain unclear:

      a) The authors state that individual grooming behaviors did not have distinct neuronal representations (except unilateral grooming; Figure 4G) - it remains unclear how this fits with the observation of distinct activation maps during the different grooming behaviors. Should this differential activation not also correspond to distinct activation patterns of 'grooming' neurons across the cortex? Or do they mean that the activity in the 'grooming' neurons is not consistent across grooming instances and therefore no distinct representation can be detected?

      b) The authors state that the 'typical' grooming behaviors do not have consistent activation patterns across animals (Figure 3 and supplements). It remains, therefore, unclear what the averaged activation maps really represent. Furthermore, this observation leaves several open questions: Are the activation patterns consistent in individual animals? Do differences across animals emerge due to differences in their behavior? And most importantly, can the actual behavior be decoded from the activation patterns?

      (3) Multiple statements/conclusions are not supported by quantification of the data, but only by qualitative assessments, e.g.: lines 433-435: "In general, the maximally activated networks involved in licking and unilateral grooming behaviors 'appeared' to be the most consistent across animals compared to the bilateral grooming movements (Figure 3G)."; 436-437: "Averaged cortical activation maps associated with licking and elliptical behaviors were 'qualitatively similar' between evoked and spontaneous sessions, where the water drop was not applied".; 480-482: "The unique explained variance maps for the licking behavior 'differed' in the drinking context compared to the grooming context (Figure 3-figure supplement 3F)." The lack of quantification leaves the significance of these observations unclear.

      (4) It remains unclear what the ongoing activity in 'grooming' neurons represents, since there is no detailed analysis of the relationship between activity and the detailed kinematics of the grooming movements.

      The authors show that neuronal representations of grooming and other subcortical behaviors can be found across dorsal cortex and that these representations are at least to some degree specific to distinct behavioral elements. While this study does not reveal functional insights into the role of cortical representations of subcortically-generated behaviors, it is a step towards more in-depth studies. In the future, it will be important to determine whether these representations are efference copies or sensory-driven, or whether they affect the behavior, and if so, under which circumstances.

    1. Reviewer #3 (Public review):

      Summary:

      This study used transcranial direct current stimulation administered using small 'high definition' electrodes to modulate neural activity within the non-human primate prefrontal cortex during both wakefulness and anaesthesia. Functional magnetic resonance imaging (fMRI) was used to assess neuromodulatory effects of stimulation. The authors report on modification of brain dynamics during and following anodal and cathodal stimulation during wakefulness and following anodal stimulation at two intensities (1 mA, 2 mA) during anaesthesia. This study provides some support that prefrontal direct current stimulation can alter neural activity patterns across wakefulness and sedation in monkeys.

      Strengths and Weaknesses:

      A key strength of this work is the use of fMRI-based methods to track changes in brain activity with good spatial precision. Another strength is the exploration of stimulation effects across wakefulness and sedation, which has the potential to provide novel information on the impact of electrical stimulation across states of consciousness. The authors should be commended for undertaking this challenging and important work.

      The lack of a sham stimulation condition is a limitation of the study, as it somewhat restricts the certainty with which the results can be attributed to the active stimulation as opposed to other external factors such as drowsiness or fatigue as a result of the experimental procedure? Nevertheless, I acknowledge the demanding nature of performing this work in non-human primates and that only runs with high fixation rates were included, which should have helped reduce any fatigue-related effects.

      In the anaesthesia condition, the authors investigated the effects of two intensities of stimulation (1 mA and 2 mA). However, it is possible that the initial 1 mA stimulation block might have caused some level of plasticity-related changes in neural activity that could have potentially interfered with the following 2 mA block due to the lack of a sufficient wash-out period. This potentially limits the findings from the 2 mA block as they cannot be interpreted as completely separate to the initial 1 mA stimulation period, given that they were administered consecutively. However, I do acknowledge the author's point that differences between the 1 mA post-stimulation and baseline conditions were not significantly different, which provides some evidence against this possibility.

      The different electrode placement for the two anaesthetised monkeys (i.e., Monkey R: F3/O2 montage, Monkey N: F4/O1 montage) is potentially problematic, as it might have resulted in stimulation over different brain regions. Electric field models of brain current flow for the monkeys would really be needed to understand with reasonable certainty, however, I recognise that these models are generally designed for human studies making their integration into non-human primate studies challenging.

      Finally, the sample size is obviously small. However, I realise this is often a limitation in non-human primate research, which can be both expensive and labour intensive.

      Assessment:

      This manuscript presents some novel insights into the effects of transcranial direct current stimulation on functional brain dynamics in awake and anaesthetised monkeys using MRI-based connectivity indices. Overall, the study presents several interesting and potentially impactful findings regarding stimulation-induced changes in brain activity. There are some limitations, such as the small sample size, lack of a sham stimulation control, and lack of electric field models, which, if included, would have, in my view, further helped improve the rigour of the study. Nevertheless, the manuscript presents several important findings, which warrant further analysis in future work.

    1. Reviewer #3 (Public review):

      Summary:

      The authors sought to determine, at the level of individual presubiculum pyramidal cells, how allocentric spatial information from retrosplenial cortex was integrated with egocentric information from the anterior thalamic nuclei. Employing a dual opsin optogenetic approach with patch clamp electrophysiology, Richevaux and colleagues found that around three quarters of layer 3 pyramidal cells in presubiculum receive monosynaptic input from both brain regions. While some interesting questions remain (e.g. the role of inhibitory interneurons in gating the information flow and through different layers of presubiculum, this paper provides valuable insights into the microcircuitry of this brain region and the role that it may play in spatial navigation.

      Strengths:

      One of the main strengths of this manuscript was that the dual opsin approach allowed the direct comparison of different inputs within an individual neuron, helping to control for what might otherwise have been an important source of variation. The experiments were well-executed and the data rigorously analysed. The conclusions were appropriate to the experimental questions and were well-supported by the results. These data will help to inform in vivo experiments aimed at understanding the contribution of different brain regions in spatial navigation and could be valuable for computational modelling.

      Weaknesses:

      Some attempts were made to gain mechanistic insights into how inhibitory neurotransmission may affect processing in presubiuclum (e.g. figure 5) but these experiments were a little underpowered and the analysis carried out could have been more comprehensively undertaken, as was done for other experiments in the manuscript.

      Comments on revised version:

      The authors have addressed all of my comments and I have nothing further to add. Well done for an interesting and valuable contribution!

    1. Reviewer #3 (Public review):

      Summary:

      The authors present a new computational method (OPT) for predicting off-target probe binding in the commercial 10X Xenium spatial transcriptomics platform. They identified 28 genes in the 10x xenium human breast cancer gene panel (280 genes) that are not accurately detected at the single-molecule level. They validated the predicted off-target binding using reference data from single-cell RNA-seq and 3'-sequencing-based Visium RNA-seq. This work provides a practical resource and will serve as a valuable reference for future data interpretation.

      Strengths:

      (1) Provides a toolbox for the community to identify off-target probes.

      (2) Validates the predictions using single-cell RNA-seq and sequencing-based Visium RNA-seq datasets.

      Weaknesses:

      (1) Does not apply the OPT method to the most widely used Xenium gene panels (e.g., pan-Human, pan-Mouse panels with ~5,000 genes each).

      (2) Lacks clarity on how the confidence level of off-target predictions is calculated.

    1. Reviewer #3 (Public review):

      Kim, Lognon et al. present an important finding on pro-locomotor effects of optogenetic activation of the A13 region, which they identify as a dopamine-containing area of the medial zona incerta that undergoes profound remodeling in terms of afferent and efferent connectivity after administration of 6-OHDA to the MFB. The authors claim to address a model of PD-related gait dysfunction, a contentious problem that can be difficult to treat by dopaminergic medication or DBS in conventional targets. They make use of an impressive array of technologies to gain insight into the role of A13 remodeling in the 6-OHDA model of PD. The evidence provided is solid and the paper is well written, but there are several general issues that reduce the value of the paper in its current form, and a number of specific, more minor ones. Also some suggestions, that may improve the paper compared to its recent form, come to mind.

      The most fundamental issue that needs to be addressed is the relation of the structural to the behavioral findings. It would be very interesting to see whether the structural heterogeneity in afferent/effects projections induced by 6-OHDA is related to the degree of symptom severity and motor improvement during A13 stimulation.

      The authors provide extensive interrogation of large-scale changes in the organization of the A13 region afferent and efferent distributions. It remains unclear how many animals were included to produce Fig 4 and 5. Fig S5 suggests that only 3 animals were used, is that correct? Please provide details about the heterogeneity between animals. Please provide a table detailing how many animals were used for which experiment. Were the same animals used for several experiments?

      While the authors provide evidence that photoactivation of the A13 is sufficient in driving locomotion in the OFT, this pro-locomotor effect seems to be independent of 6-OHDA induced pathophysiology. Only in the pole test do they find that there seems to be a difference between Sham vs 6-OHDA concerning effects of photoactivation of the A13. Because of these behavioral findings, optogenic activation of A13 may represent a gain of function rather than disease-specific rescue. This needs to be highlighted more explicitly in the title, abstract and conclusion.

      The authors claim that A13 may be a possible target for DBS to treat gait dysfunction. However, the experimental evidence provided (imparticular lack of disease-specific changes in the OFT) seem insufficient to draw such conclusions. It needs to be highlighted that optogenetic activation does not necessarily have the same effects as DBS (see the recent review from Neumann et al. in Brain: https://pubmed.ncbi.nlm.nih.gov/37450573/). This is important because ZI-DBS so far had very mixed clinical effects. The authors should provide plausible reasons for these discrepancies. Is cell-specificity, that only optogenetic interventions can achieve, necessary? Can new forms of cyclic burst DBS achieve similar specificity (Spix et al, Science 2021)? Please comment.

      In a recent study, Jeon et al (Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus, 2022, Cell Reports) provided evidence on the topographically graded organization of STN afferents and McElvain et al. (Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon, 2021, Neuron) have shown similar topographical resolution for SNr efferents. Can a similar topographical organization of efferents and afferents be derived for the A13/ ZI in total?

      In conclusion, this is an interesting study that can be improved taking into consideration the points mentioned above.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aim to identify the peripheral end-organ origin in the fly's wing of all sensory neurons in the anterior dorsomedial nerve. They reconstruct the neurons and their downstream partners in an electron microscopy volume of a female ventral nerve cord, analyse the resulting connectome, and identify their origin with a review of the literature and imaging of genetic driver lines. While some of the neurons were already known through previous work, the authors expand on the identification and create a near-complete map of the wing mechanosensory neurons at synapse resolution.

      Strengths:

      The authors elegantly combine electron microscopy, neuron morphology, connectomics, and light microscopy methods to bridge the gap between fly wing sensory neuron anatomy and ventral nerve cord morphology. Further, they use EM ultrastructural observations to make predictions on the signaling modality of some of the sensory neurons and thus their function in flight.

      The work is as comprehensive as state-of-the-art methods allow to create a near-complete map of the wing mechanosensory neurons. This work will be of importance to the field of fly connectomics and modelling of fly behavior, as well as a useful resource to the Drosophila research community.

      Through this comprehensive mapping of neurons to the connectome, the authors create a lot of hypotheses on neuronal function, partially already confirmed with the literature and partially to be tested in the future. The authors achieved their aim of mapping the periphery of the fly's wing to axonal projections in the ventral nerve cord, beautifully laying out their results to support their mapping.

      The authors identify the neurons in a previously published connectome of a male fly ventral nerve cord to enable cross-individual analysis of connections. Further, together with their companion paper, Dhawan et al. 2025, describing the haltere sensory neurons in the same EM dataset, they cover the entire mechanosensory space involved in Drosophila flight.

      Weaknesses:

      The connectomic data are only available upon request; the inclusion of a connectivity table of the reconstructed neurons would aid analysis reproducibility and cross-dataset comparisons.

    1. Reviewer #3 (Public review):

      Summary:

      This study found that ADF serotonergic neurons have a significant role in extending lifespan mediated by HIF-1, as well as serotonin receptor SER-7 in the GABAergic RIS interneurons. The author focuses on the sufficiency and necessity of components from the central nervous system and how they contribute to aging upon hypoxia.

      Previous work from the lab has identified that the stabilization of HIF-1 in neurons is sufficient to extend lifespan through the serotonin receptor, SER-7, which subsequently activates fmo-2 in the intestine and leads to lifespan extension. Building on this, the author sought to determine which serotonergic neurons are involved and found that serotonin signaling in ADF neurons is required for lifespan extension mediated by HIF-1.

      The author next tested which subset of neurons requires Ser-7 expression to rescue hypoxic response. They found that ser-7 expression in multiple neurons is sufficient to induce fmo-2, with the top candidate being the RIS neuron. Ablation of the RIS neuron did not extend lifespan, suggesting that ser-7 expression in the RIS neuron is required for lifespan extension, positioning it as a key component in the longevity signaling pathway.

      The author also investigated neurotransmitters and found that GABA and tyramine are important components in this circuit. They showed that the tyramine receptor called tyra-3 is required for vhl-1-mediated longevity. Given that tyra-3 is expressed in oxygen- and carbon dioxide-sensing neurons, the author demonstrated that these sensing neurons work downstream of serotonin signaling. Lastly, the author screened neuropeptide/receptor binding pairs and identified NLP-17 as playing a role in hypoxia-mediated longevity.

      Originality and Significance:

      This research is significant in that it uncovers components that are sufficient and necessary for lifespan extension via the hypoxic response. It provides comprehensive data supporting longevity induced by HIF-1-mediated hypoxic response, in conjunction with fmo-2, a longevity gene, as demonstrated in previous work from the lab. Moreover, it provides a number of new transgenic worm tools for C. elegans and aging communities.

      Data and Methodology:

      (1) The experiments were thoroughly conducted, especially the generations of strains using different neuron-type promoters and crossing into mutant strains to demonstrate sufficiency and necessity.

      (2) Some figure legends from the text do not match what the data show. (Figure 6E, F, G).

      (3) The lifespan graph legends are confusing and could use some revamping for better clarification.

      Conclusions:

      This study provides insights into how hypoxic response regulates aging in a cell non-autonomous manner, outlining a potential circuit involving neurons, neurotransmitters, and neuropeptides.

    1. Reviewer #3 (Public review):

      Summary:

      In this work, the authors aim to improve neural encoding models for naturalistic video stimuli by integrating temporally aligned multimodal features derived from a deep learning model (VALOR) to predict fMRI responses during movie viewing.

      Strengths:

      The major strength of the study lies in its systematic comparison across unimodal and multimodal models using large-scale, high-resolution fMRI datasets. The VALOR model demonstrates improved predictive accuracy and cross-dataset generalization. The model also reveals inherent semantic dimensions of cortical organization and can be used to evaluate the integration timescale of predictive coding.

      This study demonstrates the utility of modern multimodal pretrained models for improving brain encoding in naturalistic contexts. While not conceptually novel, the application is technically sound, and the data and modeling pipeline may serve as a valuable benchmark for future studies.

      Weaknesses:

      The overall framework of using data-driven features derived from pretrained AI models to predict neural response has been well studied and accepted by the field of neuroAI for over a decade. The demonstrated improvements in prediction accuracy, generalization, and semantic mapping are largely attributable to the richer temporal and multimodal representations provided by the VALOR model, not a novel neural modeling framework per se. As such, the work may be viewed as an incremental application of recent advances in multimodal AI to a well-established neural encoding pipeline, rather than a conceptual advance in modeling neural mechanisms.

      Several key claims are overstated or lack sufficient justification:

      (1) Lines 95-96: The authors claim that "cortical areas share a common space," citing references [22-24]. However, these references primarily support the notion that different modalities or representations can be aligned in a common embedding space from a modeling perspective, rather than providing direct evidence that cortical areas themselves are aligned in a shared neural representational space.

      (2) The authors discuss semantic annotation as if it is still a critical component of encoding models. However, recent advances in AI-based encoding methods rely on features derived from large-scale pretrained models (e.g., CLIP, GPT), which automatically capture semantic structure without requiring explicit annotation. While the manuscript does not systematically address this transition, it is important to clarify that the use of such pretrained models is now standard in the field and should not be positioned as an innovation of the present work. Additionally, the citation of Huth et al. (2012, Neuron) to justify the use of WordNet-based annotation omits the important methodological shift in Huth et al. (2016, Nature), which moved away from manual semantic labeling altogether.

      Since the 2012 dataset is used primarily to enable comparison in study 3, the emphasis should not be placed on reiterating the disadvantages of semantic annotation, which have already been addressed in prior work. Instead, the manuscript's strength lies in its direct comparison between data-driven feature representations and semantic annotation based on WordNet categories. The authors should place greater emphasis on analyzing and discussing the differences revealed by these two approaches, rather than focusing mainly on the general advantage of automated semantic mapping.

      (3) The authors use subject-specific encoding models trained on the HCP dataset to predict group-level mean responses in an independent in-house dataset. While this analysis is framed as testing model generalization, it is important to clarify that it is not assessing traditional out-of-distribution (OOD) generalization, where the same subject is tested on novel stimuli, but rather evaluating which encoding model's feature space contains more stimulus-specific and cross-subject-consistent information that can transfer across datasets.

      Within this setup, the finding that VALOR outperforms CLIP, AlexNet, and WordNet is somewhat expected. VALOR encodes rich spatiotemporal information from videos, making it more aligned with movie-based neural responses. CLIP and AlexNet are static image-based models and thus lack temporal context, while WordNet only provides coarse categorical labels with no stimulus-specific detail. Therefore, the results primarily reflect the advantage of temporally-aware features in capturing shared neural dynamics, rather than revealing surprising model generalization. A direct comparison to pure video-based models, such as Video Swin Transformers or other more recent video models, would help strengthen the argument.

      Moreover, while WordNet-based encoding models perform reasonably well within-subject in the HCP dataset, their generalization to group-level responses in the Short Fun Movies (SFM) dataset is markedly poorer. This could indicate that these models capture a considerable amount of subject-specific variance, which fails to translate to consistent group-level activity. This observation highlights the importance of distinguishing between encoding models that capture stimulus-driven representations and those that overfit to individual heterogeneities.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a series of experiments that further investigate the roles of the BLA and PRH in sensory preconditioning, with a particular focus on understanding their differential involvement in the association of S1 and S2 with shock.

      Strengths:

      The motivation for the study is clearly articulated, and the experimental designs are thoughtfully constructed. I especially appreciate the inclusion of Table 1, which makes the designs easy to follow. The results are clearly presented, and the statistical analyses are rigorous. My comments below mainly concern areas where the writing could be improved to help readers more easily grasp the logic behind the experiments.

      Weaknesses:

      (1) Lines 56-58: The two previous findings should be more clearly summarized. Specifically, it's unclear whether the "mediated S2-shock" association occurred during Stage 2 or Stage 3. I assume the authors mean Stage 2, but Stage 2 alone would not yet involve "fear of S2," making this expression a bit confusing.

      (2) Line 61: The phrase "Pavlovian fear conditioning" is ambiguous in this context. I assume it refers to S1-shock or S2-shock conditioning. If so, it would be clearer to state this explicitly.

      (3) Regarding the distinction between having or not having Stage 1 S2-S1 pairings, is "novel vs. familiar" the most accurate way to frame this? This terminology could be misleading, especially since one might wonder why S2 couldn't just be presented alone on Stage 1 if novelty is the critical factor. Would "outcome relevance" or "predictability" be more appropriate descriptors? If the authors choose to retain the "novel vs. familiar" framing, I suggest providing a clear explanation of this rationale before introducing the predictions around Line 118.

      (4) Line 121: This statement should refer to S1, not S2.

      (5) Line 124: This one should refer to S2, not S1.

      (6) Additionally, the rationale for Experiment 4 is not introduced before the Results section. While it is understandable that Experiment 4 functions as a follow-up to Experiment 3, it would be helpful to briefly explain the reasoning behind its inclusion.

  2. Aug 2025
    1. Reviewer #3 (Public review):

      Summary:

      Krwawicz et al., present evidence that expression of DNMTs in E. coli results in (1) introduction of alkylation damage that is repaired by AlkB; (2) confers hypersensitivity to alkylating agents such as MMS (and exacerbated by loss of AlkB); (3) confers hypersensitivity to oxidative stress (H2O2 exposure); (4) results in a modest increase in ROS in the absence of exogenous H2O2 exposure; and (5) results in the production of oxidation products of 5mC, namely 5hmC and 5fC, leading to cellular toxicity. The findings reported here have interesting implications for the concept that such genotoxic and potentially mutagenic consequences of DNMT expression (resulting in 5mC) could be selectively disadvantageous for certain organisms. The other aspect of this work which is important for understanding the biological endpoints of genotoxic stress is the notion that DNA damage per se somehow induces elevated levels of ROS.

      Strengths:

      The manuscript is well-written, and the experiments have been carefully executed providing data that support the authors' proposed model presented in Fig. 7 (Discussion, sources of DNA damage due to DNMT expression).

      Weaknesses:

      (1) The authors have established an informative system relying on expression of DNMTs to gauge the effects of such expression and subsequent induction of 3mC and 5mC on cell survival and sensitivity to an alkylating agent (MMS) and exogenous oxidative stress (H2O2 exposure). The authors state (p4) that Fig. 2 shows that "Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to WT C2523, supporting the conclusion that the expression of DNMTs increased the levels of alkylation damage." This is a confusing statement and requires revision as Fig. 2 does ALL cells shown in Fig. 2 are expressing DNMTs and have been treated with MMS. It is the absence of AlkB and the expression of DNMTs that that causes the MMS sensitivity.

      (2) It would be important to know whether the increased sensitivity (toxicity) to DNMT expression and MMS is also accompanied by substantial increases in mutagenicity. The authors should explain in the text why mutation frequencies were not also measured in these experiments.

      (3) Materials and Methods. ROS production monitoring. The "Total Reactive Oxygen Species (ROS) Assay Kit" has not been adequately described. Who is the Vendor? What is the nature of the ROS probes employed in this assay? Which specific ROS correspond to "total ROS"?

      (4) The demonstration (Fig. 4) that DNMT expression results in elevated ROS and its further synergistic increase when cells are also exposed to H2O2 is the basis for the authors' discussion of DNA damage-induced increases in cellular ROS. S. cerevisiae does not possess DNMTs/5mC, yet exposure to MMS also results in substantial increases in intracellular ROS (Rowe et al, (2008) Free Rad. Biol. Med. 45:1167-1177. PMC2643028). The authors should be aware of previous studies that have linked DNA damage to intracellular increases in ROS in other organisms and should comment on this in the text.

      Comments for the revised manuscript:

      In this revised manuscript, the authors have satisfactorily addressed the issues raised in the review of the original submission and have significantly improved these studies.

    1. Reviewer #3 (Public review):

      This manuscript presents a study combining molecular dynamics simulations and Hedgehog (Hh) pathway assays to investigate cholesterol translocation pathways to Smoothened (SMO), a G protein-coupled receptor central to Hedgehog signal transduction. The authors identify and characterize two putative cholesterol access routes to the transmembrane domain (TMD) of SMO and propose a model whereby cholesterol traverses through the TMD to the cysteine-rich domain (CRD), which is presented as the primary site of SMO activation.

      The MD simulations and biochemical experiments are carefully executed and provide useful data. However, the manuscript is significantly weakened by a narrow and selective interpretation of the literature, overstatement of certain conclusions, and a lack of appropriate engagement with alternative models that are well-supported by published data-including data from prior work by several of the coauthors of this manuscript. In its current form, the manuscript gives a biased impression of the field and overemphasizes the role of the CRD in cholesterol-mediated SMO activation. Below, I provide specific points where revisions are needed to ensure a more accurate and comprehensive treatment of the biology.

      Major Comments:

      (1) Overstatement of the CRD as the Orthosteric Site of SMO Activation

      The manuscript repeatedly implies or states that the CRD is the orthosteric site of SMO activation, without adequate acknowledgment of alternative models. To give just a few examples (of many in this manuscript):

      a) "PTCH is proposed to modulate the Hh signal by decreasing the ability of membrane cholesterol to access SMO's extracellular cysteine-rich domain (CRD)" (p. 3).

      b) "In recent years there has been a vigorous debate on the orthosteric site of SMO" (p. 3).

      c) "cholesterol must travel through the SMO TMD to reach the orthosteric site in the CRD" (p. 4).

      d) "we observe cholesterol moving along TM6 to the TMD-CRD interface (common pathway, Fig. 1d) to access the orthosteric binding site in the CRD" (p. 6).

      While the second quote in this list at least acknowledges a debate, the surrounding text suggests that this debate has been entirely resolved in favor of the CRD model. This is misleading and not reflective of the views of other investigators in the field (see, for example, a recent comprehensive review from Zhang and Beachy, Nature Reviews Molecular and Cell Biology 2023, which makes the point that both the CRD and 7TM sites are critical for cholesterol activation of SMO as well as PTCH-mediated regulation of SMO-cholesterol interactions).

      In contrast, a large body of literature supports a dual-site model in which both the CRD and the TMD are bona fide cholesterol-binding sites essential for SMO activation. Examples include:

      a) Byrne et al., Nature 2016: point mutation of the CRD cholesterol binding site impairs-but does not abolish-SMO activation by cholesterol (SMO D99A, Y134F, and combination mutants - Fig 3 of the 2016 study).

      b) Myers et al., Dev Cell 2013 and PNAS 2017: CRD deletion mutants retain responsiveness to PTCH regulation and cholesterol mimetics (similar Hh responsiveness of a CRD deletion mutant is also observed in Fig 4 Byrne et al, Nature 2016).

      c) Deshpande et al., Nature 2019: mutation of residues in the TMD cholesterol binding site blocks SMO activation entirely, strongly implicating the TMD as a required site, in contrast to the partial effects of mutating or deleting the CRD site.

      Qi et al., Nature 2019, and Deshpande et al., Nature 2019, both reported cholesterol binding at the TMD site based on high-resolution structural data. Oddly, Deshpande et al., Nature 2019, is not cited in the discussion of TMD binding on p. 3, despite being one of the first papers to describe cholesterol in the TMD site and its necessity for activation (the authors only cite it regarding activation of SMO by synthetic small molecules).

      Kinnebrew et al., Sci Adv 2022 report that CRD deletion abolished PTCH regulation, which is seemingly at odds with several studies above (e.g., Byrne et al, Nature 2016; Myers et al, Dev Cell 2013); but this difference may reflect the use of an N-terminal GFP fusion to SMO in the Kinnebrew et al 2022, which could alter SMO activation properties by sterically hindering activation at the TMD site by cholesterol (but not synthetic SMO agonists like SAG); in contrast, the earlier work by Byrne et al is not subject to this caveat because it used an untagged, unmodified form of SMO.

      Although overexpression of PTCH1 and SMO (wild-type or mutant) has been noted as a caveat in studies of CRD-independent SMO activation by cholesterol, this reviewer points out that several of the studies listed above include experiments with endogenous PTCH1 and low-level SMO expression, demonstrating that SMO can clearly undergo activation by cholesterol (as well as regulation by PTCH1) in a manner that does not require the CRD.

      Recommendation:

      The authors should revise the manuscript to provide a more balanced overview of the field and explicitly acknowledge that the CRD is not the sole activation site. Instead, a dual-site model is more consistent with available structural, mutational, and functional data. In addition, the authors should reframe their interpretation of their MD studies to reflect this broader and more accurate view of how cholesterol binds and activates SMO.

      (2) Bias in Presentation of Translocation Pathways

      The manuscript presents the model of cholesterol translocation through SMO to the CRD as the predominant (if not sole) mechanism of activation. Statements such as: "Cholesterol traverses SMO to ultimately reach the CRD binding site" (p. 6) suggest an exclusivity that is not supported by prior literature in the field. Indeed, the authors' own MD data presented here demonstrate more stable cholesterol binding at the TMD than at the CRD (p 17), and binding of cholesterol to the TMD site is essential for SMO activation. As such, it is appropriate to acknowledge that cholesterol may activate SMO by translocating through the TM5/6 tunnel, then binding to the TMD site, as this is a likely route of SMO activation in addition to the CRD translocation route they highlight in their discussion.

      The authors describe two possible translocation pathways (Pathway 1: TM2/3 entry to TMD; Pathway 2: TM5/6 entry and direct CRD transfer), but do not sufficiently acknowledge that their own empirical data support Pathway 2 as more relevant. Indeed, because their experimental data suggest Pathway 2 is more strongly linked to SMO activation, this pathway should be weighted more heavily in the authors' discussion. In addition, Pathway 2 is linked to cholesterol binding to both the TMD and CRD sites (the former because the TMD binding site is at the terminus of the hydrophobic tunnel, the latter via the translocation pathway described in the present manuscript), so it is appropriate that Pathway 2 figure more prominently than Pathway 1 into the authors' discussion.

      The authors also claim that "there is no experimental structure with cholesterol in the inner leaflet region of SMO TMD" (p 16). However, a structural study of apo-SMO from the Manglik and Cheng labs (Zhang et al., Nat Comm, 2022) identified a cholesterol molecule docked at the TM5/6 interface and also proposed a "squeezing" mechanism by which cholesterol could enter the TM5/6 pocket from the membrane. The authors do not take this SMO conformation into account in their models, nor do they discuss the possibility that conformational dynamics at the TM5/6 interface could facilitate cholesterol flipping and translocation into the hydrophobic conduit, even though both possibilities have precedent in the 2022 empirical cryoEM structural analysis.

      Recommendation:

      The authors should avoid oversimplification of the SMO cholesterol activation process, either by tempering these claims or broadening their discussion to better reflect the complexity and multiplicity of cholesterol access and activation routes for SMO, and consider the 2022 apo-SMO cryoEM structure in their analysis of the TM5/6 translocation pathway.

      (3) Alternative Possibility: Direct Membrane Access to CRD

      The possibility that the CRD extracts cholesterol directly from the membrane outer leaflet is not considered. While the crystal structures place the CRD in a stable pose above the membrane, multiple cryo-EM studies suggest that the CRD is dynamic and adopts a variety of conformations, raising the possibility that the stability of the CRD in the crystal structures is a result of crystal packing and that the CRD may be far more dynamic under more physiological conditions.

      Recommendation:

      The authors should explicitly acknowledge and evaluate this potential mechanism and, if feasible, assess its plausibility through MD simulations.

      (4) Inconsistent Framing of Study Scope and Limitations

      The discussion contains some contradictory and misleading language. For example, the authors state that "In this study we only focused on the cholesterol movement from the membrane to CRD binding site." and then several sentences later state that "We outline the entire translocation mechanism from a kinetic and thermodynamic perspective.". These statements are at odds. The former appropriately (albeit briefly) notes the limited scope of the modeling, while the latter overstates the generality of the findings.

      In addition, the authors' narrow focus on the CRD site constitutes a major caveat to the entire work. It should be acknowledged much earlier in the manuscript, preferably in the introduction, rather than mentioned as an aside in the penultimate paragraph of the conclusion.

      Recommendation:<br /> The authors should clarify the scope of the study and expand the discussion of its limitations. They should explicitly acknowledge that the study models one of several cholesterol access routes and that the findings do not rule out alternative pathways.

      Summary:

      This study has the potential to make a useful contribution to our understanding of cholesterol translocation and SMO activation. However, in its current form, the manuscript presents an overly narrow and, at times, misleading view of the literature and biological models; as such, it is not nearly as impactful as it could be. I strongly encourage the authors to revise the manuscript to include:

      (1) A more balanced discussion of the CRD vs. TMD binding sites.

      (2) Acknowledgment of alternative cholesterol access pathways.

      (3) More comprehensive citation of prior structural and functional studies.

      (4) Clarification of assumptions and scope.

      Of note, the above suggestions require little to no additional MD simulations or experimental studies, but would significantly enhance the rigor and impact of the work.

    1. Reviewer #3 (Public review):

      Summary:

      This study addresses the role of MIRO1 in vascular smooth muscle cell proliferation, proposing a link between MIRO1 loss and altered growth due to disrupted mitochondrial dynamics and function. While the findings are potentially useful for understanding the importance of mitochondrial positioning and function in this specific cell type within health and disease contexts, the evidence presented appears incomplete, with key bioenergetic and mechanistic claims lacking adequate support.

      Strengths:

      (1) The study focuses on an important regulatory protein, MIRO1, and its role in vascular smooth muscle cell (VSMC) proliferation, a relatively underexplored context.

      (2) It explores the link between smooth muscle cell growth, mitochondrial dynamics, and bioenergetics, which is a potentially significant area for both basic and translational biology.

      (3) The use of both in vivo and in vitro systems provides a potentially useful experimental framework to interrogate MIRO1 function in this context.

      Weaknesses:

      (1) The central claim that MIRO1 loss impairs mitochondrial bioenergetics is not convincingly demonstrated, with only modest changes in respiratory parameters and no direct evidence of functional respiratory chain deficiency.

      (2) The proposed link between MIRO1 and respiratory supercomplex assembly or function is speculative, lacking mechanistic detail and supported by incomplete or inconsistent biochemical data.

      (3) Key mitochondrial assays are either insufficiently controlled or poorly interpreted, undermining the strength of the conclusions regarding oxidative phosphorylation.

      (4) The study does not adequately assess mitochondrial content or biogenesis, which could confound interpretations of changes in respiratory activity.

      (5) Overall, the evidence for a direct impact of MIRO1 on mitochondrial respiratory function in the experimental setting is weak, and the conclusions overreach the data.

    1. Reviewer #3 (Public review):

      Summary:

      Metabolons are multisubunit complexes that promote the physical association of sequential enzymes within a metabolic pathway. Such complexes are proposed to increase metabolic flux and efficiency by channeling reaction intermediates between enzymes. The TCA cycle enzymes malate dehydrogenase (MDH1) and citrate synthase (CIT1) have been linked to metabolon formation, yet the conditions under which these enzymes interact, and whether such interactions are dynamic in response to metabolic cues, remain unclear, particularly in the native cellular context. This study uses a nanoBIT protein-protein interaction assay to map the dynamic behavior of the MDH1-CIT1 interaction in response to multiple metabolic stimuli and challenges in yeast. Beyond mapping these interactions in real time, the authors also performed GC-MS metabolomics to map whole-cell metabolite alterations across experimental conditions. Finally, the authors use microscale thermophoresis to determine components that alter the MDH1-CIT1 interaction in vitro. Collectively, the authors synthesize their collected data into a model in which the MDH1-CIT1 metabolon dissociates in conditions of low respiratory flux, and is stimulated during conditions of high respiratory flux. While their data largely support these models, some key exceptions are found that suggest this model is likely oversimplified and will require further work to understand the complexities associated with MDH1-CIT1 interaction dynamics. Nonetheless, the authors put forth an interesting and timely toolkit to begin to understand the interaction kinetics and dynamics of key metabolic enzymes that should serve as a platform to begin disentangling these important yet understudied aspects of metabolic regulation.

      Strengths:

      (1) The authors address an important question: how do metabolon-associated protein-protein interactions change across altered metabolic conditions?

      (2) The development and validation of the MDH1-CIT1 nanoBIT assay provides an important tool to allow the quantification of this protein-protein interaction in vivo. Importantly, the authors demonstrate that the assay allows kinetic and real time assessment of these protein interactions, which reveal interesting and dynamic behavior across conditions.

      (3) The use of classic biochemical techniques to confirm that pH and various metabolites can alter the MDH1-CIT1 interaction in vitro is rigorous and supports the model put forth by the authors.

      Weaknesses:

      (1) Some of the data collected seem to be merely reported rather than synthesized and interpreted for the reader. This is particularly true for data that seem to reflect more complex trends, such as the GC-MS experiments that map metabolites across multiple experiments, or treatments that show somewhat counterintuitive results, such as the antimycin A treatment, which promotes rather than disrupts the MDH1-CIT1 interaction.

      (2) Some of the assertions put forth in the manuscript are not substantiated by the data presented, and the authors are at times overly reliant on previous findings from the literature to support their claims. This is particularly notable for claims about "TCA cycle flux"; the authors do not perform flux analysis anywhere in their study and should be cautious when insinuating correlations between their observations and "flux".

      (3) The manuscript presentation could be improved. For figures, at times, the axes do not have intuitive labels (example, Figure 1A), data points and details about the number of samples analyzed are missing (bar graphs and box plots), and molecular weight markers are not reported on western blots. The authors refer to the figures out of order in the text, which makes the manuscript challenging to navigate as a reader.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present a new method for detecting and identifying proline hydroxylation sites within the proteome. This tool utilizes traditional LC-MS technology with optimized parameters, combined with HILIC-based separation techniques. The authors show that they pick up known hydroxy-proline sites and also validate a new site discovered through their pipeline.

      Strengths:

      The manuscript utilizes state-of-the-art mass spectrometric techniques with optimized collision parameters to ensure proper detection of the immonium ions, which is an advance compared to other similar approaches before. The use of synthetic control peptides on the HILIC separation step clearly demonstrates the ability of the method to reliably distinguish hydroxy-proline from oxidized methionine - containing peptides. Using this method, they identify a site on CDCA2, which they go on to validate in vitro and also study its role in regulation of mitotic progression in an associated manuscript.

      Weaknesses:

      Despite the authors' claim about the specificity of this method in picking up the intended peptides, there is a good amount of potential false positives that also happen to get picked (owing to the limitations of MS-based readout), and the authors' criteria for downstream filtering of such peptides require further clarification. In the same vein, greater and more diverse cell-based validation approach will be helpful to substantiate the claims regarding enrichment of peptides in the described pathway analyses.

    1. Reviewer #3 (Public review):

      Summary:

      Type II IRES, such as those from encephalomyocarditis virus (EMCV) and foot-and-mouth disease virus (FMDV), mediate cap-independent translation initiation by using the full complement of eukaryotic initiation factors (eIFs), except the cap-binding protein eIF4E. The molecular details of how IRES type II interacts with the ribosome and initiation factors to promote recruitment have remained unclear. Das and Hussain used cryo-electron microscopy to determine the structure of a translation initiation complex assembled on the EMCV IRES. The structure reveals a direct interaction between the IRES and the 40S ribosomal subunit, offering mechanistic insight into how type II IRES elements recruit the ribosome.

      Strengths:

      The structure reveals a direct interaction between the IRES and the 40S ribosomal subunit, offering mechanistic insight into how type II IRES elements recruit the ribosome.

      Weaknesses:

      While this reviewer acknowledges the technical challenges inherent in determining the structure of such a highly flexible complex, the overall resolution remains insufficient to fully support the authors' conclusions, particularly given that cryo-EM is the sole experimental approach presented in the manuscript.

      The study is biologically significant; however, the authors should improve the resolution or include complementary biochemical validation.

    1. Reviewer #3 (Public review):

      Bru et al. investigated how inorganic phosphate (Pi) is buffered in cells using S. cerevisiae as a model. Pi is stored in cells in the form of polyphosphates in acidocalcisomes. In S. cerevisiae, the vacuole, which is the yeast lysosome, also fulfills the function of Pi storage organelle. Therefore, yeast is an ideal system to study Pi storage and mobilization.

      They can recapitulate in their previously established system, using isolated yeast vacuoles, findings from their own and other groups. They integrate the available data and propose a working model of feedback loops to control the level of Pi on the cellular level.

      This is a solid study, in which the biological significance of their findings is not entirely clear. The data analysis and statistical significance need to be improved and included, respectively. The manuscript would have benefited from rigorously testing the model, which would also have increased the impact of the study.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, Bhandari, Keglovits, et al. explore the representational structure of task encoding in the lateral prefrontal cortex. Through an impressive fMRI data-collection effort, they compare and contrast neural representations across tasks with different high-level stimulus-response structures. They find that the lateral prefrontal cortex shows enhanced encoding of task-relevant information, but that most of these representations do not generalize across conditions (i.e., have low abstraction). This appears to be driven in part by the representation of task conditions being clustered by the higher-order task properties ('global' representations), with poor generalization across these clusters ('local' representations). Overall, this paper provides an interesting account of how task representations are encoded in the PFC.

      Strengths:

      (1) Impressive dataset, which may provide further opportunities for investigating prefrontal representations.

      (2) Clever task design, allowing the authors to confound several features within a complex paradigm.

      (3) Best-practice analysis for decoding, similarity analyses, and assessments of representational geometry.

      (4) Extensive analyses to quantify the structure of PFC task representations.

      Weaknesses:

      (1) The paper would benefit from improved presentational clarity: more scaffolding of design and analysis decisions, clearer grounding to understand the high-level interpretations of the analyses (e.g., context, cluster, abstraction), and better visualizations of the key findings.

      (2) The paper would benefit from stronger theoretical motivation for the experimental design, as well as a refined discussion on the implications of these findings for theories of cognitive control.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, the authors have developed a new Ca indicator conjugated to the peptide, which likely recognizes synaptic ribbons and have measured microdomain Ca near synaptic ribbons at retinal bipolar cells. This interesting approach allows one to measure Ca close to transmitter release sites, which may be relevant for synaptic vesicle fusion and replenishment. Though microdomain Ca at the active zone of ribbon synapses has been measured by Hudspeth and Moser, the new study uses the peptide recognizing synaptic ribbons, potentially measuring the Ca concentration relatively proximal to the release sites.

      Strengths:

      The study is, in principle, technically well done, and the peptide approach is technically interesting, which allows one to image Ca near the particular protein complexes. The approach is potentially applicable to other types of imaging.

      Weaknesses:

      Peptides may not be entirely specific, and genetic approach tagging particular active zone proteins with fluorescent Ca indicator proteins may well be more specific. The readers should be aware of this, when interpreting the results.

    1. Reviewer #3 (Public review):

      Summary:

      This paper presents a framework for a multilevel agent-based model of the drosophila larva, using a simplified larval body and locomotor equations coupled to oscillators and sensory input. The model itself is built upon significant existing literature, particularly Wystrach, Lagogiannis, and Webb 2016 and Jürgensen et al. 2024. The aim is to generate an easily configurable, well-documented platform for organism-scale behavioral simulation in specific experiments. The authors demonstrate qualitative similarity between in vivo behavioral experiments to calibrated models.

      Strengths:

      The goal is excellent - a system to rapidly run computational experiments that align naturally with behavioral experiments would be well-suited to develop intuitions and cut through hypotheses. The authors provide quantitative descriptions that show that the best-fit parameters in their models produce results that agree with several properties of larval locomotion.

      The description of model calibration in the appendix is clear and explains several aspects of the model better than the main text.

      In addition, the code is well-organized using contemporary Python tooling and the documentation is nicely in progress (although it remains incomplete). However, see notes for difficulties with installation.

      Weaknesses:

      (1) As presented here the modeling itself is described in an unclear fashion and without a particular scientific question. The majority of the effort appears to be calibrating modest extensions of existing models and applying them to very simple experiments. This could be an effective first part of a paper on the software tool, but the paper needs to point to a scientific question or, if it is a tool paper, a gap in the current state of modeling tools needed to address scientific goals. While the manuscript has a good overview of larval behavioral papers, the discussion of modeling is more of an afterthought. However, the paper is a modeling paper and the contribution is to modeling and particularly with this work's minor adaptions of existing models, it is unclear what the principle contribution is intended to be.

      (2) While the models presented do qualitatively agree with experimental data in specific situations, there is no effort to challenge the model assumptions or compare them to alternative models. Simply because the data is consistent in a small number of simple experiments does not mean that the models are correct. Moreover, given the highly empirical nature of the modeling, I wonder what results are largely the model putting out what was put in, particularly with regards to kinematic results like frequency and body length or the effect of learning simply changing the sensory gain constant. It is difficult to imagine how at this level of empirical modeling, it would appear quite difficult to integrate the type of cell-type-specific perturbation or functional observation that is common in larval experiments.

      (3) The central framing of a "layered control architecture" does not have a significant impact on the work presented here and the paper would do better with less emphasis on it. Given the limited empirical models, there are only so many parameters where different components can influence one another, and as best as I can tell from the paper there is only chemotaxis and modulation of a chemotactic gain constant that are incorporated so far. However, since these are empirical functions it says little about how the layers are actually controlled by the nervous system - indeed, the larval nervous system appears to have many levels of local and long-range module of circuits at both the sensory and motor layers. It is not clear how this aspect would contribute beyond the well-appreciated concept of a relatively finite set of behavioral primitives in an insect brain, particularly for the fly larva. What would be a contradictory model and how would the authors differentiate between that and the one they currently propose? If focusing only on olfactory learning and chemotaxis, how does the current framing add to the existing understanding?

      (4) The paper uses experimental data to calibrate the models, however, the experiments are not described at all in the text.

    1. Reviewer #3 (Public review):

      Summary:

      This work provides graphical tools for reconstructing the detailed anatomy of a nervous system from a series of sections imaged by electron microscopy. Contact between neuronal processes can direct outgrowth and is necessary for connectivity, thus function. A bioinformatic approach is used to group neurons according to shared features (e.g., contact, synapses) in a hierarchy of "relatedness" that can be interrogated at each step. In this work, Koonze et al analyze vEM data sets for the C. elegans nerve ring (NR), a dense fascicle of processes from181 neurons. In a bioinformatic approach, the clustering algorithm Diffusion Condensation (DC) groups neurons according to similar cell biological features in iterations that remove chunks of differences in feature data with each step ultimately merging all NR neurons in one cluster. DC results are displayed with C-Phate a 3D visualization tool to produce a trajectory that can be interrogated for cell identities and other features at each iterative step. In previous work by these authors, this approach was utilized to identify subgroups of neuronal processes or "strata" in the NR that can be grouped by physical contact and connectivity. Here they expand their analysis to include a series of available vEM data sets across C. elegans larval development. This approach suggests that strata initially established during embryonic development are largely preserved in the adult. Importantly, exceptions involving stage specific-specific reorganization of neuronal placement in specific strata were also detected. A case study featured in the paper demonstrates the utility of this approach for visualizing the integration of newly generated neurons into the existing NR anatomy. Visualization tools used in this work are publicly available at NeuroSCAN.

      Strengths:

      A web-based app, NeuroSCAN, that individual researchers can use to interrogate the structure and organization of the C. elegans nerve ring across development.

      Weaknesses:

      minor revisions

      Comments on Revisions:

      The authors have satisfactorily addressed my critiques.

    1. Reviewer #3 (Public review):

      In the present study, the authors describe the development of new tools and imaging strategies to assess the concomitant development of excitatory and inhibitory synapses in dissociated neuron cultures. To this end, they generate fluorescently tagged constructs of excitatory and inhibitory synapse marker proteins using either conventional overexpression or CRISPR-based strategies. They then image these marker proteins over a timespan of 15 hours to assess synaptic dynamics at different developmental timepoints. Based on their data, they conclude that excitatory and inhibitory synapse development occur in concert to maintain a functional balance despite individual synapse turnover.

      Overall, this study addresses an interesting question, i.e., the interplay between the development of excitatory and inhibitory synapses, which has important implications, particularly for neurodevelopmental disorders in which the balance of excitation and inhibition is disrupted. The experiments are technically solid and well-executed, and the individual images are highly compelling.

      However, a number of aspects remain to be addressed in order for the study to support the claims made by the authors. First, the novelty aspect of the development of the fluorescently tagged synaptic proteins is unclear, since reporters of this nature are in routine use in many labs. Second, the analysis of the acquired images often seems incomplete, with only example images but no quantification shown, or the distinction between spatial and temporal dynamics appearing unclear. Third, given this incomplete analysis, the interpretations of the authors are not always convincingly supported by the data presented. In conclusion, substantial improvements are required to render the main messages of the study clear and compelling.

    1. Reviewer #3 (Public review):

      This paper investigates invariance to natural background noise in the auditory cortex of ferrets and humans. The authors first replicate, in ferrets, a finding from human neuroimaging showing that invariance to background noise increases along the cortical hierarchy (i.e. from primary to non-primary auditory cortex). Next, the authors ask whether this pattern of invariance could be explained by differences in tuning to low-level acoustic features across primary and non-primary regions. The authors conclude that this tuning can explain the spatial organization of background invariance in ferrets, but not in humans. The conclusions of the paper are well supported by the data.

      The paper is very straightforwardly written, with a generally clear presentation including well-designed and visually appealing figures. Not only does this paper provide an important replication in a non-human animal model commonly used in auditory neuroscience, but also it extends the original findings in three ways. First, the authors reveal a more fine-grained gradient of background invariance by showing that background invariance increases across primary, secondary and tertiary cortical regions. Second, the authors address a potential mechanism that might underlie this pattern of invariance by considering whether differences in tuning to frequency and spectrotemporal modulations across regions could account for the observed pattern of invariance. The spectrotemporal modulation encoding model used here is a well-established approach in auditory neuroscience and seems appropriate for exploring potential mechanisms underlying invariance in auditory cortex, particularly in ferrets. Third, the authors provide a more complete picture of invariance by additionally analyzing foreground invariance, a complementary measure not explored in the original study.

      Comments on author revisions:

      The authors have thoroughly addressed the concerns raised in my initial review.

    1. Reviewer #3 (Public review):

      Summary:

      In the manuscript " Dynamics of mesoscale brain network during decision-making learning revealed by chronic, large-scale single-unit recording", Wang et al investigated mesoscale network reorganization during visual stimulus discrimination learning in mice using chronic, large-scale single-unit recordings across 10 cortical/subcortical regions. During learning, mice improved task performance mainly by suppressing licking on no-go trials. The authors found that learning induced restructuring of functional connectivity, with visual (V1, V2M) and frontal (OFC, M2) regions forming a task-relevant subnetwork during the acquisition of correct No-Go (CR) trials.

      Learning also compressed sequential neural activation and broadened stimulus encoding across regions. In addition, a region's network connectivity rank correlated with its timing of peak visual stimulus encoding.

      Optogenetic inhibition of orbitofrontal cortex (OFC) and high order visual cortex (V2M) impaired learning, validating its role in learning. The work highlights how mesoscale networks underwent dynamic structuring during learning.

      Strengths:

      The use of ultra-flexible microelectrode arrays (uFINE-M) for chronic, large-scale recordings across 10 cortical/subcortical regions in behaving mice represents a significant methodological advancement. The ability to track individual units over weeks across multiple brain areas will provide a rare opportunity to study mesoscale network plasticity.

      While limited in scope, optogenetic inhibition of OFC and V2M directly ties connectivity rank changes to behavioral performance, adding causal depth to correlational observations.

      Weaknesses:

      The weakness is also related to the strength provided by the method. It is demonstrated in the original method that this approach in principle can track individual units for four months (Luan et al, 2017). The authors have not showed chronically tracked neurons across learning. Without demonstrating that and taking advantage of analyzing chronically tracked neurons, this approach is not different from acute recording across multiple days during learning. Many studies have achieved acute recording across learning using similar tasks. These studies have recorded units from a few brain areas or even across brain-wide areas.

      Another weakness is that major results are based on analyses of functional connectivity that is calculated using the cross-correlation score of spiking activity (TSPE algorithm). Functional connection strengthen across areas is then ranked 1-10 based on relative strength. Without ground truth data, it is hard to judge the underlying caveats. I'd strongly advise the authors to use complementary methods to verify the functional connectivity and to evaluate the mesoscale change in subnetworks. Perhaps the authors can use one key information of anatomy, i.e. the cortex projects to the striatum, while the striatum does not directly affect other brain structures recorded in this manuscript.

    1. Reviewer #3 (Public review):

      In this revised manuscript, the authors explore how Mtb can infect hepatocytes and create a favorable niche associated with upregulation of the transcription factor PPARγ which presumably allows the bacteria to scavenge lipids from lipid droplets in host cells and upregulate drug-metabolizing enzymes to protect against its elimination. In response to the review, the authors have performed some additional immunostaining of hepatocytes, added more detail to figure legends, added experiments somewhat showing improved colocalization and staining, clarified several points and paragraphs, and updated the referenced literature and discussion.

      The current manuscript provides evidence that human miliary TB patients have infection of hepatocytes with Mtb, with evidence that the bacteria survive at least partially through upregulation of PPARγ, which significantly changes the lipid milieu of the cells. There is also an examination of transcriptomics and lipid metabolism in response to Mtb infection, as well as drug tolerance of Mtb inside hepatocytes. The current manuscript is an improvement over the previous one.

      However, although the manuscript is improved, tissue immunophenotyping of the various cells in the liver remains weak and unconvincing. This is truly a missed opportunity and lessens the rigor of the central findings and conclusions. As pointed out by another reviewer, literature has described different fates of Mtb in the liver. Given the tissue available to the authors, carefully dissecting the various cells that the bacteria are in (esp. hepatocytes versus Kupffer cells) is critical. The authors use only 2 generic markers and do not distinguish among cell types within the tissue slices. A review of the literature shows a variety of both human and mouse antibody markers. In fact, a liver atlas based on immunophenotyping has been published. Likewise, the authors comment on liver granulomas, but this is not justified without immunophenotyping.

    1. Reviewer #3 (Public review):

      Summary:

      This is an exciting, comprehensive paper that demonstrates the role of GATA4 on OA-like changes in chondrocytes. The authors present elegant reverse translational experiments that justify this mechanism and demonstrate the sufficiency of GATA4 in a mouse model of osteoarthritis (DMM), where GATA4 drove cartilage degeneration and pain in a manner that was significantly worse than DMM alone. This could pave the way for new therapies for OA that account for both structural changes and pain.

      Strengths:

      (1) GATA4 was identified from human chondrocytes.

      (2) IHC and sequencing confirmed GATA4 presence.

      (3) Activation of SMADs is clearly shown in vitro with GATA4 overexpression.

      (4) The role of GATA4 was functionally assessed in vivo using the mouse DMM model, where the authors uncovered that GATA4 worsens OA structure and hyperalgesia in male mice.

      (5) It is interesting that GATA4 is largely known to be found in cardiac cells and to have a role in cardiac repair, metabolism, and inflammation, among other things listed by the authors in the discussion (in liver, lung, pancreas). What could this new knowledge of GATA4 mean for OA as a potentially systemically mediated disease, where cardiac disease and metabolic syndrome are often co-morbid?

      Weaknesses:

      (1) It would be useful to explain why GATA4 was chosen over HIF1a, which was the most differentially expressed.

      (2) In Figure 5, it would be useful to demonstrate the non-surgical or naive limbs to help contextualize OARSI scores and knee hyperalgesia changes.

      (3) While there appear to be GATA4 small molecule inhibitors in various stages of development that could be used to assess the effects in age-related OA, those experiments are out of scope for the current study.

      Comments on revised version:

      I do not have further comments. Thank you for addressing the previously mentioned concerns.

    1. Reviewer #3 (Public review):

      Summary:

      Different types of retinal ganglion cell (RGC) have different temporal properties - most prominently a distinction between sustained vs. transient responses to contrast. This has been well established in multiple species, including mouse. In general, RGCs with dendrites that stratify close to the ganglion cell layer (GCL) are sustained; whereas those that stratify near the middle of the inner plexiform layer (IPL) are transient. This difference in RGC spiking responses aligns with similar differences in excitatory synaptic currents as well as with differences in glutamate release in the respective layers - shown previously and here, with a glutamate sensor (iGluSnFR) expressed in the RGCs of interest. Differences in glutamate release were not explained by differences in the distinct presynaptic bipolar cells' voltage responses, which were quite similar to one another. Rather, the difference in transient vs. sustained responses seems to emerge at the bipolar cell axon terminals in the form of glutamate release. This difference in the temporal pattern of glutamate release was correlated with differences in the size of synaptic ribbons (larger in the bipolar cells with more sustained responses), which also correlated with a greater number of vesicles in the vicinity of the larger ribbons.

      The main conclusion of the study relates to a correlation (because it is difficult to manipulate ribbon size or vesicle density experimentally): the bipolar cells with increased ribbon size/vesicle number would have a greater possibility of sustained release, which would be reflected in the postsynaptic RGC synaptic currents and RGC firing rates. This model proposes a mechanism for temporal channels that is independent of synaptic inhibition. Indeed, some experiments in the paper suggest that inhibition cannot explain the transient nature of glutamate release onto one of the RGC types. Still, it is surprising that such a diverse set of inhibitory interneurons in the retina would not play some role in diversifying the temporal properties of RGC responses.

      Strengths:

      (1) The study uses a systematic approach to evaluating temporal properties of retinal ganglion cell (RGC) spiking outputs, excitatory synaptic inputs, presynaptic voltage responses, and presynaptic glutamate release. The combination of these experiments demonstrates an important step in the conversion from voltage to glutamate release in shaping response dynamics in RGCs.

      (2) The study uses a combination of electrophysiology, two-photon imaging and scanning block face EM to build a quantitative and coherent story about specific retinal circuits and their functional properties.

      Weaknesses:

      (1) There were some interesting aspects of the study that were not completely resolved, and resolving some of these issues may go beyond the current study. For example, it was interesting that different extracellular media (Ames medium vs. ACSF) generated different degrees of transient vs. sustained responses in RGCs, but it was unclear how these media might have impacted ion channels at different levels of the circuit that could explain the effects on temporal tuning.

      (2) It was surprising that inhibition played such a small role in generating temporal tuning. The authors explored this further in the revision, which supported the original claim that inhibition plays a minor role in glutamate release dynamics from the bipolar cells under study.

    1. Reviewer #3 (Public review):

      Summary:

      In their article "Range geography and temperature variability explain cross-continental convergence in range and phenology shifts in a model insect taxon" the authors rigorously investigate the spatial and temporal trends in the occurrence of odonate species and their potential drivers. Specifically, they examine whether species shift their geographic ranges poleward or alter their phenology to cope with changing conditions. Leveraging opportunistic observations of European and North American odonates, they find that species showing significant range shifts also exhibited shifts to earlier emergence. Considering a broad range of potential predictors, their results reveal that geographical factors, but not functional traits, are associated with these shifts.

      Strengths:

      The article addresses an important topic in ecology and conservation that is particularly timely in the face of reports of substantial insects declines in North America and Europe over the past decades. Through data integration the authors leverage the rich natural history record for odonates, broadening the taxonomic scope of analyses of temporal trends in phenology and distribution. The combination of phenological and range shifts in one framework presents an elegant way to reconcile previous findings and informs about the drivers of biodiversity loss.

      Weaknesses:

      To better understand whether species shifting both their ranges and phenology are more successful, or as stated here are 'clear winners', and hence whether those that do neither are more vulnerable would require integrating population trends alongside the discussed response. The ~10% species that have not shifted their distribution or phenology might have not declined in abundance, if they have rapidly adapted to local changes in climatic conditions (i.e. they might show a plastic response). These species might be the real 'winners', while species that have recently shifted their ranges or phenology may eventually reach hard limits. The authors are discussing this limitation but might want to adapt their wording, given the potential for misinterpretation. The finding that species with more northern ranges showed lesser northward shifts would speak to the fact that some species have already reached such a geographical range limit.

      Achievements and impact:

      The results support broad differences in the response of odonate species to climate change, and the prediction that range geography and temperature seasonality are more important predictors of these changes than functional traits. Simultaneously addressing range and phenological shifts highlights that most species exhibit coupled responses but also identifies a significant portion of species that do not respond in these ways that are of critical conservation concern. These results are important for improving forecasts of species' responses to climate change and identifying species of particularly conservation concern. Although not exhaustive regarding abundance trends, the study presents an important step towards a general framework for investigating the drivers of multifaceted species responses.

    1. Reviewer #3 (Public review):

      Summary:

      Canelo et al. used a combination of mathematical modeling and behavioral experiments to ask how flies orient to visual features and stabilize their gaze. In particular, the authors propose three models of visuomotor control, which lead to specific experimental predictions. With the goal of teasing out the suggested models, the authors design three flight experiments: 1) a bar-background experiment, 2) a looming-background experiment, and 3) a bar-background statistics experiment. The authors claim that: experiment 1 data favor the addition-only and graded EC model; experiment 2 data favor the all-or-none EC model; experiment 3 appears to suggest a graded EC model.

      While the study is interesting, there are major issues with the conceptual framework. In general, there is a major disconnect between model and animal data. The manuscript lacks a statistical framework to support or refute the proposed models. In the end, it is unclear what are the main conclusions of the manuscript and contributions to the field.

      Strengths:

      They ask a significant question related to efference copies during volitional movement.

      The figures are overall clear and salient.

      Weaknesses:

      Comparison of model to fly data:<br /> In general, the manuscript suffers from a lack of quantitative comparisons between proposed models and fly data, which compromises the main findings of the work. While Figure 1-Fig. supplement 1 shows a direct comparison between experiment and model predictions, puzzlingly there is no such quantitative comparison in the main manuscript for the faster moving stimuli. Please overlay model predictions and experimental data and provide statistical comparisons throughout. The 3 proposed models are hypotheses, but there is no statistical framework to reject or support the models/hypotheses. Further, there is a disconnect between the new flight experiments and models. In fact, we do not see the model predictions for the set of experimental conditions tested in Figs. 5-7.

      Concerns about mechanical model: I have several concerns regarding the biomechanics block in Figure 2:

      (1) The inertia coefficient, derived from free flight studies. does not take into account the fact that the center of rotation and center of mass do not align in the magnetic tether (see Bender & Dickinson, 2006 for estimates). This must be corrected using the parallel axis theorem. As the authors compare the model prediction to experimental data in a magnetic tether, it is critical that they revise their analysis.

      (2) According to their chosen inertia and damping constants, they would estimate that the I/C time constant is ~1E-3 ms, which is much much smaller than what has been estimated for yaw turns in the magnetic tether (200 ms; Bender & Dickinson, 2006) or free flight saccades (~17 ms; see Cheng et al., 2010; 10.1242/jeb.038778). The bottom line is that the current model underestimates the influence of inertia in turn manoeuvres, i.e. the aerodynamic damping is cranked up too high relative to yaw inertia. This may explain the mismatch between data and model that the authors posit, "What causes the fly to undershoot the movement of the target object in the magnetically tethered assay? One hypothesis is that strong upward magnetic force or a blunt top end of the steel pin significantly dampens the flies' flight turns."

      Loom response experiment:<br /> As nicely shown by 10.1242/jeb.02369, visual stimulation of looming stimuli in the magnetic tether evokes saccades. Is it the case as well in Fig. 6? Without showing individual trials, it is not possible to know whether this is the case. If indeed saccades are present, then the authors will have to reframe their results given the physiological evidence for saccade-related cancellation signals and the three proposed models.

      Minor comments:

      Missing Equation 13 for saccade model in Methods.

      For the discussion and results related to flight responses to the mismatch between expected and actual visual feedback, which is germane to the proposed models, the authors should integrate a discussion of a recent paper which directly tested this idea through an augmented reality system: 10.1016/j.cub.2023.11.045. In particular, the authors argue that the optomotor response is not particularly flexible because it may not rely on an internal model, as suggested by recent physiological evidence (Fenk et al.). How do these findings relate to the 3 proposed models within your work?

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, the authors used fMRI to determine whether peripherally viewed objects could be decoded from the foveal cortex, even when the objects themselves were never viewed foveally. Specifically, they investigated whether pre-saccadic target attributes (shape, semantic category) could be decoded from the foveal cortex. They found that object shape, but not semantic category, could be decoded, providing evidence that foveal feedback relies on low-mid-level information. The authors claim that this provides evidence for a mechanism underlying visual stability and object recognition across saccades.

      Strengths:

      I think this is another nice demonstration that peripheral information can be decoded from / is processed in the foveal cortex - the methods seem appropriate, and the experiments and analyses are carefully conducted, and the main results seem convincing. The paper itself was very clear and well-written.

      Weaknesses:

      There are a couple of reasons why I think the main theoretical conclusions drawn from the study might not be supported, and why a more thorough investigation might be needed to draw these conclusions.

      (1) The authors used a blocked design, with each object being shown repeatedly in the same block. This meant that the stimulus was entirely predictable on each block, which weakens the authors' claims about this being a predictive mechanism that facilitates object recognition - if the stimulus is 100% predictable, there is no aspect of recognition or discrimination actually being tested. I think to strengthen these claims, an experiment would need to have unpredictable stimuli, and potentially combine behavioural reports with decoding to see whether this mechanism can be linked to facilitating object recognition across saccades.

      (2) Given that foveal feedback has been found in previous studies that don't incorporate saccades, how is this a mechanism that might specifically contribute to stability across saccades, rather than just being a general mechanism that aids the processing/discrimination of peripherally-viewed stimuli? I don't think this paper addresses this point, which would seem to be crucial to differentiate the results from those of previous studies.

    1. Reviewer #3 (Public review):

      This paper used computational modeling of infants' performance in a reversal learning paradigm to identify two subgroups of infants, one that initially learned a bit faster but then perseverated more and failed to switch after the reversal (yellow cluster), and those who sampled more before the switch but then perseverated less/switched better (magenta cluster - though see below for comments about infants' overall weak performance). The authors describe magenta babies as showing a profile of greater cognitive flexibility, which they note in adults is linked to better outcomes and a lower incidence of psychiatric disorder. Indeed, the yellow cluster scored less well on several scales of the Vineland and showed lower surgency on the IBQ than the magenta cluster. The authors argue that this paper paves the way for the field of "infant computational neuropsychiatry."

      In general, I think this is a fun and intriguing paper. That said, I have a number of concerns with how it is currently written.

      First, the role of pupil dilation in the models was really unclear -- I've read it through a few times and came away with different impressions each time. I am now pretty sure the models were only based on infants' behavioural responses (e.g., choice for the correct versus incorrect location) rather than differences in pupil size, but pupil size kept popping up throughout, and so I initially thought the clusters were based on that. The authors should clarify this so other readers are not confused. (One thing that might help is avoiding the word "behaviour" on its own, unless it is further specified as looking behaviour or not, as I assume that some would characterize pupil dilation as a behaviour as well.)

      If clusters were NOT based on pupil size (e.g., reaction to prediction error), why not? Was this attempted, and did no clusters emerge? Did the yellow and magenta group also differ in reaction to prediction error, or not? It seems like the argument that this work will be the basis of infant computational psychiatry would require that there not simply be a link between behaviour in an infant study and other measurements of their functioning - because many other papers to date have demonstrated such relationships, many longitudinally - but instead with the link to something where the neurobiology of the behaviour being studied is better understood. I assume this is why pupil dilation kept coming up, but again, it didn't actually seem to be part of the modelling unless I missed something. That is, although I think that this is a nice finding, currently I think the novelty of the finding, as well as the suggestion that it will start a whole new field, may be overblown. I certainly think the pupillometry data has promise, as does the LUMO data, which the authors alluded to being in the works. But perhaps the implications should be toned down a bit in this paper, until those data are further along.

      My final substantial comment (a few more minimal ones below) is that overall, babies did quite poorly at this task. Even after 9 post-switch trials, the magenta group was still responding at chance, and the yellow group seemed not to switch at all. Infants then all seemed to perform very well again during block 2, which makes it seem like they still had the original contingency in mind. That said, from what I could see, no data was provided about how many babies looked to the original correct first during Block 2. But based on the data, I assume they basically all went back to predicting on the first side, as otherwise their return to high levels of successful trials would not make sense, unless they somehow forgot the entire thing. It would be good to know for sure, and to have that data (specifically, how many babies looked to the original side again at the start of block 2) in the main paper. Given this overall lack of sensitive performance in the paradigm, even despite the cues signaling where the rewarding video would be changing completely (that is, the contingency between cue and outcome did not itself switch, the cues themselves did), it seems odd to discuss things like statistical or even skillful learning alongside these data.

    1. Reviewer #3 (Public review):

      Summary:

      Marantos et al. showed that for some coliphages, the energetic state of the bacterial host cell has a strong impact on whether phage infection is initiated. The authors drew this conclusion from the observation that there are more free phages remaining in the medium after infection of arsenate-azide-treated cells as compared to after infection of untreated cells. These data were analyzed and reported both as ratios of the treated vs. untreated conditions and using a mass-action kinetic model of phage-cell collision in the infection mixture. The data supported the findings that for four phages infecting Escherichia coli bacteria, namely, phages λ, 𝜙80, m13, and T6, the phages are less likely to initiate infection if the host bacteria are energy-depleted. However, for phage T5, the authors found that their infection propensity is not impacted.

      Strengths:

      The data presented by the authors clearly supported the principal conclusion of the study ("Viral commitment to infection depends on host metabolism"). The five phages chosen by the authors represent different viral lifestyles and infection mechanisms, highlighting the potential applicability to other Escherichia coli phages. Finally, the authors successfully used a classic mass-action model of phage-cell collision to interpret their data. The simplicity of their experimental assay, combined with the use of this mathematical model, offers other investigators who study phage-bacterial interactions in other contexts a potentially useful toolkit to examine infection in general, and specifically, the dependence of phage infection on the host's metabolic state.

      Weaknesses:

      (1) The authors isolated and measured the numbers of free phages in the medium after infection of bacteria under different treatments. These measurements were analyzed in two different ways: (1) simply as ratios (corrected/normalized using different controls), and (2) fitted using a simple mathematical model. I have concerns regarding both analyses.

      1.1) For the first method, having different time points at which the sample of each phage is collected critically complicates data interpretation. As one incubates the phage-bacteria mixture for a longer time, more infection occurs, and the number of phages collected from the mixture decreases. Therefore, the different incubation time forfeits the goal of "a systematic and quantitative comparison across different phages [...]" (line 81), just as the authors self-criticized. Conceivably, the authors could have used the shortest measurement time for all phages (i.e., 10 minutes, as for phage λ). Alternatively, the authors could have applied a systematic criterion such as half (or any other fraction) of the latent period of each phage, which would still "maximize the incubation period while ensuring that manipulations were completed before the first infection cycle concluded" (lines 126-127). In my view, the seemingly arbitrary measurement time for each phage renders the entire first analysis very challenging to interpret. It also goes against the author's proposition that the protocol was "standardized" (line 92) or "consistent" (line 200). It is not clear what the readers are supposed to take away from this first analysis, or rather, which evidence, finding, or conclusion the manuscript would lose if the authors only presented the modeling-based analysis.

      1.2) The second method of analysis sought to remove the dependence of the measurements on time. I completely agree with this goal, and the findings extracted from this analysis significantly contributed to the merits of this manuscript. However, the authors achieved this goal using a single time point for each phage to calculate the infection rate (η). As shown in Figure S3, each of the phage depletion curves is anchored by only one data point (note that the P(t)/P(0) = 1 at t = 0 is assumed, not measured). This goes against the typical way this collision model is used in the literature, where a time series is measured and used to fit the model (e.g., DOI 10.1007/978-1-60327-164-6 18, or more recently, PMID 39700139). This practice in the current manuscript reduced the robustness of the inferred η values. This problem is exacerbated by assumptions used by the authors in formulating this model. For instance, the authors used a constant value for the bacterial concentration, B, because "bacterial growth and lysis were negligible" (lines 135-136). However, considering that the bacteria were cultured at 37oC in a very rich medium (first in YT broth, then in 2% glucose), the measurement times of 20, 30, and 55 minutes are most likely one or a few generations of bacterial growth and division.

      Related note: I suggest that one of the panels in Figure S3 should be moved to the main text, since it is critical to the second method of analysis.

      (2) The data were able to distinguish phages that successfully infected bacteria and those that remained free in the medium, and the authors appropriately interpreted the data as such throughout the Results section. However, in the Discussion (starting from the very first sentence, line 172), the authors used terms that include "adsorption" and "entry" more interchangeably (for example, see the three sentences in lines 310-313, for "viral entry efficiency is shaped by [...]", then "adsorption kinetics modeling"). I do not see how the authors' data could distinguish between adsorption (the phage particles attaching to the outside of the cell) and entry (the phage DNA being injected into the cell). Conceivably, any phage particles that irreversibly attach to a cell but do not yet inject their genome into the cell would still be removed from the medium and therefore not quantified. Another example: in lines 189-191, the authors interpreted that "[...] when the bacterium is in a low metabolic state, the phage does not bind irreversibly to the host", but how do the authors eliminate the case of no phage binding (i.e., the reversible step) to begin with? Similarly, in lines 283-293, how do the authors delineate whether energy depletion would increase the k_off term or decrease the k_inj term, because either would result in more free phages in the medium as observed in the data? I believe that the writing of the Discussion, as it stands now, is doing a disservice to the conclusions presented in the Results section.

      (3) The authors presented an argument that performing infection of all five phages in the same condition is an advantage, allowing for comparison across different phages. While this goal is a completely valid one, it is difficult to reconcile that with the fact that different phages require different optimal conditions for successful infection. For instance, phage T5 famously requires Ca2+ for successful infection into the host bacterium (and later successful replication); see PMID 13174489. However, all infections were performed in TMG, which lacks Ca2+. Perhaps the absence of T5 dependence on the host metabolism is because the infection condition used by the authors was not optimal for T5 to begin with? Similar arguments could be made for other phages.

      (4) Whereas the manuscript examined five coliphages, only phage T5 and phage λ were discussed extensively. I believe some discussion points for these two phages need clarification.

      4.1) Phage T5: The data obtained by the authors show that the infection rate of phage T5 is not impacted by the metabolic state of the host cell. Considering that the authors used the terms "infection", "adsorption", and "entry" interchangeably to refer to the irreversible commitment of a phage to a host cell (see point 2), this discussion regarding phage T5 lacks one critical literature context: DNA entry of phage T5 is known to occur in two phases (first-step transfer and second-step transfer). Critically, the second step can only occur if phage proteins encoded by the phage DNA transferred in the first step are expressed (see PMID 10577483 and the cited papers therein). In that context, metabolic poisoning of the host bacteria should have impeded T5 infection. The authors should comment on this point.

      4.2) Phage λ: The experiment using phage λ in this current study shares many resemblances to that in Brown et al. 2022. That feature alone is not a problem, but at many places in the text, the writing is ambiguous as to whether it is discussing the results in Brown et al. 2022 or in the current manuscript. I am giving three examples below, but this is not exhaustive: (i) Lines 67-69, there is no Brown et al. 2022 reference immediately after "a mutant phage variant (λh) could bypass this dependency [...]" (not just in the previous sentence); (ii) Line 228 should clearly say "Our previous findings suggested that phage λ is capable of [...]", since it concerns Brown et al., 2022, not the current study; and (iii) Lines 245-246, there is no Brown et al., 2022 reference immediately after "we observed that a mutant variant [...] even energy-depleted host" (without a reference, it reads like the authors "observed" that finding in this current manuscript).

      Also, regarding phage λ: The discussion between line 230 and line 249 is very interesting, but since it concerns the differences between λ PaPa and Ur-λ, the authors should consider mentioning and discussing a very relevant recent study, PMCID: PMC6312755.

      (5) Control experiments, or references to prior studies, are needed to support that the As/Az treatment at this concentration and duration (at least 10 minutes) is sufficient to deplete the metabolic state of the cell. For instance, this can be shown by impeded or null cell growth, arrested motility (using a standard swimming assay), or a fluorescent reporter for the energetic state of the cell.

    1. Reviewer #3 (Public review):

      Summary:

      This is a strong and important report that presents a framework for understanding cortical contributions to neonatal respiration. Overall, the authors successfully achieved their goal of linking cortical activity to respiratory drive. Despite the correlational nature of this study, it is a crucial step in establishing a foundation for future work to elucidate the interaction between cortical activity and breathing.

      Strengths:

      (1) The introduction and use of workflows that establish correlational relationships between breathing and brain activity.

      (2) The execution of these workflows in human neonates.

      Weaknesses:

      Interpretations related to causal inference, confounds of sleep and caffeine, and the spatial interpretation of EEG data need to be addressed to ensure that the data appropriately support the conclusions.

    1. Reviewer #3 (Public review):

      Summary:

      In the present work, Yinyin Lv et al offer evidence for the therapeutic potential of trained immunity in the context of inflammatory bowel disease (IBD). Prior research has demonstrated that innate cells pre-treated (trained) with β-glucan show an enhanced pro-inflammatory response upon a second challenge.

      While an increased immune response can be beneficial and protect against bacterial infections, there is also the risk that it will worsen symptoms in various inflammatory disorders. In the present study, the authors show that mice preconditioned with β-glucan have enhanced resistance to Staphylococcus aureus infection, indicating heightened immune responses.

      The authors demonstrate that β-glucan training of bone marrow hematopoietic progenitors and peripheral monocytes mitigates the pro-inflammatory effects of colitis, with protection extending to naïve recipients of the trained cells.

      Using a dextran sulfate sodium (DSS)-induced model of colitis, β-glucan pre-treatment significantly dampens disease severity. Importantly, the use of Rag1^-/- mice, which lack adaptive immune cells, confirms that the protective effects of β-glucan are mediated by innate immune mechanisms. Further, experiments using Ccr2^-/- mice underline the necessity of monocyte recruitment in mediating this protection, highlighting CCR2 as a key factor in the mobilization of β-glucan-trained monocytes to inflamed tissues. Transcriptomic profiling reveals that β-glucan training upregulates genes associated with pattern recognition, antimicrobial defense, immunomodulation, and interferon signaling pathways, suggesting broad functional reprogramming of the innate immune compartment. In addition, β-glucan training induces a distinct monocyte subpopulation with enhanced activation and phagocytic capacity. These monocytes exhibit an increased ability to infiltrate inflamed colonic tissue and differentiate into macrophages, marked by increased expression of Cx3cr1. Moreover, among these trained monocyte and macrophage subsets, other gene expression signatures are associated with tissue and mucosal repair, suggesting a role in promoting resolution and regeneration following inflammatory insult.

      Strengths:

      (1) Overall, the authors present a mechanistically insightful investigation that advances our understanding of trained immunity in IBD.

      (2) By employing a range of well-characterized murine models, the authors investigate specific mechanisms involved in the effects of β-glucan training.

      (3) Furthermore, the study provides functional evidence that the protection conferred by the trained cells persists within the hematopoietic progenitors and can be transferred to naïve recipients. The integration of transcriptomic profiling allows the identification of changes in key genes and molecular pathways underlying the trained immune phenotype.

      (4) This is an important study that demonstrates that β-glucan-trained innate cells confer protection against colitis and promote mucosal repair, and these findings underscore the potential of harnessing innate immune memory as a therapeutic approach for chronic inflammatory diseases.

      Weaknesses:

      However, FPKM is not ideal for between-sample comparisons due to its within-sample normalization approach. Best practices recommend using raw counts (with DESeq2) for more robust statistical inference.

    1. Reviewer #3 (Public review):

      Summary:

      The paper by Li et al. describes the crystal structure of a complex of Sld3-Cdc45-binding domain (CBD) with Cdc45 and a model of the dimer of an Sld3-binding protein, Sld7, with two Sld3-CBD-Cdc45 for the tethering. In addition, the authors showed the genetic analysis of the amino acid substitution of residues of Sld3 in the interface with Cdc45 and biochemical analysis of the protein interaction between Sld3 and Cdc45 as well as DNA binding activity of Sld3 to the single-strand DNAs of the ARS sequence.

    1. Reviewer #3 (Public review):

      Chen et al. identify endophilin A1 as a novel component of the inhibitory postsynaptic scaffold. Their data show impaired evoked inhibitory synaptic transmission in CA1 neurons of mice lacking endophilin A1, and an increased susceptibility to seizures. Endophilin can interact with the postsynaptic scaffold protein gephyrin and promotes assembly of the inhibitory postsynaptic element. Endophilin A1 is known to play a role in presynaptic terminals and in dendritic spines, but a role for endophilin A1 at inhibitory postsynaptic densities has not yet been described, providing a valuable addition to the field.

      To investigate the role of endophilin A1 at inhibitory postsynapses, the authors used a broad array of experimental approaches, including tests of seizure susceptibility, electrophysiology, biochemistry, neuronal culture and image analysis. The authors have addressed the remaining concerns in their revision. Taken together, their results expand the synaptic role of endophilin-A1 to include the inhibitory post synaptic element.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript is a comprehensive molecular and cell biological characterisation of the effects of P604 hydroxylation by PHD1 on RepoMan, a regulatory subunit of the PPIgamma complex. The identification and molecular characterisation of the hydroxylation site have been written up and deposited in BioRxiv in a separate manuscript. I reviewed the data and came to the conclusion that the hydroxylation site has been identified and characterised to a very high standard by LC-MS, in cells and in vitro reactions. I conclude that we should have no question about the validity of the PHD1-mediated hydroxylation.

      In the context of the presented manuscript, the authors postulate that hydroxylation on P604 by PHD1 leads to the inactivation of the complex, resulting in the retention of pThr3 in H3.

      Strengths:

      Compelling data, characterisation of how P604 hydroxylation is likely to induce the interaction between RepoMan and a phosphatase complex, resulting in loading of RepoMan on Chromatin. Loss of the regulation of the hydroxylation site by PHD1 results in mitotic defects.

      Weaknesses:

      Reliance on a Proline-Alanine mutation in RepoMan to mimic an unhydroxylatable protein. The mutation will introduce structural alterations, and inhibition or knockdown of PHD1 would be necessary to strengthen the data on how hydroxylates regulate chromatin loading and interactions with B56/PP2A.

    1. Reviewer #3 (Public review):

      The manuscript contains a carefully designed fMRI study, using MVPA patter analysis to investigate which high-level associate cortices contain target-related information to guide visual search. A special focus is hereby on so-called 'target-associated' information, that has previously been shown to help in guiding attention during visual search. For this purpose the author trained their participants and made them learn specific target-associations, in order to then test which brain regions may contain neural representations of those learnt associations. They found that at least some of the associations tested were encoded in prefrontal cortex during the cue and delay period.

      The manuscript is very carefully prepared. As far as I can see, the statistical analyses are all sound and the results integrate well with previous findings.

      I have no strong objections against the presented results and their interpretation.

      The authors have addressed all my previous comments and questions in their revision of the text.

    1. Reviewer #3 (Public review):

      Pattern formation is responsible for generating the spatial organization of cells, tissues, and organs during embryogenesis. It operates within a multifactorial system including initial conditions, gene regulatory networks, extracellular signals, mechanical forces, stochastic noise, and environmental inputs. Finally, it ensures the functional anatomy of an organism.

      This study focuses on the one central aspect in pattern formation: how spatial heterogeneity arises from an initial condition and evolves into a more complex or distinct spatial pattern (non-trivial pattern formation, as they termed). The authors made efforts to explore and characterize all possible ways to achieve the pattern formation. They do this by discussing how extracellular signals spread, how individual cells respond to those signals, and how those responses, in turn, modulate signal propagation.

      Finally, their comprehensive analysis summarizes that there are three classes of interactions between extracellular signals and intracellular responses, corresponding to previously known mechanisms that can generate spatial patterns: difference in morphogen concentrations in space, noise-amplification, and Turing pattern.

    1. Reviewer #3 (Public review):

      Summary:

      The study adapts CRISPR-based detection toolkit (SHERLOCK assay) using conserved and species-specific targets for the detection of some members of the Trypanosomatidae family of veterinary importance and species-specific assays to differentiate between the six most common animal trypanosomes species responsible for AAT (SHERLOCK4AAT). The assays were able to discriminate between Trypanozoon (T. b. brucei, T. evansi and T. equiperdum), T. congolense (Savanah, Forest Kilifi and Dzanga sangha), T. vivax, T. theileri, T. simiae and T. suis. The design of both broad and species-specific assays was based primarily on sequences of the 18S rRNA, GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) and invariant flagellum antigen (IFX) genes for species identification. Most importantly the authors showed varying limit of detection for the different SHERLOCK assays which is somewhat comparable to PCR-derived molecular techniques currently used for detecting animal trypanosomes even though some of these methodologies have used other primers that target genes such as ITS1 and 7SL sRNA.

      The data presented in the study are particularly useful and of significant interest for diagnosis of AAT in affected areas.

      Strengths:

      The assays convincingly allow for the analysis and detection of most trypanosomes in AAT

      Weaknesses:

      Inability for the assay to distinguish T. b. brucei, T. evansi and T. equiperdum using the 18S rRNA gene as well as the IFX gene not achieving the sensitivity requirements for detection of T. vivax. Both T. brucei brucei and T. vivax are the most predominant infective species in animals (in addition to T. congolense), therefore a reliable assay should be able to convincingly detect these to allow for proper use of diagnostic assay.

    1. Reviewer #4 (Public review):

      Summary:

      In this paper, Derkaloustian et al. look at the important topic of what affects fine touch perception. The observations that there may be some level of correlation with instabilities are intriguing. They attempted to characterize different materials by counting the frequency (occurrence #, not of vibration) of instabilities at various speeds and forces of a PDMS slab pulled lengthwise over the material. They then had humans perform the same vertical motion to discriminate between these samples. They correlated the % correct in discrimination with differences in frequency of steady sliding over the design space as well as other traditional parameters such as friction coefficient and roughness.

      The authors pose an interesting hypothesis and make an interesting observation about the occurrences of instability regimes in different materials while in contact with PDMS, which is interesting for the community to see in publication. It should be noted however that the finger is complex, and there are many factors that may be over simplified, and perhaps even incorrect, with the use of the PDMS finger. There are trends, such as the trend of surfaces that are more similar in PDMS friction coefficient being easier to discriminate than those with more different PDMS friction coefficient, that contradict multiple other papers in the literature (Fehlberg et al., 2024; Smith and Scott, 1996). This may be due to the PDMS finger not being representative of the real finger conditions. A measurement of friction and the instabilities with a human finger, or demonstration that the PDMS finger is producing the same results (friction coefficient, instabilities, etc.) as a human finger, is needed.

      Strengths:

      The strength of this paper is in its intriguing hypothesis and important observation that instabilities may contribute to what humans are detecting as differences in these apparently similar samples.

      Weaknesses:

      There is are significant weaknesses in the representativeness of the PDMS finger, the vertical motion, and the speed of sliding to real human exploration. The real finger has multiple layers with different moduli. In fact, the stratum corneum cells, which are the outer layer at the interface and determine the friction, have much higher modulus than PDMS. In addition, the flat contact area can cause shifting of contact points. Both can contribute to making the PDMS finger have much more stick slip than a real finger. In fact, if you look at the regime maps, there is very little space that has steady sliding. This does not represent well human exploration of surfaces. We do not tend to use force and velocity that will cause extensive stick slip (frequent regions of 100% stick slip) and, in fact, the speeds used in the study are on the slow side, which also contributes to more stick slip. At higher speeds and lower forces, all of the materials had steady sliding regions. Further, on these very smooth surfaces, the friction and stiction are more complex and cannot dismiss considerations such as finger material property change with sweat pore occlusion and sweat capillary forces. Also, the vertical motion of both the PDMS finger and the instructed human subjects is not the motion that humans typically use to discriminate between surfaces.

      This all leads to the critical question, why is the friction, normal force, and velocity not measured during the measured human exploration using the real human finger? An alternative would be showing that the PDMS finger reproduces the results of the human finger. I have checked the author's previous papers with this setup and did not find one that showed that the PDMS finger produced the same results as a human finger (Carpenter et al., 2018; Dhong et al., 2018; Nolin et al., 2022, 2021). The reviewer is not asking to do a more detailed psychophysical study with a decision-making model. All that is being asked is to use a human finger for the friction coefficient and instability measurements at typical human forces and speeds, or at least doing these measurements with both for one or two samples to show that the PDMS finger produces the same results as a human finger. The authors posed an extremely interesting hypothesis that humans may alter their speed to feel the instability transition regions. This is something that could be measured with a real finger but is not likely to be correlated accurately enough to match regime boundaries determined with such a simplified artificial finger.

      References

      Carpenter CW, Dhong C, Root NB, Rodriquez D, Abdo EE, Skelil K, Alkhadra MA, Ramírez J, Ramachandran VS, Lipomi DJ. 2018. Human ability to discriminate surface chemistry by touch. Mater Horiz 5:70-77. doi:10.1039/C7MH00800G<br /> Dhong C, Kayser LV, Arroyo R, Shin A, Finn M, Kleinschmidt AT, Lipomi DJ. 2018. Role of fingerprint-inspired relief structures in elastomeric slabs for detecting frictional differences arising from surface monolayers. Soft Matter 14:7483-7491. doi:10.1039/C8SM01233D<br /> Fehlberg M, Monfort E, Saikumar S, Drewing K, Bennewitz R. 2024. Perceptual Constancy in the Speed Dependence of Friction During Active Tactile Exploration. IEEE Transactions on Haptics 17:957-963. doi:10.1109/TOH.2024.3493421<br /> Nolin A, Licht A, Pierson K, Lo C-Y, Kayser LV, Dhong C. 2021. Predicting human touch sensitivity to single atom substitutions in surface monolayers for molecular control in tactile interfaces. Soft Matter 17:5050-5060. doi:10.1039/D1SM00451D<br /> Nolin A, Pierson K, Hlibok R, Lo C-Y, Kayser LV, Dhong C. 2022. Controlling fine touch sensations with polymer tacticity and crystallinity. Soft Matter 18:3928-3940. doi:10.1039/D2SM00264G<br /> Smith AM, Scott SH. 1996. Subjective scaling of smooth surface friction. Journal of Neurophysiology 75:1957-1962. doi:10.1152/jn.1996.75.5.1957

    1. Reviewer #3 (Public review):

      Summary:

      In this study, authors utilize biophysical modeling to investigate differences in free energies and nucleosomal configuration probability density of CpG islands and nonmethylated regions in the genome. Toward this goal, they develop and apply the cgNA+ coarse-grained model, an extension of their prior molecular modeling framework.

      Strengths:

      The study utilizes biophysical modeling to gain mechanistic insight into nucleosomal occupancy differences in CpG and nonmethylated regions in the genome.

      Weaknesses:

      Although the overall study is interesting, the manuscripts need more clarity in places. Moreover, the rationale and conclusion for some of the analyses are not well described.

    1. Reviewer #3 (Public review):

      Summary:

      In their manuscript, the authors investigate how glutaminolysis (GLS) and mitochondrial pyruvate import (MPC2) jointly shape B cell fate and the humoral immune response. Using inducible knockout systems and metabolic inhibitors, they uncover a "synthetic auxotrophy": When GLS activity/glutaminolysis is lost together with either GLUT1-mediated glucose uptake or MPC2, B cells fail to upregulate mitochondrial respiration, IL 21/STAT3 and IFN/STAT1 signaling is impaired, and the plasma cell output and antigen-specific antibody titers drop significantly. This work thus demonstrates the promotion of plasma cell differentiation and cytokine signaling through parallel activation of two metabolic pathways. The dataset is technically comprehensive and conceptually novel, but some aspects leave the in vivo and translational significance uncertain.

      Strengths:

      (1) Conceptual novelty: the study goes beyond single-enzyme deletions to reveal conditional metabolic vulnerabilities and fate-deciding mechanisms in B cells.

      (2) Mechanistic depth: the study uncovers a novel "metabolic bottleneck" that impairs mitochondrial respiration and elevates ROS, and directly ties these changes to cytokine-receptor signaling. This is both mechanistically compelling and potentially clinically relevant.

      (3) Breadth of models and methods: inducible genetics, pharmacology, metabolomics, seahorse assay, ELISpot/ELISA, RNA-seq, two immunization models.

      (4) Potential clinical angle: the synergy of CB839 with UK5099 and/or hydroxychloroquine hints at a druggable pathway targeting autoantibody-driven diseases.

      Weaknesses:

      (1) Physiological relevance of "synthetic auxotrophy"

      The manuscript demonstrates that GLS loss is only crippling when glucose influx or mitochondrial pyruvate import is concurrently reduced, which the authors name "synthetic auxotrophy". I think it would help readers to clarify the terminology more and add a concise definition of "synthetic auxotrophy" versus "synthetic lethality" early in the manuscript and justify its relevance for B cells.

      While the overall findings, especially the subset specificity and the clinical implications, are generally interesting, the "synthetic auxotrophy" condition feels a little engineered. Therefore, the findings strongly raise the question of the likelihood of such a "double hit" in vivo and whether there are conditions, disease states, or drug regimens that would realistically generate such a "bottleneck". Hence, the authors should document or at least discuss whether GC or inflamed niches naturally show simultaneous downregulation/lack of glutamine and/or pyruvate. The authors should also aim to provide evidence that infections (e.g., influenza), hypoxia, treatments (e.g., rapamycin), or inflammatory diseases like lupus co-limit these pathways.

      It would hence also be beneficial to test the CB839 + UK5099/HCQ combinations in a short, proof-of-concept treatment in vivo, e.g., shortly before and after the booster immunization or in an autoimmune model. Likewise, it may also be insightful to discuss potential effects of existing treatments (especially CB839, HCQ) on human memory B cell or PC pools.

      (2) Cell survival versus differentiation phenotype

      Claims that the phenotypes (e.g., reduced PC numbers) are "independent of death" and are not merely the result of artificial cell stress would benefit from Annexin-V/active-caspase 3 analyses of GC B cells and plasmablasts. Please also show viability curves for inhibitor-treated cells.

      (3) Subset specificity of the metabolic phenotype

      Could the metabolic differences, mitochondrial ROS, and membrane-potential changes shown for activated pan-B cells (Figure 5) also be demonstrated ex vivo for KO mouse-derived GC B cells and plasma cells? This would also be insightful to investigate following NP-immunization (e.g., NP+ GC B cells 10 days after NP-OVA immunization).

      (4) Memory B cell gating strategy

      I am not fully convinced that the memory-B-cell gate in Supplementary Figure 2d is appropriate. The legend implies the population is defined simply as CD19+GL7-CD38+ (or CD19+CD38++?), with no further restriction to NP-binding cells. Such a gate could also capture naïve or recently activated B cells. From the descriptions in the figure and the figure legend, it is hard to verify that the events plotted truly represent memory B cells. Please clarify the full gating hierarchy and, ideally, restrict the MBC gate to NP+CD19+GL7-CD38+ B cells (or add additional markers such as CD80 and CD273). Generally, the manuscript would benefit from a more transparent presentation of gating strategies.

      (5) Deletion efficiency

      mRNA data show residual GLS/MPC2 transcripts (Supplementary Figure 8). Please quantify deletion efficiency in GC B cells and plasmablasts.

    1. Reviewer #3 (Public review):

      In this manuscript, Yang et al. characterize the endocytic accessory protein CCDC32, which has implications in cardio-facio-neuro-developmental syndrome (CFNDS). The authors clearly demonstrate that the protein CCDC32 has a role in the early stages of endocytosis, mainly through the interaction with the major endocytic adaptor protein AP2, and they identify regions taking part in this recognition. Through live cell fluorescence imaging and electron microscopy of endocytic pits, the authors characterize the lifetimes of endocytic sites, the formation rate of endocytic sites and pits and the invagination depth, in addition to transferrin receptor (TfnR) uptake experiments. Binding between CCDC32 and CCDC32 mutants to the AP2 alpha appendage domain is assessed by pull down experiments.

      Together, these experiments allow deriving a phenotype of CCDC32 knock-down and CCDC32 mutants within endocytosis, which is a very robust system, in which defects are not so easily detected. A mutation of CCDC32, mimicking CFNDS mutations, is also addressed in this study and shown to have endocytic defects.

      An experimental proof for the resistance of the different CCDC32 mutants to siRNA treatment would have helped to strengthen the conclusions.

      In summary, the authors present a strong combination of techniques, assessing the impact of CCDC32 in clathrin mediated endocytosis and its binding to AP2.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have identified novel dRTA causing SLC4A1 mutations and studied the resulting kAE1 proteins to determine how they cause dRTA. Based on a previous study on mice expressing the dRTA kAE1 R607H variant, the authors hypothesize that kAE1 variants cause an increase in intracellular pH, which disrupts autophagic and degradative flux pathways. The authors clone these new kAE1 variants and study their transport function and subcellular localization in mIMCD cells. The authors show increased abundance of LC3B II in mIMCD cells expressing some of the kAE1 variants, as well as reduced autophagic flux using eGFP-RFP-LC3. These data, as well as the abundance of autophagosomes, serve as the key evidence that these kAE1 mutants disrupt autophagy. Furthermore, the authors demonstrate that decreasing the intracellular pH abrogates the expression of LC3B II in mIMCD cells expressing mutant SLC4A1. Lastly, the authors argue that mitochondrial function, and specifically ATP synthesis, is suppressed in mIMCD cells expressing dRTA variants and that mitochondria are less abundant in AICs from the kidney of R607H kAE1 mice. While the manuscript does reveal some interesting new results about novel dRTA causing kAE1 mutations, the quality of the data to support the hypothesis that these mutations cause a reduction in autophagic flux can be improved. In particular, the precise method of how the western blots and the immunofluorescence data were quantified, with included controls, would enhance the quality of the data and offer more supportive evidence of the authors' conclusions.

      Strengths:

      The authors cloned novel dRTA causing kAE1 mutants into expression vectors to study the subcellular localization and transport properties of the variants. The immunofluorescence images are generally of high quality, and the authors do well to include multiple samples for all of their western blots.

      Weaknesses:

      Inconsistent results are reported for some of the variants. For example, R295H causes intracellular alkalinization but also has no effect on intracellular pH when measured by BCECF. The authors also appear to have performed these in vitro studies on mIMCD cells that were not polarized, and therefore, the localization of kAE1 to the basolateral membrane seems unlikely, based upon images included in the manuscript. Additionally, there is no in vivo work to demonstrate that these kAE1 variants alter intracellular pH, including the R607H mouse, which is available to the authors. The western blots are of varying quality, and it is often unclear which of the bands are being quantified. For example, LAMP1 is reported at 100kDa, the authors show three bands, and it is unclear which one(s) are used to quantify protein abundance. Strikingly, the authors report a nonsensical value for their quantification of LCRB II in Figure 2, where the ratio of LCRB II to total LCRB (I + II) is greater than one. The control experiments with starvation and bafilomyocin are not supportive and significantly reduce enthusiasm for the authors' findings regarding autophagy. There are labeling errors between the manuscript and the figures, which suggest a lack of vigilance in the drafting process.

    1. Reviewer #3 (Public review):

      The manuscript by Ono et al describes the application of prime editors to introduce precise genetic changes in the zebrafish model system. Probably the most important observation is that, compared to the "standard" PE2, the prime editor with full nuclease activity appears to be more efficient at introducing insertions into the genome. Although many laboratories around the world have successfully used oligonucleotide-mediated HDR to insert short exogenous sequences such as epitope tags or loxP sites into the zebrafish genome, the method suffers from a high frequency of indels at the edit site. Thus, additional tools are badly needed, making this manuscript very important. Length of the longer reported insertion (+30) is quite close to the range of V5 (14 amino acids) and ALFA (12 amino acids without "spacer" prolines) epitope tags, as well as loxP site (34 nucleotides). Conclusions drawn in the paper are supported by compelling evidence. I only have a few minor comments:

      (1) The logic for introducing two nucleotide changes (at +3 and +10) to change a single amino acid (I378) should be explicitly explained in the main body of the manuscript. It is indeed self-explanatory when looking at Supplementary Figure 1. One way of doing it could be to include Supplementary Figure 1a in Figure 1.

      (2) It is not clear why a 3-nucleotide insertion was used to generate W722X. The human W720X is a single-nucleotide polymorphism, and it should be possible to make a corresponding zebrafish mutant by introducing two nucleotide changes.

      (3) Lines 137-138: T7 Endonuclease assay used in Figure 2d detects all polymorphisms, both precise changes and indels. Thus, if this assay were performed on embryos shown in Figure 1c-d, the overall percentage of modified alleles would be similarly higher for PEn over PE2 (add up precise prime edits and indels). The conclusion in the last sentence of the paragraph is, therefore, incorrect, I believe.

      (4) Use of terminology. "Germline transmission" is typically used to refer to the fraction of F0s transmitting desired changes (or transgenes) to their progeny, while "germline mosaicism" refers to the fraction of F1s with the desired change in the progeny of a given F0. "Germline transmission" in line 217 should be replaced with "germline mosaicism".

      (5) Lines 253-255: The fraction of injected embryos that had mosaic nuclear expression of GFP, indicative of NLS insertion, should be clarified. It should also be clarified whether embryos positive for nuclear GFP were preselected for amplicon sequencing and germline transmission analyses. This is extremely important for extrapolation to scenarios like epitope tagging, where preselection is not possible.

      (6) Statistical analyses. It would be helpful to clarify why different statistical tests are sometimes used to assess seemingly very similar datasets (Figures 1c, 1d, 2b, 2c, 2f).

      (7) Discussion. Since authors suggest that PEn might be especially beneficial for insertion of additional sequences, it is important to stress locus-to-locus variability of success. While the precise +3 insertion was indeed tremendously efficient at both tested loci (ror2 and adgrf3b), +12 addition into adgrf3b was over 10 times less efficient (lines 193-194). In contrast, +30 into smyhc:GFP using the shorter pegRNA was highly efficient again with an average of 8.5% of sequence reads indicating precise integration (line 257, Figure 5c). Longer pegRNA did not work nearly as well (Figure 5c), but was still much better than +12 into adgrf3b. As dangerous as it is to extrapolate from small datasets, perhaps these observations indicate that optimization of RT template and PBS may be needed for each new locus in order to significantly outperform oligonucleotide-mediated HDR? If so, would the cost of ordering several pegRNAs and the effort needed to compare them factor in when deciding which method to use? Reported germline transmission rates for both ror2 W722X (+3, Figure 4a) and smyhc:NLS-GFP (+30, Figure 5f) are tantalizingly high.

    1. Reviewer #3 (Public review):

      Summary:

      In the face of emerging antibiotic resistance and slow pace of drug discovery, strategies that can enhance the efficacy of existing clinically used antibiotics are highly sought after. In this manuscript, through genetic manipulation of a model bacterium (Escherichia coli) and clinically isolated and antibiotic resistant strains of concern (Pseudomonas, Burkholderia, Stenotrophomonas), an additional drug target to combat resistance and potentiate existing drugs is put forward. These observations were validated in both pure cultures, mixed bacterial cultures and in worm models. The drug target investigated in this study appears to be broadly relevant to the challenge posed by lactamases enzyme that render lactam antibiotics ineffective in the clinic. The compounds that target this enzyme are being developed already, some of which were tested in this study displaying promising results and potential for further optimization by medicinal chemists.

      Strengths:

      The work is well designed and well executed and targets an urgent area of research with the unprecedented increase in antibiotic resistance.

      Weaknesses:

      The impact of the work can be strengthened by demonstrating increased efficacy of antibiotics in mice models or wound models for Pseudomonas infections. Worm models are relevant, but still distant from investigations in animal models.

    1. Reviewer #3 (Public review):

      Strengths:

      This work focuses on a problem of deep significance: quantifying the structure-tension relationship and underlying mechanism for the mechanosensitive Piezo 1 and 2 channels. Such an objective is challenging for molecular dynamics simulations, due to the relatively large size of each membrane-protein system. Nonetheless, the approach chosen here is based on methodology that is, in principle, established and widely accessible. Therefore, another group of practitioners would likely be able to reproduce these findings with reasonable effort.

      More specifically, while acknowledging the limitations of the MARTINI force field, this work makes a significant improvement compared to previous simulations of Piezo proteins by adopting a range of membrane tensions that includes physiologically relevant values (below 10 mN/m).

      Weaknesses:

      The two main results of this paper are (1) that both channels exhibit a flatter structure compared to cryo-EM measurements, and (2) their estimated force vs. displacement relationship. Although the former correlates at least quantitatively with prior experimental work, the latter relies exclusively on simulation results and model parameters.

      My remaining technical concerns in the revised manuscript are as follows:

      (1) At each membrane tension, all concurrent atomistic simulations were initialized from the same snapshot of a previous CG simulation: in my opinion, it is inaccurate to refer to those atomistic simulations as "independent" from each other (as is done twice in the caption of Figure 3, as well as in the text).

      (2) Continuum mechanics calculations were employed to model the membrane's curvature energetics. The bending modulus, k, was not determined for the specific lipid composition used in this study, but was instead taken from previous MARTINI simulations involving the same primary lipid, POPC. Given that these calculations are intended to describe MARTINI simulations specifically, this approximation may be acceptable. However, it does not account for the increased stiffness observed in POPC/cholesterol mixtures-an effect measured experimentally but not reproduced by the MARTINI model-nor does it reflect the asymmetric conditions, as all referenced simulations involve symmetric bilayers. As a result, the bending energies and forces shown in Figure 5(c,d) are internally consistent within the model, but they probably correspond to real values up to an unknown multiplicative factor.

    1. Reviewer #3 (Public review):

      This is an excellent, very interesting paper. There is a groundbreaking analysis of the data, going from typical picture presentation paradigms to more realistic conditions. I would like to ask the authors to consider a few points in the comments below.

      (1) From Figure 2, I understand that there are 7 neurons responding to the character Summer, but then in line 157, we learn that there are 46. Are the other 39 from other areas (not parahippocampal)? If this is the case, it would be important to see examples of these responses, as one of the main claims is that it is possible to decode as good or better with non-responsive compared to single responsive neurons, which is, in principle, surprising.

      (2) Also in Figure 2, there seem to be relatively very few neurons responding to Summer (1.88%) and to outdoor scenes (1.07%). Is this significant? Isn't it also a bit surprising, particularly for outdoor scenes, considering a previous paper of Mormann showing many outdoor scene responses in this area? It would be nice if the authors could comment on this.

      (3) I was also surprised to see that there are many fewer responses to scene cuts (6.7%) compared to camera cuts (51%) because every scene cut involves a camera cut. Could this have been a result of the much larger number of camera cuts? (A way to test this would be to subsample the camera cuts.)

      (4) Line 201. The analysis of decoding on a per-patient basis is important, but it should be done on a per-session basis - i.e., considering only simultaneously recorded neurons, without any pooling. This is because pooling can overestimate decoding performances (see e.g. Quian Quiroga and Panzeri NRN 2009). If there was only one session per patient, then this should be called 'per-session' rather than 'per-patient' to make it clear that there was no pooling.

      (5) In general, the decoding results are quite interesting, and I was wondering if the authors could give a bit more insight by showing confusion matrices, with the predictions of the appearance of each of the characters, etc. Some of the characters may appear together, so this could be another entry of the decoder (say, predicting person A, B, C, A&B, A&C, B&C, A&B&C). I guess this could also show the power of analyzing the population activity.

      (6) Lines 406-407. The claim that stimulus-selective responses to characters did not account for the decoding of the same character is very surprising. If I understood it correctly, the response criterion the authors used gives 'responsiveness' but not 'selectivity'. So, were people's responses selective (e.g., firing only to Summer) or non-selective (firing to a few characters)? This could explain why they didn't get good decoding results with responsive neurons. Again, it would be nice to see confusion matrices with the decoding of the characters. Another reason for this is that what are labelled as responsive neurons have relatively weak and variable responses.

      (7) Line 455. The claim that 500 neurons drive decoding performance is very subjective. 500 neurons gives a performance of 0.38, and 50 neurons gives 0.33.

      (8) Lines 492-494. I disagree with the claim that "character decoding does not rely on individual cells, as removing neurons that responded strongly to character onset had little impact on performance". I have not seen strong responses to characters in the paper. In particular, the response to Summer in Figure 2 looks very variable and relatively weak. If there are stronger responses to characters, please show them to make a convincing argument. It is fine to argue that you can get information from the population, but in my view, there are no good single-cell responses (perhaps because the actors and the movie were unknown to the subjects) to make this claim. Also, an older paper (Quian Quiroga et al J. Neurophysiol. 2007) showed that the decoding of individual stimuli in a picture presentation paradigm was determined by the responsive neurons and that the non-responsive neurons did not add any information. The results here could be different due to the use of movies instead of picture presentations, but most likely due to the fact that, in the picture presentation paradigm, the pictures were of famous people for which there were strong single neuron responses, unlike with the relatively unknown persons in this paper.

    1. Reviewer #3 (Public review):

      Summary:

      In this work, Ryan et al. have performed a state-of-the-art full genome CRISP-based screen of iNEurons expressing a teggd version of TDP-43 in order to determine expression modifiers of this protein. Unexpectedly, using this approach the authors have uncovered a previously undescribed role of the BORC complex in affecting the levels of TDP-43 protein, but not mRNA expression. Taken together, these findings represent a very solid piece of work that will certainly be important for the field.

      Strengths:

      BORC is a novel TDP-43 expression modifier that has never been described before and it seemingly acts on regulating protein half life rather than transcriptome level. It has been long known that different labs have reported different half-lives for TDP-43 depending on the experimental system but no work has ever explained these discrepancies. Now, the work of Ryan et al. has for the time identified one of these factors which could account for these differences and play an important role in disease (although this is left to be determined in future studies).

      The genome wide CRISPR screening has demonstrated to yield novel results with high reproducibility and could eventually be used to search for expression modifiers of many other proteins involved in neurodegeneration or other diseases

    1. Reviewer #3 (Public review):

      Summary:

      The authors propose a new version of idTracker.ai for animal tracking. Specifically, they apply contrastive learning to embed cropped images of animals into a feature space where clusters correspond to individual animal identities.

      Strengths:

      By doing this, the new software alleviates the requirement for so-called global fragments - segments of the video, in which all entities are visible/detected at the same time - which was necessary in the previous version of the method. In general, the new method reduces the tracking time compared to the previous versions, while also increasing the average accuracy of assigning the identity labels.

      Weaknesses:

      The general impression of the paper is that, in its current form, it is difficult to disentangle the old from the new method and understand the method in detail. The manuscript would benefit from a major reorganization and rewriting of its parts. There are also certain concerns about the accuracy metric and reducing the computational time.

    1. Reviewer #3 (Public review):

      Summary:

      The authors investigated the assembly and polar localization of the chemosensory cluster in P. aeruginosa. They discovered that a certain protein (FlhF) is required for the polar localization of the chemosensory cluster while core motor structures are necessary for the assembly of the cluster. They found that flagella and chemosensory clusters always co-localize in the cell; either at the cell pole in wild type cells or randomly-located in the cell in FlhF mutant cells. They hypothesize that this co-localization is required to keep the level of another protein (CheY-P), which controls motor switching, at low levels as the presence of high-levels of this protein (if the flagella and chemosensory clusters were not co-localized) is associated with high-levels of c-di-GMP and cell aggregations.

      Strengths:

      The manuscript is clearly-written and straightforward. The authors applied multiple techniques to study the bacterial motility system including fluorescence light microscopy and gene editing. In general, the work enhances our understanding of the subtlety of interaction between the chemosensory cluster and the flagellar motor to regulate cell motility. This work will be of interest to bacteriologists and cell biologists in general.

    1. Reviewer #3 (Public review):

      Mondal et al. use computational modeling to investigate how activity-dependent shifts in voltage-dependent (in)activation curves can complement changes in ion channel conductance to support homeostatic plasticity. While it is well established that the voltage-dependent properties of ion channels influence neuronal excitability, their potential role in homeostatic regulation, alongside conductance changes, has remained largely unexplored. The results presented here demonstrate that activity-dependent regulation of voltage dependence can interact with conductance plasticity to enable neurons to attain and maintain target activity patterns, in this case, intrinsic bursting. Notably, the timescale of these voltage-dependent shifts influences the final steady-state configuration of the model, shaping both channel parameters and activity features such as burst period and duration. A major conclusion of the study is that altering this timescale can seamlessly modulate a neuron's intrinsic properties, which the authors suggest may be a mechanism for adaptation to perturbations.

      While this conclusion is largely well-supported, additional analyses could help clarify its scope. For instance, the effects of timescale alterations are clearly demonstrated when the model transitions from an initial state that does not meet the target activity pattern to a new stable state. However, Fig. 6 and the accompanying discussion appear to suggest that changing the timescale alone is sufficient to shift neuronal activity more generally. It would be helpful to clarify that this effect primarily applies during periods of adaptation, such as neurodevelopment or in response to perturbations, and not necessarily once the system has reached a stable, steady state. As currently presented, the simulations do not test whether modifying the timescale can influence activity after the model has stabilized. In such conditions, changes in timescale are unlikely to affect network dynamics unless they somehow alter the stability of the solution, which is not shown here. That said, it seems plausible that real neurons experience ongoing small perturbations which, in conjunction with changes in timescale, could allow gradual shifts toward new solutions. This possibility is not discussed but could be a fruitful direction for future work.

    1. Reviewer #3 (Public review):

      Review of resubmission: The authors provided a response to the reviews from myself and other reviewers. While some points were made satisfactorily, particularly in clarification of the innervation of cortex to striatum and the effects of input stimulation, many of my points remain unaddressed. In several cases, the authors chose to explain their rationale rather than address the issues at hand. A number of these issues (in fact, the majority) could be addressed simply by toning done the confidence in conclusions, so it was disappointing to see that the authors by and large did not do this. I repeat my concerns below and note whether I find them to have been satisfactorily addressed or not.

      In the manuscript by Klug and colleagues, the investigators use a rabies virus-based methodology to explore potential differences in connectivity from cortical inputs to the dorsal striatum. They report that the connectivity from cortical inputs onto D1 and D2 MSNs differs in terms of their projections onto the opposing cell type, and use these data to infer that there are differences in cross-talk between cortical cells that project to D1 vs. D2 MSNs. Overall, this manuscript adds to the overall body of work indicating that there are differential functions of different striatal pathways which likely arise at least in part by differences in connectivity that have been difficult to resolve due to difficulty in isolating pathways within striatal connectivity, and several interesting and provocative observations were reported. Several different methodologies are used, with partially convergent results, to support their main points.

      However, I have significant technical concerns about the manuscript as presented that make it difficult for me to interpret the results of the experiments. My comments are below.

      Major:<br /> There is generally a large caveat to the rabies studies performed here, which is that both TVA and the ChR2-expressing rabies virus have the same fluorophore. It is thus essentially impossible to determine how many starter cells there are, what the efficiency of tracing is, and which part of the striatum is being sampled in any given experiment. This is a major caveat given the spatial topography of the cortico-striatal projections. Furthermore, the authors make a point in the introduction about previous studies not having explored absolute numbers of inputs, yet this is not at all controlled in this study. It could be that their rabies virus simply replicates better in D1-MSNs than D2-MSNs. No quantifications are done, and these possibilities do not appear to have been considered. Without a greater standardization of the rabies experiments across conditions, it is difficult to interpret the results.

      This is still an issue. The authors point out why they chose various vectors. I can understand why the authors chose the fluorophores etc. that they did, yet the issues I raised previously are still valid. The discussion should mention that this is a potential issue. It does not necessarily invalidate results, but it is an issue. Furthermore, it is possible (in all systems) that rabies replicates better/more efficiently in some cells than others. This is one possible interpretation that has not really been explored in any study. I don't suggest the authors attempt to do that, but it should be raised as a potential interpretation. If the rabies results could mean several different things, the authors owe it to the readership to state all possible interpretations of data.

      The authors claim using a few current clamp optical stimulation experiments that the cortical cells are healthy, but this result was far from comprehensive. For example, membrane resistance, capacitance, general excitability curves, etc are not reported. In Figure S2, some of the conditions look quite different (e.g., S2B, input D2-record D2, the method used yields quite different results that the authors write off as not different). Furthermore, these experiments do not consider the likely sickness and death that occurs in starter cells, as has been reported elsewhere. Health of cells in the circuit is overall a substantial concern that alone could invalidate a large portion, if not all, of the behavioral results. This is a major confound given those neurons are thought to play critical roles in the behaviors being studied. This is a major reason why first-generation rabies viruses have not been used in combination with behavior, but this significant caveat does not appear to have been considered, and controls e.g., uninfected animals, infected with AAV helpers, etc, were not included.

      This issue remains unaddressed. I did not request clarity about experimental design, but rather, raised issues about the potential effects of toxicity. I believe this to be a valid concern that needs to be discussed in the manuscript, especially given what look visually like potential differences in S2.

      The overall purity (e.g., EnvA pseudotyping efficiency) of the RABV prep is not shown. If there was a virus that was not well EnvA-pseudotyped and thus could directly infect cortical (or other) inputs, it would degrade specificity.

      This issue has not been addressed. Viral strain is irrelevant. The quality of the specific preparations used is what matters.

      While most of the study focuses on the cortical inputs, in slice recordings, inputs from the thalamus are not considered, yet likely contribute to the observed results. Related to this, in in vivo optogenetic experiments, technically, if the thalamic or other inputs to the dorsal striatum project to the cortex, their method will not only target cortical neurons but also terminals of other excitatory inputs. If this cannot be ruled it, stating that the authors are able to selectively activate the cortical inputs to one or the other population should be toned down.

      The authors added text to the discussion to address this point. While it largely does what is intended, based on the one study cited, I disagree with the authors' conclusions that it is "clear" that potential contamination from other sites does not play a role. The simplest interpretation is the one the authors state, and there is some supporting evidence to back up that assertion, but to me that falls short of making the point "clear" that there are no other interpretations.

      The statements about specificity of connectivity are not well founded. It may be that in the specific case where they are assessing outside of the area of injections, their conclusions may hold (e.g., excitatory inputs onto D2s have more inputs onto D1s than vice versa). However, how this relates to the actual site of injection is not clear. At face value, if such a connectivity exists, it would suggest that D1-MSNs receive substantially more overall excitatory inputs than D2s. It is thus possible that this observation would not hold over other spatial intervals. This was not explored and thus the conclusions are over-generalized. e.g., the distance from the area of red cells in the striatum to recordings was not quantified, what constituted a high level of cortical labeling was not quantified, etc. Without more rigorous quantification of what was being done, it is difficult to interpret the results.

      Again, the goal here would be to make a statement about this in the discussion to clarify limitations of the study. I don't expect the authors to re-do all of these experiments, but since they are discussing the corticostriatal circuits, which have multiple subdomains, this remains a relevant point. It has not been addressed.

      The results in Figure 3 are not well controlled. The authors show contrasting effects of optogenetic stimulation of D1-MSNs and D2-MSNs in the DMS and DLS, results which are largely consistent with the canon of basal ganglia function. However, when stimulating cortical inputs, stimulating the inputs from D1-MSNs gives the expected results (increased locomotion) while stimulating putative inputs to D2-MSNs had no effect. This is not the same as showing a decrease in locomotion - showing no effect here is not possible to interpret.

      I think that the caveat of showing no clear effects of inputs to D2 stimulation should be pointed out. Yes, I understand that the viruses appeared to express etc., but again it remains possible that the results are driven by a lack of e.g., sufficient ChR2 expression. Aside from a full quantification of the number of cells expressing ChR2, overlap in fiber placement and ChR2 expression (which I don't suggest), this remains a possibility and should be pointed out, as it remains a possibility.

      In the light of their circuit model, the result showing that inputs to D2-MSNs drive ICSS is confusing. How can the authors account for the fact that these cells are not locomotor-activating, stimulation of their putative downstream cells (D2-MSNs) does not drive ICSS, yet the cortical inputs drive ICSS? Is the idea that these inputs somehow also drive D1s? If this is the case, how do D2s get activated, if all of the cortical inputs tested net activate D1s and not D2s? Same with the results in Figure 4 - the inputs and putative downstream cells do not have the same effects. Given potential caveats of differences in viral efficiency, spatial location of injections, and cellular toxicity, I cannot interpret these experiments.

      The explanation the authors provide in their rebuttal makes sense, however this should be included in the discussion of the manuscript, as it is interesting and relevant.

    1. Reviewer #3 (Public review):

      Summary:

      The study provides an interesting contribution to our understanding of Cryptovaranoides relationships, which is a matter of intensive debate among researchers. My main concerns are in regard to the wording of some statements, but generally, the discussion and data are well prepared. I would recommend moderate revisions.

      Strengths:

      (1) Detailed analysis of the discussed characters.

      (2) Illustrations of some comparative materials.

      Weaknesses:

      Some parts of the manuscript require clarification and rewording.

      One of the main points of criticism of Whiteside et al. is using characters for phylogenetic considerations that are not included in the phylogenetic analyses therein. The authors call it a "non-trivial substantive methodological flaw" (page 19, line 531). I would step down from such a statement for the reasons listed below:

      (1) Comparative anatomy is not about making phylogenetic analyses. Comparative anatomy is about comparing different taxa in search of characters that are unique and characters that are shared between taxa. This creates an opportunity to assess the level of similarity between the taxa and create preliminary hypotheses about homology. Therefore, comparative anatomy can provide some phylogenetic inferences. That does not mean that tests of congruence are not needed. Such comparisons are the first step that allows creating phylogenetic matrices for analysis, which is the next step of phylogenetic inference. That does not mean that all the papers with new morphological comparisons should end with a new or expanded phylogenetic matrix. Instead, such papers serve as a rationale for future papers that focus on building phylogenetic matrices.

      (2) Phylogenetic matrices are never complete, both in terms of morphological disparity and taxonomic diversity. I don't know if it is even possible to have a complete one, but at least we can say that we are far from that. Criticising a work that did not include all the possibly relevant characters in the phylogenetic analysis is simply unfair. The authors should know that creating/expanding a phylogenetic matrix is a never-ending work, beyond the scope of any paper presenting a new fossil.

      (3) Each additional taxon has the possibility of inducing a rethinking of characters. That includes new characters, new character states, character state reordering, etc. As I said above, it is usually beyond the scope of a paper with a new fossil to accommodate that into the phylogenetic matrix, as it requires not only scoring the newly described taxon but also many that are already scored. Since the digitalization of fossils is still rare, it requires a lot of collection visits that are costly in terms of time.

      (4) If I were to search for a true flaw in the Whiteside et al. paper, I would check if there is a confirmation bias. The mentioned paper should not only search for characters that support Cryptovaranoides affinities with Anguimorpha but also characters that deny that. I am not sure if Whiteside et al. did such an exercise. Anyway, the test of congruence would not solve this issue because by adding only characters that support one hypothesis, we are biasing the results of such a test.

      To sum up, there is nothing wrong with proposing some hypotheses about character homology between different taxa that can be tested in future papers that will include a test of congruence. Lack of such a test makes the whole argumentation weaker in Whiteside et al., but not unacceptable, as the manuscript might suggest. My advice is to step down from such strong statements like "methodological flaw" and "empirical problems" and replace them with "limitations", which I think better describes the situation.

    1. Reviewer #3 (Public review):

      Summary:

      The authors explored how individual dorsolateral striatum (DLS) spiny projection neurons (SPNs) receive functional input from whisker-related cortical columns. The authors developed and validated a novel slice preparation and method to which they applied rigorous functional mapping and thorough analysis. They found that individual SPNs were driven by sparse, scattered cortical clusters. Interestingly, while the cortical input fields of nearby SPNs had some degree of overlap, connectivity per SPN was largely distinct. Despite sparse, heterogeneous connectivity, topographical organization was identified. The authors lastly compared direct (D1) vs. indirect (D2) pathway cells, concluding that overall connectivity patterns were the same, but D1 cells received stronger input from L6 and D2 cells from L2/3. The paper thoughtfully addresses the question of whether barrel cortex broadly or selectively innervates SPNs. Their results indicate selective input that is loosely topographic. Their work deepens the understanding of how whisker-related somatosensory signals can drive striatal neurons.

      Strengths:

      Overall this is a carefully conducted study, and the major claims are well-supported. The use of a novel ex vivo slice prep that keeps relevant corticostriatal projections intact allows for careful mapping of the barrel cortex to dorsolateral striatum SPNs. Careful reporting of both columnar and layer position, as well as postsynaptic SPN type (D1 or D2) allows the authors to uncover novel details about how the dorsolateral striatum represents whisker-related sensory information.

      Weaknesses:

      Most technical weaknesses have now been addressed in the text.

    1. Reviewer #3 (Public review):

      Summary:

      In their study, Shen et al. examine how first- and second-order neurons of early olfactory circuits among invertebrates and vertebrates alike respond to and encode odor identity and concentration. Previously published electrophysiological and imaging data are re-analyzed and complemented with computational simulations. The authors explore multiple potential circuit computations by which odor concentration-dependent increases in first-order neuron responses transform into concentration-invariant responses on average across the second-order neuron population, and report that divisive normalization exceeds subtractive normalization and intraglomerular gain control in accounting for this transformation. The authors then explore how either rate- or timing-based schemes in third-order neurons may decode odor identity and concentration information from such concentration-invariant mean responses across the second-order neuron population. Finally, the results of their study of second-order neurons (invertebrate projection neurons and vertebrate mitral cells) are contrasted with the concentration-variant responses of second-order projection tufted cells in mammals. Overall, through a combination of neural data re-analysis, computational simulation, and conceptual theory, this study provides important new understanding of how aspects of sensory information are encoded through the actions of distinct components of early olfactory circuits.

      Strengths:

      Consideration of multiple evolutionarily disparate olfactory circuits, as well as re-analysis of previously published neural data sets combined with novel simulations guided by those sets, lends considerable robustness to some key findings of this study. In particular, the finding that divisive normalization - with direct inspiration from established circuit components in the form of glomerular layer short-axon cells - accounts more thoroughly for the average concentration invariance of second-order olfactory neurons at a population level than other forms of normalization is compelling. Likewise, demonstration of the required 'crossover' of first-order neuron concentration sensitivity for divisive normalization to achieve such flattening of concentration variance across the second-order population is notable, with simulations providing important insight into experimentally observed patterns of first-order neuron responses. Limited clarity in other aspects of the study, in particular related to the consideration of neural response latencies and enumerated below, temper the overall strength of the study.

      Weaknesses:

      (1) While the authors focus on concentration-dependent increases in first-order neuron activity, reflecting the majority of observed responses, recent work from the Imai group shows that odorants can also lead to direct first-order neuron inhibition (i.e., reduction in spontaneous activity), and within this subset, increasing odorant concentration tends to increase the degree of inhibition. Some discussion of these findings and how they may complement divisive normalization to contribute to the diverse second-order neuron concentration-dependence would be of interest and help expand the context of the current results.

      (2) Related to the above point, odorant-evoked inhibition of second-order neurons is widespread in mammalian mitral cells and significantly contributes to the flattened concentration-dependence of mitral cells at the population level. Such responses are clearly seen in Figure 1D. Some discussion of how odorant-evoked mitral cell inhibition may complement divisive normalization, and likewise relate to comparatively lower levels of odorant-evoked inhibition among tufted cells, would further expand the context of the current results. Toward this end, replication of analyses in Figures 1D and E following exclusion of mitral cell inhibitory responses would provide insight into the contribution of such inhibition to the flattening of the mitral cell population concentration dependence.

      (3) The idea of concentration-dependent crossover responses across the first-order population being required for divisive normalization to generate individually diverse concentration response functions across the second-order population is notable. The intuition of the crossover responses is that first-order neurons that respond most sensitively to any particular odorant (i.e., at the lowest concentration) respond with overall lower activity at higher concentrations than other first-order neurons less sensitively tuned to the odorant. Whether this is a consistent, generalizable property of odorant binding and first-order neuron responsiveness is not addressed by the authors, however. Biologically, one mechanism that may support such crossover events is intraglomerular presynaptic/feedback inhibition, which would be expected to increase with increasing first-order neuron activation such that the most-sensitively responding first-order neurons would also recruit the strongest inhibition as concentration increases, enabling other first-order neurons to begin to respond more strongly. Discussion of this and/or other biological mechanisms (e.g., first-order neuron depolarization block) supporting such crossover responses would strengthen these results.

      (4) It is unclear to what degree the latency analysis considered in Figures 4D-H works with the overall framework of divisive normalization, which in Figure 3 we see depends on first-order neuron crossover in concentration response functions. Figure 4D suggests that all first-order neurons respond with the same response amplitude (R in eq. 3), even though this is supposed to be pulled from a distribution. It's possible that Figure 4D is plotting normalized response functions to highlight the difference in latency, but this is not clear from the plot or caption. If response amplitudes are all the same, and the response curves are, as plotted in Figure 4D, identical except for their time to half-max, then it seems somewhat trivial that the resulting second-order neuron activation will follow the same latency ranking, regardless of whether divisive normalization exists or not. However, there is some small jitter in these rankings across concentrations (Figure 4G), suggesting there is some randomness to the simulations. It would be helpful if this were clarified (e.g., by showing a non-normalized Figure 4D, with different response amplitudes), and more broadly, it would be extremely helpful in evaluating the latency coding within the broader framework proposed if the authors clarified whether the simulated first-order neuron response timecourses, when factoring in potentially different amplitudes (R) and averaging across the entire response window, reproduces the concentration response crossovers observed experimentally. In summary, in the present manuscript, it remains unclear if concentration crossovers are captured in the latency simulations, and if not, the authors do not clearly address what impact such variation in response amplitudes across concentrations may have on the latency results. It is further unclear to what degree divisive normalization is necessary for the second-order neurons to establish and maintain their latency ranks across concentrations, or to exhibit concentration-dependent changes in latency.

      (5) How the authors get from Figure 4G to 4H is not clear. Figure 4G shows second-order neuron response latencies across all latencies, with ordering based on their sorted latency to low concentration. This shows that very few neurons appear to change latency ranks going from low to high concentration, with a change in rank appearing as any deviation in a monotonically increasing trend. Focusing on the high concentration points, there appear to be 2 latency ranks switched in the first 10 responding neurons (reflecting the 1 downward dip in the points around neuron 8), rather than the 7 stated in the text. Across the first 50 responding neurons, I see only ~14 potential switches (reflecting the ~7 downward dips in the points around neurons 8, 20, 32, 33, 41, 44, 50), rather than the 32 stated in the text. It is possible that the unaccounted rank changes reflect fairly minute differences in latencies that are not visible in the plot in Figure 4G. This may be clarified by plotting each neuron's latency at low concentration vs. high concentration (i.e., similar to Figure 4H, but plotting absolute latency, not latency rank) to allow assessment of the absolute changes. If such minute differences are not driving latency rank changes in Fig. 4G, then a trend much closer to the unity line would be expected in Figure 4H. Instead, however, there are many massive deviations from unity, even within the first 50 responding neurons plotted in Figure 4G. These deviations include a jump in latency rank from 2 at low concentration to ~48 at high concentration. Such a jump is simply not seen in Figure 4G.

      (6) In the text, the authors state that "Odor identity can be encoded by the set of highest-affinity neurons (which remains invariant across concentrations)." Presumably, this is a restatement of the primacy model and refers to invariance in latency rank (since the authors have not shown that the highest-affinity neurons have invariant response amplitudes across concentration). To what degree this statement holds given the results in Figure 4H, however, which appear to show that some neurons with the earliest latency rank at low concentration jump to much later latency ranks at high concentration, remains unclear. Such changes in latency rank for only a few of the first responding neurons may be negligible for classifying odor identity among a small handful of odorants, but not among 1-2 orders of magnitude more odors, which may feasibly occur in a natural setting. Collectively, these issues with the execution and presentation of the latency analysis make it unclear how robust the latency results are.

      (7) Analysis in Figures 4A-C shows that concentration can be decoded from first-order neurons, second-order neurons, or first-order neurons with divisive normalization imposed (i.e., simulating second-order responses). This does not say that divisive normalization is necessary to encode concentration, however. Therefore, for the authors to say that divisive normalization is "a potential mechanism for generating odor-specific subsets of second-order neurons whose combinatorial activity or whose response latencies represent concentration information" seems too strong a conclusion. Divisive normalization is not generating the concentration information, since that can be decoded just as well from the first-order neurons. Rather, divisive normalization can account for the different population patterns in concentration response functions between first- and second-order neurons without discarding concentration-dependent information.

      (8) Performing the same polar histogram analysis of tufted vs. mitral cell concentration response functions (Figure 5B) provides a compelling new visualization of how these two cell types differ in their concentration variance. The projected importance of tufted cells to navigation, emerging directly through the inverse relationship between average concentration and distance (Figure 5C), is not surprising, and is largely a conceptual analysis rather than new quantitative analysis per se, but nevertheless, this is an important point to make. Another important consideration absent from this section, however, is whether and how divisive normalization may impact tufted cell activity. Previous work from the authors, as well as from Schoppa, Shipley, and Westbrook labs, has compellingly demonstrated that a major circuit mediating divisive normalization of mitral cells (GABA/DAergic short-axon cells) directly targets external tufted cells, and is thus very likely to also influence projection tufted cells. Such analysis would additionally provide substantially more justification for the Discussion statement "we analyzed an additional type of second-order neuron (tufted cells)", which at present instead reflects fairly minimal analysis.

    1. Reviewer #3 (Public review):

      Summary:

      The paper "The 1000+ mouse project: large-scale spatiotemporal parametrization and modeling of preclinical cancer immunotherapies" is focused on developing a novel methodology for automatic processing of bioluminescence imaging data. It provides quantitative and statistically robust insights into preclinical experiments that will contribute to optimizing cell-based therapies. There is an enormous demand for such methods and approaches that enable the spatiotemporal evaluation of cell monitoring in large cohorts of experimental animals.

      Strengths:

      The manuscript is generally well written, and the experiments are scientifically sound. The conclusions reflect the soundness of experimental data. This approach seems to be quite innovative and promising to improve the statistical accuracy of BLI data quantification.

      This methodology can be used as a universal quantification tool for BLI data for in vivo assessment of adoptively transferred cells due to the versatility of the technology.

      Weaknesses:

      No weaknesses were identified by this Reviewer.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present a technically impressive data set showing that repeated excitation or restraint stress internalises somatodendritic α2A adrenergic autoreceptors (α2A ARs) in locus coeruleus (LC) neurons. Loss of these receptors weakens GIRK-dependent autoinhibition, raises neuronal excitability, and is accompanied by higher MAO A, DOPEGAL, AEP, and tau N368 levels. The work combines rigorous whole-cell electrophysiology with barbadin-based trafficking assays, qPCR, Western blotting and immunohistochemistry. The final schematic is appealing and in principle, could explain early LC hyperactivity followed by degeneration in ageing and Alzheimer's disease.

      Strengths:

      Multi-level approach - The study integrates electrophysiology, pharmacology, mRNA quantification, and protein-level analysis.

      Use of barbadin to block β-arrestin/AP-2-dependent internalisation is both technically precise and mechanistically informative

      Well-executed electrophysiology

      translation relevance

      converges to a model that peers discussed (scientists can only discuss models - not data!)

      Weaknesses:

      Nevertheless, the manuscript currently reads as a sequence of discrete experiments rather than a single causal chain

    1. Reviewer #3 (Public review):

      Summary:

      Khanna et al. use a well-conceived and well-executed set of experiments and analyses primarily to document the interaction between neural oscillations in the beta range (here, 13-30 Hz) and recovery of function in an animal model of stroke. Specifically, they show that cortical "beta bursts", or short-term increases in beta power, correlate strikingly with the timeline of behavioral recovery as quantified with a reach-to-grasp task. A key distinction is made between global beta bursts (here, those that synchronize between cortical and subcortical areas) and local bursts (which appear on only a few electrodes). This distinction of global vs. local is shown to be relevant to task performance and movement speed, among other quantities of interest.

      A secondary results section explores the relationship between beta bursts and neuronal firing during the grasp portion of the behavioral task. These results are valuable to include, though mostly unsurprising, with global beta in particular associated with lower mean and variance in spike rates.

      Last, a partial recapitulation of the primary results is offered with a neurologically intact (uninjured) animal. No major contradictions are found with the primary results.

      Highlights of the Discussion section include a thoughtful review of atypical movements executed by individuals with Parkinson's disease or stroke survivors, placing the current results in an appropriate clinical context. Potential physiological mechanisms that could account for the observed results are also discussed effectively.

      Strengths:

      Overall, this is a very interesting paper. The ultimate impact will be enhanced by the authors' choice to analyze beta bursts, which remain a relatively under-explored aspect of neural coding.

      The reach-and-grasp task was also a well-considered choice; the combination of a relatively simple movement (reaching towards a target in the same location each time) and a more complex movement (a skilled object-manipulation grasp) provides an internal control of sorts for data analysis. In addition, the task's two sub-movements provide a differential in terms of their likelihood to be affected by the stroke-like injury: proximal muscles (controlling reach) are likely to be less affected by stroke, while distal muscles (controlling grasp) are highly likely to be affected. Lastly, the requirement of the task to execute an object lift maximizes its difficulty and also the potential translational impact of the results on human injury.

      The above comments about the task exemplify a strength that is more generally evident: a welcome awareness of clinical relevance, which is in evidence several times throughout the Results and Discussion.

      Weaknesses:

      The study's weaknesses are mostly minor and, for the most part, correctable.

      One concern that may not be correctable in this study: the results about the spatial extent of beta activity seem constrained by relatively poor-quality data. It seems half or more of the electrodes are marked as too noisy to provide useful data in Figure 3. If this reflects the wider reality for all analyses, as mentioned, it may not be correctable for the present study. In that case, perhaps some of the experiments or analyses can be revisited or expanded for a future study, when better electrode yields are available.

      Other concerns:

      In some places, there is a lack of clarity in the presentation of the results. This is not serious but should be addressed to aid readers' comprehension.

      Lastly, given the central role of beta oscillations within the study, it would be better for completeness to include even a brief exploration of sustained beta power (rather than bursts), and the modulation of sustained beta (or lack thereof) in the study's areas of concern: behavioral recovery, task performance, etc.

    1. Reviewer #3 (Public review):

      Summary:

      This study investigates how phasic and tonic pain modulate behaviour in a free-operant foraging paradigm. The authors apply a computational modeling approach to the behavioural data to quantify the decision value of phasic pain, as well as the degree to which tonic pain reduces motivational vigour. EEG assessments showed, e.g., reduced signal power at alpha and beta frequencies in tonic pain conditions compared to no-tonic-pain conditions, but no association between these neural measures and motivational vigour. The authors conclude that tonic and phasic pain serve different motivational functions, with phasic pain acting as a punishment signal promoting avoidance and tonic pain reducing motivational vigour.

      Strengths:

      The experimental paradigm is highly innovative. Assessing human behaviour in a naturalistic yet highly controlled setting represents a promising approach to pain research. Notably, assessing pain magnitude implicitly, via its motivational value, offers insights about the overall pain experience that are not usually accessible via common pain ratings.

      Weaknesses:

      Despite these strengths, the manuscript would benefit significantly from more precise definitions of key concepts and an overall clearer, more coherent presentation of its main arguments. The writing, in its current form, often presents claims that are too vague or insufficiently connected with the experimental findings. Moreover, certain aspects of the computational modeling and statistical analysis appear flawed or inadequately justified.

    1. Reviewer #3 (Public review):

      The authors present a revised version of their manuscript (Ragusa et al.) describing a hemogenic gastruloid (haemGx) model, used to investigate stages of blood production in vitro and for modeling a rare type of infant leukemia. The revisions address several major concerns raised during the initial round of review, and new data have been provided that overall improve the clarity and rigour of the study. In particular, the additional flow cytometry, single-cell RNA-seq analyses, and benchmarking against in vivo datasets help, to some extent, to substantiate the claims of developmental relevance of haemGx to yolk sac (YS)- and AGM-like hematopoietic waves. Nonetheless, some issues remain, particularly regarding the claims of short-term engraftment, novelty of the model, and the extent to which AGM-like HSPC are truly captured.

      Major Points:

      (1) The authors have clarified the novelty of their haemGx protocol relative to existing gastruloid models, including the importance of the Activin A pulse and protocol extension to 216h. Flow cytometry and scRNA-seq analyses support the emergence of endothelial and hematopoietic populations with dynamic marker expression. However, direct side-by-side comparisons with previously published protocols (e.g., Rossi et al., 2022) remain limited. The claim of "spatio-temporal accuracy" should be more cautiously phrased.

      (2) The characterization of the identity of the hematopoietic waves generated in the haemGx system has been improved in the revised manuscript. Flow cytometry analysis now includes CD31/CD34 co-expression in CD41+ and CD45+ subsets, and scRNA-seq re-clustering supports two hematopoietic waves with distinct marker sets (e.g., Gata2/Myb vs. Hoxa9/Ikzf1). Projection onto multiple embryonic reference datasets (Hou et al., Zhu et al., Thambyrajah et al.) is a valuable addition. The case for YS-like EMP and AGM-like HSPC precursors is reasonably made, though further functional distinctions (e.g., lineage output differences) would strengthen the claims.

      (3) The authors have now provided additional evidence for low-level engraftment following adrenal implantation of whole haemGx. Although technically demanding, this in vivo result remains marginal and should be interpreted with caution. Crucially, this still does not demonstrate HSC-level repopulation capacity. The revised manuscript has softened the claims accordingly, now referring to "progenitor" activity rather than "pre-HSC." We agree that this adjusted claim is more suitable, though the reproducibility of this experiment is still unclear.

      (4) The MNX1 overexpression experiments are generally convincing in showing early expansion of a putative HE-to-EMP-like population and transcriptional resemblance to MNX1-r AML. However, the evidence for transformation is still solely based on in vitro data and lacks any evidence of in vivo leukaemia engraftment. The ability to perturb the system would add translational value to the haemGx platform, although future studies are needed to better define transformation dynamics and leukemogenic progression.

    1. Reviewer #3 (Public review):

      In this manuscript, Natarajan and colleagues report on the role of a prophage, termed SfPat, in the regulation of motility and biofilm formation by the marine bacterium Shewanella fidelis. The authors investigate the in vivo relevance of prophage carriage by studying the gut occupation patterns of Shewanella fidelis wild-type and an isogenic SfPat- mutant derivative in a model organism, juveniles of the marine tunicate Ciona robusta. The role of bacterial prophages in regulating bacterial lifestyle adaptation and niche occupation is a relatively underexplored field, and efforts in this direction are appreciated.

      Comments on revisions:

      The authors have addressed my main concerns. While some responses remain somewhat ambiguous or defer key clarifications to future studies, I appreciate that not everything can be resolved within a single manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      Voigt et al. present a comprehensive study exploring the molecular mechanisms and evolution of biomineralization in the calcareous sponge Sycon ciliatum. Using a multi-omics approach, including comparative transcriptomics, proteomics, genomic analyses, and high-resolution in situ hybridization, the authors identify 829 candidate biomineralization genes, with a special focus on the calcarin gene family. These calarains, structurally analogous to galaxin in stony corals, show cell-type- and spicule-type-specific expression patterns, revealed through meticulous FISH imaging. Chromosomal analysis further uncovers that several calcarin genes are arranged in tandem arrays, suggesting diversification via gene duplication and neofunctionalization. Notably, the study finds striking parallels between the calcarins of S. ciliatum and galaxins of aragonitic corals in terms of gene arrangement, tertiary structure predictions, and expression dynamics, pointing to a remarkable case of parallel evolution during the emergence of biomineralized skeletons in early metazoans.

      Strengths:

      The study is methodologically robust, integrating transcriptomic, proteomic, and genomic data with detailed cell biological analysis.

      High-quality, carefully annotated FISH images convincingly demonstrate the spatial expression patterns of calcarins.

      Novel evidence of sponge cell trans-differentiation is presented through cell-type-specific gene expression.

      The comparative perspective with coral galaxins is well-executed and biologically insightful, supported by structural predictions and chromosomal data.

      Figures and supplementary materials are thoughtfully revised for clarity and accessibility, addressing reviewer feedback.

      Weaknesses:

      Direct functional validation of calcarin roles in biomineralization is lacking, a limitation acknowledged by the authors and inherent to sponge models.

      The evolutionary history of calcarins and galaxins remains only partially resolved due to challenges in reconstructing phylogenies of fast-evolving gene families.

      Some initial figure annotations and definitions (e.g., "radial tube") required clarification, although these were addressed in revision.

      Overall, the work significantly advances our understanding of biomineralization´s molecular basis and its parallel evolution in early diverging metazoans.

      Comments on revisions:

      I would like to thank the authors for addressing all my comments/suggestions. I am OK with the revised version of the manuscript

    1. Reviewer #3 (Public review):

      Summary:

      The migration of primordial germ cells (PGCs) to the developing gonad is a poorly understood yet essential step in reproductive development. Here, the authors examine whether there are differences in leading and lagging migratory PGCs using single-cell RNA sequencing of mouse embryos. Cleverly, the authors dissected embryonic trunks along the anterior-to-posterior axis prior to scRNAseq in order to distinguish leading and lagging migratory PGCs. After batch corrections, their analyses revealed several known and novel differences in gene expression within and around leading and lagging PGCs, intercellular signaling networks, as well as number of genes upregulated upon gonad colonization. The authors then compared their datasets with publicly available human datasets to identify common biological themes. Altogether, this rigorous study reveals several differences between leading and lagging migratory PGCs, hints at signatures for different fates among the population of migratory PGCs, and provides new potential markers for post-migratory PGCs in both humans and mice. While many of the interesting hypotheses that arise from this work are not extensively tested, these data provide a rich platform for future investigations.

      Strengths:

      The authors have successfully navigated significant technical challenges to obtain a substantial number of mouse migratory primordial germ cells for robust transcriptomic analysis. Here, the authors were able to collect quality data on ~13,000 PGCs and ~7,800 surrounding somatic cells, which is ten times more PGCs than previous studies.

      The decision to physically separate leading and lagging primordial germ cells was clever and well-validated based on expected anterior-to-posterior transcriptional signatures.

      Within the PGCs and surrounding tissues, the authors found many gene expression dynamics they would expect to see both along the PGC migratory path as well as across developmental time, increasing confidence in the new differentially expressed genes they found.

      The comparison of their mouse-based migratory PGC datasets with existing human migratory PGC datasets is appreciated.

      The quality control, ambient RNA contamination elimination, batch correction, cell identification and analysis of scRNAseq data were thorough and well-done such that the new hypotheses and markers found through this study are dependable.

      The subsetting of cells in their trajectory analysis is appreciated, further strengthening their cell terminal state predictions.

      Weaknesses:

      There were a few validation experiments within this study. For one such experiment, whether there is a difference in pSMAD2/3 along the AP axis is unclear and not quantified, as was nicely done for Lefty1/2.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript presents a large common garden experiment across Sweden using solely local germplasm. Additionally, there is a collection of selection experiments that begin investigating the factors shaping fecundity in these populations. This provides an impressive amount of data and analysis investigating the underlying factors involved. Together, this helps support the data showing that fluctuations and interactions are key components determining Arabidopsis fitness and are more broadly applicable across plant and non-plant species.

      Strengths:

      The field trials are well conducted with extensive effort and sampling. Similarly while the genetic analysis is complex it is well conducted and reflects the complexity of dealing with population structure that may be intricately linked to adaptive structure. This has no real solution and the option of presenting results with and without correction is likely the only appropriate option.

      Weaknesses:

      A significant finding from this study was that fecundity is shaped more by yearly fluctuations and their interaction with genotype than it is by the main effect of location or genotype. Another significant finding is that the strength of selection can be quite strong, with nearly 5x ranges across accessions. It should be noted that there are a number of other studies using Arabidopsis in the wild with multiple years and locations that found similar observations beyond the Oakley citation. In general, the context of how these findings relate to existing knowledge in Arabidopsis is a bit underdeveloped.

      The effects of the populations across the locations seem to rely on individual tests and PC analysis. It would seem to be possible to incorporate these tests more directly in the linear modeling analysis, and it isn't quite clear why this wasn't conducted.

      I'm a bit puzzled by the discussion on how to find causative loci. This seems to focus solely on GWAS as the solution, with a goal to sequence vast individuals. But the loci that the manuscript discussed were found by a combination of structured mapping populations followed by molecular validation that then informed the GWAS. As such, I'm unsure if the proposed future approach of more sequencing is the best when a more balanced approach integrating diverse methods and population types will be more useful.

    1. Reviewer #3 (Public review):

      Summary:

      This is an impressive paper that offers a much-needed 3D standardized brain atlas for the hackled-orb weaving spider Uloborus diversus, an emerging organism of study in neuroethology. The authors used a detailed immunohistological whole-mount staining method that allowed them to localize a wide range of common neurotransmitters and neuropeptides and map them on a common brain atlas. Through this approach, they discovered groups of cells that may form parts of neuropils that had not previously been described, such as the 'tonsillar neuropil', which might be part of a larger insect-like central complex. Further, this work provides unique insights into the previously underappreciated complexity of higher-order neuropils in spiders, particularly the arcuate body, and hints at a potentially important role for the mushroom bodies in vibratory processing for web-building spiders.

      Strengths:

      To understand brain function, data from many experiments on brain structure must be compiled to serve as a reference and foundation for future work. As demonstrated by the overwhelming success in genetically tractable laboratory animals, 3D standardized brain atlases are invaluable tools - especially as increasing amounts of data are obtained at the gross morphological, synaptic, and genetic levels, and as functional data from electrophysiology and imaging are integrated. Among 'non-model' organisms, such approaches have included global silver staining and confocal microscopy, MRI, and, more recently, micro-computed tomography (X-ray) scans used to image multiple brains and average them into a composite reference. In this study, the authors used synapsin immunoreactivity to generate an averaged spider brain as a scaffold for mapping immunoreactivity to other neuromodulators. Using this framework, they describe many previously known spider brain structures and also identify some previously undescribed regions. They argue that the arcuate body - a midline neuropil thought to have diverged evolutionarily from the insect central complex - shows structural similarities that may support its role in path integration and navigation.

      Having diverged from insects such as the fruit fly Drosophila melanogaster over 400 million years ago, spiders are an important group for study - particularly due to their elegant web-building behavior, which is thought to have contributed to their remarkable evolutionary success. How such exquisitely complex behavior is supported by a relatively small brain remains unclear. A rich tradition of spider neuroanatomy emerged in the previous century through the work of comparative zoologists, who used reduced silver and Golgi stains to reveal remarkable detail about gross neuroanatomy. Yet, these techniques cannot uncover the brain's neurochemical landscape, highlighting the need for more modern approaches-such as those employed in the present study.

      A key insight from this study involves two prominent higher-order neuropils of the protocerebrum: the arcuate body and the mushroom bodies. The authors show that the arcuate body has a more complex structure and lamination than previously recognized, suggesting it is insect central complex-like and may support functions such as path integration and navigation, which are critical during web building. They also report strong synapsin immunoreactivity in the mushroom bodies and speculate that these structures contribute to vibratory processing during sensory feedback, particularly in the context of web building and prey localization. These findings align with prior work that noted the complex architecture of both neuropils in spiders and their resemblance (and in some cases greater complexity) compared to their insect counterparts. Additionally, the authors describe previously unrecognized neuropils, such as the 'tonsillar neuropil,' whose function remains unknown but may belong to a larger central complex. The diverse patterns of neuromodulator immunoreactivity further suggest that plasticity plays a substantial role in central circuits.

      Weaknesses:

      My major concern, however, is that some of the authors' neuroanatomical descriptions rely too heavily on inference rather than what is currently resolvable from their immunohistochemistry stains alone.

    1. Reviewer #5 (Public review):

      Summary:

      Hypothalamic hypocretin/orexin neurons are well-known to be involved in arousal, muscle tone and energy metabolism. Using a combination of fiber photometry, video-based movement assessments, and deep learning algorithms, the authors provide compelling evidence that the activity of these neurons correlates with net body movement over multiple behaviors and is independent of nutritional state. The authors also demonstrate that hypocretin/orexin release differs between two downstream projection sites, the locus coeruleus and substantia nigra, and are able to distinguish the activity in these sites that is due to inputs from these hypothalamic neurons vs. from other subcortical populations. The authors also convincingly show that the correlation between body movement and hypocretin/orexin neuron activity is much stronger compared to other subcortical regions. However, hypocretin/orexin neuron ablation does not affect the power spectra of movements, an observation that appears at odds with their overall conclusions.

      Strengths:

      The multidisciplinary approach using multiple state-of-the-art tools is supported by a rigorous experimental design and strong statistical analyses. The authors have been highly responsive to previous critiques. Concerns of another reviewer regarding the confound between arousal and movement have been addressed by new pupillometry data as a measure of arousal and multivariate analyses to distinguish between the contributions of arousal vs. movement to hypocretin/orexin neuron activity. The new data in Figure 2H added in response to a suggestion by Reviewer 3 particularly strengthens the paper.

      Weaknesses:

      Reviewer 2 mentioned that previous studies using orexin antagonists in rodents have largely found inconsistent effect of antagonizing orexin signaling on simple motor activity and points out that these studies are not referenced here. The authors respond that "orexin antagonism - or optogenetic silencing of HONs - evokes either reduced locomotion, or no effect on locomotor movements" and add references to paragraph 4 of the Discussion. Aside from the fact that 2 of the 3 references added are from the senior author, none address the fact that orexin antagonists induce sleep and that optogenetic silencing of these cells creates a condition where sleep can ensue with short latency - results that certainly affect body movement/locomotor activity.

    1. Reviewer #3 (Public review):

      Summary:

      In this set of experiments, the authors describe a novel research tool for studying complex cognitive tasks in mice, the HABITS automated training apparatus, and a novel "machine teaching" approach they use to accelerate training by algorithmically providing trials to animals that provide the most information about the current rule state for a given task.

      Strengths:

      There is much to be celebrated in an inexpensively constructed, replicable training environment that can be used with mice, which have rapidly become the model species of choice for understanding the roles of distinct circuits and genetic factors in cognition. Lingering challenges in developing and testing cognitive tasks in mice remain, however, and these are often chalked up to cognitive limitations in the species. The authors' findings, however, suggest that instead we may need to work creatively to meet mice where they live. In some cases it may be that mice may require durations of training far longer than laboratories are able to invest with manual training (up to over 100k trials, over months of daily testing) but that the tasks are achievable. The "machine teaching" approach further suggests that this duration could be substantially reduced by algorithmically optimizing each trial presented during training to maximize learning.

      Weaknesses:

      Cognitive training and testing in rodent models fill a number of roles. Sometimes, investigators are interested in within-subjects questions - querying a specific circuit, genetically defined neuron population, or molecule/drug candidate, by interrogating or manipulating its function in a highly trained animal. In this scenario, a cohort of highly trained animals which have been trained via a method that aims to make their behavior as similar as possible is a strength.

      However, often investigators are interested in between-subjects questions - querying a source of individual differences that can have long term and/or developmental impacts, such as sex differences or gene variants. This is likely to often be the case in mouse models especially, because of their genetic tractability. In scenarios where investigators have examined cognitive processes between subjects in mice who vary across these sources of individual difference, the process of learning a task has been repeatedly shown to be different. The authors recognize that their approach is currently optimized for testing within-subjects questions, but begin to show how between-subjects questions might be addressed with this system.

      The authors have perhaps shown that their main focus is highly-controlled within-subjects questions, as their dataset is almost exclusively made up of several hundred young adult male mice, with the exception of 6 females in a supplemental figure. It is notable that these female mice do appear to learn the two-alternative forced choice task somewhat more rapidly than the males in their cohort, and the authors suggest that future work with this system could be used to uncover strategies that differ across individuals.

      Considering the implications for mice modeling relevant genetic variants, it is unclear to what extent the training protocols and especially the algorithmic machine teaching approach would be able to inform investigators about the differences between their groups during training. For investigators examining genetic models, it is unclear whether this extensive training experience would mitigate the ability to observe cognitive differences, or select for the animals best able to overcome them - eliminating the animals of interest. Likewise, the algorithmic approach aims to mitigate features of training such as side biases, but it is worth noting that the strategic uses of side biases in mice, as in primates, can benefit learning, rather than side biases solely being a problem. However, the investigators may be able to highlight variables selected by the algorithm that are associated with individual strategies in performing their tasks, and this would be a significant contribution.

      A final, intriguing finding in this manuscript is that animal self-paced training led to much slower learning than "manual" training, by having the experimenter introduce the animal to the apparatus for a few hours each day. Manual training resulted in significantly faster learning, in almost half the number of trials on average, and with significantly fewer omitted trials. This finding does not necessarily argue that manual training is universally a better choice, because it led to more limited water consumption. However, it suggests that there is a distinct contribution of experimenter interactions and/or switching contexts in cognitive training, for example, by activating an "occasion setting" process to accelerate learning for a distinct period of time. Limiting experimenter interactions with mice may be a labor saving intervention, but may not necessarily improve performance. This could be an interesting topic of future investigation, of relevance to understanding how animals of all species learn.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Banse et al., demonstrate that combining computer prediction with genetic analysis in distinct Caenorhabditis species can streamline the discovery of aging interventions by taking advantage of the diverse pool of compounds that are currently available. They demonstrate that through careful prioritization of candidate compounds, they are able to accomplish a 30% positive hit rate for interventions that produce significant lifespan extensions. Within the positive hits, they focus on all-trans retinoic acid (atRA) and discover that it modulates lifespan through conserved longevity pathways such as AKT-1 and AKT-2 (and other conserved Akt-targets such as Nrf2/SKN-1 and HSF1/HSF-1) as well as through AAK-2, a conserved catalytic subunit of AMPK. To better understand the genetic mechanisms behind lifespan extension upon atRA treatment, the authors perform RNAseq experiments using a variety of genetic backgrounds for cross comparison and validation. Using this current state-of-the-art approach for studying gene expression, the authors determine that atRA treatment produces gene expression changes across a broad set of stress-response and longevity-related pathways. Overall, this study is important since it highlights the potential of combining traditional genetic analysis in the genetically tractable organism C. elegans with computational methods that will become even more powerful with the swift advancements being made in artificial intelligence. The study possesses both theoretical and practical implications not only in the field of aging, but also in related fields such as health and disease. Most of the claims in this study are supported by solid evidence, but the conclusions can be refined with a small set of additional experiments or re-analysis of data.

      Strengths:

      (1) The criteria for prioritizing compounds for screening are well-defined and is easy to replicate (Figure 1), even for scientists with limited experience in computational biology. The approach is also adaptable to other systems or model organisms.

      (2) I commend the researchers for doing follow-up experiments with the compound propranolol to verify its effect of lifespan (Figure 2- figure supplement 2), given the observation that it affected the growth of OP50. To prevent false hits in the future, the reviewer recommends the use of inactivated OP50 for future experiments to remove this confounding variable.

      (3) The sources of variation (Figure 3-figure supplement 2) are taken into account and demonstrates the need for advancing our understanding of the lifespan phenotype due to inter-individual variation.

      (4) The addition of the C. elegans swim test in addition to the lifespan assays provides further evidence of atRA-induced improvement in longevity.

      (5) The RNAseq approach was performed in a variety of genetic backgrounds, which allowed the authors to determine the relationship between AAK-2 and HSF-1 regulation of the retinoic acid pathway in C. elegans, specifically, that the former functions downstream of the latter.

      Weaknesses:

      (1) The authors demonstrate that atRA extends lifespan in a species-specific manner (Figure 3). Specifically, this extension only occurs in the species C. elegans yet, the title implies that atRA-induced lifespan extension occurs in different Caenorhabditis species when it is clearly not the case. While the authors state that failure to observe phenotypes in C. briggsae and C. tropicalis is a common feature of CITP tests, they do not speculate as to why this phenomenon occurs.

      (2) There are discrepancies between the lifespan curves by hand (Figure 3-Figure supplement 1) and using the automated lifespan machine (Figure 3-supplement 3). Specifically, in the automated lifespan assays, there are drastic changes in the slope of the survival curve which do not occur in the manual assays and may be suggestive that confounding factors may still operate or produce additional variation in ALM experiments despite relatively well-controlled environmental conditions.

    1. Reviewer #3 (Public review):

      In this study, Chen L et al. systematically analyzed the mycobacterial nucleomodulins and identified MgdE as a key nucleomodulin in pathogenesis. They found that MgdE enters into host cell nucleus through two nuclear localization signals, KRIR108-111 and RLRRPR300-305, and then interacts with COMPASS complex subunits ASH2L and WDR5 to suppress H3K4 methylation-mediated transcription of pro-inflammatory cytokines, thereby promoting mycobacterial survival. This study is potentially interesting, but there are several critical issues that need to be addressed to support the conclusions of the manuscript.

      (1) Figure 2: The study identified MgdE as a nucleomodulin in mycobacteria and demonstrated its nuclear translocation via dual NLS motifs. The authors examined MgdE nuclear translocation through ectopic expression in HEK293T cells, which may not reflect physiological conditions. Nuclear-cytoplasmic fractionation experiments under mycobacterial infection should be performed to determine MgdE localization.

      (2) Figure 2F: The authors detected MgdE-EGFP using an anti-GFP antibody, but EGFP as a control was not detected in its lane. The authors should address this technical issue.

      (3) Figure 3C-3H: The data showing that the expression of all detected genes in 24 h is comparable to that in 4 h (but not 0 h) during WT BCG infection is beyond comprehension. The issue is also present in Figure 7C, Figure 7D, and Figure S7. Moreover, since Il6, Il1β (pro-inflammatory), and Il10 (anti-inflammatory) were all upregulated upon MgdE deletion, how do the authors explain the phenomenon that MgdE deletion simultaneously enhanced these gene expressions?

      (4) Figure 5: The authors confirmed the interactions between MgdE and WDR5/ASH2L. How does the interaction between MgdE and WDR5 inhibit COMPASS-dependent methyltransferase activity? Additionally, the precise MgdE-ASH2L binding interface and its functional impact on COMPASS assembly or activity require clarification.

      (5) Figure 6: The authors proposed that the MgdE-regulated COMPASS complex-H3K4me3 axis suppresses pro-inflammatory responses, but the presented data do not sufficiently support this claim. H3K4me3 inhibitor should be employed to verify cytokine production during infection.

      (6) There appears to be a discrepancy between the results shown in Figure S7 and its accompanying legend. The data related to inflammatory responses seem to be missing, and the data on bacterial colonization are confusing (bacterial DNA expression or CFU assay?).

      (7) Line 112-116: Please provide the original experimental data demonstrating nuclear localization of the 56 proteins harboring putative NLS motifs.

    1. Reviewer #3 (Public review):

      Disclaimer:

      My expertise is in live single-molecule imaging of RNA and transcription, as well as associated data analysis and modeling. While this aligns well with the technical aspects of the manuscript, my background in translation is more limited, and I am not best positioned to assess the novelty of the biological conclusions.

      Summary:

      This study combines live-cell imaging of nascent proteins on single mRNAs with time-series analysis to investigate the kinetics of mRNA translation.

      The authors (i) used a calibration method for estimating absolute ribosome counts, and (ii) developed a new Bayesian approach to infer ribosome counts over time from run-off experiments, enabling estimation of elongation rates and ribosome density across conditions.

      They report (i) translational bursting at the single-mRNA level, (ii) low ribosome density (~10% occupancy {plus minus} a few percents), (iii) that ribosome density is minimally affected by perturbations of elongation (using a drug and/or different coding sequences in the reporter), suggesting a homeostatic mechanism potentially involving a feedback of elongation onto initiation, although (iv) this coupling breaks down upon knockout of elongation factor eIF5A.

      Strengths:

      (1) The manuscript is well written, and the conclusions are, in general, appropriately cautious (besides the few improvements I suggest below).

      (2) The time-series inference method is interesting and promising for broader applications.

      (3) Simulations provide convincing support for the modeling (though some improvements are possible).

      (4) The reported homeostatic effect on ribosome density is surprising and carefully validated with multiple perturbations.

      (5) Imaging quality and corrections (e.g., flat-fielding, laser power measurements) are robust.

      (6) Mathematical modeling is clearly described and precise; a few clarifications could improve it further.

      Weaknesses:

      (1) The absolute quantification of ribosome numbers (via the measurement of $i_{MP}$​) should be improved. This only affects the finding that ribosome density is low, not that it appears to be under homeostatic control. However, if $i_{MP}$​ turns out to be substantially overestimated (hence ribosome density underestimated), then "ribosomes queuing up to the initiation site and physically blocking initiation" could become a relevant hypothesis. In my detailed recommendations to the authors, I list points that need clarification in their quantifications and suggest an independent validation experiment (measuring the intensity of an object with a known number of GFP molecules, e.g., MS2-GFP MS2-GFP-labeled RNAs, or individual GEMs).

      (2) The proposed initiation-elongation coupling is plausible, but alternative explanations, such as changes in abortive elongation frequency, should be considered more carefully. The authors mention this possibility, but should test or rule it out quantitatively.

      (3) The observation of translational bursting is presented as novel, but similar findings were reported by Livingston et al. (2023) using a similar SunTag-MS2 system. This prior work should be acknowledged, and the added value of the current approach clarified.

      (4) It is unclear what the single-mRNA nature of the inference method is bringing since it is only used here to report _average_ ribosome elongation rate and density (averaged across mRNAs and across time during the run-off experiments - although the method, in principle, has the power to resolve these two aspects).

      (5) I did not find any statement about data availability. The data should be made available. Their absence limits the ability to fully assess and reproduce the findings.

  3. Jul 2025
    1. Reviewer #3 (Public review):

      Summary:

      In the revised manuscript, Long et al., showed that sul1∆ mutants have extended replicative lifespan in budding yeast. In comparison, other mutants that have sulfate transport deficiency did not show extended lifespan, suggesting SUL1 deletion extends lifespan independently of sulfate intake. The authors then explored the transcriptome of sul1∆ mutants by RNA-seq, which suggests that SUL1 deletion impacts common longevity pathways. Furthermore, the authors characterized how the PKA pathway is affected in sul1∆ mutants: SUL1 deletion promotes the nuclear localization of Msn2, as well as autophagy, indicating down-regulation of the PKA pathway.

      Strengths:

      This study raised an interesting point that inorganic transporters may impact cellular stress response pathways and affect lifespan. Some of the characterizations on the sul1∆ mutants, including the RNA-seq and MSN2 localization could provide valuable sources for people in related fields. Compared with the previous version, the writing is significantly improved, making the manuscript clearer.

      Weaknesses:

      Several critical flaws have not been revised. The claims are still not well supported by the data.

      (1) The revised manuscript still uses Atg8-EGFP, in which GFP is likely tagging at the C-terminus of Atg8. No strain information was provided for this strain, so it is unclear whether it is N- or C- terminal tagged. As pointed by reviewers of the previous version, C-terminal tagged Atg8 is not functional. As a result, the conclusions on autophagy (Figure 4) is questionable.

      (2) The nuclear localization of Msn2 is much more convincing after the authors updated Figure 3C. However, the rest of the microscopy images (e.g. Figure 3E, 4B, 4E) are still of low resolution. Again, I suggest to separate the DIC and GFP channels. It is really hard to tell where is the GFP signal from these figures.

      (3) In the Kankipati et al. 2015 paper, which is cited by the authors, SUL1E427Q is incorporated on a pRS316 (URA3) plasmic and expressed in sul1∆sul2∆ mutants. In this manuscript, the authors used SUL1E427Q mutants but did not give detailed information on how this construct is expressed. Is it endogenously mutated, incorporated into somewhere in the genome, or expressed from an extrachromosomal plasmid?<br /> In Figure 1B, they simply used BY4741 as a control for the SUL1E427Q mutant. This makes me thinking they are using a SUL1E427Q endogenous point mutation mutant. If so, the authors may want to include the information about this strain in their Supplementary table. Or if it is expressed from an extra copy on chromosomes or extrachromosomal plasmids, the authors would need to express this construct in sul1∆ mutant. In this case, the authors may want to use sul1∆ and sul1∆+empty vector as controls, instead of BY4741. As the authors mentioned in their rebuttal letter, lifespan experiments vary between each individual trials and are not comparable between different trials. Thus proper controls are essential to make the results convincing.

      (4) As suggested by reviewers of the previous version, the authors tested the sulfate uptake in different mutants within 10 minute of Na2SO4 addition (Figure 1B). The authors concluded from the data that wild type takes up sulfate faster than the mutants but they reach similar concentrations at the end point (as fast as 10 minutes). Are all these cells sulfate-starved before the experiment? If not, the experiment might be affected by the basal level of sulfate in each mutants.

    1. Reviewer #3 (Public review):

      Summary:

      Cardno et al. "test the hypothesis that DUBs could oppose PROTAC-mediated degradation of cellular targets, using AURKA as a model target". A screen with a panel of siRNA that depleted 97 DUBs in the presence and absence of AURKA targeted PROTAC-D identified DUBs that regulated AURKA and those that affected the sensitivity of PROTAC-D. Validation studies with DUBs, UCHL5, and OTU6A yielded mixed results. UCHL5 not only affected PROTAC-mediated AURKA degradation but also affected CRBN-associated substrates, OTUD6A, more specifically, affected PROTAC-mediated AURKA degradation, and the effects of OTUD6A were associated with the localisation of AURKA. The findings are interesting; the impact of the findings would be strengthened if the key results are validated in one or more cancer cell lines that have not been modified.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, authors Simone Rencken and co-authors present and investigate the genome of the common cuttlefish Sepia officinalis.

      Strengths:

      The authors explain in a detailed yet concise manner the main steps for a genome assembly, with very robust methods for validation, and according to current best practices. In addition to the chromosomal assembly, the authors confirmed the presence of 47 chromosomes using Hi-C data and multiple species synteny. They also generated a comprehensive gene annotation, with assessments of gene completeness, providing a useful resource for the community of researchers interested in cuttlefish biology and comparative genomics.

      Weaknesses:

      While the study touches upon the subjects of gene content, TE activity, or species-level comparisons, the study does not provide in-depth investigations of these.

    1. Reviewer #3 (Public review):

      Summary:

      The authors' research here was to understand the role of hypoxia and hypoxia-induced transcription factor Hif-1a in the epicardium. The authors noted that hypoxia was prevalent in the embryonic heart, and this persisted into neonatal stages until postnatal day 7 (P7). Hypoxic regions in the heart were noted in the outer layer of the heart, and expression of Hif-1a coincided with the epicardial gene WT1. It has been documented that at P7, the mouse heart cannot regenerate after myocardial infarction, and the authors speculated that the change in epicardial hypoxic conditions could play a role in regeneration. The authors then used genetic and pharmacological tools to increase the activity of Hif genes in the heart and noted that there was a significant improvement in cardiac function when Hif-1a was active in the epicardium. The authors speculated that the presence of Hif-1a improved cell survival.

      Strengths:

      A focus on hypoxia and its effects on the epicardium in development and after myocardial infarction. This study outlines the potential to extend the regenerative time window in neonatal mammalian hearts.

      Weaknesses:

      While the observations of improved cardiac function are clear, the exact mechanism of how increased Hif-1a activity causes these effects is not completely revealed. The authors mention improved myocardium survival, but do not include studies to demonstrate this.

      There is an indication that fibrosis is decreased in hearts where Hif activity is prolonged, but there are no studies to link hypoxia and fibrosis.

    1. Reviewer #3 (Public review):

      The authors present an important approach to identify imported P. falciparum malaria cases, combining genetic and epidemiological/travel data. This tool has the potential to be expanded to other contexts. The data was analyzed using convincing methods, including a novel statistical model; although some recognized limitations can be improved. This study will be of interest to researchers in public health and infectious diseases.

      Strengths:

      The study has several strengths, mainly the development of a novel Bayesian model that integrates genomic, epidemiological, and travel data to estimate importation probabilities. The results showed insights into malaria transmission dynamics, particularly identifying importation sources and differences in importation rates in Mozambique. Finally, the relevance of the findings is to suggest interventions focusing on the traveler population to help efforts for malaria elimination.

      Weaknesses:

      The study also has some limitations. The sample collection was not representative of some provinces, and not all samples had sufficient metadata for risk factor analysis, which can also be affected by travel recall bias. Additionally, the authors used a proxy for transmission intensity and assumed some conditions for the genetic variable when calculating the importation probability for specific scenarios. The weaknesses were assessed by the authors.

    1. Reviewer #3 (Public review):

      In this revised manuscript, Gao et al. presented a series of well-controlled behavioral data showing that tussling, a form of high-intensity fighting among male fruit flies (Drosophila melanogaster) is enhanced specifically among socially experienced and relatively old males. Moreover, results of behavioral assays led authors to suggest that increased tussling among socially experienced males may increase mating success. They also concluded that tussling is controlled by a class of olfactory sensory neurons and sexually dimorphic central neurons that are distinct from pathways known to control lunges, a common male-type attack behavior.

      A major strength of this work is that it is the first attempt to characterize behavioral function and neural circuit associated with Drosophila tussling. Many animal species use both low-intensity and high-intensity tactics to resolve conflicts. High-intensity tactics are mostly reserved for escalated fights, which are relatively rare. Because of this, tussling in the flies, like high-intensity fights in other animal species, have not been systematically investigated. Previous studies on fly aggressive behavior have often used socially isolated, relatively young flies within a short observation duration. Their discovery that 1) older (14-days old) flies tend to tussle more often than younger (2 to 7-days-old) flies, 2) group-reared flies tend to tussle more often than socially isolated flies, and 3) flies tend to tussle at later stage (mostly ~15 minutes after the onset of fighting), are the result of their creativity to look outside of conventional experimental settings. These new findings are key for quantitatively characterizing this interesting yet under-studied behavior.

      Newly presented data have made several conclusions convincing. Detailed descriptions of methods to quantify behaviors help understand the basis of their claims by improving transparency. However, I remain concerned about authors' persistent attempt to link the high intensity aggression to reproductive success. The authors' effort to "tone down" the link between the two phenomena remains insufficient. There are purely correlational. I reiterate this issue because the overall value of the manuscript would not change with or without this claim.

    1. Reviewer #3 (Public review):

      Summary:

      Use of reporter assays to understand the regulatory mechanisms controlling gene expression moves beyond simple correlations of cis-regulatory sequence accessibility, evolutionary sequence conservation, and epigenetic status with gene expression, instead quantifying regulatory sequence activity for individual elements. Tulloch et al., provide a systematic characterization of two new reporter assay techniques (LS-MPRA and d-MPRA) to comprehensively identify cis-regulatory sequences contained within genomic loci of interest during retinal development. The authors then apply LS-MPRA and d-MPRA to identify putative cis-regulatory sequences controlling Olig2 and Ngn2 expression, including potential regulatory motifs that known retinal transcription factors may bind. Transcription factor binding to regulatory sequences is then assessed via CUT&RUN. The broader utility of the techniques is then highlighted by performing the assays across development, across species, and across tissues.

      Strengths:

      (1) The authors validate the reporter assays on retinal loci for which the regulatory sequences are known (Rho, Vsx2, Grm6, Cabp5) mostly confirming known regulatory sequence activity but highlighting either limitations of the current technology or discrepancies of previous reporter assays and known biology. The techniques are then applied to loci of interest (Olig2 and Ngn2) to better understand the regulatory sequences driving expression of these transcription factors across retinal development within subsets of retinal progenitor cells, identifying novel regulatory sequences through comprehensive profiling of the region.

      (2) LS-MPRA provides broad coverage of loci of interest.

      (3) d-MPRA identifies sequence features that are important for cis-regulatory sequence activity.

      (4) The authors take into account transcript and protein stability when determining the correlation of putative enhancer sequence activity with target gene expression.

      Weaknesses:

      (1) In its current form, the many important controls that are standard for other MPRA experiments are not shown or not performed, limiting the interpretations of the utility of the techniques. This includes limited controls for basal-promoter activity, limited information about sequence saturation and reproducibility of individual fragments across different barcode sequences, limitations in cloning and assay delivery, and sequencing requirements. Additional quantitative metrics, including locus coverage and number of barcodes/fragments, would be beneficial throughout the manuscript.

      (2) There are no statistical metrics for calling a region/sequence 'active'. This is especially important given that NR3 for Olig2 seems to have a small 'peak' and has non-significant activity in Figure 4.

      (3) The authors present correlational data for identified cis-regulatory sequences with target gene expression. Additionally, the significance of transcription factor binding to the putative regulatory sequences is not currently tested, only correlated based on previous single-cell RNA-sequencing data. While putative regulatory sequences with potential mechanisms of regulation are identified/proposed, the lack of validation (and discrepancies with previous literature) makes it hard to decipher the utility of the techniques.

      (4) While the interpretations that Olig2 mRNA/protein expression is dynamically regulated improved the proportions of cells that co-expressed CRM-regulated GFP and Olig2, alternate explanations (some noted) are just as likely. First, the electroporation isn't specific to Olig2+ progenitors. Also, the tested, short CRM fragments may have activating signals outside of Olig2 neurogenic cells because chromatin conformation, histone modifications, and DNA methylation are not present on plasmids to precisely control plasmid activity. Alternatively, repressive elements that control Olig2 expression are not contained in the reporter vectors.

      (5) It is unclear as to why the d-MPRA uses a different barcoding strategy, placing a second copy of the cis-regulatory sequence in the 3' UTR. As acknowledged by the author, this will change the transcript stability by changing the 3' UTR sequence. Because of this, comparisons of sequence activity between the LS-MPRA and d-MPRA should not be performed as the experiments are not equivalent.

      (6) Furthermore, details of the mutational burden in d-MPRA experiments are not provided, limiting the interpretations of these results.

      (7) Many figures are IGV screenshots that suffer from low resolution. Many figures could be consolidated.

    1. Reviewer #3 (Public review):

      Summary:

      Krwawicz et al., present evidence that expression of DNMTs in E. coli results in (1) introduction of alkylation damage that is repaired by AlkB; (2) confers hypersensitivity to alkylating agents such as MMS (and exacerbated by loss of AlkB); (3) confers hypersensitivity to oxidative stress (H2O2 exposure); (4) results in a modest increase in ROS in the absence of exogenous H2O2 exposure; and (5) results in the production of oxidation products of 5mC, namely 5hmC and 5fC, leading to cellular toxicity. The findings reported here have interesting implications for the concept that such genotoxic and potentially mutagenic consequences of DNMT expression (resulting in 5mC) could be selectively disadvantageous for certain organisms. The other aspect of this work which is important for understanding the biological endpoints of genotoxic stress is the notion that DNA damage per se somehow induces elevated levels of ROS.

      Strengths:

      The manuscript is well-written, and the experiments have been carefully executed providing data that support the authors' proposed model presented in Fig. 7 (Discussion, sources of DNA damage due to DNMT expression).

      Weaknesses:

      (1) The authors have established an informative system relying on expression of DNMTs to gauge the effects of such expression and subsequent induction of 3mC and 5mC on cell survival and sensitivity to an alkylating agent (MMS) and exogenous oxidative stress (H2O2 exposure). The authors state (p4) that Fig. 2 shows that "Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to WT C2523, supporting the conclusion that the expression of DNMTs increased the levels of alkylation damage." This is a confusing statement and requires revision as Fig. 2 does ALL cells shown in Fig. 2 are expressing DNMTs and have been treated with MMS. It is the absence of AlkB and the expression of DNMTs that that causes the MMS sensitivity.

      (2) It would be important to know whether the increased sensitivity (toxicity) to DNMT expression and MMS is also accompanied by substantial increases in mutagenicity. The authors should explain in the text why mutation frequencies were not also measured in these experiments.

      (3) Materials and Methods. ROS production monitoring. The "Total Reactive Oxygen Species (ROS) Assay Kit" has not been adequately described. Who is the Vendor? What is the nature of the ROS probes employed in this assay? Which specific ROS correspond to "total ROS"?

      (4) The demonstration (Fig. 4) that DNMT expression results in elevated ROS and its further synergistic increase when cells are also exposed to H2O2 is the basis for the authors' discussion of DNA damage-induced increases in cellular ROS. S. cerevisiae does not possess DNMTs/5mC, yet exposure to MMS also results in substantial increases in intracellular ROS (Rowe et al, (2008) Free Rad. Biol. Med. 45:1167-1177. PMC2643028). The authors should be aware of previous studies that have linked DNA damage to intracellular increases in ROS in other organisms and should comment on this in the text.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present data demonstrating that optogenetic inhibition of either D1- or D2-MSNs in the NAc Shell attenuates expression of sensory-specific PIT while largely sparing value-based decision on an instrumental task. They also provide evidence that SS-PIT depends on D1-MSN projections from the NAc-Shell to the VP, whereas projections from D2-MSNs to the VP do not contribute to SS-PIT.

      Strengths:

      This is clearly written. The evidence largely supports the authors' interpretations, and these effects are somewhat novel, so they help advance our understanding of PIT and NAc-Shell function.

      Weaknesses:

      I think the interpretation of some of the effects (specifically the claim that D1-MSNs do not contribute to value-based decision making) is not fully supported by the data presented.

    1. Reviewer #3 (Public review):

      Summary:

      Wójcik and colleagues investigated how the maintenance of task information in working memory influences the dimensionality of task representations. The task required an exclusive-or (XOR) mapping as the output by combining stimulus features separated by a delay period. The authors found that context information invariant to input features (i.e., color) is maintained and enhanced over the course of learning the task.

      The significance of this study lies in its demonstration of how learning selectively changes the geometry of task representations. The clear-cut results emphasize that learning promotes the abstraction of task representations for context-dependent computations. It is also important to investigate how working memory mechanisms contribute to the geometry and optimization of task representations, as such studies in humans are scarce.

      Strengths:

      (1) The task design and analyses are clear.

      (2) The theoretical motivation to study low-dimensional representations and temporal decomposition is strong. Understanding how learning changes these qualities is a novel and important question.

      Weaknesses:

      (1) The specific contribution of working memory maintenance to the dimensionality and abstraction of representations is unclear. While the task likely recruits working memory, there are no direct assessments linking the observed results to particular qualities or mechanisms of working memory. In other words, neural representations observed during the delay period are interpreted as working memory.

      (2) The dissociation between XOR and motor representations is ambiguous, as they only become distinguishable during error trials. Additionally, they show similar time courses and learning-related changes.

    1. Reviewer #3 (Public review):

      The authors investigated SP-induced physiological and molecular changes in Djungarian hamsters and the endogenous recovery from it after circa half a year. The study aimed to elucidate the intrinsic mechanism and included nice experiments to distinguish between rheostatic effects on energy state and homeostatic cues driven by an interval timer. It also aimed to elucidate the role of Dio3 by introducing a targeted mutation in the MBH by ICV. The experiments and analyses are sound, and the amount of work is impressive. The impact of this study on the field of seasonal chronobiology is probably high.

      Even though the general conclusions are well-founded, I have fundamental criticism concerning 3 points, which I recommend revising:

      (1) The authors talk about a circannual interval timer, but this is no circannual timer. This is a circa-semiannual timer. It is important that the authors use precise wording throughout the manuscript.

      (2) The authors put their results in the context of clocks. For example, line 180/181 seasonal clock. But they have described and investigated an interval timer. A clock must be able to complete a full cycle endogenously (and ideally repeatedly) and not only half of it. In contrast, a timer steers a duration. Thus, it is well possible that a circannual clock mechanism and this circa-semiannual timer of photoperiodic species are 2 completely different mechanisms. The argumentation should be changed accordingly.

      (3) The authors chose as animal model the Djungarian hamster, which is a predominantly photoperiodic species and not a circannual species. A photoperiodic species has no circannual clock. That is another reason why it is difficult to draw conclusions from the experiment for circannual clocks. However, the Djungarian hamster is kind of "indifferent" concerning its seasonal timing, since a small fraction of them are indeed able to cycle (Anchordoquy HC, Lynch GR (2000), Evidence of an annual rhythm in a small proportion of Siberian hamsters exposed to chronic short days. J Biol Rhythms 15:122-125.). Nevertheless, the proportion is too small to suggest that the findings in the current study might reflect part of the circannual timing.

      Therefore, the authors should make a clear distinction between timers and clocks, as well as between circa-annual and circa-semiannual durations/periods.

    1. Reviewer #3 (Public review):

      In this work, Brown and colleagues report that the photosensor protein LITE-1 of the nematode C. elegans may also be a chemosensor that can be activated by high concentrations of the compound diacetyl. LITE-1 was described as a putative ion channel of the gustatory receptor family, which is mainly constituted by insect odorant receptors. These form tetrameric ion channels that can be activated by odorants. Specificity is achieved by forming heteromeric channels from three copies of the odorant receptor co-receptor (ORCO) and another subunit that resembles ORCO in the pore-forming C-terminus, but brings in a binding site for the respective odorant. LITE-1 has a very similar structure, according to Alphafold3 predictions, and also carries a binding pocket. In LITE-1, this was proposed to be occupied by a light-absorbing molecule that activates the channel when a photon is absorbed. Alternatively, compounds generated by absorption of high-energy photons may be formed in vivo and bound by the LITE-1 binding pocket. Koh et al. now demonstrate that another, non-light-activated compound, diacetyl, at high concentrations, can activate cells expressing LITE-1. Such (chemosensory) cells are also responsible for the avoidance of high concentrations of diacetyl. LITE-1 activation in excitable cells, i.e, muscles, causes strong body contraction and paralysis, and the authors show that this is also the case when diacetyl is presented. The authors further present molecular docking studies showing that diacetyl could occupy the binding pocket of LITE-1. Last, they show that another compound chemically resembling diacetyl, i.e., 2,3-pentanedione, can also induce avoidance in a LITE-1 dependent manner, though not as potently.

      The data are intriguing, and the demonstration of LITE-1 being a diacetyl chemosensor is interesting. Yet, there are a few questions arising that the authors should address.

      The authors identified mutants lacking diacetyl responses. In their chemotaxis assay (Figures 1A, B), they show that lite-1 mutants do not avoid high concentrations of diacetyl. However, the animals actually showed attraction, as the chemotaxis index was positive. If the lite-1 animals were insensitive, they should be indifferent, and the chemotaxis index should be close to zero. This means, other neurons contribute to the diacetyl response, and the result of these neurons being activated means/remains attraction? If so, the authors need to rule out any effects of these neurons on the effects they attribute to LITE-1 in the other assays.

      The effect of diacetyl on muscle cells (Figure 3C) is pretty rapid, i.e., already during 1 minute after application, the animals are almost maximally contracted. How fast is it really? Can the authors provide a time course with more time points during the first minute? This is a relevant question, as the compound would have to either pass the worm cuticle or enter through the gut and diffuse through the body to reach the muscle cells. Can one expect this to occur within (less than) a minute?

      In this context, the authors need to rule out that other mechanisms may be at play. E.g., diacetyl may be immediately sensed by ciliated chemosensory neurons that might release a signaling molecule that leads to activation of LITE-1 in muscles, or that sensitizes it somehow, responding to light used for filming animals. The authors should repeat this assay in a lite-1 mutant background. Furthermore, the authors tested unc-13 mutants to rule out indirect effects on the neurons recorded. Likewise, they should eliminate neuropeptide signaling via unc-31 mutants (a recent paper cited by the authors showed involvement of neuropeptide signaling in LITE-1-mediated light avoidance behavior). Last, to demonstrate that effects are not indirect in response to chemosensory neurons, the authors should repeat the contraction or swimming assay in a tax-4 mutant, which largely lacks chemosensation. This also applies to the chemotaxis assay. Animals should exhibit a chemotaxis index to diacetyl of zero, then.

      Does diacetyl activate other neurons expressing LITE-1? A number of cells express LITE-1 at high levels, which the authors have not tested (they restricted their analyses to chemosensory neurons). This is important to address because it leaves the possibility that LITE-1 requires a specific partner only present in these chemosensory neurons to detect diacetyl. This partner would have to be present also in muscles, where diacetyl could activate ectopically expressed LITE-1. According to CeNGEN scRNAseq data, cells expressing LITE-1 can be identified. The ADL and ASH neurons actually come up only at the lowest threshold, so some of the other cells showing much higher levels of LITE-1 mRNAs, i.e., AVG, ALM, PLM, ASG, PHA, PHB, AVM, RIF, or some pharyngeal neurons, should be tested. ASG was among the cells the authors recorded from, but this neuron did not show a response.

      The authors need to show that diacetyl responses of ADL and/or ASK can be rescued by expressing LITE-1 specifically in these neurons in a lite-1 mutant background.

      Molecular docking studies are not described in detail. How was this done? Diacetyl is a very small molecule. How well can docking algorithms assess this at all? Did the authors preselect the binding pocket, or did the algorithm sample the entire molecular surface of the LITE-1 model and end up with the binding pocket? The latter would be very convincing. The authors should provide control docking experiments with other molecules that caused avoidance in their hands (i.e. benzaldehyde, 2,4,5,trimethlythiazole, isoamyl alcohol, nonanone, octanone), but did not activate LITE-1. Also, they should try docking molecules related to diacetyl, and if there are some that do not dock under the same conditions, such molecules should be used in a behavioral experiment. Ideally, they should also not activate LITE-1. Examples could be, e.g., diacetyl monoxime or 2,4-pentanedione.

      Last, the authors should provide a PDB file with the docked diacetyl to allow readers to assess the binding for themselves. Since a large number of mutations of LITE-1 have been reported, it may be that amino acids shown to be essential for LITE-1 function are also required for diacetyl binding. If so, this could be backed up with an experiment.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Shivani Bodas et al. investigate the role of actin, actin-binding proteins, and microtubules in regulating the membrane-associated periodic skeleton (MPS) in neuronal axons. The MPS, first reported by Ke Xu et al. in 2013 (Science), has since been implicated in various neuronal functions, including mechanical support, axonal diameter control, axonal degeneration regulation, and spatial organization of signaling molecules. Given its biological importance, further elucidation of MPS assembly mechanisms is of considerable interest. However, I have concerns regarding the novelty and strength of the conclusions presented in this work. Many of the findings largely reiterate previously published observations, and the most novel conclusions are not fully substantiated by the data.

      Strengths:

      (1) The MPS represents a structurally and functionally important cytoskeletal system in neurons. Studies aimed at understanding its developmental mechanisms are biologically meaningful and potentially impactful.

      (2) The authors attempt to dissect MPS assembly during early neuronal development, a process that could offer mechanistic insight into how the MPS is established and maintained.

      Weaknesses:

      (1) Limited Novelty Across Results Sections:

      Of the seven Results sections, only one (Figure 6) and part of another (Figure 9) present data leading to relatively novel interpretations, specifically, the authors' claim that βII-spectrin is recruited to the axonal cortex via F-actin interactions as early as DIV1, followed by rearrangement into a periodic structure by DIV4. However, this conclusion is not fully supported (see below). The remaining results (Figures 1-5, 7, and 8) largely recapitulate findings reported in earlier studies and thus add limited new knowledge.

      (2) Insufficient Evidence for Early Recruitment and Rearrangement of βII-spectrin:

      The claim that βII-spectrin is recruited to the axonal cortex via F-actin interactions as early as at DIV 1 and subsequently reorganized into a periodic structure during DIV1-4 is central to the manuscript but lacks robust experimental support.

      On Page 17, Line 526, the authors the authors state that " To exclude cytoplasmic spectrin resulting from overexpression, only axons with low expression of βII spectrin-GFP were selected for the analysis". However, selecting for low expression alone does not guarantee the absence of cytoplasmic signal. Without volumetric imaging (e.g., 3D super-resolution imaging to see the cross section of axons), it is difficult to definitively conclude that the FRAP data (Figures 6 and 9) reflect cortical rather than cytoplasmic localization.

      Prior FRAP studies (Zhong et al., eLife 2014) observed minimal fluorescence recovery over 1800 seconds in axons expressing βII-spectrin-GFP at low levels, with faster recovery (~200-300 seconds) only evident under high expression conditions. The fast recovery kinetics (tens of seconds) reported in this manuscript could plausibly result from free diffusion of cytoplasmic βII-spectrin-GFP rather than cortical turnover.

      Furthermore, on Page 10, Line 310, the authors assert that endogenous βII-spectrin "is recruited early to the axonal cortex, followed by progressive establishment of periodic order". However, the STED images shown in Figure 1 do not convincingly distinguish between cortical and cytoplasmic pools.

      As such, the observed disordered βII-spectrin molecules, whether overexpressed or endogenous, could still represent a diffuse cytoplasmic population. An alternative and perhaps more parsimonious interpretation is that βII-spectrin is initially cytoplasmic and only later recruited and arranged into periodic structures at the cortex.

      (3) Use of Pharmacological Perturbations:

      Like many earlier studies, this manuscript relies heavily on pharmacological perturbation (e.g., cytoskeletal drugs) to assess the roles of actin, actin-binding proteins, and microtubules in MPS assembly. While this approach is widely used, it is important to acknowledge that such agents may have off-target effects. The manuscript would benefit from greater caution in interpreting these results, or better yet, the inclusion of genetic or optogenetic approaches to independently validate these findings.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Nishimura et al. examines the behavioural and neural mechanisms of stress-enhanced fear responding (SEFR) and stress-enhanced fear learning (SEFL). Groups of stressed (4 x shock exposure in a context) vs non-stressed (context exposure only) animals are compared for their fear of an unconditioned tone, and context, as well as their learning of new context fear associations. Shock of higher intensity led to higher levels of unlearned stress-enhanced fear expression. Immediate early gene analysis uncovered the PVT as a critical neural locus, and this was confirmed using fiber photometry, with stressed animals showing an elevated neural signal to an unconditioned tone. Using a gain and loss of function DREADDs methodology, the authors provide convincing evidence for a causal role of the PVT in SEFR.

      Strengths:

      (1) The manuscript uses critical behavioural controls (no stress vs stress) and behavioural parameters (0.25mA, 0.5mA, 1mA shock). Findings are replicated across experiments.

      (2) Dissociating the SEFR and SEFL is a critical distinction that has not been made previously. Moreover, this dissociation is essential in understanding the behavioural (and neural) processes that can go awry in fear.

      (3) Neural methods use a multifaceted approach to convincingly link the PVT to SEFR: from Fos, fiber photometry, gain and loss of function using DREADDs.

      Weaknesses:

      No weaknesses were identified by this reviewer; however, I have the following comments:

      A closer examination of the Test data across time would help determine if differences may be present early or later in the session that could otherwise be washed out when the data are averaged across time. If none are seen, then it may be worth noting this in the manuscript.

      Given the sex/gender differences in PTSD in the human population, having the male and female data points distinguished in the figures would be helpful. I assume sex was run as a variable in the statistics, and nothing came as significant. Noting this would also be of value to other readers who may wonder about the presence of sex differences in the data.

    1. Reviewer #3 (Public review):

      Male mice were tested in a classic behavioral "flee the looming stimulus" paradigm. This is a purely behavioral study; no neural analyses were done. Mice were housed socially, but faced the looming stimulus individually. Drift-diffusion modeling found that reward-level interacted with threat level such that at low-threat levels, reward contrasted with threat as classically expected (high reward overwhelms low threat, low threat overwhelms low reward), but that reward aligned with threat at higher threat levels.

      Note that they define threat level by the darkness of the looming stimulus. I am not sure that darker stimuli are more threatening to mice. But maybe. Figure 3 shows that mice react more quickly to high contrast looming stimuli, but can the authors distinguish between the ability to detect the visual signal from considering it a more dangerous threat? (The fact that vigilance makes a difference in the high contrast condition, not the low contrast condition, actually supports the author's hypotheses here.)

      The drift-diffusion model (DDM) is fine. I note that the authors included a "leakage rate", which is not a standard DDM parameter (although I like including it). I would have liked to see more about the parameters. What were the distributions? What did the parameters correlate with behaviorally? I would have liked to see distributions of the parameters under the different conditions and different animals. Figure 2C shows the progression of learning. How do the fit parameters change over time as mice shift from choice to choice? How do the parameters change over mice? How do the parameters change over distance to the threat/distance to safety (as per Fanselow and Lester 1988)? They did a supplemental experiment where the threat arrived halfway along the corridor - we could get a lot more detail about that experiment - how did it change the modeling?

      Overall, this is a reasonable study showing mostly unsurprising results. I think the authors could do more to connect the vigilance question to their results (which seems somewhat new to me).

      Although the data appear generally fine and the modeling reasonable, the authors do not do the necessary work to set themselves within the extensive literature on decision-making in mice retreating from threats.

      First of all, this is not a new paradigm; variants of this paradigm have been used since at least the 1980s. There is an *extensive* literature on this, including extensive theoretical work on the relation of fear and other motivational factors. I recommend starting with the classic Fanselow and Lester 1988 paper (which they cite, but only in passing), and the reviews by Dean Mobbs and Jeansok Kim, and by Denis Paré and Greg Quirk, which have explicit theoretical proposals that the authors can compare their results to. I would also recommend that the authors look into the "active avoidance" literature. Moreover, to talk about a mouse running from a looming stimulus without addressing the other "flee the predator" tasks is to miss a huge space for understanding their results. Again, I would start with the reviews above, but also strongly urge the authors to look at the Robogator task (work by June-Seek Choi and Jeansok Kim, work by Denis Paré, and others).

      Similarly, in their anatomical review, they do not mention the amygdala. Given the extensive literature on the role of the amygdala in retreating from danger, both in terms of active avoidance and in terms of encoding the danger itself, it would surprise me greatly if this behavior does not involve amygdala processing. (If there is evidence that the amygdala does not play a role here, but that the superior colliculus does, then that would be a *very* important result that needs to be folded into our understanding of decision-making systems and neural computational processing.)

      Second, there is an extensive economic literature on non-human animals in general and on rodents in particular. Again, the authors seem unaware of this work, which would provide them with important data and theories to broaden the impact of their results (by placing them within the literature). First, there are explicit economic literatures in terms of positively-valenced conflicts (e.g., neuroeconomics within the primate literature, sequential foraging and delay-discounting tasks within the rodent literature), but also there is a long history within the rodent conditioning world, such as the classic work by Len Green and Peter Shizgal. I would strongly urge the authors to explore the motivational conflict literature by people like Gavin McNally, Greg Quirk, and Mark Andermann. Again, putting their results into this literature will increase the impact of their experiment and modeling.

    1. Reviewer #3 (Public review):

      Summary

      This study investigates how task components can be learned and transferred across different task contexts. The authors designed two consecutive sequence learning tasks, in which complex image sequences were generated from the combination of two graph-based structural "building blocks". One of these components was shared between the prior and transfer task environments, allowing the authors to test compositional transfer. Behavioral analyses using generalized linear models (GLMs) assessed participants' sensitivity to the underlying structure. MEG data were recorded and analyzed using classifications and feature representational similarity analysis (RSA) to examine whether neural similarity increased for stimuli sharing the same relational structure. The paper aims to uncover the neural dynamics that support compositional transfer during learning.

      Strengths and weaknesses

      I found the methods and task design of this paper difficult to follow, particularly the way stimuli were constructed and how the experimental sequences were generated from the graph structures. These aspects would be hard to replicate without some clarification. I appreciate the integration of behavioral and neuroimaging data. The overall approach, especially the use of compositional graph structures in sequence learning, is interesting and could be used and revised in further studies in compositionality and transfer learning. I appreciated the authors' careful interpretation of their findings in the discussion. However, I would have liked a similar level of caution in the abstract, which currently overstates some claims.

      Major Comments:

      (1) While the introduction mentions brain areas implicated in the low-dimensional representation of task knowledge, the current study uses M/EEG and does not include source reconstruction. As a result, the focus is primarily on the temporal dynamics of the signal rather than its spatial origins. Although I am not suggesting that the authors should perform source reconstruction in this study, it would strengthen the paper to introduce the broader M/EEG literature on task-relevant representations and transfer. The same applies to behavioral studies looking at structural similarities and transfer learning. I encourage the authors to integrate relevant literature to better contextualize their results.

      Duan, Y., Zhan, J., Gross, J., Ince, R. A. & Schyns, P. G. Pre-frontal cortex guides dimension-reducing transformations in the occipito-ventral pathway for categorization behaviors. Current Biology 34, 3392-3404 (2024).

      Luyckx, F., Nili, H., Spitzer, B. & Summerfield, C. Neural structure mapping in human probabilistic reward learning. eLife 8, e42816 (2019). (This is in the references but not in the text).

      Zhang, M. & Yu, Q. The representation of abstract goals in working memory is supported by task-congruent neural geometry. PLoS biology 22, e3002461 (2024).

      L. Teichmann, T. Grootswagers, T. Carlson, A.N. Rich Decoding digits and dice with magnetoencephalography: evidence for a shared representation of magnitude Journal of cognitive neuroscience, 30 (7) (2018), pp. 999-1010

      Garner, K., Lynch, C. R. & Dux, P. E. Transfer of training benefits requires rules we cannot see (or hear). Journal of Experimental Psychology: Human Perception and Performance 42, 1148 (2016).

      Holton, E., Braun, L., Thompson, J., Grohn, J. & Summerfield, C. Humans and neural networks show similar patterns of transfer and interference during continual learning (2025).

      (2) I found it interesting that the authors chose to perform PCA for dimensionality reduction prior to conducting RSA; however, I haven't seen such an approach in the literature before. It would be helpful to either cite prior studies that have employed a similar method or to include a comparison with more standard approaches, such as sensor-level RSA or sensor-searchlight analysis.

      (3) Connected to the previous point, the choice to use absolute distance as a dissimilarity measure is not justified. How does it compare to standard metrics such as correlation distance or Mahalanobis distance? The same applies to the use of Kendall's tau.

      (4) The analysis described in the "Abstract representation of dynamical roles in subprocesses" does not appear to convincingly test the stated prediction of a structural scaffolding account. The authors hypothesize that if structure and dynamics from prior experiences are repurposed, then stimuli occupying the same "dynamical roles" across different sequences should exhibit enhanced neural similarity. However, the analysis seems to focus on decoding transitions rather than directly assessing representational similarity. Rather, this approach may reflect shared temporal representation in the sequences without necessarily indicating that the neural system generalizes the abstract function or position of a stimulus within the graph. To truly demonstrate that the brain captures the dynamical role across different stimuli, it would be more appropriate to directly assess whether neural patterns evoked by stimuli, in the same temporal part of the sequence, with shared roles (but different visual identities) are more similar to each other than to those from different roles.

      (5) In the following section, the authors correlate decoding accuracy with participants' behavioral performance across different conditions. However, out of the four reported correlations and the additional comparison of differences between conditions, only one correlation and one correlation difference reach significance, and only marginally so. The interpretation of this finding should therefore be more cautious, especially if it is used to support a link between neural representations and behavior. Additionally, it is possible that correlation with a more clearly defined or targeted neural signature, more directly tied to the hypothesized representational content, could yield stronger or more interpretable correlations.

      Minor Comments:

      During preprocessing, sensors were excluded based on an identified noise level. However, the authors do not specify the threshold used to define this noise level, nor do they report how many sensors were excluded per participant. It would be helpful to have these details. Additionally, it is unclear why the authors opted to exclude sensors rather than removing noise with MaxFiltering or interpolating bad sensors. Finally, the authors should report how many trials were discarded on average (and standard deviation) per participant.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper the authors conduct two experiments an fMRI experiment and intracranial recordings of neurons in two patients P1 and P2. In both experiments, they employ a SSVEP paradigm in which they show images at a fast rate (e.g. 6Hz) and then they show face images at a slower rate (e.g. 1.2Hz), where the rest of the images are a variety of object images. In the first patient, they record from neurons over a region in the mid fusiform gyrus that is face-selective and in the second patient, they record neurons from a region more medially that is not face selective (it responds more strongly to objects than faces). Results find similar selectivity between the electrophysiology data and the fMRI data in that the location which shows higher fMRI to faces also finds face-selective neurons and the location which finds preference to non faces also shows non face preferring neurons.

      Strengths:

      The data is important in that it shows that there is a relationship between category selectivity measured from electrophysiology data and category-selective from fMRI. The data is unique as it contains a lot of single and multiunit recordings (245 units) from the human fusiform gyrus - which the authors point out - is a humanoid specific gyrus.

      Weaknesses:

      My major concerns are two-fold: (i) There is a paucity of data; Thus, more information (results and methods) is warranted; and in particular there is no comparison between the fMRI data and the SEEG data.

      (ii) One main claim of the paper is that there is evidence for suppressed responses to faces in the non-face selective region. That is, the reduction in activation to faces in the non-face selective region is interpreted as a suppression in the neural response and consequently the reduction in fMRI signal is interpreted as suppression. However, the SSVEP paradigm has no baseline (it alternates between faces and objects) and therefore it cannot distinguish between lower firing rate to faces vs suppression of response to faces.

      (1) Additional data: the paper has 2 figures: figure 1 which shows the experimental design and figure 2 which presents data, the latter shows one example neuron raster plot from each patient and group average neural data from each patient. In this reader's opinion this is insufficient data to support the conclusions of the paper. The paper will be more impactful if the researchers would report the data more comprehensively.

      (a) There is no direct comparison between the fMRI data and the SEEG data, except for a comparison of the location of the electrodes relative to the statistical parametric map generated from a contrast (Fig 2a,d). It will be helpful to build a model linking between the neural responses to the voxel response in the same location - i.e., estimate from the electrophysiology data the fMRI data (e.g. Logothetis & Wandell, 2004)

      (b) More comprehensive analyses of the SSVEP neural data: It will be helpful to show the results of the frequency analyses of the SSVEP data for all neurons to show that there are significant visual responses and significant face responses. It will be also useful to compare and quantify the magnitude of the face responses compared to the visual responses.

      (c) The neuron shown in E shows cyclical responses tied to the onset of the stimuli, is this the visual response? If so, why is there an increase in the firing rate of the neuron before the face stimulus is shown in time 0? The neuron's data seems different than the average response across neurons; This raises a concern about interpreting the average response across neurons in panel F which seems different than the single neuron responses

      (d) Related to (c) it would be useful to show raster plots of all neurons and quantify if the neural responses within a region are homogeneous or heterogeneous. This would add data relating the single neuron response to the population responses measured from fMRI. See also Nir 2009.

      (e) When reporting group average data (e.g., Fig 2C,F) it is necessary to show standard deviation of the response across neurons.

      (f) Is it possible to estimate the latency of the neural responses to face and object images from the phase data? If so, this will add important information on the timing of neural responses in the human fusiform gyrus to face and object images.

      (g) Related to (e) In total the authors recorded data from 245 units (some single units and some multiunits) and they found that both in the face and nonface selective most of the recoded neurons exhibited face -selectivity, which this reader found confusing: They write " Among all visually responsive neurons, we 87 found a very high proportion of face-selective neurons (p < 0.05) in both activated 88 and deactivated MidFG regions (P1: 98.1%; N = 51/52; P2: 86.6%; N = 110/127)'. Is the face selectivity in P1 an increase in response to faces and P2 a reduction in response to faces or in both it's an increase in response to faces

      (1) Additional methods (a) it is unclear if the SSVEP analyses of neural responses were done on the spikes or the raw electrical signal. If the former, how is the SSVEP frequency analysis done on discrete data like action potentials? (b) it is unclear why the onset time was shifted by 33ms; one can measure the phase of the response relative to the cycle onset and use that to estimate the delay between the onset of a stimulus and the onset of the response. Adding phase information will be useful.

      (2) Interpretation of suppression:

      The SSVEP paradigm alternates between 2 conditions: faces and objects and has no baseline; In other words, responses to faces are measured relative to the baseline response to objects so that any region that contains neurons that have a lower firing rate to faces than objects is bound to show a lower response in the SSVEP signal. Therefore, because the experiment does not have a true baseline (e.g. blank screen, with no visual stimulation) this experimental design cannot distinguish between lower firing rate to faces vs suppression of response to faces. The strongest evidence put forward for suppression is the response of non-visual neurons that was also reduced when patients looked at faces, but since these are non-visual neurons, it is unclear how to interpret the responses to faces.

      Comments on revisions:

      In the revision, the authors added information and answered several of the main questions. Several points remain unanswered because the authors would like to publish a short format paper here, and suggest that answering these questions is outside the scope of the paper. The authors would like to leave some of the more detailed analyses for a subsequent longer paper.

    1. Reviewer #3 (Public review):

      The authors want to prove that there is a redox potential between germline stem cells and somatic cyst stem cells in the Drosophila testis, with ROS being higher in the former compared to the latter. They also want to prove that ROS travels from CySCs to GSCs. Finally, they begin to characterize the phenotypes cause by loss of SOD (The function of SOD is to lower ROS levels, and depletion of SOD increases ROS levels) in the tj-Gal4 lineage and how this impacts the germline.

      The authors fall short of accomplished their goals in the revised manuscript. There are issues with the concept of the paper (ROS gradient between cells that causes a transfer of ROS across membranes for homeostasis) as this is not supported by the data. In Fig. 1N (tj-SODi), one can see that all of gst-GFP resides within the differentiating somatic cells and none is in the germ cells. Furthermore, the information provided in the materials and methods about quantification of gst-GFP is not sufficient. Focusing on Dlg staining is not sufficient. They need to quantify the overlap of Vasa (a cytoplasmic protein in GSCs) with GFP. I interpret their results as the following: (1) depletion of SOD from somatic support cells leads to autonomous increases in ROS activity; (2) the increase somatic ROS is not transferred to the germline. Instead increase somatic ROS perturbs homeostasis of the somatic linage. As such, the entire premise of the paper is greatly weakened. Additionally, since tj-gal4 is active in hub cells, it is not clear whether the effects of SOD depletion also arise from perturbation of niche cells. These weaknesses negatively impact the conclusions put forward by the authors. As I wrote in my first critique, their data is not compelling: there is no evidence provide by the authors that ROS diffuses from CySCs to GSCs as most of the claims about stem cells is founded on data about differentiating germ and somatic cells.

      There are still many issues about the paper apart from the weak premise. First, the authors are studying a developmental affect, rather than an adult phenotype. Second, the characterization of the somatic lineage is incomplete. It appears that high ROS in the somatic lineage autonomously decreases MAP kinase signaling and increases Hh signaling. They assume that the MAPK signaling is due to changes in Egfr activity but there are other tyrosine kinases active in CySCs, including PVR/VEGFR (PMID: 36400422), that impinge on MAPK. In any event, their results are puzzling because lower Egfr should reduce CySC self-renewal and CySC number (Amoyel, 2016) and the ability of cyst cells to encapsulate gonialblasts (Lenhart Dev Cell 2015). The increased Hh should increase CySC number and the ability of CySCs to outcompete GSCs. The fact that the average total number of GSCs declines in tj>SODi testes suggests that high ROS CySCs are indeed outcompeting GSCs. However, as I wrote in my first critique, the characterization of the high ROS soma is incomplete. And the role of high ROS in the hub cells is acknowledged but not investigated.

      (1) Concept: The authors still do not describe why would it be important to have a redox gradient across adjacent cells. The paragraph in the introduction (lines 62-76) mentions autonomous ROS levels in stem cells, not the transfer of ROS from one cell to another. And this paragraph is confusing because it starts with the (inaccurate) statement all stem cells have low ROS and then they discuss ISCs, which have high ROS.

      (2) Issues with scholarship of the testis. While there has been an improvement in the scholarship of the testis, there are still places where the correct paper is not cited.

      a. Lines 80-82 - cite Roach and Lenhart Dev 2024.

      b. Lines 86-88. They is no real evidence for concerted division of GSCs and CySCs. In fact, the Dinardo has shown that these stem cells do not divide synchronously (Lenhart and Dinardo, Dev Cell 2015).

      (3) Issues with the text;

      a. Lines 194-196 - The authors need to cite Tan 2017 (PMID: 28669604) who have already published a paper about what excess ROS does to the GSC lineage.

      b. Lines 210-211 - STAT drives expression of ECad. Socs36E and Ptp61F do not drive Ecad. Please correct.

      c. Line 225 "uncontrolled proliferation" is an overstatement and should be toned down.

      d. Line 237 - Hh-RNAi does not reduce gene dosage (as the authors have written) but it presumably depletes hh mRNAs levels in hub cells and CySCs.

      e. Line 147 - C587-Gal4 on its own should not cause a reduction in GSCs. This sentence should be corrected.

      f. Lines 177 - why would the authors predict that increasing ROS in GSCs using nos-Gal4 would non-autonomously affect CySCs? The logic is not clear. Please explain.

      g. Line 291-293 - this sentence make no sense. Please revise.

    1. Reviewer #3 (Public review):

      Summary:

      These investigators have previously shown important roles for either insulin receptor (IR) or insulin-like growth factor receptor (IGF1R) in glomerular podocyte function. They now have studied mice with deletion of both receptors and find significant podocyte dysfunction. They then made a podocyte cell line with inducible deletion of both receptors and find abnormalities in transcriptional efficiency with decreased expression of spliceosome proteins and increased transcripts with impaired splicing or premature termination.

      The studies appear to be performed well and the manuscript is clearly written.

      There are a number of potential issues and questions with these studies.

      (1) For the in vivo studies, the only information given is for mice at 24 weeks of age. There needs to be a full time course of when the albuminuria was first seen and the rate of development. Also, GFR was not measured. Since the podocin-Cre utilized was not inducible, there should be a determination of whether there was a developmental defect in glomeruli or podocytes. Were there any differences in wither prenatal post natal development or number of glomeruli?

      (2) Although the in vitro studies are of interest, there are no studies to determine if this is the underlying mechanism for the in vivo abnormalities seen in the mice. Cultured podocytes may not necessarily reflect what is occurring in podocytes in vivo.

      (3) Given that both receptors are deleted in the podocyte cell line, it is not clear if the spliceosome defect requires deletion of both receptors or if there is redundancy in the effect. The studies need to be repeated in podocyte cell lines with either IR or IGFR single deletions.

      (4) There are no studies investigating signaling mechanisms mediating the spliceosome abnormalities.

      Comments on revision plan:

      I do not have any changes from my prior review. I applaud the authors for developing a plan to address the questions and concerns raised in my prior review.

    1. Reviewer #3 (Public review):

      Summary:

      The authors review published literature and propose that a visual cortical region in the mouse that is widely considered to contain multiple visual areas should be considered a single visual area.

      Strengths:

      The authors point out that relatively new data showing reversals of visual-field sign within known, single visual areas of some species require that a visual field sign change by itself should not be considered evidence for a border between visual areas.

      Weaknesses:

      The existing data are not consistent with the authors' proposal to consolidate multiple mouse areas into a single "V2". This is because the existing definition of a single area is that it cannot have redundant representations of the visual field. The authors ignore this requirement, as well as the data and definitions found in published manuscripts, and make an inaccurate claim that "higher order visual areas in the mouse do not have overlapping representations of the visual field". For quantification of the extent of overlap of representations between 11 mouse visual areas, see Figure 6G of Garrett et al. 2014. [Garrett, M.E., Nauhaus, I., Marshel, J.H., and Callaway, E.M. (2014). Topography and areal organization of mouse visual cortex. The Journal of neuroscience 34, 12587-12600. 10.1523/JNEUROSCI.1124-14.2014.

    1. Reviewer #3 (Public review):

      Summary:

      This study by Gangadharan and colleagues seeks to establish a quantitative biochemical model for the microtubule polymerase activity of Stu2. Stu2 is the budding yeast member of the XMAP215 protein family, which is broadly conserved across eukaryotes. XMAP215 proteins play a wide variety of important roles in cells, and these are attributed to effects on microtubule dynamics. Many studies over the last ~20 years have shown that XMA215 proteins selectively associate with microtubule ends, where they increase rates of microtubule assembly and disassembly. More recently, structural biology and biochemical studies by the authors and other groups have shown that the multiple TOG domains on XMAP215 proteins are tubulin-binding domains that selectively bind to curved tubulin, which is present in solution and at microtubule ends, but not to straight tubulin which is present in the walls of the microtubule lattice. This has led to the general model that XMAP215 proteins promote polymerization by delivering soluble tubulin to the growing plus end, and two distinct models have been proposed to explain the mechanism. The 'concentrating reactants' model proposed previously by the authors suggests that TOG domains grab hold of tubulin in solution and concentrate at the microtubule end. The 'polarized unfurling' model proposed by the Al Bassam lab suggests that XMAP215 delivers multiple tubulins to the end, using a step-wise mechanism involving different roles for each TOG domain. The current study seeks to improve our understanding of the mechanism by developing a quantitative model to explain the binding and release of tubulins, the number of Stu2 molecules at the end, and the overall rate of tubulin addition. The authors accomplish this goal using new experimental data. The final model fills in new details of the mechanism. The authors draw a comparison between Stu2 and the actin polymerase, which bears similarity to Ena/VASP, and suggest a convergent strategy for cytoskeletal polymerases.

      Strengths:

      This is a focused and clearly written study that incorporates prior knowledge of XMAP215 and draws inspiration from the actin field. The data are clear and convincing, and the study accomplishes its goal of generating a new, quantitative model for Stu2. The model will be important for microtubule researchers to predict and test key points for altering XMAP215 activity across different organisms and potentially for different tubulin substrates. The comparison to Ena/VASP may also inspire similar comparisons across other microtubule and actin regulators, which could lead to new insights across the cytoskeletal fields.

      Weaknesses:

      The study is without major weaknesses, but there are several minor weaknesses worth noting. One is that the final model provides new details regarding the Stu2 mechanism, but does not provide a major new advance in our understanding of how the polymerase works. For example, the discussion does not clearly argue for whether the new results and model rule out either of the prior models. This appears consistent with the 'concentrating reactants' model, but does it clearly rule out the 'polarized unfurling' model? A second minor weakness is that the comparison to Ena/VASP is not developed at a deep level based on the final model. I found these ideas exciting and want more critical consideration here, but perhaps it is better suited for a commentary piece to follow.

    1. Reviewer #3 (Public review):

      Summary:

      By expressing protein in a strain that is unable to phosphorylate KdpFABC, the authors achieve structures of the active wild-type protein, capturing a new intermediate state, in which the terminal phosphoryl group of ATP has been transferred to a nearby Asp, and ADP remains covalently bound. The manuscript examines the coupling of potassium transport and ATP hydrolysis by a comprehensive set of mutants. The most interesting proposal revolves around the proposed binding site for K+ as it exits the channel near T75. Nearby mutations to charged residues cause interesting phenotypes, such as constitutive uncoupled ATPase activity, leading to a model in which lysine residues can occupy/compete with K+ for binding sites along the transport pathway.

      Strengths:

      Although this structure is not so different from previous structures, its high resolution (2.1 Å) is impressive and allows the resolution of many new densities in the potassium transport pathway. The authors are judicious about assigning these as potassium ions or water molecules, and explain their structural interpretations clearly. In addition to the nice structural work, the mechanistic work is thorough. A series of thoughtful experiments involving ATP hydrolysis/transport coupling under various pH and potassium concentrations bolsters the structural interpretations and lends convincing support to the mechanistic proposal.

      Weaknesses:

      The structures are supported by solid membrane electrophysiology. These data exhibit some weaknesses, including a lack of information to assess the rigor and reproducibility (i.e., the number of replicates, the number of sensors used, controls to assess proteoliposome reconstitution efficiency, and the stability of proteoliposome absorption to the sensor).

    1. Reviewer #3 (Public review):

      Summary:

      This study presents a useful computational tool, termed FLiSimBA. The MATLAB-based FLiSimBA simulations allow users to examine the effects of various noise factors (such as autofluorescence, afterpulse of the photomultiplier tube detector, and other background signals) and varying sensor expression levels. Under the conditions explored, the simulations unveiled how these factors affect the observed lifetime measurements, thereby providing useful guidelines for experimental designs. Further simulations with two distinct fluorophores uncovered conditions in which two different lifetime signals could be distinguished, indicating multiplexed dynamic imaging may be possible.

      Strengths:

      The simulations and their analyses were done systematically and rigorously. FliSimba can be useful for guiding and validating fluorescence lifetime imaging studies. The simulations could define useful parameters such as the minimum number of photons required to detect a specific lifetime, how sensor protein expression level may affect the lifetime data, the conditions under which the lifetime would be insensitive to the sensor expression levels, and whether certain multiplexing could be feasible.

      Weaknesses:

      The analyses have relied on a key premise that the fluorescence lifetime in the system can be described as a two-component discrete exponential decay. This means that the experimenter should ensure that this is the right model for their fluorophores a priori.

    1. Reviewer #3 (Public review):

      Summary:

      Mancl et al. report four Cryo-EM structures of glycosylated and soluble Angiotensin-I converting enzyme (sACE) dimer. This moves forward the structural understanding of ACE, as previous analysis yielded partially denatured or individual ACE domains. By performing a heterogeneity analysis, the authors identify three structural conformations (open, intermediate open, and closed) that define the openness of the catalytic chamber and structural features governing the dimerization interface. They show that the dimer interface of soluble ACE consists of an N-terminal glycan and protein-protein interaction regions, as well as C-terminal protein-protein interactions. Further heterogeneity mining and all-atom molecular dynamic simulations show structural rearrangements that lead to the opening and closing of the catalytic pocket, which could explain how ACE binds its substrate. These studies could contribute to future drug design targeting the active site or dimerization interface of ACE.

      Strengths:

      The authors make significant efforts to address ACE denaturation on cryo-EM grids, testing various buffers and grid preparation techniques. These strategies successfully reduce denaturation and greatly enhance the quality of the structural analysis. The integration of cryoDRGN, 3DVA, RECOVAR, and all-atom simulations for heterogeneity analysis proves to be a powerful approach, further strengthening the overall experimental methodology.

      Weaknesses:

      No weaknesses noted.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript "Mitochondrial 1 protein FgDML1 regulates DON toxin biosynthesis and cyazofamid sensitivity in Fusarium graminearum by affecting mitochondrial homeostasis" describes the construction of a null mutant for the FgDML1 gene in F. graminearum and assays characterising the effects of this mutation on the pathogen's infection process and lifecycle. While FgDML1 remains underexplored with an unclear role in the biology of filamentous fungi, and although the authors performed several experiments, there are fundamental issues with the experimental design and execution, and interpretation of the results.

      Strengths:

      FgDML1 is an interesting target, and there are novel aspects in this manuscript. Studies in other organisms have shown that this protein plays important roles in mitochondrial DNA (mtDNA) inheritance, mitochondrial compartmentalisation, chromosome segregation, mitochondrial distribution, mitochondrial fusion, and overall mitochondrial dynamics. Indeed, in Saccharomyces cerevisiae, the mutation is lethal. The authors have carried out multi-faceted experiments to characterise the mutants.

      Weaknesses:

      However, I have concerns about how the study was conceived. Given the fundamental importance of mitochondrial function in eukaryotic cells and how the absence of this protein impacts these processes, it is unsurprising that deletion of this gene in F. graminearum profoundly affects fungal biology. Therefore, it is misleading to claim a direct link between FgDML1 and DON toxin biosynthesis (and virulence), as the observed effects are likely indirect consequences of compromised mitochondrial function. In fact, it is reasonable to assume that the production of all secondary metabolites is affected to some extent in the mutant strains and that such a strain would not be competitive at all under non-laboratory conditions. The order in which the authors present the results can be misleading, too. The results on vegetative growth rate appeared much later in the manuscript, which should have come first, as the FgDML1 mutant exhibited significant growth defects, and subsequent results should be discussed in that context. Moreover, the methodologies are not described properly, making the manuscript hard to follow and difficult to replicate.

    1. Reviewer #3 (Public review):

      Summary:

      Borghi and colleagues present results from 4 experiments aimed at investigating the effects of dual <sub>γ</sub>tACS and iTBS stimulation of the precuneus on behavioral and neural markers of memory formation. In their first experiment (n = 20), they find that a 3-minute offline (i.e., prior to task completion) stimulation that combines both techniques leads to superior memory recall performance in an associative memory task immediately after learning associations between pictures of faces, names, and occupation, as well as after a 15-minute delay, compared to iTBS alone (+ tACS sham) or no stimulation (sham for both iTBS and tACS). Performance in a second task probing short-term memory was unaffected by the stimulation condition. In a second experiment (n = 10), they show that these effects persist over 24 hours and up to a full week after initial stimulation. A third (n = 14) and fourth (n = 16) experiment were conducted to investigate neural effects of the stimulation protocol. The authors report that, once again, only combined iTBS and <sub>γ</sub>tACS increases gamma oscillatory activity and neural excitability (as measured by concurrent TMS-EEG) specific to the stimulated area at the precuneus compared to a control region, as well as precuneus-hippocampus functional connectivity (measured by resting state MRI), which seemed to be associated with structural white matter integrity of the bilateral middle longitudinal fasciculus (measured by DTI).

      Strengths:

      Combining non-invasive brain stimulation techniques is a novel, potentially very powerful method to maximize the effects of these kinds of interventions that are usually well-tolerated and thus accepted by patients and healthy participants. It is also very impressive that the stimulation-induced improvements in memory performance resulted from a short (3 min) intervention protocol. If the effects reported here turn out to be as clinically meaningful and generalizable across populations as implied, this approach could represent a promising avenue for treatment of impaired memory functions in many conditions.

      Methodologically, this study is expertly done! I don't see any serious issues with the technical setup in any of the experiments. It is also very commendable that the authors conceptually replicated the behavioral effects of experiment 1 in experiment 2 and then conducted two additional experiments to probe the neural mechanisms associated with these effects. This certainly increases the value of the study and the confidence in the results considerably.

      The authors used a within-subject approach in their experiments, which increases statistical power and allows for stronger inferences about the tested effects. They also used to individualize stimulation locations and intensities, which should further optimize the signal-to-noise ratio.

      Weaknesses:

      I think one of the major weaknesses of this study is the overall low sample size in all of the experiments (between n = 10 and n = 20). This is, as I mentioned when discussing the strengths of the study, partly mitigated by the within-subject design and individualized stimulation parameters. The authors mention that they performed a power analysis but this analysis seemed to be based on electrophysiological readouts similar to those obtained in experiment 3. It is thus unclear whether the other experiments were sufficiently powered to reliably detect the behavioral effects of interest. In the revised manuscript, the authors provide post-hoc sensitivity analyses that help contextualize the strength of the findings.

      While the authors went to great lengths trying to probe the neural changes likely associated with the memory improvement after stimulation, it is impossible from their data to causally relate the findings from experiments 3 and 4 to the behavioral effects in experiments 1 and 2. This is acknowledged by the authors and there are good methodological reasons for why TMS-EEG and fMRI had to be collected in separate experiments, but readers should keep in mind that this limits inferences about how exactly dual iTBS and <sub>γ</sub>tACS of the precuneus modulate learning and memory.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript shows the mechanism of action of quinofumelin, a novel fungicide, against the fungus Fusarium graminearum. Through omics analysis, phenotypic analysis and in silico approaches, the role of quinofumelin in targeting DHODH is uncovered.

      Strengths:

      The phenotypic analysis and mutant generation are nice data and add to the role of metabolites in bypassing pyrimidine biosynthesis.

      Weaknesses:

      The role of DHODH in this class of fungicides has been known and this data does not add any further significance to the field.

    1. Reviewer #3 (Public review):

      In the study, the authors performed longitudinal 1P calcium imaging of mouse mPFC across 8 weeks during learning of an olfactory-guided task, including habituation, training, and sleep periods. The task had 3 arms. Odor was sampled at the end of the middle arm (named the "Sample" period). The animal then needed to run to one of the two other arms (R or L) based on the odor. The whole period until they reached the end of one of the choice arms was the "Outward" period. The time at the reward end was the "Reward" period. They noted several changes from the learning condition to the learned condition (there are some questions for the authors interspersed):

      (1) They classified cells in a few ways. First, each cell was classified as SI (spatially informative) if it had significantly more spatial information than shuffled activity, and ~50% of cells ended up being SI cells. Then, among the SI cells, they classified a cell as a TC (task cell) if it had statistically similar activity maps for R versus L arms, and a GC (goal arm cell) otherwise. Note that there are 4 kinds of these cells: outer arm TCs and GCs, and middle arm TCs and GCs (with middle arm GCs essentially being like "splitter cells" since they are not similarly active in the middle arm for R versus L trials). There was an increase in TCs from the learning to the learned condition sessions.

      (2) They analyze activity sequences across cells. They extracted 500 ms duration bursts (defined as periods of activity > 0.5 standard deviations over what I assume is the mean - if so, the authors can add "over the mean" to the burst definition in the methods). They first noted that the resulting "Burst rates were significantly larger during behavioral epochs than during sleep and during periods of habituation to the arena", and "Moreover, burst rates during correct trials were significantly lower than during error trials". For the sequence analysis, they only considered bursts consisting of at least 5 active cells. A cell's activity within the burst was set to the center of mass of calcium activity. Then they took all the sequences from all learned and learning sessions together and hierarchically clustered them based on Spearman's rank correlation between the order of activity in each pair of sequences (among the cells active in both). The iterative hierarchical clustering process produces groups (clusters) of sequences such that there are multiple repeats of sequences within a cluster. Different sequences are expressed across all the longitudinally recorded sessions. They noted "large differences of sequence activation between learning and learned condition, both in the spatial patterns (example animal in Figure 3D) and the distribution of the sequences (Figures 3D, E). Rastermap plots (Figure 3D) also reveal little similarity of sequence expression between task and habituation or sleep condition." They also note that the difference in the sequences between learning and learned conditions was larger than the difference between correct and error trials within each condition. They conclude that during task learning, new representations are established, as measured by the burst sequence content. They do additional analyses of the sequence clusters by assessing the spatial informativeness (SI) of each sequence cluster. Over learning, they find an increase in clusters that are spatially informative (clusters that tend to occur in specific locations). Finally, they analyzed the SI clusters in a similar manner to SI cells and classified them as task phase selective sequences (TSs) and goal arm selective sequences (GSs), and did some further analysis. However, they themselves conclude that the frequency of TSs and GSs is limited (I believe because most sequence clusters were non-SI - the authors can verify this and write it in the text?). In the discussion, they say, "In addition to GSs and TSs, we found that most of the recurring sequences are not related to behavior".

      (3) As an alternative to analyzing individual cells and sequences of individual cells, they then look for trajectory replay using Bayesian population decoding of location during bursts. They analyze TS bursts, GS bursts, and non-SI bursts. They say "we found correlations of decoded position with time bin (within a 500 ms burst) strongly exceeding chance level only during outward and reward phase, for both GSs and TSs (Fig 4H)." Figure 4H shows distributions indicating statistically significant bias in the forward direction (using correlations of decoded location versus time bin across 10 bins of 50 ms each within each 500-ms burst). They find that the Outward trajectories appear to reflect the actual trajectory during running itself, so they are likely not replay. But the sequences at the Reward are replay as they do not reflect the current location. Furthermore, replay at the Reward is in the forward direction (unlike the reverse replay at Reward seen in the hippocampus), and this replay is only seen in the learned and not the learning condition. At the same time, they find that replay is not seen during odor Sampling, from which they conclude there is no evidence of replay used for planning. Instead, they say the replay at the Reward could possibly be for evaluation during the Reward phase, though this would only be for the learned condition. They conclude "Together with our finding of strong changes in sequence expression after learning (Figure 3E) these findings suggest that a representation of task develops during learning, however, it does not reflect previous network structure." I am not sure what is meant here by the second part of this sentence (after "however ..."). Is it the idea that the replay represents network structure, and the lack of Reward replay in the learning condition means that the network structure must have been changed to get to the learned condition? Please clarify.

      This study provides valuable new information about the evolution of mPFC activity during the learning of an odor-based 2AFC T-maze-like task. They show convincing evidence of changes in single-cell tuning, population sequences, and replay events. They also find novel forward replay at the Reward, and find that this is present only after the animal has learned the task. In the discussion, the authors note "To our knowledge, this study identified for the first time fast recurring neural sequence activity from 1-p calcium data, based on correlation analysis."

      (1) There are some statements that are not clear, such as at the end of the introduction, where the authors write, "Both findings suggest that the mPFC task code is locally established during learning." What is the reasoning behind the "locally established" statement? Couldn't the learning be happening in other areas and be inherited by the mPFC? Or are the authors assuming that newly appearing sequences within a 500-ms burst period must be due to local plasticity? I have also pointed out a question about the statement "however, it does not reflect previous network structure" in (3) above.

      (2) The threshold for extracting burst events (0.5 standard deviations, presumably above the mean, but the authors should verify this) seems lower than what one usually sees as a threshold for population burst detection. What fraction of all data is covered by 500 ms periods around each such burst? However, it is potentially a strength of this work that their results are found by using this more permissive threshold.

    1. Reviewer #3 (Public review):

      Summary:

      The paper studies learning rules in a simple sigmoidal recurrent neural network setting. The recurrent network has a single layer of 10 to 40 units. It is first confirmed that feedback alignment (FA) can learn a value function in this setting. Then so-called bio-plausible constraints are added: (1) when value weights (readout) is non-negative, (2) when the activity is non-negative (normal sigmoid rather than downscaled between -0.5 and 0.5), (3) when the feedback weights are non-negative, (4) when the learning rule is revised to be monotic: the weights are not downregulated. In the simple task considered all four biological features do not appear to impair totally the learning.

      Strengths:

      (1) The learning rules are implemented in a low-level fashion of the form: (pre-synaptic-activity) x (post-synaptic-activity) x feedback x RPE. Which is therefore interpretable in terms of measurable quantities in the wet-lab.

      (2) I find that non-negative FA (FA with non negative c and w) is the most valuable theoretical insight of this paper: I understand why the alignment between w and c is automatically better at initialization.

      (3) The task choice is relevant, since it connects with experimental settings of reward conditioning with possible plasticity measurements.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present OpenSpliceAI, a PyTorch-based reimplementation of the well-known SpliceAI deep learning model for splicing prediction. The core architecture remains unchanged, but the reimplementation demonstrates convincing improvements in usability, runtime performance, and potential for cross-species application.

      Strengths:

      The improvements are well-supported by comparative benchmarks, and the work is valuable given its strong potential to broaden the adoption of splicing prediction tools across computational and experimental biology communities.

      Major comments:

      Can fine-tuning also be used to improve prediction for human splicing? Specifically, are models trained on other species and then fine-tuned with human data able to perform better on human splicing prediction? This would enhance the model's utility for more users, and ideally, such fine-tuned models should be made available.

    1. Reviewer #3 (Public review):

      Hawes et al. combined behavioral, optical imaging, and activity manipulation techniques to investigate the role of striatal patch SPNs in locomotion regulation. Using Sepw1-Cre transgenic mice, they found that patch SPNs encode locomotion deceleration in a light-dark box procedure through optical imaging techniques. Moreover, genetic ablation of patch SPNs increased locomotion speed, while chemogenetic activation of these neurons decreased it. The authors concluded that a subtype of patch striatonigral neurons modulates locomotion speed based on external environmental cues.

      In the revision, the authors have largely addressed my concerns with additional explanation and discussion, although some of the key experiments to strengthen the authors' claim by identifying the function of specific cell populations remain to be conducted due to technical challenges. Nevertheless, the current results remain valuable and interesting to a wide audience in the field.

    1. Reviewer #3 (Public review):

      Summary:

      This work aims to understand the role of Echinoderm Microtubule-associated Protein-like 3 (EML3) in embryogenesis and neocortical development. Importantly, this work shows that depletion of EML3 causes focal neuronal ectopias by disrupting the structural integrity of the pial basement membrane, describing a new model of cobblestone brain malformation. Another member of the EML family, EML1, has already been shown to trigger neuronal migration disorders, particularly subcortical band heterotopia, by affecting cell polarity. The results presented here point to a different mechanism of action. The authors show that EML3 is expressed in radial glia cells and mesenchymal cells in the pial region, and upon EML3 depletion (i.e., Eml3 mutant mice), the pial basement membrane is structurally damaged, allowing migrating neuroblasts to ectopically migrate through. Answering, in this case, that the weakening of the pial basement membrane is a prerequisite for focal neuronal ectopias. The authors provide a meticulous characterization of the Eml3 mutant mice, strengthening the conclusions of the results.

      Strengths:

      The authors provide a very detailed analysis of the defects observed in Eml3 mutant mice, by providing not only results by inferred day of conception but also by classifying embryos by their number of somite pairs.

      Weaknesses:

      (1) Besides the data provided in the figures, the authors report a significant amount of experiments/results as "Data not shown". Negative data is still important data to report, and the authors may want to choose some crucial "not shown data" to report in the manuscript.

      (2) Results in Figure 3A apparently contradict results in 3B. A better explanation of the results should improve understanding of the data. Even though the conclusion that the "onset and progression of neurogenesis is normal in Eml3 null mice" seems logical based on the data, the final numbers are not (Figure 3A) and this should be acknowledged, as well.

      (3) The authors should define which cell types are identified by SOX1 and PAX6.

    1. Reviewer #3 (Public review):

      Summary:

      Fujita et al build on their earlier, 2017 eLife paper that showed the role of autophagy in the developmental remodeling of a group of muscles (DIOM) in the abdomen of Drosophila. Most larval muscles undergo histolysis during metamorphosis, while DIOMs are programmed to regrow after initial atrophy to give rise to temporary adult muscles, which survive for only 1 day after eclosion of the adult flies (J Neurosci. 1990;10:403-1. and BMC Dev Biol 16, 12, 2016). The authors carry out transcriptomics profiling of these muscles during metamorphosis, which are in agreement with the atrophy and regrowth phases of these muscles. Expression of the known mitophagy receptor BNIP3/NIX is high during atrophy, so the authors start to delve more into the role of this protein/mitophagy in their model. BNIP3 KO indeed impairs mitophagy and muscle atrophy, which they convincingly demonstrate via nice microscopy images. They also show that the already known Atg8a-binding LIR and Atg18a-binding MER motifs of human NIX are conserved in the Drosophila protein, although the LIR turned out to be less critical for in vivo protein function than the MER motif.

      Strengths:

      Established methodology, convincing data, in vivo model

      Weaknesses:

      Significance for Drosophila physiology and for human muscles remains to be established

    1. Reviewer #3 (Public review):

      Summary:

      In this study by Haley et al, the authors investigated explore-exploit foraging using C. elegans as a model system. Through an elegant set of patchy environment assays, the authors built a GLM based on past experience that predicts whether an animal will decide to stay on a patch to feed and exploit that resource, instead of choosing to leave and explore other patches.

      Strengths:

      I really enjoyed reading this paper. The experiments are simple and elegant, and address fundamental questions of foraging theory in a well-defined system. The experimental design is thoroughly vetted, and the authors provide a considerable volume of data to prove their points.

      Weakness:

      History-dependence of the GLM. The logistic GLM seems like a logical way to model a binary choice, and I think the parameters you chose are certainly important. However, the framing of them seem odd to me. I do not doubt the animals are assessing the current state of the patch with an assessment of past experience; that makes perfect logical sense. However, it seems odd to reduce past experience to the categories of recently exploited patch, recently encountered patch, and time since last exploitation. This implies the animals have some way of discriminating these past patch experiences and committing them to memory. Also, it seems logical that the time on these patches, not just their density, should also matter, just as the time without food matters. Time is inherent to memory. This model also imposes a prior categorization in trying to distinguish between sensed vs. not-sensed patches, which I criticized earlier. Only "sensed" patches are used in the model, but it is questionable whether worms genuinely do not "sense" these patches.

      It seems more likely the worm simply has some memory of chemosensation and relative satiety, both of which increase on patches, and decrease while off of patches. The magnitudes are likely a function of patch density. That being said, I leave it up to the reader to decide how best to interpret the data.

      Impact:

      I think this work will have a solid impact on the field, as it provides tangible variables to test how animals assess their environment and decide to exploit resources. I think the strength of this research could be strengthened by a reassessment of their model that would both simplify it and provide testable timescales of satiety/starvation memory.

    1. Reviewer #3 (Public review):

      Summary:

      This is a proposal for a new theory for the geometry of insect eyes. The novel cost-benefit function combines the cost of the optical portion with the photoreceptor portion of the eye. These quantities are put on the same footing using a specific (normalized) volume measure, plus an energy factor for the photoreceptor compartment. An optimal information transmission rate then specifies each parameter and resource allocation ratio for a variable total cost. The elegant treatment allows for comparison across a wide range of species and eye types. Simple eyes are found to be several times more efficient across a range of eye parameters than neural superposition eyes. Some trends in eye parameters can be explained by optimal allocation of resources between the optics and photoreceptors compartments of the eye.

      Strengths:

      Data from a variety of species roughly align with rough trends in the cost analysis, e.g. as a function of expanding the length of the photoreceptor compartment.

      New data could be added to the framework once collected, and many species can be compared.

      Eyes of different shapes are compared.

      Weaknesses:

      Detailed quantitative conclusions are not possible given the approximations and simplifying assumptions in the models and weak accounting for trends in the data across eye types.

      Comments on revisions:

      I have no additional comments for the authors and appreciate the revisions and corrections implemented - I think those changes have improved the clarity of the manuscript and expanded the potential readership for the paper.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Qiu and co-workers describes the single-particle cryo-electron microscopy structures of various oligomeric states of the orphan GPCR, GPR3. It describes the monomeric and dimeric structure of a mutant of GPR3 with a modified G-protein complex (miniGs) and then builds on this work to attempt an inactive 'apo' dimer and an allosteric modulator (AF bound dimer structure, by using an ICL3 insertion and stabilizing FAB fragments.

      In general, I'm supportive of the work done in this study, and it does indeed provide valuable insight into GPR3 function. It may be that dimerization of certain class A GPCRs may be a means of signalling regulation or perhaps even amplification. However, some of the interpretation of the single particle data needs some extra attention to strengthen the hypothesis presented in the manuscript.

      Firstly, I want to thank the authors for providing the unfiltered half-maps and PDB models for careful assessment. During this review, I did my own post-processing of the half-maps and used the resultant maps for careful analysis of models.

      So to begin, I understand that the authors didn't model any lipid in the binding orthosteric binding site in any of the maps, but it may be worthwhile to model something in there, as many readers only download coordinates and not the maps.

      A more general point about all the maps. In no case were any focussed refinements carried out. As the point of this paper are some of the finer details between active and intermediate states and the effect of an allosteric modulator, masking out hypervariable portions of the structure and doing local Euler searches would most certainly provide richer insights of the details in GPR3 (especially as the BRIL:Fab structures are not of interest). And also, generally, no 3D-variability studies were performed to see if minor differences in, say, TM4/5/6 positions were due to large variation in the single particles or were a stable consensus position.

      As for the PFK dimeric structure. It appears to be refined with C2 point group symmetry (which is not mentioned anywhere except in a tiny bit of text in a supplemental figure). Was this also calculated in C1 to assess if there is any difference in either GPR3 protomer? Also, how certain are the authors of the cholesterol positions at the bottom of TM4/5? At lower map thresholds in the PFK dimer structure, one of them appears to be continuous with the orthosteric lipid. It also appears that there are many unmodelled lipids in this structure, and only two were assigned as cholesterol. It appears that many of the unmodelled lipids are forming bridging connections between the GPR3 protomers. Also, it may be worthwhile to provide a table of the key interactions between the protomers (although I note that there was a figure highlighting them).

      With the PFK monomer structure, there was weak density for the same cholesterol, which was not modelled in this one; perhaps some commentary on the authors' approach for deciding how to assign density would be helpful. It also appears that the refinement mask was probably a bit tight in this one (something that cryoSPARC is notorious for), and rerefining with a much looser mask around the TM domain may be helpful in resolving the inner lipid leaflet positions.

      The Apo structure, I think, I have the most issues with. Firstly, it is not 'apo'. There is definitely unaccounted for density in the orthosteric site. Also, the structure definitely needs a bit more attention. Firstly, masking out the BRIL and FABs would be a good start in helping better resolve the TMD regions, and then even focussing on a single monomer to increase the map interpretability. My major problem here is that, if this is being called 'apo' and inactive, the map doesn't reflect this; also, the TM5/6 does not look to be in a fully inactive position. The map density (at least around one of the protomers) in this region looks to be poorly resolved, most likely due to averaging due to internal motion. I think some 3DVA is certainly warranted here to strengthen the hypothesis that they have solved an 'apo' inactive.

      The AF (allosteric modulator) bound structure is of significantly better quality. But again, only AF is modelled, and no lipids are. How are the authors sure? Perhaps some focussed refinements (and changing the Euler Origin to centre it on the AF molecule could be a good start). To this reviewer, at least in one of the protomers, adjacent to the AF position, there is a density that looks very much like the allosteric modulator, so it could even be forming a bridging dimer. Also, some potential assignments of the lipids may enlighten some of the structure-activity relationship of this modulator, as it seems to make as many contacts with surrounding lipids as it does with TM4/5. Also, it may be worthwhile exploring carefully the 3DVA of this data. In our studies (Russel et al.), we noted that the orthosteric lipid appears to ratchet back-and-forth in concert with TM4/5 twisting. Perhaps in the AF bound structure, as it binds at the 'exit' site of the lipid, perhaps it is locking in a specific conformation.

    1. Reviewer #3 (Public review):

      The manuscript by Fuller et al describes a crosstalk between ARTG2A with components of the early secretory pathway, namely RAB1A and ARFGAP1. They show that ATG2A is recruited to membranes positive for RAB1A, which they also show to interact with ATG2A. In agreement with earlier findings by other groups, silencing RAB1A negatively affects autophagy. While ARFGAP1 was also found on ATG2A-positive membranes, silencing ARFGAP1 had no impact on autophagy. Notably, these ARFGAP1-positive membranes are not Golgi membranes.

      The findings are interesting, and in general, the data are of good quality; however, I have outstanding questions. An answer to any of these questions might strengthen the manuscript:

      (1) Are the membranes to which ATG2A is recruited a form of ERGIC?

      (2) Figure 3A/B: Is it possible to show a better example? The difference is barely detectable by eye. Since immunoblotting is not really a quantitative method, I think that such a weak effect is prone to be wrong. Is there another tool/assay to validate this result?

      (3) Is the curvature-sensitive region of ARFGAP1 required for its co-localization with ATG2A?

      (4) What does Rab1A do? What is its effector? Or does the GTPase itself remodel the membrane?

      (5) What about Arf1? It appears that the role of ARFGAP1 is unrelated to Arf1 and COPI? Thus, one would predict that Arf1 does not localize to these structures and does not affect ATG2A function.

      (6) Does ARFGAP1 promote fission of the membrane from its donor compartment?

      (7) What are ARFGAP1 and Rab1A recruited to? What is the lipid composition or protein that recruits these two players to regulate autophagy?

    1. Reviewer #3 (Public review):

      Summary:

      In their study McDermott et al. investigate the neurocomputational mechanism underlying sensory prediction errors. They contrast two accounts: representational sharpening and dampening. Representational sharpening suggests that predictions increase the fidelity of the neural representations of expected inputs, while representational dampening suggests the opposite (decreased fidelity for expected stimuli). The authors performed decoding analyses on EEG data, showing that first expected stimuli could be better decoded (sharpening), followed by a reversal during later response windows where unexpected inputs could be better decoded (dampening). These results are interpreted in the context of opposing process theory (OPT), which suggests that such a reversal would support perception to be both veridical (i.e., initial sharpening to increase the accuracy of perception) and informative (i.e., later dampening to highlight surprising, but informative inputs).

      Strengths:

      The topic of the present study is of significant relevance for the field of predictive processing. The experimental paradigm used by McDermott et al. is well designed, allowing the authors to avoid several common confounds in investigating predictions, such as stimulus familiarity and adaptation. The introduction of the manuscript provides a well written summery of the main arguments for the two accounts of interest (sharpening and dampening), as well as OPT. Overall, the manuscript serves as a good overview of the current state of the field.

      Weaknesses:

      In my opinion some details of the methods, results and manuscript raise some doubts about the reliability of the reported findings. Key concerns are:

      (1) In the previous round of comments, I noted that: "I am not fully convinced that Figures 3A/B and the associated results support the idea that early learning stages result in dampening and later stages in sharpening. The inference made requires, in my opinion, not only a significant effect in one-time bin and the absence of an effect in other bins. Instead to reliably make this inference one would need a contrast showing a difference in decoding accuracy between bins, or ideally an analysis not contingent on seemingly arbitrary binning of data, but a decrease (or increase) in the slope of the decoding accuracy across trials. Moreover, the decoding analyses seem to be at the edge of SNR, hence making any interpretation that depends on the absence of an effect in some bins yet more problematic and implausible". The authors responded: "we fitted a logarithmic model to quantify the change of the decoding benefit over trials, then found the trial index for which the change of the logarithmic fit was < 0.1%. Given the results of this analysis and to ensure a sufficient number of trials, we focused our further analyses on bins 1-2". However, I do not see how this new analysis addresses the concern that the conclusion highlights differences in decoding performance between bins 1 and 2, yet no contrast between these bins are performed. While I appreciate the addition of the new model, in my current understanding it does not solve the problem I raised. I still believe that if the authors wish to conclude that an effect differs between two bins they must contrast these directly and/or use a different appropriate analysis approach.

      Relatedly, the logarithmic model fitting and how it justifies the focus on analysis bin 1-2 needs to be explained better, especially the rationale of the analysis, the choice of parameters (e.g., why logarithmic, why change of logarithmic fit < 0.1% as criterion, etc), and why certain inferences follow from this analysis. Also, the reporting of the associated results seems rather sparse in the current iteration of the manuscript.

      (2) A critical point the authors raise is that they investigate the buildup of expectations during training. They go on to show that the dampening effect disappears quickly, concluding: "the decoding benefit of invalid predictions [...] disappeared after approximately 15 minutes (or 50 trials per condition)". Maybe the authors can correct me, but my best understanding is as follows: Each bin has 50 trials per condition. The 2:1 condition has 4 leading images, this would mean ~12 trials per leading stimulus, 25% of which are unexpected, so ~9 expected trials per pair. Bin 1 represents the first time the participants see the associations. Therefore, the conclusion is that participants learn the associations so rapidly that ~9 expected trials per pair suffice to not only learn the expectations (in a probabilistic context) but learn them sufficiently well such that they result in a significant decoding difference in that same bin. If so, this would seem surprisingly fast, given that participants learn by means of incidental statistical learning (i.e. they were not informed about the statistical regularities). I acknowledge that we do not know how quickly the dampening/sharpening effects develop, however surprising results should be accompanied with a critical evaluation and exceptionally strong evidence (see point 1). Consider for example the following alternative account to explain these results. Category pairs were fixed across and within participants, i.e. the same leading image categories always predicted the same trailing image categories for all participants. Some category pairings will necessarily result in a larger representational overlap (i.e., visual similarity, etc.) and hence differences in decoding accuracy due to adaptation and related effects. For example, house  barn will result in a different decoding performance compared to coffee cup  barn, simply due to the larger visual and semantic similarity between house and barn compared to coffee cup and barn. These effects should occur upon first stimulus presentation, independent of statistical learning, and may attenuate over time e.g., due to increasing familiarity with the categories (i.e., an overall attenuation leading to smaller between condition differences) or pairs.

      (3) In response to my previous comment, why the authors think their study may have found different results compared to multiple previous studies (e.g. Han et al., 2019; Kumar et al., 2017; Meyer and Olson, 2011), particularly the sharpening to dampening switch, the authors emphasize the use of non-repeated stimuli (no repetition suppression and no familiarity confound) in their design. However, I fail to see how familiarity or RS could account for the absence of sharpening/dampening inversion in previous studies.

      First, if the authors argument is about stimulus novelty and familiarity as described by Feuerriegel et al., 2021, I believe this point does not apply to the cited studies. Feuerriegel et al., 2021 note: "Relative stimulus novelty can be an important confound in situations where expected stimulus identities are presented often within an experiment, but neutral or surprising stimuli are presented only rarely", which indeed is a critical confound. However, none of the studies (Han et al., 2019; Richter et al., 2018; Kumar et al., 2017; Meyer and Olson, 2011) contained this confound, because all stimuli served as expected and unexpected stimuli, with the expectation status solely determined by the preceding cue. Thus, participants were equally familiar with the images across expectation conditions.

      Second, for a similar reason the authors argument for RS accounting for the different results does not hold either in my opinion. Again, as Feuerriegel et al. 2021 correctly point out: "Adaptation-related effects can mimic ES when the expected stimuli are a repetition of the last-seen stimulus or have been encountered more recently than stimuli in neutral expectation conditions." However, it is critical to consider the precise design of previous studies. Taking again the example of Han et al., 2019; Kumar et al., 2017; Meyer and Olson, 2011. To my knowledge none of these studies contained manipulations that would result in a more frequent or recent repetition of any specific stimulus in the expected compared to unexpected condition. The crucial manipulation in all these previous studies is not that a single stimulus or stimulus feature (which could be subject to familiarity or RS) determines the expectation status, but rather the transitional probability (i.e. cue-stimulus pairing) of a particular stimulus given the cue. Therefore, unless I am missing something critical, simple RS seems unlikely to differ between expectation condition in the previous studies and hence seems implausible to account for differences in results compared to the current study.

      Moreover, studies cited by the authors (e.g. Todorovic & de Lange, 2012) showed that RS and ES are separable in time, again making me wonder how avoiding stimulus repetition should account for the difference in the present study compared to previous ones. I am happy to be corrected in my understanding, but with the currently provided arguments by the authors I do not see how RS and familiarity can account for the discrepancy in results.

      I agree with the authors that stimulus familiarity is a clear difference compared to previous designs, but without a valid explanation why this should affect results I find this account rather unsatisfying. I see the key difference in that the authors manipulated category predictability, instead of exemplar prediction - i.e. searching for a car instead of your car. However, if results in support of OPT would indeed depend on using novel images (i.e. without stimulus repetition), would this not severely limit the scope of the account and hence also its relevance? Certainly, the account provided by the authors casts the net wider and tries to explain visual prediction. Relatedly, if OPT only applies during training, as the authors seem to argue, would this again not significantly narrow the scope of the theory? Combined these two caveats would seem to demote the account from a general account of prediction and perception to one about perception during very specific circumstances. In my understanding the appeal of OPT is that it accounts for multiple challenges faced by the perceptual system, elegantly integrating them into a cohesive framework. Most of this would be lost by claiming that OPT's primary prediction would only apply to specific circumstances - novel stimuli during learning of predictions. Moreover, in the original formulation of the account, as outlined by Press et al., I do not see any particular reason why it should be limited to these specific circumstances. This does of course not mean that the present results are incorrect, however it does require an adequate discussion and acknowledgement in the manuscript.

      Impact:

      McDermott et al. present an interesting study with potentially impactful results. However, given my concerns raised in this and the previous round of comments, I am not entirely convinced of the reliability of the results. Moreover, the difficulty of reconciling some of the present results with previous studies highlights the need for more convincing explanations of these discrepancies and a stronger discussion of the present results in the context of the literature.

    1. Reviewer #3 (Public review):

      Summary:

      This work shows experimentally and computationally that single CA1 neurons can perform mismatch detection on patterned CA3 inputs and that STP and EI balance underlie this detection.

      Strengths:

      It has been known that STP can enhance the EPSP when the corresponding presynaptic input exhibits abrupt changes in firing rate. This work provides experimental evidence and further computational support for the hypothesis that the basic computation through STP is useful for detecting abrupt changes in the spatial pattern of synaptic inputs at the Schaffer collaterals. Further, their results indicate the novel view that mismatch detection is most efficient when gamma-frequency bursting inputs exhibit mismatches between theta cycles.

      Weaknesses:

      Their model assumes that patterned activities in CA3 do not have overlaps. However, overlaps between memory engrams have been shown. Therefore, this assumption may not hold, and whether the proposed mechanism is valid for overlapping CA3 inputs needs further clarification.

    1. Reviewer #3 (Public review):

      Summary:

      Using an approach developed by the authors (FluidFM) combined with FLIM, they discover that a mechanical force applied over the cell nucleus triggers mechanical responses dependent on the Lamina composition.

      Strengths:

      The authors present a new approach to study mechano-transduction in living cells, with which they uncover lamin-dependent properties of the nucleus.

      Weaknesses:

      (1) The transfer of the mechanical response from the Lamina to the ER is not fully covered.

      (2) In Figure 4D, WT dots are the same for each compartment. Why do the authors not make one graph for each compartment with WT, A-KO, B-KD, and A-KO/B-KD together?

      (2) In Figure 1E, the authors showed well how the probe deforms the nucleus. It is not indicated in the material and methods section or in the figure legend, where, in Z, the acquisition of FLIM images was made or if it is a maximum projection. I assume it was made at a plane in the middle of the nucleus to see the nuclear envelope border and the ER at the same time. Did the authors look at the nuclear membrane facing upward, where most of the deformation should occur? Are there more lifetime changes? In Figure D, before injection of CytoD, we can clearly see a difference at the pyramidal indentation site with two different lifetime colors.

      (3) A great result of this article regards the importance of Lamins, A and B, in triggering the response to a mechanical force applied to the nucleus. Could 3D imaging for LaminA and LaminB be performed at the different time points of indentation to see how the lamins meshworks are deformed and how they return to basal state? This could be correlated with the FLIM results described in the article.

      (4) Lamins form a meshwork underneath the nuclear membrane. They are connected to the cytoskeletons mainly by the LINC complex. Results presented here show that the cytoskeletons are implicated in transferring the stimulus from the nuclear envelope to the ER. Could the author perform the same experiments using Nesprin-2 or/and Nesprin-1 or/and SUN1/2 knockdowns to determine if this transmission is occurring through the LINC complex or rather in a passive way by modifying the nuclear close surroundings?

      (5) The authors used cytoskeleton drugs, CytoD and Nocodazole, with their FluidFM probe, but did not show if the drugs actually worked and to what extent by performing actin or microtubule stainings. In the original paper describing FluidFM, 15s were enough to obtain a full FITC-positive cell after injection. Here, the experiments are around 5 minutes long. I therefore interrogate the rationale behind the injection of the drugs compared to direct incubation, besides affecting only the cell currently under indentation.

    1. Reviewer #3 (Public review):

      Summary:

      The authors demonstrate that CRF neurons in the extended amygdala form GABAergic synapses onto cholinergic interneurons and that CRF can excite these neurons. The evidence is strong, however, the authors fail to make a compelling connection showing CRF released from these extended amygdala neurons is mediating any of these effects. Further, they show that acute alcohol appears to modulate this action, although the effect size is not particularly robust.

      Strengths:

      This is an exciting connection from the extended amygdala to the striatum that provides a new direction for how these regions can modulate behavior. The work is rigorous and well done.

      Weaknesses:

      While the authors show that opto stim of these neurons can increase firing, this is not shown to be CRFR1 dependent. In addition, the effects of acute ethanol are not particularly robust or rigorously evaluated. Further, the opto stim experiments are conducted in an Ai32 mouse, so it is impossible to determine if that is from CEA and BNST, vs. another population of CRF-containing neurons. This is an important caveat.

    1. Reviewer #3 (Public review):

      This manuscript presents a meta-analysis of 23 studies, which report 297 effect sizes, on the effect of SO-spindle coupling on memory performance. The analysis has been done with great care, and the results are described in great detail. In particular, there are separate analyses for coupling phase, spindle amplitude, coupling strength (e.g., measured by vector length or modulation index), and coupling percentage (i.e., the percentage of SPs coupled with SOs). The authors conclude that the precision and strength of coupling showed significant correlations with memory retention.

      There are two main points where I do not agree with the authors.

      First, the authors conclude that "SO-SP coupling should be considered as a general physiological mechanism for memory consolidation". However, the reported effect sizes are smaller than what is typically considered a "small effect" (0.10<br /> Second, the study implements state-of-the-art Bayesian statistics. While some might see this as a strength, I would argue that it is not. A classical meta-analysis is relatively easy to understand, even for readers with only a limited background in statistics. A Bayesian analysis, on the other hand, introduces a number of subjective choices that render it much less transparent. This becomes obvious in the forest plots. It is not immediately apparent to the reader how the distributions for each study represent the reported effect sizes (gray dots), which makes the analyses unnecessarily opaque. It is commendable that the authors now provide classical forest plots as Figs. S10.1-4.

      However, analyses that require a "Markov chain Monte Carlo (MCMC) method, [..] with the no-U-turn Hamiltonian Monte Carlo (HMC) samplers, [..] with each chain undergoing 12,000 iterations (including 2,000 warm-ups)" for calculating accurate Bayes Factors (BF), and checking its convergence "through graphical posterior predictive checks, [..] trace plots, and [..] Gelman and Rubin Diagnostic", which should then result in something resembling "a uniformly undulating wave with high overlap between chains" still seems overly complex. It follows a recent trend in using more and more opaque methods. Where we had to trust published results a decade ago because the data were not openly available, today we must trust the results because methods (including open source software toolboxes) can no longer be checked with reasonable effort.

    1. Reviewer #3 (Public review):

      This is a well-designed study examining an important, surprisingly understudied question: how does adaptation affect spatial frequency processing in human visual cortex? Using a combination of psychophysics and neuroimaging, the authors test the hypothesis that spatial frequency tuning is shifted to higher or lower frequencies, depending on preadapted state (low or high s.f. adaptation). They do so by first validating the phenomenon psychophysically, showing that adapting to 0.5 cpd stimuli causes an increase perceived s.f., and 3.5 cpd causes a relative decrease in perceived s.f. Using the same stimuli, they then port these stimuli to a neuroimaging study, in which population receptive fields are measured under high and low spatial frequency adaptation states. They find that adaptation changes pRF size, depending on adaptation state: adapting to high s.f. led to broader overall pRF sizes across early visual cortex, whereas adapting to low s.f. led to smaller overall pRF sizes. Finally the authors carry out a control experiment to psychophysically rule out the possibility that the perceived contrast change w/ adaptation may have given rise to these imaging results (doesn't appear to be the case). All in all, I found this to be a good manuscript: the writing is taut, and the study is well designed.

    1. Reviewer #3 (Public review):

      Summary:

      Borghi and colleagues present results from 4 experiments aimed at investigating the effects of dual γtACS and iTBS stimulation of the precuneus on behavioral and neural markers of memory formation. In their first experiment (n = 20), they found that a 3-minute offline (i.e., prior to task completion) stimulation that combines both techniques leads to superior memory recall performance in an associative memory task immediately after learning associations between pictures of faces, names, and occupation, as well as after a 15-minute delay, compared to iTBS alone (+ tACS sham) or no stimulation (sham for both iTBS and tACS). Performance in a second task probing short-term memory was unaffected by the stimulation condition. In a second experiment (n = 10), they show that these effects persist over 24 hours and up to a full week after initial stimulation. A third (n = 14) and fourth (n = 16) experiment were conducted to investigate the neural effects of the stimulation protocol. The authors report that, once again, only combined iTBS and γtACS increase gamma oscillatory activity and neural excitability (as measured by concurrent TMS-EEG) specific to the stimulated area at the precuneus compared to a control region, as well as precuneus-hippocampus functional connectivity (measured by resting-state MRI), which seemed to be associated with structural white matter integrity of the bilateral middle longitudinal fasciculus (measured by DTI).

      Strengths:

      Combining non-invasive brain stimulation techniques is a novel, potentially very powerful method to maximize the effects of these kinds of interventions that are usually well-tolerated and thus accepted by patients and healthy participants. It is also very impressive that the stimulation-induced improvements in memory performance resulted from a short (3 min) intervention protocol. If the effects reported here turn out to be as clinically meaningful and generalizable across populations as implied, this approach could represent a promising avenue for the treatment of impaired memory functions in many conditions.

      Methodologically, this study is expertly done! I don't see any serious issues with the technical setup in any of the experiments (with the only caveat that I am not an expert in fMRI functional connectivity measures and DTI). It is also very commendable that the authors conceptually replicated the behavioral effects of experiment 1 in experiment 2 and then conducted two additional experiments to probe the neural mechanisms associated with these effects. This certainly increases the value of the study and the confidence in the results considerably.

      The authors used a within-subject approach in their experiments, which increases statistical power and allows for stronger inferences about the tested effects. They are also used to individualize stimulation locations and intensities, which should further optimize the signal-to-noise ratio.

      Weaknesses:

      I want to state clearly that I think the strengths of this study far outweigh the concerns I have. I still list some points that I think should be clarified by the authors or taken into account by readers when interpreting the presented findings.

      I think one of the major weaknesses of this study is the overall low sample size in all of the experiments (between n = 10 and n = 20). This is, as I mentioned when discussing the strengths of the study, partly mitigated by the within-subject design and individualized stimulation parameters. The authors mention that they performed a power analysis but this analysis seemed to be based on electrophysiological readouts similar to those obtained in experiment 3. It is thus unclear whether the other experiments were sufficiently powered to reliably detect the behavioral effects of interest. That being said, the authors do report significant effects, so they were per definition powered to find those. However, the effect sizes reported for their main findings are all relatively large and it is known that significant findings from small samples may represent inflated effect sizes, which may hamper the generalizability of the current results. Ideally, the authors would replicate their main findings in a larger sample. Alternatively, I think running a sensitivity analysis to estimate the smallest effect the authors could have detected with a power of 80% could be very informative for readers to contextualize the findings. At the very least, however, I think it would be necessary to address this point as a potential limitation in the discussion of the paper.

      It seems that the statistical analysis approach differed slightly between studies. In experiment 1, the authors followed up significant effects of their ANOVAs by Bonferroni-adjusted post-hoc tests whereas it seems that in experiment 2, those post-hoc tests where "exploratory", which may suggest those were uncorrected. In experiment 3, the authors use one-tailed t-tests to follow up their ANOVAs. Given some of the reported p-values, these choices suggest that some of the comparisons might have failed to reach significance if properly corrected. This is not a critical issue per se, as the important test in all these cases is the initial ANOVA but non-significant (corrected) post-hoc tests might be another indicator of an underpowered experiment. My assumptions here might be wrong, but even then, I would ask the authors to be more transparent about the reasons for their choices or provide additional justification. Finally, the authors sometimes report exact p-values whereas other times they simply say p < .05. I would ask them to be consistent and recommend using exact p-values for every result where p >= .001.

      While the authors went to great lengths trying to probe the neural changes likely associated with the memory improvement after stimulation, it is impossible from their data to causally relate the findings from experiments 3 and 4 to the behavioral effects in experiments 1 and 2. This is acknowledged by the authors and there are good methodological reasons for why TMS-EEG and fMRI had to be collected in sperate experiments, but it is still worth pointing out to readers that this limits inferences about how exactly dual iTBS and γtACS of the precuneus modulate learning and memory.

      There were no stimulation-related performance differences in the short-term memory task used in experiments 1 and 2. The authors argue that this demonstrates that the intervention specifically targeted long-term associative memory formation. While this is certainly possible, the STM task was a spatial memory task, whereas the LTM task relied (primarily) on verbal material. It is thus also possible that the stimulation effects were specific to a stimulus domain instead of memory type. In other words, could it be possible that the stimulation might have affected STM performance if the task taxed verbal STM instead? This is of course impossible to know without an additional experiment, but the authors could mention this possibility when discussing their findings regarding the lack of change in the STM task.

      While the authors discuss the potential neural mechanisms by which the combined stimulation conditions might have helped memory formation, the psychological processes are somewhat neglected. For example, do the authors think the stimulation primarily improves the encoding of new information or does it also improve consolidation processes? Interestingly, the beneficial effect of dual iTBS and γtACS on recall performance was very stable across all time points tested in experiments 1 and 2, as was the performance in the other conditions. Do the authors have any explanation as to why there seems to be no further forgetting of information over time in either condition when even at immediate recall, accuracy is below 50%? Further, participants started learning the associations of the FNAT immediately after the stimulation protocol was administered. What would happen if learning started with a delay? In other words, do the authors think there is an ideal time window post-stimulation in which memory formation is enhanced? If so, this might limit the usability of this procedure in real-life applications.

    1. Reviewer #3 (Public review):

      The authors suggest that the small release of DA may be due to a release of glutamate from DRN 5-HT neurons to the VTA that stimulates weakly and in a transient fashion the VTA DA neurons, which in the end, produce a transient and small release of DA in the NAc.

      Their findings give more information on the previously reported complex and partial known crosstalk between 5-HT and DA in the NAc.

      I only have some minor concerns about the manuscript:

      (1) In Figure 2F, there is a missing curve for 5-HT in NAc. Besides, the legend shows n=2, making it difficult to perform statistical analysis with that data.

      (2) In Figure 3, the use of NBQX/AP5 is shown, but it is not mentioned either in the methodology or in the discussion. What is the meaning of those results?

      (3) Line 98 compares results from two different places of stimulation. The results are related to stimulation in the VTA, but the comparison indicates that the stimulation was made in the DRN.

      (4) If the release of 5-HT in Nac does not occur, it needs to be precise in the abstract that 5-HT is released in the dorsal striatum (DS) but not in the NAc (line 19).

      (5) Be consistent with the way you mention the 5-HT neurons. For example, in lines from 106 to 119, SERT neurons are used. Previously, 5-HT neurons were used.

      (6) There are several points of confusion when referring to the figures, making the text difficult to follow because the text explains something that is not shown in the figure cited.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Burroughs et al. uses informatic sequence analysis and structural modeling to define a very large, new superfamily which they dub the Lipocone superfamily, based on its function on lipid components and cone-shaped structure. The family includes known enzymatic domains as well as previously uncharacterized proteins (30 families in total). Support for the superfamily designation includes conserved residues located on the homologous helical structures within the fold. The findings include analyses that shed light on important evolutionary relationships including a model in which the superfamily originated as membrane proteins where one branch evolved into a soluble version. Their mechanistic proposals suggest possible functions for enzymes currently unassigned. There is also support for the evolutionary connection of this family with the human immune system. The work will be of interest to those in the broad areas of bioinformatics, enzyme mechanisms, and evolution. The work is technically well performed and presented.

    1. Reviewer #3 (Public review):

      Summary:

      The study explores the cellular and circuit features that distinguish dentate gyrus semilunar granule cells and granule cells activated during contextual memory formation. The authors tag memory and enriched environment-activated dentate granule cells and semilunar granule cells and show their reactivation in an appropriate context a week later. They perform patch clamp recordings from activated and surrounding neurons to understand the cellular driving of the selective activation of semilunar granule cells and granule cells. Authors perform dual patch clamp recordings from various pairs of labeled semilunar granule cells, labeled granule cells, unlabeled granule cells, and unlabeled semilunar granule cells. The sustained firing of semilunar granule cells explained their preferential activation. In addition, activated neurons received correlated inputs.

      Strengths:

      The authors confirmed the engram cell properties of activated semilunar granule cells and granule cells in two different paradigms, validating these findings using an enriched environment paradigm.

      The authors carefully separate semilunar granule cells from granule cells, using electrophysiology and morphology. Cell filling to confirm morphology further strengthens confidence.

      The dual patch recordings, which are technically challenging, are carefully performed, and the presence of synaptic activity is confirmed.

      The authors report that sEPSCs recorded from labelled sGCS are more frequent, higher in amplitude, and temporally correlated than their counterparts.

      The authors provide evidence that lateral inhibition is not playing a role in the selective activation of sGCs during contextual learning.

      Exclusive use of slice physiology limits some of these conclusions due to the shearing of connections during the slicing process.

    1. Reviewer #3 (Public review):

      Summary:

      Using a specparam (1/f) analysis of task-evoked activity, the authors propose that "substantial changes traditionally attributed to theta oscillations in working memory tasks are, in fact, due to shifts in the spectral slope of aperiodic activity." This is a very bold and ambitious statement, and the field of event-related EEG would benefit from more critical assessments of the role of aperiodic changes during task events. Unfortunately, the data shown here does not support the main conclusion advanced by the authors.

      Strengths:

      The field of event-related EEG would benefit from more critical assessments of the role of aperiodic changes during task events. The authors perform a number of additional control analyses, including different types of baseline correction, ERP subtraction, as well as replication of the experiment with two additional datasets.

      Weaknesses:

      The authors did not first show that their first task successfully evoked theta power, nor that specparam is capable of quantifying the background around a short theta burst, nor that theta effects are different between baseline corrected vs. spectral parameterized quantification.

      Comments on revisions:

      The authors have completed a substantial revision based on the comments from all of the reviewers. Overall, the major claims of the initial report have been profoundly tempered, but more of the conclusions are supported by the data.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Yamauchi and colleagues combine all-atom and coarse-grained MD simulations to investigate the mechanism of DNA translocation by prokaryotic SMC complexes. Their multiscale approach is well-justified and supports a segment-capture model in which ATP-dependent conformational changes lead to the unidirectional translocation of DNA. A key insight from the study is that asymmetry in the kleisin path enforces directionality. The work introduces an innovative computational framework that captures key features of SMC motor action, including DNA binding, conformational switching, and translocation.

      This work is well executed and timely, and the methodology offers a promising route for probing other large molecular machines where ATP activity is essential.

      Strengths:

      This manuscript introduces an innovative yet simple method that merges all-atom and coarse-grained, purely equilibrium, MD simulations to investigate DNA translocation by SMC complexes, which is triggered by activated ATP processes. Investigating the impact of ATP on large molecular motors like SMC complexes is extremely challenging, as ATP catalyses a series of chemical reactions that take and keep the system out of equilibrium. The authors simulate the ATP cycle by cycling through distinct equilibrium simulations where the force field changes according to whether the system is assumed to be in the disengaged, engaged, and V-shaped states; this is very clever as it avoids attempting to model the non-equilibrium process of ATP hydrolysis explicitly. This equilibrium switching approach is shown to be an effective way to probe the mechanistic consequences of ATP binding and hydrolysis in the SMC complex system.

      The simulations reveal several important features of the translocation mechanism. These include identifying that a DNA segment of ~200 bp is captured in the engaged state and pumped forward via coordinated conformational transitions, yielding a translocation step size in good agreement with experimental estimates. Hydrogen bonding between DNA and the top of the ATPase heads is shown to be critical for segment capturtrans, as without it, translocation is shown to fail. Finally, asymmetry in the kleisin subunit path is shown to be responsible for unidirectionally.

      This work highlights how molecular simulations are an excellent complement to experiments, as they can exploit experimental findings to provide high-resolution mechanistic views currently inaccessible to experiments. The findings of these simulations are plausible and expand our understanding of how ATP hydrolysis induces directional motion of the SMC complex.

      Weaknesses:

      There are aspects of the methodology and modelling assumptions that are not clear and could be better justified. The major ones are listed below:

      (1) The all-atom MD simulations involve a 47-bp DNA duplex interacting with the ATPase heads, from which key residues involved in hydrogen bonding are identified. However, DNA mechanics-including flexibility and hydrogen bond formation-are known to be sequence-dependent. The manuscript uses a single arbitrary sequence but does not discuss potential biases. Could the authors comment on how sequence variability might affect binding geometry or the number of hydrogen bonds observed?

      (2) A key feature of the coarse-grained model is the inclusion of a specific hydrogen-bonding potential between DNA and residues on the ATPase heads. The authors select the top 15 hydrogen-bond-forming residues from the all-atom simulations (with contact probability > 0.05), but the rationale for this cutoff is not explained. Also, the strength of hydrogen bonds in coarse-grained models can be sensitive to context. How did the authors calibrate the strength of this interaction relative to electrostatics, and did they test its robustness (e.g., by varying epsilon or residue set)? Could this interaction be too strong or too weak under certain ionic conditions? What happens when salt is changed?

      (3) To enhance sampling, the translocation simulations are run at 300 mM monovalent salt. While this is argued to be physiological for Pyrococcus yayanosii, such a concentration also significantly screens electrostatics, possibly altering the interaction landscape between DNA and protein or among protein domains. This may significantly impact the results of the simulations. Why did the authors not use enhanced sampling methods to sample rare events instead of relying on a high-salt regime to accelerate dynamics?

      (4) Only a small fraction of the simulated trajectories complete successful translocation (e.g., 45 of 770 in one set), and this is attributed to insufficient simulation time. While the authors are transparent about this, it raises questions about the reliability of inferred success rates and about possible artefacts (e.g., DNA trapping in coiled-coil arms). Could the authors explore or at least discuss whether alternative sampling strategies (e.g., Markov State Models, transition path sampling) might address this limitation more systematically?

    1. Reviewer #3 (Public review):

      Summary:

      Liu et al investigate the impact of G1 and G2 variants of the gene encoding Apolipoprotein L1 (APOL1) on macrophage inflammation. The authors have used bone marrow-derived macrophages and human induced pluripotent stem cell-derived macrophages as their model to identify altered immune signaling caused by G1 and G2 APOL1. The unbiased metabolite analysis indicates the possible involvement of altered polyamine metabolism in the regulation of inflammatory response in G1 and G2 macrophages. This study shows that targeting polyamine metabolism can limit macrophage inflammation and lipid accumulation in vitro conditions.

      Strengths:

      This study shows the importance of polyamine metabolism in the regulation of macrophage inflammatory response. The authors showed that spermidine synthesis is closely associated with altered macrophage functions with two risk-variant forms of APOL1 (G1 and G2). The altered macrophage lipid metabolism is known to be associated with macrophage dysfunction in G1 and G2 APOL1. However, the involvement of polyamine in the regulation of lipid accumulation and inflammation in macrophages in G1 and G2 variants is interesting and could be explored as a novel therapeutic approach for chronic inflammation.

      Weaknesses:

      The novelty of this study lies in the association of polyamine metabolism with lipid metabolism dysregulation in macrophages. The weakness of the manuscript is that insufficient experiments to support the claim of involvement of polyamine metabolism in the regulation of macrophage inflammation, which undermines the novelty of this study. The authors performed in vitro experiments targeting spermidine synthesis to show reduced inflammation and lipid accumulation, but have not performed any in vivo analysis of chronic kidney inflammation progression in G1 and G2 mice, which they have used to generate bone-marrow-derived macrophages. They have not shown any data that supports the specificity of DFMO in targeting spermidine synthesis.

    1. Reviewer #3 (Public review):

      Summary:

      This study addressed the TCR pairing types and CDR3 characteristics of Treg cells. By analyzing scRNA and TCR-seq data, it claims that 10-20% of dual TCR Treg cells exist in mouse lymphoid and non-lymphoid tissues and suggests that dual TCR Treg cells in different tissues may play complex biological functions.

      Strengths:

      The study addresses an interesting question of how dual-TCR-expressing Treg cells play roles in tissues.

      Weaknesses:

      This study is inadequate, particularly regarding data interpretation, statistical rigor, and the discussion of the functional significance of Dual TCR Tregs.

      Comments on revisions:

      Although the authors have provided brief explanations in response to the reviewers' comments, they do not present any additional analyses that would address the fundamental concerns in a convincing manner.<br /> Moreover, the in silico analyses presented in the manuscript alone are insufficient to support the conclusions, and the functional experiments requested by the reviewers have not been conducted.

      In the current rebuttal, while some textual additions have been made to the manuscript, the only substantial revision to the figures appears to be the inclusion of statistical significance annotations (e.g., Fig. 1G, Fig. 3G). These changes do not adequately strengthen the overall data or address the core issues raised.

    1. Reviewer #3 (Public review):

      Summary:

      A subset of cancer cells attain replicative immortality by activating the ALT mechanism of telomere maintenance, which is currently the subject of intense research due to its potential for novel targeted therapies. Key questions remain in the field, such as whether ALT telomeres adhere to the same end-protection rules as telomeres in telomerase-expressing cells, or if ALT telomeres possess unique properties that could be targeted with new, less toxic cancer therapies. Both questions, along with the approaches developed by the authors to address them, are highly relevant.

      Strengths:

      Since chromosome ends resemble one-ended DSBs, the authors hypothesized that the previously described END-SEQ protocol could be used to accurately sequence the 5' end of telomeres on the C-rich strand. As expected, most reads corresponded to the C-rich strand and, confirming previous observation by the de Lange's group, most chromosomes end with the ATC-5' sequence, a feature that was found to be dependent on POT1 and to be conserved in both human ALT cells and mouse cells. Through a complementary method, S1-END-SEQ, the authors further explored ssDNA regions at telomeres, providing new insights into the characteristics of ALT telomeres. The study is original, the experiments were well-controlled and excellently executed.

      Weaknesses:

      A few additional experiments would have strengthened the results such as combining error-free long-read sequencing with END-SEQ to compare the abundance of VTRs within telomeres versus at their distal ends.<br /> Along this line, are VTRs increased at ssDNA regions of ALT telomeres? What is the frequency of VTRs in the END-SEQ analysis of TRF1-FokI-expressing ALT cells? Is it also increased? Has TRF1-FokI been applied to telomerase-expressing cells to compare VTR frequencies at internal sites between ALT and telomerase-expressing cells?<br /> To what extent do ECTRs contribute to telomeric ssDNA?<br /> Future experiments may help shed light on this

    1. Reviewer #3 (Public review):

      Summary:

      Webster et al. sought to understand if phenotypic variation in the absence of genetic variation can be predicted by variation in gene expression. To this end they quantified two reproductive traits, the onset of egg laying and early brood size in cohorts of genetically identical nematodes exposed to alternative ancestral (two maternal ages) and same generation life histories (either constant 20 ºC temperature or 8-hour temperature shift to 25 ºC upon hatching) in a two-factor design; then, they profiled genome-wide gene expression in each individual.

      Using multiple statistical and machine learning approaches, they showed that, at least for early brood size, phenotypic variation can be quite well predicted by molecular variation, beyond what can be predicted by life history alone.<br /> Moreover, they provide some evidence that expression variation in some genes might be causally linked to phenotypic variation.

      Strengths:

      Cleverly designed and carefully performed experiments that provide high-quality datasets useful for the community.

      Good evidence that phenotypic variation can be predicted by molecular variation.

      Weaknesses:

      What drives the molecular variation that impacts phenotypic variation remains unknown. While the authors show that variation in expression of some genes might indeed be causal, it is still not clear how much of the molecular variation is a cause rather than a consequence of phenotypic variation.

      Comments on revisions: I have no more comments for the authors

    1. Reviewer #3 (Public review):

      Summary:

      This is an interesting paper by Lechler and colleagues describing the transcriptomic signature and fate of intermediate cells (ICs), a transient and poorly defined embryonic cell type in the skin. ICs are the first suprabasal cells in the stratifying skin and unlike later-developing suprabasal cells, ICs continue to divide. Using bulk RNA seq to compare ICs to spinous and granular transcriptomes, the authors find that IC-specific gene signatures include hallmarks of granular cells, such as genes involved in lipid metabolism and skin barrier function that are not expressed in spinous cells. ICs were assumed to differentiate into spinous cells, but lineage tracing convincingly shows ICs differentiate directly into granular cells without passing through a spinous intermediate. Rather, basal cells give rise to the first spinous cells. They further show that transcripts associated with contractility are also shared signatures of ICs and granular cells, and overexpression of two contractility inducers (Spastin and ArhGEF-CA) can induce granular and repress spinous gene expression. This contractility-induced granular gene expression does not appear to be mediated by the mechanosensitive transcription factor, Yap. The paper also identifies new markers that distinguish IC and spinous layers, and shows the spinous signature gene, MafB, is sufficient to repress proliferation when prematurely expressed in ICs.

      Strengths:

      Overall this is a well-executed study, and the data are clearly presented and the findings convincing. It provides an important contribution to the skin field by characterizing the features and fate of ICs, a much understudied cell type, at a high levels of spatial and transcriptomic detail. The conclusions challenge the assumption that ICs are spinous precursors through compelling lineage tracing data. The demonstration that differentiation can be induced by cell contractility is an intriguing finding, and adds a growing list of examples where cell mechanics influence gene expression and differentiation.

      Weaknesses:

      A weakness of the study is an over-reliance on overexpression and sufficiency experiments to test the contributions of MafB, Yap, and contractility in differentiation. The inclusion of loss-of-function approaches would enable one to determine if, for example, contractility is required for the transition of ICs to granular fate, and whether MafB is required for spinous fate. Second, whether the induction of contractility-associated genes is accompanied by measurable changes in the physical properties or mechanics of the IC and granular layers is not directly shown. Inclusion of physical measurements would bolster the conclusion that mechanics lies upstream of differentiation.

      Finally, the role of ICs in epidermal development remains unclear. Although not essential to support the conclusions of this study, insights into the function of this transient cell layer would strengthen the overall impact.

    1. Reviewer #3 (Public Review):

      Summary:

      Protein overexpression is widely used in experimental systems to study the function of the protein, assess its (beneficial or detrimental) effects in disease models, or challenge cellular systems involved in synthesis, folding, transport, or degradation of proteins in general. Especially at very high expression levels, protein-specific effects and general effects of a high protein load can be hard to distinguish. To overcome this issue, Fujita et al. use the previously established genetic tug-of-war system to identify proteins that can be expressed at extremely high levels in yeast cells with minimal protein-specific cytotoxicity (high 'neutrality'). They focus on two versions of the protein mox-GFP, the fluorescent version and a point mutation that is non-fluorescent (mox-YG) and is the most 'neutral' protein on their screen. They find that massive protein expression (up to 40% of the total proteome) results in a nitrogen starvation phenotype, likely inactivation of the TORC1 pathway, and defects in ribosome biogenesis in the nucleolus.

      Strengths:

      This work uses an elegant approach and succeeds in identifying proteins that can be expressed at surprisingly high levels with little cytotoxicity. Many of the changes they see have been observed before under protein burden conditions, but some are new and interesting. This work solidifies previous hypotheses about the general effects of protein overexpression and provides a set of interesting observations about the toxicity of fluorescent proteins (that is alleviated by mutations that render them non-fluorescent) and metabolic enzymes (that are less toxic when mutated into inactive versions).

      Weaknesses:

      The data are generally convincing, however in order to back up the major claim of this work - that the observed changes are due to general protein burden and not to the specific protein or condition - a broader analysis of different conditions would be highly beneficial.

      Major points:

      (1) The authors identify several proteins with high neutrality scores but only analyze the effects of mox/mox-YG overexpression in depth. Hence, it remains unclear which molecular phenotypes they observe are general effects of protein burden or more specific effects of these specific proteins. To address this point, a proteome (and/or transcriptome) of at least a Gpm1-CCmut expressing strain should be obtained and compared to the mox-YG proteome. Ideally, this analysis should be done simultaneously on all strains to achieve a good comparability of samples, e.g. using TMT multiplexing (for a proteome) or multiplexed sequencing (for a transcriptome). If feasible, the more strains that can be included in this comparison, the more powerful this analysis will be and can be prioritized over depth of sequencing/proteome coverage.

      (2) The genetic tug-of-war system is elegant but comes at the cost of requiring specific media conditions (synthetic minimal media lacking uracil and leucine), which could be a potential confound, given that metabolic rewiring, and especially nitrogen starvation are among the observed phenotypes. I wonder if some of the changes might be specific to these conditions. The authors should corroborate their findings under different conditions. Ideally, this would be done using an orthogonal expression system that does not rely on auxotrophy (e.g. using antibiotic resistance instead) and can be used in rich, complex mediums like YPD. Minimally, using different conditions (media with excess or more limited nitrogen source, amino acids, different carbon source, etc.) would be useful to test the robustness of the findings towards changes in media composition.

      (3) The authors suggest that the TORC1 pathway is involved in regulating some of the changes they observed. This is likely true, but it would be great if the hypothesis could be directly tested using an established TORC1 assay.

      (4) The finding that the nucleolus appears to be virtually missing in mox-YG-expressing cells (Figure 6B) is surprising and interesting. The authors suggest possible mechanisms to explain this and partially rescue the phenotype by a reduction-of-function mutation in an exosome subunit. I wonder if this is specific to the mox-YG protein or a general protein burden effect, which the experiments suggested in point 1 should address. Additionally, could a mox-YG variant with a nuclear export signal be expressed that stays exclusively in the cytosol to rule out that mox-YG itself interferes with phase separation in the nucleus?

      Minor points:

      (5) It would be great if the authors could directly compare the changes they observed at the transcriptome and proteome levels. This can help distinguish between changes that are transcriptionally regulated versus more downstream processes (like protein degradation, as proposed for ribosome components).

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors report three novel ifc alleles: ifc[js1], ifc[js2], and ifc[js3]. ifc[js1] and ifc[js2] encode missense mutations, V276D and G257S, respectively. ifc[js3] encodes a nonsense mutation, W162*. These alleles exhibit multiple phenotypes, including delayed progression to the late-third larval instar stage, reduced brain size, elongation of the ventral nerve cord, axonal swelling, and lethality during late larval or early pupal stages.

      Further characterization of these alleles the authors reveals that ifc is predominantly expressed in glia and localizes to the endoplasmic reticulum (ER). The expression of ifc gene governs glial morphology and survival. Expression of fly ifc cDNA or human DEGS1 cDNA specifically in glia, but not neurons, rescues the CNS phenotypes of ifc mutants, indicating a crucial role for ifc in glial cells and its evolutionary conservation. Loss of ifc results in ER expansion and loss of lipid droplets in cortex glia. Additionally, loss of ifc leads to ceramide depletion and accumulation of dihydroceramide. Moreover, it increases the saturation levels of triacylglycerols and membrane phospholipids. Finally, the reduction of dihydroceramide synthesis suppresses the CNS phenotypes associated with ifc mutations, indicating the key role of dihydroceramide in causing ifc LOF defects.

      Strengths:

      This manuscript unveils several intriguing and novel phenotypes of ifc loss-of-function in glia. The experiments are meticulously planned and executed, with the data strongly supporting their conclusions.

    1. Reviewer #3 (Public review):

      Summary:

      This study aims to understand the molecular underpinnings of the complex process of periodic deposition of the neuromast organs of the embryonic posterior lateral line (PLL) sensory system in zebrafish. It was previously established that Fgf signaling in the trailing zone of the migrating PLL primordium is key to protoneuromast establishment, while Wnt signaling in the leading zone must be downregulated to allow new Fgf signaling-dependent protoneuromasts to form. Here, the authors evaluate the role of three SoxB transcription factors (Sox1a, Sox2, and Sox3) in this complex process, generating two novel CRISPR mutants as part of their study. They interrogate the interplay of the SoxB genes with the Fgf and Wnt signaling pathways during PLL primordium migration, using a combination of genetics, knockdown, and imaging approaches, including live time-lapse studies. They report a key role for the SoxB genes in regulating the pace of protoneuromast maturation as the primordium migrates, thus ensuring appropriate deposition and spacing of the neuromast organs.

      Strengths:

      Strengths of the study are the careful quantitative analysis. based on imaging approaches, of the impact of mutation or knockdown of SoxB genes, coupled with the use of heat shock inducible dominant negative strategies to address how SoxB genes interact with Wnt and Fgf signaling. Functional analyses convincingly uncover a SoxB regulatory network that serves to limit Wnt activity, as directly read out with a live Wnt reporter. The finding that Wnt inhibition (achieved using pharmacological reagents) rescues the SoxB deficiency phenotype provides compelling evidence of the centrality of the Wnt pathway in mediating SoxB function. Use of atoh1 markers to track the stages of development of the neuromasts provides an effective approach to following their maturation, and allows the authors to explore how SoxB/Wnt interplay ultimately translates into the establishment of functional neuromasts. Finally, loss of Sox2 function, together with loss of either Sox1a or Sox3, blocks maturation of the neuromasts, clearly establishing redundancy between these SoxB family genes.

      The concepts introduced and explored in this study - of complex gene networks that work within a dynamic cellular environment to enable self-organization and ultimately stabilization of cell fate choices-provide a useful conceptual framework for future studies. This study is therefore of relevance to understanding the morphogenesis of self-organizing tissues more broadly.

      Weaknesses:

      A minor weakness is the use of SoxB morpholino (MO) knockdown reagents, which are interspersed with mutant analyses. Although the stable mutants are available, they would be challenging to couple with the reporter transgenes used for some of the experiments, providing a reasonable rationale for the use of MO reagents (although the authors don't overtly provide this rationale). Moreover, reduced penetrance of the Sox2 mutants over multiple generations is noted, but no detailed explanation for this finding is offered.

      Given that the expression patterns of Sox1a and Sox3 are not merely different but are largely reciprocal, the mechanistic basis of their very similar double mutant phenotypes with Sox2 remains opaque. Related to this, the authors discuss that Sox1a/Sox2 double knockdown produces a more severe phenotype than Sox2/Sox3 double knockdown, yet this difference is not obviously reflected in the data, some of which is not shown.

    1. Reviewer #3 (Public review):

      Summary:

      Modeling and estimating sequence context biases during B cell somatic hypermutation is important for accurately modeling B cell evolution to better understand responses to infection and vaccination. Sung et al. introduce new statistical models that capture a wider sequence context of somatic hypermutation with a comparatively small number of additional parameters. They demonstrate their model's performance with rigorous testing across multiple subjects and datasets. Prior work has captured the mutation biases of fixed 3-, 5-, and 7-mers, but each of these expansions has significantly more parameters. The authors developed a machine-learning-based approach to learn these biases using wider contexts with comparatively few parameters.

      Strengths:

      Well motivated and defined problem. Clever solution to expand nucleotide context. Complete separation of training and test data by using different subjects for training vs testing. Release of open-source tools and scripts for reproducibility.

      The authors have addressed my prior comments.

    1. Reviewer #3 (Public review):

      Summary:

      Mancl et al. report four Cryo-EM structures of glycosylated and soluble Angiotensin-I converting enzyme (sACE) dimer. This moves forward the structural understanding of ACE, as previous analysis yielded partially denatured or individual ACE domains. By performing a heterogeneity analysis, the authors identify three structural conformations (open, intermediate open, and closed) that define the openness of the catalytic chamber and structural features governing the dimerization interface. They show that the dimer interface of soluble ACE consists of an N-terminal glycan and protein-protein interaction regions, as well as C-terminal protein-protein interactions. Further heterogeneity mining and all-atom molecular dynamic simulations show structural rearrangements that lead to the opening and closing of the catalytic pocket, which could explain how ACE binds its substrate. These studies could contribute to future drug design targeting the active site or dimerization interface of ACE.

      Strengths:

      The authors make significant efforts to address ACE denaturation on cryo-EM grids, testing various buffers and grid preparation techniques. These strategies successfully reduce denaturation and greatly enhance the quality of the structural analysis. The integration of cryoDRGN, 3DVA, RECOVAR, and all-atom simulations for heterogeneity analysis proves to be a powerful approach, further strengthening the overall experimental methodology.

      Weaknesses:

      No weaknesses noted. The revised manuscript adequately addresses the points I suggested in the review of the first submission.

    1. Reviewer #3 (Public review):

      Summary:

      This is a very interesting paper extending the use of SHG to the study of relaxed muscle and its use to assess the order-disorder (and on /off) states of myosin heads in the thick filament. The work convincingly shows that SHG and the parameter gamma provide a reliable measure of the state of the myosin heads in a range of different relaxed muscle fibres, both intact and skinned, and in myofibrils. In mini pig cardiac fibres, the use of dATP and mavacamten increased or decreased the number of heads in the disordered state, respectively. On the assumption that these treatments push myosins fully into the disordered or ordered state, then this allows the fraction of ordered heads to be assessed under a wide variety of conditions. It is unfortunate that dATP treatment was not used (as mavacmten was) on rabbit psoas and mouse samples to further test this hypothesis.

      The results with the myosin mutant R403Q support the idea that this mutation reduces the fraction of myosin heads in the ordered state and that mavacamten can recover the WT situation.

      The results from SHG were compared with parallel studies using X-rays to validate the conclusions. Independent fibre ATPase data further support the conclusions.

      The work is solid and provides a novel approach to assessing the activity state of muscle thick filaments. The authors point out some of the potential uses of this approach in the future, including time-resolved SHG measurements. Indeed, jumps in mavacamten or dATP concentration with time-resolved SHG could measure the rates of entry and exit from the ordered, off state of the filament. A measurement is urgently needed in the field.

      Strengths:

      (1) The SHG signal is convincingly shown to assess the fraction of ordered/disordered myosin heads in the thick filament of a variety of muscle fibres.

      (2) The results are similar for rabbit psoas, mouse, and minipig cardiac fibres. Skinning the fibres and production of myofibrils do not change the SHG signal.

      (3) Use of myosin R403Q mutant in mini pig confirms a loss of ordered myosin heads, and the ordered heads can be recovered by mavacamten.

      (4) Parallel X-ray scattering and ATPase data support the conclusions.

      (5) Assuming that dATP and mavacamten generate 100% disordered vs ordered myosin heads respectively, then the percentage of ordered heads can be calculated for a variety of conditions.

      Weaknesses:

      (1) Issues like the effect of fibre disarray and lattice spacing on the SHG signal are not well defined.

      (2) The, now well-defined heterogeneity of thick filament structure is not acknowledged.

      (3) dATP was only used on minipig cardiac fibres. The effect of dATP on rabbit psoas and mouse cardiac fibres would be a useful comparison and would help validate the calculation of % ordered heads.

    1. Reviewer #3 (Public review):

      Summary:

      This study aims to develop and characterize phenylhydrazone-based small molecules that selectively activate the ATF6 arm of the unfolded protein response by covalently modifying a subset of ER-resident PDIs. The authors identify AA263 as a lead scaffold and optimize its structure to generate analogs with improved potency and ATF6 selectivity, notably AA263-20. These compounds are shown to restore proteostasis and functional expression of disease-associated misfolded proteins in cellular models involving both secretory (AAT-Z) and membrane (GABAA receptor) proteins. The findings provide valuable chemical tools for modulating ER proteostasis and may serve as promising leads for therapeutic development targeting protein misfolding diseases.

      Strengths:

      (1) The study presents a well-defined chemical biology framework integrating proteomics, transcriptomics, and disease-relevant functional assays.

      (2) Identification and optimization of a new electrophilic scaffold (AA263) that selectively activates ATF6 represents a valuable advance in UPR-targeted pharmacology.

      (3) SAR studies are comprehensive and logically drive the development of more potent and selective analogs such as AA263-20.

      (4) Functional rescue is demonstrated in two mechanistically distinct disease models of protein misfolding-one involving a secretory protein and the other a membrane protein-underscoring the translational relevance of the approach.

      Weaknesses:

      (1) ATF6 activation is primarily inferred from reporter assays and transcriptional profiling; however, direct evidence of ATF6 cleavage is lacking.

      (2) While the mechanism involving PDI modification and ATF6 activation is plausible, it remains incompletely characterized.

      (3) No in vivo data are provided, leaving the pharmacological feasibility and bioavailability of these compounds in physiological systems unaddressed.

    1. Reviewer #3 (Public review):

      Summary:

      Built on their previous pioneer expertise in studying RAD51 biology, in this paper, the authors aim to capture and investigate the structural mechanism of human RAD51 filament bound with a displacement loop (D-loop), which occurs during the dynamic synaptic state of the homologous recombination (HR) strand-exchange step. As the structures of both pre- and post-synaptic RAD51 filaments were previously determined, a complex structure of RAD51 filament during strand exchange is one of the key missing pieces of information for a complete understanding of how RAD51 functions in HR pathway. This paper aims to determine the high-resolution cryo-EM structure of RAD51 filament bound with D-loop. Combined with mutagenesis analysis and biophysical assays, the authors aim to investigate the D-loop DNA structure, RAD51 mediated strand separation and polarity, and a working model of RAD51 during HR strand invasion in comparison with RecA.

      Strengths:

      (1) The structural work and associated biophysical assays in this paper are solid, elegantly designed and interpreted.  These results provide novel insights into RAD51's function in HR.

      (2) The DNA substrate used was well designed, taking into consideration of the nucleotide number requirement of RAD51 for stable capture of donor DNA. This DNA substrate choice lays the foundation for successfully determining the structure of the RAD51 filament on D-loop DNA using single-partial cryo-EM.

      (3) The authors utilised their previous expertise in capping DNA ends using monometric streptavidin and combined their careful data collection and processing to determine the cryo-EM structure of full-length human RAD51 bound at D-loop in high resolution. This interesting structure forms the core part of this work and allows detailed mapping of DNA-DNA and DNA-protein interaction among RAD51, invading strands, and donor DNA arms (Figures 1, 2, 3, 4). The geometric analysis of D-loop DNA bound with RAD51 and EM density for homologous DNA pairing are also impressive (Figure S5). The previously disordered RAD51's L2-loop is now ordered and traceable in the density map and functions as a physical spacer when bound with D-loop DNA. Interestingly, the authors identified that the side chain position of F279 in the L2_loop of RAD51_H differs from other F279 residues in L2-loops of E, F and G protomers. This asymmetric binding of L2 loops and RAD51_NTD binding with donor DNA arms forms the basis of the proposed working model about the polarity on csDNA during RAD51-mediated strand exchange.

      (4) This work also includes mutagenesis analysis and biophysical experiments, especially EMSA, single-molecule fluorescence imaging using an optical tweezer, and DNA strand exchange assay, which are all suitable methods to study the key residues of RAD51 for strand exchange and D-loop formation (Figure 5).

      Weaknesses:

      (1) The proposed model for the 3'-5' polarity of RAD51-mediated strand invasion is based on the structural observations in the cryo-EM structure. This study lacks follow-up biochemical/biophysical experiments to validate the proposed model compared to RecA or developing methods to capture structures of any intermediate states with different polarity models.

      (2) The functional impact of key mutants designed based on structure has not been tested in cells to evaluate how these mutants impact the HR pathway.

      The significance of the work for the DNA repair field and beyond:

      Homologous recombination (HR) is a key pathway for repairing DNA double-strand breaks and involves multiple steps. RAD51 forms nucleoprotein filaments first with 3' overhang single-strand DNA (ssDNA), followed by a search and exchange with a homology strand. This function serves as the basis of an accurate template-based DNA repair during HR. This research addressed a long-standing challenge of capturing RAD51 bound with the dynamic synaptic DNA and provided the first structural insight into how RAD51 performs this function. The significance of this work extends beyond the discovery biology for the DNA repair field, into its medical relevance. RAD51 is a potential drug target for inhibiting DNA repair in cancer cells to overcome drug resistance. This work offers a structural understanding of RAD51's function with D-loop and provides new strategies for targeting RAD51 to improve cancer therapies.

    1. Reviewer #3 (Public review):

      Summary:

      The authors develop a tool for marking presynaptic active zones in Drosophila brains, dependent on the GAL4 construct used to express a fragment of GFP, which will incorporate with a genome-engineered partial GFP attached to the active zone protein bruchpilot - signal will be specific to the GAL4-expressing neuronal compartment. They then use various GAL4s to examine innervation onto the mushroom bodies to dissect compartment-specific differences in the size and intensity of active zones. After a description of these differences, they induce learning in flies with classic odour/electric shock pairing and observe changes after conditioning that are specific to the paired conditioning/learning paradigm.

      Strengths:

      The imaging and analysis appear strong. The tool is novel and exciting.

      Weaknesses:

      I feel that the tool could do with a little more characterisation. It is assumed that the puncta observed are AZs with no further definition or characterisation.

    1. Reviewer #3 (Public review):

      Summary:

      Wang et al. reported a new role of LRRK2-GS mutant in astrocyte morphology and synapse maintenance and a potential mechanism that acts through phosphorylation of ERM, which binds to ATG7. In both human LRRK2-GS patients and LRRK2-GS KI mouse brain cortex, they found increased ERM phosphorylation levels. LRRK2-GS alters excitatory and inhibitory synapse densities and functions in the cortex, which can be restored by p-ERM-dead mutant. They further demonstrated that LRRK2 regulates astrocyte morphological complexity in vivo through ERM phosphorylation. Proteomic and biochemistry approaches found that ATG7 interacts with Ezrin, which is inhibited by Ezrin phosphorylation. This provides a potential mechanism by which LRRK2-GS impairs the astrocyte morphology.

      Strengths:

      (1) Data in human PD patients (Figure 1B, C) is impressive, showing a clear increase of p-ERM in LRRK2-GS samples.

      (2) Both LRRK2-GS and siLRRK2 show similar phenotypes, supporting both GOF and LOF decrease astrocyte complexity and size.

      (3) Using p-ERM-dead and mimic mutants is elegant. The data is striking that the p-ERM-dead mutant can restore LRRK2-GS-induced excitatory synapse density in the ACC and astrocyte territory volume and complexity, while the p-ERM-mimic mutant can restore the siLRRK2 phenotype.

      (4) ATG7 binding to Ezrin provides a potential mechanism. It is compelling that siATG7 shows a similar decrease in astrocyte territory volume and complexity, and siATG7 in LRRK2-GS does not enhance the astrocyte phenotype.

      Weaknesses:

      (1) The authors claim that p-ERM colocalizes with astrocyte marker ALDH1L1, e.g., Figure 1E, F, G, H, J, K. It is hard to tell from the representative images. Given that this is critical for this paper, it would be appreciated if the authors could improve the images and show clear colocalization. The same concern for Figures S1, 2, 3. Validation of the p-ERM antibody is critical. Figure S4, using λ-PPase to eliminate the phosphorylation signal in general, is very helpful. Additional validation of the p-ERM antibody specific to ERM would be appreciated.

      (2) Does the total ERM level change /increase in LRRK2-GS samples? The increased p-ERM levels could be because the total ERM level increases. Then, the follow-up question is whether the total ERM level matters to the astrocyte phenotypes seen in the paper.

      (3) WT mice carry WT-LRRK2, which also has kinase activity to phosphorylate ERM. So, what are the effects of overexpression of the p-ERM mutants (dead or mimic) on the excitatory and inhibitory synapse densities and functions in WT mouse samples? In Figure 4, statistics should be done comparing WT+Ezrin O/E vs WT+phosphor-dead Ezrin O/E. From what is shown in the graphs, it looks like phosphor-dead Ezrin worsens the phenotype in WT mice, which is opposite to the GS mice. How to explain? The same question for the graphs in Figure 5.

      (4) Rab10 is not a robust substrate for the LRRK2-G2019S mutant, and p-Rab10 is very difficult to detect in mouse brains. The specificity of the pRab10 immunostaining signal in Fig. S8 is not certain.

      (5) Would ATG7, Ezrin, and LRRK2 form a complex?

    1. Reviewer #3 (Public review):

      Summary:

      This study provides a detailed investigation of neural auditory responses and spontaneous movements in infants listening to music. Analyses of EEG data (event-related potentials and steady-state responses) first highlighted that infants at 3, 6, and 12 months of age and adults showed enhanced auditory responses to music than shuffled music. 6-month-olds also exhibited enhanced P1 response to high-pitch vs low-pitch stimuli, but not the other groups. Besides, whole body spontaneous movements of infants were decomposed into 10 principal components. Kinematic analyses revealed that the quantity of movement was higher in response to music than shuffled music only at 12 months of age. Although Granger causality analysis suggested that infants' movement was related to the music intensity changes, particularly in the high-pitch condition, infants did not exhibit phase-locked movement responses to musical events, and the low movement periodicity was not coordinated with music.

      Strengths:

      This study investigates an important topic on the development of music perception and translation to action and dance. It targets a crucial developmental period that is difficult to explore. It evaluates two modalities by measuring neural auditory responses and kinematics, while cross-modal development is rarely evaluated. Overall, the study fills a clear gap in the literature.

      Besides, the study uses state-of-the-art analyses. All steps are clearly detailed. The manuscript is very clear, well-written, and pleasant to read. Figures are well-designed and informative.

      Weaknesses:

      (1) Differences in neural responses to high-pitch vs low-pitch stimuli between 6-month-olds and other infants are difficult to interpret.

      (2) Making some links between the neural and movement responses that are described in this manuscript could be expected, given the study goal. Although kinematic analyses suggested that movement responses are not phase-locked to the music stimuli, analyses of Granger causality between motion velocity and neural responses could be relevant.

      (3) The study considers groups of infants at different ages, but infants within each group might be at different stages of motor development. Was this assessed behaviorally? Would it be possible to explore or take into account this possible inter-individual variability?

    1. Reviewer #3 (Public review):

      Summary:

      The authors describe an interesting study of arm movements carried out in weightlessness after a prolonged exposure to the so-called microgravity conditions of orbital spaceflight. Subjects performed radial point-to-point motions of the fingertip on a touch pad. The authors note a reduction in movement speed in weightlessness, which they hypothesize could be due to either an overall strategy of lowering movement speed to better accommodate the instability of the body in weightlessness or an underestimation of body mass. They conclude for the latter, mainly based on two effects. One, slowing in weightlessness is greater for movement directions with higher effective mass at the end effector of the arm. Two, they present evidence for an increased number of corrective submovements in weightlessness. They contend that this provides conclusive evidence to accept the hypothesis of an underestimation of body mass.

      Strengths:

      In my opinion, the study provides a valuable contribution, the theoretical aspects are well presented through simulations, the statistical analyses are meticulous, the applicable literature is comprehensively considered and cited, and the manuscript is well written.

      Weaknesses:

      Nevertheless, I am of the opinion that the interpretation of the observations leaves room for other possible explanations of the observed phenomenon, thus weakening the strength of the arguments.

      First, I would like to point out an apparent (at least to me) divergence between the predictions and the observed data. Figures 1 and S1 show that the difference between predicted values for the 3 movement directions is almost linear, with predictions for 90º midway between predictions for 45º and 135º. The effective mass at 90º appears to be much closer to that of 45º than to that of 135º (Figure S1A). But the data shown in Figure 2 and Figure 3 indicate that movements at 90º and 135º are grouped together in terms of reaction time, movement duration, and peak acceleration, while both differ significantly from those values for movements at 45º.

      Furthermore, in Figure 4, the change in peak acceleration time and relative time to peak acceleration between 1g and 0g appears to be greater for 90º than for 135º, which appears to me to be at least superficially in contradiction with the predictions from Figure S1. If the effective mass is the key parameter, wouldn't one expect as much difference between 90º and 135º as between 90º and 45º? It is true that peak speed (Figure 3B) and peak speed time (Figure 4B) appear to follow the ordering according to effective mass, but is there a mathematical explanation as to why the ordering is respected for velocity but not acceleration? These inconsistencies weaken the author's conclusions and should be addressed.

      Then, to strengthen the conclusions, I feel that the following points would need to be addressed:

      (1) The authors model the movement control through equations that derive the input control variable in terms of the force acting on the hand and treat the arm as a second-order low-pass filter (Equation 13). Underestimation of the mass in the computation of a feedforward command would lead to a lower-than-expected displacement to that command. But it is not clear if and how the authors account for a potential modification of the time constants of the 2nd order system. The CNS does not effectuate movements with pure torque generators. Muscles have elastic properties that depend on their tonic excitation level, reflex feedback, and other parameters. Indeed, Fisk et al.* showed variations of movement characteristics consistent with lower muscle tone, lower bandwidth, and lower damping ratio in 0g compared to 1g. Could the variations in the response to the initial feedforward command be explained by a misrepresentation of the limbs' damping and natural frequency, leading to greater uncertainty about the consequences of the initial command? This would still be an argument for unadapted feedforward control of the movement, leading to the need for more corrective movements. But it would not necessarily reflect an underestimation of body mass.

      *Fisk, J. O. H. N., Lackner, J. R., & DiZio, P. A. U. L. (1993). Gravitoinertial force level influences arm movement control. Journal of neurophysiology, 69(2), 504-511.

      (2) The movements were measured by having the subjects slide their finger on the surface of a touch screen. In weightlessness, the implications of this contact are expected to be quite different than those on the ground. In weightlessness, the taikonauts would need to actively press downward to maintain contact with the screen, while on Earth, gravity will do the work. The tangential forces that resist movement due to friction might therefore be different in 0g. This could be particularly relevant given that the effect of friction would interact with the limb in a direction-dependent fashion, given the anisotropy of the equivalent mass at the fingertip evoked by the authors. Is there some way to discount or control for these potential effects?

      (3) The carefully crafted modelling of the limb neglects, nevertheless, the potential instability of the base of the arm. While the taikonauts were able to use their left arm to stabilize their bodies, it is not clear to what extent active stabilization with the contralateral limb can reproduce the stability of the human body seated in a chair in Earth gravity. Unintended motion of the shoulder could account for a smaller-than-expected displacement of the hand in response to the initial feedforward command and/or greater propensity for errors (with a greater need for corrective submovements) in 0g. The direction of movement with respect to the anchoring point could lead to the dependence of the observed effects on movement direction. Could this be tested in some way, e.g., by testing subjects on the ground while standing on an unstable base of support or sitting on a swing, with the same requirement to stabilize the torso using the contralateral arm?

      The arguments for an underestimation of body mass would be strengthened if the authors could address these points in some way.

    1. Reviewer #3 (Public review):

      Summary:

      This study aimed to elucidate the intricate mechanisms underlying cognitive decline induced by chronic METH abuse, focusing on the hippocampus at a single-cell resolution. The authors established a robust mouse model of chronic METH exposure. They observed significant impairments in working memory, spatial cognition, learning, and cognitive memory through Y-maze and novel object recognition tests. To gain deeper insights into the cellular and molecular changes, they utilized single-cell RNA sequencing to profile hippocampal cells. They performed extensive bioinformatics analyses, including cell clustering, differential gene expression, cellular communication, pseudotemporal trajectory, and transcription factor regulation.

      Strengths:

      (1) The authors performed a comprehensive suite of bioinformatics analyses, including differential gene expression, cellular cross-talk, pseudotime trajectory, and SCENIC analysis, which enable a multifaceted exploration of METH-induced changes at both the cellular and molecular levels.

      (2) The study demonstrates an awareness of the potential influence of circadian rhythms, dedicating a specific section in the discussion to the disruption of circadian rhythms, which has rarely been mentioned in previous studies on METH. They highlight the frequent occurrence of circadian regulation in their analysis across several cell types.

      (3) The pseudotime analysis provides valuable insights into hindered neurogenesis, showing a shift in NSC differentiation toward astrocytes rather than neuroblasts in METH-treated mice. The detailed analysis of BBB components (endothelial cells, mural cells, SMCs) and their heterogeneous responses to METH is also a significant contribution.

      Weaknesses:

      (1) While the bioinformatics analyses are extensive, the study is primarily descriptive at the molecular level. The absence of experimental validation, such as targeted mRNA/protein quantification and gene knockdown/overexpression to confirm the causal relationship between these identified genes and METH-induced cognitive deficits, is a notable limitation.

      (2) While the discussion extensively covers the functional implications of specific molecular pathways and cell types, it would greatly benefit from a comparison of these findings with existing RNA sequencing data from other METH models in hippocampal tissue.

      (3) The conclusion that "prolonged METH use may progressively impair cognitive function" may not be uniformly supported by the behavioral data: Figures 1C and F (discrimination and preference indexes) exhibited that the 4-week test further declined in the METH group compared to the 2-week. In contrast, Figure 1E and H present a contradictory pattern.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, Hall and colleagues investigate how the coupling of activity from ACC to CA1is altered by fear learning, showing that during sleep immediately before learning, there is evidence for increased coupling of ACC activity with neurons that will subsequently be inhibited during the learning process. They go on to show that this effect seems to be mediated most by a subpopulation of neurons in the superficial layer of CA1. This fits with previous reports suggesting that these superficial neurons are key for the flexible updating of memory. The authors then go on to show that artificial activation of ACC using optogenetics results in varied effects in CA1, including a subtle decrease in activity of superficial neurons that lasts longer than the stimulus itself. Finally, the authors present some preliminary data suggesting that different interneurons may be recruited by this optogenetic stimulation in different ways and at different times.

      Overall, this is an interesting paper, but much of the analysis is very preliminary, and much of the crucial data about the learning effects and alterations to cell firing are not presented clearly and fully. This is further confounded by a rather opaque description of the results and analysis in the text. Overall, there is something very interesting here, but there needs to be a substantial series of extra analyses to clearly say what this is. In many cases, more robust analysis may render the results underpowered, which could dramatically change the conclusions of the paper.

      Strengths:

      The authors performed difficult, dual-location recordings across a multi-day learning paradigm, which seems like it could be a really nice dataset. They delve into the circuit basis of an interesting finding regarding ACC to CA1 connectivity and how this changes before and after fear conditioning. They provide data to suggest this connectivity may be through specific and distinct subcircuits in CA1.

      Weaknesses:

      (1) There is essentially no information in the text or figures about what the actual learning was, how it was done, how individual animals performed, and how any of these metrics related to learning. Looking at the methods, the authors did a number of things never mentioned anywhere in the text or figures, including novel arena exposure, contextual reexposure in extinction after learning, etc. It seems that this is a very rich dataset that has not been presented at all. I would recommend at the very least:<br /> a) Plot all of the behavioural training data, and how each mouse relates to one another - did the mice learn? At this stage, we don't know!<br /> b) Explain in the text in detail exactly what was done and why, and what this tells us about the neuronal activity.<br /> c) If there is variance in learning and or conditioning, does this relate to features in the analysis, such as the GLM result.

      (2) Along similar lines, a key metric for most of the paper is that neurons most coupled with ACC are more likely to be inhibited during training. However, there is nothing anywhere in the paper showing these data. How do neurons in general respond to contextual shocks? The methods describe this as the average firing rate during training, normalised to pre-sleep activity. This metric seems a bit coarse and may obscure really important task-relevant dynamics. Are the neurons active at specific times, are they tuned to relevant parts of the task, and do any of these features of the cell activity also relate to the coupling with ACC? Similarly, how did the authors mitigate the influence of electrical artefacts caused by the foot shock in their recordings? Again, there is a huge amount of data here that is not being described, and likely holds very valuable information about what is actually happening. The paper would really benefit from the inclusion of these data in an accessible form, such as heatmaps of spiking, how these patterns change over time, and around e.g., foot shock, etc. Also key is how these features are altered by the variability of learning across subjects.

      (3) A number of the effects are presented by comparing a statistically significant effect to a non-statistically significant effect (e.g. in Figure 2b, Figure 2d, Figure 4 b,c, and others). This isn't really valid - the key test that the two groups are different is either with a direct test of the difference or an interaction term in an e.g., ANOVA test. In some places, I am not sure the same conclusions will be drawn from the data with these tests.

      (4) To what extent is defining superficial and deep CA1 neurons solely by ripple waveform an accepted method? Of the two papers referenced for this approach, one is a 2-photon calcium imaging paper that does not do electrical recordings (as far as I am aware), and the second uses this as a descriptor after defining the positions of units on an array. It would be good to clarify how accepted this is, and also how robust this is. At the very least, some kind of metric or walkthrough in the supplement as to how this was done, and how well each cell was classified and with what confidence, or some metric of how distinct and separate the two populations were (or was it just a smudge).

      (5) In the optogenetic experiment in Figure 5, the effect on the CA1 sup neurons seems to be driven by changes in a small subpopulation of this group, with no change in the others. Related to point 2, is there anything else in the data that can pull out what these cells are? More detailed analysis of the firing of these neurons might pull out something really interesting.

      (6) Related to this - a number of comparisons simply pool neurons across mice and analyse them as if independent. This is done a lot in the past, but it would be better if an approach that included the interdependence of neurons recorded from the same mouse at the same time were used (such as a hierarchical model). While this is complex, a simpler approach would just be to plot the summary data also per mouse. For example, in Figure 5, how do the neurons inhibited by ACC activation spread across the different mice? Is the level of inhibition related to how well the mice learned the CS-US association?

      (7) Figure 6 is interesting, but very preliminary. None of the effects are quantified, and one of the cell types is not identified. I think some proper analysis needs to be done, again across mice, to be able to draw conclusions from these data.

      (8) Finally, in general, I felt that the way the paper was written was very hard to follow, often relying on very processed levels of analysis that were hard to relate back to the raw traces and their biological meaning. In general taking more words to really simply and fully explain each analysis, and taking the words and figures to walk through how each analysis was done and what it tells us about the neuronal data/biology would be really beneficial, especially to someone who is not an extracellular electrophysiologist or immersed in the immediate field.

      In summary, while this manuscript explores an intriguing hypothesis about pre-learning circuit dynamics, it is currently held back by insufficient clarity in behavioural analysis, data presentation, and statistical quantification. Addressing these core issues would greatly improve interpretability and confidence in the findings.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, the authors aimed to index individual variation in decision-making when decisions pit the interests of the self (gains in money, potential for electric shock) against the interests of an unknown stranger in another room (potential for unknown shock). In addition, the authors conducted an additional study in which male participants were either administered intranasal oxytocin or placebo before completing the task to identify the role of oxytocin in moderating task responses. Participants' choice data was analyzed using a harm aversion model in which choices were driven by the subjective value difference between the less and more painful options.

      Strengths:

      Overall, I think this is a well-conducted, interesting, and novel set of research studies exploring decision-making that balances outcomes for the self versus a stranger, and the potential role of the hormone oxytocin (OT) in shaping these decisions. The pain component of the paradigm is well designed, as is the decision-making task, and overall the analyses were well suited to evaluating and interpreting the data. Advantages of the task design include the absence of deception, e.g., the use of a real study partner and real stakes, as a trial from the task was selected at random after the study and the choice the participant made were actually executed. 

      Weaknesses:

      The primary weakness of the paper concerns its framing. Although it purports to be measuring "hyper-altruism," which is the same term used in prior similar (although not identical) designs, I do not believe the task constitutes altruism, but rather the decision to engage, or not engage, in instrumental aggression.

      I continue to believe that when in the "other" trials the only outcome possible for the study partner is pain, and the only outcome possible for the participant is monetary gain, these trials measure decisions about instrumental aggression. That is the exact definition of instrumental aggression is: causing others harm for personal gain. Altruism is not equivalent to refraining from engaging in instrumental aggression, although some similar mechanisms may support both. True altruism would be to accept shocks to the self for the other's benefit (e.g., money).  The interpretation of this task as assessing instrumental aggression is supported by the fact that only the Instrumental Harm subscale of the OUS was associated with outcomes in the task, but not the Impartial Benevolence subscale. By contrast, the IB subscale is the one more consistently associated with altruism (e.g,. Kahane et al 2018; Amormino at al, 2022) I believe it is important for scientific accuracy for the paper, including the title, to be rewritten to reflect what it is testing.

      Although I recognize similar tasks have been previously characterized as "hyper-altruism" I do not believe that is sufficient justification for continuing to promulgate this descriptor without any caveats. I hope the authors will engage more seriously with the idea that this is what the task is measuring.

      Relatedly, in the introduction, I believe it would be important to discuss the non-symmetry of moral obligations related to help/harm--we have obligations not to harm strangers but no obligation to help strangers. This is another reason I do not think the term "hyper altruism" is a good description for this task--given it is typically viewed as morally obligatory not to harm strangers, choosing not to harm them is not "hyper" altruistic (and again, I do not view it as obviously altruism at all).

    1. Reviewer #3 (Public review):

      Summary:

      Floeder and colleagues measure dopamine signaling in the nucleus accumbens core using fiber photometry of the dLight sensor, in Pavlovian and instrumental tasks in mice. They test some predictions from a recently proposed model (ANCCR) regarding the existence of "ramps" in dopamine that have been seen in some previous research, the characteristics of which remain poorly understood.

      They find that cues signaling a progression toward rewards (akin to a countdown) specifically promote ramping dopamine signaling in the nucleus accumbens core, but only when the intertrial interval just experienced was short. This work is discussed in the context of ongoing theoretical conceptions of dopamine's role in learning.

      This work is the clearest demonstration to date of concrete training factors that seem to directly impact whether or not dopamine ramps occur. The existence of ramping signals has long been a feature of debates in the dopamine literature and this work adds important context to that. Further, as a practical assessment of the impact of a relatively simple trial structure manipulation on dopamine patterns, this work will be important for guiding future studies. These studies are well done and thoughtfully presented. The additional data, analyses, and discussion in the revised version of the paper add strength and clarity to the conclusions.

      The current results raise interesting questions regarding what, if any potential function cue-reward interval dopamine ramps serve. In the current data, licking behavior was similar on different trial types and was not related to ramping activity.

    1. Reviewer #4 (Public review):

      Main strengths

      The topic of the MS is very relevant given that across the sciences/academia, genders are unevenly represented, which has a range of potential negative consequences. To change this, we need to have the evidence on what mechanisms cause this pattern. Given that promotion and merit in academia are still largely based on the number of publications and the impact factor, one part of the gap likely originates from differences in publication rates of women compared to men.

      Women are underrepresented compared to men in journals with a high impact factor. While previous work has detected this gap and identified some potential mechanisms, the current MS provides strong evidence that this gap might be due to a lower submission rate of women compared to men, rather than the rejection rates. These results are based on a survey of close to 5000 authors. The survey seems to be conducted well (though I am not an expert in surveys), and data analysis is appropriate to address the main research aims. It was impossible to check the original data because of the privacy concerns.

      Interestingly, the results show no gender bias in rejection rates (desk rejection or overall) in three high-impact journals (Science, Nature, PNAS). However, submission rates are lower for women compared to men, indicating that gender biases might act through this pathway. The survey also showed that women are more likely to rate their work as not groundbreaking and are advised not to submit to prestigious journals, indicating that both intrinsic and extrinsic factors shape women's submission behaviour.

      With these results, the MS has the potential to inform actions to reduce gender bias in publishing, but also to inform assessment reform at a larger scale.

      I do not find any major weaknesses in the revised manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      In the current manuscript entitled "Population-level morphological analysis of paired CO2- and odor-sensing olfactory neurons in D. melanogaster via volume electron microscopy", Choy, Charara et al. use volume electron microscopy and neuron reconstruction to compare the dendritic morphology of ab1C and ab1D neurons of the Drosophila basiconic ab1 sensillum. They aim to investigate the degree of dendritic heterogenity within a functional class of neurons using ab1C and ab1D, which they can identify due to the unique feature of ab1 sensilla to house four neurons and the stereotypic location on the third antennal segment. This is a great use of volumetric electron imaging and neuron reconstruction to sample a population of neurons of the same type. Their data convincingly shows that there is dendritic heterogenity in both investigated populations and their sample size is sufficient to strongly support this observation. This data proposes that the phenomenon of dendritic heterogenity is common in the Drosophila olfactory system and will stimulate future investigations into the developmental origin, functional implications and potential adaptive advantage of this feature.

      Moreover, the authors discovered that there is a difference between CO2- and odour sensing neurons of which the first show a characteristic flattened and sheet-like structure not observed in other sensory neurons sampled in this and previous studies. They hypothesize that this unique dendritic organization which increases the surface area to volume ratio, might allow more efficient Co2 sensing by housing higher numbers of Co2 receptors. This is supported by previous attempts to express Co2 sensors in olfactory sensory neurons which lack this dendritic morphology, resulting in lower Co2 sensitivity compared to endogenous neurons.

      Overall, this detailed morphological description of olfactory sensory neurons' dendrites convincingly shows heterogeneity in two neuron classes with potential functional impacts for odour sensing.

      Strength:

      The volumetric EM imaging and reconstruction approach offers unpreceeded details in single cell morphology and compares dendrite heterogenity across a great fraction of ab1 sensilla.<br /> The authors identify specific shapes for ab1C sensilla potentially linked to their unique function in CO2 sensing.

      Weaknesses:

      While the morphological description is highly detailed, current methods prevent linking morphology to odour sensitivity or other properties of the neurons. Therefore, this study remains mainly descriptive and will require future work to link neuron structure and function.

    1. Reviewer #3 (Public Review):

      Summary:

      The authors establish a behavioral task to explore effort discounting in C. elegans. By using bacterial food that takes longer to consume, the authors show that, for equivalent effort, as measured by pumping rate, they obtain less food, as measured by fat deposition.

      The authors formalize the task by applying a formal neuroeconomic decision-making model that includes value, effort, and discounting. They use this to estimate the discounting that C. elegans applies based on ingestion effort by using a population-level 2-choice T-maze.

      They then analyze the behavioral dynamics of individual animals transitioning between on-food and off-food states. Harder to ingest bacteria led to increased food patch leaving.

      Finally, they examined a set of mutants defective in different aspects of dopamine signaling, as dopamine plays a key role in discounting in vertebrates and regulates certain aspects of C. elegans foraging.

      Strengths:

      The behavioral experiments and neuroeconomic analysis framework are compelling and interesting, and make a significant contribution to the field. While these foraging behaviors have been extensively studied, few include clearly articulated theoretical models to be tested.

      Demonstrating that C. elegans effort discounting fits model predictions and has stable indifference points is important for establishing these tasks as a model for decision making.

      Weaknesses:

      The dopamine experiments are harder to interpret. The authors point out the perplexing lack of an effect of dat-1 and cat-2. dop-3 leads to general indifference. I am not sure this is the expected result if the argument is a parallel functional role to discounting in vertebrates. dop-3 causes a range of locomotor phenotypes and may affect feeding (reduced fat storage), and thus, there may be a general defect in the ability to perform the task rather than anything specific to discounting.

      That said, some of the other DA mutants also have locomotor defects and do not differ from N2. But there is no clear result here - my concern is that global mutants in such a critical pathway exhibit such pleiotropy that it's difficult to conclude there is a clear and specific role for DA in effort discounting. This would require more targeted or cell-specific approaches.

      Meanwhile, there are other pathways known to affect responses to food and patch leaving decisions: serotonin, pigment-dispersing factor, tyramine, etc. The paper would have benefited from a clarification about why these were not considered as promising candidates to test (in addition to or instead of dopamine).

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript "Unreliable homeostatic action potential broadening in cultured dissociated neurons" by Ritzau-Jost et al. investigates action potential (AP) broadening as a mechanism underlying homeostatic synaptic plasticity. Given the existing variability in the literature concerning AP broadening, the authors address an important and timely research question of considerable interest to the field.

      The study systematically demonstrates cell-type- and model-specific AP broadening in hippocampal neurons after chronic treatment with either tetrodotoxin (TTX) or glutamatergic transmission blockers. The findings indicate AP broadening in CA3 pyramidal neurons in organotypic cultures after TTX treatment, but notably not in dissociated hippocampal neurons under identical conditions. However, blocking glutamatergic neurotransmission caused AP broadening in dissociated hippocampal neurons. Moreover, extensive evaluations in neocortical dissociated cultures robustly challenge previous findings by revealing a lack of AP broadening following TTX treatment. Additionally, the proposed role of BK-type potassium channels in mediating AP broadening is convincingly questioned through complementary electrophysiological and voltage-imaging experiments.

      Strengths:

      The manuscript exhibits an outstanding experimental design, employing state-of-the-art techniques and a rigorous multi-lab validation approach that greatly enhances scientific reliability. The experimental results are meticulously illustrated, and the conclusions drawn are justified and supported by the presented data. Furthermore, the manuscript is comprehensively and clearly written.

      Weaknesses:

      Concerning the statistical analyses employed, it is advisable to consider the Kruskal-Wallis test with corrections for multiple comparisons when evaluating more than two experimental groups.

    1. Reviewer #3 (Public review):

      Summary:

      Wu and colleagues find that in a repeated Prisoner's Dilemma, adolescents, compared to adults, are less likely to increase their cooperation behavior in response to repeated cooperation from a simulated partner. In contrast, after repeated defection by the partner, both age groups show comparable behavior.

      To uncover the mechanisms underlying these patterns, the authors compare eight different models. They report that a social reward learning model, which includes separate learning rates for positive and negative prediction errors, best fits the behavior of both groups. Key parameters in this winning model vary with age: notably, the intrinsic value of cooperating is lower in adolescents. Adults and adolescents also differ in learning rates for positive and negative prediction errors, as well as in the inverse temperature parameter.

      Strengths:

      The modeling results are compelling in their ability to distinguish between learned expectations and the intrinsic value of cooperation. The authors skillfully compare relevant models to demonstrate which mechanisms drive cooperation behavior in the two age groups.

      Weaknesses:

      Some of the claims made are not fully supported by the data:

      The central parameter reflecting preference for cooperation is positive in both groups. Thus, framing the results as self-interest versus other-interest may be misleading.

      It is unclear why the authors assume adolescents and adults have the same expectations about the partner's cooperation, yet simultaneously demonstrate age-related differences in learning about the partner. To support their claim mechanistically, simulations showing that differences in cooperation preference (i.e., the w parameter), rather than differences in learning, drive behavioral differences would be helpful.

      Two different schedules of 120 trials were used: one with stable partner behavior and one with behavior changing after 20 trials. While results for order effects are reported, the results for the stable vs. changing phases within each schedule are not. Since learning is influenced by reward structure, it is important to test whether key findings hold across both phases.

      The division of participants at the legal threshold of 18 years should be more explicitly justified. The age distribution appears continuous rather than clearly split. Providing rationale and including continuous analyses would clarify how groupings were determined.

      Claims of null effects (e.g., in the abstract: "adults increased their intrinsic reward for reciprocating... a pattern absent in adolescents") should be supported with appropriate statistics, such as Bayesian regression.

      Once claims are more closely aligned with the data, the study will offer a valuable contribution to the field, given its use of relevant models and a well-established paradigm.

    1. Reviewer #3 (Public review):

      Summary:In this study, the authors perform multimodal single-cell transcriptomic and epigenomic profiling of 9,394 mouse TM cells, identifying three transcriptionally distinct TM subtypes with validated molecular signatures. TM1 cells are enriched for extracellular matrix genes, TM2 for secreted ligands supporting Schlemm's canal, and TM3 for contractile and mitochondrial/metabolic functions. The transcription factor LMX1B, previously linked to glaucoma, shows the highest expression in TM3 cells and appears to regulate mitochondrial pathways. In Lmx1bV265D mutant mice, TM3 cells exhibit transcriptional signs of mitochondrial dysfunction associated with elevated IOP. Notably, vitamin B3 treatment significantly mitigates IOP elevation, suggesting a potential therapeutic avenue.

      This is an excellent and collaborative study involving investigators from two institutions, offering the most detailed single-cell transcriptomic and epigenetic profiling of the mouse limbal tissues-including both TM and Schlemm's canal (SC), from wild-type and Lmx1bV265D mutant mice. The study defines three TM subtypes and characterizes their distinct molecular signatures, associated pathways, and transcriptional regulators. The authors also compare their dataset with previously published murine and human studies, including those by Van Zyl et al., providing valuable cross-species insights.

      Strengths:

      (1) Comprehensive dataset with high single-cell resolution<br /> (2) Use of multiple bioinformatic and cross-comparative approaches<br /> (3) Integration of 3D imaging of TM and SC for anatomical context<br /> (4) Convincing identification and validation of three TM subtypes using molecular markers.

      Weaknesses:

      (1) Insufficient evidence linking mitochondrial dysfunction to TM3 cells in Lmx1bV265D mice: While the identification of TM3 cells as metabolically specialized and Lmx1b-enriched is compelling, the proposed link between Lmx1b mutation and mitochondrial dysfunction remains underdeveloped. It is unclear whether mitochondrial defects are a primary consequence of Lmx1b-mediated transcriptional dysregulation or a secondary response to elevated IOP. Additional evidence is needed to clarify whether Lmx1b directly regulates mitochondrial genes (e.g., via ChIP-seq, motif analysis, or ATAC-seq), or whether mitochondrial changes are downstream effects.<br /> Furthermore, the protective effects of nicotinamide (NAM) are interpreted as evidence of mitochondrial involvement, but no direct mitochondrial measurements (e.g., immunostaining, electron microscopy, OCR assays) are provided. It is essential to validate mitochondrial dysfunction in TM3 cells using in vivo functional assays to support the central conclusion of the paper. Without this, the claim that mitochondrial dysfunction drives IOP elevation in Lmx1bV265D mice remains speculative. Alternatively, authors should consider revising their claims that mitochondrial dysfunction in these mice is a central driver of TM dysfunction.

      (2) Mechanism of NAM-mediated protection is unclear: The manuscript states that NAM treatment prevents IOP elevation in Lmx1bV265D mice via metabolic support, yet no data are shown to confirm that NAM specifically rescues mitochondrial function. Do NAM-treated TM3 cells show improved mitochondrial integrity? Are reactive oxygen species (ROS) reduced? Does NAM also protect RGCs from glaucomatous damage? Addressing these points would clarify whether the therapeutic effects of NAM are indeed mitochondrial.

      (3) Lack of direct evidence that LMX1B regulates mitochondrial genes: While transcriptomic and motif accessibility analyses suggest that LMX1B is enriched in TM3 cells and may influence mitochondrial function, no mechanistic data are provided to demonstrate direct regulation of mitochondrial genes. Including ChIP-seq data, motif enrichment at mitochondrial gene loci, or perturbation studies (e.g., Lmx1b knockout or overexpression in TM3 cells) would greatly strengthen this central claim.

      (4)Focus on LMX1B in Fig. 5F lacks broader context: Figure 5F shows that several transcription factors (TFs)-including Tcf21, Foxs1, Arid3b, Myc, Gli2, Patz1, Plag1, Npas2, Nr1h4, and Nfatc2-exhibit stronger positive correlations or motif accessibility changes than LMX1B. Yet the manuscript focuses almost exclusively on LMX1B. The rationale for this focus should be clarified, especially given LMX1B's relatively lower ranking in the correlation analysis. Were the functions of these other highly ranked TFs examined or considered in the context of TM biology or glaucoma? Discussing their potential roles would enhance the interpretation of the transcriptional regulatory landscape and demonstrate the broader relevance of the findings.

      Other weaknesses:

      (1) In abstract, they say a number of 9,394 wild-type TM cell transcriptomes. The number of Lmx1bV265D/+ TM cell transcriptomes analyzed is not provided. This information is essential for evaluating the comparative analysis and should be clearly stated in the Abstract and again in the main text (e.g., lines 121-123). Including both wild-type and mutant cell counts will help readers assess the balance and robustness of the dataset.

      (2) Did the authors monitor mouse weight or other health parameters to assess potential systemic effects of treatment? It is known that the taste of compounds in drinking water can alter fluid or food intake, which may influence general health. Also, does Lmx1bV265D/+ have mice exhibit non-ocular phenotypes, and if so, does nicotinamide confer protection in those tissues as well? Additionally, starting the dose of the nicotinamide at postnatal day 2, how long the mice were treated with water containing nicotinamide, and after how many days or weeks IOP was reduced, and how long the decrease in the IOP was sustained.<br /> (3) While the IOP reduction observed in NAM-treated Lmx1bV265D/+ mice appears statistically significant, it is unclear whether this reflects meaningful biological protection. Several untreated mice exhibit very high IOP values, which may skew the analysis. The authors should report the mean values for IOP in both untreated and NAM-treated groups to clarify the magnitude and variability of the response.<br /> (4) Additionally, since NAM has been shown to protect RGCs in other glaucoma models directly, the authors should assess whether RGCs are preserved in NAM-treated Lmx1b V265D/+ mice. Demonstrating RGC protection would support a synergistic effect of NAM through both IOP reduction and direct neuroprotection, strengthening the translational relevance of the treatment.<br /> (5) Can the authors add any other functional validation studies to explore to understand the pathways enriched in all the subtypes of TM1, TM2, and TM3 cells, in addition to the ICH/IF/RNAscope validation?<br /> (6) The authors should include a representative image of the limbal dissection. While Figure S1 provides a schematic, mouse eyes are very small, and dissecting unfixed limbal tissue is technically challenging. It is also difficult to reconcile the claim that the majority of cells in the limbal region are TM and endothelium. As shown in Figure S6, DAPI staining suggests a much higher abundance of scleral cells compared to TM cells within the limbal strip. Additional clarification or visual evidence would help validate the dissection strategy and cellular composition of the captured region.

    1. Reviewer #3 (Public review):

      Summary

      The paper presents an imaging and analysis pipeline for whole-mount gastruloid imaging with two-photon microscopy. The presented pipeline includes spectral unmixing, registration, segmentation, and a wavelength-dependent intensity normalization step, followed by quantitative analysis of spatial gene expression patterns and nuclear morphometry on a tissue level. The utility of the approach is demonstrated by several experimental findings, such as establishing spatial correlations between local nuclear deformation and tissue density changes, as well as the radial distribution pattern of mesoderm markers. The pipeline is distributed as a Python package, notebooks, and multiple napari plugins.

      Strengths

      The paper is well-written with detailed methodological descriptions, which I think would make it a valuable reference for researchers performing similar volumetric tissue imaging experiments (gastruloids/organoids). The pipeline itself addresses many practical challenges, including resolution loss within tissue, registration of large volumes, nuclear segmentation, and intensity normalization. Especially the intensity decay measurements and wavelength-dependent intensity normalization approach using nuclear (Hoechst) signal as reference are very interesting and should be applicable to other imaging contexts. The morphometric analysis is equally well done, with the correlation between nuclear shape deformation and tissue density changes being an interesting finding. The paper is quite thorough in its technical description of the methods (which are a lot), and their experimental validation is appropriate. Finally, the provided code and napari plugins seem to be well done (I installed a selected list of the plugins and they ran without issues) and should be very helpful for the community.

      Weaknesses

      I don't see any major weaknesses, and I would only have two issues that I think should be addressed in a revision:

      (1) The demonstration notebooks lack accompanying sample datasets, preventing users from running them immediately and limiting the pipeline's accessibility. I would suggest to include (selective) demo data set that can be used to run the notebooks (e.g. for spectral unmixing) and or provide easily accessible demo input sample data for the napari plugins (I saw that there is some sample data for the processing plugin, so this maybe could already be used for the notebooks?).

      (2) The results for the morphometric analysis (Figure 4) seem to be only shown in lateral (xy) views without the corresponding axial (z) views. I would suggest adding this to the figure and showing the density/strain/angle distributions for those axial views as well.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Robert N. Rainey et. al. reported a new approach to induce hair cell-like cells from a human induced pluripotent stem cell line. Based on the previously identified key transcription factors SIX1, ATOH1, POU4F3, and GFI1 (SAPG), which are essential for the conversion into induced hair cell-like cells in mice. The manuscript represents an advance over the authors' previous published work, which used the same transcription factors but viral gene delivery.

      Strengths:

      The manuscript is clear and well-written. The background is easy to follow for people outside of the field. The data are well-organized and well-described. The evidence is strong.

      Weaknesses:

      General comments:

      (1) The manuscript generated multiple valuable datasets for the field. However, the data are not deposited in the hearing field central resource for gene expression (umgear.org), and links are not provided in the figure legends to datasets or dataset collections in the gEAR. This is a major comment as it significantly decreases the utility of the datasets generated in the manuscript and decreases the ease of reuse of the data. This is a flaw that could be easily addressed by uploading the data and generating links to datasets in the body of the manuscript.

      (2) If a pulse of Dox induces the SAPG and starts the conversion process, it is not clear why the analyzed cells were treated for 21 days - a duration that can negatively affect the fate of converting hair cells.

      (3) Foxj1 is listed as a supporting cell-specific gene; however, it is expressed in the cochlear hair cells until the end of the first postnatal week.

      (4) It is not clear why cells were sorted for analysis of the retrovirally induced cells but not in the stable cell line, which also expressed tdTomato.

      (5) Figure 1D and Supplementary Figure 2: the authors state that the endogenous ATOH1 and POU4F3 expressions decrease after 7d. Should the authors have stats on the graphs?

      (6) Supplementary Figure 4: OCT4 should be replaced by POU5F1 (or vice versa) for consistency.

      (7) The authors show the induction or decrease of the exogenous transcription factor expressions by RT-qPCR. It would be nice, if possible, to also see either WB or immuno with antibodies directed against the tags.

      Bioinformatic comments:

      (1) In the previous study (Menendez et al. 2020), ATAC-seq and regulatory elements are employed in the analysis, while a similar analysis is missing in this study. It will be informative to show the motif enrichment analysis at promoter regions of differentially expressed genes (DEGs) in the most hair cell-like cluster 3 (RV-R3).

      (2) In the previous study (Menendez et al. 2020), it was stated that SAPG can convert supporting cells to hair cells, while in this study, the authors stated that "reprogramming with SAPG does not activate supporting cell networks in the stable cell line". Can the authors provide more analysis/comments on this difference?

      (3) The approach in this study tends to generate a very similar level of expression for the SAPG factors, while the real levels of expression might be different for actual transcriptional regulation, eg, Figure 1C. How will this very close expression level of SAPG affect the features of the induced hair cell?

      (4) Figure 5B, missing color bar to show the DEG strength in the heatmap. Why are Six1 and Gfi1 not shown in this heatmap?

    1. Reviewer #3 (Public review):

      Summary:

      The laboratory mouse is an ideal animal to study the neural and psychological underpinnings of social dominance behavior because of its economic cost and the animals' readiness to display dominant and subordinate behaviors in simple and testable environments. Here, a new and novel method for measuring dominance and the individual social status of mice is presented using a food competition assay. Historically, food competition assays have been avoided because they occur in an open arena or the home cage, and it can be difficult to assess who gets priority access to the resource and to avoid aggressive interactions such as bite wounding. Now, the authors have designed a narrow rectangular arena separated in half by a sliding floor-to-ceiling obstacle, where the mice placed at opposite sides of the obstacle compete by pushing the obstacle to gain priority access to a food pellet resting on the arena floor under the obstacle. One can also place the food pellet within the obstacle to restrict priority access to the food and measure the time or effort spent pushing the obstacle back and forth. As hypothesized, the outcomes in the food competition test were significantly consistent with those of the more common tube test (space competition) and warm spot competition test. This suggests that these animals have a stereotypic dominance organization that exists across multiple resource domains (i.e., food, space, and temperature). Only male and female C57 mice in same-sex pairs or triads were tested.

      Strengths:

      The design of the apparatus and the inclusion of females are significant strengths within the study.

      Weaknesses:

      There are at least two major weaknesses of the study: the test with unfamiliar non-cagemates and not providing the mice time to recognize who they are competing with.

      The authors conclude in the first section of the results that they "did not detect significant difference in winning/losing results between unfamiliar non-cagemate male mice." Given the data and analysis provided, I believe this statement is false. My understanding is that the authors would like to show that the establishment of social relationships (i.e., familiarity) is necessary for FPCT to distinguish social ranks of mice. There are many ways to test this. The simplest would be to randomly pair unfamiliar non-cagemates that are housed in isolation with one another and see if they perform at chance, individually. The more involved empirical way would be to measure the ranks of mice in a social group, then test them with unfamiliar non-cagemate mice to see if they maintain their outcomes regardless of social familiarity, or return to chance outcomes when paired with non-cagemates. Figure 1I clearly shows that they did not perform at chance. Since the outcome is win or lose, then the probability of getting all of one outcome 4 times in a row would be 1 in 16. The data shows that this occured twice, so 2 mice of 8 had the same outcome 4 times in a row (i.e., Mouse B3 and A1). So, they did not perform at chance. I am not even sure if there are enough animals here to test this question. One may need to consult a mathematician. Moreover, the original tube-test study by Lindzey et al. 1961 (https://www.nature.com/articles/191474a0) used unfamiliar non-cagemate male mice, and showed that 100% of the A/alb strain won more than half of their oppositions against C3H and DBA/8 mice. Thus, A/alb mice were more "dominant" mice relative to C3H or DBA/8. Taking into consideration the results, is mouse A1 naturally dominant? So maybe it doesn't matter what mouse you pair with it, it will always win? If this is true, is "individual identification of the partner" actually necessary to get this outcome? All they have to do is push to get the food reward, does it matter who is on the other side? If one wants to measure social dominance relationships, then it should matter who is on the other side. If one would like to measure attributes of dominant behavior (e.g., pushing), then one may do so and not insinuate a social link. Studying dominance relationships (i.e., social ranking) of animals is an extremely difficult task. We must ensure that we are not assigning something about a relationship that does not exist. Please read "Dominance: The baby and the bathwater" but Irwin Bernstein, https://annas-archive.org/scidb/10.1017/s0140525x00009614/

      Unlike the tube test and warm spot test, the food competition test presented here provides no opportunity for the animals to identify their opponent. That is, they cannot sniff their opponent's fur or anogenital region, which would allow them an opportunity to identify them individually. Thus, as the authors state, the test only measures a psychological motivation to get a food reward. Notably, the outcome in the direct and indirect testing of food competition is in agreement, leaving many to wonder whether they are measuring the social relationship or the effort an individual puts forth in attaining a food reward regardless of the social opponent. Specifically, in the direct test, an individual can retrieve the food reward by pushing the obstacle out of the way first. In the indirect test, the animals cannot retrieve the reward and can only push the obstacle back and forth, which contains the reward inside. In Figure 2F, you can see that winners spent more time pushing the block in the indirect test--albeit not significantly. Thus, whether the test measures a social relationship or just the likelihood to gain priority access to food is unclear. To rectify this issue, the authors could provide an opportunity for the animals to interact before lowering the obstacle and raising(?) a food reward. They may also create a very long one-sided apparatus to measure the amount of effort an individual mouse puts forth in the indirect test with only one individual-or any situation with just one mouse where the moving obstacle is not pushed back, and the animal can just keep pushing until they stop. This would require another experiment. It also may not tell us much more since it remains unclear whether inbred mice can individually identify one another (see https://doi.org/10.1098/rspb.2000.1057 for more details).

    1. Reviewer #3 (Public review):

      Summary:

      The authors use cryo-electron tomography to thoroughly investigate the complexity of purified, excitatory synapses. They make several major interesting discoveries: polyhedral vesicles that have not been observed before in neurons; analysis of the intermembrane distance, and a link to potentiation, essentially updating distances reported from plastic-embedded specimen; and find that the postsynaptic density does not appear as a dense accumulation of proteins in all vitrified samples (less than half), a feature which served as a hallmark feature to identify excitatory plastic-embedded synapses.

      Strengths:

      (1) The presented work is thorough: the authors compare purified, endogenously labeled synapses to wild-type synapses to exclude artifacts that could arise through the homogenation step, and, in addition, analyse plastic embedded, stained synapses prepared using the same quick workflow, to ensure their findings have not been caused by way of purification of the synapses. Interestingly, the 'thick lines of PSD' are evident in most of their stained synapses.

      (2) I commend the authors on the exceptional technical achievement of preparing frozen specimens from a mouse within two minutes.

      (3) The approaches highlighted here can be used in other fields studying cell-cell junctions.

      (4) The tomograms will be deposited upon publication which will enable neurobiologists and researchers from other fields to carry on data evaluation in their field of expertise since tomography is still a specialized skill and they collected and reconstructed over 100 excellent tomograms of synapses, which generates a wealth of information to be also used in future studies.

      (5) The authors have identified ionotropic receptor positions and that they are linked to actin filaments, and appear to be associated with membrane and other cytosolic scaffolds, which is highly exciting.

      (6) The authors achieved their aims to study neuronal excitatory synapses in great detail, were thorough in their experiments, and made multiple fascinating discoveries. They challenge dogmas that have been in place for decades and highlight the benefit of implementing and developing new methods to carefully understand the underlying molecular machines of synapses.

      Impact on community:

      The findings presented by Peukes et al. pertaining to synapse biology change dogmas about the fundamental understanding of synaptic ultrastructure. The work presented by the authors, particularly the associated change of intermembrane distance with potentiation and the distinct appearance of the PSD as an irregular amorphous 'cloud' will provide food for thought and an incentive for more analysis and additional studies, as will the discovery of large membranous and cytosolic protein complexes linked to ionotropic receptors within and outside of the synaptic cleft, which are ripe for investigation. The findings and tomograms available will carry far in the synapse fields and the approach and methods will move other fields outside of neurobiology forward. The method and impactful results of preparing cryogenic, unlabeled, unstained, near-native synapses may enable the study of how synapses function at high resolution in the future.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Majnik et al. developed a computational algorithm to track individual developing interneurons in the rodent cortex at postnatal stages. Considerable development in cortical networks takes place during the first postnatal weeks; however, tools to study them longitudinally at a single-cell level are scarce. This paper provides a valuable approach to study both single-cell dynamics across days and state-driven network changes. The authors used Gad67Cre mice together with virally introduced TdTom to track interneurons based on their anatomical location in the FOV and AAVSynGCaMP8m to follow their activity across the second postnatal week, a period during which the cortex is known to undergo marked decorrelation in spontaneous activity. Using Track2P, the authors show the feasibility of tracking populations of neurons in the same mice, capturing with their analysis previously described developmental decorrelation and uncovering stable representations of neuronal activity, coincident with the onset of spontaneous active movement. The quality of the imaging data is compelling, and the computational analysis is thorough, providing a widely applicable tool for the analysis of emerging neuronal activity in the cortex. Below are some points for the authors to consider.

      Major points:

      (1) The authors used 20 neurons to generate a ground truth dataset. The rationale for this sample size is unclear. Figure 1 indicates the capability to track ~728 neurons. A larger ground truth data set will increase the robustness of the conclusions.

      (2) It is unclear how movement was scored in the analysis shown in Figure 5A. Was the time that the mouse spent moving scored after visual inspection of the videos? Were whisker and muscle twitches scored as movement, or was movement quantified as the amount of time during which the treadmill was displaced?

      (3) The rationale for binning the data analysis in early P11 is unclear. As the authors acknowledged, it is likely that the decoder captured active states from P11 onwards. Because active whisking begins around P14, it is unlikely to drive this change in network dynamics at P11. Does pupil dilation in the pups change during locomotor and resting states? Does the arousal state of the pups abruptly change at P11?

    1. Reviewer #3 (Public review):

      This is a fundamentally important study presenting cryo-EM structures of a human small conductance calcium-activated potassium (SK2) channel in the absence and presence of calcium, or with interesting pharmacological probes bound, including the bee toxin apamin, a small molecule inhibitor, and a small molecule activator. As efforts to solve structures of the wild-type hSK2 channel were unsuccessful, the authors engineered a chimera containing the intracellular domain of the SK4 channel, the subtype of SK channel that was successfully solved in a previous study (reference 13). The authors present many new and exciting findings, including opening of an internal gate (similar to SK4), for the first time resolving the S3-S4 linker sitting atop the outer vestibule of the pore and unanticipated plasticity of the ion selectivity filter, and the binding sites for apamin, one new small molecule inhibitor and another small molecule activator. Appropriate functional data are provided to frame interpretations arising from the structures of the chimeric protein; the data are compelling, the interpretations are sound, and the writing is clear. This high-quality study will be of interest to membrane protein structural biologists, ion channel biophysicists, and chemical biologists, and will be valuable for future drug development targeting SK channels.

      The following are suggestions for strengthening an already very strong and solid manuscript:

      (1) It would be good to include some information in the text of the results section about the method and configuration used to obtain electrophysiological data and the limitations. It is not until later in the text that the Qube instrument is mentioned in the results section, and it is not until the methods section that the reader learns it was used to obtain all the electrophysiological data. Even there, it is not explicitly mentioned that a series of different internal solutions were used in each cell where the free calcium concentration was varied to obtain the data in Figure1C. Also, please state the concentration of free calcium for the data in Figure 1B.

      (2) The authors do a nice job of discussing the conformations of the selectivity filter they observed here in SK as they relate to previous work on NaK and HCN, but from my perspective the authors are missing an opportunity to point out even more striking relationships with slow C-type inactivation of the selectivity filter in Shaker and Kv1 channels. C-type inactivation of the filter in Shaker was seen in 150 mM K using the W434F mutant (PMC8932672) or in 4 mM K for the WT channel (PMC8932672), and similar results have been reported for Kv1.2 (PMC9032944; PMC11825129) and for Kv1.3 (PMC9253088; PMC8812516) channels. For Kv1.3, C-type inactivation occurs even in 150 mM K (PMC9253088; PMC8812516). Not unlike what is seen here with apamin, binding of the sea anemone toxin (ShK) with a Fab attached (or the related dalazatide) inserts a Lys into the selectivity filter and stabilizes the conducting conformation of Kv1.3 even though the Lys depletes occupancy of S1 by potassium (PMC9253088; PMC8812516). What is known about how the functional properties of SK2 channels (where the filter changes conformation) differ from SK4, where the filter remains conducting (reference 13)? Is there any evidence that SK2 channels inactivate? Or might the conformation of the filter be controlled by regulatory processes in SK2 channels? I think connecting the dots here would enhance the impact of this study, even if it remains relatively speculative.

    1. Reviewer #3 (Public review):

      Summary:

      The present study examines the cooperation among four allophagy/mitophagy factors, ALLO-1, CPS-6, FNDC-1, and PHB-2, implicated in the elimination of the sperm-derived mitochondria in C. elegans embryos. The key finding of the cumulative effect of ALLO-1 and CPS-6 inactivation causing delayed sperm mitophagy is significant for the understanding of mitochondrial inheritance in the nematode model and in general. Below are some specific suggestions on how the impact of the article could be elevated:

      Abstract:

      The authors should shorten the description of previously identified mitophagy factors and provide more detail on the present study results. An impact statement should be added at the end, with significance for understanding mitochondrial inheritance across taxa, all the way to mammals/humans.

      Introduction:

      The authors should provide more details on ALLO-1 and its interaction with LC-3. Also, it should be specified which of those previously identified allophagy factors are unique to worms and which ones are conserved. See also my comment below about including a diagram and a table of pathways and determinants involved in allophagy/paternal mitophagy.

      Results:

      If I understand the mtDNA data correctly, paternal mtDNA is maintained throughout the lifespan of the F1 generation but absent from the F2 generation. This is reminiscent of past studies of interspecific Mus musculus/Mus spretus mouse crosses by Kaneda/Shitara in which the paternal mtDNA was maintained F1 generation, resulting in heteroplasmy, but was lost from the F2 generation after back-crossing. Are CPS-6 and ALLO-1 effectors, but not determinants of maternal mtDNA inheritance in the nematode?

      The finding that PINK-1 inactivation stabilizes sperm-derived mitochondria in the embryos is interesting. Are the substrates of PINK1 known in C. elegans? This could provide a clue concerning the aforementioned mitophagy determinants acting independently of ALLO-1.

      Discussion:

      A summary-diagram compiling the intersecting allophagy pathways would be helpful to accompany discussion, in addition to or expanding on the simple diagram presented as Figure 5; also, a table listing all the factors implicated in nematode allophagy next to those implicated in human/mammalian sperm mitophagy, which would highlight the divergences and overlaps between vertebrates and invertebrates.

      Is it known how CPC-6 enters/gets imported into the sperm mitochondria inside the embryo? This pathway could potentially be targeted to decipher the allophagy mechanism.

      PINK/PARKIN/PACRG and FUNDC1/2 pathways have been implicated in mammalian neurodegeneration as well as in mitophagy, including but not limited to sperm mitophagy after fertilization. These pathways in mammals should be briefly reviewed as they may provide further clues to how the allophagy pathways intersect in C. elegans.

    1. Reviewer #3 (Public review):

      Summary:

      Tsingos et al. seek to advance beyond the current paradigm that proliferation of malignant cells in T-cell acute lymphoblastic leukemia occurs in a cell-autonomous fashion. Using a computational agent-based model and experimental validation, they show instead that cell proliferation also depends on interaction with thymic epithelial cells (TEC) in the thymic niche. One key finding is that a dense TEC network inhibits the proliferation of malignant cells and favors the proliferation of normal cells, whereas a sparse TEC network leads to rapid expansion of malignant thymocytes.

      Strengths:

      A key strength of this study is that it combines computational modeling using an agent-based model with experimental work. The original modeling and novel experimental work strengthen each other well. In the agent-based model, the authors also tested the effects of varying a few key parameters of cell proliferation.

    1. Reviewer #3 (Public review):

      Summary:

      Overall, this is a well-done study, and the conclusions are largely supported by the data, which will be of interest to the field.

      Strengths:

      (1) The strengths of this study include experiments with solution NMR that can resolve high-resolution interactions of the highly flexible C-terminal tail of arr2 with clathrin and AP2. Although mainly confirmatory in defining the arr2 CBL 376LIELD380 as the clathrin binding site, the use of the NMR is of high interest (Figure 1). The 15N-labeled CLTC-NTD experiment with arr2 titrations reveals a span from 39-108 that mediates an arr2 interaction, which corroborates previous crystal data, but does not reveal a second area in CLTC-NTD that in previous crystal structures was observed to interact with arr2.

      (2) SEC and NMR data suggest that full-length arr2 (1-418) binding with the 2-adaptin subunit of AP2 is enhanced in the presence of CCR5 phospho-peptides (Figure 3). The pp6 peptide shows the highest degree of arr2 activation and 2-adaptin binding, compared to less phosphorylated peptides or not phosphorylated at all. It is interesting that the arr2 interaction with CLTC NTD and pp6 cannot be detected using the SEC approach, further suggesting that clathrin binding is not dependent on arrestin activation. Overall, the data suggest that receptor activation promotes arrestin binding to AP2, not clathrin, suggesting the AP2 interaction is necessary for CCR5 endocytosis.

      (3) To validate the solid biophysical data, the authors pursue validation experiments in a HeLa cell model by confocal microscopy. This requires transient transfection of tagged receptor (CCR5-Flag) and arr2 (arr2-YFP). CCR5 displays a "class B"-like behavior in that arr2 is rapidly recruited to the receptor at the plasma membrane upon agonist activation, which forms a stable complex that internalizes into endosomes (Figure 4). The data suggest that complex internalization is dependent on AP2 binding, not clathrin (Figure 5).

      Weaknesses:

      The interaction of truncated arr2 (1-393) was not impacted by CCR5 phospho-peptide pp6, suggesting the interaction with clathrin is not dependent on arrestin activation (Figure 2). This raises some questions.

      Overall, the data are solid, but for added rigor, can these experiments be repeated without tagged receptor and/or arr2? My concern stems from the fact that the stability of the interaction between arr2 and receptor may be related to the position of the tags.

    1. Reviewer #3 (Public review):

      Summary:

      The authors investigated the role of dopaminergic neurons (dopamine transporter expressing, DAT) in the dorsal raphe nucleus (DRN) in regulating social and affective behavior through projections to the central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and the posterior subdivision of the basolateral amygdala. The largest effect observed was in the DRN-DAT projections to the CeA. Augmenting previously published results from this group (Matthews et al., 2016), the comprehensive behavioral analysis relative to social dominance, gene expression analysis, electrophysiological profiling, and in vivo imaging provides novel insights into how DRN-DAT projections to the CeA influence the engagement of social behavior in the contexts of group housed and socially isolated mice.

      Strengths:

      Correlational analysis with social dominance is a nice addition to the study. The overall computational analyses performed are well-designed and rigorous.

      Weaknesses:

      (1) Analysis of dopamine receptor expression did not include Drd3, Drd4, or Drd5 which may provide more insights into how dopamine modulates downstream targets. This is particularly relevant to the BNST projection in which the densest innervation did not robustly co-localize with the expression of either Drd1 or Drd2. It is also possible that dopamine release from DRN-DAT neurons in any or all of these structures in modulating neurotransmitter release from inputs to these regions that contain D2 receptors on their terminals.

      (2) Although not the focus of this study, without pharmacological blockade of dopamine receptors, it is not possible to assess what the contribution of dopamine is to the behavioral outcomes. Given the co-release of glutamate and GABA from these neurons it is possible that dopamine plays only a marginal role in the functional connectivity of DRN-DAT neurons.

      (3) Photostimulation parameters used during the behavioral studies (8 pulses of light delivered at 30 Hz for several minutes) could lead to confounding results limiting data interpretation. As shown in Figure 6J, 8 pulses of light delivered at 30 Hz results in a significant attenuation of the EPSC amplitude in the BLP and CeA projection. Thus, prolonged stimulation could lead to significant synaptic rundown resulting in an overall suppression of connectivity in the later stages of the behavioral analyses.

      Comments on revisions:

      No further issues have been identified.

    1. Reviewer #3 (Public review):

      Summary:

      In microbiology, accurately characterizing microbial populations and communities is essential. One widely used approach is to measure the absolute or relative abundance of microbial species. Recent research in microbial ecology, for instance, has shown that even genetically identical hosts exposed to the same microbial pool can develop very different gut microbiota, largely due to random colonization events. This study builds on that idea but adds a valuable layer: it suggests that some of the observed variability might actually result from experimental noise, specifically the randomness introduced by dilution and plate counting techniques. To address this, the authors introduce REPOP, a new tool designed to improve the quantification of microbial populations by explicitly accounting for the inherent stochasticity in these methods. They test REPOP using both simulated and experimental datasets, showing how it can help recover meaningful trends.

      Strengths:

      Overall, this paper is a good contribution to the field. The motivation is clear: improving our ability to quantify microbial populations is crucial for many research areas. The authors make a strong case that ignoring experimental noise is no longer acceptable, and they offer a well-argued solution. The manuscript is well-written and easy to follow, and the logic behind REPOP is convincingly laid out. The use of simulated data is especially valuable, as it allows the authors to test whether the method can recover known inputs, an important validation step. Even with experimental data, where true values are unknown, the method seems to behave in a reasonable and expected way, which is reassuring. All in all, this is an important step forward in how we quantify microbial populations.

      Weaknesses:

      While the study is promising, there are a few areas where the paper could be strengthened to increase its impact and usability. First, the extent to which dilution and plating introduce noise is not fully explored. Could this noise significantly affect experimental conclusions? And under what conditions does it matter most? Does it depend on experimental design or specific parameter values? Clarifying this would help readers appreciate when and why REPOP should be used. Second, more practical details about the tool itself would be very helpful. Simply stating that it is available on GitHub may not be enough. Readers will want to know what programming language it uses, what the input data should look like, and ideally, see a step-by-step diagram of the workflow. Packaging the tool as an easy-to-use resource, perhaps even submitting it to CRAN or including example scripts, would go a long way, especially since microbiologists tend to favor user-friendly, recipe-like solutions. Third, it would be great to see the method tested on existing datasets, such as those from Nic Vega and Jeff Gore (2017), which explore how colonization frequency impacts abundance fluctuation distributions. Even if the general conclusions remain unchanged, showing that REPOP can better match observed patterns would strengthen the paper's real-world relevance. Lastly, it would be helpful for the authors to briefly discuss the limitations of their method, as no approach is without its constraints. Acknowledging these would provide a more balanced and transparent perspective.

    1. Reviewer #3 (Public review):

      Why mitochondria are finely maintained in the female germ cell (oocyte), zygotes, and preimplantation embryos? Mitochondrial fusion seems beneficial in somatic cells to compensate for unhealthy mitochondria, for example, mitochondria with mutated mtDNA that potentially defuel the respiratory activity if accumulated above a certain threshold. However, in the germ cells, it may rather increase the risk of transmitting mutated mtDNA to the next generation. Also, finely maintained mitochondria would also be beneficial for efficient removal when damaged, as the authors briefly discussed. Due in part to the limited suitable model, physiological role of mitochondrial fission in embryos were obscure. In this study, authors demonstrated that mitochondrial fission prevents multiple adverse outcomes, especially including the aberrant demixing of parental genome (a clinical phenotype of human embryos) in zygotic stage. Thus, this study would be also of clinical importance that could contribute by proposing a novel mechanism.

      The authors have adequately indicated the limitations at each of the specific points. The revisions the authors made have consolidated their conclusion, thus still, making this study an excellent one.

    1. Reviewer #3 (Public review):

      Summary:

      This study describes a computational model of the rat spinal locomotor circuit and how it could be reconfigured after lateral hemisection or contusion injuries to replicate gaits observed experimentally.

      The model suggests the emergence of detour circuits after lateral hemisection, whereas after a midline contusion, the model suggests plasticity of left-right and sensory inputs below the injury.

      Strengths:

      The model accurately models many known connections within and between forelimb and hindlimb spinal locomotor circuits.

      The simulation results mirror closely gait parameters observed experimentally. Many gait parameters were studied, as well as variability in these parameters in intact versus injured conditions.

      Weaknesses:

      The study could provide some sense of the relative importance of the various modified connectivities after injury in setting the changes in gait seen after the two types of injuries.

      Overall, the authors achieved their aims, and the model provides solid support for the changes in connectivity after the two types of injuries were modelled. This work emphasizes specific changes in connectivity after lateral hemisection or after contusion that could be investigated experimentally. The model is available for public use and could serve as a tool to analyze the relative importance of various highlighted or previously undiscovered changes in connectivity that may underlie the recovery of locomotor function in spinalized rats.

    1. Reviewer #3 (Public review):

      This study profiles small intestine NETs and one mixed lung NET at single cell resolution and identifies two subtypes of neuroendocrine cells, as well as explores the proliferation patterns in malignant and nonmalignant cell types, identifying MIF as a potential factor that promotes proliferation of B and plasma cells in siNETs. Furthermore, they explore the single-cell landscape of a mixed LCNEC and squamous cell carcinoma, from which they identify a putative stem cell population with expression of features from both lineages.

      Strengths:

      This work showcases single-cell profiling of a rare tumor type, which is very informative for the field of NETs. The authors highlight very interesting observations, including the identification of the epithelial and neuronal subtype of siNETs, which they validated with an independent bulk RNA sequencing cohort. Furthermore, the observation of low cycling in malignant cells and high cycling in nonmalignant cells is an interesting one which may be applicable to other NETs.

      Weaknesses:

      • The authors do not connect their findings to clinical outcome. For example, is the epithelial or neuronal subtype enriched in tumors with worse or better prognosis or high grade vs. low grade siNETs or in patients who metastasize vs. who don't? As the authors show they can identify epithelial vs. neuronal subtypes in bulk RNA seq, perhaps they can take advantage of these other studies with larger sample sizes to investigate this. Additionally, the authors identify that the phenomenon of higher B/plasma cell proliferation is particular to epithelial siNETs and write that "The implications of high B/plasma cell turnover, and of other downstream effects of high MIF expression, are unclear, but raise the possibility that MIF-CD74 interaction may constitute a relevant target for the epithelial-like SiNET subtype." However, if this interaction contributes to survival in these patients, targeting this interaction may not be beneficial. Thus, it is important for the authors to try to connect their finding to clinical outcomes to enhance the translational relevance of this paper.

      • The generalizability of this study would be enhanced if the authors analyzed other available single cell studies of NETs and found a similar phenomenon of high proliferating nonmalignant cell types. Although these studies are also very limited in sample size, seeing concordance in findings across independent cohorts and different experimental techniques would help to strengthen the findings. While the authors rationalize that these other studies are too distinct from their own due to enrichment for immune cells, this limitation should be noted but does not prevent such an analysis from being attempted.

      • On page 3, the authors claim that "Technical effects (e.g. single cell analysis of fresh samples vs. single nuclei analysis of frozen samples) could also impact the capture of distinct cell types, although we did not observe a clear pattern of such bias." Can the authors show that cell type frequencies are not significantly different between the samples profiled with these two methods?

      • Why did siNET3 and siNET9 have much lower recovery of neuroendocrine cells compared to other samples? It would be interesting to see how similar or different the transcriptional profiles are of the samples that were obtained from the same patient, considering that multifocal siNETs are found to derive from distinct clones, although this analysis is understandably not possible in this case due to the lack of neuroendocrine cells in one of two samples from the same patient.

      • It should be more clearly stated in the text that these samples were previously treated with somatostatin analogues, as this impacts the interpretation of the findings.

      • The identification of a potential progenitor subtype in the miNEN is very intriguing, albeit a case study and represents a distinct cancer from the lowly proliferating siNETs. While the authors mention this in the text, the case study feels rather tangential to the other parts of the paper.

      • How the authors compared the DE genes to known signatures for the fibroblast and endothelial cells should be clarified and discussed in the Methods section.

    1. Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field.

      Latest comments:

      As with my previous assessment, I remain supportive of publication of this manuscript. Though I agree with the other reviewers that additional experimentation would increase the value of this study even further, I feel it will also be a useful contribution to the field as is.

    1. Reviewer #3 (Public review):

      Summary:

      The authors investigated a possible role of Endophilin A1 in the inhibitory postsynaptic density.

      Strengths:

      The authors used a broad array of experimental approaches to investigate this, including tests of seizure susceptibility, electrophysiology, biochemistry, neuronal culture and image analysis.

      Weaknesses:

      Many results are difficult to interpret, and data quality is not always convincing, unfortunately. The basic premise of the study, that gephyrin and endophilin A1 interact, requires more robust analysis to be convincing.

      Specific comments:

      The authors have made a substantial effort to improve their manuscript. A number of issues, related to numbers of observations mentioned by the reviewers, are clarified in the revised manuscript. The authors have also clarified some of the other questions from the reviewers. The long list of issues brought up by the reviewers and the many corrections needed still raise questions about data quality in this manuscript.<br /> In response to my comments (Point 2), the added experiment with PSD95.FingR and GPN.FingR in cultured neurons (Fig. S5A-D) is a good addition; the in vivo data using FingRs in Figure S3 look less convincing however. In response to my Point 5, the authors have added a cell-free binding assay (Figure 5I). This is a useful addition, but to convincingly make the point of interaction between Gephyrin and EndoA1, more rigorous biophysical quantitation of binding is needed. The legend in Figure 5I states that 4 independent experiments were performed, but the graph only shows 3 dots. This needs to be corrected.

    1. Reviewer #3 (Public review):

      Summary:

      Ross et al. show that knockdown of zebrafish podocalyxin-like (podxl) by CRISPR/Cas or morpholino injection decreased the number of hepatic stellate cells (HSC). The authors then generated 5 different mutant alleles representing a range of lesions, including premature stop codons, in-frame deletion of the transmembrane domain, and deletions of the promoter region encompassing the transcription start site. However, unlike their knockdown experiment, HSC numbers did not decrease in podxl mutants; in fact, for two of the mutant alleles, the number of HSCs increased compared to the control. Injection of podxl CRISPR/Cas constructs into these mutants had no effect on HSC number, suggesting that the knockdown phenotype is not due to off-target effects but instead that the mutants are somehow compensating for the loss of podxl. The authors then present multiple lines of evidence suggesting that compensation is not exclusively due to transcriptional adaptation - evidence of mRNA instability and nonsense-mediated decay was observed in some but all mutants; expression of the related gene endoglycan (endo) was unchanged in the mutants and endo knockdown had no effect on HSC numbers; and, expression profiling by RNA sequencing did not reveal changes in other genes that share sequence similarity with podxl. Instead, their RNA-seq data showed hundreds of differentially expressed genes, especially ECM-related genes, suggesting that compensation in podxl mutants is complex and multi-genic.

      Strengths:

      The data presented is impressively thorough, especially in its characterization of the 5 different podxl alleles and exploration of whether these mutants exhibit transcriptional adaptation.

      Weaknesses:

      RNA sequencing expression profiling was done on adult livers. However, compensation of HSC numbers is apparent by 6 dpf, suggesting compensatory mechanisms would be active at larval or even embryonic stages. Although possible, it's not clear that any compensatory changes in gene expression would persist to adulthood.

    1. Reviewer #3 (Public review):

      Summary:

      Recent studies have established that trypanocidal drugs, including pentamidine and melarsoprol, enter the trypanosomes via the glyceroaquaporin AQP2 (TbAQP2). Interestingly, drug resistance in trypanosomes is, at least in part, caused by recombination with the neighbouring gene, AQP3, which is unable to permeate pentamidine or melarsoprol. The effect of the drugs on cells expressing chimeric proteins is significantly reduced. In addition, controversy exists regarding whether TbAQP2 permeates drugs like an ion channel, or whether it serves as a receptor that triggers downstream processes upon drug binding. In this study the authors set out to achieve three objectives:<br /> (1) to determine if TbAQP2 acts as a channel or a receptor,<br /> (2) to understand the molecular interactions between TbAQP2 and glycerol, pentamidine, and melarsoprol, and<br /> (3) to determine the mechanism by which mutations that arise from recombination with TbAQP3 result in reduced drug permeation.

      Indeed, all three objectives are achieved in this paper. Using MD simulations and cryo-EM, the authors determine that TbAQP2 likely permeates drugs like an ion channel. The cryo-EM structures provide details of glycerol and drug binding, and show that glycerol and the drugs occupy the same space within the pore. Finally, MD simulations and lysis assays are employed to determine how mutations in TbAQP2 result in reduced permeation of drugs by making entry and exit of the drug relatively more energy-expensive. Overall, the strength of evidence used to support the author's claims is solid.

      Strengths:

      The cryo-EM portion of the study is strong, and while the overall resolution of the structures is in the 3.5Å range, the local resolution within the core of the protein and the drug binding sites is considerably higher (~2.5Å).

      I also appreciated the MD simulations on the TbAQP2 mutants and the mechanistic insights that resulted from this data.

      Weaknesses:

      (1) The authors do not provide any empirical validation of the drug binding sites in TbAQP2. While the discussion mentions that the binding site should not be thought of as a classical fixed site, the MD simulations show that there's an energetically preferred slot (i.e., high occupancy interactions) within the pore for the drugs. For example, mutagenesis and a lysis assay could provide us with some idea of the contribution/importance of the various residues identified in the structures to drug permeation. This data would also likely be very valuable in learning about selectivity for drugs in different AQP proteins.

      (2) Given the importance of AQP3 in the shaping of AQP2-mediated drug resistance, I think a figure showing a comparison between the two protein structures/AlphaFold structures would be beneficial and appropriate.

      (3) A few additional figures showing cryo-EM density, from both full maps and half maps, would help validate the data.

      (4) Finally, this paper might benefit from including more comparisons with and analysis of data published in Chen et al (doi.org/10.1038/s41467-024-48445-4), which focus on similar objectives. Looking at all the data in aggregate might reveal insights that are not obvious from either paper on their own. For example, melarsoprol binds differently in structures reported in the two respective papers, and this may tell us something about the energy of drug-protein interactions within the pore.

    1. Reviewer #3 (Public review):

      Summary:

      In summary, the scientists used Visium spatial transcriptomics technology to create a thorough spatial transcriptomic atlas of the adult male mouse adrenal gland and the adipose tissues that surround it. Their primary goals were to map the cell communication network, determine the differentiation direction of various cell types, and find marker genes for various adrenal zones.

      Strengths:

      (1) Undoubtedly, one of the biggest strengths of the manuscript is a spatial transcriptomic o mouse adrenal gland tissue, which, to my knowledge, has not been done before.

      (2) Comprehensive Zonal Characterization: Seven distinct clusters were identified, corresponding to known anatomical and functional regions (ZG, ZF, ZX, medulla, connective tissue, brown and white adipose tissue), each with robust marker gene sets.

      (3) The authors manage to integrate advanced bioinformatical tools such as CellChatDB, Monocle3, and CARD to study the relationship between cell types and differentiation of the tissue.

      (4) The authors manage to identify novel marker genes for some adrenal zones.

      Weaknesses:

      (1) The study focused only on one adult male CD1 IGS mouse, which is a limiting factor for other strains, ages, or females, especially given the sexual dimorphism of the ZX. Although the authors claim that four slices of the adrenal gland have been processed on Visium and sequenced, for "clarity," they show only one, which might bias the results.

      (2) Lack of detailed QC analysis of the Visium slide.

      (3) The study misses the functional validation of the novel marker genes - this needs to be addressed.

      (4) What worries me a lot is the fact that, actually, there might be more than one cell present within a Visium spot, so the only way to define zones is by anatomical observation rather than cellular composition.

      (5) In cell chat analysis, the authors show the strength of the interactions, but miss out on the number of interactions.

      Conclusions:

      The authors' stated goals were mostly accomplished:

      By mapping the mouse adrenal gland's molecular landscape, they were able to clearly establish unique molecular signatures for every anatomical zone.

      Pseudotime study of the cell progression from the capsule through ZG, ZF, and ZX demonstrates that the data strongly support the centripetal differentiation concept. Conclusions on the functional importance of newly discovered marker genes are conjectural and need additional experimental support.

      Nevertheless, several findings are still tentative and will need more experimental support, especially when it comes to the significance of ZX persistence and the functional involvement of recently discovered marker genes.

    1. Reviewer #3 (Public review):

      Summary:

      One goal of this paper is to introduce a new approach for highly accurate decoding of finger movements from human magnetoencephalography data via dimension reduction of a "multi-scale, hybrid" feature space. Following this decoding approach, the authors aim to show that early skill learning involves "contextualization" of the neural coding of individual movements, relative to their position in a sequence of consecutive movements. Furthermore, they aim to show that this "contextualization" develops primarily during short rest periods interspersed with skill training, and correlates with a performance metric which the authors interpret as an indicator of offline learning.

      Strengths:

      A strength of the paper is the innovative decoding approach, which achieves impressive decoding accuracies via dimension reduction of a "multi-scale, hybrid space". This hybrid-space approach follows the neurobiologically plausible idea of concurrent distribution of neural coding across local circuits as well as large-scale networks.

      Weaknesses:

      A clear weakness of the paper lies in the authors' conclusions regarding "contextualization". Several potential confounds, which partly arise from the experimental design, and which are described below, question the neurobiological implications proposed by the authors, and offer a simpler explanation of the results. Furthermore, the paper follows the assumption that short breaks result in offline skill learning, while recent evidence casts doubt on this assumption.

      Specifically:

      The authors interpret the ordinal position information captured by their decoding approach as a reflection of neural coding dedicated to the local context of a movement (Figure 4). One way to dissociate ordinal position information from information about the moving effectors is to train a classifier on one sequence, and test the classifier on other sequences that require the same movements, but in different positions (Kornysheva et al., Neuron 2019). In the present study, however, participants trained to repeat a single sequence (4-1-3-2-4). As a result, ordinal position information is potentially confounded by the fixed finger transitions around each of the two critical positions (first and fifth press). Across consecutive correct sequences, the first keypress in a given sequence was always preceded by a movement of the index finger (=last movement of the preceding sequence), and followed by a little finger movement. The last keypress, on the other hand, was always preceded by a ring finger movement, and followed by an index finger movement (=first movement of the next sequence). Figure 3 - supplement 5 shows that finger identity can be decoded with high accuracy (>70%) across a large time window around the time of the keypress, up to at least {plus minus}100 ms (and likely beyond, given that decoding accuracy is still high at the boundaries of the window depicted in that figure). This time window approaches the keypress transition times in this study. Given that distinct finger transitions characterized the first and fifth keypress, the classifier could thus rely on persistent (or "lingering") information from the preceding finger movement, and/or "preparatory" information about the subsequent finger movement, in order to dissociate the first and fifth keypress. Currently, the manuscript provides little evidence that the context information captured by the decoding approach is more than a by-product of temporally extended, and therefore overlapping, but independent neural representations of consecutive keypresses that are executed in close temporal proximity - rather than a neural representation dedicated to context.

      During the review process, the authors pointed out that a "mixing" of temporally overlapping information from consecutive keypresses, as described above, should result in systematic misclassifications and therefore be detectable in the confusion matrices in Figures 3C and 4B, which indeed do not provide any evidence that consecutive keypresses are systematically confused. However, such absence of evidence (of systematic misclassification) should be interpreted with caution. The authors also reported that there was only a weak relation between inter-press intervals and "online contextualization" (Figure 5 - figure supplement 6), however, their analysis suprisingly includes a keypress transition that is shared between OP1 and OP5 ("4-4"), rather than focusing solely on the two distinctive transitions ("2-4" and "4-1").

      Such temporal overlap of consecutive, independent finger representations may also account for the dynamics of "ordinal coding"/"contextualization", i.e., the increase in 2-class decoding accuracy, across Day 1 (Figure 4C). As learning progresses, both tapping speed and the consistency of keypress transition times increase (Figure 1), i.e., consecutive keypresses are closer in time, and more consistently so. As a result, information related to a given keypress is increasingly overlapping in time with information related to the preceding and subsequent keypresses. Furthermore, learning should increase the number of (consecutively) correct sequences, and, thus, the consistency of finger transitions. Therefore, the increase in 2-class decoding accuracy may simply reflect an increasing overlap in time of increasingly consistent information from consecutive keypresses, which allows the classifier to dissociate the first and fifth keypress more reliably as learning progresses, simply based on the characteristic finger transitions associated with each. In other words, given that the physical context of a given keypress changes as learning progresses - keypresses move closer together in time, and are more consistently correct - it seems problematic to conclude that the mental representation of that context changes. During the review process, authors pointed at absence of evidence of a relation between tapping speed and "ordinal coding" (Figure 5 - figure supplement 7). However, a rigorous test of the idea that the mental representation of context changes would require a task design in which the physical context remains constant.

      A similar difference in physical context may explain why neural representation distances ("differentiation") differ between rest and practice (Figure 5). The authors define "offline differentiation" by comparing the hybrid space features of the last index finger movement of a trial (ordinal position 5) and the first index finger movement of the next trial (ordinal position 1). However, the latter is not only the first movement in the sequence, but also the very first movement in that trial (at least in trials that started with a correct sequence), i.e., not preceded by any recent movement. In contrast, the last index finger of the last correct sequence in the preceding trial includes the characteristic finger transition from the fourth to the fifth movement. Thus, there is more overlapping information arising from the consistent, neighbouring keypresses for the last index finger movement, compared to the first index finger movement of the next trial. A strong difference (larger neural representation distance) between these two movements is, therefore, not surprising, given the task design, and this difference is also expected to increase with learning, given the increase in tapping speed, and the consequent stronger overlap in representations for consecutive keypresses.

      A further complication in interpreting the results stems from the visual feedback that participants received during the task. Each keypress generated an asterisk shown above the string on the screen. It is not clear why the authors introduced this complicating visual feedback in their task, besides consistency with their previous studies. The resulting systematic link between the pattern of visual stimulation (the number of asterisks on the screen) and the ordinal position of a keypress makes the interpretation of "contextual information" that differentiates between ordinal positions difficult. While the authors report the surprising finding that their eye-tracking data could not predict asterisk position on the task display above chance level, the mean gaze position seemed to vary systematically as a function of ordinal position of a movement - see Figure 4 - figure supplement 3.

      The authors report a significant correlation between "offline differentiation" and cumulative micro-offline gains. However, to reach the conclusion that "the degree of representational differentiation -particularly prominent over rest intervals - correlated with skill gains.", the critical question is rather whether "offline differentiation" correlates with micro-offline gains (not with cumulative micro-offline gains). That is, does the degree to which representations differentiate "during" a given rest period correlate with the degree to which performance improves from before to after the same rest period (not: does "offline differentiation" in a given rest period correlate with the degree to which performance has improved "during" all rest periods up to the current rest period - but this is what Figure 5 - figure supplements 1 and 4 show).

      The authors follow the assumption that micro-offline gains reflect offline learning. However, there is no compelling evidence in the literature, and no evidence in the present manuscript, that micro-offline gains (during any training phase) reflect offline learning. Instead, emerging evidence in the literature indicates that they do not (Das et al., bioRxiv 2024), and instead reflect transient performance benefits when participants train with breaks, compared to participants who train without breaks, however, these benefits vanish within seconds after training if both groups of participants perform under comparable conditions (Das et al., bioRxiv 2024). During the review process, the authors argued that differences in the design between Das et al. (2024) on the one hand (Experiments 1 and 2), and the study by Bönstrup et al. (2019) on the other hand, may have prevented Das et al. (2024) from finding the assumed (lasting) learning benefit by micro-offline consolidation. However, the Supplementary Material of Das et al. (2024) includes an experiment (Experiment S1) whose design closely follows the early learning phase of Bönstrup et al. (2019), and which, nevertheless, demonstrates that there is no lasting benefit of taking breaks for the acquired skill level, despite the presence of micro-offline gains.

      Along these lines, the authors argue that their practice schedule "minimizes reactive inhibition effects", in particular their short practice periods of 10 seconds each. However, 10 seconds are sufficient to result in motor slowing, as report in Bächinger et al., elife 2019, or Rodrigues et al., Exp Brain Res 2009.

      An important conceptual problem with the current study is that the authors conclude that performance improves, and representation manifolds differentiate, "during" rest periods. However, micro-offline gains (as well as offline contextualization) are computed from data obtained during practice, not rest, and may, thus, just as well reflect a change that occurs "online", e.g., at the very onset of practice (like pre-planning) or throughout practice (like fatigue, or reactive inhibition).

      The authors' conclusion that "low-frequency oscillations (LFOs) result in higher decoding accuracy compared to other narrow-band activity" should be taken with caution, given that the critical decoding analysis for this conclusion was based on data averaged across a time window of 200 ms (Figure 2), essentially smoothing out higher frequency components.

  4. Jun 2025
    1. Reviewer #3 (Public review):

      Summary:

      In this study, the authors have developed a new Ca indicator conjugated to the peptide, which likely recognizes synaptic ribbons and have measured microdomain Ca near synaptic ribbons at retinal bipolar cells. This interesting approach allows one to measure Ca close to transmitter release sites, which may be relevant for synaptic vesicle fusion and replenishment. Though microdomain Ca at the active zone of ribbon synapses has been measured by Hudspeth and Moser, the new study uses the peptide recognizing synaptic ribbons, potentially measuring the Ca concentration relatively proximal to the release sites.

      Strengths:

      The study is, in principle, technically well done, and the peptide approach is technically interesting, which allows one to image Ca near the particular protein complexes. The approach is potentially applicable to other types of imaging.

      Weaknesses:

      Peptides may not be entirely specific, and genetic approach tagging particular active zone proteins with fluorescent Ca indicator proteins may well be more specific. Although the authors are aware of this and the peptide approach is generally used for ribbon synapses, the authors should be aware of this, when interpreting the results.

    1. Reviewer #3 (Public review):

      Summary:

      Ribbon synapses are complex molecular assemblies responsible for synaptic vesicle trafficking in sensory cells of the eye and the inner ear. The Ca2+-dependent exocytosis occurs at the active zone (AZ), however, the molecular mechanisms orchestrating the structure and function of the AZs of ribbon synapses are not well understood. To advance in the understanding of those mechanisms, the authors present a novel and interesting experimental strategy pursuing the reconstitution of a minimal active zone of a ribbon synapse within a synapse-naïve cell line: HEK293 cells. The authors have used stably transfected HEK293 cells that express voltage-gated Ca2+ channels subunits (constitutive -CaV beta3 and CaV alpha2 beta1- and inducible CaV1.3 alpha1). They have expressed in those cells several proteins of the ribbon synapse active zone: (1) RIBEYE, (2) a modified version of Bassoon that binds to the plasma membrane through artificial palmitoylation (Palm-Bassoon) and (3) RIM-binding protein 2 (RBP2) to induce the formation of a minimal active zone that they called SyRibbons. The formation of such structures is convincing, however, the evidence of such structures having a functional impact (for example enhancing Ca2+-currents), as the authors claim, is weak. In conclusion, the novel approach shows that expression of a multiprotein complex partially reproduces properties, especially structural properties, of ribbon-type active zones in a heterologous system. Although the approach opens interesting possibilities for further experiments, the evidence supporting the functional properties of the so called "synthetic ribbon synapses" is incomplete.

      Strengths of the study:

      (1) The study is carefully carried out using a remarkable combination of (1) superresolution, correlative light microscopy and cryo-electron tomography, to analyze the formation and subcellular distribution of molecular assemblies and (2) functional assessment of voltage-gated Ca2+ channels using patch-clamp recording of Ca2+-currents and fluorometry to correlate Ca2+ influx with the molecular assemblies formed by AZ proteins. The results are of high quality and are in general accompanied of required control experiments.<br /> (2) The method opens new opportunities to further investigate the minimal and basic properties of AZ proteins that are difficult to study using in vivo systems. The cells that operate through ribbon synapses (e.g. photoreceptors and hair cells) are particularly difficult to manipulate, so setting up and validating the use of a heterologous system more suitable for molecular manipulations is highly valuable.<br /> (3) The structures formed by RIBEYE and Palm-Bassoon in HEK293 cells identified by STED nanoscopy and cryo-electron microscopy share relevant similarities similar to the AZs of ribbon synapses found in rat inner hair cells.

      Weaknesses of the study:

      (1) The evidence of the functional properties of the "synthetic ribbon-type active zones" has been only assessed by its effect on the modulation of Ca2+-channel function, and that effect is rather weak. The authors provide reasonable explanations regarding such a weak effect but, however, it is difficult to conclude that indeed the "synthetic ribbon-type active zones" are bona fide functional multiprotein complexes.

    1. Reviewer #2 (Public review):

      Summary

      The report by Dalas and colleagues introduces a significant novelty in the field of pentameric ligand-gated ion channels (pLGICs). Within this family of receptors, numerous structures are available, but a widely recognised problem remains in assigning structures to functional states observed in biological membranes. Here, the authors obtain both structural and functional information of a pLGIC in a liposome environment. The model receptor ELIC is captured in the resting, desensitised and open states. Structures in large nanodiscs, possibly biased by receptor-scaffold protein interactions, are also reported. Altogether these results set the stage for the adoption of liposomes as a proxy for the biological membranes, for cryoEM studies of pLGICs and membrane proteins in general.

      Strengths

      The structural data is comprehensive, with structures in liposomes in the 3 main states (and for each, both inward-facing and outward-facing), and an agonist-bound structure in the large spNW25 nanodisc (and a retreatment of previous data obtained in a smaller disc). It adds up to a series of work from the same team that constitutes a much-needed exploration of various types of environment for the transmembrane domain of pLGICs. The structural analysis is thorough.<br /> The tone of the report is particularly pleasant, in the sense that the authors' claims are not inflated. For instance, a sentence such as "By performing structural and functional characterization under the same reconstitution conditions, we increase our confidence in the functional annotation of these structures." is exemplary.

      Weakness

      All the details necessary to reproduce the work are present in the Methods. Nevertheless, the biochemistry might have been shown and discussed in greater details. While I do believe that liposomes will be in most cases better than, say, nanodiscs, the process that leads from the protein in its membrane down to the liposome will play a big role in preserving the native structure.

    1. Reviewer #3 (Public review):

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome. In particular, the authors identify one key dimension: the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally argue that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea has the potential to change how we think about several major mental disorders in a substantial way and can additionally help us better understand how healthy people navigate challenging decision-making problems. More concisely, it is a very good idea.

      Unfortunately, my view is that neither the theoretical nor empirical aspects of the paper really deliver on that promise. In particular, most (perhaps all) of the interesting claims in the paper have weak empirical support.

      Starting with theory, the authors do not provide a strong formal characterization of the proposed notion of elasticity. There are existing, highly general models of controllability (e.g., Huys & Dayan, 2009; Ligneul, 2021) and the elasticity idea could naturally be embedded within one of these frameworks. The authors gesture at this in the introduction; however, this formalization is not reflected in the implemented model, which is highly task-specific. Moreover, the authors present elasticity as if it is somehow "outside of" the more general notion of controllability. However, effort and investment are just specific dimensions of action; and resources like money, strength, and skill (the "highly trained birke") are just specific dimensions of state. Accordingly, the notion of elasticity is necessarily implicitly captured by the standard model. Personally, I am compelled by the idea that effort and resource (and therefore elasticity) are particularly important dimensions, ones that people are uniquely tuned to. However, by framing elasticity as a property that is different in kind from controllability (rather than just a dimension of controllability), the authors only make it more difficult to integrate this exciting idea into generalizable models.

      Turning to experiment, the authors make two key claims: (1) people infer the elasticity of control, and (2) individual differences in how people make this inference are importantly related to psychopathology.

      Starting with claim 1, there are three subclaims here; implicitly, the authors make all three. (1A) People's behavior is sensitive to differences in elasticity, (1B) people actually represent/track something like elasticity, and (1C) people do so naturally as they go about their daily lives. The results clearly support 1A. However, 1B and 1C are not strongly supported.

      (1B) The experiment cannot support the claim that people represent or track elasticity because effort is the only dimension over which participants can engage in any meaningful decision-making. The other dimension, selecting which destination to visit, simply amounts to selecting the location where you were just told the treasure lies. Thus, any adaptive behavior will necessarily come out in a sensitivity to how outcomes depend on effort.

      Notes on rebuttal: The argument that vehicle/destination choice is not trivial because people occasionally didn't choose the instructed location is not compelling to me-if anything, the exclusion rate is unusually low for online studies. The finding that people learn more from non-random outcomes is helpful, but this could easily be cast as standard model-based learning very much like what one measures with the Daw two-step task (nothing specific to control here). Their final argument is the strongest, that to explain behavior the model must assume "a priori that increased effort could enhance control." However, more literally, the necessary assumption is that each attempt increases the probability of success-e.g. you're more likely to get a heads in two flips than one. I suppose you can call that "elasticity inference", but I would call it basic probabilistic reasoning.

      For 1C, the claim that people infer elasticity outside of the experimental task cannot be supported because the authors explicitly tell people about the two notions of control as part of the training phase: "To reinforce participants' understanding of how elasticity and controllability were manifested in each planet, [participants] were informed of the planet type they had visited after every 15 trips." (line 384).

      Notes on rebuttal: The authors try to retreat, saying "our research question was whether people can distinguish between elastic and inelastic controllability." I struggle to reconcile this with the claim in the abstract "These findings establish the elasticity of control as a distinct cognitive construct guiding adaptive behavior". That claim is the interesting one, and the one I am evaluating the evidence in light of.

      Finally, I turn to claim 2, that individual differences in how people infer elasticity are importantly related to psychopathology. There is much to say about the decision to treat psychopathology as a unidimensional construct (the authors claim otherwise, but see Fig 6C). However, I will keep it concrete and simply note that CCA (by design) obscures the relationship between any two variables. Thus, as suggestive as Figure 6B is, we cannot conclude that there is a strong relationship between Sense of Agency (SOA) and the elasticity bias---this result is consistent with any possible relationship (even a negative one). As it turns out, Figure S3 shows that there is effectively no relationship (r=0.03).

      Notes on rebuttal: The authors argue for CCA by appeal to the need to "account for the substantial variance that is typically shared among different forms of psychopathology". I agree. A simple correlation would indeed be fairly weak evidence. Strong evidence would show a significant correlation after *controlling for* other factors (e.g. a regression predicting elasticity bias from all subscales simultaneously). CCA effectively does the opposite, asking whether-with the help of all the parameters and all the surveys-one can find any correlation between the two sets of variables. The results are certainly suggestive, but they provide very little statistical evidence that the elasticity parameter is meaningfully related to any particular dimension of psychopathology.

      There is also a feature of the task that limits our ability to draw strong conclusions about individual differences about elasticity inference. In the original submission, the authors stated that the study was designed to be "especially sensitive to overestimation of elasticity". A straightforward consequence of this is that the resulting *empirical* estimate of estimation bias (i.e., the gamma_elasticity parameter) is itself biased. This immediately undermines any claim that references the directionality of the elasticity bias (e.g. in the abstract). Concretely, an undirected deficit such as slower learning of elasticity would appear as a directed overestimation bias.

      When we further consider that elasticity inference is the only meaningful learning/decision-making problem in the task (argued above), the situation becomes much worse. Many general deficits in learning or decision-making would be captured by the elasticity bias parameter. Thus, a conservative interpretation of the results is simply that psychopathology is associated with impaired learning and decision-making.

      Notes on rebuttal: I am very concerned to see that the authors removed the discussion of this limitation in response to my first review. I quote the original explanation here:

      - In interpreting the present findings, it needs to be noted that we designed our task to be especially sensitive to overestimation of elasticity. We did so by giving participants free 3 tickets at their initial visits to each planet, which meant that upon success with 3 tickets, people who overestimate elasticity were more likely to continue purchasing extra tickets unnecessarily. Following the same logic, had we first had participants experience 1 ticket trips, this could have increased the sensitivity of our task to underestimation of elasticity in elastic environments. Such underestimation could potentially relate to a distinct psychopathological profile that more heavily loads on depressive symptoms. Thus, by altering the initial exposure, future studies could disambiguate the dissociable contributions of overestimating versus underestimating elasticity to different forms of psychopathology.

      The logic of this paragraph makes perfect sense to me. If you assume low elasticity, you will infer that you could catch the train with just one ticket. However, when elasticity is in fact high, you would find that you don't catch the train, leading you to quickly infer high elasticity-eliminating the bias. In contrast, if you assume high elasticity, you will continue purchasing three tickets and will never have the opportunity to learn that you could be purchasing only one-the bias remains.

      The authors attempt to argue that this isn't happening using parameter recovery. However, they only report the *correlation* in the parameter, whereas the critical measure is the *bias*. Furthermore, in parameter recovery, the data-generating and data-fitting models are identical-this will yield the best possible recovery results. Although finding no bias in this setting would support the claims, it cannot outweigh the logical argument for the bias that they originally laid out. Finally, parameter recovery should be performed across the full range of plausible parameter values; using fitted parameters (a detail I could only determine by reading the code) yields biased results because the fitted parameters are themselves subject to the bias (if present). That is, if true low elasticity is inferred as high elasticity, then you will not have any examples of low elasticity in the fitted parameters and will not detect the inability to recover them.

      Minor comments:

      Below are things to keep in mind.

      The statistical structure of the task is inconsistent with the framing. In the framing, participants can make either one or two second boarding attempts (jumps) by purchasing extra tickets. The additional attempt(s) will thus succeed with probability p for one ticket and 2p - p^2 for two tickets; the p^2 captures the fact that you only take the second attempt if you fail on the first. A consequence of this is buying more tickets has diminishing returns. In contrast, in the task, participants always jumped twice after purchasing two tickets, and the probability of success with two tickets was exactly double that with one ticket. Thus, if participants are applying an intuitive causal model to the task, they will appear to "underestimate" the elasticity of control. I don't think this seriously jeopardizes the key results, but any follow-up work should ensure that the task's structure is consistent with the intuitive causal model.

      The model is heuristically defined and does not reflect Bayesian updating. For example, it over-estimates maximum control by not using losses with less than 3 tickets (intuitively, the inference here depends on what your beliefs about elasticity). Including forced three-ticket trials at the beginning of each round makes this less of an issue; but if you want to remove those trials, you might need to adjust the model. The need to introduce the modified model with kappa is likely another symptom of the heuristic nature of the model updating equations.

    1. Reviewer #3 (Public review):

      Summary:

      This paper by Meier et al introduces a new optogenetic module for the regulation of bacterial gene expression based on "bathy-BphP" proteins. Their paper begins with a careful characterization of kinetics and pH dependence of a few family members, followed by extensive engineering to produce infrared-regulated transcriptional systems based on the authors' previous design of the pDusk and pDERusk systems, and closing with characterization of the systems in bacterial species relevant for biotechnology.

      Strengths:

      The paper is important from the perspective of fundamental protein characterization, since bathy-BphPs are relatively poorly characterized compared to their phytochrome and cyanobacteriochrome cousins. It is also important from a technology development perspective: the optogenetic toolbox currently lacks infrared-stimulated transcriptional systems. Infrared light offers two major advantages: it can be multiplexed with additional tools, and it can penetrate into deep tissues with ease relative to the more widely used blue light-activated systems. The experiments are performed carefully, and the manuscript is well written.

      Weaknesses:

      My major criticism is that some information is difficult to obtain, and some data is presented with limited interpretation, making it difficult to obtain intuition for why certain responses are observed. For example, the changes in red/infrared responses across different figures and cellular contexts are reported but not rationalized. Extensive experiments with variable linker sequences were performed, but the rationale for linker choices was not clearly explained. These are minor weaknesses in an overall very strong paper.

    1. Reviewer #3 (Public review):

      Summary:

      The paper studies learning rules in a simple sigmoidal recurrent neural network setting. The recurrent network has a single layer of 10 to 40 units. It is first confirmed that feedback alignment (FA) can learn a value function in this setting. Then so-called bio-plausible constraints are added: (1) when value weights (readout) is non-negative, (2) when the activity is non-negative (normal sigmoid rather than downscaled between -0.5 and 0.5), (3) when the feedback weights are non-negative, (4) when the learning rule is revised to be monotic: the weights are not downregulated. In the simple task considered all four biological features do not appear to impair totally the learning.

      Strengths:

      (1) The learning rules are implemented in a low-level fashion of the form: (pre-synaptic-activity) x (post-synaptic-activity) x feedback x RPE. Which is therefore interpretable in terms of measurable quantities in the wet-lab.

      (2) I find that non-negative FA (FA with non negative c and w) is the most valuable theoretical insight of this paper: I understand why the alignment between w and c is automatically better at initialization.

      (3) The task choice is relevant, since it connects with experimental settings of reward conditioning with possible plasticity measurements.

      Weaknesses:

      (4) The task is rather easy, so it's not clear that it really captures the computational gap that exists with FA (gradient-like learning) and simpler learning rule like a delta rule: RPE x (pre-synpatic) x (post-synaptic). To control if the task is not too trivial, I suggest adding a control where the vector c is constant c_i=1.

      (5) Related to point 3), the main strength of this paper is to draw potential connection with experimental data. It would be good to highlight more concretely the prediction of the theory for experimental findings. (Ideally, what should be observed with non-negative FA that is not expected with FA or a delta rule (constant global feedback) ?).

      (6a) Random feedback with RNN in RL have been studied in the past, so it is maybe worth giving some insights how the results and the analyzes compare to this previous line of work (for instance in this paper [1]). For instance, I am not very surprised that FA also works for value prediction with TD error. It is also expected from the literature that the RL + RNN + FA setting would scale to tasks that are more complex than the conditioning problem proposed here, so is there a more specific take-home message about non-negative FA? or benefits from this simpler toy task?

      (6b) Related to task complexity, it is not clear to me if non-negative value and feedback weights would generally scale to harder tasks. If the task in so simple that a global RPE signal is sufficient to learn (see 4 and 5), then it could be good to extend the task to find a substantial gap between: global RPE, non-negative FA, FA, BP. For a well chosen task, I expect to see a performance gap between any pair of these four learning rules. In the context of the present paper, this would be particularly interesting to study the failure mode of non-negative FA and the cases where it does perform as well as FA.

      (7) I find that the writing could be improved, it mostly feels more technical and difficult than it should. Here are some recommendations:<br /> 7a) For instance, the technical description of the task (CSC) is not fully described and requires background knowledge from other paper which is not desirable.<br /> 7b) Also the rationale for the added difficulty with the stochastic reward and new state is not well explained.<br /> 7c) In the technical description of the results I find that the text dives into descriptive comments of the figures but high-level take home messages would be helpful to guide the reader. I got a bit lost, although I feel that there is probably a lot of depth in these paragraphs.

      (8) Related to the writing issue and 5), I wished that "bio-plausibility" was not the only reason to study positive feedback and value weights. Is it possible to develop a bit more specifically what and why this positivity is interesting? Is there an expected finding with non-negative FA both in the model capability? or maybe there is a simpler and crisp take-home message to communicate the experimental predictions to the community would be useful?

      [1] https://www.nature.com/articles/s41467-020-17236-y

      Comments on revisions:

      Thank you for addressing all my comments in your reply.

    1. Reviewer #3 (Public review):

      Summary:

      Gouirand et al explore the function of Layilin on Treg in the context of psoriasis using both patient samples and a conditional mutant mouse model. They perform functional analysis in the patient samples using Cas9-mediated deletion. The authors suggest that Layilin works in concert with integrins to bind collagen IV to attenuate cell movement.

      The work is well done and built on solid human data. The report is a modest advance from the authors' previous report in 2021 that focused on tumor responses, with this report focusing on psoriasis. There are some experimental concerns that should be considered.

      Strengths:

      (1) Good complementation of patient and animal model data.

      (2) Solid experimentation using state-of-the-art approaches.

      (3) There is clearly a biological effect of LAYN deficiency in the mouse model.

      (4) The report adds some new information to what was already known from the previous reports.

      Weaknesses:

      (1) It is not clear that the assays used for functional analysis of the patient samples were optimal.

      (2) Several conclusions are not fully substantiated.

      (3) The report is lacking some experimental details.

    1. Reviewer #3 (Public review):

      This revised paper develops and characterizes a new approach for screening drugs for epilepsy. The idea is to increase the ability to study seizures in animals with epilepsy because most animal models have rare seizures. Thus, the authors use the existing intrahippocampal kainic acid (IHKA) mouse model, which can have very unpredictable seizures with long periods of time between seizures. This approach is of clear utility to researchers who may need to observe many seizure events per mouse during screening of antiseizure medications. A key strength is also that more utility can be derived from each individual mouse. The authors modified the IHKA model to inject KA into CA3 instead of CA1 in order to preserve the CA1 pyramidal cells that they will later stimulate. To express the excitatory opsin channelrhodopsin (ChR2) in area CA1, they use a virus that expresses ChR2 in cells that express the Thy-1 promoter. The authors demonstrate that CA3 delivery of KA can induce a very similar chronic epilepsy phenotype to the injection of KA in CA1 and show that optical excitation of CA1 can reliably induce seizures. The authors evaluate the impact of repeated stimulation on the reliability of seizure induction and show that seizures can be reliably induced by CA1 stimulation, at least for the short term (up to 16 days). These are strengths of the study.

      However, there are several limitations: the seizures are evoked, not spontaneous. It is not clear how induced seizures can be used to investigate if antiseizure medication can reduce spontaneous seizures. Although seizure inducibility and severity can be assessed, the lack of spontaneous seizures is a limitation. To their credit, the authors show that electrophysiological signatures of induced vs spontaneous seizures are similar in many ways, but the authors also show several differences. Notably, the induced seizures are robustly inhibited by the antiseizure medication levetiracetam and variably but significantly inhibited by diazepam, similar to many mouse models with chronic recurrent seizure activity. One also wonders if using a mouse model with numerous seizures (such as the pilocarpine model) might be more efficient than using a modified IHKA protocol.

      In this revised manuscript, the authors address some previous concerns related to definitions of seizures and events that are trains of spikes, sex as a biological variable, and present new images of ChR2 expression (but these images could be improved to see the cells more clearly). A few key concerns remain unaddressed, however. For example, it is still not clear that evoked seizures triggered by stimulating CA1 are similar to spontaneous seizures, regardless of the idea that CA1 plays a role in seizure disorders. It also remains unclear whether repeated activation of the hippocampal circuit will result in additional alterations to this circuit that affect the seizure phenotype over prolonged intervals (after 16 days). Furthermore, the use of SVM with the number of seizures being used as replicates (instead of number of mice) is inappropriate. Another theoretical concern is whether the authors are correct in suggesting that one will be able to re-use the mice for screening multiple drugs in a row.

      Strengths:<br /> - The authors show that the IHKA model of chronic epilepsy can be modified to preserve CA1 pyramidal cells, allowing optogenetic stimulation of CA1 to trigger seizures.<br /> - The authors show that repeated optogenetic stimulation of CA1 in untreated mice can promote kindling and induce seizures, indeed generating two mouse models in total.<br /> - Many electrophysiological signatures are similar between the induced and spontaneous seizures, and induced seizures reliably respond to treatment with antiseizure medications.<br /> - Given that more seizures can be observed per mouse using on-demand optogenetics, this model enhances the utility of each individual mouse.<br /> - Mice of each sex were used.

      Weaknesses:<br /> - Evaluation of seizure similarity using the SVM modeling and clustering is not sufficiently justified when using number of seizures as the statistical replicate (vs mice).<br /> - Related to the first concern, the utility of increasing number of seizures for enhancing statistical power is limited because standard practice is for sample size to be numbers of mice.<br /> - The term "seizure burden" usually refers to the number of spontaneous seizures per day, not the severity of the seizures themselves. Because the authors are evoking the seizures being studied, this study design precludes assessment of seizure burden.<br /> - It seems likely that repeatedly inducing seizures will have a long-term effect, especially in light of the downward slope at day 13-16 for induced seizures seen in Figure 4C. A duration of evaluation that is longer than 16 days is warranted.<br /> - Human epilepsy is extensively heterogeneous in both etiology and individual phenotype, and it may be hard to generalize the approach.

    1. Reviewer #3 (Public review):

      Summary

      In this study, the authors aim to uncover how 3D tongue direction is represented in the Motor (M1o) and Somatosensory (S1o) cortex. In non-human primates implanted with chronic electrode arrays, they use X-ray based imaging to track the kinematics of the tongue and jaw as the animal is either chewing food or licking from a spout. They then correlate the tongue kinematics with the recorded neural activity. They perform both single-unit and population level analyses during feeding and licking. Then, they recharacterize the tuning properties after bilateral lidocaine injections in the two sensory branches of the trigeminal nerve. They report that their nerve block causes a reorganization of the tuning properties and population trajectories. Overall, this paper concludes that M1o and S1o both contain representations of the tongue direction, but their numbers, their tuning properties and susceptibility to perturbed sensory input are different.

      Strengths

      The major strengths of this paper are in the state-of-the-art experimental methods employed to collect the electrophysiological and kinematic data. In the revision, the single-unit analyses of tuning direction are robustly characterized. The differences in neural correlations across behaviors, regions and perturbations are robust. In addition to the substantial amount of largely descriptive analyses, this paper makes two convincing arguments 1) The single-neuron correlates for feeding and licking in OSMCx are different - and can't be simply explained by different kinematics and 2) Blocking sensory input alters the neural processing during orofacial behaviors. The evidence for these claims is solid.

      Weaknesses

      The main weakness of this paper is in providing an account for these differences to get some insight into neural mechanisms. For example, while the authors show changes in neural tuning and different 'neural trajectory' shapes during feeding and drinking - their analyses of these differences are descriptive and provide limited insight for the underlying neural computations.

    1. Reviewer #3 (Public review):

      Summary:

      Zawieja et al. aimed to identify the pacemaker cells in the lymphatic collecting vessels. Authors have used various Cre-based expression systems and optogentic tools to identify these cells. Their findings suggest these cells are lymphatic muscle cells that drive the pacemaker activity in the lymphatic collecting vessels.

      Strengths:

      The authors have used multiple approaches to test their hypothesis. Some findings are presented as qualitative images, while some quantitative measurements are provided.

      Weaknesses:<br /> - More quantitative measurements.<br /> - Possible mechanisms associated with the pacemaker activity.<br /> - Membrane potential measurements.

      Comments on revisions: I do not have any additional comments.

    1. Reviewer #3 (Public review):

      The introduction does a very good job of discussing the issue around whether there is ongoing replication in people with HIV on antiretroviral therapy. Sporadic, non-sustained replication likely occurs in many PWH on ART related to adherence, drug-drug interactions and possibly penetration of antivirals into sanctuary areas of replication and as the authors point out proving it does not occur is likely not possible and proving it does occur is likely very dependent on the population studied and the design of the intervention. Whether the consequences of this replication in the absence of evolution toward resistance have clinical significance challenging question to address.

      It is important to note that INSTI-based therapy may have a different impact on HIV replication events that results in differences in virus release for specific cell type (those responsible for "second phase" decay) by blocking integration in cells that have completed reverse transcription prior to ART initiation but have yet to be fully activated. In a PI or NNRTI-based regimen, those cells will release virus, whereas with an INSTI-based regimen, they will not.

      Given the very small sample size, there is a substantial risk of imbalance between the groups in important baseline measures. Unfortunately, with the small sample size, a non-significant P value is not helpful when comparing baseline measures between groups. One suggestion would be to provide the full range as opposed to the inter-quartile range (essentially only 5 or 6 values). The authors could also report the proportion of participants with baseline HIV RNA target not detected in the two groups.

      A suggestion that there is a critical imbalance between groups is that the control group has significantly lower total HIV DNA in PBMC, despite the small sample size. The control group also has numerically longer time of continuous suppression, lower unspliced RNA, and lower intact proviral DNA. These differences may have biased the ability to see changes in DNA and US RNA in the control group. Notably, there was no significant difference in the change in US RNA/DNA between groups (Figure 2C). The fact that the median relative change appears very similar in Figure 2C, yet there is a substantial difference in P values, is also a comment on the limits of the current sample size. The text should report the median change in US RNA and US RNA/DNA when describing Figures 2A-2C. This statistical comparison of changes in IPDA results between groups should be reported. The presentation of the absolute values of all the comparisons in the supplemental figures is a strength of the manuscript.

      In the assessment of ART intensification on immune activation and exhaustion, the fact that none of the comparisons between randomized groups were significant should be noted and discussed.

      The changes in CD4:CD8 ratio and sCD14 levels appear counterintuitive to the hypothesis and are commented on in the discussion.

      Overall, the discussion highlights the significant changes in the intensified group, which are suggestive. There is limited discussion of the comparisons between group,s where the results are less convincing.

      The limitations of the study should be more clearly discussed. The small sample size raises the possibility of imbalance at baseline. The supplemental figures (S3-S5) are helpful in showing the differences between groups at baseline, and the variability of measurements is more apparent. The lack of blinding is also a weakness, though the PK assessments do help (note 3TC levels rise substantially in both groups for most of the time on study (Figure S2).

      The many assays and comparisons are listed as a strength. The many comparisons raise the possibility of finding significance by chance. In addition, if there is an imbalance at baseline outcomes, measuring related parameters will move in the same direction.

      The limited impact on activation and inflammation should be addressed in the discussion, as they are highlighted as a potentially important consequence of intermittent, not sustained replication in the introduction.

      The study is provocative and well executed, with the limitations listed above. Pharmacokinetic analyses help mitigate the lack of blinding. The major impact of this work is if it leads to a much larger randomized, controlled, blinded study of a longer duration, as the authors point out.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chang and colleagues provides new insights into how cancer cells adapt their metabolism under nutrient-deprived conditions. They find cells respond differentially to serine and lipid deprivation via oxidising the cell redox state, which enables biomass synthesis and cell proliferation. They identified mitochondrial respiration as the major mechanism that dictates the endogenous NAD+/NADH ratio. By incorporating a dual stress paradigm, serine and lipid deprivation, the study further suggests that the NAD+/NADH ratio can serve as a link to orchestrate the complex interplay between multiple nutrient changes in the tumour microenvironment.

      Strengths:

      A novel aspect of this study is the idea that cancer cells are not uniformly passive victims of nutrient limitation; some can actively invoke endogenous NAD+ regeneration to combat nutrient stress. The conclusion is well-supported by comparing multiple cell lines from different tissues and genetic backgrounds, which improves generalizability. While most of the smaller conclusions align with common reasoning and expectations, the step-by-step deduction that leads to a novel 'big picture' is commendable. Another notable strength is the integration of dual stress (lipid and serine deprivation), which better mimics the complex tumor microenvironment with multiple nutrient fluctuations, raising the translational potential of these findings. The observation that lipid-deprived cells can stimulate serine synthesis and support proliferation in a subset of cancer cell lines offers a novel perspective on metabolic plasticity under starvation conditions.

      Weaknesses:

      Although the authors derive a novel and valuable overarching concept, the presentation of this "big picture" is not clearly articulated, making it less accessible to readers outside the immediate field. It would greatly enhance the manuscript to include a clearer summary of the overarching model and its implications. Additionally, discussing the potential clinical significance and applications of the findings would increase the relevance and broader impact of the work. Finally, the manuscript's clarity and credibility are undermined by inconsistent figure labeling and the lack of statistical analysis, particularly for the Western blot data.

      While this study identifies changes in serine synthesis, mitochondrial respiration, PHGDH protein levels, and NAD+/NADH ratio in different cell lines, some of these relationships appear correlative rather than causally established (Figure 2; Figure 5; Figure 6). Some claims are thus overinterpreted. For example, the co-occurrence of increased NAD+/NADH ratio and citrate levels under lipid deprivation in A549 cells does not establish causality (Figure 5). Direct perturbation experiments that manipulate NAD+/NADH and assess downstream effects on citrate synthesis would substantially strengthen the conclusions.

      The study focuses predominantly on mitochondrial respiration as a source of NAD+ regeneration. However, it will also be interesting to check other significant pathways, such as NAD+ salvage, which have been implicated in supporting serine biosynthesis. In addition, the subcellular distribution of NAD+ may distinguish whether some cells are truly redox-unresponsive. Mitochondrial NAD+ regeneration might counteract the cytosolic NAD+ consumption, rendering a relatively stable intracellular NAD+/NADH ratio. The malate-aspartate shuttle can be an interesting aspect.

      The authors should acknowledge the limitations of short-term isotope tracing in their experimental design. Differences in metabolic rates across cell lines can affect the kinetics of metabolite labeling, limiting the direct comparability of metabolic fluxes between them. As a result, observed changes may reflect transient adaptations rather than stable metabolic reprogramming. It is important to clarify that the study primarily captures short-term responses, and the conclusions may not extrapolate to longer-term adaptations or protein-level changes under sustained nutrient stress.

    1. Reviewer #3 (Public review):

      Summary:

      This work presents a novel neural network-based framework for parameterizing individual differences in human behavior. Using two distinct decision-making experiments, the authors demonstrate the approach's potential and claims it can predict individual behavior (1) within the same task, (2) across different tasks, and (3) across individuals. While the goal of capturing individual variability is compelling and the potential applications are promising, the claims are weakly supported, and I find that the underlying problem is conceptually ill-defined.

      Strengths:

      The idea of using neural networks for parameterizing individual differences in human behavior is novel, and the potential applications can be impactful.

      Weaknesses:

      (1) To demonstrate the effectiveness of the approach, the authors compare a Q-learning cognitive model (for the MDP task) and RTNet (for the MNIST task) against the proposed framework. However, as I understand it, neither the cognitive model nor RTNet is designed to fit or account for individual variability. If that is the case, it is unclear why these models serve as appropriate baselines. Isn't it expected that a model explicitly fitted to individual data would outperform models that do not? If so, does the observed superiority of the proposed framework simply reflect the unsurprising benefit of fitting individual variability? I think the authors should either clarify why these models constitute fair control or validate the proposed approach against stronger and more appropriate baselines.

      (2) It's not very clear in the results section what it means by having a shorter within-individual distance than between-individual distances. Related to the comment above, is there any control analysis performed for this? Also, this analysis appears to have nothing to do with predicting individual behavior. Is this evidence toward successfully parameterizing individual differences? Could this be task-dependent, especially since the transfer is evaluated on exceedingly similar tasks in both experiments? I think a bit more discussion of the motivation and implications of these results will help the reader in making sense of this analysis.

      (3) The authors have to better define what exactly he meant by transferring across different "tasks" and testing the framework in "more distinctive tasks". All presented evidence, taken at face value, demonstrated transferring across different "conditions" of the same task within the same experiment. It is unclear to me how generalizable the framework will be when applied to different tasks.

      (4) Conceptually, it is also unclear to me how plausible it is that the framework could generalize across tasks spanning multiple cognitive domains (if that's what is meant by more distinctive). For instance, how can an individual's task performance on a Posner task predict task performance on the Cambridge face memory test? Which part of the framework could have enabled such a cross-domain prediction of task performance? I think these have to be at least discussed to some extent, since without it the future direction is meaningless.

      (5) How is the negative log-likelihood, which seems to be the main metric for comparison, computed? Is this based on trial-by-trial response prediction or probability of responses, as what usually performed in cognitive modelling?

      (6) None of the presented evidence is cross-validated. The authors should consider performing K-fold cross-validation on the train, test, and evaluation split of subjects to ensure robustness of the findings.

      (7) The authors excluded 25 subjects (20% of the data) for different reasons. This is a substantial proportion, especially by the standards of what is typically observed in behavioral experiments. The authors should provide a clear justification for these exclusion criteria and, if possible, cite relevant studies that support the use of such stringent thresholds.

      (8) The authors should do a better job of creating the figures and writing the figure captions. It is unclear which specific claim the authors are addressing with the figure. For example, what is the key message of Figure 2C regarding transfer within and across participants? Why are the stats presentation different between the Cognitive model and the EIDT framework plots? In Figure 3, it's unclear what these dots and clusters represent and how they support the authors' claim that the same individual forms clusters. And isn't this experiment have 98 subjects after exclusion, this plot has way less than 98 dots as far as I can tell. Furthermore, I find Figure 5 particularly confusing, as the underlying claim it is meant to illustrate is unclear. Clearer figures and more informative captions are needed to guide the reader effectively.

      (9) I also find the writing somewhat difficult to follow. The subheadings are confusing, and it's often unclear which specific claim the authors are addressing. The presentation of results feels disorganized, making it hard to trace the evidence supporting each claim. Also, the excessive use of acronyms (e.g., SX, SY, CG, EA, ES, DA, DS) makes the text harder to parse. I recommend restructuring the results section to be clearer and significantly reducing the use of unnecessary acronyms.