- Oct 2024
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this manuscript, Unckless and colleagues address the issue of the maintenance of genetic diversity of the gene diptericin A, which encodes an antimicrobial peptide in the model organism Drosophila melanogaster. This is an important question as the maintenance of different alleles in wild populations is not known.
Strengths:
The data indicate that flies homozygous for the dptA S69 allele are better protected against some bacteria. By contrast, male flies homozygous for the R69 allele resist better to starvation than flies homozygous for the S69 allele. This provides an element of explanation.
Weaknesses:
(1) Some of the results are difficult to understand. The observation that R69 die more than the null Dpt mutant and the wild-type is strange. This could be due to background effect. The fact that the second chromosome was not isogenized after the CRISPR change is an issue. This issue may take too much time to fix, but should be acknowledged. The existence of background effect and the multiple tested conditions that may lead to the obtention of results that may not be reproduced in other contexts/labs.<br /> (2) Some lifespans are rather short and often in disagreement with other studies (Leulier, Iatsenko but also Hanson/Lemaitre). There are also disagreements inside the article itself for instance between Fig4C and 2A. This should be mentioned.<br /> (3) The shape of many lifespan analysis with abrupt decline contrast with classical lifespan studies, suggesting technical problems.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
This paper introduces a new transgenic mouse line that allows the labelling of the AIS and nodes of Ranvier by tagging Ank-G with GFP in a Cre-dependent manner. The authors characterise the properties of the AIS and nodes of Ranvier when labelled with GFP to show that it has no adverse effects on the properties of the AIS and nodes of Ranvier, nor on most measures of intrinsic excitability in neurons. They also show that this mouse line can be used to follow AIS plasticity in vitro and to visualise the AIS of neurons in vivo. This is a very useful and timely tool that will make an important impact in the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
In the manuscript, the authors explore the mechanism by which Taenia solium larvae may contribute to human epilepsy. This is extremely important question to address because T. solium is a significant cause of epilepsy and is extremely understudied. Advances in determining how T. solium may contribute to epilepsy could have significant impact on this form of epilepsy. Excitingly, the authors convincingly show that Taenia larvae contain and release glutamate sufficient to depolarize neurons and induce recurrent excitation reminiscent of seizures. They use a combination of cutting-edge tools including electrophysiology, calcium and glutamate imaging, and biochemical approaches to demonstrate this important advance. They also show that this occurs in neurons from both mice and humans. This is relevant for pathophysiology of chronic epilepsy development. This study does not rule out other aspects of T. solium that may also contribute to epilepsy, including immunological aspects, but demonstrates a clear potential role for glutamate.
Strengths:
- The authors examine not only T. solium homogenate, but also excretory/secretory products which suggests glutamate may play a role in multiple aspects of disease progression.<br /> - The authors confirm that the human relevant pathogen also causes neuronal depolarization in human brain tissue<br /> - There is very high clinical relevance. Preventing epileptogenesis/seizures possibly with Glu-R antagonists or by more actively removing glutamate as a second possible treatment approach in addition to/replacing post-infection immune response.<br /> - Effects are consistent across multiple species (rat, mouse, human) and methodological assays (GluSnFR AND current clamp recordings AND Ca imaging)<br /> - High K content (comparable levels to high-K seizure models) of larvae could have also caused depolarization. Adequate experiments to exclude K and other suspected larvae contents (i.e. Substance P).
Weaknesses:
- Acute study is limited to studying depolarization in slices and it is unclear what is necessary/sufficient for in vivo seizure generation or epileptogenesis for chronic epilepsy.<br /> - There is likely a significant role of the immune system that is not explored here. This issue is adequately addressed in the discussion, however, and the glutamate data is considered in this context.<br /> Discuss impact:<br /> - Interfering with peri-larval glutamate signaling may hold promise to prevent ictogenesis and chronic epileptogenesis as this is a very understudied cause of epilepsy with unknown mechanistic etiology.<br /> Additional context for interpreting significance:<br /> - High medical need as most common adult onset epilepsy in many parts of the world
Tags
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors describe a method to probe both the proteins associated with genomic elements in cells, as well as 3D contacts between sites in chromatin. The approach is interesting and promising, and it is great to see a proximity labeling method like this that can make both proteins and 3D contacts. It utilizes DNA oligomers, which will likely make it a widely adopted method. However, the manuscript over-interprets its successes, which are likely due to the limited appropriate controls, and of any validation experiments. I think the study requires better proteomic controls, and some validation experiments of the "new" proteins and 3D contacts described. In addition, toning down the claims made in the paper would assist those looking to implement one of the various available proximity labeling methods and would make this manuscript more reliable to non-experts.
Strengths:
(1) The mapping of 3D contacts for 20 kb regions using proximity labeling is beautiful.
(2) The use of in situ hybridization will probably improve background and specificity.
(3) The use of fixed cells should prove enabling and is a strong alternative to similar, living cell methods.
Weaknesses:
(1) A major drawback to the experimental approach of this study is the "multiplexed comparisons". Using the mtDNA as a comparator is not a great comparison - there is no reason to think the telomeres/centrosomes would look like mtDNA as a whole. The mito proteome is much less complex. It is going to provide a large number of false positives. The centromere/telomere comparison is ok, if one is interested in what's different between those two repetitive elements. But the more realistic use case of this method would be "what is at a specific genomic element"? A purely nuclear-localized control would be needed for that. Or a genomic element that has nothing interesting at it (I do not know of one). You can see this in the label-free work: non-specific, nuclear GO terms are enriched likely due to the random plus non-random labeling in the nucleus. What would a Telo vs general nucleus GSEA look like? (GSEA should be used for quantitative data, no GO). That would provide some specificity. Figures 2G and S4A are encouraging, but a) these proteins are largely sequestered in their respective locations, and b) no validation by an orthogonal method like ChIP or Cut and Run/Tag is used.
You can also see this in the enormous number of "enriched" proteins in the supplemental volcano plots. The hypothesis-supporting ones are labeled, but do the authors really believe all of those proteins are specific to the loci being looked at? Maybe compared to mitochondria, but it's hard to believe there are not a lot of false positives in those blue clouds. I believe the authors are more seeing mito vs nucleus + Telo than the stated comparison. For example, if you have no labeling in the nucleus in the control (Figures 1C and 2C) you cannot separate background labeling from specific labeling. Same with mito vs. nuc+Telo. It is not the proper control to say what is specifically at the Telo.
I would like to see a Telo vs nuclear control and a Centromere vs nuc control. One could then subtract the background from both experiments, then contrast Telo vs Cent for a proper, rigorous comparison. However, I realize that is a lot of work, so rewriting the manuscript to better and more accurately reflect what was accomplished here, and its limitations, would suffice.
(2) A second major drawback is the lack of validation experiments. References to literature are helpful but do not make up for the lack of validation of a new method claiming new protein-DNA or DNA-DNA interactions. At least a handful of newly described proximal proteins need to be validated by an orthogonal method, like ChIP qPCR, other genomic methods, or gel shifts if they are likely to directly bind DNA. It is ok to have false positives in a challenging assay like this. But it needs to be well and clearly estimated and communicated.
(3) The mapping of 3D contacts for 20 kb regions is beautiful. Some added discussion on this method's benefits over HiC-variants would be welcomed.
(4) The study claims this method circumvents the need for transfectable cells. However, the authors go on to describe how they needed tons of cells, now in solution, to get it to work. The intro should be more in line with what was actually accomplished.
(5) Comments like "Compared to other repetitive elements in the human genome...." appear to circumvent the fact that this method is still (apparently) largely limited to repetitive elements. Other than Glopro, which did analyze non-repetitive promoter elements, most comparable methods looked at telomeres. So, this isn't quite the advancement you are implying. Plus, the overlap with telomeric proteins and other studies should be addressed. However, that will be challenging due to the controls used here, discussed above.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The crystal structure of the Sld3CBD-Cdc45 complex presented by Li et al. is a novel contribution that significantly advances our understanding of CMG formation during the rate-limiting step of DNA replication initiation. This structure provides insights into the intermediate steps of CMG formation. The study builds upon previously known structures of Sld3 and Cdc45 and offers new perspectives into how Cdc45 is loaded onto MCM DH through Sld3-Sld7. The most notable finding is the structural difference in Sld3CBD when bound to Cdc45, particularly the arrangement of the α8-helix, which is essential for Cdc45 binding and may also pertain to its metazoan counterpart, Treslin. Additionally, the conformational shift in the DHHA1 domain of Cdc45 suggests a possible mechanism for its binding to MCM2NTD.
Strengths:
The manuscript is generally well-written, with a precise structural analysis and a solid methodological section that will significantly advance future studies in the field. The predictions based on structural alignments are intriguing and provide a new direction for exploring CMG formation, potentially shaping the future of DNA replication research.
Weaknesses:
The main weakness of the manuscript lies in the lack of experimental validation for the proposed Sld3-Sld7-Cdc45 model. Specifically, the claim that Sld3 binding to Cdc45-MCM does not inhibit GINS binding, a finding that contradicts previous research, is not sufficiently substantiated with experimental evidence. To strengthen their model, the authors must provide additional experimental data to support this mechanism. Also, the authors have not compared the recently published Cryo-EM structures of the metazoan CMG helicases with their predicted models to see if Sld3/Treslin does not cause any clash with the GINS when bound to the CMG. Still, the work holds great potential in its current form but requires further experiments to confirm the authors' conclusions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Dovek and colleagues aimed at investigating the cellular and circuitry mechanisms underlying the recruitment of two morpho-physiologically-distinct subpopulations of dentate gyrus excitatory cells (granular cells or GCs, and semilunar cells or SGCs) into memory representations, also known as engrams.
To this end, the authors used TRAP2 mice to investigate the dentate gyrus "engram" neurons that were recruited or not (i.e., labeled or not) in a specific context (mostly enriched environment or EE, but also Barnes Maze or BM). GCs and SGCs were distinguished using a morphologically based classification. In line with previous observations (Erwin et al., 2022), SGCs exhibited a disproportionate context-dependent recruitment. Although they represent less than 5% of the excitatory neurons in the dentate gyrus, they comprise around 30% of behaviorally activated "engram" neurons.
Then, the authors compared the intrinsic physiological properties of GCs and SGCs that are recruited or not during EE. Consistent with previous observations (Williams et al., 2007, Afrasiabi et al., 2022), SGCs and GCs exhibited numerous differences (e.g., Rin, firing frequency) regardless of whether they were behaviorally activated or not. Only the adaptation in firing rate enabled the discrimination of "engram" SGCs (which displayed lower values) from non-recruited SGCs.
To examine how GCs and SGCs activated during EE are integrated into the local dentate gyrus microcircuits, the authors next performed a dual patch-clamp recording combined with wide-field optogenetics. Despite the presence of spontaneous EPSCs, no direct functional glutamatergic interconnection was observed between pairs of "engram" GCs and SGCs. In addition, the stimulation of behaviorally recruited GCs or SGCs rarely elicits IPSCs in non-engram excitatory neurons, which suggests limited lateral inhibition.
Last, the authors investigated whether neurons recruited in the same context were characterized by a higher propensity to receive temporally correlated inputs. To this end, they performed a dual patch-clamp and analyzed the temporal correlation of spontaneous EPSCs received by pairs of neurons (either two dentate gyrus "engram" neurons, or one "engram" neuron and one "non-engram" neuron in an EE context). They observed that the temporal correlation of excitatory events received by pairs of engram neurons was greater than that of pairs of neurons that do not belong to the same ensemble, and that expected by chance.
Altogether, the data suggest that distinctive intrinsic properties and shared excitatory afferent, rather than local microcircuit connectivity, are correlated with the context-dependent recruitment of dentate gyrus excitatory neurons.
Strengths:
This article raises interesting questions about the recruitment mechanisms of the neuronal ensembles that form memory engrams in the dentate gyrus. I find it particularly interesting that the authors considered not only granular cells, the main population of excitatory neurons in the dentate gyrus, but also a sparse subpopulation of semilunar cells, an understudied type of neuron described by Cajal, then almost forgotten for a century, and finally brought out of oblivion in the mid-2000s (Williams et al., 2007).
Weaknesses:
I think the article is a little too immature in its current form. I'd recommend that the authors work on their writing. For example, the objectives of the article are not completely clear to me after reading the manuscript, composed of parts where the authors seem to focus on SGCs, and others where they study "engram" neurons without differentiating the neuronal type (Figure 5). The next version of the manuscript should clearly establish the objectives and sub-aims.
In addition, some results are not entirely novel (e.g., the disproportionate recruitment as well as the distinctive physiological properties of SGCs), and/or based on correlations that do not fully support the conclusions of the article. In addition to re-writing, I believe that the article would benefit from being enriched with further analyses or even additional experiments before being resubmitted in a more definitive form.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Transformer (tra) and Double Sex (dsx) genes influence the differentiation of sexual characteristics in Drosophila. A female-specific Tra protein regulates the dsx pre-mRNA splicing, which is required for the proper development of female-specific germ cells. The dsx gene regulates the development of sexual characteristics in both somatic and germline cells. The female-specific Dsx protein (DsxF) promotes female germline development, whereas the male-specific Dsx protein (DsxM) promotes male germline development. This regulation ensures that the germline cells develop in accordance with the sex karyotype of the organism. Together, they influence the sexual characteristics of both somatic and germline cells. This coordination is vital for fertility and the propagation of the species.
In the article titled, "Diverse somatic Transformer and sex chromosome karyotype pathways regulate gene expression in Drosophila gonad development", the authors set out to compare the results of the gene expression patterns in the wild-type and transformed XX and XY germline cells, respectively, with an aim to understand the mechanism underlying the roles of tra and dsx genes. The authors hypothesised that somatic tra expression would be required for germline development and not for sex determination within germ cells. An independent germ cell-autonomous gene expression would be necessary for their sex determination. The authors also argued that the somatic tra activity would signal to germ cells through downstream gene expression for inducing the transformation which could be understood by comparing the phenotype and gene expression of the larval wild-type gonads and the sex-transformed tra gonads. The authors then set out to describe extensive scRNAseq data from different types of larval gonads viz., XX and XY female-type and XY and XX male-type gonads to conclude that sex determination in the germline and somatic cells is a complex process.
Although the manuscript contains a lot of data, some of which could be useful to conclude a novel understanding regarding the abnormal transformation of the XX karyotype germ cells to male gonads, it suffers from incomplete analysis and poor organization. As a consequence, the authors ended up listing a lot of information with no clear conclusions.
The manuscript in its current form is difficult to decipher by uninitiated readers. A thorough revision of the text and the presentation style of the data would significantly improve the message and its acceptance by a wider readership.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
In this manuscript, Sun et al report the development of a POST-IT (Pup-On-target for Small molecule Target Identification Technology) approach for drug target identification. Generally, this new technology applies a non-diffusive proximity tagging system by utilizing an engineered fusion of proteasomal accessory factor A (PafA) and HaloTag to transfer prokaryotic ubiquitin-like protein (Pup) to proximal proteins upon directly binding to the small molecule. After the pupylated targets are captured, they are able to be detected by mass spectrometry. Significant optimization (Lys-Arg and other mutations) was conducted to eliminate the interference of self-pupylation, polypupylation, and depupylation, POST-IT was successfully applied for the target identification of 2 well-known drugs: dasatinib and hydroxychloroquine, which yielded SEPHS2 and VPS37C as their new potential targets, respectively. Furthermore, POST-IT was also applied in live zebrafish embryos, highlighting its potential for broad biological research and drug development.
This work was well designed and the experiments were logically conducted. The solid results support POST-IT as a promising technology for new drug target identification.
Weakness and limitations:
(1) The technology requires a halo-tagged derivation of the active compound, and the linked position will have a huge impact on the potential "target hits" of the molecules. Given the fact that most of the active molecules lack of structure-activity relationship information, it is very challenging to identify the optimal position of the halo tag linkage.
(2) Although POST-IT works in zebrafish embryos, there is still a long way to go for the broad application of the technology in other animal models.
(3) The authors identified SEPHS2 as a new potential target of dasatinib and further validated the direct binding of dasatinib with this protein. However, considering the super strong activity of dasatinib against c-Src (sub nanomolar IC50 value), it is hard to conclude the contribution of SEPHS2 binding (micromolar potency) to its antitumor activity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This manuscript assesses the utility of spatial image correlation spectroscopy (ICS) for measuring physiological responses to DNA damage. ICS is a long-established (~1993) method similar to fluorescence correlation spectroscopy, for deriving information about the fluorophore density that underlies the intensity distributions of images. The authors first provide a technical but fairly accessible background to the theory of ICS, then compare it with traditional spot-counting methods for its ability to analyze the characteristics of γH2AX staining. Based on the degree of aggregation (DA) value, the authors then survey other markers of DNA damage and uncover some novel findings, such as that RPA aggregation inversely tracks the sensitivity to PARP inhibitors of different cell lines.
The need for a more objective and standardized tool for analyzing DNA damage has long been felt in the field and the authors argue convincingly for this. The data in the manuscript are in general well-supported and of high quality, and show promise of being a robust alternative to traditional focus counting. However, there are a number of areas where I would suggest further controls and explanations to strengthen the authors' case for the robustness of their ICS method.
Strengths:
The spatial ICS method the authors describe and demonstrate is easy to perform and applicable to a wide variety of images. The DDR was well-chosen as an arena to showcase its utility due to its well-characterized dose-responsiveness and known variability between cell types. Their method should be readily useable by any cell biologist wanting to assess the degree of aggregation of fluorescent tags of interest.
Weaknesses:
The spatial ICS method, though of longstanding history, is not as intuitive or well-known as spot-based quantitation. While the Theory section gives a standard mathematical introduction, it is not as accessible as it could be. Additionally, the values of TNoP and DA shown in the Results are not discussed sufficiently with regard to their physical and physiological interpretation.
The correlation of TNoP with γH2AX foci is high (Figure 2) and suggestive that the ICS method is suitable for measuring the strength of the DDR. The authors correctly mention that the number of spots found using traditional means can vary based on the parameters used for spot detection. They contrast this with their ICS detection method; however, the actual robustness of spatial ICS is not given equal consideration.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this work, the authors present a cornucopia of data generated using deep mutational scanning (DMS) of variants in MET kinase, a protein target implicated in many different forms of cancer. The authors conducted a heroic amount of deep mutational scanning, using computational structural models to augment the interpretation of their DMS findings.
Strengths:
This powerful combination of computational models, experimental structures in the literature, dose-response curves, and DMS enables them to identify resistance and sensitizing mutations in the MET kinase domain, as well as consider inhibitors in the context of the clinically relevant exon-14 deletion. They then try to use the existing language model ESM1b augmented by an XGBoost regressor to identify key biophysical drivers of fitness. The authors provide an incredible study that has a treasure trove of data on a clinically relevant target that will appeal to many.
Weaknesses:
However, the authors do not equally consider alternative possible mechanisms of resistance or sensitivity beyond the impact of mutation on binding, even though the measure used to discuss resistance and sensitivity is ultimately a resistance score derived from the increase or decrease of the presence of a variant during cell growth. There are also points of discussion and interpretation that rely heavily on docked models of kinase-inhibitor pairs without considering alternative binding modes or providing any validation of the docked pose. Lastly, the use of ESM1b is powerful but constrained heavily by the limited structural training data provided, which can lead to misleading interpretations without considering alternative conformations or poses.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors used a subset of a very large, previously generated 16S dataset to:<br /> (1) assess age-associated features; and (2) develop a fecal microbiome clock, based on an extensive longitudinal sampling of wild baboons for which near-exact chronological age is known. They further seek to understand deviation from age-expected patterns and uncover if and why some individuals have an older or younger microbiome than expected, and the health and longevity implications of such variation. Overall, the authors compellingly achieved their goals of discovering age-associated microbiome features and developing a fecal microbiome clock. They also showed clear and exciting evidence for sex and rank-associated variation in the pace of gut microbiome aging and impacts of seasonality on microbiome age in females. These data add to a growing understanding of modifiers of the pace of age in primates, and links among different biological indicators of age, with implications for understanding and contextualizing human variation. However, in the current version, there are gaps in the analyses with respect to the social environment, and in comparisons with other biological indicators of age. Despite this, I anticipate this work will be impactful, generate new areas of inquiry, and fuel additional comparative studies.
Strengths:
The major strengths of the paper are the size and sampling depth of the study population, including the ability to characterize the social and physical environments, and the application of recent and exciting methods to characterize the microbiome clock. An additional strength was the ability of the authors to compare and contrast the relative age-predictive power of the fecal microbiome clock to other biological methods of age estimation available for the study population (dental wear, blood cell parameters, methylation data). Furthermore, the writing and support materials are clear, informative and visually appealing.
Weaknesses:
It seems clear that more could be done in the area of drawing comparisons among the microbiome clock and other metrics of biological age, given the extensive data available for the study population. It was confusing to see this goal (i.e. "(i) to test whether microbiome age is correlated with other hallmarks of biological age in this population"), listed as a future direction, when the authors began this process here and have the data to do more; it would add to the impact of the paper to see this more extensively developed. An additional weakness of the current set of analyses is that the authors did not explore the impact of current social network connectedness on microbiome parameters, despite the landmark finding from members of this authorship studying the same population that "Social networks predict gut microbiome composition in wild baboons" published here in eLife some years ago. While a mother's social connectedness is included as a parameter of early life adversity, overall the authors focus strongly on social dominance rank, without discussion of that parameter's impact on social network size or directly assessing it.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In their manuscript entitled "Terminal tracheal cells of Drosophila are immune privileged to maintain their Foxo-dependent structural plasticity", Bossen and colleagues determine that the terminal cells of the tracheal system differ from other larval tracheal cells in that they do not typically show an Imd-dependent immune response to fungal and viral infections. The authors reach this conclusion based on the expression of a reporter line, Drs-GFP. The authors speculate that this difference may reflect differential expression of an immune pathway component, as tracheal terminal cells (TTCs) do not respond to forced expression of PRGP-LS. The authors then go on to show that, unlike the other cells of the tracheal system, terminal cells do not express PGRP-LC as reported by a GAL4 enhancer trap. Forced expression of PGRP-LC in terminal cells resulted in reduced branching, cell damage, and features of the cell death program. These effects could be suppressed by the depletion of AP-1 or Foxo transcription factors. The authors show that Foxo plays a negative role in the branching of TTCs, with ectopic branching occurring upon RNAi (or under hypoxic conditions). The authors speculate that the immune privilege of the TTCs may have evolved to permit Foxo regulation of TTC branching.
Strengths:
The authors provide compelling genetic data.
Weaknesses:
(1) The authors state that after infection 34% of larvae were not GFP+ as defined by the detection of Drs-GFP in dorsal branches. The authors should clarify if these larvae are completely without response to infection, with no Drs-GFP in dorsal trunks and or other tracheal branches. If these larvae are entirely unresponsive, could authors indicate why this might be? Also, at this point in the manuscript, the authors are somewhat misleading regarding TTC expression of Drs-GFP - they should state at this point that there are some TTCs that do express Drs-GFP, and also should address their prior study of Drs-GFP induction which does not claim exclusion of TTC Drs-GFP expression.
(2) The authors describe the terminal cell phenotype as "shrunken" but this implies loss of size or pruning, however, it is not clear whether the defects could equally be due to lack of growth or slower growth.
(3) Figure 1 suggests that GFP+ dorsal branches are not uniform in their expression of Drs-GFP, it seems more patchy. The authors should define the fraction of dorsal branch cells that are Drs-GFP positive. Also, are fusion cells Drs-GFP positive?
(4) Drs-GFP expression is largely absent from terminal cells; however, a still significant # of terminal cells show expression (8%). Authors argue that PRGP-LC expression is absent based on a GAL4 transgenic line. If this line reflects endogenous PRGP-LC expression, should there not be 8% positive TTCs? Or is the 8% Drs-GFP expression independent of the IMD receptor?
(5) Figure 2: the authors state that TTCs are negative even with induced PRGP-LE expression - should there not be at least 8% that are positive?
(6) The authors compare PRGP-LC expression to induction of cell death by expression of reaper and hid. Reaper and Hid had stronger effects and eliminated TTCs. See cleavage of caspase Dpc-1 in PRGP-LC expressing cells. Is caspase cleavage always diagnostic of apoptosis or could the weaker than rpr/hid phenotype imply a different function?
(7) Drs-GFP expression is said to be "completely" absent from tracheal terminal cells when the entire tracheal system is expressing PGRP-LE.
(8) Figure 5, TRE_RFP expression, is not convincing that it is higher or in terminal cells.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The paper by Boch and colleagues, entitled Comparative Neuroimaging of the Carnivore Brain: Neocortical Sulcal Anatomy, compares and describes the cortical sulci of eighteen carnivore species, and sets a benchmark for future work on comparative brains.
Based on previous observations, electrophysiological, histological and neuroimaging studies and their own observations, the authors establish a correspondence between the cortical sulci and gyri of these species. The different folding patterns of all brain regions are detailed, put into perspective in relation to their phylogeny as well as their potential involvement in cortical area expansion and behavioral differences.
Strengths:
This is a pioneering article, very useful for comparative brain studies and conducted with great seriousness and based on many past studies. The article is well-written and very didactic. The different protocols for brain collection, perfusion, and scanning are very detailed. The images are self-explanatory and of high quality. The authors explain their choice of nomenclature and labels for sulci and gyri on all species, with many arguments. The opening on ecology and social behavior in the discussion is of great interest and helps to put into perspective the differences in folding found at the level of the different cortexes. In addition, the authors do not forget to put their results into the context of the laws of allometry. They explain, for example, that although the largest brains were the most folded and had the deepest folds in their dataset, they did not necessarily have unique sulci, unlike some of the smaller, smoother brains.
Weaknesses:
The article is aware of its limitations, not being able to take into account inter-individual variability within each species, inter-hemispheric asymmetries, or differences between males and females. However, this does not detract from their aim, which is to lay the foundations for a correspondence between the brains of carnivores so that navigation within the brains of these species can be simplified for future studies. This article does not include comparisons of morphometric data such as sulci depth, sulci wall surface, or thickness of the cortical ribbon around the sulci.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors address a fundamental question for cell and tissue biology using the skin epidermis as a paradigm and ask how stratifying self-renewing epithelia induce differentiation and upward migration in basal dividing progenitor cells to generate suprabasal barrier-forming cells that are essential for a functional barrier formed by such an epithelium. The authors show for the first time that an increase in intracellular actomyosin contractility, a hallmark of barrier-forming keratinocytes, is sufficient to trigger terminal differentiation. Hence the data provide in vivo evidence of the more general interdependency of cell mechanics and differentiation. The data appear to be of high quality and the evidences are strengthened through a combination of different genetic mouse models, RNA sequencing, and immunofluorescence analysis.
To generate and maintain the multilayered, barrier-forming epidermis, keratinocytes of the basal stem cell layer differentiate and move suprabasally accompanied by stepwise changes not only in gene expression but also in cell morphology, mechanics, and cell position. Whether any of these changes is instructive for differentiation itself and whether consecutive changes in differentiation are required remains unclear. Also, there are few comprehensive data sets on the exact changes in gene expression between different states of keratinocyte differentiation. In this study, through genetic fluorescence labeling of cell states at different developmental time points the authors were able to analyze gene expression of basal stem cells and suprabasal differentiated cells at two different stages of maturation: E14 (embryonic day 14) when the epidermis comprises mostly two functional compartments (basal stem cells and suprabasal so-called intermediate cells) and E16 when the epidermis comprise three (living) compartments where the spinous layer separates basal stem cells from the barrier-forming granular layer, as is the case in adult epidermis. Using RNA bulk sequencing, the authors developed useful new markers for suprabasal stages of differentiation like MafB and Cox1. The transcription factor MafB was then shown to inhibit suprabasal proliferation in a MafB transgenic model.
The data indicate that early in development at E14 the suprabasal intermediate cells resemble in terms of RNA expression, the barrier-forming granular layer at E16, suggesting that keratinocytes can undergo either stepwise (E16) or more direct (E14) terminal differentiation.
Previous studies by several groups found an increased actomyosin contractility in the barrier-forming granular layer and showed that this increase in tension is important for epidermal barrier formation and function. However, it was not clear whether contractility itself serves as an instructive signal for differentiation. To address this question, the authors use a previously published model to induce premature hypercontractility in the spinous layer by using spastin overexpression (K10-Spastin) to disrupt microtubules (MT) thereby indirectly inducing actomyosin contractility. A second model activates myosin contractility more directly through overexpression of a constitutively active RhoA GEF (K10-Arhgef11CA). Both models induce late differentiation of suprabasal keratinocytes regardless of the suprabasal position in either spinous or granular layer indicating that increased contractility is key to induce late differentiation of granular cells. A potential weakness of the K10-spastin model is the disruption of MT as the primary effect which secondarily causes hypercontractility. However, their previous publications provided some evidence that the effect on differentiation is driven by the increase in contractility (Ning et al. cell stem cell 2021). Moreover, the data are confirmed by the second model directly activating myosin through RhoA. These previous publications already indicated a role for contractility in differentiation but were focused on early differentiation. The data in this manuscript focus on the regulation of late differentiation in barrier-forming cells. These important data help to unravel the interdependencies of cell position, mechanical state, and differentiation in the epidermis, suggesting that an increase in cellular contractility in most apical positions within the epidermis can induce terminal differentiation. Importantly the authors show that despite contractility-induced nuclear localization of the mechanoresponsive transcription factor YAP in the barrier-forming granular layer, YAP nuclear localization is not sufficient to drive premature differentiation when forced to the nucleus in the spinous layer.
Overall, this is a well-written manuscript and a comprehensive dataset. Only the RNA sequencing result should be presented more transparently providing the full lists of regulated genes instead of presenting just the GO analysis and selected target genes so that this analysis can serve as a useful repository. The authors themselves have profited from and used published datasets of gene expression of the granular cells. Moreover, some of the previous data should be better discussed though. The authors state that forced suprabasal contractility in their mouse models induces the expression of some genes of the epidermal differentiation complex (EDC). However, in their previous publication, the authors showed that major classical EDC genes are actually not regulated like filaggrin and loricrin (Muroyama and Lechler eLife 2017). This should be discussed better and necessitates including the full list of regulated genes to show what exactly is regulated.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This paper aims to address the establishment and maintenance of neural circuitry in the case of a massive loss of neurons. The authors used genetic manipulations to ablate the principal projection neurons, the mitral/tufted cells, in the mouse olfactory bulb. Using diphtheria toxin (Tbx21-Cre:: loxP-DTA line) the authors ablated progressively large numbers of M/T cells postnatally. By injecting diphtheria toxin (DT) into the Tbx21-Cre:: loxP-iDTR line, the authors were able to control the timing of the ablation in the adult stage. Both methods led to the successful elimination of a majority of M/TCs by 4 months of age. The authors made a few interesting observations. First, they found that the initial pruning of the remaining M/T cell primary dendrite was unaffected. However, in adulthood, a significant portion of these cells extended primary dendrites to innervate multiple glomeruli. Moreover, the incoming olfactory sensory neuron (OSN) axons, as examined for those expressing the M72 receptor, showed a divergent innervation pattern as well. The authors conclude that M/T cell density is required to maintain the dendritic structures and the olfactory map. To address the functional consequences of eliminating a large portion of principal neurons, the authors conducted a series of behavioral assays. They found that learned odor discrimination was largely intact. On the other hand, mating and aggression were reduced. The authors concluded that learned behaviors are more resilient than innate ones.
The study is technically sound, and the results are clear-cut. The most striking result is the contrast between the normal dendritic pruning during early development and the expanded dendritic innervation in adulthood. It is a novel discovery that can lead to further investigation of how the single-glomerulus dendritic innervation is maintained. The authors conducted a few experiments to address potential mechanisms, but it is inconclusive, as detailed below. It is also interesting to see that the massive neuronal loss did not severely impact learned odor discrimination. This result, together with previous studies showing nearly normal odor discrimination in the absence of large portions of the olfactory bulb or scrambled innervation patterns, attests to the redundancy and robustness of the sensory system.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In their manuscript, authors Isotani et al used in vivo and ex vivo models to show that nicotine could promote stemness and tumorigenicity in murine model. The authors further provided data supporting that the effects of nicotine on stem cell proliferation and tumor initiation were mediated by the Hippo-YAP/TAZ and Notch signal pathway.
Strengths and weaknesses:
The major strength of this study is the using a set of tools, including Lgr5 reporter mice (Lgr5-EGFP-IRES-CreERT2 mice), stem cell-specific Apc knockout mice (Lgr5CreER Apcfl/fl mice), organoids derived from these mice and chemical compounds (agonists and antagonists) to demonstrate nicotine affects stem cells rather than Paneth cells, leading to increased intestinal stemness and tumorigenicity. Whereas, all models are restricted to mice, lacking analysis of human samples or human intestinal organoids to prove the human relevant of these findings. Although the revised manuscript has significantly improved in the quality of pictures, there seems to be still a discrepancy in Figure 2A: quantification result suggested that NIC (1um) treatment increased the number of colonies from 300 to around 450 (1.5 folds), whereas representative picture shown that the difference was 3 to 12 living organoids (4 folds).
Overall, the presented results could support their conclusions. A previous study reported that nicotine acts through the α2β4 nAChR to enhance Wnt production by Paneth cells, which subsequently affects ISCs. In contrast, this manuscript demonstrated that nicotine directly promotes ISCs through α7-nAChR, independent of Paneth cells. Therefore, this manuscript offers novel insights into the mechanism of nicotine's effects on the mouse intestine.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Petty and Bruno investigate how response characteristics in the higher-order thalamic nuclei POm (typically somatosensory) and LP (typically visual) change when a stimulus (whisker air puff or visual drifting grating) of one or the other modality is conditioned to a reward. Using a two-step training procedure, they developed an elegant paradigm, where the distractor stimulus is completely uninformative about the reward, which is reflected in licking behavior of trained mice. While the animals seem to take on to the tactile stimulus more readily, they can also associate reward with the visual stimulus, ignoring tactile stimuli. In trained mice, the authors recorded single unit responses in both POm and LP while presenting the same stimuli. The authors first focused on POm recordings, finding that in animals with tactile conditioning POm units specifically responded to the air puff stimulus but not the visual grating. Unexpectedly, in visually conditioned animals, POm units also responded to the visual grating, suggesting that the responses are not modality-specific but more related to behavioral relevance. These effects seem not not be homogeneously distributed across POm, whereas lateral units maintain tactile specificity and medial units respond more flexibly. The authors further ask if the unexpected cross-modal responses might result from behavioral activity signatures. By regressing behavior-coupled activity out of the responses, they show that late activity indeed can be related to whisking, licking and pupil size measures. However, cross-modal short latency responses are not clearly related to animal behavior. Finally, LP neurons also seem to change their modality-specificity dependent on conditioning, whereas tactile responses are attenuated in LP if the animal is conditioned to visual stimuli.
The authors make a compelling case that POm neurons are less modality specific than typically assumed. The training paradigm, employed methods and analyses are to the point, well supporting the conclusions. The findings importantly widen our understanding of higher-order thalamus processing features with flexibility to encode multiple modalities and behavioral relevance. The results raise many important questions on the brain-wide representation of conditioned stimuli. E.g. how specific are the responses to the conditioned stimuli? Are thalamic cross-modal neurons recruited for the specific conditioned stimulus or do their responses reflect a more global shift of attention from one modality to another? Are these cross-modal responses tracking global arousal/attention features, or actually encoding a different stimulus?
The authors clarified a number of points in the updated version of the manuscript and expanded analyses and methods descriptions, which substantially improved the paper. The different time periods around the stimuli are more clearly assigned now and make the conclusions stronger.
Especially the discussion is now well rounded and addresses the major points.
To ask if the cross-modal activity is in some way functional for task performance I would like to see if (population) activity in the classical vs. cross-modal nucleus is predictive of lick latency or frequency on a trial-to-trial basis.
I accept that the authors cannot differentiate between bottom-up "raw" sensory responses and top-down context/attention/etc signals and thus support the decision to restrict the analyses to either the likely sensory early part following stimulus onset or the (as shown here mostly movement-driven) offset period after cessation of the stimulus. However, the composite responses over different stimuli and conditioning types seem triphasic to me. I find the "ongoing" activity differences (~100-2000 ms) depending on conditioning type quite interesting and would welcome a more specific discussion on the different response periods.
Overall a very elegant and well-presented study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this manuscript, the authors provide a method aiming to accurately reflect the individual deviation of longitudinal/temporal change compared to the normal temporal change characterized based on pre-trained population normative model (i.e., a Bayesian linear regression normative model), which was built based on cross-sectional data. This manuscript aims at solving a recently identified problem of using normative models based on cross-sectional data to make inferences about longitudinal change.
Strengths:
The efforts of this work make a good contribution to addressing an important question of normative modeling. With the greater availability of cross-sectional studies for normative modeling than longitudinal studies, and the inappropriateness of making inferences about longitudinal subject-specific changes using these cross-sectional data-based normative models, it's meaningful to try to address this gap from the aspect of methodological development.
In the 1st revision, the authors added a simulation study to show how the performance of the classification based on z-diff scores relatively changes with different disruptions (and autocorrelation). Unfortunately, in my view this is insufficient as it only shows how the performance of using z-diff score relatively changes in different scenarios. I would suggest adding the comparison of performance to using the naïve difference in two simple z-scores to first show its better performance, which should also further highlight the inappropriate use of simple z-scores in inferring within-subject longitudinal changes. Additionally, Figure 1 is hard to read and obtain the actual values of the performance measure. I would suggest reducing it to several 2-dimensional figures. For example, for several fixed values of rho, how the performance changes with different values of the true disruption (and also adding the comparison to the naïve method (difference in two z-scores)).
I would also suggest changing the title to reflect that the evaluation of "intra-subject" longitudinal change is the method's focus.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The study by Chikermane and colleagues investigates functional, structural, and dopaminergic network substrate of cortical beta oscillations (13-30 Hz). The major strength of the work lies in the methodology taken by the authors, namely a multimodal lesion network mapping. First, using invasive electrophysiological recordings from healthy cortical territories of epileptic patients they identify regions with highest beta power. Next, they leverage open access MRI data and PET atlases and use the identified high-beta regions as seeds to find (1) the whole-brain functional and structural maps of regions that form the putative underlying network of high-beta regions and (2) the spatial distribution of dopaminergic receptors that show correlation with nodal connectivity of the identified networks. These steps are achieved by generating aggregate functional, structural, and dopaminergic network maps using lead-DBS toolbox, and by contrasting the results with those obtained from high-alpha regions. The main findings are:
(1) Beta power is strongest across frontal, cingulate, and insular regions in invasive electrophysiological data, and these regions map onto a shared functional and structural network.<br /> (2) The shared functional and structural networks show significant positive correlations with dopamine receptors across cortex and basal ganglia (which is not the case for alpha, where correlations are found with GABA).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Freas et al. investigated if the exceedingly dim polarization pattern produced by the moon can be used by animal to guide a genuine navigational task. The sun and moon are celestial beacons for directional information, but they can be obscured by clouds, canopy, or the horizon. However, even when hidden from view, these celestial bodies provide directional information through the polarized light patterns in the sky. While the sun's polarization pattern is famously used by many animals for compass orientation, until now it has never been shown that the extremely dim polarization pattern of the moon can be used for navigation. To test this, Freas et al. studied nocturnal bull ants, by placing a linear polarizer in the homing path on a freely navigating ant 45 degrees shifted to the moon's natural polarization pattern. They recorded the homing direction of an ant before entering the polarizer, under the polarizer, and again after leaving the area covered by the polarizer. The results very clearly show, that ants walking under the linear polarizer change their homing direction by about 45 degrees in comparison to the homing direction under the natural polarization pattern and change it back after leaving the area covered by the polarizer again. These results can be repeated throughout the lunar month, showing that bull ants can use the moon's polarization pattern even under crescent moon conditions. Finally, the authors show, that the degree in which the ants change their homing direction is dependent on the length of their home vector, just as it is for the solar polarization pattern.
The behavioral experiments are very well designed, and the statistical analyses are appropriate for the data presented. The authors' conclusions are nicely supported by the data and clearly show nocturnal bull ants use the dim polarization pattern of the moon for homing, in the same way many animals use the sun's polarization pattern during the day. This is the first proof of the use of the lunar polarization pattern in any animal.
Comments on revised version:
The authors have addressed all of my previous comments and suggestions. I am happy with the way the manuscript has improved and have no further comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Fiber photometry has become a very popular tool in recording neuronal activity in freely behaving animals. Despite the number of papers published with the method, as the authors rightly note, there are currently no standardized ways to analyze the data produced. Moreover, most of the data analyses confine to simple measurements of averaged activity and by doing so, erase valuable information encoded in the data. The authors offer an approach based on functional linear mixed modeling, where beyond changes in overall activity various functions of the data can also be analyzed. More in depth analysis, more variables taken into account, better statistical power all lead to higher quality science.
Strengths:
The framework the authors present is solid and well explained. By reanalyzing formerly published data, the authors also further increase the significance of the proposed tool opening new avenues for reinterpreting already collected data. They also made a convincing case showing that the proposed algorithm works on data with different preprocessing backgrounds.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The study investigates Cancer Driving Nucleotides (CDNs) using the TCGA database, finding that these recurring point mutations could greatly enhance our understanding of cancer genomics and improve personalized treatment strategies. Despite identifying 50-150 CDNs per cancer type, the research reveals that a significant number remain undiscovered, limiting current therapeutic applications, underscoring the need for further larger-scale research.
Strengths:
The study provides a detailed examination of cancer-driving mutations at the nucleotide level, offering a more precise understanding than traditional gene-level analyses. The authors found a significant number of CDNs remain undiscovered, with only 0-2 identified per patient out of an expected 5-8, indicating that many important mutations are still missing. The study indicated that identifying more CDNs could potentially significantly impact the development of personalized cancer therapies, improving patient outcomes.
Weaknesses:
The challenges in direct functional testing of CDNs due to the complexity of tumor evolution and unknown mutation combinations limit the practical applicability of the findings.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The authors developed a rigorous methodology for identifying all Cancer Driving Nucleotides (CDNs) by leveraging the concept of massively repeated evolution in cancer. By focusing on mutations that recur frequently in pan-cancer, they aimed to differentiate between true driver mutations and neutral mutations, ultimately enhancing the understanding of the mutational landscape that drives tumorigenesis. Their goal was to call a comprehensive catalogue of CDNs to inform more effective targeted therapies and address issues such as drug resistance.
Strengths
(1) The authors introduced a concept of using massively repeated evolution to identify CDNs. This approach recognizes that advantageous mutations recur frequently (at least 3 times) across cancer patients, providing a lens to identify true cancer drivers.
(2) The theory showed the feasibility of identifying almost all CDNs if the number of sequenced patients increases to 100,000 for each cancer type.
Weaknesses
(1) No novel true driver mutations were identified in this study.
(2) Different cancer types have unique mutational landscapes. The methodology, while robust, might face challenges in uniformly identifying CDNs across various cancers with distinct genetic and epigenetic contexts.
(3) The statement "In other words, the sequences surrounding the high-recurrence sites appear rather random.". Since it was a pan-cancer analysis, the unique patterns of each cancer type could be strongly diluted in the pan-cancer data.
-
-
arxiv.org arxiv.org
-
Reviewer #1 (Public review):
The authors proposed a framework to estimate the posterior distribution of parameters in biophysical models. The framework has two modules: the first MLP module is used to reduce data dimensionality and the second NPE module is used to approximate the desired posterior distribution. The results show that the MLP module can capture additional information compared to manually defined summary statistics. By using the NPE module, the repetitive evaluation of the forward model is avoided, thus making the framework computationally efficient. The results show the framework has promise in identifying degeneracy. This is an interesting work.
Comment on revised version:
The authors have addressed all the raised concerns and made appropriate modifications to the manuscript. The changes have improved the clarity, methodology, and overall quality of the paper. Given these improvements, I believe the paper now meets the standards for publication in this journal.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Tubert C. et al. investigated the role of dopamine D5 receptors (D5R) and their downstream potassium channel, Kv1, in the striatal cholinergic neuron pause response induced by thalamic excitatory input. Using slice electrophysiological analysis combined with pharmacological approaches, the authors tested which receptors and channels contribute to the cholinergic interneuron pause response in both control and dyskinetic mice (in the L-DOPA off state). They found that activation of Kv1 was necessary for the pause response, while activation of D5R blocked the pause response in control mice. Furthermore, in the L-DOPA off-state of dyskinetic mice, the absence of the pause response was restored by the application of clozapine. The authors claimed that (1) the D5R-Kv1 pathway contributes to the cholinergic interneuron pause response in a phasic dopamine concentration-dependent manner, and (2) clozapine inhibits D5R in the L-DOPA off state, which restores the pause response.
Strengths:
The electrophysiological and pharmacological approaches used in this study are powerful tools for testing channel properties and functions. The authors' group has well-established these methodologies and analysis pipelines. Indeed, the data presented were robust and reliable.
Weaknesses:
Although the paper has strengths in its methodological approaches, there is a significant gap between the presented data and the authors' claims.
There was no direct demonstration that the D5R-Kv1 pathway is dominant when dopamine levels are high. The term 'high' is ambiguous, and it raises the question of whether the authors believe that dopamine levels do not reach the threshold required to activate D5R under physiological conditions.
Furthermore, the data presented in Figure 6 are confusing. If clozapine inhibits active D5R and restores the pause response, the D5R antagonist SCH23390 should have the same effect. The data suggest that clozapine-induced restoration of the pause response might be mediated by other receptors, rather than D5R alone.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The paper uses rigorous methods to determine phase dynamics from human cortical stereotactic EEGs. It finds that the power of the phase is higher at the lowest spatial phase.
Strengths:
Rigorous and advanced analysis methods.
Weaknesses:
The novelty and significance of the results are difficult to appreciate from the current version of the paper.
(1) It is very difficult to understand which experiments were analysed, and from where they were taken, reading the abstract. This is a problem both for clarity with regard to the reader and for attribution of merit to the people who collected the data.
(2) The finding that the power is higher at the lowest spatial phase seems in tune with a lot of previous studies. The novelty here is unclear and it should be elaborated better. I could not understand reading the paper the advantage I would have if I used such a technique on my data. I think that this should be clear to every reader.
(3) It seems problematic to trust in a strong conclusion that they show low spatial frequency dynamics of up to 15-20 cm given the sparsity of the arrays. The authors seem to agree with this concern in the last paragraph of page 12. They also say that it would be informative to repeat the analyses presented here after the selection of more participants from all available datasets. It begs the question of why this was not done. It should be done if possible.
(4) Some of the analyses seem not to exploit in full the power of the dataset. Usually, a figure starts with an example participant but then the analysis of the entire dataset is not as exhaustive. For example, in Figure 6 we have a first row with the single participants and then an average over participants. One would expect quantifications of results from each participant (i.e. from the top rows of GFg 6) extracting some relevant features of results from each participant and then showing the distribution of these features across participants. This would complement the subject average analysis.
(5) The function of brain phase dynamics at different frequencies and scales has been examined in previous papers at frequencies and scales relevant to what the authors treat. The authors may want to be more extensive with citing relevant studies and elaborating on the implications for them. Some examples below:<br /> Womelsdorf T, et alScience. 2007<br /> Besserve M et al. PloS Biology 2015<br /> Nauhaus I et al Nat Neurosci 2009
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This paper examines changes in relaxation time (T1 and T2) and magnetization transfer parameters that occur in a model system and in vivo when cells or tissue are depolarized using an equimolar extracellular solution with different concentrations of the depolarizing ion K+. The motivation is to explain T2 changes that have previously been observed by the authors in an in vivo model with neural stimulation (DIANA) and to try provide a mechanism to explain those changes.
Strengths:
The authors argue that the use of various concentrations of KCL in the extracellular fluid depolarize or hyperpolarize the cell pellets used and that this change in membrane potential is the driving force for the T2 (and T1-supplementary material) changes observed. In particular, they report an increase in T2 with increasing KCL concentration in the extracellular fluid (ECF) of pellets of SH-SY5Y cells. To offset the increasing osmolarity of the ECF due to the increase in KCL, the NaCL molarity of the ECF is proportionally reduced. The authors measure the intracellular voltage using patch clamp recordings, which is a gold standard. With 80 mM of KCL in the ECF, a change in T2 of the cell pellets of ~10 ms is observed with the intracellular potential recorded as about -6 mv. A very large T1 increase of ~90 ms is reported under the same conditions. The PSR (ratio of hydrogen protons on macromolecules to free water) decreases by about 10% at this 80 mM KCL concentration. Similar results are seen in a Jurkat cell line and similar, but far smaller changes are observed in vivo, for a variety of reasons discussed. As a final control, T1 and T2 values are measured in the various equimolar KCL solutions. As expected, no significant changes in T1 and T2 of the ECF were observed for these concentrations.
Weaknesses:
While the concepts presented are interesting, and the actual experimental methods seem to be nicely executed, the conclusions are not supported by the data for a number of reasons. This is not to say that the data isn't consistent with the conclusions, but there are other controls not included that would be necessary to draw the conclusion that it is membrane potential that is driving these T1 and T2 changes. Unfortunately for these authors, similar experiments conducted in 2008 (Stroman et al. Magn. Reson. in Med. 59:700-706) found similar results (increased T2 with KCL) but with a different mechanism, that they provide definite proof for. This study was not referenced in the current work.
It is well established that cells swell/shrink upon depolarization/hyperpolarization. Cell swelling is accompanied by increased light transmittance in vivo, and this should be true in the pellet system as well. In a beautiful series of experiments, Stroman et al. (2008) showed in perfused brain slices that the cells swell upon equimolar KCL depolarization and the light transmittance increases. The time course of these changes is quite slow, of the order of many minutes, both for the T2-weighted MRI signal and for the light transmittance. Stroman et al. also show that hypoosmotic changes produce the exact same timecourse as the KCL depolarization changes (and vice versa for the hyperosmotic changes - which cause cell shrinkage). Their conclusion, therefore, was that cell swelling (not membrane potential) was the cause of the T2-weighted changes observed, and that these were relatively slow (on the scale of many minutes).
What are the implications for the current study? Well, for one, the authors cannot exclude cell swelling as the mechanism for T2 changes, as they have not measured that. It is however well established that cell swelling occurs during depolarization, so this is not in question. Water in the pelletized cells is in slow/intermediate exchange with the ECF, and the solutions for the two compartment relaxation model for this are well established (see Menon and Allen, Magn. Reson. in Med. 20:214-227 (1991). The T2 relaxation times should be multiexponential (see point (3) further below). The current work cannot exclude cell swelling as the mechanism for T2 changes (it is mentioned in the paper, but not dealt with). Water entering cells dilutes the protein structures, changes rotational correlation times of the proteins in the cell and is known to increase T2. The PSR confirms that this is indeed happening, so the data in this work is completely consistent with the Stroman work and completely consistent with cell swelling associated with depolarization. The authors should have performed light scattering studies to demonstrate the presence or absence of cell swelling. Measuring intracellular potential is not enough to clarify the mechanism.
So why does it matter whether the mechanism is cell swelling or membrane potential? The reason is response time. Cell swelling due to depolarization is a slow process, slower than hemodynamic responses that characterize BOLD. In fact, cell swelling under normal homeostatic conditions in vivo is virtually non-existent. Only sustained depolarization events typically associated with non-naturalistic stimuli or brain dysfunction produce cell swelling. Membrane potential changes associated with neural activity, on the other hand, are very fast. In this manuscript, the authors have convincingly shown a signal change that is virtually the same as what was seen in the Stroman publication, but they have not shown that there is a response that can be detected with anything approaching the timescale of an action potential. So one cannot definitely say that the changes observed are due to membrane potential. One can only say they are consistent with cell swelling, regardless of what causes the cell swelling.
For this mechanism to be relevant to explaining DIANA, one needs to show that the cell swelling changes occur within a millisecond, which has never been reported. If one knows the populations of ECF and pellet, the T2s of the ECF and pellet and the volume change of the cells in the pellet, one can model any expected T2 changes due to neuronal activity. I think one would find that these are minuscule within the context of an action potential, or even bulk action potential.
There are a few smaller issues that should be addressed.<br /> (1) Why were complicated imaging sequences used to measure T1 and T2? On a Bruker system it should be possible to do very simple acquisitions with hard pulses (which will not need dictionaries and such to get quantitative numbers). Of course, this can only be done sample by sample and would take longer, but it avoids a lot of complication to correct the RF pulses used for imaging, which leads me to the 2nd point.<br /> (2) Figure S1 (H) is unlike any exponential T2 decay I have seen in almost 40 years of making T2 measurements. The strange plateau at the beginning and the bump around TE = 25 ms are odd. These could just be noise, but the fitted curve exactly reproduces these features. A monoexponential T2 decay cannot, by definition, produce a fit shaped like this.<br /> (3) As noted earlier, layered samples produce biexponential T2 decays and monoexponential T1 decays. I don't quite see how this was accounted for in the fitting of the data from the pellet preparations. I realize that these are spatially resolved measurements, but the imaging slice shown seems to be at the boundary of the pellet and the extracellular media and there definitely should be a biexponential water proton decay curve. Only 5 echo times were used, so this is part of the problem, but it does mean that the T2 reported is a population fraction weighted average of the T2 in the two compartments.<br /> (4) Delta T1 and T2 values are presented for the pellets in wells, but no absolute values are presented for either the pellets or the KCL solutions that I could find.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors explore a large-scale electrophysiological dataset collected in 10 labs while mice performed the same behavioral task, and aim to establish guidelines to aid reproducibility of results collected across labs. They introduce a series of metrics for quality control of electrophysiological data and show that histological verification of recording sites is important for interpreting findings across labs and should be reported in addition to planned coordinates. Furthermore, the authors suggest that although basic electrophysiology features were comparable across labs, task modulation of single neurons can be variable, particularly for some brain regions. The authors then use a multi-task neural network model to examine how neural dynamics relate to multiple interacting task- and experimenter-related variables, and find that lab-specific differences contribute little to the variance observed. Therefore, analysis approaches that account for correlated behavioral variables are important for establishing reproducible results when working with electrophysiological data from animals performing decision-making tasks. This paper is very well-motivated and needed. However, what is missing is a direct comparison of task modulation of neurons across labs using standard analysis practice in the fields, such as generalized linear model (GLM). This can potentially clarify how much behavioral variance contributes to the neural variance across labs; and more accurately estimate the scale of the issues of reproducibility in behavioral systems neuroscience, where conclusions often depend on these standard analysis methods.
Strength:
(1) This is a well-motivated paper that addresses the critical question of reproducibility in behavioural systems neuroscience. The authors should be commended for their efforts.
(2) A key strength of this study comes from the large dataset collected in collaboration across ten labs. This allows the authors to assess lab-to-lab reproducibility of electrophysiological data in mice performing the same decision-making task.
(3) The authors' attempt to streamline preprocessing pipelines and quality metrics is highly relevant in a field that is collecting increasingly large-scale datasets where automation of these steps is increasingly needed.
(4) Another major strength is the release of code repositories to streamline preprocessing pipelines across labs collecting electrophysiological data.
(5) Finally, the application of MTNN for characterizing functional modulation of neurons, although not yet widely used in systems neuroscience, seems to have several advantages over traditional methods.
Weaknesses:
(1) In several places the assumptions about standard practices in the field, including preprocessing and analyses of electrophysiology data, seem to be inaccurately presented:
a) The estimation of how much the histologically verified recording location differs from the intended recording location is valuable information. Importantly, this paper provides citable evidence for why that is important. However, histological verification of recording sites is standard practice in the field, even if not all studies report them. Although we appreciate the authors' effort to further motivate this practice, the current description in the paper may give readers outside the field a false impression of the level of rigor in the field.
b) When identifying which and how neurons encode particular aspects of stimuli or behaviour in behaving animals (when variables are correlated by the nature of the animals behaviour), it has become the standard in behavioral systems neuroscience to use GLMs - indeed many labs participating in the IBL also has a long history of doing this (e.g., Steinmetz et al., 2019; Musall et al., 2023; Orsolic et al., 2021; Park et al., 2014). The reproducibility of results when using GLMs is never explicitly shown, but the supplementary figures to Figure 7 indicate that results may be reproducible across labs when using GLMs (as it has similar prediction performance to the MTNN). This should be introduced as the first analysis method used in a new dedicated figure (i.e., following Figure 3 and showing results of analyses similar to what was shown for the MTNN in Figure 7). This will help put into perspective the degree of reproducibility issues the field is facing when analyzing with appropriate and common methods. The authors can then go on to show how simpler approaches (currently in Figures 4 and 5) - not accounting for a lot of uncontrolled variabilities when working with behaving animals - may cause reproducibility issues.
When the authors introduce a neural network approach (i.e. MTNN) as an alternative to the analyses in Figures 4 and 5, they suggest: 'generalized linear models (GLMs) are likely too inflexible to capture the nonlinear contributions that many of these variables, including lab identity and spatial positions of neurons, might make to neural activity'). This is despite the comparison between MTNN and GLM prediction performance (Supplement 1 to Figure 7) showing that the MTNN is only slightly better at predicting neural activity compared to standard GLMs. The introduction of new models to capture neural variability is always welcome, but the conclusion that standard analyses in the field are not reproducible can be unfair unless directly compared to GLMs.
In essence, it is really useful to demonstrate how different analysis methods and preprocessing approaches affect reproducibility. But the authors should highlight what is actually standard in the field, and then provide suggestions to improve from there.
(2) The authors attempt to establish a series of new quality control metrics for the inclusion of recordings and single units. This is much needed, with the goal to standardize unit inclusion across labs that bypasses the manual process while keeping the nuances from manual curation. However, the authors should benchmark these metrics to other automated metrics and to manual curation, which is still a gold standard in the field. The authors did this for whole-session assessment but not for individual clusters. If the authors can find metrics that capture agreed-upon manual cluster labels, without the need for manual intervention, that would be extremely helpful for the field.
(3) With the goal of improving reproducibility and providing new guidelines for standard practice for data analysis, the authors should report of n of cells, sessions, and animals used in plots and analyses throughout the paper to aid both understanding of the variability in the plots - but also to set a good example.
Other general comments:
(1) In the discussion (line 383) the authors conclude: 'This is reassuring, but points to the need for large sample sizes of neurons to overcome the inherent variability of single neuron recording'. - Based on what is presented in this paper we would rather say that their results suggest that appropriate analytical choices are needed to ensure reproducibility, rather than large datasets - and they need to show whether using standard GLMs actually allows for reproducible results.
(2) A general assumption in the across-lab reproducibility questions in the paper relies on intralab variability vs across-lab variability. An alternative measure that may better reflect experimental noise is across-researcher variability, as well as the amount of experimenter experience (if the latter is a factor, it could suggest researchers may need more training before collecting data for publication). The authors state in the discussion that this is not possible. But maybe certain measures can be used to assess this (e.g. years of conducting surgeries/ephys recordings etc)?
(3) Figure 3b and c: Are these plots before or after the probe depth has been adjusted based on physiological features such as the LFP power? In other words, is the IBL electrophysiological alignment toolbox used here and is the reliability of location before using physiological criteria or after? Beyond clarification, showing both before and after would help the readers to understand how much the additional alignment based on electrophysiological features adjusts probe location. It would also be informative if they sorted these penetrations by which penetrations were closest to the planned trajectory after histological verification.
(4) In Figures 4 and 6: If the authors use a 0.05 threshold (alpha) and a cell simply has to be significant on 1/6 tests to be considered task modulated, that means that they have a false positive rate of ~30% (0.05*6=0.3). We ran a simple simulation looking for significant units (from random null distribution) from these criteria which shows that out of 100.000 units, 26500 units would come out significant (false error rate: 26.5%). That is very high (and unlikely to be accepted in most papers), and therefore not surprising that the fraction of task-modulated units across labs is highly variable. This high false error rate may also have implications for the investigation of the spatial position of task-modulated units (as effects of the spatial position may drown in falsely labelled 'task-modulated' cells).
(5) The authors state from Figure 5b that the majority of cells could be well described by 2 PCs. The distribution of R2 across neurons is almost uniform, so depending on what R2 value one considers a 'good' description, that is the fraction of 'good' cells. Furthermore, movement onset has now been well-established to be affecting cells widely and in large fractions, so while this analysis may work for something with global influence - like movement - more sparsely encoded variables (as many are in the brain) may not be well approximated with this suggestion. The authors could expand this analysis into other epochs like activity around stimulus presentation, to better understand how this type of analysis reproduces across labs for features that have a less global influence.
(6) Additionally, in Figure 5i: could the finding that one can only distinguish labs when taking cells from all regions, simply be a result of a different number of cells recorded in each region for each lab? It makes more sense to focus on the lab/area pairing as the authors also do, but not to make their main conclusion from it. If the authors wish to do the comparison across regions, they will need to correct for the number of cells recorded in each region for each lab. In general, it was a struggle to fully understand the purpose of Figure 5. While population analysis and dimensionality reduction are commonplace, this seems to be a very unusual use of it.
(7) In the discussion the authors state: "This approach, which exceeds what is done in many experimental labs". Indeed this approach is a more effective and streamlined way of doing it, but it is questionable whether it 'exceeds' what is done in many labs. Classically, scientists trace each probe manually with light microscopy and designate each area based on anatomical landmarks identified with nissl or dapi stains together with gross landmarks. When not automated with 2-PI serial tomography and anatomically aligned to a standard atlas, this is a less effective process, but it is not clear that it is less precise, especially in studies before neuropixels where active electrodes were located in a much smaller area. While more effective, transforming into a common atlas does make additional assumptions about warping the brain into the standard atlas - especially in cases where the brain has been damaged/lesioned. Readers can appreciate the effectiveness and streamlining provided by these new tools without the need to invalidate previous approaches.
(8) What about across-lab population-level representation of task variables, such as in the coding direction for stimulus or choice? Is the general decodability of task variables from the population comparable across labs?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Seon and Chung's study investigates the hypothesis that individuals take more risks when observed by others because they perceive others to be riskier than themselves. To test this, the authors designed an innovative experimental paradigm where participants were informed that their decisions would be observed by a "risky" player and a "safe" player. Participants underwent fMRI scanning during the task.
Strengths:
The research question is sound, and the experimental paradigm is well-suited to address the hypothesis.
Weaknesses:
I have several concerns. Most notably, the manuscript is difficult to read in parts, and I suggest a thorough revision of the writing for clarity, as some sections are nearly incomprehensible. Additionally, key statistical details are missing, and I have reservations about the choice of ROIs.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors constructed a novel HSV-based therapeutic vaccine to cure SIV in a primate model. The novel HSV vector is deleted for ICP34.5. Evidence is given that this protein blocks HIV reactivation by interference with the NFkappaB pathway. The deleted construct supposedly would reactivate SIV from latency. The SIV genes carried by the vector ought to elicit a strong immune response. Together the HSV vector would elicit a shock and kill effect. This is tested in a primate model.
Strengths and weaknesses:
(1) Deleting ICP34.5 from the HSV construct has a very strong effect on HIV reactivation. The mechanism underlying increased activation by deleting ICP34.5 is only partially explored. Overexpression of ICP34.5 has a much smaller effect (reduction in reactivation) than deletion of ICP34.5 (strong activation); this is acknowledged by the authors that no full mechanistic explanation can be given at this moment.
(2) No toxicity data are given for deleting ICP34.5. How specific is the effect for HIV reactivation? A RNA seq analysis is required to show the effect on cellular genes.
A RNA seq analysis was done in the revised manuscript comparing the effect of HSV-1 and deleted vector in J-LAT cells (Fig S5). More than 2000 genes are upregulated after transduction with the modified vector in comparison with the WT vector. Hence, the specificity of upregulation of SIV genes is questioned. Authors do NOT comment on these findings. In my view it questions the utility of this approach.
(3) The primate groups are too small and the results to variable to make averages. In Fig 5, the group with ART and saline has two slow rebounders. It is not correct to average those with the single quick rebounder. Here the interpretation is NOT supported by the data.
Although authors provided some promising SIV DNA data, no additional animals were added. Groups of 3 animals are too small to make any conclusion, especially since the huge variability in response. The average numbers out of 3 are still presented in the paper, which is not proper science.
No data are given of the effect of the deletion in primates. Now the deleted construct is compared with an empty vector containing no SIV genes. Authors provide new data in Fig S2 on the comparison of WT and modified vector in cells from PLWH, but data are not that convincing. A significant difference in reactivation is seen for LTR in only 2/4 donors and in Gag in 3/4 donors. (Additional question what is meaning of LTR mRNA, do authors relate to genomic RNA??)
Discussion
HSV vectors are mainly used in cancer treatment partially due to induced inflammation. Whether these are suitable to cure PLWH without major symptoms is a bit questionable to me and should at least be argued for.
The RNA seq data add on to this worry and should at least be discussed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Molnar, Suranyi and colleagues have generated a useful dataset characterizing the rate of mutations in Mycobacterium smegmatis - a non-pathogenic model mycobacterial strain, to several antibiotics at sub-lethal dose. The whole genome sequencing approach used is a strength of this study. Overall, the results are consistent with a low rate of mutations, consistent with other reports in Mycobacterium smegmatis and in vitro and clinical studies with Mycobacterium tuberculosis. The data supports phenotypic tolerance rather than genetic mutations as a driver.
The revised manuscript is improved and addresses several concerns raised by the reviewers from the previous rounds. These relate primarily to the presentation of data in the figures, but there is also new data in Figure 2 to show an increased MIC for M. smegmatis under antibiotic pressure. An additional dataset of sequences from ciprofloxacin-treated bacteria has also been generated and made publicly accessible, which will be of interest to the community.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Human and simian immunodeficiency viruses (HIV and SIV, respectively) evolved numerous mechanisms to compromise effective immune responses but the underlying mechanisms remain incompletely understood. Here, Yamamoto and Matano examined the humoral immune response in a large number of rhesus macaques infected with the difficult-to-neutralize SIVmac239 strain and identified a subgroup of animals showing significant neutralizing Ab responses. Sequence analyses revealed that in most of these animals (7/9) but only a minority in the control group (2/19) SIVmac variants containing a CD8+ T-cell escape mutation of G63E/R in the viral Nef gene emerged. Functional analyses revealed that this change attenuates the ability of Nef to stimulate PI3K/Akt/mTORC2 signalling. The authors propose that this improved induction of SIVmac239 nAb is reciprocal to antibody dysregulation caused by a previously identified human PI3K gain-of-function mutation associated with impaired anti-viral B-cell responses. Altogether, the results suggest that PI3K signalling plays a role in B-cell maturation and generation of effective nAb responses. Preliminary data indicate that Nef might be transferred from infected T cells to B cells by direct contact. However, the exact mechanism and the relevance for vaccine development requires further studies
Strengths of the study are that the authors analyzed a large number of SIVmac-infected macaques to unravel the biological significance of the known effect of the interaction of Nef with PI3K/Akt/mTORC2 signaling. This is interesting and may provide a novel means to improve humoral immune responses to HIV. In the revised version the authors made an effort to address previous concerns. Especially, they provide data supporting that Nef might be transferred to B cells by direct cell-cell contact. In addition, the provide some evidence that G63R that also emerged in most animals does not share the disruptive effect of G63G although experimental examination and discussion why G63R might emerge remains poor. Another weakness that remains is that some effects of the G63E mutation are modest and effects were not compared to SIVmac constructs lacking Nef entirely. The evidence for a role of Nef G63E mutation on PI3K and the association with improved nAb responses was largely convincing and it is appreciated that the authors provide additional evidence for a potential impact of "soluble" Nef on neighboring B cells. However, the experimental set-up and the results are difficult to comprehend. It seems that direct cell-cell contact is required and membranes are exchanged. Since Nef is associated with cellular membranes this might lead to some transfer of Nef to B cells. However, the immunological and functional consequences of this remain largely elusive. Alternatively, Nef-mediated manipulation of helper CD4 T cells might also impact B cell function and effective humoral immune responses. As previously noted, the presentation of the results and conclusions was in part very convoluted and difficult to comprehend. While the authors made attempts to improve the writing parts of the manuscript are still challenging to follow. This applies even more to the rebuttal (complex words combined with poor grammar), which made it difficult to assess which concerns have been satisfactory addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
NFKB mutations are thought to be one of the causes of pituitary dysfunction, but until now they could not be reproduced in mice and their pathomechanism was unknown. The authors used the differentiation of hypothalamic-pituitary organoids from human pluripotent stem cells to recapitulate the disease in human iPS cells carrying the NFKB mutation.
Strengths:
The authors achieved their primary goal of recapitulating the disease in human cells. In particular, the differentiation of the pituitary gland is closely linked to the adjacent hypothalamus in embryology, and the authors have again shown that this method is useful when the hypothalamus is suspected to be involved in pituitary abnormalities caused by genetic mutations.
Weaknesses:
On the other hand, the pathomechanism is still not fully understood. This study provides some clues to the pathomechanism, but further analysis of NFKB expression and experiments investigating the relevant factors in more detail may help to clarify it further.<br /> As for the revised manuscript, it is still insufficient for understanding the role of NFKB2 in pituitary development although their additional experiments have improved the manuscript. The strength of the hypothalamus-pituitary organoid lies in its ability to recapitulate the differentiation process including not only the pituitary cells but also neighbouring non-pituitary cells, such as hypothalamic cells in vitro. It is necessary to determine "at which stages" and "in which localizations" NFKB2 expression is critical for pituitary development.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The current manuscript provides solid evidence that the molecular function of SLC35G1, an orphan human SLC transporter, is citrate export at the basolateral membrane of intestinal epithelial cells. Multiple lines of evidence, including radioactive transport experiments, immunohistochemical staining, gene expression analysis, and siRNA knockdown are combined to deduce a model of the physiological role of this transporter.
Strengths:
The experimental approaches are comprehensive, and together establish a strong model for the role of SLC35G1 in citrate uptake. The observation that chloride inhibits uptake suggests an interesting mechanism that exploits the difference in chloride concentration across the basolateral membrane.
Weaknesses:
A gap in this study is that the mechanism of the transporter has not been established. The authors propose that the mechanism is facilitated diffusion, while also leaving open the possibility that citrate transport is coupled to another ion, such as chloride. However, another result from this study seems to be in conflict with the proposed facilitative diffusion mechanism. Specifically, the study finds that uptake is not impacted by membrane depolarization. This would imply that transport is not electrogenic, whereas facilitated diffusion of citrate anion should be an electrogenic process.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Galanti et al. present an innovative new method to determine the susceptibility of large collections of plant accessions towards infestations by herbivores and pathogens. This work resulted from an unplanned infestation of plants in a greenhouse that was later harvested for sequencing. When these plants were extracted for DNA, associated pest DNA was extracted and sequenced as well. In a standard analysis, all sequencing reads would be mapped to the plant reference genome and unmapped reads, most likely originating from 'exogenous' pest DNA, would be discarded. Here, the authors argue that these unmapped reads contain valuable information and can be used to quantify plant infestation loads.
For the present manuscript, the authors re-analysed a published dataset of 207 sequenced accessions of Thlaspi arvense. In this data, 0.5% of all reads had been classified as exogenous reads, while 99.5% mapped to the T. arvense reference genome. In a first step, however, the authors repeated read mapping against other reference genomes of potential pest species and found that a substantial fraction of 'ambiguous' reads mapped to at least one such species. Removing these reads improved the results of downstream GWAs, and is in itself an interesting tool that should be adopted more widely.
The exogenous reads were primarily mapped to the genomes of the aphid Myzus persicae and the powdery mildew Erysiphe cruciferarum, from which the authors concluded that these were the likely pests present in their greenhouse. The authors then used these mapped pest read counts as an approximate measure of infestation load and performed GWA studies to identify plant gene regions across the T. arvense accessions that were associated with higher or lower pest read counts. In principle, this is an exciting approach that extracts useful information from 'junk' reads that are usually discarded. The results seem to support the authors' arguments, with relatively high heritabilities of pest read counts among T. arvense accessions, and GWA peaks close to known defence genes. Nonetheless, I do feel that more validation would be needed to support these conclusions, and given the radical novelty of this approach, additional experiments should be performed.
A weakness of this study is that no actual aphid or mildew infestations of plants were recorded by the authors. They only mention that they anecdotally observed differences in infestations among accessions. As systematic quantification is no longer possible in retrospect, a smaller experiment could be performed in which a few accessions are infested with different quantities of aphids and/or mildew, followed by sequencing and pest read mapping. Such an approach would have the added benefit of allowing causally linking pest read count and pest load, thereby going beyond correlational associations.
On a technical note, it seems feasible that mildew-infested leaves would have been selected for extraction, but it is harder to explain how aphid DNA would have been extracted alongside plant DNA. Presumably, all leaves would have been cleaned of live aphids before they were placed in extraction tubes. What then is the origin of aphid DNA in these samples? Are these trace amounts from aphid saliva and faeces/honeydew that were left on the leaves? If this is the case, I would expect there to be substantially more mildew DNA than aphid DNA, yet the absolute read counts for aphids are actually higher. Presumably read counts should only be used as a relative metric within a pest organism, but this unexpected result nonetheless raises questions about what these read counts reflect. Again, having experimental data from different aphid densities would make these results more convincing.
Comments on revised version:
The authors have addressed many technical details in their revision, but they did not address my more fundamental concerns about validation of their results. I still believe that validation would be needed, but I also acknowledge that an additional experiment that reliably tests a causal relationship between read counts and pest abundance would go beyond the scope of a revision. Nonetheless, the authors currently only show variation in pest read counts among plant accessions, not in pest abundance. While the two measures are likely correlated, I hope that future studies will address more directly how pest abundance and read counts are causally linked, and whether pest read counts truly are a robust measure of pest abundance across a range of conditions and systems
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The manuscript by Christensen, et al. presents an application of restricted Boltzmann machines to analyze the MprF family of enzymes, which catalyze the addition of amino acids to lipid substrates in bacteria. Overall the manuscript is an interesting and very compelling combination of advanced statistical analysis of sequences and experimental determination of MprF function. One notable outcome is (as stated in the title) the identification of a novel substrate/product. I expect that other researchers interested in using advanced methods to connect sequence to lipid synthesis functions will find the work of significant value and that others interested in microbial resistance will find inspiration in the results. This is an excellent contribution that will be of great value to the field, and which is improved following revisions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this paper, Bose et al. investigated the role of Foxg1 transcription factor in the progenitors at late stages of cerebral cortex development.<br /> They discover that Foxg1 is a repressor of gliogenesis and has a dual function, first as a repressor of Fgfr3 receptor in progenitors, and second as a suppressor of the Fgf ligands in young neurons.
They found that the inactivation of Foxg1 in cortical progenitors causes premature astrogliogenesis at the expense of neurogenesis. They identify Fgfr3 as a novel FOXG1 target. They show that suppression of Fgfr3 by FOXG1 in progenitors is required to maintain neurogenesis. On the other hand, they also show that FOXG1 negatively regulates the expression of Fgf gliogenic secreted factors in young neurons suppressing gliogenesis cells extrinsically.
Strengths:
The authors used time-consuming in vivo experiments utilizing several mouse strains including Foxg1-MADM in combination with RNA-Seq and ChIP to convincingly show that Foxg1 acts upstream of FGF signalling in the control of gliogenesis onset. The conclusions of this paper are mostly well supported by data.
Weaknesses:
The role of Fgf signaling in gliogenesis and Foxg1 in neurogenesis is well known. It is not clear if Fgf18 is a direct target of Foxg1.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This is a very creative study using modeling and measurement of neoblast dynamics to gain insight into the mechanism that allows these highly potent cells to undergo fate-switching as part of their differentiation and self-renewal process. The authors estimate growth equation parameters for expanding neoblast clones based on new and prior experimental observations. These results indicate neoblast likely undergo much more symmetric self-amplifying division than loss of the population through symmetric differentiation, in the case of clone expansion assays after sublethal irradiation. Neoblasts take on multiple distinct transcriptional fates related to their terminally differentiated cell types, and prior work indicated neoblasts have a high plasticity to switch fates in a way linked to cell cycle progression and possibly through a random process. Here, the authors explore the impact of inhibition of key transcription factors defining such states (ie "fate specifying transcription factors", FSTFs) plus measurement and modeling in the clone expansion assay, to find that inhibition of factors like zfp1 likely cause otherwise zfp1-fated neoblasts to fail to proliferate and differentiation without causing compensatory gains in other lineages. A mathematical model of this process assuming that neoblasts do not retain a memory of prior states while they proliferate, and transition across specified states can mimic the experimentally determined decreased sizes of clones following inhibition of zfp1. Complementary approaches to inhibit more than one lineage (muscle plus intestine) supports the idea that this is a more general process in planarian stem cells. These results provide an important advance for understanding the fate-switching process and its relationship to neoblast growth.
Overall I find the evidence very well presented and the study compelling. It offers an important new perspective on the key properties of neoblasts. I do have some comments to clarify the presentation and significance of the work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Sun et al. are interested in how experience can shape the brain and specifically investigate the plasticity of the Toll-6 receptor-expressing dopaminergic neurons (DANs). To learn more about the role of Toll-6 in the DANs, the authors examine the expression of the Toll-6 receptor ligand, DNT-2. They show that DNT-2 expressing cells connect with DANs and that loss of function of DNT-2 in these cells reduces the number of PAM DANs, while overexpression causes alterations in dendrite complexity. Finally, the authors show that alterations in the levels of DNT-2 and Toll-6 can impact DAN-driven behaviors such as climbing, arena locomotion, and learning and long-term memory.
Strengths:
The authors methodically test which neurotransmitters are expressed by the 4 prominent DNT-2 expressing neurons and show that they are glutamatergic. They also use Trans-Tango and Bac-TRACE to examine the connectivity of the DNT-2 neurons to the dopaminergic circuit and show that DNT-2 neurons receive dopaminergic inputs and output to a variety of neurons including MB Kenyon cells, DAL neurons, and possibly DANS.
Weaknesses:
(1) To identify the DNT-2 neurons, the authors use CRISPR to generate a new DN2-GAL4. They note that they identified at least 12 DNT-2 plus neurons. In Supplementary Figure 1A, the DNT-2-GAL4 driver was used to express a UAS-histoneYFP nuclear marker. From these figures, it looks like DNT-2-GAL4 is labeling more than 12 neurons. Is there glial expression?
(2) In Figure 2C the authors show that DNT-2 upregulation leads to an increase in TH levels using q-RT-PCR from whole heads. However, in Figure 3H they also show that DNT-2 overexpression also causes an increase in the number of TH neurons. It is unclear whether TH RNA increases due to expression/cell or the number of TH neurons in the head.
(3) DNT-2 is also known as Spz5 and has been shown to activate Toll-6 receptors in glia (McLaughlin et al., 2019), resulting in the phagocytosis of apoptotic neurons. In addition, the knockdown of DNT-2/Spz5 throughout development causes an increase in apoptotic debris in the brain, which can lead to neurodegeneration. Indeed Figure 3H shows that an adult-specific knockdown of DNT-2 using DNT2-GAL4 causes an increase in Dcp1 signal in many neurons and not just TH neurons.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Here the authors present their evidence linking the mitochondrial uniporter (MCU-1) and olfactory adaptation in C. elegans. They clearly demonstrate a behavioral defect of mcu-1 mutants in adaptation over 60 minutes and present evidence that this gene functions in the AWC primary sensory neurons at, or close to, the time of adaptation.
Strengths:
The paper is very well organized and their approach to unpacking the role of mcu-1 mutants in olfactory adaptation is very reasonable. The authors lean into diverse techniques including behavior, genetics, and pharmacological manipulation in order to flesh out their model for how MCU-1 functions in AWC neurons with respect to olfaction.
Weaknesses:
I would like to see the authors strengthen the link between mitochondrial calcium and olfactory adaptation. The authors present some gCaMP data in Figure 5 but it is unclear to me why this tool is not better utilized to explore the mechanism of MCU-1 activity. I think this is very important as the title of the paper states that "mitochondrial calcium modulates.." behavior in AWC and so it would be nice to see more evidence to support this direct connection. I would also like to see the authors place their findings into a model based on previous findings and perhaps examine whether mcu-1 is required for EGL-4 nuclear translocation, which would be straightforward to examine.
-
-
-
Reviewer #1 (Public review):
Summary:
The manuscript by Nicoletti et al. presents a minimal model of habituation, a basic form of non-associative learning, addressing both from dynamical and information theory aspects of how habituation can be realized. The authors identify that negative feedback provided with a slow storage mechanism is sufficient to explain habituation.
Strengths:
The authors combine the identification of the dynamical mechanism with information-theoretic measures to determine the onset of habituation and provide a description of how the system can gain maximum information about the environment.
Weaknesses:
I have several main concerns/questions about the proposed model for habituation and its plausibility. In general, habituation does not only refer to a decrease in the responsiveness upon repeated stimulation but as Thompson and Spencer discussed in Psych. Rev. 73, 16-43 (1966), there are 10 main characteristics of habituation, including (i) spontaneous recovery when the stimulus is withheld after response decrement; dependence on the frequency of stimulation such that (ii) more frequent stimulation results in more rapid and/or more pronounced response decrement and more rapid spontaneous recovery; (iii) within a stimulus modality, the less intense the stimulus, the more rapid and/or more pronounced the behavioral response decrement; (iv) the effects of repeated stimulation may continue to accumulate even after the response has reached an asymptotic level (which may or may not be zero, or no response). This effect of stimulation beyond asymptotic levels can alter subsequent behavior, for example, by delaying the onset of spontaneous recovery.
These are only a subset of the conditions that have been experimentally observed and therefore a mechanistic model of habituation, in my understanding, should capture the majority of these features and/or discuss the absence of such features from the proposed model.
Furthermore, the habituated response in steady-state is approximately 20% less than the initial response, which seems to be achieved already after 3-4 pulses, the subsequent change in response amplitude seems to be negligible, although the authors however state "after a large number of inputs, the system reaches a time-periodic steady-state". How do the authors justify these minimal decreases in the response amplitude? Does this come from the model parametrization and is there a parameter range where more pronounced habituation responses can be observed?
The same is true for the information content (Figure 2f) - already at the first pulse, IU, H ~ 0.7 and only negligibly increases afterwards. In my understanding, during learning, the mutual information between the input and the internal state increases over time and the system extracts from these predictions about its responses. In the model presented by the authors, it seems the system already carries information about the environment which hardly changes with repeated stimulus presentation. The complexity of the signal is also limited, and it is very hard to clarify from the presented results, whether the proposed model can actually explain basic features of habituation, as mentioned above.<br /> Additionally, there have been two recent models on habituation and I strongly suggest that the authors discuss their work in relation to recent works (bioRxiv 2024.08.04.606534; arXiv:2407.18204).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The paper develops a phase method to obtain the excitatory and inhibitory afferents to certain neuron populations in the brainstem. The inferred contributions are then compared to the results of voltage clamp and current clamp experiments measuring the synaptic contributions to post-I, aug-E, and ramp-I neurons.
Strengths:
The electrophysiology part of the paper is sound and reports novel features with respect to earlier work by JC Smith et al 2012, Paton et al 2022 (and others) who have mapped circuits of the respiratory central pattern generator. Measurements on ramp-I neurons, late-I neurons, and two types of post-I neurons in Figure 2 besides measurements of synaptic inputs to these neurons in Figure 5 are to my knowledge new.
Weaknesses:
The phase method for inferring synaptic conductances fails to convince. The method rests on many layers of assumptions and the inferred connections in Figure 4 remain speculative. To be convincing, such a method ought to be tested first on a model CPG with known connectivity to assess how good it is at inferring known connections back from the analysis of spatio-temporal oscillations. For biological data, once the network connectivity has been inferred as claimed, the straightforward validation is to reconstruct the experimental oscillations (Figure 2) noting that Rybak et al (Rybak, Paton Schwaber J. Neurophysiol. 77, 1994 (1997)) have already derived models for the respiratory neurons.
The transformation from time to phase space, unlike in the Kuramoto model, is not justified here (Line 94) and is wrong. The underpinning idea that "the synaptic conductances depend on the cycle phase and not on time explicitly" is flawed because synapses have characteristic decay times and delays to response which remain fixed when the period of network oscillations increases. Synaptic properties depend on time and not on phase in the network. One major consequence relevant to the present identification of excitatory or inhibitory behaviour, is that it cannot account for change in the behaviour of inhibitory synapses - from inhibitory to excitatory action - when the inhibitory decay time becomes commensurable to the period of network oscillations (Wang & Buzsaki Journal of Neuroscience 16, 6402 (1996), van Vreeswijk et al. J. Comp. Neuroscience 1,313 (1994), Borgers and Kopell Neural Comput. 15, 2003). In addition, even small delays in the inhibitory synapse response relative to the pre-synaptic action potential also produce in-phase synchronization (Chauhan et al., Sci. Rep. 8, 11431 (2018); Borgers and Kopell, Neural Comput. 15, 509 (2003)). The present assumptions are way too simplistic because you cannot account for these commensurability effects with a single parameter like the network phase. There is therefore little confidence that this model can reliably distinguish excitatory from inhibitory synapses when their dynamic properties are not properly taken into account.
Line 82, Equation 1 makes extremely crude assumptions that the displacement current (CdV/dt) is negligible and that the ion channel currents are all negligible. Vm(t) is also not defined. The assumption that the activation/inactivation times of all ion channels are small compared to the 10-20ms decay time of synaptic currents is not true in general. Same for the displacement current. The leak conductance is typically g~0.05-0.09ms/cm^2 while C~1uF/cm^2. Therefore the ratio C/g leak is in the 10-20ms range - the same as the typical docking neurotransmitter time in synapses.
Models of brainstem CPG circuits have been known to exist for decades: JC Smith et al 2012, Paton et al 2022, Bellingham Clin. Exp. Pharm. And Physiol. 25, 847 (1998); Rubin et al., J. Neurophysiol. 101, 2146 (2009) among others. The present paper does not discuss existing knowledge on respiratory networks and gives the impression of reinventing the wheel from scratch. How will this paper add to existing knowledge?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors aimed to investigate the interaction between tissue-resident immune cells (microglia) and circulating systemic neutrophils in response to acute, focal retinal injury. They induced retinal lesions using 488 nm light to ablate photoreceptor (PR) outer segments, then utilized various imaging techniques (AOSLO, SLO, and OCT) to study the dynamics of fluorescent microglia and neutrophils in mice over time. Their findings revealed that while microglia showed a dynamic response and migrated to the injury site within a day, neutrophils were not recruited to the area despite being nearby. Post-mortem confocal microscopy confirmed these in vivo results. The study concluded that microglial activation does not recruit neutrophils in response to acute, focal photoreceptor loss, a scenario common in many retinal diseases.
Strengths:
The primary strength of this manuscript lies in the techniques employed.
In this study, the authors utilized advanced Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) to document immune cell interactions in the retina accurately. AOSLO's micron-level resolution and enhanced contrast, achieved through near-infrared (NIR) light and phase-contrast techniques, allowed visualization of individual immune cells without extrinsic dyes. This method combined confocal reflectance, phase-contrast, and fluorescence modalities to reveal various cell types simultaneously. Confocal AOSLO tracked cellular changes with less than 6 μm axial resolution, while phase-contrast AOSLO provided detailed views of vascular walls, blood cells, and immune cells. Fluorescence imaging enabled the study of labeled cells and dyes throughout the retina. These techniques, integrated with conventional histology and Optical Coherence Tomography (OCT), offered a comprehensive platform to visualize immune cell dynamics during retinal inflammation and injury.
Weaknesses:
One significant weakness of the manuscript is the use of Cx3cr1GFP mice to specifically track GFP-expressing microglia. While this model is valuable for identifying resident phagocytic cells when the blood-retinal barrier (BRB) is intact, it is important to note that recruited macrophages also express the same marker following BRB breakdown. This overlap complicates the interpretation of results and makes it difficult to distinguish between the contributions of microglia and infiltrating macrophages, a point that is not addressed in the manuscript.
Another major concern is the time point chosen for analyzing the neutrophil response. The authors assess neutrophil activity 24 hours after injury, which may be too late to capture the initial inflammatory response. This delayed assessment could overlook crucial early dynamics that occur shortly after injury, potentially impacting the overall findings and conclusions of the study.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Characterizing the molecular and spatial organization of dendritically localized RNAs is an important endeavor as the authors nicely articulate in their abstract and introduction. In particular, identifying patterns of mRNA distribution and colocalization between groups of RNAs could characterize new mechanisms of transport and/or reveal new functional relationships between RNAs. However, it's not clear to me how much the current study addresses those gaps in knowledge. The manuscript by Kim et al uses 8 overlapping combinations of 3-color fluorescence in situ hybridization to characterize the spatial distributions and pairwise colocalizations of six previously uncharacterized dendritically localized RNAs in cultured neurons (15 DIV). The strength of the work is in the graph-based analyses of individual RNA distances from the soma, but the conclusions reached, that spatial distributions vary per dendritic RNA, has been well known since early 2000s (as reviewed in Schuman and Steward, 2001 & 2003), but paradoxically the authors show that dendritic length can account for these differences. It's not clear to me the significance of the spatial distribution relationship with dendritic morphology as distinct spatial distribution patterns (i.e. proximal expression then drop off) have been clearly shown in intact circuits with homogeneity in dendrite length governed by neuropil laminae. The colocalization results are intriguing but as currently presented they lack sufficient control analyses and contextualization to be compelling. In general, the results of the manuscript are potentially interesting but unnecessarily difficult to follow both in text and figure presentation.
Major comments:
The authors state that their data expand upon our understanding of dendritic RNA spatial distributions by adding high-resolution data for six newly characterized dendritic RNAs. While this is true, without including data for a well-known/previously characterized RNA, it makes it difficult for the reader to contextualize how these new data on six dendritic RNAs fit in with our understanding of the dendritic RNAs with well-described spatial distributions and colocalization analyses (Camk2a, Actb, Map1b, etc). For example, how do we interpret the 7-fold higher colocalization values between RNAs in this manuscript compared to the results of Batish et al (as referred to in the paper)-is it because these RNAs are fundamentally different, or is it because of other experimental factors/conditions? The spatial distribution patterns described in this manuscript differ from those of Fonkeu et al, but an alternative explanation is that Fonkeu et al modeled based on Camk2a, not the six genes studied here. Is it possible that these six RNAs have similar distribution patterns (as shown) whereby dendritic morphology impacts distribution more than individual differences but inclusion of dendritic RNAs with demonstrably different distributions (Camk2a/distal localization vs Map2/proximal localization) would alter the results?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The work of Zhou's team is to perform bioinformatics analysis of single-cell transcriptomes (scRNA), spatial transcriptomic (ST) data, and bulk RNA-seq data from Gene Expression Omnibus (GEO) datasets, published or not in different journals from other teams, about spinal cord injury and/or microglia cells derived human iPSC. Based on their analysis, the authors claim that innate microglial cells are inhibited. They postulate that TGF beta signaling pathways play a role in the regulation of migration to enhance SCI recovery and that Trem2 expression contributes to neuroinflammation response by modulating cell death in spinal cord injury. Finally, they suggest a therapeutic strategy to inhibit Trem2 responses and transplant iPSC-derived microglia with long-term TGF beta stimulation.
Although the idea of using already available data and reanalyzing them is remarkable, I have major concerns about the paper. The authors have used data from different models of injury, regions, as well as IPSC. It is not possible to mix and draw conclusions when the models used are different. This raises doubts about the authors' expertise in the field of spinal cord injury. Furthermore, the innovativeness of the results is of little significance, especially as no hypothesis is confirmed by experimental data.
Strengths:
Analysis of already large-scale existing data.
Weaknesses:
Mixing data from different models, unfounded conclusions, and over-interpretations, little expertise in the field of spinal cord injury.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The manuscript co-authored by Pál Barzó et al is very clear and very well written, demonstrating the electrophysiological and morphological properties of human cortical layer 2/3 pyramidal cells across a wide age range, from age 1 month to 85 years using whole-cell patch clamp. To my knowledge, this is the first study that looks at the cross-age differences in biophysical and morphological properties of human cortical pyramidal cells. The community will also appreciate the significant effort involved in recording data from 485 cells, given the challenges associated with collecting data from human tissue. Understanding the electrophysiological properties of individual cells, which are essential for brain function, is crucial for comprehending human cortical circuits. I think this research enhances our knowledge of how biophysical properties change over time in the human cortex. I also think that by building models of human single cells at different ages using these data, we can develop more accurate representations of brain function. This, in turn, provides valuable insights into human cortical circuits and function and helps in predicting changes in biophysical properties in both health and disease.
Strengths:
The strength of this work lies in demonstrating how the electrophysiological and morphological features of human cortical layer 2/3 pyramidal cells change with age, offering crucial insights into brain function throughout life.
Weaknesses:
One potential weakness of the paper is that the methodology could be clearer, especially in how different cells were used for various electrophysiological measurements and the conditions under which the recordings were made. Clarifying these points would improve the study's rigor and make the results easier to interpret.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Oor et al. report the potentially independent effects of the spatial and feature-based selection history on visuomotor choices. They outline compelling evidence, tracking the dynamic history effects based on their clever experimental design (urgent version of the search task). Their finding broadens the framework to identify variables contributing to choice behavior and their neural correlates in future studies.
Strengths:
In their urgent search task, the variable processing time of the visual cue leads to a dichotomy in choice performance - uninformed guesses vs. informed choices. Oor et al. did rigorous analyses to find a stronger influence of the location-based selection history on the uninformed guesses and a stronger influence of the feature-based selection history on the informed choices. It is a fundamental finding that contributes to understanding the drivers of behavioral variance. The results are clear.
Weaknesses:
(1) In this urgent search task, as the authors stated in line 724, the variability in performance was mainly driven by the amount of time available for processing the visual cue. The authors used processing time (PT) as the proxy for this "time available for processing the visual cue." But PT itself is already a measure of behavioral variance since it is also determined by the subject's reaction time (i.e., PT = Reaction time (RT) - Gap). In that sense, it seems circular to explain the variability in performance using the variability in PT. I understand the Gap time and PT are correlated (hinted by the RT vs. Gap in Figure 1C), but Gap time seems to be more adequate to use as a proxy for the (imposed) time available for processing the visual cue, which drives the behavioral variance. Can the Gap time better explain some of the results? It would be important to describe how the results are different (or the same) if Gap time was used instead of PT and also discuss why the authors would prefer PT over Gap time (if that's the case).
(2) The authors provide a compelling account of how the urgent search task affords<br /> (i) more pronounced selection history effects on choice and<br /> (ii) dissociating the spatial and feature-based history effects by comparing their different effects on the tachometric curves. However, the authors didn't discuss the limits of their task design enough. It is a contrived task (one of the "laboratoray tasks"), but the behavioral variability in this simple task is certainly remarkable. Yet, is there any conclusion we should avoid from this study? For instance, can we generalize the finding in more natural settings and say, the spatial selection history influences the choice under time pressure? I wonder whether the task is simple yet general enough to make such a conclusion.
(3) Although the authors aimed to look at both inter- and intra-trial temporal dynamics, I'm not sure if the results reflect the true within-trial dynamics. I expected to learn more about how the spatial selection history bias develops as the Gap period progresses (as the authors mentioned in line 386, the spatial history bias must develop during the Gap interval). Does Figure 3 provide some hints in this within-trial temporal dynamics?
(4) The monkeys show significant lapse rates (enough error trials for further analyses). Do the choices in the error trials reflect the history bias? For example, if errors are divided in terms of PTs, do the errors with short PT reflect more pronounced spatial history bias (choosing the previously selected location) compared to the errors with long PT?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
These authors have asked how lytic phage predation impacts antibiotic resistance and virulence phenotypes in methicillin-resistant Staphylococcus aureus (MRSA). They report that staphylococcal phages cause MRSA strains to become sensitized to b-lactams and to display reduced virulence. Moreover, they identify mutations in a set of genes required for phage infection that may impact antibiotic resistance and virulence phenotypes.
Strengths:
Phage-mediated re-sensitization to antibiotics has been reported previously but the underlying mutational analyses have not been described. These studies suggest that phages and antibiotics may target similar pathways in bacteria.
Weaknesses:
One limitation is the lack of mechanistic investigations linking particular mutations to the phenotypes reported here. This limits the impact of the work.
Another limitation of this work is the use of lab strains and a single pair of phages. However, while incorporation of clinical isolates would increase the translational relevance of this work it is unlikely to change the conclusions.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors investigated the effects of the timing of dietary occasions on weight loss and well-being to explain if a consistent, timely alignment of dietary occasions throughout the days of the week could improve weight management and overall well-being. The authors attributed these outcomes to a timely alignment of dietary occasions with the body's circadian rhythms. This concept is rooted in understanding dietary cues as a zeitgeber for the circadian system, potentially leading to more efficient energy use and weight management. The study participants self-reported the primary outcome, body weight loss.
Strengths:
The innovative focus of the study on the timing of dietary occasions rather than daily energy intake or diet composition presents a fresh perspective in dietary intervention research. The feasibility of the diet plan, developed based on individual profiles of the timing of dietary occasions identified before the intervention, marks a significant step towards personalised nutrition.
Weaknesses:
The methodology lacks some measurements that are emerging as very relevant in the field of nutritional science, such as data on body composition, and potential confounders not accounted for (e.g., age range, menstrual cycle, shift work, unmatched cohorts, inclusion of individuals with normal weight, overweight, and obesity). The primary outcome's reliance on self-reported body weight and subsequent measurement biases undermines the reliability of the findings.
Achievement of Objectives and Support for Conclusions:
The study's objectives were partially met; however, the interpretation of the effects of meal timing on weight loss is compromised by the aforementioned weaknesses. The evidence does not fully support most of the claims due to methodological limitations caused partially by the COVID-19 pandemic.
Impact and Utility:
Despite its innovative approach, the study's utility for practical application is limited by methodological and analytical shortcomings. Nevertheless, it represents a good basis for further research. If these findings were further investigated, they could have meaningful implications for dietary interventions and metabolic research. The concept of timing of dietary occasions in sync with circadian rhythms holds promise but requires further rigorous investigation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The report examines the control of the antiviral RNA-activated protein kinase, PKR, by the Vaccinia virus K3 protein. K3 binds to PKR, hindering its ability to control protein translation by blocking its phosphorylation of the eukaryotic initiation factor EIF2α. Kinase function is probed by saturation mutation of the K3/EIF2α-binding surface on PKR, guided by models of their interaction. The findings identify specific residues at the predicted interface that asymmetrically influence repression by K3 and the phosphorylation of EIF2α. This recognises the potential of PKR alleles to resist control by the viral virulence factor.
Strengths:
The experimentation is diligent, generating and screening many point mutants to identify residues at the interface between PKR and EIF2α or K3 that distinguishes PKR's phosphor control of its substrate from the antithetical interaction with the viral virulence factor.
Weaknesses:
The protein interaction between PKR and K3 has already been well-explored through phylogenetic and functional analyses and molecular dynamics studies, as well as with more limited site-directed mutational studies using the same experimental assays. Accordingly, the findings are not pioneering but reinforce and extend what had previously been established.
The authors responded to this comment by pointing out that their more comprehensive screen better defined the extent of the plasticity of the K3/EIF2α-binding surface on PKR.
Also in their response, the authors added the caveat that the equivalent expression of the different PKR mutants has not been verified, added information clarifying the states of the model proteins compared to their determined molecular structures, and provided clarifications or responses to all other questions.
I question eLife's assessment that the development of the yeast-based assay is a key advancement of this report, as this assay has been used for over 30 years.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Summary:
This study retrospectively analyzed clinical data to develop a risk prediction model for pulmonary hypertension in high-altitude populations. This finding holds clinical significance as it can be used for intuitive and individualized prediction of pulmonary hypertension risk in these populations. The strength of evidence is high, utilizing a large cohort of 6,603 patients and employing statistical methods such as LASSO regression. The model demonstrates satisfactory performance metrics, including AUC values and calibration curves, enhancing its clinical applicability.
Strengths:
(1) Large Sample Size: The study utilizes a substantial cohort of 6,603 subjects, enhancing the reliability and generalizability of the findings.
(2) Robust Methodology: The use of advanced statistical techniques, including least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression, ensures the selection of optimal predictive features.
(3) Clinical Utility: The developed nomograms are user-friendly and can be easily implemented in clinical settings, particularly in resource-limited high-altitude regions.
(4) Performance Metrics: The models demonstrate satisfactory performance, with strong AUC values and well-calibrated curves, indicating accurate predictions.
Weaknesses:
(1) Lack of External Validation: The models were validated internally, but external validation with cohorts from other high-altitude regions is necessary to confirm their generalizability.
(2) Simplistic Predictors: The reliance on ECG and basic demographic data may overlook other potential predictors that could improve the models' accuracy and predictive power.
(3) Regional Specificity: The study's cohort is limited to Tibet, and the findings may not be directly applicable to other high-altitude populations without further validation.
Comments on revised version:
The authors have made revisions in response to the primary concerns raised in the initial review, leading to significant improvements in the manuscript's technical accuracy, formatting consistency, and overall clarity. They have provided a detailed explanation of the selection criteria for the final model variables, which has enhanced the transparency and robustness of the study's methodology. Additionally, the authors have acknowledged the limitation of lacking external validation in cohorts from other high-altitude regions and outlined their plans for future research to address this issue.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public review):
This study presents a large cohort of plasma-derived extracellular vesicle samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. The authors identified a panel of protein markers for the early detection of pancreatic cancer and validated in an external cohort.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The manuscript by Mäkelä et al. presents compelling experimental evidence that the amount of chromosomal DNA can become limiting for the total rate of mRNA transcription and consequently protein production in the model bacterium Escherichia coli. Specifically, the authors demonstrate that upon inhibition of DNA replication the rate of RNA transcription and the single-cell growth rate continuously decrease, the latter in direct proportion to the concentration of active ribosomes, as measured indirectly by single-particle tracking. The decrease of ribosomal activity with filamentation is likely caused by a decrease of the concentration of mRNAs, as suggested by an observed plateau of the total number of active RNA polymerases. These observations are compatible with the hypothesis that DNA limits the total rate of transcription and thus, indirectly, translation.
The authors also demonstrate that the decrease of RNAp activity is independent of two candidate stress response pathways, the SOS stress response and the stringent response, as well as an anti-sigma factor previously implicated in variations of RNAp activity upon variations of nutrient sources.
Remarkably, the reduction of growth rate is observed soon after the inhibition of DNA replication, suggesting that the amount of DNA in wild-type cells is tuned to provide just as much substrate for RNA polymerase as needed to saturate most ribosomes with mRNAs. While previous studies of bacterial growth have most often focused on ribosomes and metabolic proteins, this study provides important evidence that chromosomal DNA has a previously underestimated important and potentially rate-limiting role for growth.
Strengths:
This article links the growth of single cells to the amount of DNA, the number of active ribosomes and to the number of RNA polymerases, combining quantitative experiments with theory. The correlations observed during depletion of DNA, notably in M9gluCAA medium, are compelling and point towards a limiting role of DNA for transcription and subsequently for protein production soon after reduction of the amount of DNA in the cell. The article also contains a theoretical model of transcription-translation that contains a Michaelis-Menten type dependency of transcription on DNA availability and is fit to the data.
At a technical level, single-cell growth experiments and single-particle tracking experiments are well described, suggesting that different diffusive states of molecules represent different states of RNAp/ribosome activities, which reflect the reduction of growth.
Apart from correlations in DNA-deplete cells, the article also investigates the role of candidate stress response pathways for reduced transcription, demonstrating that neither the SOS nor the stringent response are responsible for the reduced rate of growth. Equally, the anti-sigma factor Rsd recently described for its role in controlling RNA polymerase activity in nutrient-poor growth media, seems also not involved according to mass-spec data. While other (unknown) pathways might still be involved in reducing the number of active RNA polymerases, the proposed hypothesis of the DNA substrate itself being limiting for the total rate of transcription is appealing.
Finally, the authors confirm the reduction of growth in the distant Caulobacter crescentus, which lacks overlapping rounds of replication and could thus have shown a different dependency on DNA concentration.
Weaknesses:
The study has no apparent weaknesses after review.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
(1a) Summary:
The author studied metabolic networks for central metabolism, focusing on how system trajectories returned to their steady state. To quantify the response, systematic perturbation was performed in simulation and the maximal destabilization away from steady state (compared with initial perturbation distance) was characterized. The author analyzed the perturbation response and found that sparse network and networks with more cofactors are more "stable", in the sense that the perturbed trajectories have smaller deviation along the path back to the steady state.
(1b) Strengths and major contributions:
The author compared three metabolic models and performed systematic perturbation analysis in simulation. This is the first work characterized how perturbed trajectories deviate from equilibrium in large biochemical systems and illustrated interesting findings about the difference between sparse biological systems and randomly simulated reaction networks.
(1c) Weaknesses:
There are two main weaknesses in this study:
First, the metabolic network in this study is incomplete. For example, amino acid synthesis and lipid synthesis are important for biomass and growth, but they are not included in the three models used in this study. NADH and NADPH are as important as ATP/ADP/AMP, but they are not included in the models. In the future, a more comprehensive metabolic and biosynthesis model is required.
Second, this work does not provide mathematics explanation on the perturbation response χ. Since the perturbation analysis are performed closed to steady state (or at least belongs to the attractor of single steady state), local linear analysis would provide useful information. By complement with other analysis in dynamical systems (described in below) we can gain more logical insights about perturbation response.
(1d) Discussion and impact for the field:
Metabolic perturbation is an important topic in cell biology and has important clinical implication in pharmacodynamics. The computational analysis in this study provides an initiative for future quantitative analysis on metabolism and homeostasis.
Comments on revised version:
The revised version of this manuscript made some clarifications, while I think the analysis of response coefficients is still numerical and model-specific, being unclear under dynamical systems of views.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
This study delineates an important set of uninjured and injured periosteal snRNAseq data that provides an overview of periosteal cell responses to fracture healing. The authors also took additional steps to validate some of the findings using immunohistochemistry and transplantation assays. This study will provide a valuable publicly accessible dataset to reexamine the expression of the reported periosteal stem and progenitor cell markers.
Strengths:
(1) This is the first single-nuclei atlas of periosteal cells that are obtained without enzymatic cell dissociation or targeted cell purification by FACS. This integrated snRNAseq dataset will provide additional opportunities for the community to revisit the expression of many periosteal cell markers that have been reported to date.<br /> (2) The authors delved further into the dataset using cutting-edge algorithms, including CytoTrace, SCENIC, Monocle, STRING and CellChat, to define potential roles of identified cell populations in the context of fracture healing. These additional computation analyses generate many new hypotheses regarding periosteal cell reactions.<br /> (3) The authors also sought to validate some of the computational findings using immunohistochemistry and transplantation assays to support the conclusion.
Weaknesses:
(1) The current snRNAseq datasets contain only a small number of nuclei (1,189 nuclei at day 0, 6,213 nuclei day 0-7 combined). It is possible that these datasets are underpowered to discern subtle biological changes in skeletal stem/progenitor cell populations during fracture healing.<br /> (2) POSTN is expressed in the cambium layer of the periosteum without fracture. The current data do not exclude the possibility that these pre-existing POSTN+ cells are the main responder of fracture healing.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors show that the Gαs-stimulated activity of human membrane adenylyl cyclases (mAC) can be enhanced or inhibited by certain unsaturated fatty acids (FA) in an isoform-specific fashion. Thus, with IC50s in the 10-20 micromolar range, oleic acid affects 3-fold stimulation of membrane-preparations of mAC isoform 3 (mAC3) but it does not act on mAC5. Enhanced Gαs-stimulated activities of isoforms 2, 7, and 9, while mAC1 was slightly attenuated, but isoforms 4, 5, 6, and 8 were unaffected. Certain other unsaturated octadecanoic FAs act similarly. FA effects were not observed in AC catalytic domain constructs in which TM domains are not present. Oleic acid also enhances the AC activity of isoproterenol-stimulated HEK293 cells stably transfected with mAC3, although with lower efficacy but much higher potency. Gαs-stimulated mAC1 and 4 cyclase activity were significantly attenuated in the 20-40 micromolar by arachidonic acid, with similar effects in transfected HEK cells, again with higher potency but lower efficacy. While activity mAC5 was not affected by unsaturated FAs, neutral anandamide attenuated Gαs-stimulation of mAC5 and 6 by about 50%. In HEK cells, inhibition by anandamide is low in potency and efficacy. To demonstrate isoform specificity, the authors were able to show that membrane preparations of a domain-swapped AC bearing the catalytic domains of mAC3 and the TM regions of mAC5 are unaffected by oleic acid but inhibited by anandamide. To verify in vivo activity, in mouse brain cortical membranes 20 μM oleic acid enhanced Gαs-stimulated cAMP formation 1.5-fold with an EC50 in the low micromolar range.
Strengths:
(1) A convincing demonstration that certain unsaturated FAs are capable of regulating membrane adenylyl cyclases in an isoform-specific manner, and the demonstration that these act at the AC transmembrane domains.
(2) Confirmation of activity in HEK293 cell models and towards endogenous AC activity in mouse cortical membranes.
(3) Opens up a new direction of research to investigate the physiological significance of FA regulation of mACs and investigate their mechanisms as tonic or regulated enhancers or inhibitors of catalytic activity.
(4) Suggests a novel scheme for the classification of mAC isoforms.
Comments on revised version:
The issues I raised have largely been addressed. A minor concern relates to the legend for Figure 2C, where, according to the author's rebuttal, the vertical axis is "The ratio would be (Gsα + oleic acid stimulation) / (Gsα stimulation)" Otherwise, my general evaluation of the importance of the manuscript stands as stated in my initial review, namely, that the manuscript presents data and results that add a new dimension to existing paradigms for AC regulation, and will prompt future research into the role of physiological lipids in isoform-specific activation or inhibition of AC in tissues.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The manuscript by Yu et al seeks to investigate the role of neuritin (Nrn1), identified as a marker of anergic cells, in the biology of regulatory (Tregs) and conventional (Tconv) T cells. Although the role of Nrn1 expressed by Tregs has already been explored (Gonzalez-Figueroa 2021 cited in the manuscript), this manuscript shows original new data suggesting that this molecule would be important in promoting Treg function and inhibiting Tconv effector function by acting at the level of membrane potential and molecule transport across the plasma membrane. However, multiple models have been used, but none has been studied thoroughly enough to provide really conclusive and unambiguous data. For example, 5 different models were used to study T cells in vivo. It would have been preferable to use fewer, but to go further in the study of mechanisms. In the absence of more in-depth study, the conclusions drawn by the authors are often open to questions. Major points concern the fact that there are not enough biological replicates for most experiments and some critical controls and data are lacking. Also, the authors have used iTregs rather than nTregs for many experiments (see below). This is unfortunate because the role of neuritin in T cell biology studied here is new and interesting.
Major points (in the order in which they appear in the text).
(1) A real weakness of this work is the fact that in most of the results shown, there are few biological replicates with differences that are often small between Ctrl and Nrn1 -/-. The systematic use of student's t test may lead to think that the differences are significant, which is often misleading given the small number of samples, which makes it impossible to know whether the distributions are Gaussian and whether a parametric test can be used. RNAseq bulk data are based on biological duplicates, which is open to criticism.<br /> (2) The authors use Nrn1+/+ and Nrn1+/- cells indiscriminately as control cells on the basis of similar biology between Nrn1+/+ and Nrn1+/- cells at homeostasis. However, it is quite possible that the Nrn1+/- cells have a phenotype in situations of in vitro activation or in vivo inflammation (cancer, EAE). It would be important to discriminate Nrn1+/- and Nrn1+/+ cells in the data or to show that both cell types have the same phenotype in these conditions too.<br /> (3) Fig 1A-D. Since the authors are using the Nrp1 KO mice, it would be important to confirm the specificity of the anti-Nrn1 mAb by FACS. Once verified, it would be important to add FACS results with this mAb in Figs 1A-C to have single-cell and quantitative data as well.<br /> (4) Fig 1E-H. The authors assume that this immunization protocol induces anergic cells, but they provide no experimental evidence for this. It would be useful to show that T cells are indeed anergic in this model, especially those that are OVA-specific. The lack of IL-2 production by Cltr cells could be explained by the presence of fewer OVA-specific cells, rather than by an anergic status.<br /> (5) Fig 2A-C and Fig 3. The use of iTregs to try to understand what is happening in vivo is problematic. iTregs are cells that have probably no equivalent in vivo, and so may have no physiological relevance. In any case, they are different from pTreg cells generated in vivo. Working with pTreg may be challenging, that is why I would suggest to generate data with purified nTreg.<br /> (6) Fig 2D-L. The model is designed to study the role of Nrn1 in nTreg. However, the % of Foxp3+ among CD45.2 nTreg cells fell to 5-15% of CD4+ cells (Fig 2F). Since we do not know what is the % of Foxp3 among the injected cells, we do not know whether this very low % is due to very high Treg instability or to preferential expansion of contaminating Tconvs. It is possible that the % of Tconv contaminant is high since Treg were sorted using beads and not FACS on some experiments. As it is very likely that there are Tconv contaminants that would be Nrn1-/- in the group transferred with Nrn1-/- "nTreg", the higher tumor rejection could be due to an overactivation of Nrn1-/- Tconvs (rather than a defect in Nrn1-/- Treg function).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Tracy and colleagues study the loss of daptomycin resistance in Enterococcus faecium isolates from bloodstream infections using in vitro evolution experiments in the absence of antibiotics. They test the hypothesis that antibiotic resistance arising de novo during treatment will carry a higher fitness cost and will revert more readily than resistance isolates which have been transmitted and have therefore already survived in the absence of antibiotic selection pressure.
Strengths:
This is an important question as a fitness cost to resistance is typically found in lab evolution experiments and assumed in modelling studies, but often not identified in clinical isolates. Here the authors find examples of clinical isolates which do and don't revert to sensitivity in in vitro evolution in the absence of antibiotics. Sequencing of the lab evolved isolates revealed that reversal of resistance was often due to mutations in the same gene that evolved in vivo, which is nice evidence that these resistance mutations did confer a fitness cost.
Weaknesses:
Although this is an interesting study on an important topic, currently the results are overinterpreted do not justify the title of the paper 'Reversion to sensitivity explains limited transmission of resistance in a hospital pathogen' for several reasons. Firstly, the patient group, e.g. 'putatively transmitted' isolates vs 'de novo' isolates was not a significant predictor of change in MIC. Instead the change in MIC in the absence of antibiotics was significantly associated with the starting MIC of the isolate in the evolution experiments, but this would be expected since isolates with a higher MIC have more potential to decrease in MIC in the evolution experiments. The abstract and some conclusion do not match the results in some instances, for example the abstract states 'resistance that arose de novo within patients was higher level but exhibited greater declines in resistance in vitro'. In the discussion: they state "these findings support our hypothesis that transmitted resistance strains are less likely to revert". However, on page 14 the initial MICs between DNR and PTR were not significantly different and patient group was not a significant predictor of change in MIC. Sequencing of the lab evolved isolates revealed that reversal of resistance was often due to mutations in the same gene that evolved in vivo. However, there were also some example of mutations in the same genes within the PTR isolates, so it remains unclear if there is a significant difference in behaviour between the DNR and PTR isolates in terms of reversion mutations. Significance testing, controlling for the starting MIC, would help confirm this.
Secondly, the 'putatively transmitted isolates', i.e. isolates that were resistant in the first positive blood culture, do not necessarily represent resistant isolates that have been transmitted between hosts. E. faecium is primarily a commensal of the intestinal tract, but which can cause opportunistic extra-intestinal infections. These bacteremia cases were most likely caused by within-host translocation of a strain already colonizing the intestine to the bloodstream - indeed, it has been shown that antibiotics can lead to Enterococcus overgrowth in the intestine and subsequent bloodstream invasion (DOI: 10.1172/JCI43918). The 'putatively transmitted isolates' may have initially colonised the intestine via between host transmission in an already resistant state, as assumed by the authors, but they may also have evolved resistance de novo within the host's intestine prior to causing bloodstream infections. Since they do not have data on past daptomycin exposure in these individuals it cannot be assumed that these isolates were transmitted with high resistance between hosts. An alternative explanation for any differences between the 'de novo' and 'putatively transmitted' could be the environment where resistance evolved, e.g. the intestine with strong competition from other strains and species, or within the otherwise sterile bloodstream environment. The authors hypothesise that "newly resistant population must continue to transmit between hosts in antibiotic free conditions to ensure its survival" and that "transmission acts as a filter to select for resistance with a lower cost or lower chance of reversion". Rather than transmission per se, it is equally plausible that survival of the newly resistant population within the primary niche, the intestinal microbiota, is the crucial to filter for resistance with a lower cost.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Juvenile Hormone (JH) plays a key role in insect development and physiology. Although the intracellular receptor for JH was identified long ago, a number of studies have shown that part of JH functions should be fulfilled through binding to an unknown membrane receptor, which was proposed to belong to the RTK family. In this study, the authors screened all RTKs from the H. armigera genome for their ability to mediate responses to JH III treatment both in cultured cells and in developping animals. They also present convincing evidence that CAD96CA and FGFR1 directly bind JH III, and that their role might be conserved in other insect species.
Strengths:
Altogether, the experimental approach is very complete and elegant, providing evidence for the role of CAD96CA and FGFR1 in JH signalling using different techniques and in different contexts. I believe that this work will open new perspectives to study the role of JH and better understand what is the contribution of signalling through membrane receptors for JH-dependent developmental processes.
Weaknesses:
Unfortunately, the revised manuscript does not show significant improvement. While the identification of the receptors is highly convincing, important issues about the biological relevance remain unaddressed.
First, the main point I raised about the first version of this article is that the redundancy and/or specificity of the two receptors should be clarified, even though I understand that it cannot be deeply investigated here. I believe that this point, shared by all reviewers, is highly relevant for the scope of this work. In this revised version, it is still unclear how to reconcile gain and loss-of-function experiments and the different expression profiles of the receptors.
Second, the newly added explanations and pieces of discussion provided about the mild in vivo phenotypes of early pupation upon Cad96ca or Fgfr1 knock-out do not clarify the issue but instead put emphasis on methodological issues. Indeed, it is not clear whether the mild phenotypes reflect the biological role of Cad96ca and Fgfr1, or the redundancy of these two RTKs (and/or others), or some issue with the knock-out strategy (partial efficiency, mosaicism...).
Finally, parts of the updated discussion and the modifications to the figures are confusing.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The extra macrochaetae (emc) gene encodes the only Inhibitor of DNA binding protein (Id protein) in Drosophila. Its best-known function is to inhibit proneural genes during development. However, the emc mutants also display non-proneural phenotypes. In this manuscript, the authors examined four non-proneural phenotypes of the emc mutants and reported that they are all caused by inappropriate non-apoptotic caspase activity. These non-neuronal phenotypes are: reduced growth of imaginal discs, increased speed of the morphogenetic furrow, and failure to specify R7 photoreceptor neurons and cone cells during eye development. Double mutants between emc and either H99 (which deletes the three pro-apoptotic genes reaper, grim, and hid) or the initiator caspase dronc suppress these mutant phenotypes of emc suggesting that the cell death pathway and caspase activity are mediating these emc phenotypes. In previous work, the authors have shown that emc mutations elevate the expression of ex which activates the SHW pathway (aka the Hippo pathway). One known function of the SHW pathway is to inhibit Yorkie which controls the transcription of the inhibitor of apoptosis, Diap1. Consistently, in emc clones the levels of Diap1 protein are reduced which might explain why caspase activity is increased in emc clones giving rise to the four non-neural phenotypes of emc mutants. However, this increased caspase activity is not causing ectopic apoptosis, hence the authors propose that this is non-apoptotic caspase activity. In the last part of the manuscript, the authors ruled out that Wg, Dpp, and Hh signaling are the target of caspases, but instead identified Notch signaling as the target of caspases, specifically the Notch ligand Delta. Protein levels of Delta are increased in emc clones in an H99- and dronc-dependent manner. The authors conclude that caspase-dependent non-apoptotic signaling underlies multiple roles of emc that are independent of proneural bHLH proteins.
Strengths:
Overall, this is an interesting manuscript and the findings are intriguing. It adds to the growing number of non-apoptotic functions of apoptotic proteins and caspases in particular. The manuscript is well written and the data are usually convincingly presented.
Weaknesses:
The authors have addressed all my concerns and questions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
This experiment sought to determine what effect congenital/early-onset hearing loss (and associated delay in language onset) has on the degree of inter-individual variability in functional connectivity to the auditory cortex. Looking at differences in variability rather than group differences in mean connectivity itself represents an interesting addition to the existing literature. The sample of deaf individuals was large, and quite homogeneous in terms of age of hearing loss onset, which are considerable strengths of the work. The experiment appears well conducted and the results are certainly of interest.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This manuscript from So et al. describes what is suggested to be an improved protocol for single-nuclei RNA sequencing (snRNA-seq) of adipose tissue. The authors provide evidence that modifications to the existing protocols result in better RNA quality and nuclei integrity than previously observed, with ultimately greater coverage of the transcriptome upon sequencing. Using the modified protocol, the authors compare the cellular landscape of murine inguinal and perigonadal white adipose tissue (WAT) depots harvested from animals fed a standard chow diet (lean mice) or those fed a high-fat diet (mice with obesity).
Strengths:
Overall, the manuscript is well written, and the data are clearly presented. The strengths of the manuscript rest in the description of an improved protocol for snRNA-seq analysis. This should be valuable for the growing number of investigators in the field of adipose tissue biology that are utilizing snRNA-seq technology, as well as those other fields attempting similar experiments with tissues possessing high levels of RNAse activity.
Moreover, the study makes some notable observations that provide the foundation for future investigation. One observation is the correlation between nuclei size and cell size, allowing for the transcriptomes of relatively hypertrophic adipocytes in perigonadal WAT to be examined. Another notable observation is the identification of an adipocyte subcluster (Ad6) that appears "stressed" or dysfunctional and likely localizes to crown-like inflammatory structures where pro-inflammatory immune cells reside.
Weaknesses:
Analogous studies have been reported in the literature, including a notable study from Savari et al. (Cell Metabolism). This somewhat diminishes the novelty of some of the biological findings presented here. This is deemed a minor criticism as the primary goal is to provide a resource for the field.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The blood-brain barrier separates neural tissue from blood-borne factors and is important for maintaining central nervous system health and function. Endothelial cells are the site of the barrier. These cells exhibit unique features relative to peripheral endothelium and a unique pattern of gene expression. There remains much to be learned about how the transcriptome of brain endothelial cells is established in development and maintained throughout life.
The manuscript by Sadanandan, Thomas et al. investigates this question by examining transcriptional and epigenetic changes in brain endothelial cells in embryonic and adult mice. Changes in transcript levels and histone marks for various BBB-relevant transcripts, including Cldn5, Mfsd2a and Zic3 were observed between E13.5 and adult mice. To perform these experiments, endothelial cells were isolated from E13.5 and adult mice, then cultured in vitro, then sequenced. This approach is problematic. It is well-established that brain endothelial cells rapidly lose their organotypic features in culture (https://elifesciences.org/articles/51276). Indeed, one of the primary genes investigated in this study, Cldn1, exhibits very low expression at the transcript level in vivo, but is strongly upregulated in cultured ECs.
(https://elifesciences.org/articles/36187 ; https://markfsabbagh.shinyapps.io/vectrdb/)
This undermines the conclusions of the study. While this manuscript is framed as investigating how epigenetic processes shape BBB formation and maintenance, they may be looking at how brain endothelial cells lose their identity in culture.
An additional concern is that for many experiments, siRNA knockdowns are performed without validation of the efficacy of knockdown.
Some experiments in the paper are promising, however. For example, the knockout of HDAC2 in endothelial cells resulting in BBB leakage was striking. Investigating the mechanisms underlying this phenotype in vivo could yield important insights.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This paper is focused on the role of Cadherin Flamingo (Fmi) in cell competition in developing Drosophila tissues. A primary genetic tool is monitoring tissue overgrowths caused by making clones in the eye disc that expression activated Ras (RasV12) and that are depleted for the polarity gene scribble (scrib). The main system that they use is ey-flp, which make continuous clones in the developing eye-antennal disc beginning at the earliest stages of disc development. It should be noted that RasV12, scrib-i (or lgl-i) clones only lead to tumors/overgrowths when generated by continuous clones, which presumably creates a privileged environment that insulates them from competition. Discrete (hs-flp) RasV12, lgl-i clones are in fact out-competed (PMID: 20679206), which is something to bear in mind. They assess the role of fmi in several kinds of winners, and their data support the conclusion that fmi is required for winner status. However, they make the claim that loss of fmi from Myc winners converts them to losers, and the data supporting this conclusion is not compelling.
Strengths:
Fmi has been studied for its role in planar cell polarity, and its potential role in competition is interesting.
Weaknesses:<br /> I have read the revised manuscript and have found issues that need to be resolved. The biggest concern is the overstatement of the results that loss of fmi from Myc-overexpressing clones turns them into losers. This is not shown in a compelling manner in the revised manuscript and the authors need to tone down their language or perform more experiments to support their claims. Additionally, the data about apoptosis is not sufficiently explained.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
Summary:
This work by Grogan and colleagues aimed to translate animal studies showing that acetylcholine plays a role in motivation by modulating the effects of dopamine on motivation. They tested this hypothesis with a placebo-controlled pharmacological study administering a muscarinic antagonist (trihexyphenidyl; THP) to a sample of 20 adult men performing an incentivized saccade task while undergoing electroencephalography (EEG). They found that reward increased vigor and reduced reaction times (RTs) and, importantly, these reward effects were attenuated by trihexyphenidyl. High incentives increased preparatory EEG activity (contingent negative variation), and though THP also increased preparatory activity, it also reduced this reward effect on RTs.
Strengths:
The researchers address a timely and potentially clinically relevant question with a within-subject pharmacological intervention and a strong task design. The results highlight the importance of the interplay between dopamine and other neurotransmitter systems in reward sensitivity and even though no Parkinson's patients were included in this study, the results could have consequences for patients with motivational deficits and apathy if validated in the future.
Weaknesses:
The main weakness of the study is the small sample size (N=20) that unfortunately is limited to men only. Generalizability and replicability of the conclusions remain to be assessed in future research with a larger and more diverse sample size and potentially a clinically relevant population. The EEG results do not shape a concrete mechanism of action of the drug on reward sensitivity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this study, the authors address whether the dorsal nucleus of the inferior colliculus (DCIC) in mice encodes sound source location within the front horizontal plane (i.e., azimuth). They do this using volumetric two-photon Ca2+ imaging and high-density silicon probes (Neuropixels) to collect single-unit data. Such recordings are beneficial because they allow large populations of simultaneous neural data to be collected. Their main results and the claims about those results are the following:<br /> (1) DCIC single-unit responses have high trial-to-trial variability (i.e., neural noise);<br /> (2) approximately 32% to 40% of DCIC single units have responses that are sensitive to sound source azimuth;<br /> (3) single-trial population responses (i.e., the joint response across all sampled single units in an animal) encode sound source azimuth "effectively" (as stated in the title) in that localization decoding error matches average mouse discrimination thresholds;<br /> (4) DCIC can encode sound source azimuth in a similar format to that in the central nucleus of the inferior colliculus (as stated in the Abstract);<br /> (5) evidence of noise correlation between pairs of neurons exists;<br /> and 6) noise correlations between responses of neurons help reduce population decoding error.<br /> While simultaneous recordings are not necessary to demonstrate results #1, #2, and #4, they are necessary to demonstrate results #3, #5, and #6.
Strengths:<br /> - Important research question to all researchers interested in sensory coding in the nervous system.<br /> - State-of-the-art data collection: volumetric two-photon Ca2+ imaging and extracellular recording using high-density probes. Large neuronal data sets.<br /> - Confirmation of imaging results (lower temporal resolution) with more traditional microelectrode results (higher temporal resolution).<br /> - Clear and appropriate explanation of surgical and electrophysiological methods. I cannot comment on the appropriateness of the imaging methods.
Strength of evidence for the claims of the study:
(1) DCIC single-unit responses have high trial-to-trial variability -<br /> The authors' data clearly shows this.
(2) Approximately 32% to 40% of DCIC single units have responses that are sensitive to sound source azimuth -<br /> The sensitivity of each neuron's response to sound source azimuth was tested with a Kruskal-Wallis test, which is appropriate since response distributions were not normal. Using this statistical test, only 8% of neurons (median for imaging data) were found to be sensitive to azimuth, and the authors noted this was not significantly different than the false positive rate. The Kruskal-Wallis test was not reported for electrophysiological data. The authors suggested that low numbers of azimuth-sensitive units resulting from the statistical analysis may be due to the combination of high neural noise and relatively low number of trials, which would reduce statistical power of the test. This is likely true, and highlights a weakness in the experimental design (i.e., relatively small number of trials). The authors went on to perform a second test of azimuth sensitivity-a chi-squared test-and found 32% (imaging) and 40% (e-phys) of single units to have statistically significant sensitivity. However, the use of a chi-squared test is questionable because it is meant to be used between two categorical variables, and neural response had to be binned before applying the test.
(3) Single-trial population responses encode sound source azimuth "effectively" in that localization decoding error matches average mouse discrimination thresholds -<br /> If only one neuron in a population had responses that were sensitive to azimuth, we would expect that decoding azimuth from observation of that one neuron's response would perform better than chance. By observing the responses of more than one neuron (if more than one were sensitive to azimuth), we would expect performance to increase. The authors found that decoding from the whole population response was no better than chance. They argue (reasonably) that this is because of overfitting of the decoder model-too few trials were used to fit too many parameters-and provide evidence from decoding combined with principal components analysis which suggests that overfitting is occurring. What is troubling is the performance of the decoder when using only a handful of "top-ranked" neurons (in terms of azimuth sensitivity) (Fig. 4F and G). Decoder performance seems to increase when going from one to two neurons, then decreases when going from two to three neurons, and doesn't get much better for more neurons than for one neuron alone. It seems likely there is more information about azimuth in the population response, but decoder performance is not able to capture it because spike count distributions in the decoder model are not being accurately estimated due to too few stimulus trials (14, on average). In other words, it seems likely that decoder performance is underestimating the ability of the DCIC population to encode sound source azimuth.
To get a sense of how effective a neural population is at coding a particular stimulus parameter, it is useful to compare population decoder performance to psychophysical performance. Unfortunately, mouse behavioral localization data do not exist. Instead, the authors compare decoder error to mouse left-right discrimination thresholds published previously by a different lab. However, this comparison is inappropriate because the decoder and the mice were performing different perceptual tasks. The decoder is classifying sound sources to 1 of 13 locations from left to right, whereas the mice were discriminating between left or right sources centered around zero degrees. The errors in these two tasks represent different things. The two data sets may potentially be more accurately compared by extracting information from the confusion matrices of population decoder performance. For example, when the stimulus was at -30 deg, how often did the decoder classify the stimulus to a lefthand azimuth? Likewise, when the stimulus was +30 deg, how often did the decoder classify the stimulus to a righthand azimuth?
(4) DCIC can encode sound source azimuth in a similar format to that in the central nucleus of the inferior colliculus -<br /> It is unclear what exactly the authors mean by this statement in the Abstract. There are major differences in the encoding of azimuth between the two neighboring brain areas: a large majority of neurons in the CNIC are sensitive to azimuth (and strongly so), whereas the present study shows a minority of azimuth-sensitive neurons in the DCIC. Furthermore, CNIC neurons fire reliably to sound stimuli (low neural noise), whereas the present study shows that DCIC neurons fire more erratically (high neural noise).
(5) Evidence of noise correlation between pairs of neurons exists -<br /> The authors' data and analyses seem appropriate and sufficient to justify this claim.
(6) Noise correlations between responses of neurons help reduce population decoding error -<br /> The authors show convincing analysis that performance of their decoder increased when simultaneously measured responses were tested (which include noise correlation) than when scrambled-trial responses were tested (eliminating noise correlation). This makes it seem likely that noise correlation in the responses improved decoder performance. The authors mention that the naïve Bayesian classifier was used as their decoder for computational efficiency, presumably because it assumes no noise correlation and, therefore, assumes responses of individual neurons are independent of each other across trials to the same stimulus. The use of a decoder that assumes independence seems key here in testing the hypothesis that noise correlation contains information about sound source azimuth. The logic of using this decoder could be more clearly spelled out to the reader. For example, if the null hypothesis is that noise correlations do not carry azimuth information, then a decoder that assumes independence should perform the same whether population responses are simultaneous or scrambled. The authors' analysis showing a difference in performance between these two cases provides evidence against this null hypothesis.
Minor weakness:<br /> - Most studies of neural encoding of sound source azimuth are done in a noise-free environment, but the experimental setup in the present study had substantial background noise. This complicates comparison of the azimuth tuning results in this study to those of other studies. One is left wondering if azimuth sensitivity would have been greater in the absence of background noise, particularly for the imaging data where the signal was only about 12 dB above the noise.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
From the Reviewing Editor:
Four reviewers have assessed your manuscript on valence and salience signaling in the central amygdala. There was universal agreement that the question being asked by the experiment is important. There was consensus that the neural population being examined (GABA neurons) was important and the circular shift method for identifying task-responsive neurons was rigorous. Indeed, observing valenced outcome signaling in GABA neurons would considerably increase the role the central amygdala in valence. However, each reviewer brought up significant concerns about the design, analysis and interpretation of the results. Overall, these concerns limit the conclusions that can be drawn from the results. Addressing the concerns (described below) would work towards better answering the question at the outset of the experiment: how does the central amygdala represent salience vs valence.
A weakness noted by all reviewers was the use of the terms 'valence' and 'salience' as well as the experimental design used to reveal these signals. The two outcomes used emphasized non-overlapping sensory modalities and produced unrelated behavioral responses. Within each modality there are no manipulations that would scale either the value of the valenced outcomes or the intensity of the salient outcomes. While the food outcomes were presented many times (20 times per session over 10 sessions of appetitive conditioning) the shock outcomes were presented many fewer times (10 times in a single session). The large difference in presentations is likely to further distinguish the two outcomes. Collectively, these experimental design decisions meant that any observed differences in central amygdala GABA neuron responding are unlikely to reflect valence, but likely to reflect one or more of the above features.
A second weakness noted by a majority of reviewers was a lack of cue-responsive unit and a lack of exploration of the diversity of response types, and the relationship cue and outcome firing. The lack of large numbers of neurons increasing firing to one or both cues is particularly surprising given the critical contribution of central amygdala GABA neurons to the acquisition of conditioned fear (which the authors measured) as well as to conditioned orienting (which the authors did not measure). Regression-like analyses would be a straightforward means of identifying neurons varying their firing in accordance with these or other behaviors. It was also noted that appetitive behavior was not measured in a rigorous way. Instead of measuring time near hopper, measures of licking would have been better. Further, measures of orienting behaviors such as startle were missing.<br /> The authors also missed an opportunity for clustering-like analyses which could have been used to reveal neurons uniquely signaling cues, outcomes or combinations of cues and outcomes. If the authors calcium imaging approach is not able to detect expected central amygdala cue responding, might it be missing other critical aspects of responding?
All reviewers point out that the evidence for salience encoding is even more limited than the evidence for valence. Although the specific concern for each reviewer varied, they all centered on an oversimplistic definition of salience. Salience ought to scale with the absolute value and intensity of the stimulus. Salience cannot simply be responding in the same direction. Further, even though the authors observed subsets of central amygdala neurons increasing or decreasing activity to both outcomes - the outcomes can readily be distinguished based on the temporal profile of responding.
Additional concerns are raised by each reviewer. Our consensus is that this study sought to answer an important question - whether central amygdala signal salience or valence in cue-outcome learning. However, the experimental design, analyses, and interpretations do not permit a rigorous and definitive answer to that question. Such an answer would require additional experiments whose designs would address the significant concerns described here. Fully addressing the concerns of each reviewer would result in a re-evaluation of the findings. For example, experimental design better revealing valence and salience, and analyses describing diversity of neuronal responding and relationship to behavior would likely make the results Important or even Fundamental.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This manuscript by Garbelli et al. investigates the roles of excitatory amino acid transporters (EAATs) in retinal bipolar cells. The group previously identified that EAAT5b and EAAT7 are expressed at the dendritic tips of bipolar cells, where they connect with photoreceptor terminals. The previous study found that the light responses of bipolar cells, measured by electroretinogram (ERG) in response to white light, were reduced in double mutants, though there was little to no reduction in light responses in single mutants of either EAAT5b or EAAT7.
The current study further explores the roles of EAAT5b and EAAT7 in bipolar cells' chromatic responses. The authors found that bipolar cell responses to red light, but not to green or UV-blue light, were reduced in single mutants of both EAAT5b and EAAT7. In contrast, UV-blue light responses were reduced in double mutants. Additionally, the authors observed that EAAT5b, but not EAAT7, is strongly localized in the UV cone-enriched area of the eye, known as the "Strike Zone (SZ)." This led them to investigate the impact of the EAAT5b mutation on prey detection performance, which is mediated by UV cones in the SZ. Surprisingly, contrary to the predicted role of EAAT5b in prey detection, EAAT5b mutants did not show any changes in prey detection performance compared to wild-type fish. Interestingly, EAAT7 mutants exhibited enhanced prey detection performance, though the underlying mechanisms remain unclear.
The distribution of EAAT7 protein in the outer plexiform layer across the eye correlates with the distribution of red cones. Based on this, the authors tested the behavioral performance driven by red light in EAAT5b and EAAT7 mutants. The results here were again somewhat contrary to predictions based on ERG findings and protein localization: the optomotor response was reduced in EAAT5b mutants, but not in EAAT7 mutants.
Strengths:
Although the paper lacks cohesive conclusions, as many results contradict initial predictions as mentioned above, the authors discuss possible mechanisms for these contradictions and suggest future avenues for study. Nevertheless, this paper demonstrates a novel mechanism underlying chromatic information processing.<br /> The manuscript is well-written, the data are well-presented, and the analysis is thorough.
Weaknesses:
I have only a minor comment. The authors present preliminary data on mGluR6b distribution across the eye. Since this result is based on a single fish, I recommend either adding more samples or removing this data, as it does not significantly impact the paper's main conclusions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Previous work demonstrated a strong bias in the percept of an ambiguous Shepard tone as either ascending or descending in pitch, depending on the preceding contextual stimulus. The authors recorded human MEG and ferret A1 single-unit activity during presentation of stimuli identical to those used in the behavioral studies. They used multiple neural decoding methods to test if context-dependent neural responses to ambiguous stimulus replicated the behavioral results. Strikingly, a decoder trained to report stimulus pitch produced biases opposite to the perceptual reports. These biases could be explained robustly by a feed-forward adaptation model. Instead, a decoder that took into account direction selectivity of neurons in the population was able to replicate the change in perceptual bias.
Strengths:
This study explores an interesting and important link between neural activity and sensory percepts, and it demonstrates convincingly that traditional neural decoding models cannot explain percepts. Experimental design and data collection appear to have been executed carefully. Subsequent analysis and modeling appear rigorous. The conclusion that traditional decoding models cannot explain the contextual effects on percepts is quite strong.
Weaknesses:
Beyond the very convincing negative results, it is less clear exactly what the conclusion is or what readers should take away from this study. The presentation of the alternative, "direction aware" models is unclear, making it difficult to determine if they are presented as realistic possibilities or simply novel concepts. Does this study make predictions about how information from auditory cortex must be read out by downstream areas? There are several places where the thinking of the authors should be clarified, in particular, around how this idea of specialized readout of direction-selective neurons should be integrated with a broader understanding of auditory cortex.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In their manuscript the authors report that fecal transplantation from young mice into old mice alleviates susceptibility to gout. The gut microbiota in young mice is found to inhibit activation of the NLRP3 inflammasome pathway and reduce uric acid levels in the blood in the gout model.
Strengths:
They focused on the butanoate metabolism pathway based on the results of metabolomics analysis after fecal transplantation and identified butyrate as the key factor in mitigating gout susceptibility. In general, this is a well-performed study.
Weaknesses:
The discussion on the current results and previous studies regarding the effect of butyrate on gout symptoms is insufficient. The authors need to provide a more thorough discussion of other possible mechanisms and relevant literature.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Tleiss et al. demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. This effect induces muscular muscle contraction, which is marked by the formation of TARM structures (thoracic ary-related muscles). This muscle contraction-related blocking happens early after infection (15mins). On the other side, the clearance of bacteria is done by the IMD pathway possibly through antimicrobial peptide production while it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense.
In general, this fundamentally important study reveals unique mechanisms in the gut immunity of Drosophila larvae. It also describes a previously understudied structure, TARM, which may play a crucial role in this process. This significant work substantially advances our understanding of pathogen clearance by identifying a new mode of pathogen eradication from the insect gut. The evidence supporting the authors' claims is compelling, and the study opens new avenues for future research in gut immunity.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The planarian flatworm Schmidtea mediterranea is widely used as a model system for regeneration because of its remarkable ability to regenerate its entire body plan from very small fragments of tissue, including the complete and rapid regeneration of the CNS. Prior to this study, analysis of CNS regeneration in planaria has mostly been performed on a gross anatomical level. Despite its simplicity compared to vertebrates, the CNS of many invertebrates, including planaria, is nonetheless complex, intricate, and densely packed. Some invertebrate models allow the visualization of individual cellular components of the CNS using transgenic techniques. Until transgenesis becomes commonplace in planaria, the visualization and analysis of detailed CNS anatomy must rely on alternate approaches in order to capitalize on the immense promise of this system as a model for CNS regeneration. Another challenge for the study of the CNS more broadly is how to perform imaging of a complete CNS on a reasonable timescale such that multiple individuals per experimental condition can be imaged.
Strengths:
In this report, Lu et al. describe a careful and detailed analysis of the planarian neuroanatomy and musculature in both the homeostatic and regenerating contexts. To improve the effective resolution of their imaging, the authors optimized a tissue expansion protocol for planaria. Imaging was performed by light sheet microscopy, and the resulting optical sections were tiled to reconstruct whole worms. Labelled tissues and cells were then segmented to allow quantification of neurons and muscle fibers, as well as all cells in individual worms using a DNA dye. The resulting workflow can produce highly detailed and quantifiable 3D reconstructions at a rate that is fast enough to allow the analysis of large numbers of animals.
Weaknesses:
Lu et al. use their workflow to visualize RNA expression of five enzymes that are each involved in the biosynthetic pathway of different neurotransmitters/modulators, namely chat (cholinergeric), gad (GABAergic), tbh (octopaminergic), th (dopaminergic), and tph (serotonergic). In this way, they generate an anatomical atlas of neurons that produce these molecules. Collectively these markers are referred to as the "neuronpool." They overstate when they write, "The combination of these five types of neurons constitutes a neuron pool that enables the labeling of all neurons throughout the entire body." This statement does not accurately represent the state of our knowledge about the diversity of neurons in S. mediterranea. There are several lines of evidence that support the presence of glutamatergic and glycinergic neurons, including the following. The glutamate receptor agonists NMDA and AMPA both produce seizure-like behaviors in S. mediterranea that are blocked by the application of glutamate receptor antagonists MK-801 and DNQX (which antagonize NMDA and AMPA glutamate receptors, respectively; Rawls et al., 2009). scRNA-Seq data indicates that neurons in S. mediterranea express a vesicular glutamate transporter, a kainite-type glutamate receptor, a glycine receptor, and a glycine transporter (Brunet Avalos and Sprecher, 2021; Wyss et al., 2022). Two AMPA glutamate receptors, GluR1 and GluR2, are known to be expressed in the CNS of another planarian species, D. japonica (Cebria et al., 2002). Likewise, there is abundant evidence for the presence of peptidergic neurons in S. mediterranea (Collins et al., 2010; Fraguas et al., 2012; Ong et al., 2016; Wyss et al., 2022; among others) and in D. japonica (Shimoyama et al., 2016). For these reasons, the authors should not assume that all neurons can be assayed using the five markers that they selected. The situation is made more complex by the fact that many neurons in S. mediterranea appear to produce more than one neurotransmitter/modulator/peptide (Brunet Avalos and Sprecher, 2021; Wyss et al., 2022), which is common among animals (Vaaga et al., 2014; Brunet Avalos and Sprecher, 2021). However the published literature indicates that there are substantial populations of glutamatergic, glycinergic, and peptidergic neurons in S. mediterranea that do not produce other classes of neurotransmission molecule (Brunet Avalos and Sprecher, 2021; Wyss et al., 2022). Thus it seems likely that the neuronpool will miss many neurons that only produce glutamate, glycine or a neuropeptide.
The authors use their technique to image the neural network of the CNS using antibodies raised vs. Arrestin, Synaptotagmin, and phospho-Ser/Thr. They document examples of both contralateral and ipsilateral projections from the eyes to the brain in the optic chiasma (Figure 1C-F). These data all seem to be drawn from a single animal in which there appears to be a greater than normal number of nerve fiber defasciculatations. It isn't clear how well their technique works for fibers that remain within a nerve tract or the brain. The markers used to image neural networks are broadly expressed, and it's possible that most nerve fibers are too densely packed (even after expansion) to allow for image segmentation. The authors also show a close association between estrella-positive glial cells and nerve fibers in the optic chiasma.
The authors count all cell types, neuron pool neurons, and neurons of each class assayed. They find that the cell number to body volume ratio remains stable during homeostasis (Figure S3C), and that the brain volume steadily increases with increasing body volume (Figure S3E). They also observe that the proportion of neurons to total body cells is higher in worms 2-6 mm in length than in worms 7-9 mm in length (Figure 2D, S3F). They find that the rate at which four classes of neurons (GABAergic, octopaminergic, dopaminergic, serotonergic) increase relative to the total body cell number is constant (Figure S3G-J). They write: "Since the pattern of cholinergic neurons is the major cell population in the brain, these results suggest that the above observation of the non-linear dynamics between neurons and cell numbers is likely from the cholinergic neurons." This conclusion should not be reached without first directly counting the number of cholinergic neurons and total body cells. Given that glutamatergic, glycinergic, and peptidergic neurons were not counted, it also remains possible that the non-linear dynamics are due (in part or in whole) to one or more of these populations.
The authors next assayed the production of different classes of neurons in regenerating post-pharyngeal tail fragments. At 14 dpa, they find significantly reduced proportions of octopaminergic, GABAergic, and dopaminergic neurons in these regenerated animals (Figure 3K). Given that these three neuron classes are primarily found in the brain region (Figure S2A), this suggests that the brains of these animals may not have finished regenerating by 14 dpa.
The authors next applied their imaging and segmentation technique to the musculature using the 6G10 antibody. They find that the body wall muscle fibers from the dorsal and ventral body walls integrate differently at the anterior end (to form a cobweb-like arrangement) compared to the posterior end (Figure 4I). They knock down β-catenin in regenerating head anterior fragments and find that the resulting double-headed worms produce a cobweb-like arrangement at both ends (Figure 4J).
RNAi knockdown of inr-1 is known to produce mobility defects and have elongated bodies relative to control animals (Lei et al., 2016; Figure S6A). To understand the nature of these defects, the authors image the muscle of inr-1 RNAi animals and find increased circular body wall muscle fibers on both dorsal and ventral sides, while β-catenin RNAi animals have increased longitudinal muscle fibers on the dorsal side (Figure 6C). The inr-1 RNAi animals also have reduced cholinergic neurons (Figure S6B), and ectopic expression of the GABAergic marker gad in the periphery (Figure S6B). Lastly the authors simultaneously image muscle and estrella-positive glia and find that these glia lack their typically elaborate stellate morphology in inr-1 RNAi animals (Figure 6E, S6E-K). The combination of this muscle, neuronal, and glial defects may account for the mobility defects observed in inr-1 RNAi worms.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors addressed the influence of DKK2 on colorectal cancer (CRC) metastasis to the liver using an orthotopic model transferring AKP-mutant organoids into the spleens of wild-type animals. They found that DKK2 expression in tumor cells led to enhanced liver metastasis and poor survival in mice. Mechanistically, they associate Dkk2-deficiency in donor AKP tumor organoids with reduced Paneth-like cell properties, particularly Lz1 and Lyz2, and defects in glycolysis. Quantitative gene expression analysis showed no significant changes in Hnf4a1 expression upon Dkk2 deletion. Ingenuity Pathway Analysis of RNA-Seq data and ATAC-seq data point to a Hnf4a1 motif as a potential target. They also show that HNF4a binds to the promoter region of Sox9, which leads to LYZ expression and upregulation of Paneth-like properties. By analyzing available scRNA data from human CRC data, the authors found higher expression of LYZ in metastatic and primary tumor samples compared to normal colonic tissue; reinforcing their proposed link, HNF4a was highly expressed in LYZ+ cancer cells compared to LYZ- cancer cells.
Strengths:
Overall, this study contributes a novel mechanistic pathway that may be related to metastatic progression in CRC.
Weaknesses:
The main concerns are related to incremental gains, missing in vivo support for several of their conclusions in murine models, and missing human data analyses.
Main comments
Novelty:<br /> The authors previously described the role of DKK2 in primary CRC, correlating increased DKK2 levels to higher Src phosphorylation and HNF4a1 degradation, which in turn enhances LGR5 expression and "stemness" of cancer cells, resulting in tumor progression (PMID: 33997693). A role for DKK2 in metastasis has also been previously described (sarcoma, PMID: 23204234)
Mouse data:<br /> (a) The authors analyzed liver mets, but the main differences between AKT and AKP/Dkk2 KO organoids could arise during the initial tumor cell egress from the intestinal tissue (which cannot be addressed in their splenic injection model), or during pre-liver stages, such as endothelial attachment. While the analysis of liver mets is interesting, given that Paneth cells play a role in the intestinal stem cell niche, it is questionable whether a study that does not involve the intestine can appropriately address this pathway in CRC metastasis.<br /> (b) The overall number of Paneth cells found in the scRNA-seq analysis of liver mets was low (17 cells, Fig.3), and assuming that these cells are driving the differences seems somewhat far-fetched.<br /> (c) Fig. 6 suggests a signaling cascade in which the absence of DKK2 leads to enhanced HNF4A expression, which in turn results in reduced Sox9 expression and hence reduced expression of Paneth cell properties. It is therefore crucial that the authors perform in vivo (splenic organoid injection) loss-of-function experiments, knockdown of Sox9 expression in AKP organoids, and Sox9 overexpression experiments in AKP/Dkk2 KO organoids to demonstrate Sox9 as the central downstream transcription factor regulating liver CRC metastasis.<br /> (d) Given the previous description of the role of DKK2 in primary CRC, it is important to define the step of liver metastasis affected by Dkk2 deficiency in the metastasis model. Does it affect extravasation, liver survival, etc.?
Human data:<br /> Can the authors address whether the expression of Dkk2 changes in human CRC and whether mutations in Dkk2 as correlated with metastatic disease or CRC stage?
Bioinformatic analysis<br /> GEO repositories remain not open (at the time of the re-review) and SRA links for raw data are still unavailable. Without access to raw data, it is not possible to verify the analyses or fully assess the results. A part of the article was made by re-analyzing public data so the authors should make even the raw available and not just the count tables
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this article the authors described mouse models presenting with backer muscular dystrophy, they created three transgenic models carrying three representative exon deletions: ex45-48 del., ex45-47 19 del., and ex45-49 del.. This article is well written but needs improvement in some points.
Strengths:
This article is well written. The evidence supporting the authors' claims is robust, though further implementation is necessary. The experiments conducted align with the current state-of-the-art methodologies.
Weaknesses:
This article does not analyze atrophy in the various mouse models. Implementing this point would improve the impact of the work
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors have assembled a cohort of 10 SiNET, 1 SiAdeno, and 1 lung MiNEN samples to explore the biology of neuroendocrine neoplasms. They employ single-cell RNA sequencing to profile 5 samples (siAdeno, SiNETs 1-3, MiNEN) and single-nuclei RNA sequencing to profile seven frozen samples (SiNET 4-10).
They identify two subtypes of siNETs, characterized by either epithelial or neuronal NE cells, through a series of DE analyses. They also report findings of higher proliferation in non-malignant cell types across both subtypes. Additionally, they identify a potential progenitor cell population in a single-lung MiNEN sample.
Strengths:
Overall, this study adds interesting insights into this set of rare cancers that could be very informative for the cancer research community. The team probes an understudied cancer type and provides thoughtful investigations and observations that may have translational relevance.
Weaknesses:
The study could be improved by clarifying some of the technical approaches and aspects as currently presented, toward enhancing the support of the conclusions:
(1) Methods: As currently presented, it is possible that the separation of samples by program may be impacted by tissue source (fresh vs. frozen) and/or the associated sequencing modality (single cell vs. single nuclei). For instance, two (SiNET1 and SiNET2) of the three fresh tissues are categorized into the same subtype, while the third (SiNET9) has very few neuroendocrine cells. Additionally, samples from patient 1 (SiNET1 and SiNET6) are separated into different subtypes based on fresh and frozen tissue. The current text alludes to investigations (i.e.: "Technical effects (e.g., fresh vs. frozen samples) could also impact the capture of distinct cell types, although we did not observe a clear pattern of such bias."), but the study would be strengthened with more detail.
(2) Results:<br /> Heterogeneity in the SiNET tumor microenvironment: It is unclear if the current analysis of intratumor heterogeneity distinguishes the subtypes. It may be informative if patterns of tumor microenvironment (TME) heterogeneity were identified between samples of the same subtype. The team could also evaluate this in an extension cohort of published SiNET tumors (i.e. revisiting additional analyses using the SiNET bulk RNAseq from Alvarez et al 2018, a subset of single-cell data from Hoffman et al 2023, or additional bulk RNAseq validation cohorts for this cancer type if they exist [if they do not, then this could be mentioned as a need in Discussion])
(3) Proliferation of NE and immune cells in SiNETs: The observed proliferation of NE and immune cells in SiNETs may also be influenced by technical factors (including those noted above). For instance, prior studies have shown that scRNA-seq tends to capture a higher proportion of immune cells compared to snRNA-seq, which should be considered in the interpretation of these results. Could the team clarify this element?
(4) Putative progenitors in mixed tumors: As written, the identification of putative progenitors in a single lung MiNEN sample feels somewhat disconnected from the rest of the study. These findings are interesting - are similar progenitor cell populations identified in SiNET samples? Recognizing that ideally additional validation is needed to confidently label and characterize these cells beyond gene expression data in this rare tumor, this limitation could be addressed in a revised Discussion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This study evaluates whether species can shift geographically, temporally, or both ways in response to climate change. It also teases out the relative importance of geographic context, temperature variability, and functional traits in predicting the shifts. The study system is large occurrence datasets for dragonflies and damselflies split between two time periods and two continents. Results indicate that more species exhibited both shifts than one or the other or neither, and that geographic context and temp variability were more influential than traits. The results have implications for future analyses (e.g. incorporating habitat availability) and for choosing winner and loser species under climate change. The methodology would be useful for other taxa and study regions with strong community/citizen science and extensive occurrence data.
Strengths:
This is an organized and well-written paper that builds on a popular topic and moves it forward. It has the right idea and approach, and the results are useful answers to the predictions and for conservation planning (i.e. identifying climate winners and losers). There is technical proficiency and analytical rigor driven by an understanding of the data and its limitations.
Weaknesses:
(1) The habitat classifications (Table S3) are often wrong. "Both" is overused. In North America, for example, Anax junius, Cordulia shurtleffii, Epitheca cynosura, Erythemis simplicicollis, Libellula pulchella, Pachydiplax longipennis, Pantala flavescens, Perithemis tenera, Ischnura posita, the Lestes species, and several Enallagma species are not lotic breeding. These species rarely occur let alone successfully reproduce at lotic sites. Other species are arguably "both", like Rhionaeschna multicolor which is mostly lentic. Not saying this would have altered the conclusions, but it may have exacerbated the weak trait effects.
(2) The conservative spatial resolution (100 x 100 km) limits the analysis to wide-ranging and generalist species. There's no rationale given, so not sure if this was by design or necessity, but it limits the number of analyzable species and potentially changes the inference.
(3) The objective includes a prediction about generalists vs specialists (L99-103) yet there is no further mention of this dichotomy in the abstract, methods, results, or discussion.
(4) Key references were overlooked or dismissed, like in the new edition of Dragonflies & Damselflies model organisms book, especially chapters 24 and 27.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Chen and Phillips describe the dynamic appearance of cytoplasmic granules during embryogenesis analogous to SIMR germ granules, and distinct from CSR-1-containing granules, in the C. elegans germline. They show that the nuclear Argonaute NRDE-3, when mutated to abrogate small RNA binding, or in specific genetic mutants, partially colocalizes to these granules along with other RNAi factors, such as SIMR-1, ENRI-2, RDE-3, and RRF-1. Furthermore, NRDE-3 RIP-seq analysis in early vs. late embryos is used to conclude that NRDE-3 binds CSR-1-dependent 22G RNAs in early embryos and ERGO-1-dependent 22G RNAs in late embryos. These data lead to their model that NRDE-3 undergoes small RNA substrate "switching" that occurs in these embryonic SIMR granules and functions to silence two distinct sets of target transcripts - maternal, CSR-1 targeted mRNAs in early embryos and duplicated genes and repeat elements in late embryos.
Strengths:
The identification and function of small RNA-related granules during embryogenesis is a poorly understood area and this study will provide the impetus for future studies on the identification and potential functional compartmentalization of small RNA pathways and machinery during embryogenesis.
Weaknesses:
(1) While the authors acknowledge the following issue, their finding that loss of SIMR granules has no apparent impact on NRDE-3 small RNA loading puts the functional relevance of these structures into question. As they note in their Discussion, it is entirely possible that these embryonic granules may be "incidental condensates." It would be very welcomed if the authors could include some evidence that these SIMR granules have some function; for example, does the loss of these SIMR granules have an effect on CSR-1 targets in early embryos and ERGO-1-dependent targets in late embryos?
(2) The analysis of small RNA class "switching" requires some clarification. The authors re-define ERGO-1-dependent targets in this study to arrive at a very limited set of genes and their justification for doing this is not convincing. What happens if the published set of ERGO-1 targets is used? Further, the NRDE-3 RIP-seq data is used to conclude that NRDE-3 predominantly binds CSR-1 class 22G RNAs in early embryos, while ERGO-1-dependent 22G RNAs are enriched in late embryos. a) The relative ratios of each class of small RNAs are given in terms of unique targets. What is the total abundance of sequenced reads of each class in the NRDE-3 IPs? b) The "switching" model is problematic given that even in late embryos, the majority of 22G RNAs bound by NRDE-3 is in the CSR-1 class (Figure 5D). c) A major difference between NRDE-3 small RNA binding in eri-1 and simr-1 mutants appears to be that NRDE-3 robustly binds CSR-122G RNAs in eri-1 but not in simr-1 in late embryos. This result should be better discussed.
(3) Ultimately, if the switching is functionally important, then its impact should be observed in the expression of their targets. RNA-seq or RT-qPCR of select CSR-1 and ERGO-1 targets should be assessed in nrde-3 mutants during early vs late embryogenesis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Furman et al. reanalyze data from a previous study and investigate alterations of peak alpha frequency (PAF) and alpha power (AP) in the context of prolonged pain with electroencephalography (EEG). Using two experimental pain models (phasic and capsaicin heat pain), they set out to clarify if previously reported changes in alpha activity in chronic pain can already be observed during prolonged pain in healthy human participants. They conclude that PAF is reliably slowed, and AP reliably decreased in response to prolonged pain. From the patterns of their findings, they furthermore deduce that AP changes indicate the presence of ongoing pain while PAF changes reflect pain-associated states like sensitization which can outlast ongoing pain percepts and indicate a potential for experiencing pain. Lastly, they conclude that the reported changes in alpha activity are likely due to specific power decreases in the faster alpha range between 10 and 12 Hz and discuss potential clinical implications of their findings in terms of risk biomarkers and early pain interventions.
Strengths:
The study focuses on a timely topic with potential implications for chronic pain diagnosis and treatment, an area that urgently needs new approaches. The addressed questions nicely build upon and extend the previous work of the authors. The analyzed data set is comprehensive including two different prolonged pain paradigms, two visits following the same experimental procedures, and a total sample size of n = 61 participants. Thereby, it enabled internal replications of findings across both paradigms and visits, which is important to confirm the consistency of findings.
Weaknesses:
One overarching difficulty is the high number of analyses presented by the authors. They were in part developed "on the go", are not always easy to follow, and sidetrack the reader from the main findings. Only a minor part of the analyses is described in the methods section, while many analyses are outlined within the results, the supplementary material, and/or figure legends. In addition, a range of purely descriptive findings are displayed. Overall, the manuscript would clearly benefit from a more streamlined and consistent presentation of the applied methods and results.
Concerning the main findings, the presented evidence for a slowing of PAF and a reduction of AP in the context of both phasic and capsaicin heat pain and across both visits is convincing. The location of the peak of the effect at left frontocentral areas, however, remains puzzling. The authors convincingly show that the effect cannot be explained by activity related to the pain rating procedure and provide evidence that an effect of the same direction can also observed at corresponding electrodes contralateral to pain stimulation. However, further reasons are not discussed.
The conclusion that PAF slowing might be more related to pain-associated states like sensitization rather than the presence of ongoing pain is deduced from a continued slowing of PAF after capsaicin-induced pain has subsided, while AP goes back to baseline values. Although this speculation is interesting, the readers should be aware that this dissociation was unexpected and resulted in changes in the main a-priori-defined statistical contrasts presented in the methods section. Further replications in future studies are needed to strengthen this finding.
The last conclusion made by the authors is that the observed changes in alpha activity are caused by specific changes in the faster alpha range and are the least convincing. If I understand correctly, the only presented statistical evidence corroborating this conclusion is based on the single selected electrode C3 shown in Figure 5 A, D, and E. With the remaining parts of Figure 5 and Figure 6, differences are discussed but Figures do not include statistical results. Unless the discussed findings are backed up more clearly, the degree of mechanistic conclusions concerning the 10-12 Hz power changes throughout the title, abstract, and main manuscript and in relation to the multiple oscillators model seems not justified.
Lastly, it is important to note that the current manuscript was published as a preprint in 2021. Thus, the cited literature still needs to be updated, and the present findings need to be integrated with the work published since. For example, a recent systematic review on potential M/EEG-based biomarkers of chronic pain (Zebhauser et al., 2023, Pain) revealed that previous evidence concerning changes of alpha activity in chronic pain is much less consistent than currently outlined in the manuscript.
Overall:
All in all, the presented findings extend previous knowledge concerning the role of alpha activity in pain and thus represent a valuable contribution towards a better understanding of the mechanisms of pain and potential new treatment targets.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The manuscript uses large-scale existing datasets that span almost the full range of human life (5-100 years) to identify two distinct architectural cortical gradients within the visual cortex. These gradients are distinct: in one, cytoarchitecture and myeloarchitecture converge and in the other, they diverge. The authors tested whether these gradients mapped onto known functional properties of the visual cortex, as well as accounting for visual behaviours that are impacted throughout the lifespan. The manuscript also reports the identification of a hitherto unknown cluster of visual field maps in the anterior temporal lobe.
Strengths:
A major strength of the current manuscript is the use of large-scale measurements of human brain structure throughout the lifespan, courtesy of the Human Connectome Project Initiative. The scope of this cross-sectional analysis would be rare, if not impossible to achieve through an individual project.
The approach employed holds promise for assessing the link between large-scale anatomical gradients in the brain and functional/behavioural properties. The current manuscript focuses on the visual cortex but the approach could easily be implemented across the brain in general.
Weaknesses:
While the evidence in favour of the two gradients largely supports the claims, the evidence for a new visual field map cluster in the anterior temporal lobe falls short of the level used historically when identifying visual field maps in the visual cortex and is, at present, not convincing.
More specifically, the progressions of polar angle within the putative anterior lobe cluster are highly variable across subjects. Few subjects have convincing polar angle reversals at either the horizontal or vertical meridians. In other cases, a putative border is shown that spans different polar angles, which does not align with the accepted definitions for visual field maps in the cortex.
-
-
-
Reviewer #1 (Public review):
Summary:
In the presented study, the authors aim to explore the role of nociceptors in the fine particulate matter (FPM) mediated Asthma phenotype, using rodent models of allergic airway inflammation. This manuscript builds on previous studies, and identify transciptomic reprogramming and an increased sensitivity of the jugular nodose complex (JNC) neurons, one of the major sensory ganglion for the airways, on exposure to FPM along with Ova during the challenge phase. The authors then use OX-314 a selectively permeable form of lidocaine, and TRPV1 knockouts to demonstrate that nociceptor blocking can reduce airway inflammation in their experimental setup.
The authors further identify the presence of Gfra3 on the JNC neurons, a receptor for the protein Artemin, and demonstrate their sensitivity to Artmein as a ligand. They further show that alveolar macrophages release Artemin on exposure to FPM.
Strengths:
The study builds on results available from multiple previous work, and presents important results which allow insights into the mixed phenotypes of Asthma seen clinically. In addition, by identifying the role of nociceptors, they identify potential therapeutic targets which bear high translational potential.
Weaknesses:
While the results presented in the study are highly relevant, there is a need for further mechanistic dissection to allow better inferences. Currently certain results seem assocaitive. Also, certain visualisations and experimental protocols presented in the manuscript need careful assessment and interpretation.
While Asthma is a chronic disease, the presented results are particularly important to explore Asthma exacerbations in response to acute expsoure to air pollutants. This is relevant in today's age of increasing air pollution and increasing global travel.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In their comprehensive analysis Diallo et al. deorphanise the first olfactory receptor of a non-hymenopteran eusocial insect - a termite and identified the well-established trail pheromone neocembrene as the receptor's best ligand. By using a large set of odorants the authors convincingly show that, as expected for a pheromone receptor, PsimOR14 is very narrowly tuned. While the authors first make use of an ectopic expression system, the empty neuron of Drosophila melanogaster, to characterise the receptor's responses, they next perform single sensillum recordings with different sensilla types on the termite antenna. By that, they are able to identify a sensillum that houses three neurons, of which the B neuron exhibits the narrow responses described for PsimOR14. Hence the authors do not only identify the first pheromone receptor in a termite but can even localize its expression on the antenna. The authors in addition perform a structural analysis to explain the binding properties of the receptor and its major and minor ligands (as this is beyond my expertise, I cannot judge this part of the manuscript). Finally, they compare expression patterns of ORs in different castes and find that PsimOR14 is more strongly expressed in workers than in soldier termites, which corresponds well with stronger antennal responses in the worker caste.
Strengths:
The manuscript is well-written and a pleasure to read. The figures are beautiful and clear. I actually had a hard time coming up with suggestions.
Weaknesses:
Whenever it comes to the deorphanization of a receptor and its potential role in behaviour (in the case of the manuscript it would be trail-following of the termite) one thinks immediately of knocking out the receptor to check whether it is necessary for the behaviour. However, I definitely do not want to ask for this (especially as the establishment of CRISPR Cas-9 in eusocial insects usually turns out to be a nightmare). I also do not know either, whether knockdowns via RNAi have been established in termites, but maybe the authors could consider some speculation on this in the discussion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Sattin, Nardin, and colleagues designed and evaluated corrective microlenses that increase the useable field of view of two long (>6mm) thin (500 um diameter) GRIN lenses used in deep-tissue two-photon imaging. This paper closely follows the thread of earlier work from the same group (e.g. Antonini et al, 2020; eLife), filling out the quiver of available extended-field-of-view 2P endoscopes with these longer lenses. The lenses are made by a molding process that appears practical and easy to adopt with conventional two-photon microscopes.
Simulations are used to motivate the benefits of extended field of view, demonstrating that more cells can be recorded, with less mixing of signals in extracted traces, when recorded with higher optical resolution. In vivo tests were performed in the piriform cortex, which is difficult to access, especially in chronic preparations.
The design, characterization, and simulations are clear and thorough, but not exhaustive (see below), and do not break new ground in optical design or biological application. However, the approach shows much promise, including for applications not mentioned in the present text such as miniaturized GRIN-based microscopes. Readers will largely be interested in this work for practical reasons: to apply the authors' corrected endoscopes.
Strengths:
The text is clearly written, the ex vivo analysis is thorough and well-supported, and the figures are clear. The authors achieved their aims, as evidenced by the images presented, and were able to make measurements from large numbers of cells simultaneously in vivo in a difficult preparation.
Weaknesses:
(1) The novelty of the present work over previous efforts from the same group is not well explained. What needed to be done differently to correct these longer GRIN lenses?
(2) Some strong motivations for the method are not presented. For example, the introduction (page 3) focuses on identifying neurons with different coding properties, but this can be done with electrophysiology (albeit with different strengths and weaknesses). Compared to electrophysiology, optical methods more clearly excel at genetic targeting, subcellular measurements, and molecular specificity; these could be mentioned. Another example, in comparing microfabricated lenses to other approaches, an unmentioned advantage is miniaturization and potential application to mini-2P microscopes, which use GRIN lenses.
(3) Some potentially useful information is lacking, leaving critical questions for potential adopters:
How sensitive is the assembly to decenter between the corrective optic and the GRIN lens? What is the yield of fabrication and of assembly?
Supplementary Figure 1: Is this really a good agreement between the design and measured profile? Does the figure error (~10 um in some cases on average) noticeably degrade the image? How do individual radial profiles compare to the presented means?<br /> What is the practical effect of the strong field curvature? Are the edges of the field, which come very close to the lens surface, a practical limitation?
The lenses appear to be corrected for monochromatic light; high-performance microscopes are generally achromatic. Is the bandwidth of two-photon excitation sufficient to warrant optimization over multiple wavelengths?
GRIN lenses are often used to access a 3D volume by scanning in z (including in this study). How does the corrective lens affect imaging performance over the 3D field of view?
(4) The in vivo images (Figure 7D) have a less impressive resolution and field than the ex vivo images (Figure 4B), and the reason for this is not clear. Given the difference in performance, how does this compare to an uncorrected endoscope in the same preparation? Is the reduced performance related to uncorrected motion, field curvature, working distance, etc? Regarding Figure 7, there is no analysis of the biological significance of the calcium signals or even a description of where olfactory stimuli were presented. The timescale of jGCaMP8f signals in Figure 7E is uncharacteristically slow for this indicator (compared to Zhang et al 2023 (Nature)), though perhaps this is related to the physiology of these cells or the stimuli.
(5) The claim of unprecedented spatial resolution across the FOV (page 18) is hard to evaluate and is not supported by references to quantitative comparisons. The promises of the method for future studies (pages 18-19) could also be better supported by analysis or experiment, but these are minor and to me, do not detract from the appeal of the work.
(6) The text is lengthy and the material is repeated, especially between the introduction and conclusion. Consolidating introductory material to the introduction would avoid diluting interesting points in the discussion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Park et al. conducted various analyses attempting to elucidate the biological significance of SARS-CoV-2 mutations. However, the study lacks a clear objective. The specific goals of the analyses in each subsection are unclear, as is how the results from these subsections are interconnected. Compiling results from unrelated analyses into a single paper can be confusing for readers. Clarifying the objective and narrowing down the topics would make the paper's purpose clearer.
The logic of the study is also unclear. For instance, the authors developed an evaluation score, APESS, for analyzing viral sequences. Although they state that the APESS score correlates with viral infectivity, there is no explanation in the results section about why this is the case.
The structure of the paper should be reconsidered.
-
-
-
Reviewer #1 (Public review):
Summary:
This is a contribution to the field of developmental bioelectricity. How do changes of resting potential at the cell membrane affect downstream processes? Zhou et al. reported in 2015 that phosphatidylserine and K-Ras cluster upon plasma membrane depolarization and that voltage-dependent ERK activation occurs when constitutive active K-RasG12V mutants are overexpressed. In this paper, the authors advance the knowledge of this phenomenon by showing that membrane depolarization up-regulates mitosis and that this process is dependent on voltage-dependent activation of ERK. ERK activity's voltage-dependence is derived from changes in the dynamics of phosphatidylserine in the plasma membrane and not by extracellular calcium dynamics.
Strengths:
Bioelectricity is an important field for areas of cell, developmental, and evolutionary biology, as well as for biomedicine. Confirmation of ERK as a transduction mechanism, and a characterization of the molecular details involved in control of cell proliferation, is interesting and impactful.
Weaknesses:
The functional cell division data need to be stronger. They show that increasing K+ increases proliferation and argue that since a MEK inhibitor (U0126) reduces proliferation in K+ treated cells, K+ induces cell division via ERK. But I don't see statistics to show that the rescue is significant, and I don't see a key U0126-only control. If the U0126 alone reduces proliferation, the combined effect wouldn't prove much.
Also, unless I'm missing something, it looks like every sample in their control has exactly the same number of mitotic cells. I understand that they are normalizing to this column, but shouldn't they be normalizing to the mean, with the independent values scattering around 1? It doesn't seem like it can be paired replicates since there are 6 replicates in the control and 4 replicates in one of the conditions?
-
-
www.youtube.com www.youtube.com
-
Ryan Holiday says that our society struggles with accepting that we owe things to other people...
This reminds me of Simone Weil's notion of "no rights, only responsibilities"... A right by itself has no power, only obligation has. A right is an obligation toward us fulfilled. Only other people have rights, and we have obligations.
Getting into this frame of mind allows one to live a far more righteous and fulfilled as well as calm life. Once you acknowledge that you have no rights, you can not cling to them, and thus you don't view things as unfair to you.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This manuscript by Capitani et al. extends previous studies of ion channel expression in triple-negative breast cancer cell lines. Probing four phenotypically different breast cancer cell lines, they used co-IP and confocal immunofluorescence (IF) colocalization to reveal that beta1 integrin forms a complex with the neonatal form of the Na+ channel NaV1.5 (nNaV1.5) and the Na+/H+ antiporter NHE1 in addition to previously reported hERG1. They used siRNA to show that silencing beta1 results in a co-depletion of hERG and Nav1.5, further supporting the conclusion that they form a complex; a complementary enhancement of Na current with increased hERG expression was also demonstrated. These data compellingly describe a complex of membrane proteins unregulated in breast cancer and thus present novel potential targets for treatment.
There are several concerns with experimental approaches. How fluorescence measurements were compared and controlled among experiments was not described, and masks drawn to define membrane expression seemed arbitrary, and included in some cases large sections of cytoplasm. There are issues associated with the use of channel blocking agents and a bifunctional small-chain antibody that are not well rationalized. Why are they being used, to test what hypotheses or disrupt what processes? The extremely high concentrations of E-4031 (4000x IC50 for block), e.g., are not expected to have selective actions. The effects of E-4031 at high concentrations altering cytoskeleton properties associated with invasiveness (and thus cancer progression) are questionable. There are numerous problems with co-IPs together carried out together with knock-down, which in one case depleted the protein targeted by the primary IP antibody. Western blots (WB) were quantified by comparing treatment to control, which does not control for loading errors. The control and treated signals should be divided by the respective tubulin signals to control for loading errors. Then the treated value can be compared with the control.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
The authors examined the hypothesis that plasma ApoM, which carries sphingosine-1-phosphate (S1P) and activates vascular S1P receptors to inhibit vascular leakage, is modulated by SGLT2 inhibitors (SGLTi) during endotoxemia. They also propose that this mechanism is mediated by SGLTi regulation of LRP2/ megalin in the kidney and that this mechanism is critical for endotoxin-induced vascular leak and myocardial dysfunction. The hypothesis is novel and potentially exciting. However, the author's experiments lack critical controls, lack rigor in multiple aspects, and overall does not support the conclusions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
This paper proposes a novel framework for explaining patterns of generalization of force field learning to novel limb configurations. The paper considers three potential coordinate systems: cartesian, joint-based, and object-based. The authors propose a model in which the forces predicted under these different coordinate frames are combined according to the expected variability of produced forces. The authors show, across a range of changes in arm configurations, that the generalization of a specific force field is quite well accounted for by the model.
The paper is well-written and the experimental data are very clear. The patterns of generalization exhibited by participants - the key aspect of the behavior that the model seeks to explain - are clear and consistent across participants. The paper clearly illustrates the importance of considering multiple coordinate frames for generalization, building on previous work by Berniker and colleagues (JNeurophys, 2014). The specific model proposed in this paper is parsimonious, but there remain a number of questions about its conceptual premises and the extent to which its predictions improve upon alternative models.
A major concern is with the model's premise. It is loosely inspired by cue integration theory but is really proposed in a fairly ad hoc manner, and not really concretely founded on firm underlying principles. It's by no means clear that the logic from cue integration can be extrapolated to the case of combining different possible patterns of generalization. I think there may in fact be a fundamental problem in treating this control problem as a cue-integration problem. In classic cue integration theory, the various cues are assumed to be independent observations of a single underlying variable. In this generalization setting, however, the different generalization patterns are NOT independent; if one is true, then the others must inevitably not be. For this reason, I don't believe that the proposed model can really be thought of as a normative or rational model (hence why I describe it as 'ad hoc'). That's not to say it may not ultimately be correct, but I think the conceptual justification for the model needs to be laid out much more clearly, rather than simply by alluding to cue-integration theory and using terms like 'reliability' throughout.
A more rational model might be based on Bayesian decision theory. Under such a model, the motor system would select motor commands that minimize some expected loss, averaging over the various possible underlying 'true' coordinate systems in which to generalize. It's not entirely clear without developing the theory a bit exactly how the proposed noise-based theory might deviate from such a Bayesian model. But the paper should more clearly explain the principles/assumptions of the proposed noise-based model and should emphasize how the model parallels (or deviates from) Bayesian-decision-theory-type models.
Another significant weakness is that it's not clear how closely the weighting of the different coordinate frames needs to match the model predictions in order to recover the observed generalization patterns. Given that the weighting for a given movement direction is over-parametrized (i.e. there are 3 variable weights (allowing for decay) predicting a single observed force level, it seems that a broad range of models could generate a reasonable prediction. It would be helpful to compare the predictions using the weighting suggested by the model with the predictions using alternative weightings, e.g. a uniform weighting, or the weighting for a different posture. In fact, Fig. 7 shows that uniform weighting accounts for the data just as well as the noise-based model in which the weighting varies substantially across directions. A more comprehensive analysis comparing the proposed noise-based weightings to alternative weightings would be helpful to more convincingly argue for the specificity of the noise-based predictions being necessary. The analysis in the appendix was not that clearly described, but seemed to compare various potential fitted mixtures of coordinate frames, but did not compare these to the noise-based model predictions.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public Review):
Padilha et al. aimed to find prospective metabolite biomarkers in serum of children aged 6-59 months that were indicative of neurodevelopmental outcomes. The authors leveraged data and samples from the cross-sectional Brazilian National Survey on Child Nutrition (ENANI-2019), and an untargeted multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS) approach was used to measure metabolites in serum samples (n=5004) which were identified via a large library of standards. After correlating the metabolite levels against the developmental quotient (DQ), or the degree of which age-appropriate developmental milestones were achieved as evaluated by the Survey of Well-being of Young Children, serum concentrations of phenylacetylglutamine (PAG), cresol sulfate (CS), hippuric acid (HA) and trimethylamine-N-oxide (TMAO) were significantly negatively associated with DQ. Examination of the covariates revealed that the negative associations of PAG, HA, TMAO and valine (Val) with DQ were specific to younger children (-1 SD or 19 months old), whereas creatinine (Crtn) and methylhistidine (MeHis) had significant associations with DQ that changed direction with age (negative at -1 SD or 19 months old, and positive at +1 SD or 49 months old). Further, mediation analysis demonstrated that PAG was a significant mediator for the relationship of delivery mode, child's diet quality and child fiber intake with DQ. HA and TMAO were additional significant mediators of the relationship of child fiber intake with DQ.
Strengths of this study include the large cohort size and study design allowing for sampling at multiple time points along with neurodevelopmental assessment and a relatively detailed collection of potential confounding factors including diet. The untargeted metabolomics approach was also robust and comprehensive allowing for level 1 identification of a wide breadth of potential biomarkers. Given their methodology, the authors should be able to achieve their aim of identifying candidate serum biomarkers of neurodevelopment for early childhood. The results of this work would be of broad interest to researchers who are interested in understanding the biological underpinnings of development and also for tracking development in pediatric populations, as it provides insight for putative mechanisms and targets from a relevant human cohort that can be probed in future studies. Such putative mechanisms and targets are currently lacking in the field due to challenges in conducting these kind of studies, so this work is important.
However, in the manuscript's current state, the presentation and analysis of data impede the reader from fully understanding and interpreting the study's findings. Particularly, the handling of confounding variables is incomplete. There is a different set of confounders listed in Table 1 versus Supplementary Table 1 versus Methods section Covariates versus Figure 4. For example, Region is listed in Supplementary Table 1 but not in Table 1, and Mode of Delivery is listed in Table 1 but not in Supplementary Table 1. Many factors are listed in Figure 4 that aren't mentioned anywhere else in the paper, such as gestational age at birth or maternal pre-pregnancy obesity.
The authors utilize the directed acrylic graph (DAG) in Figure 4 to justify the further investigation of certain covariates over others. However, the lack of inclusion of the microbiome in the DAG, especially considering that most of the study findings were microbial-derived metabolite biomarkers, appears to be a fundamental flaw. Sanitation and micronutrients are proposed by the authors to have no effect on the host metabolome, yet sanitation and micronutrients have both been demonstrated in the literature to affect microbiome composition which can in turn affect the host metabolome.
Additionally, the authors emphasized as part of the study selection criteria the following,<br /> "Due to the costs involved in the metabolome analysis, it was necessary to further reduce the sample size. Then, samples were stratified by age groups (6 to 11, 12 to 23, and 24 to 59 months) and health conditions related to iron metabolism, such as anemia and nutrient deficiencies. The selection process aimed to represent diverse health statuses, including those with no conditions, with specific deficiencies, or with combinations of conditions. Ultimately, through a randomized process that ensured a balanced representation across these groups, a total of 5,004 children were selected for the final sample (Figure 1)."
Therefore, anemia and nutrient deficiencies are assumed by the reader to be important covariates, yet, the data on the final distribution of these covariates in the study cohort is not presented, nor are these covariates examined further.
The inclusion of specific covariates in Table 1, Supplementary Table 1, the statistical models, and the mediation analysis is thus currently biased as it is not well justified.
Finally, it is unclear what the partial-least squares regression adds to the paper, other than to discard potentially interesting metabolites found by the initial correlation analysis.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, El Amri et al. are exploring the role of Marcks and Marcksl1 proteins during spinal cord development and regeneration in Xenopus. Using two different techniques to knockdown their expressions, they argue that these proteins are important for neural progenitors proliferation and neurites outgrowth in both contexts. Finally, using a pharmalogical approach, they suggest that Marcks and Marcksl1 work by modulating the activity of PLD and the levels of PIP2 whilst PKC could modulate Marcks activity.<br /> The strength of this manuscript resides in the ability of the authors to knockdown the expression of 4 different genes using 2 different methods to assess the role of this protein family during early development and regeneration at the late tadpole stage. This has always been a limiting factor in the field as the tools to perform conditional knockouts in Xenopus are very limited. However, this will not really be applicable to essential genes as it relies on the general knockdown of protein expression. The generation of antibodies able to detect endogenous Marcks/Marcksl1 is also a powerful tool to assess the extent to which the expression of these proteins is down-regulated.<br /> Whilst there is a great amount of data provided in this manuscript and there is strong evidence to show that Marcks are important for spinal cord development and regeneration, their roles in both contexts is not explored fully. The description of the effect of knocking down Marcks/Marcksl1 on neurons and progenitors is rather superficial and the evidence for the underlying mechanism underpinning their roles is not very convincing.
-
-
www.derstandard.de www.derstandard.de
-
Eine Studie weist erstmals systematisch den Einfluss von Dürren und zunehmender Trockenheit auf die Binnenmigration in vielen verschiedenen Ländern nach. Es migrieren vor allem Mitglieder mittlerer Einkommensgruppen, die die dazu nötigen Ressourcen haben. Die klimabedingte Migration trägt deutlich zur Urbanisierung bei https://www.derstandard.at/story/3000000240733/mehr-binnenmigration-durch-klimawandel
Tags
- increasing risk of droughts
- Roman Hoffmann
- IIASA
- Drought and aridity influence internal migration worldwide
- migration
- aridification
- Guy Abel
- https://www.nature.com/articles/s41558-024-02165-1.epdf?sharing_token=zQaNIIlE0D5VSVhiEeWSRdRgN0jAjWel9jnR3ZoTv0N5BsSsWDa3LuiqvifrZZqQ9PHrGw0G8JwyXN4l5XLwHLyMEPxhNDlwsm_I7HyLLBL-PIsL8iWYBirASOxKiB3OvY5CyEDs2OqdYzcj0HqqPZGigOJmwF7H97HsKHpUv2tEjBvnMf7i4DKmBH78sfFsx7iymr6A4PFpKfrKe6IDSxkyQgZFpa8kBrt8lM6HkbU%3D&tracking_referrer=www.derstandard.at
Annotators
URL
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This is a short self-contained study with a straightforward and interesting message. The paper focuses on settling whether PKA activation requires dissociation of the catalytic and regulatory subunits. This debate has been ongoing for ~ 30 years, with renewed interest in the question following a publication in Science, 2017 (Smith et al.). Here, Xiong et al demonstrate that fusing the R and C subunits together (in the same way as Smith et al) prevents the proper function of PKA in neurons. This provides further support for the dissociative activation model - it is imperative that researchers have clarity on this topic since it is so fundamental to building accurate models of localised cAMP signalling in all cell types. Furthermore, their experiments highlight that C subunit dissociation into spines is essential for structural LTP, which is an interesting finding in itself. They also show that preventing C subunit dissociation reduces basal AMPA receptor currents to the same extent as knocking down the C subunit. Overall, the paper will interest both cAMP researchers and scientists interested in fundamental mechanisms of synaptic regulation.
Strengths:
The experiments are technically challenging and well executed. Good use of control conditions e.g untransfected controls in Figure 4.
Weaknesses:
The novelty is lessened given the same team has shown dissociation of the C subunit into dendritic spines from RIIbeta subunits localised to dendritic shafts before (Tillo et al., 2017). Nevertheless, the experiments with RII-C fusion proteins are novel and an important addition.
-
-
-
Reviewer #1 (Public review):
Summary:
The authors examined the salt-dependent phase separation of the low-complexity domain of hnRN-PA1 (A1-LCD). Using all-atom molecular dynamics simulations, they identified four distinct classes of salt dependence in the phase separation of intrinsically disordered proteins (IDPs), which can be predicted based on their amino acid composition. However, the simulations and analysis, in their current form, are inadequate and incomplete.
Strengths:
The authors attempt to unravel the mechanistic insights into the interplay between salt and protein phase separation, which is important given the complex behavior of salt effects on this process. Their effort to correlate the influence of salt on the low-complexity domain of hnRNPA1 (A1-LCD) with a range of other proteins known to undergo salt-dependent phase separation is an interesting and valuable topic.
Weaknesses:
Based on the reviewer's assessment of the manuscript, the following points were raised:
(1) The simulation duration is too short to draw comprehensive conclusions about phase separation.<br /> (2) There are concerns regarding the convergence of the simulations, particularly as highlighted in Figure 2A.<br /> (3) The simulation begins with a protein concentration of 3.5 mM ("we built an 8-copy model for the dense phase (with an initial concentration of 3.5 mM)"), which is high for phase separation studies. The reviewer questions the use of the term "dense phase" and suggests that the authors conduct a clearer analysis depicting the coexistence of both the dilute and dense phases to represent a steady state. Without this, the realism of the described phenomena is doubtful. Commenting on phase separation under conditions that don't align with typical phase separation parameters is not acceptable.<br /> (4) The inference that "Each Arg sidechain often coordinates two Cl- ions simultaneously, but each Lys sidechain coordinates only one Cl- ion" is questioned. According to Supplementary Figure 2A, Lys seems to coordinate with Cl- ions more frequently than Arg.<br /> (5) The authors are requested to update the figure captions for Supplementary Figures 2 and 3, specifying which system the analyses were performed on.<br /> (6) It is difficult to observe a clear trend due to irregularities in the data. Although the authors have included a red dotted line in the figures, the trend is not monotonic. The reviewer expresses concerns about significant conclusions drawn from these figures (e.g., Figure 2C, Figure 5A, Supplementary Figure 1).<br /> (7) Given the error in the radius of gyration (Rg) calculations, the reviewer questions the validity of drawing conclusions from this data.<br /> (8) The pair correlation function values in Figure 5E and supplementary figure 4 show only minor differences, and the reviewer questions whether these differences are significant.<br /> (9) Previous reports suggest that, upon self-assembly, protein chains extend within the condensate, leading to a decrease in intramolecular contacts. However, the authors show an increase in intramolecular contacts with increasing salt concentration (Figure 2C), which contradicts prior studies. The reviewer advises the authors to carefully review this and provide justification.<br /> (10) A systematic comparison of estimated parameters with varying salt concentrations is required. Additionally, the authors should provide potential differences in salt concentrations between the dilute and condensed phases.<br /> (11) The reviewer finds that the majority of the data presented shows no significant alteration with changes in salt concentration, yet the authors have made strong conclusions regarding salt activity.
The manuscript lacks sufficient scientific details of the calculations.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Crosslinking mass spectrometry has become an important tool in structural biology, providing information about protein complex architecture, binding sites and interfaces, and conformational changes. One key challenge of this approach represents the quantitation of crosslinking data to interrogate differential binding states and distributions of conformational states.
Here, Luo and Ranish present a novel class of isobaric crosslinkers ("Qlinkers"), conduct proof-of-concept benchmarking experiments on known protein complexes, and show example applications on selected target proteins. The data are solid and this could well be an exciting, convincing new approach in the field if the quantitation strategy is made more comprehensive and the quantitative power of isobaric labeling is fully leveraged as outlined below. It's a promising proof-of-concept, and potentially of broad interest for structural biologists.
Strengths:
The authors demonstrate the synthesis, application, and quantitation of their "Q2linkers", enabling relative quantitation of two conditions against each other. In benchmarking experiments, the Q2linkers provide accurate quantitation in mixing experiments. Then the authors show applications of Q2linkers on MBP, Calmodulin, selected transcription factors, and polymerase II, investigating protein binding, complex assembly, and conformational dynamics of the respective target proteins. For known interactions, their findings are in line with previous studies, and they show some interesting data for TFIIA/TBP/TFIIB complex formation and conformational changes in pol II upon Rbp4/7 binding.
Weaknesses:
This is an elegant approach but the power of isobaric mass tags is not fully leveraged in the current manuscript.
First, "only" Q2linkers are used. This means only two conditions can be compared. Theoretically, higher-plexed Qlinkers should be accessible and would also be needed to make this a competitive method against other crosslinking quantitation strategies. As it is, two conditions can still be compared relatively easily using LFQ - or stable-isotope-labeling based approaches. A "Q5linker" would be a really useful crosslinker, which would open up comprehensive quantitative XLMS studies.
Second, the true power of isobaric labeling, accurate quantitation across multiple samples in a single run, is not fully exploited here. The authors only show differential trends for their interaction partners or different conformational states and do not make full quantitative use of their data or conduct statistical analyses. This should be investigated in more detail, e.g. examine Qlinker quantitation of MBP incubated with different concentrations of maltose or Calmodulin incubated with different concentrations of CBPs. Does Qlinker quantitation match ratios predicted using known binding constants or conformational state populations? Is it possible to extract ratios of protein populations in different conformations, assembly, or ligand-bound states?
With these two points addressed this approach could be an important and convincing tool for structural biologists.
Comments on latest version:
I raised only two points which they have not addressed: Higher multiplexing of Qlinkers (1) and experiments to assess the statistical power of their quantitation strategy (2).
I can see that point (1) requires substantial experimental efforts and synthesis of novel Qlinkers would be months of work. This is an editorial decision if the limited quantitative power of the "2-plex" approach they have right now is sufficient to support publication in eLife. While I like the approach, I feel it falls short of its potential in its current form.
For point (2), the authors did not do any supporting experiments. They claim "higher plex Qlinkers" would need to be available, but I suggested experiments that can be done even with Q2linkers: Using one of the two channels as a reference channel (similar the Super-SILAC strategy published in 2010 by Geiger et al; using an isotope-labeled channel as a stable reference channel between different experiments and LC-MS runs), they could do time-courses or ligand-concentration-series with the other channel and then show that Qlinkers allow quantitative monitoring of the different populations (e.g. conformations or ligand-bound proteins).
As an additional point, I was a bit surprised to read that the quantitation evaluation in Figure 1 is based on a single experiment (reviewer response document page 6, line 2 in the authors' reply). I strongly suggest this to be repeated a few times so a proper statistical test on experimental reproducibiltiy of Qlinkers can be conducted.
In summary, the authors declined to do any experimental work to address my concerns.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this study, Nandy and colleagues examine neural, physiological and behavioral correlates of perceptual variability in monkeys performing a visual change detection task. They used a laminar probe to record from area V4 while two macaque monkeys detected a small change in stimulus orientation that occurred at a random time in one of two locations, focusing their analysis on stimulus conditions where the animal was equally likely to detect (hit) or not-detect (miss) a briefly presented orientation change (target). They discovered two behavioral and physiological measures that are significantly different between hit and miss trials - pupil size tends to be slightly larger on hits vs. misses, and monkeys are more likely to miss the target on trials in which they made a microsaccade shortly before target onset. They also examined multiple measures of neural activity across the cortical layers and found some measures that are significantly different between hits and misses.
Strengths:
Overall the study is well executed and the analyses are appropriate (with some possible caveats discussed below).
Weaknesses:
I have two remaining concerns. First, with the exception of the pre-target microsaccades, the correlates of perceptual variability (differences between hits and misses) appear to be weak and disconnected. The GLM analysis of the predictive power of trial outcome based on the behavioral and neural measures is only discussed at the end of the paper. This analysis shows that some of the measures have no significant predictive power, while others cannot be examined using the GLM analysis because these measures cannot be estimated in single trials. Given these weak and disconnected effects, my overall sense is that the current results provide a limited advance to our understanding of the neural basis of perceptual variability.
In addition, because the authors combine data across stimulus contrasts, I am somewhat uneasy about the possible confounding effect of contrast. As expected, stimulus contrast affected the probability of hits vs. misses. Independently, contrast may have affected some of the physiological measurements. Therefore, showing that contrast is not the source of the covariations between the physiological/behavioral measurements and perception can be challenging, and I am not convinced that the authors have ruled this out as a possible confound. It is unclear why the authors had to vary contrast in the first place, and why the analyses had to be done by combining the data across contrasts or by ignoring contrast as a variable (e.g., in the GLM analysis).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
In this manuscript, Saeb et al reported the mechanistic roles of the flexible stalk domain in sTREM2 function using molecular dynamics simulations. They have reported some interesting molecular bases explaining why sTREM2 shows protective effects during AD, such as partial extracellular stalk domain promoting binding preference and stabilities of sTREM2 with its ligand even in the presence of known AD-risk mutation, R47H. Furthermore, they found that the stalk domain itself acts as the site for ligand binding by providing an "expanded surface", known as 'Expanded Surface 2' together with the Ig-like domain. Also, they observed no difference in the binding free energy of phosphatidyl-serine with wild TREM2-Ig and mutant TREM2-Ig, which is a bit inconsistent with the previous report with experiment studies by Journal of Biological Chemistry 293, (2018), Alzheimer's and Dementia 17, 475-488 (2021), Cell 160, 1061-1071 (2015).
Perhaps the authors made significant efforts to run a number of simulations for multiple models, which is nearly 17 microseconds in total; none of the simulations has been repeated independently at least a couple of times, which makes me uncomfortable to consider this finding technically true. Most of the important conclusions that authors claimed, including the opposite results from previous research, have been made on the single run, which raises the question of whether this observation can be reproduced if the simulation has been repeated independently. Although the authors stated the sampling number and length of MD simulations in the current manuscript as a limitation of this study, it must be carefully considered before concluding rather than based on a single run.
sTREM2 shows a neuroprotective effect in AD, even with the mutations with R47H, as evidenced by authors based on their simulation. sTREM2 is known to bind Aβ within the AD and reduce Aβ aggregation, whereas R47H mutant increases Aβ aggregation. I wonder why the authors did not consider Aβ as a ligand for their simulation studies. As a reader in this field, I would prefer to know the protective mechanism of sTREM2 in Aβ aggregation influenced by the stalk domain.
In a similar manner, why only one mutation is considered "R47H" for the study? There are more server mutations reported to disrupt tethering between these CDRs, such as T66M. Although this "T66M" is not associated with AD, I guess the stalk domain protective mechanism would not be biased among different diseases. Therefore, it would be interesting to see whether the findings are true for this T66M.
In most previous studies, the mechanism for CDR destabilization by mutant was explored, like the change of secondary structures and residue-wise interloop interaction pattern. While this is not considered in this manuscript, neither detailed residue-wise interaction that changed by mutant or important for 'ligand binding" or "stalk domain".
The comparison between the wild and mutant and other different complex structures must be determined by particular statistical calculations to state the observed difference between different structures is significant. Since autocorrelation is one of the major concerns for MD simulation data for predicting statistical differences, authors can consider bootstrap calculations for predicting statistical significance.
-
-
www.chalkbeat.org www.chalkbeat.org
-
individuals interested in running for president officially declare their candidacy
Under the US Constitution, what are the rules for becoming a Presidential candidate? Cite your source(s}
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
PPARgamma is a nuclear receptor that binds to orthosteric ligands to coordinate transcriptional programs that are critical for adipocyte biogenesis and insulin sensitivity. Consequently, it is a critical therapeutic target for many diseases but especially diabetes. The malleable nature and promiscuity of the PPARgamma orthosteric ligand binding pocket has confounded the development of improved therapeutic modulators. Covalent inhibitors have been developed but they show unanticipated mechanisms of action depending on which orthosteric ligands are present. In this work, Shang and Kojetin present a compelling and comprehensive structural, biochemical, and biophysical analysis that shows how covalent and noncovalent ligands can co-occupy the PPARgamma ligand binding pocket to elicit distinctive preferences of coactivator and corepressor proteins. Importantly, this work shows how the covalent inhibitors GW9662 and T0070907 may be unreliable tools as pan-PPARgamma inhibitors despite their wide-spread use.
Strengths:
- Highly detailed structure and functional analyses provide a comprehensive structure-based hypothesis for the relationship between PPARgamma ligand binding domain co-occupancy and allosteric mechanisms of action.<br /> - Multiple orthogonal approaches are used to provide high resolution information on ligand binding poses and protein dynamics.<br /> - The large number of x-ray crystal structures solved for this manuscript should be applauded along with their rigorous validation and interpretation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The manuscript focuses on the role of the deubiquitinating enzyme UPS-50/USP8 in endosome maturation. The authors aimed to clarify how this enzyme drives the conversion of early endosomes into late endosomes. Overall, they did achieve their aims in shedding light on the precise mechanisms by which UPS-50/USP8 regulates endosome maturation. The results support their conclusions that UPS-50 acts by disassociating RABX-5 from early endosomes to deactivate RAB-5 and by recruiting SAND-1/Mon1 to activate RAB-7. This work is commendable and will have a significant impact on the field. The methods and data presented here will be useful to the community in advancing our understanding of endosome maturation and identifying potential therapeutic targets for diseases related to endosomal dysfunction. It is worth noting that further investigation is required to fully understand the complexities of endosome maturation. However, the findings presented in this manuscript provide a solid foundation for future studies.
Strengths:
The major strengths of this work lie in the well-designed experiments used to examine the effects of UPS-50 loss. The authors employed confocal imaging to obtain a picture of the aftermath of USP-50 loss. Their findings indicated enlarged early endosomes and MVB-like structures in cells deficient in USP-50/USP8.
Weaknesses:
Specifically, there is a need for further investigation to accurately characterize the anomalous structures detected in the ups-50 mutant. Also, the correlation between the presence of these abnormal structures and ESCRT-0 is yet to be addressed, and the current working model needs to be revised to prevent any confusion between enlarged early endosomes and MVBs.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:<br /> In this manuscript, Herrmannova et al explore changes in translation upon individual depletion of three subunits of the eIF3 complex (d, e and h) in mammalian cells. The authors provide a detailed analysis of regulated transcripts, followed by validation by RT-qPCR and/or Western blot of targets of interest, as well as GO and KKEG pathway analysis. The authors confirm prior observations that eIF3, despite being a general translation initiation factor, functions in mRNA-specific regulation, and that eIF3 is important for translation re-initiation. They show that global effects of eIF3e and eIF3d depletion on translation and cell growth are concordant. Their results support and extend previous reports suggesting that both factors control translation of 5'TOP mRNAs. Interestingly, they identify MAPK pathway components as a group of targets coordinately regulated by eIF3 d/e. The authors also discuss discrepancies with other reports analyzing eIF3e function.
Strengths:<br /> Altogether, a solid analysis of eIF3 d/e/h-mediated translation regulation of specific transcripts. The data will be useful for scientists working in the Translation field.
Weaknesses:<br /> The authors could have explored in more detail some of their novel observations, as well as their impact on cell behavior.
The manuscript has improved with the new corrections. I appreciate the authors' attention to the minor comments, which have been fully solved. The authors have not, however, provided additional experimental evidence that uORF-mediated translation of Raf-1 mRNA depends on an intact eIF3 complex, nor have they addressed the consequences of such regulation for cell physiology. While I understand that this is a subject of follow-up research, the authors could have at least included their explanations/ speculations regarding major comments 2-4, which in my opinion could have been useful for the reader.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
How plants perceive their environment and signal during growth and development is of fundamental importance for plant biology. Over the last few decades, nano domain organisation of proteins localised within the plasma-membrane has emerged as a way of organising proteins involved in signal pathways. Here, the authors addressed how a non-surface localised signal (viral infection) was resisted by PM localised signalling proteins and the effect of nano domain organisation during this process. This is valuable work as it describes how an intracellular process affects signalling at the PM where most previous work has focused on the other way round, PM signalling effecting downstream responses in the plant. They identify CPK3 as a specific calcium dependent protein kinase which is important for inhibiting viral spread. The authors then go on to show that CPK3 diffusion in the membrane is reduced after viral infection and study the interaction between CPK3 and the remorins, which are a group of scaffold proteins important in nano domain organisation. The authors conclude that there is an interdependence between CPK3 and remorins to control their dynamics during viral infection in plants.
Strengths:
The dissection of which CPK was involved in the viral propagation was masterful and very conclusive. Identifying CPK3 through knockout time course monitoring of viral movement was very convincing. The inclusion of overexpression, constitutively active and point mutation non-functioning lines further added to that.
Weaknesses:
I would like to thank the researchers for including some additional work suggested in the previous round of peer review. However, I still have concerns over this work which are two fold.
(1) Firstly, the imaging described and shown is not sufficient to support the claims made. The PM localisation and its non-PM localised form look similar and with no PM stain or marker construct used to support this. In addition, the quality of lots of the confocal based imaging (including new figure on colocalisation) is simply not sufficient. The images are too noisy and no clear conclusions can be made. The point made previously, the system this data was collected on has an Airyscan detector capable of 120nm resolution and as such NDs can be resolved. The sptPALM data conclusions are nice and fit the narrative. The inclusion of sptPALM movies is useful for the reader and tracks numbers is highly beneficial. But they do not show a high signal to noise ratio compared to other work in the field (see work from Alex Martineire) and the mEOS prticles are only just observable over the detector noise in some videos. As such, I worry about the data quality on which the analysis is based on. In addition, in some of the videos the conversion laser seems too high as it is difficult to separate some of the single particles as they emerge which would again, hinder the analysis.
(2) Secondly, remorins are involved in a lot of nano domain controlled processes at the PM. The authors have not conclusively demonstrated that during viral infection the remorin effects seen are solely due to its interaction with CPK3. The sptPALM imaging of REM1.2 in a cpk3 knockout line goes part way to solve this and the inclusion of CPK3-CA also strengthens the authors claims. But to propose a kiss and go model bearing in mind the differences in diffusion between CPK3 and REM3 and differential changes to diffusion between the two proteins after PIAMV infection without two colour imaging of both proteins at the same time, the claims are much stronger than the evidence. Negative control experiments are required here utilising other PM localised proteins which have no role during viral infection (such as Lti6B).
Overall, I think this work has the potential to be a very strong manuscript but additional evidence supporting interaction claims would significantly strengthen the work and make it exceptional.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This paper provides a computational model of a synthetic task in which an agent needs to find a trajectory to a rewarding goal in a 2D-grid world, in which certain grid blocks incur a punishment. In a completely unrelated setup without explicit rewards, they then provide a model that explains data from an approach-avoidance experiment in which an agent needs to decide whether to approach or withdraw from, a jellyfish, in order to avoid a pain stimulus, with no explicit rewards. Both models include components that are labelled as Pavlovian; hence the authors argue that their data show that the brain uses a Pavlovian fear system in complex navigational and approach-avoid decisions.
In the first setup, they simulate a model in which a component they label as Pavlovian learns about punishment in each grid block, whereas a Q-learner learns about the optimal path to the goal, using a scalar loss function for rewards and punishments. Pavlovian and Q-learning components are then weighed at each step to produce an action. Unsurprisingly, the authors find that including the Pavlovian component in the model reduces the cumulative punishment incurred, and this increases as the weight of the Pavlovian system increases. The paper does not explore to what extent increasing the punishment loss (while keeping reward loss constant) would lead to the same outcomes with a simpler model architecture, so any claim that the Pavlovian component is required for such a result is not justified by the modelling.
In the second setup, an agent learns about punishments alone. "Pavlovian biases" have previously been demonstrated in this task (i.e. an overavoidance when the correct decision is to approach). The authors explore several models (all of which are dissimilar to the ones used in the first setup) to account for the Pavlovian biases.
Strengths:
Overall, the modelling exercises are interesting and relevant and incrementally expand the space of existing models.
Weaknesses:
I find the conclusions misleading, as they are not supported by the data.
First, the similarity between the models used in the two setups appears to be more semantic than computational or biological. So it is unclear to me how the results can be integrated.
Secondly, the authors do not show "a computational advantage to maintaining a specific fear memory during exploratory decision-making" (as they claim in the abstract). Making such a claim would require showing an advantage in the first place. For the first setup, the simulation results will likely be replicated by a simple Q-learning model when scaling up the loss incurred for punishments, in which case the more complex model architecture would not confer an advantage. The second setup, in contrast, is so excessively artificial that even if a particular model conferred an advantage here, this is highly unlikely to translate into any real-world advantage for a biological agent. The experimental setup was developed to demonstrate the existence of Pavlovian biases, but it is not designed to conclusively investigate how they come about. In a nutshell, who in their right mind would touch a stinging jellyfish 88 times in a short period of time, as the subjects do on average in this task? Furthermore, in which real-life environment does withdrawal from a jellyfish lead to a sting, as in this task?
Crucially, simplistic models such as the present ones can easily solve specifically designed lab tasks with low dimensionality but they will fail in higher-dimensional settings. Biological behaviour in the face of threat is utterly complex and goes far beyond simplistic fight-flight-freeze distinctions (Evans et al., 2019). It would take a leap of faith to assume that human decision-making can be broken down into oversimplified sub-tasks of this sort (and if that were the case, this would require a meta-controller arbitrating the systems for all the sub-tasks, and this meta-controller would then struggle with the dimensionality j).
On the face of it, the VR task provides higher "ecological validity" than previous screen-based tasks. However, in fact, it is only the visual stimulation that differs from a standard screen-based task, whereas the action space is exactly the same. As such, the benefit of VR does not become apparent, and its full potential is foregone.
If the authors are convinced that their model can - then data from naturalistic approach-avoidance VR tasks is publicly available, e.g. (Sporrer et al., 2023), so this should be rather easy to prove or disprove. In summary, I am doubtful that the models have any relevance for real-life human decision-making.
Finally, the authors seem to make much broader claims that their models can solve safety-efficiency dilemmas. However, a combination of a Pavlovian bias and an instrumental learner (study 1) via a fixed linear weighting does not seem to be "safe" in any strict sense. This will lead to the agent making decisions leading to death when the promised reward is large enough (outside perhaps a very specific region of the parameter space). Would it not be more helpful to prune the decision tree according to a fixed threshold (Huys et al., 2012)? So, in a way, the model is useful for avoiding cumulatively excessive pain but not instantaneous destruction. As such, it is not clear what real-life situation is modelled here.
A final caveat regarding Study 1 is the use of a PH associability term as a surrogate for uncertainty. The authors argue that this term provides a good fit to fear-conditioned SCR but that is only true in comparison to simpler RW-type models. Literature using a broader model space suggests that a formal account of uncertainty could fit this conditioned response even better (Tzovara et al., 2018).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The study significantly advances our understanding of how exosomes regulate filopodia formation. Filopodia play crucial roles in cell movement, polarization, directional sensing, and neuronal synapse formation. McAtee et al. demonstrated that exosomes, particularly those enriched with the protein THSD7A, play a pivotal role in promoting filopodia formation through Cdc42 in cancer cells and neurons. This discovery unveils a new extracellular mechanism through which cells can control their cytoskeletal dynamics and interaction with their surroundings. The study employs a combination of rescue experiments, live-cell imaging, cell culture, and proteomic analyses to thoroughly investigate the role of exosomes and THSD7A in filopodia formation in cancer cells and neurons. These findings offer valuable insights into fundamental biological processes of cell movement and communication and have potential implications for understanding cancer metastasis and neuronal development.
Weaknesses:
The conclusions of this study are in most cases supported by data, but some aspects of data analysis need to be better clarified and elaborated. Some conclusions need to be better stated and according to the data observed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors perform an analysis of the relationship between the size of an LMM and the predictive performance of an ECoG encoding model made using the representations from that LMM. They find a logarithmic relationship between model size and prediction performance, consistent with previous findings in fMRI. They additionally observe that as the model size increases, the location of the "peak" encoding performance typically moves further back into the model in terms of percent layer depth, an interesting result worthy of further analysis into these representations.
Strengths:
The evidence is quite convincing, consistent across model families, and complementary to other work in this field. This sort of analysis for ECoG is needed and supports the decade-long enduring trend of the "virtuous cycle" between neuroscience and AI research, where more powerful AI models have consistently yielded more effective predictions of responses in the brain. The lag analysis showing that optimal lags do not change with model size is a nice result using the higher temporal resolution of ECoG compared to other methods like fMRI.
Weaknesses:
I would have liked to have seen the data scaling trends explored a bit too, as this is somewhat analogous to the main scaling results. While better performance with more data might be unsurprising, showing good data scaling would be a strong and useful justification for additional data collection in the field, especially given the extremely limited amount of existing language ECoG data. I realize that the data here is somewhat limited (only 30 minutes per subject), but authors could still in principle train models on subsets of this data.
Separately, it would be nice to have better justification of some of these trends, in particular the peak layerwise encoding performance trend and the overall upside-down U-trend of encoding performance across layers more generally. There is clearly something very fundamental going on here, about the nature of abstraction patterns in LLMs and in the brain, and this result points to that. I don't see the lack of justification here as a critical issue, but the paper would certainly be better with some theoretical explanation for why this might be the case.
Lastly, I would have wanted to see a similar analysis here done for audio encoding models using Whisper or WavLM as this is the modality where you might see real differences between ECoG and other slower scanning approaches. Again, I do not see this omission as a fundamental issue, but it does seem like the sort of analysis for which the higher temporal resolution of ECoG might grant some deeper insight.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The Notch signaling pathway plays important roles in many developmental and disease processes. Although well-studied there remain many puzzling aspects. One is the fact that as well as activating the receptor through a trans-activation, the transmembrane ligands can interact with receptors present in the same cell. These cis-interactions are usually inhibitory, but in some cases, as in the assays used here, they may also be activating. With a total of 6 ligands and 4 receptor there are potentially a wide array of possible outcomes when different combinations are co-expressed in vivo. Here the authors set out to make a systematic analysis of the qualitative and quantitative differences in the signaling output from different receptor ligand combinations, generating sets of "signaling" (ligand expressing) and "receiving" (receptor +/- ligand expressing cells).
The readout of pathway activity is transcriptional, relying on the fusion of GAL4 in the intracellular part of the receptor. Positive ligand interactions result in proteolytic release of Gal4 that turns on expression of H2B-citrine. As an indicator of ligand and receptor expression levels, they are linked via TA to H2B mCherry and H2B mTurq expression respectively. The authors also manipulate expression of the glycosyltransferase Lunatic-Fringe (LFng) that modifies the EGF repeats in the extracellular domains impacting on their interactions. The testing of multiple ligand receptor combinations at varying expression levels is a tour de force, with over 50 stable cell lines generated, and yields valuable insights although as a whole, the results are quite complex.
Strengths:
Taking a reductionist approach to test systematically differences in the signaling strength, binding strength and cis-interactions from the different ligands in the context of the Notch1 and Notch 2 receptors (they justify well they choice of players to test via this approach) produces a baseline understanding of the different properties and leads to some unexpected and interesting findings. Notably:<br /> - Jag1 ligand expressing cells failed to activate Notch1 receptor although were capable of activating Notch2. Conversely, Jag2 cells elicited the strongest activation of both receptors. The results with Jag1 are surprising also because it exhibits some of the strongest binding to plate bound ligands. The failure to activate Notch1 has major functional significance and it will be important in future to understanding the mechanistic basis.<br /> - Jagged ligands have the strongest ciis-inhibitory effects and the receptors differ in their sensitivity to cis-inhibition by Dll ligands. These observations are in keeping with earlier in vivo and cell culture studies. More referencing of those would better place the work in context but it nicely supports and extends previous studies that were conducted in different ways.<br /> - Responses to most trans-activating ligands showed a degree of ultrasensitivity but this was not the case for cis-interactions where effects were more linear. This has implications for the way the two mechanisms operate and for how the signaling levels will be impacted by ligand expression levels.<br /> - Qualitatively similar results are obtained in a second cell line, suggesting they reflect fundamental properties of the ligands/receptors.
Weaknesses:
One weakness is that the methods used to quantify the expression of ligands and receptors rely on co-translation of tagged nuclear H2B proteins. These may not accurately capture surface levels/correctly modified transmembrane proteins. In general, the multiple conditions tested partly compensate for the concerns - for example as Jag1 cells do activate Notch2 even if they do not activate Notch1 some Jag1 must be getting to the surface. But even with Notch2, Jag1 activities are on the lower side, making it important to clarify, especially given the different outcomes with the plated ligands. Similarly, is the fact that all ligands "signalled strongest to Notch2" an inherent property or due to differences in surface levels Notch 2 compared to Notch1?.. The results would be considerably strengthened by calibration of the ligand/receptor levels (and ideally their sub-cellular localizations). Assessing the membrane protein levels would be relatively straightforward to perform on som eof the basic conditions because their ligand constructs contain Flag tags, making it plausible to relate surface protein to H2B, and there are antibodies available for Notch1 and Notch2
In the revised version this has been addressed to some extent. A figure showing the relationship between co-translated mTurquiose and surface receptor expression for some clones (Figure 1-figure supplement 1B) goes some way to address the concerns that differences in Notch1 and Notch 2 could be due to the receptor levels. The data analyzing surface ligand levels is more equivocal, (a Western blot for biotinylated surface proteins), as the levels detected vary substantially between Dll1 and Dll4 (the latter barely detectable). But as a signal for surface expression of Jag1 was obtained this rules-out one concern that this ligand was failing to reach the surface. A discussion of the caveats of the approach is warranted, to make clear the limitations.
Cis-activation as a mode of signaling has only emerged from these synthetic cell culture assays raising questions about its physiological relevance. Cis-activation is only seen at the higher ligand (Dll1, Dll4) levels, how physiological are the expression levels of the ligands/receptors in these assays? Is it likely that this would make a major contribution in vivo? Is it possible that the cells convert themselves into "signaling" and "receiving" sub-populations within the culture by post-translational mechanism. Again some analysis of the ligand/receptors in the cultures would be a valuable addition to show whether or not there are major heterogeneities.
It is hard to appreciate how much cell to cell variability in the "output" there is. For example, low "outputs" could arise from fewer cells becoming activated or from all cells being activated less. As presented, only the latter is considered. That maybe already evident in their data, but not easy for the reader to distinguish from the way they are presented. For example, in many of the graphs, data have been processed through multiple steps of normalization. Some discussion/consideration this point is needed.
Impact:<br /> Overall, cataloguing of the outcomes from the different ligand-receptor combinations, both in cis and trans, yields a valuable baseline for those investigating their functional roles in different contexts. There is still a long way to go before it will be possible to make a predictive model for outcomes based on expression levels, but this work gives an idea about the landscape and the complexities. This is especially important now that signaling relationships are frequently hypothesised based on single cell transcriptomic data. The results presented here demonstrate that the relationships are not straightforward when multiple players are involved.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Colomb et al have further explored the mechanisms of action of a family of three immunodulatory proteins produced by the murine gastrointestinal nematode parasite Heligmosomoides polygyrus bakeri. The family of HpARI proteins binds to the alarmin interleukin 33 and depending on family members, exhibits differential activities, either suppressive or enhancing. The present work extends previous studies by this group showing the binding of DNA by members of this family through a complement control protein (CCP1) domain. Moreover, they identify two members of the family that bind via this domain in a non-specific manner to the extracellular matrix molecule heparan sulphate through a basic charged patch in CCP1. The authors thus propose that binding to DNA or heparan sulphate extends the suppressive action of these two parasite molecules, whereas the third family member does not bind and consequently has a shorter half-life and may function via diffusion.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In their manuscript, Zhou et al. analyze the factors controlling the activation and maintenance of a sustained cell cycle block in response to persistent DNA DSBs. By conditionally depleting components of the DDC using auxin-inducible degrons, the authors verified that some of them are only required for the activation (e.g., Dun1) or the maintenance (e.g., Chk1) of the DSB-dependent cell cycle arrest, while others such as Ddc2, Rad24, Rad9 or Rad53 are required for both processes. Notably, they further show that after a prolonged arrest (>24 h) in a strain carrying two DSBs, the DDC becomes dispensable and the mitotic block is then maintained by SAC proteins such as Mad1, Mad2 or the mitotic exit network (MEN) component Bub2.
Strengths:
The manuscript dissects the specific role of different components of the DDC and the SAC during the induction of a cell cycle arrest induced by DNA damage, as well as their contribution for the short-term and long-term maintenance of a DNA DSB-induced mitotic block. Overall, the experiments are well described and properly executed, and the data in the manuscript are clearly presented. The conclusions drawn are generally well supported by the experimental data. Their observations contribute to drawing a clearer picture of the relative contribution of these factors to the maintenance of genome stability in cells exposed to permanent DNA damage.
Weaknesses:
The main weakness of the study is that it is fundamentally based on the use of the auxin-inducible degron (AID) strategy to deplete proteins. This widely used method allows an efficient depletion of proteins in the cell. However, the drawback is that a tag is added to the protein, which can affect the functionality of the targeted protein or modify its capacity to interact with others. In fact, three of the proteins that are depleted using the AID systems are shown to be clearly hypomorphic, and hence their capacity to induce a strong checkpoint response might be compromised. A corroboration of at least some of the results using an alternative manner to eliminate the proteins would help to strengthen the conclusions of the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors investigated the function of Microrchidia (MORC) proteins in the human malaria parasite Plasmodium falciparum. Recognizing MORC's implication in DNA compaction and gene silencing across diverse species, the study aimed to explore the influence of PfMORC on transcriptional regulation, life cycle progression and survival of the malaria parasite. Depletion of PfMORC leads to the collapse of heterochromatin and thus to the killing of the parasite. The potential regulatory role of PfMORC in the survival of the parasite suggests that it may be central to the development of new antimalarial strategies.
Strengths:
The application of the cutting-edge CRISPR/Cas9 genome editing tool, combined with other molecular and genomic approaches, provides a robust methodology. Comprehensive ChIP-seq experiments indicate PfMORC's interaction with sub-telomeric areas and genes tied to antigenic variation, suggesting its pivotal role in stage transition. The incorporation of Hi-C studies is noteworthy, enabling the visualization of changes in chromatin conformation in response to PfMORC knockdown.
Weaknesses:
Although disruption of PfMORC affects chromatin architecture and stage-specific gene expression, determining a direct cause-effect relationship requires further investigation. Furthermore, while numerous interacting partners have been identified, their validation is critical and understanding their role in directing MORC to its targets or in influencing the chromatin compaction activities of MORC is essential for further clarification. In addition, the authors should adjust their conclusions in the manuscript to more accurately represent the multifaceted functions of MORC in the parasite.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The authors previously showed in cell culture that Su(H), the transcription factor mediating Notch pathway activity in Drosophila, was phosphorylated on S269 and they found that a phospho-deficient Su(H) allele behaves as a moderate gain of Notch activity in flies, notably during blood cell development. Since downregulation of Notch signaling is important for the production of specialized blood cell types (lamellocytes) in response to wasp parasitism, the authors hypothesized that Su(H) phosphorylation might be involved in this cellular immune response.<br /> Consistent with their hypothesis, the authors now show that Su(H)S269A knock-in flies display a reduced response to wasp parasitism and that Su(H) is phosphorylated upon infestation. Using in vitro kinase assays and a genetic screen, they identify the PKCa family member Pkc53E as the putative kinase involved in Su(H) phosphorylation and they show that Pkc53E can bind Su(H). They further show that Pkc53E deficit or its knock-down in larval blood cells results in similar blood cell phenotypes as Su(H)S269A and their epistatic analyses indicate that Pkc53E acts upstream of Su(H). Finally, they show that Pkc53E mutants aslo display a compromised immune response to wasp parasitism.
Strengths
The manuscript is well presented and the experiments are sound, with a good combination of genetic and biochemical approaches and several clear phenotypes backing the main conclusions. Notably Su(H)S269A mutation strongly reduces lamellocyte production. Moreover, the epistatic data are convincing, notably concerning the relationship between Notch/Su(H) and Pkc53E for crystal cell production.<br /> Even though it is not fully established, the overall model is credible and interesting. In addition, it opens further avenues of research to study the activation of Pkc in response to an immune challenge.
Weaknesses
Apparently, the hypothesis that Pkc53E is required for Su(H) phosphorylation in vivo could not be directly tested due to the lack of an appropriate tool (the specificity and sensitivity of the current anti-pS269 antibody was insufficient).<br /> Also, the poor immune response of Pkc53E mutant might rather be linked to their constitutively reduced circulating blood cell number than to a deficit in Notch/Su(H) down-regulation following wasp infestation.
-
-
-
Reviewer #1 (Public review):
In this work, the authors study the dynamics of fast-adapting pathogens under immune pressure in a host population with prior immunity. In an immunologically diverse population, an antigenically escaping variant can perform a partial sweep, as opposed to a sweep in a homogeneous population. In a certain parameter regime, the frequency dynamics can be mapped onto a random walk with zero mean, which is reminiscent of neutral dynamics, albeit with differences in higher order moments. Next, they develop a simplified effective model of time dependent selection with expiring fitness advantage, and posit that the resulting partial sweep dynamics could explain the behaviour of influenza trajectories empirically found in earlier work (Barrat-Charlaix et al. Molecular Biology and Evolution, 2021). Finally, the authors put forward an interesting hypothesis: the mode of evolution is connected to the age of a lineage since ingression into the human population. A mode of meandering frequency trajectories and delayed fixation has indeed been observed in one of the long-established subtypes of human influenza, albeit so far only over a limited period from 2013 to 2020. The paper is overall interesting and well-written.
In the revised version, the authors have addressed questions on the role of clonal interference by new simulations in the SI, clarified the connection between the SIR model and vanishing-fitness models, and placed their analysis into the broader context of consumer resource dynamics.
However, the general conclusion, as stated in the abstract, that variant trajectories become unpredictable as a consequence of the SIR dynamics remains somewhat misleading. Two aspects contribute to this problem. (1) The empirical observation of ``quasi-neutrality', i.e. the absence of a net frequency increase inferred as an average of many trajectories at intermediate frequencies, does not imply that individual trajectories are neutral (i.e., fully stochastic and unpredictable) over the time span of observation. Rather, it just says that some have a positive and some have a negative selection coefficient over that time span. (2) As stated by the authors, the observation of average quasi-neutrality is indeed incompatible with the travelling wave model, where initially successful new variants are assumed to retain a fixed, positive selection coefficient from origination to fixation. This observation also limits predictions by extrapolation, where a positive selection coefficient inferred at small frequency is assumed to remain the same at later times and higher frequencies. However, predictions derived from Gog and Grenfell's multi-strain SIR model, as used by several authors, do not make the assumption of fixed selection coefficients and incorporate trajectory-specific, time-dependent expiration effects into their model predictions. This distinction remains blurred throughout the text of the paper.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors used a novel multi-dimensional experience sampling (mDES) approach to identify data-driven patterns of experience samples that they use to interrogate fMRI data collected during naturalistic movie-watching data. They identify a set of multi-sensory features of a set of movies that delineate low-dimensional gradients of BOLD fMRI signal patterns that have previously been linked to fundamental axes of cortical organization.
Strengths:
* The novel solution to challenges associated with experience sampling offer potential access to aspects of experience that have been challenging to assess.
Weaknesses:
* The lack of direct interrogation of individual differences/reliability of the mDES scores warrants some pause.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
In this manuscript, the authors study the effects of synaptic activity on the process of eye-specific segregation, focusing on the role of caspase 3, classically associated with apoptosis. The method for synaptic silencing is elegant and requires intrauterine injection of a tetanus toxin light chain into the eye. The authors report that this silencing leads to increased caspase 3 in the contralateral eye (Figure 1) and demonstrate evidence of punctate caspase 3 that does not overlap neuronal markers like map2. However, the quantifications showing increased caspase 3 in the silenced eye (done at P5) are complicated by overlap with the signal from entire dying cells in the thalamus. The authors also show that global caspase 3 deficiency impairs the process of eye-specific segregation and circuit refinement (Figures 3-4).
The authors also report that "synapse weakening-induced caspase-3 activation determines the specificity of synapse elimination mediated by microglia but not astrocytes" (abstract). They report that microglia engulf fewer RGC axon terminals in caspase 3 deficient animals (Figure 5), and that this preferentially occurs in silenced terminals, but this preferential effect is lost in caspase 3 knockouts. Based on this, the authors conclude that caspase 3 directs microglia to eliminate weaker synapses. However, a much simpler and critical experiment that the authors did not perform is to eliminate microglia and show that the caspase 3 dependent effects go away. Without this experiment, there is no reason to assume that microglia are directing synaptic elimination.
Finally, the authors also report that caspase 3 deficiency alters synapse loss in 6-month-old female APP/PS1 mice, but this is not really related to the rest of the paper.
-
-
-
Reviewer #1 (Public review):
Summary:
This paper is an incremental follow-up to the authors' recent paper which showed that Purkinje cells make inhibitory synapses onto brainstem neurons in the parabrachial nucleus which project directly to the forebrain. In that precedent paper, the authors used a mouse line that expresses the presynaptic marker synaptophysin in Purkinje cells to identify Purkinje cell terminals in the brainstem and they observed labeled puncta not only in the vestibular and parabrachial nuclei, as expected, but also in neighboring dorsal brainstem nuclei, prominently the central pontine grey. The present study, motivated by the lack of thorough characterization of PC projections to the brainstem, uses the same mouse line to anatomically map the density and a PC-specific channelrhodopsin mouse line to electrophysiologically assess the strength of Purkinje cell synapses in dorsal brainstem nuclei. The main findings are (1) the density of Purkinje cell synapses is highest in vestibular and parabrachial nuclei and correlates with the magnitude of evoked inhibitory synaptic currents, and (2) Purkinje cells also synapse in the central pontine grey nucleus but not in the locus coeruleus or mesencephalic nucleus.
Strengths:
The complementary use of anatomical and electrophysiological methods to survey the distribution and efficacy of Purkinje cell synapses on brainstem neurons in mouse lines that express markers and light-sensitive opsins specifically in Purkinje cells is the major strength of this study. By systematically mapping presynaptic terminals and light-evoked inhibitory postsynaptic currents in the dorsal brainstem, the authors provide convincing evidence that Purkinje cells do synapse directly onto pontine central grey and nearby neurons but do not synapse onto trigeminal motor or locus coeruleus neurons. Their results also confirm previously documented heterogeneity of Purkinje cell inputs to the vestibular nucleus and parabrachial neurons.
Weaknesses:
Although the study provides strong evidence that Purkinje cells do not make extensive synapses onto LC neurons, which is a helpful caveat given previous reports to the contrary, it falls short of providing the comprehensive characterization of Purkinje cell brainstem synapses which seemed to be the primary motivation of the study. The main information provided is a regional assessment of PC density and efficacy, which seems of limited utility given that we are not informed about the different sources of PC inputs, variations in the sizes of PC terminals, the subcellular location of synaptic terminals, or the anatomical and physiological heterogeneity of postsynaptic cell types. The title of this paper would be more accurate if "characterization" were replaced by "survey".
Several of the study's conclusions are quite general and have already been made for vestibular nuclei, including the suggestions in the Abstract, Results, and Discussion that PCs selectively influence brainstem subregions and that PCs target cell types with specific behavioral roles.
-
-
www.youtube.com www.youtube.com
-
Ultrahuman has some interesting other gadgets for optimizing one's health and life. Worth looking into later when I live on my own and have enough income.
-
-
Local file Local file
-
when putting thoughts into words. Words that remain in our head are freeto exist independent of how they’re used by other people.
On one level, the reason is obvious: accountability. There’s a lot at stake...
except somehow for Donald J. Trump and some in identity politics...
How do they get around it? system 1 vs system 2
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Bursicon is a key hormone regulating cuticle tanning in insects. While the molecular mechanisms of its function are rather well studied--especially in the model insect Drosophila melanogaster, its effects and functions in different tissues are less well understood. Here, the authors show that bursicon and its receptor play a role in regulating aspects of the seasonal polyphenism of Cacopsylla chinensis. They found that low temperature treatment activated the bursicon signaling pathway during the transition from summer form to winter form and affect cuticle pigment and chitin content, and cuticle thickness. In addition, the authors show that miR-6012 targets the bursicon receptor, CcBurs-R, thereby modulating the function of bursicon signaling pathway in the seasonal polyphenism of C. chinensis. This discovery expands our knowledge of the roles of neuropeptide bursicon action in arthropod biology.
Reviewer comments on revised version
(a) Major concerns<br /> (1) The revision did not respond to the major concern regarding the threshold response that defines polyphenism. Therefore, it still falls short of the claims made, since the claims were not revised either. Specifically, the authors now include a time series of tanning at two different temperatures, demonstrating the time points at which the induced tanning proceeds (Fig. S1). However, the appropriate response to that comment would have temperatures on the x-axis, not time. Intermediate temperatures are needed to test whether the induction is a threshold response or simply a continuous norm of reaction.<br /> (2) The authors also did not respond to the major comment regarding environmental induction of miR-6012 expression. Rather, Fig. 5E shows a time series under two temperatures, similar to the tanning time series. To test whether its induction is a threshold response (again, what defines polyphenism), a series of induction conditions is needed. Fig. 5E simply shows changes in expression over time under one induction temperature (25 ºC).<br /> (3) Although the manuscript title has been changed, little to nothing else in the revised text addresses the concern that this study is about tanning in psyllids, not seasonal polyphenism. The other traits making up the polyphenism, as well as their threshold response, were not measured.
In summary, this revision failed to address most of the chief concerns of the review summary. This manuscript should be reframed as a study of tanning in a species other than Drosophila, and any claims about polyphenism (that is, an environmentally induced threshold trait) still need to be tested.
Regarding the other concerns raised by the reviewers:
(4) Issues related to the assignment of the receptor used as a bursicon receptor were satisfactorily addressed.<br /> (5) Experiments regarding the timing of cuticle production presented in Supplementary Figure 1 are valuable, albeit, there are still some inaccuracies: i) the layering of the cuticle is not given accurately as there are more than the 3 layers indicated in the manuscript; ii), the reduced endocuticle in all relevant dsRNA cases suggests a massive molting defect that may underline the involvement of bursicon in molting in general, potentially masking its effect on morph transition. In other words, the phenotype is too strong to allow for the interpretation of its function with respect to morph transition. It would have been necessary to apply different concentrations of dsRNA in order to address this point. iii) The developmental timing at 10oC vs. 25oC seem to be similar, although duration would be expected to be longer at 10oC; iv) It would have been nice to see the days of development also for dsRNA injected animals.<br /> (6) Another unresolved point regards the source and target tissue of bursicon signaling. Admittedly, this problem is difficult to solve in a small insect species.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Over the last decade, numerous studies have identified adaptation signals in modern humans driven by genomic variants introgressed from archaic hominins such as Neanderthals and Denisovans. One of the most classic signals comes from a beneficial haplotype in the EPAS1 gene in Tibetans that is evidently of Denisovan origin and facilitated high altitude adaptation (HAA). Given that HAA is a complex trait with numerous underlying genetic contributions, in this paper Ferraretti et al. asked whether Denisovan introgression facilitated HAA in other ways by contributing to additional HAA-related genetic variants. Specifically, the authors considered that if such signature exists, they most likely are only mild signals from polygenic selection, or soft sweeps on standing archaic variation, in contrast to a strong and nearly complete selection signal like the EPAS1. They leveraged a few recently developed methods, including a composite likelihood method for detecting adaptive introgression and a biological network-based method for detecting polygenic selection, and identified compelling evidence of additional genes that exhibit Denisovan-like adaptive introgression signature and contributed to the polygenic adaptation at high altitude in Tibetans.
Strength:
The study is well motivated by an important question, which is, whether archaic introgression can drive polygenic adaptation via multiple small effect contributions in genes underlying different biological pathways regulating a complex trait (such as HAA). This is a valid question and the influence of archaic introgression on polygenic adaptation has not been thoroughly explored by previous studies
The authors reexamined previously published high-altitude Tibetan whole genome data and detected new evidence of adaptive introgression and polygenic selection. Specifically, by applying VolcanoFinder, they confirmed previously identified adaptive introgression alleles such as EPAS1 and PPARA. By applying signet, they identified subsets of biological pathways enriched for archaic variants that contributed to HAA polygenic selection. They also leveraged additional methods such as LASSI and haplotype plotting to help confirm the signature of natural selection on their newly discovered adaptive introgression candidate genes.
Weakness:
The manuscript also improved substantially since the initial review, and the new candidate genes presented here now harbor compelling and convincing evidence of both adaptive introgression and HAA polygenic selection. There are no notable weaknesses in the revised manuscript and updated results.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
After revisions:
My concerns have been addressed.
Prior to revisions:
Summary:<br /> The authors introduce a denoising-style model that incorporates both structure and primary-sequence embeddings to generate richer embeddings of peptides. My understanding is that the authors use ESM for the primary sequence embeddings, take resolved structures (or use structural predictions from AlphaFold when they're not available), then develop an architecture to combine these two with a loss that seems reminiscent of diffusion models or masked language model approaches. The embeddings can be viewed as ensemble-style embedding of the two levels of sequence information, or with AlphaFold, an ensemble of two methods (ESM+AlphaFold). The authors also gather external datasets to evaluate their approach and compare it to previous approaches. The approach seems promising, and appears to out-compete previous methods at several tasks. Nonetheless, I have strong concerns about a lack of verbosity as well as exclusion of relevant methods and references.
Advances:<br /> I appreciate the breadth of the analysis and comparisons to other methods. The authors separate tasks, models, and sizes of models in an intuitive, easy-to-read fashion that I find valuable for selecting a method for embedding peptides. Moreover, the authors gather two datasets for evaluating embeddings' utility for predicting thermostability. Overall, the work should be helpful for the field as more groups choose methods/pretraining strategies amenable to their goals, and can do so in an evidence-guided manner.
Considerations:<br /> Primarily, a majority of the results and conclusions (e.g., Table 3) are reached using data and methods from ProteinGym, yet the best-performing methods on ProteinGym are excluded from the paper (e.g., EVE-based models and GEMME). In the ProteinGym database, these methods outperform ProtSSN models. Moreover, these models were published over a year---or even 4 years in the case of GEMME---before ProtSSN, and I do not see justification for their exclusion in the text.
Secondly, related to comparison of other models, there is no section in the methods about how other models were used, or how their scores were computed. When comparing these models, I think it's crucial that there are explicit derivations or explanations for the exact task used for scoring each method. In other words, if the pre-training is indeed the important advance of the paper, the paper needs to show this more explicitly by explaining exactly which components of the model (and previous models) are used for evaluation. Are the authors extracting the final hidden layer representations of the model, treating these as features, then using these features in a regression task to predict fitness/thermostability/DDG etc.? How are the model embeddings of other methods being used, since, for example, many of these methods output a k-dimensional embedding of a given sequence, rather than one single score that can be correlated with some fitness/functional metric. Summarily, I think the text is lacking an explicit mention of how these embeddings are being summarized or used, as well as how this compares to the model presented.
I think the above issues can mainly be addressed by considering and incorporating points from Li et al. 2024[1] and potentially Tang & Koo 2024[2]. Li et al.[1] make extremely explicit the use of pretraining for downstream prediction tasks. Moreover, they benchmark pretraining strategies explicitly on thermostability (one of the main considerations in the submitted manuscript), yet there is no mention of this work nor the dataset used (FLIP (Dallago et al., 2021)) in this current work. I think a reference and discussion of [1] is critical, and I would also like to see comparisons in line with [1], as [1] is very clear about what features from pretraining are used, and how. If the comparisons with previous methods were done in this fashion, this level of detail needs to be included in the text.
To conclude, I think the manuscript would benefit substantially from a more thorough comparison of previous methods. Maybe one way of doing this is following [1] or [2], and using the final embeddings of each method for a variety of regression tasks---to really make clear where these methods are performing relative to one another. I think a more thorough methods section detailing how previous methods did their scoring is also important. Lastly, TranceptEVE (or a model comparable to it) and GEMME should also be mentioned in these results, or at the bare minimum, be given justification for their absence.
[1] Feature Reuse and Scaling: Understanding Transfer Learning with Protein Language Models Francesca-Zhoufan Li, Ava P. Amini, Yisong Yue, Kevin K. Yang, Alex X. Lu bioRxiv 2024.02.05.578959; doi: https://doi.org/10.1101/2024.02.05.578959<br /> [2] Evaluating the representational power of pre-trained DNA language models for regulatory genomics Ziqi Tang, Peter K Koo bioRxiv 2024.02.29.582810; doi: https://doi.org/10.1101/2024.02.29.582810
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The manuscript by Yao S. and colleagues aims to monitor the potential autosomal regulatory role of the master regulator of X chromosome inactivation, the Xist long non-coding RNA. It has recently become apparent that in the human system, Xist RNA can not only spread in cis on the future inactive X chromosome but also reach some autosomal regions where it recruits transcriptional repression and Polycomb marking. Previous work has also reported that Xist RNA can show a diffused signal in some biological contexts in FISH experiments.
In this study, the authors investigate whether Xist represses autosomal loci in differentiating female mouse embryonic stem cells (ESCs) and somatic mouse embryonic fibroblasts (MEFs). They perform a time course of ESC differentiation followed by Capture Hybridization of Associated RNA Targets (CHART) on both female and male ESCs, as well as pulldowns with sense oligos for Xist. The authors also examine transcriptional activity through RNA-seq and integrate this data with prior ChIP-seq experiments. Additional experiments were conducted in MEFs and Xist-ΔB repeat mutants, the latter fails to recruit Polycomb repressors.
Based on this experimental design, the authors make several bold claims:
(1) Xist binds to about a hundred specific autosomal regions.<br /> (2) This binding is specific to promoter regions rather than broad spreading.<br /> (3) Xist autosomal signal is inversely correlated with PRC1/2 marks but positively correlated with transcription.<br /> (4) Xist targeting results in the attenuation of transcription at autosomal regions.<br /> (5) The B-repeat region is important for autosomal Xist binding and gene repression.<br /> (6) Xist binding to autosomal regions also occurs in somatic cells but does not lead to gene repression.
Together, these claims suggest that Xist might play a role in modulating the expression of autosomal genes in specific developmental and cellular contexts in mice.
Strengths:
This paper deals with an interesting hypothesis that Xist ncRNA can also function at autosomal loci.
Weaknesses:
The claims reported in this paper are largely unsubstantiated by the data, with multiple misinterpretations, lacking controls, and inadequate statistics. Fundamental flaws in the experimental design/analysis preclude the validity of the findings. Major concerns are listed below:
(1) The entire paper is based on the CHART observation that Xist is specifically targeted to autosomal promoters. Overall, the data analysis is flawed and does not support such conclusions. Importantly the sense WT and the 0h controls are not used, nor are the biological replicates. Data is typically visualized without quantification, and when quantified, control loci/gene sets are erroneously selected. Firstly, CHART validation on the X in FigS1 is misleading and not based on any quantifications (e.g., see the scale on Kdm6a (0-190) compared to Cdkl5 (0-40)). If scaled appropriately, there is Xist signal on the escapee. All X-linked loci should have been quantified and classified based on escape status; sense control should also be quantified, and biological replicates should be shown separately. Secondly, and most importantly, Figure 1 does not convincingly show specific Xist autosomal binding. Panel A quantification is on extremely variable y-scales and actually shows that Xist is recruited globally to nearly all autosomal genes, likely indicating an unspecific signal. Again, the sense and 0h controls should have been quantified along with biological replicates. Upon inspecting genome browser tracks of all regions reported in the manuscript (Rbm14, Srp9, Brf1, Cand2, Thra, Kmt2c, Kmt2e, Stau2, and Bcl7b), the signal is unspecific on all sites with the possible exception of Kmt2e. On all other loci, there is either a strong signal in the 0h ESC controls or more signal in some of the sense controls. This implies that peak calling is picking up false positive regions. How many peaks would have been picked up if the sense or the 0h controls were used for peak calling? It is likely that there would be a lot since there are also possible "peaks" (e.g., Fzd9) in control tracks. Further inspection of the data was not possible as the authors did not provide access to the raw fastq files. When inspecting results from past published experiments {Engreitz, 2013 #1839} reported regions were not bound by Xist. Thirdly, contrary to the authors' claim, deleting the B repeat does not lead to a loss of autosomal signal. Indeed, comparing Fig1A and Fig2B side by side clearly shows no difference in the autosomal signal, likely because the autosomal signal is CHART background. Properly quantifying the signal with separate replicates as well as the sense and 0h controls is vital. Overall current data together with published results indicate that CHART peak calling on autosomes is due to technical noise or artefacts.
(2) The RNA-seq analysis is also flawed and precludes strong statements. Firstly, the analysis frequently lacks statistical analysis (Fig3B, FigS2B-C) and is often based on visualizations (Fig 3D-G) without quantifications. Day 4 B-repeat deletion does not lead to a significant change in the expression of genes close to Xist signal (Fig3H, d14 does not fully show). Secondly, for all transcriptional analysis, it is important to show autosomal non-target genes, which is not always done. Indeed, both males and B repeat deletion will lead to transcriptional changes on autosomes as a secondary effect from different X inactivation status. The control set, if used, is inappropriate as it compares one randomly selected set of ~100 genes. This introduces sampling error and compares different classes of genes. Since Xist signal targets more active genes, it is important to always compare autosomal target genes to all other autosomal genes with similar basal expression patterns.
(3) The ChIP-seq analysis also has some problems. The authors claim that there is no positive correlation between genes close to Xist autosomal binding (10kb) compared to those 50kb away (Fig 3C, S2D); however, this analysis is based entirely on metagene visualization. Signal within the Xist binding sites should be quantified (not genes close by) and compared to other types of genomic loci and promoters. Focusing on the 50kb group only as controls is misleading. Secondly, the authors only look at PRC mark signal upon differentiation; what about the 0h timepoint, i.e., is there pre-marking? Most worryingly, the data analysis is not consistent between figures (see Fig3C vs 5H-I). In Fig5, the group of Xist targets was chosen as those within 100kb of Xist binding, which would encompass all the control regions from Fig3C. In this analysis, the authors report that there is Xist-dependent H3K27me3 deposition, and in fact, here the Xist autosomal targets have more of it than the controls. Overall, all of this analysis is misleading, and clear conclusions cannot be made.
All in all, because the fundamental observation is not robust (see point 1), all subsequent analyses are also affected. There are also multiple other inconsistencies within the analysis; however, they have not been included here for brevity.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
Summary:
The authors present an intriguing investigation into the pathogenesis of Pol III variants associated with neurodegeneration. They established an inducible mouse model to overcome developmental lethality, administering 5 doses of tamoxifen to initiate the knock-in of the mutant allele. Subsequent behavioral assessments and histological analyses revealed potential neurological deficits. Robust analyses of the tRNA transcriptome, conducted via northern blotting and RNA sequencing, suggested a selective deleterious effect of the variant on the cerebrum, in contrast to the cerebellum and non-cerebral tissues. Through this work, the authors identified molecular changes caused by Pol III mutations, particularly in the tRNA transcriptome, and demonstrated its relative progression and selectivity in brain tissue. Overall, this study provides valuable insights into the neurological manifestations of certain genetic disorders and sheds light on transcripts/products that are constitutively expressed in various tissues.
Strengths:
The authors utilize an innovative mouse model to constitutively knock in the gene, enhancing the study's robustness. Behavioral data collection using a spectrometer reduces experimenter bias and effectively complements the neurological disorder manifestations. Transcriptome analyses are extensive and informative, covering various tissue types and identifying stress response elements and mitochondrial transcriptome patterns. Additionally, metabolic studies involving pancreatic activity and glucose consumption were conducted to eliminate potential glucose dysfunction, strengthening the histological analyses.
Comments on revised version from expert Editor #1:
The authors in the revised manuscript have effectively responded to all of the comments and suggestions raised by both reviewers. Overall, I find the revised version to be an important contribution to the field and the strength of evidence supporting the work's claims to be compelling.
Comments on revised version from expert Editor #2:
The authors have responded constructively to all the comments in the first round of reviews and clarified many issues in the manuscript. The current report represents a significant advance.
Comments on revised version from Reviewer #2:
The authors should include their clarifications of all concern raised by reviewer #2 (mentioned in the previous weaknesses) in the main text. They should consider including point #2 to point #10 in the main text (discussion section). The should highlight limitations of this study in discussion.
Also, they should clearly state that deciphering brain area specific behavioural deficits is beyond the scope of the manuscript with appropriate justification mentioned in the rebuttal letter.
I still do not agree with the author to state that "brain region-specific sensitivities to a defect in Pol III transcription". The changes are global and also not restricted to brain. Authors may consider restating this sentence. It is obvious that transcription defects related to tRNA production will lead to alteration in whole body physiology.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
TMEM16, OSCA/TMEM63, and TMC belong to a large superfamily of ion channels where TMEM16 members are calcium activated lipid scramblases and chloride channels, whereas OSCA/TMEM63 and TMCs are mechanically activated ion channels. In the TMEM16 family, TMEM16F is a well characterized calcium activated lipid scramblase that play an important role in processes like blood coagulation, cell death signaling, and phagocytosis. In a previous study the group has demonstrated that lysine mutation in TM4 of TMEM16A can enable the calcium activated chloride channel to permeate phospholipids too. Based on this they hypothesize that the energy barrier for lipid scramblase in these ion channels is low, and that modification in the hydrophobic gate region by introducing a charged side chain between TM4/6 interface in TMEM16 and OSCA/TMEM63 family can allow lipid scramblase. In this manuscript, using scramblase activity via Annexin V binding to phosphatidylserine, and electrophysiology, the authors demonstrate that lysine mutation in TM4 of TMEM16F and TMEM16A can cause constitutive lipid scramblase activity. The authors then go on to show that analogous mutations in OSCA1.2 and TMEM63A can lead to scramblase activity. The revised version does a thorough characterization of residues that form the hydrophobic gate region in TM4/6 of this superfamily of channels. Their results indicated that disrupting the TM4/6 interaction can reduce energy barrier for this channels to scramblase lipids.
Strengths:
Overall, the authors introduce an interesting concept that this large superfamily can permeate ions and lipids.
Weaknesses:
none noted in the revised version.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors explored how the presence of interspecific introgressions in the genome affects the recombination landscape. This research aims to shed light on the genetic phenomena influencing the evolution of introgressed regions. However, it is important to note that the study is based on examining only one generation, which limits the scope for making broad evolutionary conclusions. In this study, yeast hybrids with large introgressions (ranging from several to several dozen percent of the chromosome length) from another yeast species were crossed. The products of meiosis were then isolated and sequenced to examine the genome-wide distribution of both crossovers (COs) and noncrossovers (NCOs). The authors found a significant reduction in the frequency of COs within the introgressed regions, which is a phenomenon well-documented in various systems. They also report that introgressed regions exhibit an increased frequency of NCOs. Unfortunately, this conclusion seems flawed, as there is no accurate method for correcting the detection level of NCOs when the compared regions (introgressed and non-introgressed) differ drastically in SNP density. The authors further confirmed that introgressions significantly limit the local shuffling of genetic information, and while NCOs contribute slightly to this shuffling, they do not compensate for the loss of CO recombination. This is widely known fact.
In summary, the study makes a limited contribution to the understanding of how polymorphism impacts meiotic recombination. The conclusion regarding the increase in NCO frequency in polymorphic regions is likely incorrect.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Assessment:
This fundamental work advances our understanding of navigation and path integration in mammals by using a clever behavioral paradigm. The paper provides compelling evidence that mice are able to create and use a cognitive map to find "short cuts" in an environment, using only the location of rewards relative to the point of entry to the environment and path integration, and need not rely on visual landmarks.
Summary:
The authors have designed a novel experimental apparatus called the 'Hidden Food Maze (HFM)' and a beautiful suite of behavioral experiments using this apparatus to investigate the interplay between allothetic and idiothetic cues in navigation. The results presented provide a clear demonstration of the central claim of the paper, namely that mice only need a fixed start location and path integration to develop a cognitive map. The experiments and analyses conducted to test the main claim of the paper -- that the animals have formed a cognitive map -- are conclusive and include many thoughtfully designed control experiments to eliminate alternatives.
Strengths:
The 90 degree rotationally symmetric design and use of 4 distal landmarks and 4 quadrants with their corresponding rotationally equivalent locations (REL) lends itself to teasing apart the influence of path integration and landmark-based navigation in a clever way. The authors use a complete set of experiments and associated controls to show that mice can use a start location and path integration to develop a cognitive map and generate shortcut routes to new locations.
Weaknesses:
There were no major weaknesses identified that were not addressed during revisions.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This study investigated the role of plectin, a cytoskeletal crosslinker protein, in liver cancer formation and progression. Using the liver-specific Plectin knockout mouse model, the authors convincingly showed that PLECTIN is critical for hepatocarcinogenesis, as functional inhibition of plectin suppressed tumor formation in several models. They also provided evidence to show that inhibition of plectin inhibited HCC cell invasion and reduced metastatic outgrowth in the lung. Mechanistically, they suggested that plectin inhibition attenuated FAK, MAPK/ERK, and PI3K/AKT signaling.
Strengths:
The authors generated a liver-specific plectin knockout mouse model. By using DEN and sgP53/MYC models, the authors convincingly demonstrated an oncogenic role of PLECTIN in HCC development. plecstatin-1 (PST), as a plectin inhibitor, showed promising efficacy in inhibiting HCC growth, which provides a basis for potentially treating HCC using PST.
The MIR images for tracking tumor growth in animal models were compelling. The high-quality confocal images and related qualifications convincingly showed the impact of plectin functional inhibition on contractility and adhesions in HCC cells.
Weaknesses:
The conclusions of this paper are primarily well supported by data. However, some claims were not fully supported by the data presented.
The authors suggest that plectin controls oncogenic FAK, MAPK/Erk, and PI3K/Akt signaling in HCC cells, representing the mechanisms by which plectin promotes HCC formation and progression. However, the effect of plectin inactivation on these signaling was inconsistent in Huh7 and SNU-475 cells (Figure 3D), despite similar cell growth inhibition in both cell lines (Figure 2G). For example, pAKT and pERK were only reduced by plectin inhibition in SNU-475 cells but not in Huh7 cells. In addition, pFAK was not changed by plectin inhibition in both cells, and the ratio of pFAK/FAK was increased in both cells. Thus, it is hard to convince me that plectin promotes HCC formation and progression by regulating these signalings. Overall, the mechanistic studies in this manuscript lack sufficient depth.
The authors claimed that plectin inactivation inhibits HCC invasion and metastasis using in vitro and in vivo models. However, the results from in vivo models were not as compelling as the in vitro data. The lung colonization assay is not an ideal in vivo model for studying HCC metastasis and invasion, especially when plectin inhibition suppresses HCC cell growth and survival. Using an orthotopic model that can metastasize into the lung or spleen could be much more convincing for an essential claim. Also, in Figure 6H, histology images of lungs from this experiment need to be shown to understand plectin's effect on metastasis better. Figure 6G, it is unclear how many mice were used for this experiment. Did these mice die due to the tumor burdens in the lungs?
The whole paper used inhibition strategies to understand the function of plectin. However, the expression of plectin in Huh7 cells is low (Figure 1D). It might be more appropriate to overexpress plectin in this cell line or others with low plectin expression to examine the effect on HCC cell growth and migration.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
In this revised manuscript, the authors aim to elucidate the cytological mechanisms by which conjugated linoleic acids (CLAs) influence intramuscular fat deposition and muscle fiber transformation in pig models. They have utilized single-nucleus RNA sequencing (snRNA-seq) to explore the effects of CLA supplementation on cell populations, muscle fiber types, and adipocyte differentiation pathways in pig skeletal muscles. Notably, the authors have made significant efforts in addressing the previous concerns raised by the reviewers, clarifying key aspects of their methodology and data analysis.
Strengths:
(1) Thorough validation of key findings: The authors have addressed the need for further validation by including qPCR, immunofluorescence staining, and western blotting to verify changes in muscle fiber types and adipocyte populations, which strengthens their conclusions.
(2) Improved figure presentation: The authors have enhanced figure quality, particularly for the Oil Red O and Nile Red staining images, which now better depict the organization of lipid droplets (Figure 7A). Statistical significance markers have also been clarified (Figure 7I and 7K).
Weaknesses:
(1) Cross-species analysis and generalizability of the results: Although the authors could not perform a comparative analysis across species due to data limitations, they acknowledged this gap and focused on analyzing regulatory mechanisms specific to pigs. Their explanation is reasonable given the current availability of snRNA-seq datasets on muscle fat deposition in other human and mouse.
(2) Mechanistic depth in JNK signaling pathway: While the inclusion of additional experiments is a positive step, the exploration of the JNK signaling pathway could still benefit from deeper analysis of downstream transcriptional regulators. The current discussion acknowledges this limitation, but future studies should aim to address this gap fully.
(3) Limited exploration of other muscle groups: The authors did not expand their analysis to additional muscle groups, leaving some uncertainty regarding whether other muscle groups might respond differently to CLA supplementation. Further studies in this direction could enhance the understanding of muscle fiber dynamics across the organism.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this work, the authors continue their investigations on the key role of glycosylation to modulate the function of a therapeutic antibody. As follow up of their previous demonstration on how ADCC was heavily affected by the glycans at the Fc gamma receptor (FcγR)IIIa, they now dissect the contributions of the different glycans that decorate the diverse glycosylation sites. Using a well designed mutation strategy, accompanied by exhaustive biophysical measurements, with extensive use of NMR, using both standard and newly developed methodologies, they demonstrate that there is one specific locus, N162, which is heavily involved in the stabilization of (FcγR)IIIa and that the concomitant NK function is regulated by the glycan at this site.
Strengths:
The methodological aspects are carried out at the maximum level.
Weaknesses:
The exact (or the best possible assessment) of the glycan composition at the N162 site.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The manuscript by Wang et al. investigates the role of Rnf220 in hindbrain development and Hox expression. The authors suggest that Rnf220 controls Hox expression in the hindbrain through regulating WDR5 levels. The authors combine in vivo experiments with experiments in P19 cells to demonstrate this mechanism. However, the in vivo data does not provide strong support for the claims the authors make and the role of Rnf in Hox maintenance and pons development is unclear.
While the authors partially addressed some of the issues raised in the first round of reviews, and the in vitro data showing a relationship between Rnf220 and WDR5 is convincing, some issues still remain about the experimental evidence supporting their claims and the relationship of this work with previous studies demonstrating the role of Hox proteins in pontine nuclei in vivo.
The authors say they were unable to detect Hox levels via in situ hybridization at late embryonic stages, stating that the levels are likely too low to be detected-yet they are presumably high enough to cause ectopic targeting of pontine neurons. Work from the Rijli group, which the authors cite, shows that Hox3-5 paralogs can be clearly detected both by in situ and by staining with commercially available antibodies. Since a major claim of this paper is the upregulation of Hox genes in Rnf220+/- mice through WDR5 regulation, the authors need to show this more convincingly. The inability to detect Hox upregulation, and subsequent rescue, by means other than qPCR in vivo remains a major weakness of the paper. The authors also do not discuss how broad upregulation of all Hox paralogs leads to the changes in PN targeting in the context of previous work.
The links between Wdr5 expression, epigenetic modifications, Hox expression and axon mistargeting in vivo remains somewhat tenuous. For example, the authors show epigenetic modification changes in some Hox genes, but not Hox5 paralogs, and only show the rescue by Wdr5 KO in vitro. Similarly, they do not attempt to show rescue of axon targeting in vivo after presumably restoring Hox levels by Wdr5 inhibition or knockdown.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors investigate the compaction of HIV DNA by the viral enzyme integrase (IN) in vitro.
Strengths:
The authors employ robust techniques, including single-molecule force microscopy and spectroscopy, to investigate the impact of IN-DNA interactions on DNA conformation. Additionally, they interpret their experimental findings using coarse-grained Monte Carlo simulations.
Weaknesses:
The authors could provide a more in-depth discussion of the biophysical reasons behind their experimental observations. Currently, there is insufficient analysis to explain why certain behaviors are observed experimentally.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
DiPeso et al. develop two tools to (i) classify micronucleated (MN) cells, which they call VCS MN, and (ii) segment micronuclei and nuclei with MMFinder. They then use these tools to identify transcriptional changes in MN cells.
The strengths of this study are:
(1) Developing highly specialized tools to speed up the analysis of specific cellular phenomena such as MN formation and rupture is likely valuable to the community and neglected by developers of more generalist methods.
(2) A lot of work and ideas have gone into this manuscript. It is clearly a valuable contribution.
(3) Combining automated analysis, single-cell labeling, and cell sorting is an exciting approach to enrich phenotypes of interest, which the authors demonstrate here.
Weaknesses:
(1) Images and ground truth labels are not shared for others to develop potentially better analysis methods.
(2) Evaluations of the methods are often not fully explained in the text.
(3) To my mind, the various metrics used to evaluate VCS MN reveal it not to be terribly reliable. Recall and PPV hover in the 70-80% range except for the PPV for MN+. It is what it is - but do the authors think one has to spend time manually correcting the output or do they suggest one uses it as is?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The manuscript entitled "Phosphodiesterase 1A Physically Interacts with YTHDF2 and Reinforces the Progression of Non-Small Cell Lung Cancer" explores the role of PDE1A in promoting NSCLC progression by binding to the m6A reader YTHDF2 and regulating the mRNA stability of several novel target genes, consequently activating the STAT3 pathway and leading to metastasis and drug resistance.
Strengths:
The study addresses a novel mechanism involving PDE1A and YTHDF2 interaction in NSCLC, contributing to our understanding of cancer progression.
Weaknesses:
The following issues should be addressed:
(1) The body weight changes and/or survival times of each group in the in vivo metastasis studies should be provided.
(2) In Figure 7, the direct binding between YTHDF2 and the potential target genes should be further validated by silencing YTHDF2 to observe the half-life of the mRNA levels of target genes, in addition to silencing PDE1A.
(3) In Figure 7, the potential methylation sites of "A" on the target genes such as SOCS2 should be verified by mutation analysis, followed by m6A IP or reporter assays.
(4) In Figure 6G, the correlation between the mRNA levels of STAT3 and YTHDF2 needs clarification. According to the authors' mechanism, the STAT3 pathway is activated, rather than upregulation of mRNA levels (or protein levels, as shown in Figure 6F). Figure 7 does not provide evidence that STAT3 is a bona fide target gene regulated by YTHDF2.
(5) The final figure, which discusses sensitization to cisplatin by PDE1A suppression, does not appear to be closely related to the interaction or regulation of PDE1A/YTHDF2. If the authors claim this is an m6A-associated event, additional evidence is needed. Otherwise, this part could be removed from the manuscript.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This study aims to uncover molecular and structural details underlying the broad substrate specificity of glycosaminoglycan lyases belonging to a specific family (PL35). They determined the crystal structures of two such enzymes, conducted in vitro enzyme activity assays, and a thorough structure-guided mutagenesis campaign to interrogate the role of specific residues. They made progress towards achieving their aims but I see significant holes in data that need to be determined and in the authors' analyses.
Impact on the field:
I expect this work will have a limited impact on the field, although, with additional experimental work and better analysis, this paper will be able to stand on its own as a solid piece of structure-function analysis.
Strengths:
The major strengths of the study were the combination of structure and enzyme activity assays, comprehensive structural analysis, as well as a thorough structure-guided mutagenesis campaign.
Weaknesses:
There were several weaknesses, particularly:
(1) The authors claim to have done an ICP-MS experiment to show Mn2+ binds to their enzyme but did not present the data. The authors could have used the anomalous scattering properties of Mn2+ at the synchrotron to determine the presence and location of this cation (i.e. fluorescence spectra, and/or anomalous data collection at the Mn2+ absorption peak).
(2) The authors have an over-reliance on molecular docking for understanding the position of substrates bound to the enzyme. The docking analysis performed was cursory at best; Autodock Vina is a fine program but more rigorous software could have been chosen, as well we molecular dynamics simulations. As well the authors do not use any substrate/product-bound structures from the broader PL enzyme family to guide the placement of the substrates in the GAGases, and interpret the molecular docking models.
(3) The conclusion that the structures of GAGase II and VII are most similar to the structures of alginate lyases (Table 2 data), and the authors' reliance on DALI, are both questioned. DALI uses a global alignment algorithm, which when used for multi-domain enzymes such as these tends to result in sub-optimal alignment of active site residues, particularly if the active site is formed between the two domains as is the case here. The authors should evaluate local alignment methods focused on the optimization of the superposition of a single domain; these methods may result in a more appropriate alignment of the active site residues and different alignment statistics. This may influence the overall conclusion of the evolutionary history of these PL35 enzymes.
(4) The data on the GAGase III residue His188 is not well interpreted; substitution of this residue clearly impacts HA and HS hydrolysis as well. The data on the impact on alginate hydrolysis is weak, which could be due to the fact that the WT enzyme has poor activity against alginate to start with.
(5) The authors did not use the words "homology", "homologous", or "homolog" correctly (these terms mean the subjects have a known evolutionary relationship, which may or may not be known in the contexts the authors used these targets); the words "similarity" and "similar" are recommended to be used instead.
(6) The authors discuss a "shorter" cavity in GAGases, which does not make sense and is not supported by any figure or analysis. I recommend a figure with a surface representation of the various enzymes of interest, with dimensions of the cavity labeled (as a supplemental figure). The authors also do not specifically define what subsites are in the context of this family of enzymes, nor do they specifically label or indicate the location of the subsites on the figures of the GAGase II and IV enzyme structures.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
This paper by Poverlein et al reports the substantial membrane deformation around the oxidative phosphorylation super complex, proposing that this deformation is a key part of super complex formation. I found the paper interesting and well-written but identified a number of technical issues that I suggest should be addressed:
(1) Neither the acyl chain chemical makeup nor the protonation state of CDL are specified. The acyl chain is likely 18:2/18:2/18:2/18:2, but the choice of the protonation state is not straightforward.
(2) The analysis of the bilayer deformation lacks membrane mechanical expertise. Here I am not ridiculing the authors - the presentation is very conservative: they find a deformed bilayer, do not say what the energy is, but rather try a range of energies in their Monte Carlo model - a good strategy for a group that focuses on protein simulations. The bending modulus and area compressibility modulus are part of the standard model for quantifying the energy of a deformed membrane. I suppose in theory these might be computed by looking at the per-lipid distribution in thickness fluctuations, but this route is extremely perilous on a per-molecule basis. Instead, the fluctuation in the projected area of a lipid patch is used to imply the modulus [see Venable et al "Mechanical properties of lipid bilayers from molecular dynamics simulation" 2015 and citations within]. Variations in the local thickness of the membrane imply local variations of the leaflet normal vector (the vector perpendicular to the leaflet surface), which is curvature. With curvature and thickness, the deformation energy is analyzed.
See:<br /> Two papers: "Gramicidin A Channel Formation Induces Local Lipid Redistribution" by Olaf Andersen and colleagues. Here the formation of a short peptide dimer is experimentally linked to hydrophobic mismatch. The presence of a short lipid reduces the influence of the mismatch. See below regarding their model cardiolipin, which they claim is shorter than the surrounding lipid matrix.
Also, see:<br /> Faraldo-Gomez lab "Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states", 2021. Mondal et al "Membrane Driven Spatial Organization of GPCRs" 2013 and many citations within these papers.
While I strongly recommend putting the membrane deformation into standard model terms, I believe the authors should retain the basic conservative approach that the membrane is strongly deformed around the proteins and that making the SC reduces the deformation, then exploring the consequences with their discrete model.
(1) If CDL matches the hydrophobic thickness of the protein it would disrupt SC formation, not favor it. The authors' hypothesis is that the SC stabilizes the deformed membrane around the separated elements. Lipids that are compatible with the monomer deformed region stabilize the monomer, similarly to a surfactant. That is, if CDL prefers the interface because the interface is thin and their CDL is thin, CDL should prevent SC formation. A simpler hypothesis is that CDL's unique electrostatics are part of the glue.
(2) Error bars for lipid and Q* enrichments should be computed averaging over multi-lipid regions of the protein interface, e.g., dividing the protein-lipid interface into six to ten domains, in particular functionally relevant regions. Anionic lipids may have long, >500 ns residence times, which makes lipid enrichment large and characterization of error bars challenging in short simulations. Smaller regions will be noisy. The plots depicted in, for example, Figure S2 are noisy.
(3) The membrane deformation is repeatedly referred to as "entropic" without justification. The bilayer has significant entropic and enthalpic terms just like any biomolecule, why are the authors singling out entropy? The standard "Helfrich" energetic Hamiltonian is a free energy model in that it implicitly integrates over many lipid degrees of freedom.
(4) Figure S7 shows the surface area per lipid and leaflet height. This appears to show a result that is central to the interpretation of SC formation but which makes very little sense. One simply does not increase both the height and area of a lipid. This is a change in the lipid volume! The bulk compressibility of most anything is much higher than its Young's modulus [similar to area compressibility]. Instead, something else has happened. My guess is that there is *bilayer* curvature around these proteins and that it has been misinterpreted as area/thickness changes with opposite signs of the two leaflets. If a leaflet gets thin, its area expands. If the manuscript had more details regarding how they computed thickness I could help more. Perhaps they measured the height of a specific atom of the lipid above the average mid-plane normal? The mid-plane of a highly curved membrane would deflect from zero locally and could be misinterpreted as a thickness change.
(5) The authors write expertly about how conformational changes are interpreted in terms of function but the language is repeatedly suggestive. Can they put their findings into a more quantitative form with statistical analysis? "The EDA thus suggests that the dynamics of CI and CIII2 are allosterically coupled."
(6) The authors write "We find that an increase in the lipid tail length decreases the relative stability of the SC (Figure S5C)" This is a critical point but I could not interpret Figure S5C consistently with this sentence. Can the authors explain this?
(7) The authors use a 6x6 and 15x15 lattice to analyze SC formation. The SC assembly has 6 units of E_strain favoring its assembly, which they take up to 4 kT. At 3 kT, the SC should be favored by 18 kT, or a Boltzmann factor of 10^8. With only 225 sites, specific and non-specific complex formation should be robust. Can the authors please check their numbers or provide a qualitative guide to the data that would make clear what I'm missing?
In summary, the qualitative data presented are interesting (especially the combination of molecular modeling with simpler Monte Carlo modeling aiding broader interpretation of the results) ... but confusing in terms of the non-standard presentation of membrane mechanics and the difficulty of this reviewer to interpret some of the underlying figures: especially, the thickness of the leaflets around the protein and the relative thickness of cardiolipin. Resolving the quantitative interpretation of the bilayer deformation would greatly enhance the significance of their Monte Carlo model of SC formation.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Tamoxifen resistance is a common problem in partially ER-positive patients undergoing endocrine therapy, and this manuscript has important research significance as it is based on clinical practical issues. The manuscript discovered that the absence of FRMD8 in breast epithelial cells can promote the progression of breast cancer, thus proposing the hypothesis that FRMD8 affects tamoxifen resistance and validating this hypothesis through a series of experiments. The manuscript has a certain theoretical reference value.
Strengths:
At present, research on the role of FRMD8 in breast cancer is very limited. This manuscript leverages the MMTV-Cre+;Frmd8fl/fl;PyMT mouse model to study the role of FRMD8 in tamoxifen resistance, and single-cell sequencing technology discovered the interaction between FRMD8 and ESR1. At the mechanistic level, this manuscript has demonstrated two ways in which FRMD8 affects ERα, providing some new insights into the development of ER-positive breast cancer in patients who are resistant to tamoxifen.
Weaknesses:
This manuscript repeatedly emphasizes the role of FRMD8/FOXO3A in tamoxifen resistance in ER-positive breast cancer, but the specific mechanisms have not yet been fully elucidated. Whether FRMD8 can become a biomarker should be verified in large clinical samples or clinical data.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this manuscript, the authors propose that LAPTM4B plays a role in suppressing the TGF-β/SMAD signaling pathway and suggest that enhancing LAPTM4B function could be a potential therapeutic strategy for alleviating BLM-induced lung fibrosis. Their data show that LAPTM4B knockdown exacerbates fibrosis phenotypes, both in vivo and in vitro, while LAPTM4B overexpression mitigates these effects by recruiting NEDD4L to destabilize SMAD proteins.
Strengths:
The findings are significant for the lung disease field, and the data presented support the authors' conclusions. This work would be of even higher interest after sufficiently addressing the weaknesses listed below.
Weaknesses:
Several issues need to be addressed. First, it is unclear why the authors chose to focus on LAPTM4B specifically, rather than other members of the LAPTM family, such as LAPTM4A or LAPTM5. Additionally, the manuscript does not address whether lysosomes are involved in the degradation of ubiquitinated LAPTM4B.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The manuscript performs a comprehensive biochemical, structural, and bioinformatic analysis of TseP, a type 6 secretion system effector from Aeromonas dhakensis that includes the identification of a domain required for secretion and residues conferring target organism specificity. Through targeted mutations, they have expanded the target range of a T6SS effector to include a gram-positive species, which is not typically susceptible to T6SS attack.
Strengths:
All of the experiments presented in the study are well-motivated and the conclusions are generally sound.
Weaknesses:
There are some issues with the clarity of figures. For example, the microscopy figures could have been more clearly presented as cell counts/quantification rather than representative images. Similarly, loading controls for the secreted proteins for the westerns probably should be shown.
Also, some of the minor/secondary conclusions reached regarding the "independence" of the N and C term domains of the TseP are a bit overreaching.
-
-
-
Reviewer #1 (Public review):
Summary:
This manuscript seeks to estimate the causal effect of genes on disease. To do so, they introduce a novel algorithm, termed the Root Causal Strength using Perturbations (RCSP) algorithm. RCSP uses perturb-seq to first estimate the gene regulatory network structure among genes, and then uses bulk RNA-seq with phenotype data on the samples to estimate causal effects of genes on the phenotype conditional on the learned network structure. The authors assess the performance of RCSP in comparison to other methods via simulation. Next, they apply RCSP to two real human datasets: 513 individuals age-related macular degeneration and 137 individuals with multiple sclerosis.
Strengths:
The authors tackle an important and ambitious problem - the identification of causal contributors to disease in the context of a causal inference framework. As the authors point out, observational RNA-seq data is insufficient for this kind of causal discovery, since it is very challenging to recover the true underlying graph from observational data; interventional data are needed. However, little perturb-seq data has been generated with annotated phenotype data, and much bulk RNA-seq data has already been generated, so it is useful to propose an algorithm to integrate the two as the authors have done.
The authors also offer substantial theoretical exposition for their work, bringing to bear both the literature on causal discovery as well as literature on the genetic architecture of complex traits.
Weaknesses:
The notion of a "root" causal gene - which the authors define based on a graph theoretic notion of topologically sorting graphs - requires a graph that is directed and acyclic. It is the latter that constitutes an important weakness here - it simply is a large simplification of human biology to draw out a DAG including hundreds of genes and a phenotype Y and to claim that the true graph contains no cycles. This is briefly touched upon the discussion, but given the fundamental nature of this choice - the manuscript should devote at least some of the main results to exploring the consequence of mischaracterizing true cyclic graphs as DAGs in this framework. For example - consider the authors' analysis of T cell infiltration in multiple sclerosis (MS). CD4+ effector T cells have the interesting property that they are stimulated by IL2 as a growth factor; yet IL2 also stimulates the activation of (suppressive) regulatory T cells. What does it mean to analyze CD4+ regulation in disease with a graph that does not consider IL2 (or other cytokine) mediated feedback loops/cycles?
I also encourage the authors to consider more carefully when graph structure learned from perturb-seq can be ported over to bulk RNA-seq. Consider again the MS CD4+ example - the authors first start with a large perturb-seq experiment (Replogle et al., 2022) performed in K562 cells. To what extent are K562 cells, which are derived from a leukemia cell line, suitable for learning the regulatory structure of CD4+ cells from individuals with an MS diagnosis? Presumably this structure is not exactly correct - to what extent is the RCSP algorithm sensitive to false edges in this graph? This leap - from cell line to primary human cells - is also not modeled in the simulation. Although challenging - it would be ideal for the RCSP to model or reflect the challenges in correctly identifying the regulatory structure.
It should also be noted that in most perturb-seq experiments, the entire genome is not perturbed, and frequently important TFs (that presumably are very far "upstream" and thus candidate "root" causal genes) are not expressed highly enough to be detected with scRNA-seq. In that context - perhaps slightly modifying the language regarding RCSP's capabilities might be helpful for the manuscript - perhaps it would be better to describe it has an algorithm for causal discovery among a set of genes that were perturbed and measured, rather than a truly complete search for causal factors. Perhaps more broadly - it would also benefit the manuscript to devote slightly more text to describing the kinds of scenarios where RCSP (and similar ideas) would be most appropriately applied - perhaps a well-powered, phenotype annotated perturb-seq dataset performed in a disease relevant primary cell.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Pham and colleagues provide an illuminating investigation of aquaporin-4 water flux in the brain utilizing ex vivo and in vivo techniques. The authors first show in acute brain slices, and in vivo with fiber photometry, SRB loaded astrocytes swell after inhibition of AQP4 with TGN-020, indicative of tonic water efflux from astrocytes in physiological conditions. Excitingly, they find that TGN-020 increased the ADC in DW-MRI in a region-specific manner, potentially due to AQP4 density. The resolution of the DW-MRI cannot distinguish between intracellular or extracellular compartments, but the data point to an overall accumulation of water in the brain with AQP4 inhibition. These results provide further clarity on water movement through AQP4 in health and disease.
Overall, the data support the main conclusions of the article, with some room for more detailed treatment of the data to extend the findings.
Strengths:
The authors have a thorough investigation of AQP4 inhibition in acute brain slices. The demonstration of tonic water efflux through AQP4 at baseline is novel and important in and of itself. Their further testing of TGN-020 in hyper- and hypo-osmotic solutions shows the expected reduction of swelling/shrinking with AQP4 blockade.
Their experiment with cortical spreading depression further highlights the importance of water efflux from astrocytes via AQP4 and transient water fluxes as a result of osmotic gradients. Inhibition of AQP4 increases the speed of tissue swelling, pointing to a role in efflux of water from the brain.
The use of DW-MRI provides a non-invasive measure of water flux after TGN-020 treatment.
Weaknesses:
The authors specifically use GCaMP6 and light sheet microscopy to image their brain sections in order to identify astrocytic microdomains. However, their presentation of the data neglects a more detailed treatment of the calcium signaling. It would be quite interesting to see whether these calcium events are differentially affected by AQP4 inhibition based on their cellular localization (ie. processes vs. soma vs. vascular endfeet which all have different AQP4 expression).
The authors show the inhibition of AQP4 with TGN-020 shortens the onset time of the swelling associated with cortical spreading depression in brain slices. However, they do not show quantification for much of the other features of the CSD swelling, (ie. the duration of swelling, speed of swelling, recovery from swelling)
Comments on revised version:
The authors have addressed these suggestions as additional supplementary figures. Notably they find increased calcium signaling and stronger inhibition of calcium signaling by TGN-020 in astrocytic endfeet, where AQP4 is enriched.
Significance:
AQP4 is a bidirectional water channel that is constitutively open, thus water flux through it is always regulated by local osmotic gradients. Still, characterizing this water flux has been challenging, as the AQP4 channel is incredibly water selective. The authors here present important data showing that application of TGN-020 alone causes astrocytic swelling, indicating that there is constant efflux of water from astrocytes via AQP4 in basal conditions. This has been suggested before, as the authors rightfully highlight in their discussion, but the evidence had previously come from electron microscopy data from genetic knockout mice.
AQP4 expression has been linked with glymphatic circulation of cerebrospinal fluid through perivascular spaces since its rediscovery in 2012 [1]. Further studies of aging[2], genetic models[3], and physiological circadian variation[4], have revealed it is not simply AQP4 expression but AQP4 polarization to astrocytic vascular endfeet that is imperative for facilitating glymphatic flow. Still a lingering question in the field is how AQP4 facilitates fluid circulation. This study represents an important step in our understanding of AQP4's function, as basal efflux of water via AQP4 might promote clearance of interstitial fluid to allow influx of cerebrospinal fluid into the brain. Beyond glymphatic fluid circulation, clearly AQP4 dependent volume changes will differentially alter astrocytic calcium signaling and, in turn, neuronal activity.
(1) Iliff, J.J., et al., A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Sci Transl Med, 2012. 4(147): p. 147ra111.<br /> (2) Kress, B.T., et al., Impairment of paravascular clearance pathways in the aging brain. Ann Neurol, 2014. 76(6): p. 845-61.<br /> (3) Mestre, H., et al., Aquaporin-4-dependent Glymphatic Solute Transport in the Rodent Brain. eLife, 2018. 7.<br /> (4) Hablitz, L., et al., Circadian control of brain glymphatic and lymphatic fluid flow. Nature communications, 2020. 11(1).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors study the variability of patient response of NSCLC patients on immune checkpoint inhibitors using single-cell RNA sequencing in a cohort of 26 patients and 33 samples (primary and metastatic sites), mainly focusing on 11 patients and 14 samples for association analyses, to understand the variability of patient response based on immune cell fractions and tumor cell expression patterns. The authors find immune cell fraction and clonal expansion differences, as well as tumor expression differences between responders and non-responders, partly validating previous hypotheses, and partly suggesting new markers for ICI response. Integrating immune and tumor sources of signal the authors claim to improve prediction of response markedly, albeit in a small cohort and using in-sample metrics.
Strengths:
- The problem of studying the tumor microenvironment, as well as the interplay between tumor and immune features is important and interesting and needed to explain heterogeneity of patient response and be able to predict it.<br /> - Extensive analysis of the scRNAseq data with respect to immune and tumor features on different axes of hypothesis relating to immune response and tumor immune evasion using state of the art methods.<br /> - The authors provide an interesting scRNAseq data set with well-curated cell types linked to outcomes data, which is valuable<br /> - High-quality immune cell type annotation including annotations based on additional ADT data<br /> - Integration of TCRseq to confirm subtype of T-cell annotation and clonality analysis<br /> - Interesting analysis of cell programs/states of the (predicted) tumor cells and characterization thereof
Weaknesses:
- Generally a very heterogeneous and small cohort where adjustments for confounding is hard. Additionally, there are many tests for association with outcome, where necessary multiple testing adjustments negate signal and confirmation bias likely, so biological take-aways have to be questioned.<br /> - The authors claim a very high "accuracy" performance, however given the small cohort and possible overfitting due to in-sample ROC the generalization of this to other cohorts is questionable.<br /> - Due to the small cohort with a lot of variability, more external validation is needed to be convincingly reproducible, especially when talking about AUC/accuracy of a predictor.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors have presented data showing that there is a greater amount of spontaneous differentiation in human pluripotent cells cultured in suspension vs static and have used PKCβ and Wnt signaling pathway inhibitors to decrease the amount of differentiation in suspension culture.
Strengths:
This is a very comprehensive study that uses a number of different rector designs and scales in addition to a number of unbiased outcomes to determine how suspension impacts the behaviour of the cells and in turn how the addition of inhibitors counteracts this effect. Furthermore, the authors were also able to derive new hiPSC lines in suspension with this adapted protocol.
Weaknesses:
The main weakness of this study is the lack of optimization with each bioreactor change. It has been shown multiple times in the literature that the expansion and behaviour of pluripotent cells can be dramatically impacted by impeller shape, RPM, reactor design and multiple other factors. It remains unclear to me how much of the results the authors observed (e.g. increased spontaneous differentiation) was due to not having an optimized bioreactor protocol in place (per bioreactor vessel type). For instance - was the starting seeding density, RPM, impeller shape, feeding schedule, and/or anything other aspect optimized for any of the reactors used in the study and if not, how were the values used in the study determined?
Post-revision:
The authors did a commendable job in responding and addressing my comments and concerns in addition to those of the other reviewers. I think this study will be of interest to the field and will add to our collective knowledge on how PSCs react to being cultured in suspension conditions.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public review):
Summary:
This is a large cohort of ischemic stroke patients from a single centre. The author successfully set up predictive models for PTS.
Strengths:
The design and implementation of the trial are acceptable, with the credibility of the results. It may provide evidence of seizure prevention in the field of stroke treatment.
Weaknesses:
My concerns are well responded to.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors have nicely demonstrated the efficiency of the HCR v.3.0 using hr38 mRNA expression as a marker of neuronal activity. This is very important in the Drosophila neuroscience field as in situ hybridization in adult Drosophila brains have been so far very challenging to do and replicate. The HCR v.3.0 has been described before [Choi et al., (2018)] and is now the property of the non-profit organization Molecular Technologies, who are the ones responsible for designing the probes. Here, taking advantage of this new FISH method, the authors have demonstrated the use of the FISH to identify neurons activated by a specific behavioral task using hr38 mRNA as a marker of neuronal activation. They named their method HI-FISH.<br /> In addition, based on the catFISH method [Guzowski et al., 1999], the authors were able to distinguish between newly activated neurons (nascent nuclear mRNA) and mature hr38 mRNA showing an earlier activation. They describe this method as HI-catFISH.<br /> Finally, to test what are the neurons activated downstream of their neuronal group of interest, the authors combined the HI-FISH method with optogenetic using chrimson. They named this method opto-HI-FISH.
Using these three new methods, the authors have addressed the following biological question: are love and aggressiveness neuronally the same in Drosophila?<br /> Here, the authors focused on the male specific P1a neurons which are activated by both an aggressive context (male-male encounter) and sexual context (male female encounter).
Strengths:
The demonstration of the efficiency of the method is very convincing and well-performed. It gives the will for the reader to apply the method to their own subject.
Weaknesses:
The more neurons are present, the more difficult it is to identify neurons. This is something to take into account when applying these methods.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public Review):
Summary:
Li et al investigated how adjuvants such as MPLA and CpG influence antigen presentation at the level of the Antigen presenting cell and MHCII : peptide interaction. They found that use of MPLA or CpG influences the exogenous peptide repertoire presented by MHC II molecules. Additionally, their observations included the finding that peptides with low-stability peptide:MHC interactions yielded more robust CD4+ T cell responses in mice. These phenomena were illustrated specifically for 2 pattern recognition receptor activating adjuvants. This work represents a step forward for how adjuvants program CD4+ Th responses and provide further evidence regarding expected mechanisms of PRR adjuvants in enhancing CD4+ T cell responses in the setting of vaccination.
Strengths:
The authors use a variety of systems to analyze this question. Initial observations were collected in an H pylori model of vaccination with a demonstration of immunodominance differences simply by adjuvant type, followed by analysis of MHC:peptide as well as proteomic analysis with comparison by adjuvant group. Their analysis returns to peptide immunization and analysis of strength of relative CD4+ T cell responses, through calculation of IC:50 values and strength of binding. This is a comprehensive work. The logical sequence of experiments makes sense and follows an unexpected observation through to trying to understand that process further with peptide immunization and its impact on Th responses. This work will premise further studies into the mechanisms of adjuvants on T cells
Weaknesses:
While MDP has a different manner of interaction as an adjuvant compared to CpG and MPLA, it is unclear why MDP has a different impact on peptide presentation and it should be further investigated, or at minimum highlighted in the discussion as an area that requires further investigation.
It is alluded by the authors that TLR activating adjuvants mediate selective, low affinity, exogenous peptide binding onto MHC class II molecules. However, this was not demonstrated to be related specifically to TLR binding. Wonder if some work with TLR deficient mice (TLR 4KO for example) could evaluate this phenomenon more specifically
Lastly, it is unclear if the peptide immunization experiment reveals a clear pattern related to high and low stability peptides among the peptides analyzed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
This is a very important paper, using a large dataset to definitively understand a phenomenon so far addressed using a range of diverging definitions and methods, typically with insufficient statistical power.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The manuscript entitled "A septo-hypothalamic-medullary circuit directs stress-induced analgesia" by Shah et al., showed that the dLS-to-LHA circuit is sufficient and necessary for stress-induced analgesia (SIA), which is mediated by the rostral ventromedial medulla (RVM) in a opioid-dependent manner. This study is interesting and important and the conclusions are largely supported by the data. I have a few concerns as follows:
(1) The present data show that activation of dLS neurons produces SIA, however, this manipulation is non-specific. It may be better to see the effect of specific manipulation of stress-activated c-Fos positive neurons in the dLS using combination of the Tet-Off system and chemogenetic/optogenetic tools.<br /> (2) Depending on its duration, and intensity, stress can exert potent and bidirectional modulatory effects on pain, either reducing pain (SIA) or exacerbating it (stress-induced hyperalgesia,SIH). Whether this circuit in the manuscript is involved in SIH.<br /> (3) It are well-accepted that opioid and cannabinoid receptors participate in the SIA, especially, a critical role of the RVM endocannabinoid system in the SIA, why author focus their study on opioid system?<br /> (4) Whether silencing of the dLS neurons affects stress-induced anxiety-like behaviors? Or, what is the relationship between of SIA and level of stress-induced anxiety?<br /> (5) Please provide the direct electrophysiological evidence for confirming the efficacy of the MP-CNO.<br /> (6) Whether LHA is a specific downstream target for SIA, whether LHA is involved in stress-induced anxiety-like behaviors?<br /> (7) Whether LHA neurons have direct projections to the RVM? If yes, what is its role in the SIA?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The manuscript by Engelfriet et.al. addresses an interesting question in animal physiology - how do animals adapt to cold. Using polysome profiling and puromycin labeling, the authors confirm that in C. elegans exposed to a cooling regimen, protein synthesis is decreased globally. They then use RNAseq and ribosome profiling to propose that this decrease is driven mainly by decreased transcription, while translation of most mRNAs continues in the cold at a slower rate. They also find many transcripts whose expression is increased in the cold, and suggest that transcription of some of the cold-induced genes reflects activation of the IRE-1/XBP-1 UPR pathway. The authors further suggest that activation of the UPR by cold is due to cold-induced protein misfolding and perturbations in lipids in the ER, and that UPR activation is beneficial for cold survival.
The finding that a decrease in protein synthesis that is characteristic of cold exposure and hibernation is driven primarily by changes in transcription rather than translation is quite interesting and different from findings in other studies. It would be important to understand the reason for this difference. The findings that some of the cold-induced transcription in worms reflects XBP-1-dependent activity of IRE-1 is also new, while UPR activation by lipid perturbations both agrees with previous observations but also exposes differences. The differences highlight the need for better understanding of how different temperature exposures affect different lipids, as cold adaptation is widespread in nature, and cooling is often used in the clinical settings.
However, some concerns with interpretations and technical issues make several major conclusions in this manuscript less rigorous, as explained in detail in comments below. In particular, the two major concerns I have: 1) the contradiction between the strong reduction of global translation, with puromycin incorporation gel showing no detectable protein synthesis in cold, and an apparently large fraction of transcripts whose abundance and translation in Fig. 2A are both strongly increased. 2) The fact that no transcripts were examined for dependance on IRE-1/XBP-1 for their induction by cold, except for one transcriptional reporter, and some weaknesses (see below) in data showing activation of IRE-1/XBP-1 pathway. The conclusion for induction of UPR by cold via specific activation of IRE-1/XBP-1 pathway, in my opinion, requires additional experiments.
Major concerns:
(1) Fig. 1B shows polysomes still present on day 1 of 4{degree sign}C exposure, but the gel in Fig. 1C suggests a complete lack of protein synthesis. Why? What is then the evidence that ribosomal footprints used in much of the paper as evidence of ongoing active translation are from actual translating rather than still bound to transcripts but stationary ribosomes, considering that cooling to 4{degree sign}C is often used to 'freeze' protein complexes and prevent separation of their subunits? The authors should explain whether ribosome profiling as a measure of active translation has been evaluated specifically at 4{degree sign}C, or test this experimentally. They should also provide some evidence (like Western blots) of increases in protein levels for at least some of the strongly cold-upregulated transcripts, like lips-11.
As puromycin incorporation seems to be the one direct measure of global protein synthesis here, it conflicts with much of the translation data, especially considering that quite a large fraction of transcripts have increased both mRNA levels and ribosome footprints, and thus presumably increased translation at 4{degree sign}C, in Fig. 2A.
Also, it is not clear how quantitation in Fig. 1C relates to the gel shown, the quantitation seems to indicate about 50-60% reduction of the signal, while the gel shows no discernable signal.
(2) It is striking that plips-11::GFP reporter is induced in day 1 of 4{degree sign}C exposure, apparently to the extent that is similar to its induction by a large dose of tunicamycin (Fig. 3 supplement), but the three IRE-1 dependent UPR transcripts from Shen 2005 list were not induced at all on day 1(Fig. 4 supplement). Moreover, the accumulation of the misfolded CPL-1 reporter, that was interpreted as evidence that misfolding may be triggering UPR at 4{degree sign}C, was only observed on day 1, when the induction of the three IRE-1 targets is absent, but not on day 3, when it is stronger. How does this agree with the conclusion of UPR activation by cold via IRE-1/XBP-1 pathway? It is true that the authors do note very little overlap between IRE-1/XBP-1-dependent genes induced by different stress conditions, but for most of this paper, they draw parallels between tunicamycin-induced and cold-induced IRE-1/XBP-1 activation.
The conclusion that "the transcription of some cold-induced genes reflects the activation of unfolded protein response (UPR)..." is based on analysis of only one gene, lips-11. No other genes were examined for IRE-1 dependence of their induction by cold, neither the other 8 genes that are common between the cold-induced genes here and the ER stress/IRE-1-induced in Shen 2005 (Venn diagram in Figure 7 supplement), nor the hsp-4 reporter. What is the evidence that lips-11 is not the only gene whose induction by cold in this paper's dataset depends on IRE-1? This is a major weakness and needs to be addressed.
Furthermore, whether induction by cold of lips-11 itself is due to IRE1 activation was not tested, only a partial decrease of reporter fluorescence by ire-1 RNAi is shown. A quantitative measure of the change of lips-11 transcript in ire-1 and xbp-1 mutants is needed to establish if it depends on IRE-1/XBP-1 pathway.
The authors could provide more information and the additional data for the transcripts upregulated by both ER stress and cold, including the endogenous lips-11 and hsp-4 transcripts: their identity, fold induction by both cold and ER stress, how their induction is ranked in the corresponding datasets (all of these are from existing data), and do they depend on IRE-1/XBP-1 for induction by cold? Without these additional data, and considering that the authors did not directly measure the splicing of xbp-1 transcript (see comment for Fig. 3 below), the conclusion that cold induces UPR by specific activation of IRE-1/XBP-1 pathway is premature.
There are also technical issues that are making it difficult to interpret some of the results, and missing controls that decrease the rigor of conclusions:
(1) For RNAseq and ribosome occupancy, were the 20{degree sign}C day 1 adult animals collected at the same time as the other set was moved to 4{degree sign}C, or were they additionally grown at 20{degree sign}C for the same length of time as the 4{degree sign}C incubations, which would make them day 2 adults or older at the time of analysis? This information is only given for SUnSET: "animals were cultivated for 1 or 3 additional days at 4{degree sign}C or 20{degree sign}C". This could be a major concern in interpreting translation data: First, the inducibility of both UPR and HSR in worms is lost at exactly this transition, from day 1 to day 2 or 3 adults, depending on the reporting lab (for example Taylor and Dillin 2013, Labbadia and Morimoto, 2015, De-Souza et al 2022). How do authors account for this? Would results with reporter induction, or induction of IRE-1 target genes in Fig. 4, change if day 1 adults were used for 20{degree sign}C?
Second, if animals at the time of shift to 4{degree sign}C were only beginning their reproduction, they will presumably not develop further during hibernation, while an additional day at 20{degree sign}C will bring them to the full reproductive capacity. Did 4{degree sign}C and 20{degree sign}C animals used for RNAseq and ribosome occupancy have similar numbers of embryos, and were the embryos at similar stages? If embryos were retained in one condition vs the other, how much would they contribute in terms of transcripts, and do the authors expect the same adaptive programs operating in embryos and in the adults?
(2) Second, no population density is given for most of the experiments, despite the known strong effects of crowding (high pheromone) on C. elegans growth. From the only two specifics that are given, it seems that very different population sizes were used: for example, 150 L1s were used in survival assay, while 12,000 L1s in SUnSET. Have the authors compared results they got at high population densities with what would happen when animals are grown in uncrowded plates? At least a baseline comparison in the beginning should have been done.
(3) Fig. 3: it is unclear why the accepted and well characterized quantitative measure of IRE1 activation, the splicing of xbp-1transcript, is not determined directly by RT-PCR. The fluorescent XBP-1spliced reporter, to my knowledge, has not been tested for its quantitative nature and thus its use here is insufficient.
Furthermore, the image of this fluorescent reporter in Fig. 3b shows only one anterior-most row of cells of intestine, and quantitation was done with 2 to 5 nuclei per animal, while lips-11 is induced in entire intestine. Was there spliced XBP-1 in the rest of the intestinal nuclei? Could the authors show/quantify the entire animal (20 intestinal cells) rather than one or two rows of cells?
(4) The differences in the outcomes from this study and the previous one (Dudkevich 2022) that used 15{degree sign}C to 2{degree sign}C cooling approach are puzzling, as they would suggest two quite different IRE-1 dependent programs of cold tolerance. It would be good if authors commented on overlapping/non-overlapping genes, and provided their thoughts on the origin of these differences considering the small difference in temperatures. Second, have the authors performed a control where they reproduced the rescue by FA supplementation of poor survival of ire-1 mutants after the 15{degree sign}C to 2{degree sign}C shift?
Without this or another positive control, and without measuring change in lipid composition in their own experiments, it is unclear whether the different outcomes with respect to FAs are due to a real difference in adaptive programs at these temperatures, or to failure in supplementation?
(5) Have the authors tested whether and by how much ire-1(ok799) mutation shortens the lifespan at 20{degree sign}C? This needs to be done before the defect in survival of ire-1 mutants in Fig. 7a can be interpreted.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary
In this manuscript, Day et al. present a high-throughput version of expansion microscopy to increase the throughput of this well-established super-resolution imaging technique. Through technical innovations in liquid handling with custom-fabricated tools and modifications to how the expandable hydrogels are polymerized, the authors show robust ~4-fold expansion of cultured cells in 96-well plates. They go on to show that HiExM can be used for applications such as drug screens by testing the effect of doxorubicin on human cardiomyocytes. Interestingly, the effects of this drug on changing DNA organization were only detectable by ExM, demonstrating the utility of HiExM for such studies.
Overall, this is a very well-written manuscript presenting an important technical advance that overcomes a major limitation of ExM - throughput. As a method, HiExM appears extremely useful and the data generally support the conclusions.
Strengths
Hi-ExM overcomes a major limitation of ExM by increasing the throughput and reducing the need for manual handling of gels. The authors do an excellent job of explaining each variation introduced to HiExM to make this work and thoroughly characterize the impressive expansion isotropy. The dox experiments are generally well-controlled and the comparison to an alternative stressor (H2O2) significantly strengthens the conclusions.
Weaknesses
(1) It is still unclear to me whether or not cells that do not expand remain in the well given the response to point 1. The authors say the cells are digested and washed away but then say that there is a remaining signal from the unexpanded DNA in some cases. I believe this is still a concern that potential users of the protocol should be aware of.
Editor note: this comment has been addressed in the latest version.
(2) Regarding the response to point 9, I think this information should be included in the manuscript, possibly in the methods. It is important for others to have a sense of how long imaging may take if they were to adopt this method.
Editor note: this comment has been addressed in the latest version.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
By examining the prevalence of interactions with ancient amino acids of coenzymes in ancient versus recent folds, the authors noticed an increased interaction propensity for ancient interactions. They infer from this that coenzymes might have played an important role in prebiotic proteins. By only focusing on coenzymes, the authors may have overestimated their importance. What about other small molecules that existed in the prebiotic soup? Do they also prefer such ancient amino acids? if so, this might reflect the interaction propensity of specific amino acids rather than some possible role in very ancient proteins. Or it might diminish the conjectured importance of coenzymes. The analysis, which is very straightforward, is technically correct. However, the conclusions might not be as strong as presented. This paper presents an excellent summary of contemporary thought on what might have constituted prebiotic proteins and their properties.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The manuscript points out that TMB cut-offs are not strong predictors of response to immunotherapy or overall survival. By randomly shuffling TMB values within cohorts to simulate a null distribution of log-rank test p-values, they show that under correction, the statistical significance of previously reported TMB cut-offs for predicting outcomes is questionable. There is a clinical need for a better prediction of treatment response than TMB alone can provide. However, the analysis does not convincingly refute the validity of the well-known pan-cancer correlation between TMB and immunotherapy response. (In a supplemental analysis, the authors attempt to demonstrate a lack of correlation by specifically removing the most supportive cancer types from a pan-cancer correlation test.) The failure to detect significant TMB cut-offs may be due to insufficient power, as the examined cohorts have relatively low sample sizes. A power analysis would be informative of what cohort sizes are needed to detect small to modest effects of TMB on immune response.
The manuscript provides a simple model of immunogenicity that is tailored to be consistent with a claimed lack of relationship between TMB and response to immunotherapy. Under the model, if each mutation that a tumor has acquired has a relatively high probability of being immunogenic (~10%, they suggest), and if 1-2 immunogenic mutations is enough to induce an immune response, then most tumors produce an immune response, and TMB and response should be uncorrelated except in very low-TMB tumors. The question then becomes whether the response is sufficient to wipe out tumor cells in conjunction with immunotherapy, which is essentially the same question of predicting response that motivated the original analysis. While TMB alone is not an excellent predictor of treatment response, the pan-cancer correlation between TMB and response/survival is highly significant, so the model's only independent prediction is wrong. Additionally, experiments to predict and validate neoepitopes suggest that a much smaller fraction of nonsynonymous mutations produce immune responses (1,2).
A key idea that is overlooked in this manuscript is that of survivorship bias: self-evidently, none of the mutations found at the time of sequencing have been immunogenic enough to provoke a response capable of eliminating the tumor. While the authors suggest that immunoediting "is inefficient, allowing tumors to accumulate a high TMB," the alternative explanation fits the neoepitope literature better: most mutations that reach high allele frequency in tumor cells are not immunogenic in typical (or patient-specific) tumor environments. Of course, immunotherapies sometimes succeed in overcoming the evolved immune evasion of tumors. Higher-TMB tumors are likely to continue to have higher mutation rates after sequencing; increased generation of new immunogenic mutations may partially explain their modestly improved responses to therapy.
References:<br /> (1) Wells, D. K. et al. Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell 183, 818-834.e13 (2020).<br /> (2) Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572-576 (2014).
-
-
-
Reviewer #1 (Public Review):
This work makes several contributions: (1) a method for the self-supervised segmentation of cells in 3D microscopy images, (2) an cell-segmented dataset comprising six volumes from a mesoSPIM sample of a mouse brain, and (3) a napari plugin to apply and train the proposed method.
(1) Method
This work presents itself as a generalizable method contribution with a wide scope: self-supervised 3D cell segmentation in microscopy images. My main critique is that there is almost no evidence for the proposed method to have that wide of a scope. Instead, the paper is more akin to a case report that shows that a particular self-supervised method is good enough to segment cells in two datasets with specific properties.
To support the claim that their method "address[es] the inherent complexity of quantifying cells in 3D volumes", the method should be evaluated in a comprehensive study including different kinds of light and electron microscopy images, different markers, and resolutions to cover the diversity of microscopy images that both title and abstract are alluding to.
The main dataset used here (a mesoSPIM dataset of a whole mouse brain) features well-isolated cells that are easily distinguishable from the background. Otsu thresholding followed by a connected component analysis already segments most of those cells correctly. The proposed method relies on an intensity-based segmentation method (a soft version of a normalized cut) and has at least five free parameters (radius, intensity, and spatial sigma for SoftNCut, as well as a morphological closing radius, and a merge threshold for touching cells in the post-processing). Given the benefit of tweaking parameters (like thresholds, morphological operation radii, and expected object sizes), it would be illuminating to know how other non-learning-based methods will compare on this dataset, especially if given the same treatment of segmentation post-processing that the proposed method receives. After inspecting the WNet3D predictions (using the napari plugin) on the used datasets I find them almost identical to the raw intensity values, casting doubt as to whether the high segmentation accuracy is really due to the self-supervised learning or instead a function of the post-processing pipeline after thresholding.
I suggest the following baselines be included to better understand how much of the segmentation accuracy is due to parameter tweaking on the considered datasets versus a novel method contribution:<br /> * comparison to thresholding (with the same post-processing as the proposed method)<br /> * comparison to a normalized cut segmentation (with the same post-processing as the proposed method)<br /> * comparison to references 8 and 9.
I further strongly encourage the authors to discuss the limitations of their method. From what I understand, the proposed method works only on well-separated objects (due to the semantic segmentation bottleneck), is based on contrastive FG/BG intensity values (due to the SoftNCut loss), and requires tuning of a few parameters (which might be challenging if no ground-truth is available).
(2) Dataset
I commend the authors for providing ground-truth labels for more than 2500 cells. I would appreciate it if the Methods section could mention how exactly the cells were labelled. I found a good overlap between the ground truth and Otsu thresholding of the intensity images. Was the ground truth generated by proofreading an initial automatic segmentation, or entirely done by hand? If the former, which method was used to generate the initial segmentation, and are there any concerns that the ground truth might be biased towards a given segmentation method?
(3) Napari plugin
The plugin is well-documented and works by following the installation instructions. However, I was not able to recreate the segmentations reported in the paper with the default settings for the pre-trained WNet3D: segments are generally too large and there are a lot of false positives. Both the prediction and the final instance segmentation also show substantial border artifacts, possibly due to a block-wise processing scheme.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This study uses a cell-based computational model to simulate and study T cell development in the thymus. They initially applied this model to assess the effect of the thymic epithelial cells (TECs) network on thymocyte proliferation and demonstrated that increasing TEC size, density, or protrusions increased the number of thymocytes. They postulated and confirmed that this was due to changes in IL7 signalling and then expanded this work to encompass various environmental and cell-based parameters, including Notch signalling, cell cycle duration, and cell motility. Critical outcomes from the computational model were tested in vivo using medaka fish, such as the role of IL-7 signalling and minimal effect of Notch signalling.
Strengths:
The strength of the paper is the use of computational modelling to obtain unique insights into the niche parameters that control T cell development, such as the role of TEC architecture, while anchoring those findings with in vivo experiments. I can't comment on the model itself, as I am not an expert in modelling, however, the conclusions of the paper seem to be well-supported by the model.
Weaknesses:
One potential issue is that many of the conclusions are drawn from the number of thymocytes, or related parameters such as the thymic size or proliferation of the thymocytes. The study only touches briefly on the influence of the thymic niche on other aspects of thymocyte behaviour, such as their differentiation and death.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this manuscript, authors intended to prove that gut GLP-1 expression and secretion can be regulated by Piezo1, and hence by mechanistic/stretching regulation. For this purpose, they have assessed Piezo1 expression in STC-1 cell line (a mouse GLP-1 producing cell line) and mouse gut, showing the correlation between Piezo1 level and Gcg levels (Fig. S1). They then aimed to generate gut L cell-specific Piezo1 KO mice and claimed the mice show impaired glucose tolerance and GLP-1 production, which can be mitigated by Ex-4 treatment (Fig. 1-2). Pharmacological agents (Yoda1 and GsMTx4) and mechanic activation (intestinal bead implantation) were then utilized to prove the existence of ileal Piezo1-regulated GLP-1 synthesis (Fig. 3). This was followed by testing such mechanism in a limited amount of primary L cells and mainly in the STC-1 cell line (Fig. 4-7).
While the novelty of the study is somehow appreciable, the bio-medical significance is not well demonstrated in the manuscript. The authors stated (in lines between lines 78-83) a number of potential side effects of GLP-1 analogs, how can the mechanistic study of GLP-1 production on its own be essential for the development of new drug targets for the treatment of diabetes. Furthermore, the study does not provide a clear mechanistic insight how the claimed CaMKKbeta/CaMKIV-mTORC1 signaling pathway upregulated both GLP-1 production and secretion. This reviewer also has concerns about the experimental design and data presented in the current manuscript, including the issue of how can proglucagon expression can be assessed by Western blotting.
Strengths:
Novelty of the concept.
Weaknesses:
Experimental design and key experiment information.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This study investigates the role of Hox genes in determining the position of the forelimb bud through experimental loss- and gain-of-function approaches in chicken embryos. The loss-of-function experiments involved expressing dominant-negative versions of specific Hox genes in the limb bud to assess their necessity for limb formation. Gain-of-function experiments entailed expressing full-length Hox genes anterior to the limb field in the lateral mesoderm. The results were evaluated by analyzing the expression of genes involved in limb development, such as Fgf8, Fgf10, Shh, and Tbx5, the latter specifically marking the forelimb.
The findings indicate that introducing dominant-negative forms of Hoxa4, Hoxa5, Hoxa6, and Hoxa7 into the forelimb field reduces bud size and downregulates certain limb markers. Conversely, introducing active versions of these genes rostral to the normal forelimb position shows that Hox4 and Hox5 have no effect, whereas Hox6 and Hox7 extend the forelimb anteriorly or create a small bulge rostral to the forelimb. The authors conclude that Hox4 and Hox5 provide permissive cues for forelimb formation throughout the neck region, with the final forelimb position determined by the instructive cues of Hox6/7 in the lateral plate mesoderm.
Strengths:
The authors endeavor to address the longstanding question of what determines limb position, particularly that of the forelimb, in the vertebrate embryo.
Weaknesses:
In my opinion, the study is preliminary and requires additional controls and explanations for conflicting results observed in mice:
(1) The activity of the dominant negatives lacks appropriate controls. This is crucial given that mouse mutants for PG5, PG6, PG7, and three of the four PG4 genes show no major effects on limb induction or growth. Understanding these discrepancies is essential.
(2) The authors mention redundancies in Hox activity, consistent with numerous previous reports. However, they only use single dominant-negative versions of each Hox paralog gene individually. If Hox4 and Hox5 functions are redundant, experiments should include simultaneous dominant negatives for both groups.
(3) The main conclusion that Hox4 and Hox5 provide permissive cues on which Hox6/7 induce the forelimb is not sufficiently supported by the data. An experiment expressing simultaneous dnHox4/5 and Hox6/7 is needed. If the hypothesis is correct, this should block Hox6/7's capacity to expand the limb bud or generate an extra bulge.
(4) The identity of the extra bulge or extended limb bud is unclear. The only marker supporting its identity as a forelimb is Tbx5, while other typical limb development markers are absent. Tbx5 is also expressed in other regions besides the forelimb, and its presence does not guarantee forelimb identity. For instance, snakes express Tbx5 in the lateral mesoderm along much of their body axis.
(5) It is important to analyze the skeletons of all embryos to assess the effect of reduced limb buds upon dnHox expression and determine whether extra skeletal elements develop from the extended bud or ectopic bulge.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Fernandez et al. investigate the influence of maternal behavior on bat pup vocal development in Saccopteryx bilineata, a species known to exhibit vocal production learning. The authors performed detailed longitudinal observations of wild mother-pup interactions to ask whether non-vocal maternal displays during juvenile vocal practice or 'babbling', affect vocal production. Specifically, the study examines the durations of pup babbling events and the developmental babbling phase, in relation to the amount of female display behavior, as well as pup age and the number of nearby singing adult males. Furthermore, the authors examine pup vocal repertoire size and maturation in relation to the number of maternal displays encountered during babbling. Statistical models identify female display behavior as a predictor of i) babbling bout duration, ii) the length of the babbling phase, iii) song composition, and iv) syllable maturation. Notably, these outcomes were not influenced by the number of nearby adult males (the pups' source of song models) and were largely independent of general maturation (pup age). These findings highlight the impact of non-vocal aspects of social interactions in guiding mammalian vocal development.
Strengths:
Historically, work on developmental vocal learning has focused on how juvenile vocalizations are influenced by the sounds produced by nearby adults (often males). In contrast, this study takes the novel approach of examining juvenile vocal ontogeny in relation to non-vocal maternal behavior, in one of the few mammals known to exhibit vocal production learning. The authors collected an impressive dataset from multiple wild bat colonies in two Central American countries. This includes longitudinal acoustic recordings and behavioral monitoring of individual mother-pup pairs, across development.
The identified relationships between maternal behavior and bat pup vocalizations have intriguing implications for understanding the mechanisms that enable vocal production learning in mammals, including human speech acquisition. As such, these findings are likely to be relevant to a broad audience interested in the evolution and development of social behavior as well as sensory-motor learning.
Weaknesses:
The authors qualitatively describe specific patterns of female displays during pup babbling, however, subsequent quantitative analyses are based on two aggregate measures of female behavior that pool across display types. Consequently, it remains unclear how certain maternal behaviors might differentially influence pup vocalizations (e.g. through specific feedback contingencies or more general modulation of pup behavioral states).
In analyzing the effects of maternal behavior on song maturation, the authors focus on the most common syllable type produced across pups. This approach is justified based on the syllable variability within and across individuals, however, additional quantification and visual presentation of categorized syllable data would improve clarity and potentially strengthen resulting claims.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This study aimed at replicating two previous findings that showed (1) a link between prediction tendencies and neural speech tracking, and (2) that eye movements track speech. The main findings were replicated which supports the robustness of these results. The authors also investigated interactions between prediction tendencies and ocular speech tracking, but the data did not reveal clear relationships. The authors propose a framework that integrates the findings of the study and proposes how eye movements and prediction tendencies shape perception.
Strengths:
This is a well-written paper that addresses interesting research questions, bringing together two subfields that are usually studied in separation: auditory speech and eye movements. The authors aimed at replicating findings from two of their previous studies, which was overall successful and speaks for the robustness of the findings. The overall approach is convincing, methods and analyses appear to be thorough, and results are compelling.
Weaknesses:
Linking the new to the previous studies could have been done in more detail, and the extent to which results were replicated could have been discussed more thoroughly.
Eye movement behavior could have been presented in more detail and the authors could have attempted to understand whether there is a particular component in eye movement behavior (e.g., microsaccades) that drives the observed effects.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This is an interesting follow-up to a paper published in Human Molecular Genetics reporting novel roles in corticogenesis of the Kif7 motor protein that can regulate the activator as well as the repressor functions of the Gli transcription factors in Shh signalling. This new work investigates how a null mutation in the Kif7 gene affects the formation of corticofugal and thalamocortical axon tracts and the migration of cortical interneurons. It demonstrates that the Kif7 null mutant embryos present with ventriculomegaly and heterotopias as observed in patients carrying KIF7 mutations. The Kif7 mutation also disrupts the connectivity between the cortex and thalamus and leads to an abnormal projection of thalamocortical axons. Moreover, cortical interneurons show migratory defects that are mirrored in cortical slices treated with the Shh inhibitor cyclopamine suggesting that the Kif7 mutation results in a down-regulation of Shh signalling. Interestingly, these defects are much less severe at later stages of corticogenesis.
Strengths/weaknesses:
The findings of this manuscript are clearly presented and are based on detailed analyses. Using a compelling set of experiments, especially the live imaging to monitor interneuron migration, the authors convincingly investigate Kif7's roles and their results support their major claims. The migratory defects in interneurons and the potential role of Shh signalling present novel findings and provide some mechanistic insights but rescue experiments would further support Kif7's role in interneuron migration. Similarly, the mechanism underlying the misprojection which has previously been reported in other cilia mutants remains unexplored. Taken together, this manuscript makes novel contributions to our understanding of the role of primary cilia in forebrain development and to the aetiology of neural symptoms in ciliopathy patients.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
This study offers a valuable investigation into the role of cholecystokinin (CCK) in thalamocortical plasticity during early development and adulthood, employing a range of experimental techniques. The authors demonstrate that tetanic stimulation of the auditory thalamus induces cortical long-term potentiation (LTP), which can be evoked through either electrical or optical stimulation of the thalamus or by noise bursts. They further show that thalamocortical LTP is abolished when thalamic CCK is knocked down or when cortical CCK receptors are blocked. Interestingly, in 18-month-old mice, thalamocortical LTP was largely absent but could be restored through the cortical application of CCK. The authors conclude that CCK contributes to thalamocortical plasticity and may enhance thalamocortical plasticity in aged subjects.
While the study presents compelling evidence, I would like to offer several suggestions for the authors' consideration:
(1) Thalamocortical LTP and NMDA-Dependence:<br /> It is well established that thalamocortical LTP is NMDA receptor-dependent, and blocking cortical NMDA receptors can abolish LTP. This raises the question of why thalamocortical LTP is eliminated when thalamic CCK is knocked down or when cortical CCK receptors are blocked. If I correctly understand the authors' hypothesis - that CCK promotes LTP through CCKR-intracellular Ca2+-AMPAR. This pathway should not directly interfere with the NMDA-dependent mechanism. A clearer explanation of this interaction would be beneficial.
(2) Complexity of the Thalamocortical System:<br /> The thalamocortical system is intricate, with different cortical and thalamic subdivisions serving distinct functions. In this study, it is not fully clear which subdivisions were targeted for stimulation and recording, which could significantly influence the interpretation of the findings. Clarifying this aspect would enhance the study's robustness.
(3) Statistical Variability:<br /> Biological data, including field excitatory postsynaptic potentials (fEPSPs) and LTP, often exhibit significant variability between samples, sometimes resulting in a standard deviation that exceeds 50% of the mean value. The reported standard deviation of LTP in this study, however, appears unusually small, particularly given the relatively limited sample size. Further discussion of this observation might be warranted.
(4) EYFP Expression and Virus Targeting:<br /> The authors indicate that AAV9-EFIa-ChETA-EYFP was injected into the medial geniculate body (MGB) and subsequently expressed in both the MGB and cortex. If I understand correctly, the authors assume that cortical expression represents thalamocortical terminals rather than cortical neurons. However, co-expression of CCK receptors does not necessarily imply that the virus selectively infected thalamocortical terminals. The physiological data regarding cortical activation of thalamocortical terminals could be questioned if the cortical expression represents cortical neurons or both cortical neurons and thalamocortical terminals.
(5) Consideration of Previous Literature:<br /> A number of studies have thoroughly characterized auditory thalamocortical LTP during early development and adulthood. It may be beneficial for the authors to integrate insights from this body of work, as reliance on data from the somatosensory thalamocortical system might not fully capture the nuances of the auditory pathway. A more comprehensive discussion of the relevant literature could enhance the study's context and impact.
(6) Therapeutic Implications:<br /> While the authors suggest potential therapeutic applications of their findings, it may be somewhat premature to draw such conclusions based on the current evidence. Although speculative discussion is not harmful, it may not significantly add to the study's conclusions at this stage.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Lu et. al. proposed here a direct role of LPS in inducing hepatic fat accumulation and that the metabolism of LPS therefore can mitigate fatty liver injury. With an Acyloxyacyl hydrolase whole-body KO mice, they demonstrated that Acyloxyacyl hydrolase deletion resulted in higher hepatic fat accumulation over 8 months of high glucose/high fructose diet. Previous literature has found that hepatocyte TLR4 (which is a main receptor for binding LPS) KO reduced fatty liver in the MAFLD model, and this paper complements this by showing that degradation/metabolism of LPS can also reduce fatty liver. This result proposed a very interesting mechanism and the translational implications of utilizing Acyloxyacyl hydrolase to decrease LPS exposure are intriguing.
The strengths of the present study include that they raised a very simplistic mechanism with LPS that is of interest in many diseases. The phenotype shown in the study is strong. The mechanism proposed by the findings is generally well supported.
There are also several shortcomings in the findings of this study. As AOAH is a whole-body KO, the source production of AOAH in MAFLD is unclear. Although the authors used published single-cell RNA-seq data and flow-isolated liver cells, physiologically LPS degradation could occur in the blood or the liver. The authors linked LPS to hepatocyte fatty acid oxidation via SREBP1. The mechanism is not explored in great depth. Is this signaling TLR4? In this model, LPS could activate macrophages and mediate the worsening of hepatocyte fatty liver injury via the paracrine effect instead of directly signaling to hepatocytes, thus it is not clear that this is a strictly hepatocyte LPS effect. It would also be very interesting to see if the administration of the AOAH enzyme orally could mitigate MAFLD injury. Overall, this work adds to the current understanding of the gut-liver axis and development of MAFLD and will be of interest to many readers.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
This is by far the phylogenetic analysis with the most comprehensive coverage for the Nemacheilidae family in Cobitoidea. It is a much-lauded effort. The conclusions derived using phylogenetic tools coincide with geological events, though not without difficulties (Africa pathway).
Strengths:
Comprehensive use of genetic tools
Weaknesses:
Lack of more fossil records.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The article provides valuable information on the role of CCR4 in an inflammatory condition, namely, the arteriosclerosis plaque. The data demonstrated that in the absence of CCR4, the Th1 cells infiltrated the plaque and Tregs lost its functions. The data are clear and well-presented. Mostly importantly, the data on CCR4-specific deficiency in Regulatory T cells is more impressive.
Strengths:
The data are clear, well performed, and interesting in focusing on the plaque and compared to peripheral organs. The disease is relevant and the data could be used to understand the risk of patients under immunomodulator use.
Weaknesses:
Still, we don't know the mechanism, besides migration.
-
-
www.youtube.com www.youtube.com
-
1:33:38 When there is new EVIDENCE, we CHANGE OUR MIND
-
1:30:05 We can create an ERGODIC Neighbourhood
-
1:28:29 Government spends by creating money and when it taxes, the government destroys money
-
1:27:32 A Community Bill of Rights
-
1:26:14 Marlborough can become a Commons
-
1:25:22 First comes an AGREEMENT by members of the neighbourhood to co-operate and then they agree to use a mechanism called money to mobilise resources
-
1:24:34 Money is not the scare resource. Money is the organising tool that mobilises people and tangible resources to manifest a vision
-
1:24:14 We can organise our resources such that it can attract the money that regenerates across all types of capital and all types of nature
-
1:23:52 What does Donut Economics look like in Marlborough Neighbourhood?
-
1:23:30 How can a neighbourhood become a local food PRODUCER evolving into a PROSUMER
-
1:23:06 How can we get a neighbourhood to operate at full capacity (strengths) while minimising to its collective shadows
-
1:22:36 Could A community Association get a Community Banking Licence? 1:22:38 Could a local Credit Union be a consortium partner and issue more money into the system to develop the entire wealth of the Neighbourhood
-
1:22:23 How much UNUSED RESOURCES are there in Marlborough Neighbourhood? How more efficaciously can they be used?
-
1:21:54 If a community moved to a WELLNESS model rather than an ILLNESS model, it would generate millions of dollars in saved resources 1:21:54 If a community moved to a PREVENTION model rather than a CURE Model, it would generate millions of dollars in resources
-
1:21:44 By identifying WASTE - we can identify capacity to create VALUE for ALL
Tags
- 1:22:36 Could A community Association get a Community Banking Licence? 1:22:38 Could a local Credit Union be a consortium partner and issue more money into the system to develop the entire wealth of the Neighbourhood
- 1:27:32 A Community Bill of Rights
- 1:23:06 How can we get a neighbourhood to operate at full capacity (strengths) while minimising to its collective shadows
- 1:21:44 By identifying WASTE - we can identify capacity to create VALUE for ALL
- 1:33:38 When there is new EVIDENCE, we CHANGE OUR MIND
- 1:23:30 How can a neighbourhood become a local food PRODUCER evolving into a PROSUMER
- 1:24:34 Money is not the scare resource. Money is the organising tool that mobilises people and tangible resources to manifest a vision
- 1:22:23 How much UNUSED RESOURCES are there in Marlborough Neighbourhood? How more efficaciously can they be used?
- 1:25:22 First comes an AGREEMENT by members of the neighbourhood to co-operate and then they agree to use a mechanism called money to mobilise resources
- 1:28:29 Government spends by creating money and when it taxes, the government destroys money
- 1:26:14 Marlborough can become a Commons
- 1:24:14 We can organise our resources such that it can attract the money that regenerates across all types of capital and all types of nature
- 1:23:52 What does Donut Economics look like in Marlborough Neighbourhood?
- 1:30:05 We can create an ERGODIC Neighbourhood
- 1:21:54 If a community moved to a WELLNESS model rather than an ILLNESS model, it would generate millions of dollars in saved resources 1:21:54 If a community moved to a PREVENTION model rather than a CURE Model, it would generate millions of dollars in resources
Annotators
URL
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
Disease: Von Willebrand Disease (VWD) type 1
Patient(s): 13 yo, female and 14 yo, female, both Italian
Variant: VWF NM_000552.5: c.820A>C p. (Thr274Pro)
Dominant negative effect
Heterozygous carrier
Variant located in the D1 domain on VWF
Phenotypes:
heterozygous carriers have no bleeding history
reduced VWF levels compatible with diagnosis of VWD type 1
increased FVIII:C/VWF:Ag ratio, suggests reduced VWF synthesis/secretion as possible phathophysiological mechanism
Normal VWFpp/VWF:Ag ratio
Modest alteration of multimeric pattern in plasma and platelet multimers
plasma VWF showed slight increase of LMWM and decrease of IMWM and HMWM
Platelet VWF showed quantitative decrease of IMWM, HMWM, and UL multimers
In silico analysis:
SIFT, ALIGN, GVD Polyphen 2.0, SNP&GO, Mutation Taster, Pmut all suggest damaging consequences.
PROVEAN and Effect suggest neutral effect
according to ACMG guidelines this variant was classified as pathogenic
-
-
-
Reviewer #1 (Public review):
Summary:
In this important paper the authors investigate the temporal dynamics of expectation of pain using a combined fMRI-EEG approach. More specifically, by modifying the expectations of higher or lower pain on a trial-to- trial basis they report that expectations largely share the same set of activations before the administration of the painful stimulus and that the coding of the valence of the stimulus is observed only after the nociceptive input has been presented. fMRI informed EEG analysis suggested that the temporal sequence of information processing involved the Dorsolateral prefrontal cortex (DLPFC), the anterior insula and the anterior cingulate cortex. The strength of evidence is convincing, the methods are solid, but a few alternative interpretations about the findings related to the control group, as well as a more in depth discussion on the correlations between the BOLD and EEG signals would strengthen the manuscript.
Strengths:
In line with open science principles, the article presents the data and the results in a complete and transparent fashion.<br /> On the theoretical standpoint, the authors make a step forward in our understanding of how expectations modulate pain by introducing a combination of spatial and temporal investigation. It is becoming increasingly clear that our appraisal of the world is dynamic, guided by previous experiences and mapped on a combination of what we expect and what we get. New research methods, questions and analyses are needed to capture this evolving process.
Weaknesses:
The authors have addressed my concerns about the control condition and made some adjustments, namely acknowledging that participants cannot be "expectations" free and investigating whether scores in the control condition are simply due to a "regression to the mean".
General considerations and reflections
Inducing expectations in the desired direction is not a straightforward task, and results might depend on the exact experimental conditions and the comparison group. In this sense, the authors choice of having 3 groups of positive, negative and "neutral" expectations is to be praised. On the other hand, also control groups form their expectations, and this can constitute a confounder in every experiment using expectation manipulation, if not appropriately investigated. The authors have addressed this element in their revised submission.
In addition, although fMRI is still (probably) the best available tool we have to understand the spatial representation of cortical processing, limitations about not only the temporal but even the spatial resolution should be acknowledged. This has been done. Given the anatomical and physiological complexity of the cortical connections, as we know from the animal world, it is still well possible that sub circuits are activated also for positive and negative expectations, but cannot be observed due to the limitation of our techniques. Indeed, on an empirical/evolutionary bases, it would remain unclear why we should have a system that waits for the valence of a stimulus to show differential responses.<br /> Also, moving in a dimension of network and graph theory, one would not expect single areas to be responsible for distinct processes, but rather that they would more integrate information in a shared way, potentially with different feedback and feedforward communications. As such, it becomes more difficult to assume the insula as a center for coding potential pain, perhaps more of a node in a system that signals potential dangers for the integrity of the body.<br /> The rationale for the choice of their EEG band has been outlined.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this paper, Misic et al showed that white matter properties can be used to classify subacute back pain patients that will develop persisting pain.
Strengths:
Compared to most previous papers studying associations between white matter properties and chronic pain, the strength of the method is to perform a prediction in unseen data. Another strength of the paper is the use of three different cohorts. This is an interesting paper that provides a valuable contribution to the field.
Weaknesses:
The main weakness of this study is the sample size. It remains small despite having 3 cohorts. This is problematic because results are often overfitted in such a small sample size brain imaging study, especially when all the data are available to the authors at the time of training the model (Poldrack et al., Scanning the horizon: towards transparent and reproducible neuroimaging research, Nature Reviews in Neuroscience 2017). Thus, having access to all the data, the authors have a high degree of flexibility in data analysis, as they can retrain their model any number of time until it generalizes across all three cohorts. In this case, the testing set could easily become part of the training making it difficult to assess the real performance, especially for small sample size studies.
Even if the performance was properly assessed their models show AUCs between 0.65-0.70, which is usually considered as poor, and most likely without potential clinical use. Despite this, their conclusion was: "This biomarker is easy to obtain (~10 min 18 of scanning time) and opens the door for translation into clinical practice." One may ask who is really willing to use an MRI signature with a relatively poor performance that can be outperformed by self-report questionnaires?
Overall, these criticisms are more about the wording sometimes use and the inference they made. I still think this is a very relevant contribution to the field. Showing predictive performance through cross validation and testing in multiple cohorts is not an easy task and this is a strong effort by the team. I strongly believe this approach is the right one and I believe the authors did a good job.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors intended to investigate the earliest mechanisms enabling self-prioritization, especially in the attention. Combining a temporal order judgement task with computational modelling based on the Theory of Visual Attention (TVA), the authors suggested that the shapes associated with the self can fundamentally alter the attentional selection of sensory information into awareness. This self-prioritization in attentional selection occurs automatically at early perceptual stages. Furthermore, the processing benefits obtained from attentional selection via self-relatedness and physical salience were separated from each other.
Strengths:
The manuscript is written in a way that is easy to follow. The methods of the paper are very clear and appropriate.
Weaknesses:
There are two main concerns:
(1) The authors had a too strong pre-hypothesis that self-prioritization was associated with attention. They used the prior entry to consciousness (awareness) as an index of attention, which is not appropriate. There may be other processing that makes the stimulus prior to entry to consciousness (e.g. high arousal, high sensitivity), but not attention. The self-related/associated stimulus may be involved in such processing but not attention to make the stimulus easily caught. Perhaps the authors could include other methods such as EEG or MEG to answer this question.
(2) The authors suggested that there are two independent attention processes. I suspect that the brain needs two attention systems. Is there a probability that the social and perceptual (physical properties of the stimulus) salience fired the same attention processing through different processing?
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authiors show that SVZ derived astrocytes respond to a middle carotid artery occlusion (MCAO) hypoxia lesion by secreting and modulating hyaluronan at the edge of the lesion (penumbra) and that hyaluronin is a chemoattractant to SVZ astrocytes. They use lineage tracing of SVZ cells to determine their origin. They also find that SVZ derived astrocytes express Thbs-4 but astrocytes at the MCAO-induced scar do not. Also, they demonstrate that decreased HA in the SVZ is correlated with gliogenesis. While much of the paper is descriptive/correlative they do overexpress Hyaluronan synthase 2 via viral vectors and show this is sufficient to recruit astrocytes to the injury. Interestingly, astrocytes preferred to migrate to the MCAO than to the region of overexpressed HAS2.
Strengths:
The field has largely ignored the gliogenic response of the SVZ, especially with regards to astrocytic function. These cells and especially newborn cells may provide support for regeneration. Emigrated cells from the SVZ have been shown to be neuroprotective via creating pro-survival environments, but their expression and deposition of beneficial extracellular matrix molecules is poorly understood. Therefore, this study is timely and important. The paper is very well written and the flow of results logical.
Comments on revised version:
The authors have addressed my points and the paper is much improved. Here are the salient remaining issues that I suggest be addressed.
The authors have still not shown, using loss of function studies, that Hyaluronan is necessary for SVZ astrogenesis and or migration to MCAO lesions.
(1) The co-expression of EGFr with Thbs4 and the literature examination is useful.
(2) Too bad they cannot explain the lack of effect of the MCAO on type C cells. The comparison with kainate-induced epilepsy in the hippocampus may or may not be relevant.
(3) Thanks for including the orthogonal confocal views in Fig S6D.
(4) The statement that "BrdU+/Thbs4+ cells mostly in the dorsal area" and therefore they mostly focused on that region is strange. Figure 8 clearly shows Thbs4 staining all along the striatal SVZ. Do they mean the dorsal segment of the striatal SVZ or the subcallosal SVZ? Fig. 4b and Fig 4f clearly show the "subcallosal" area as the one analysed but other figures show the dorsal striatal region (Fig. 2a). This is important because of the well-known embryological and neurogenic differences between the regions.
(5) It is good to know that the harsh MCAO's had already been excluded.
(6) Sorry for the lack of clarity - in addition to Thbs4, I was referring to mouse versus rat Hyaluronan degradation genes (Hyal1, Hyal2 and Hyal3) and hyaluronan synthase genes (HAS1 and HAS2) in order to address the overall species differences in hyaluronan biology thus justifying the "shift" from mouse to rat. You examine these in the (weirdly positioned) Fig. 8h,i. Please add a few sentences on mouse vs rat Thbs4 and Hyaluronan relevant genes.
(7) Thank you for the better justification of using the naked mole rat HA synthase.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Liu et al., present an immersion objective adapter design called RIM-Deep, which can be utilized for enhancing axial resolution and reducing spherical aberrations during inverted confocal microscopy of thick cleared tissue.
Strengths:
RI mismatches present a significant challenge to deep tissue imaging, and developing a robust immersion method is valuable in preventing losses in resolution. Liu et al., present data showing that RIM-Deep is suitable for tissue cleared with two different clearing techniques, demonstrating the adaptability and versatility of the approach.
Weaknesses:
Liu et al., claim to have developed a useful technique for deep tissue imaging, but in its current form, the paper does not provide sufficient evidence that their technique performs better than existing ones.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The authors have successfully addressed most of the issues raised in the first review. Nevertheless, some of the mentioned problems require further attention, mostly regarding the formal derivation of the learning rules, as well as connections to previous research.
Regarding the derivations of learning rules: The authors have provided Goal functions for each of the plastic neural connections to give some insight into what these connections do. However, as I understand, this does not address the main concern raised in the previous review: Why do these rules lead to overall network dynamics that sample from the input distribution? Virtually all other work on neural sampling that I am aware of (e.g., from Maass Lab, Lengyel Lab, etc.) start from a single goal function for all connections that somehow quantifies the difference of network dynamics from the target distribution. In the presented work the authors specify different goal functions for the different weights, which does not make clear how the desired network dynamics are ultimately achieved.
This becomes especially evident looking at the two different recurrent connections (M and G). M minimizes the difference between network activity f and recurrent prediction DKL[f|phi(My)], but why is this alone not enough to ensure a good sampling? G minimizes the squared error [f-phi(Gy)]^2, but what does that mean? The problem is that the goal functions are self-consistent in the sense that both f and phi(Gy) depend on G, which makes an interpretation very difficult. Ultimately it's easier to interpret this by looking at the plasticity rule and see that it leads to a balance. For G the authors furthermore actually ignore the derived plasticity rule and switch to a rule similar to the one for M, meaning that the actual goal function for G is also something like DKL[f|phi(Gy)]. Overall, an overarching optimization goal for the entire network is missing, which makes the interpretation very difficult. I understand that this might be very difficult to provide at this stage, but the authors should at least point out this shortcoming as an open question for the proposed framework.
Regarding the relation to previous work the authors have provided a lot more detailed discussion, which very much clears up the contributions and novel ideas in their work. Still, there are some claims that are not consistent with the literature. Especially, in lines 767 ff. the authors state that Kappel et al "assumed plasticity only at recurrent synapses projecting onto the excitatory neurons. In addition, unlike our model, the cell assembly memberships need to be preconfigured in the [...] model." This is not correct, as Kappel et al learn both the feed-forward and recurrent connections, hence the main difference is that in Kappel et al sampling is sequential and not random. This is why I mentioned this work in the first review, as it speaks against the authors claims of novelty (719 ff.), which should be adjusted accordingly.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors of this article have presented a timely and well-written study exploring the impact of group identification on collective behaviors and performance. The breadth of analyses is impressive and contributes significantly to our understanding of the collective performance. However, there are several areas where further clarification and revision would strengthen the study.
Strengths:
(1) Timeliness and Relevance:<br /> The topic is highly relevant, particularly in today's interconnected and team-oriented work environments. Triadic hyperscanning is important to understand group dynamics, but most previous work has been limited to dyadic work.
(2) Comprehensive Analysis:<br /> The authors have conducted extensive analyses, offering valuable insights into how group identification affects collective behaviors.
(3) Clear Writing:<br /> The manuscript is well-written and easy to follow, making complex concepts accessible.
Weaknesses (clarifications needed):
(1) Experimental Design:<br /> The study does not mention whether the authors examined sex differences or any measures of attractiveness or hierarchy among participants (e.g., students vs. teachers). Including these variables could provide a more nuanced understanding of group dynamics.
(2) fNIRS Data Acquisition:<br /> The authors' approach to addressing individual differences in anatomy is lacking in detail. Understanding how they identified the optimal channels for synchrony between participants would be beneficial. Was this done by averaging to find the location with the highest coherence?
(3) Behavioral Analysis:<br /> For group identification, the analysis currently uses a dichotomous approach. Introducing a regression model to capture the degree of identification could offer more granular insights into how varying levels of group identification affect collective behavior and performance.
(4) Single Brain Activation Analysis:<br /> The application of the General Linear Model (GLM) is unclear, particularly given the long block durations and absence of multiple trials. Further explanation is needed on how the GLM was implemented under these conditions.
(5) Within-group neural Synchrony (GNS) Calculation:<br /> The method for calculating GNS could be improved by using mutual information instead of pairwise summation, as suggested by Xie et al. (2020) in their study on fMRI triadic hyperscanning. Additionally, the explanation of GNS calculation is inconsistent. At one point, it is mentioned that GNS was averaged across time and channels, while elsewhere, it is stated that channels with the highest GNS were selected. Clarification on this point is essential.
(6) Placement of fNIRS Probes:<br /> The probes were only placed in the frontal regions, despite literature suggesting that the superior temporal sulcus (STS) and temporoparietal junction (TPJ) regions are crucial for triadic team performance. A justification for this choice or inclusion of these regions in future studies would be beneficial.
(7) Interpretation of fNIRS Data:<br /> Given that fNIRS signals are slow, similar to BOLD signals in fMRI, the interpretation of Figure 6 raises concerns. It suggests that it takes several minutes (on the order of 4-5 minutes) for people to collaborate, which seems implausible. More context or re-evaluation of this interpretation is needed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #4 (Public review):
Summary:
This is an important study that underscores that reproduction-survival trade-offs are not manifested (contrary to what generally accepted theory predicts) across a range of studies on birds. This has been studied by a meta-analytical approach, gathering data from a set of 46 papers (30 bird species). The overall conclusion is that there are no trade-offs apparent unless experimental manipulations push the natural variability to extreme values. In the wild, the general pattern for within-species variation is that birds with (naturally) larger clutches survive better.
Strengths:
I agree this study highlights important issues and provides good evidence of what it claims, using appropriate methods.
Weaknesses:
I also think, however, that it would benefit from broadening its horizon beyond bird studies. The conclusions can be reinforced through insights from other taxa. General reasoning is that there is positive pleiotropy (i.e. individuals vary in quality and therefore some are more fit (perform better) than others. Of course, this is within their current environment (biotic, abiotic, social. ...), with consequences of maintaining genetic variation across generations - outlined in Maklakov et al. 2015 (https://doi.org/10.1002/bies.201500025). This explains the outcomes of this study very well and would come to less controversy and surprise for a more general audience.
I have two fish examples in my mind where this trade-off is also discounted. Of course, given that it is beyond brood-caring birds, the wording in those studies is slightly different, but the evolutionary insight is the same. First, within species but across populations, Reznick et al. (2004, DOI: 10.1038/nature02936) demonstrated a positive correlation between reproduction and parental survival in guppies. Second, an annual killifish study (2021, DOI: 10.1111/1365-2656.13382) showed, within a population, a positive association between reproduction and (reproductive) aging.
In fruit flies, there is also a strong experimental study demonstrating the absence of reproduction-lifespan trade-offs (DOI: 10.1016/j.cub.2013.09.049).
I suggest that incorporating insights from those studies would broaden the scope and reach of the current manuscript.
Likely impact:
I think this is an important contribution to a slow shift in how we perceive the importance of trade-offs in ecology and evolution in general. While the current view still is that one individual excelling in one measure of its life history (i.e. receiving benefits) must struggle (i.e. pay costs) in another part. However, a positive correlation between all aspects of life history traits is possible within an individual (such as due to developmental conditions or fitting to a particular environment). Simply, some individuals can perform generally better (be of good quality than others).
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary
In this study, Nishi et al. claim that the ratio of long-term hematopoietic stem cell (LT-HSC) versus short-term HSC (ST-HSC) determines the lineage output of HSCs and reduced ratio of ST-HSC in aged mice causes myeloid-biased hematopoiesis. Authors used Hoxb5 reporter mice to isolated LT-HSC and ST-HSC and performed molecular analyses and transplantation assays to support their arguments. How hematopoietic system becomes myeloid-biased upon aging is an important question with many implications in disease context as well. However, this study needs more definitive data.
(1) Authors' experimental designs have some caveats to definitely support their claims. Authors claimed that aged LT-HSCs have no myeloid-biased clone expansion using transplantation assays. In these experiments, authors used 10 HSCs and young mice as recipients. Given the huge expansion of old HSC by number and known heterogeneity in immunophenotypically defined HSC populations, it is questionable how 10 out of so many old HSCs (an average of 300,000 up to 500,000 cells per mouse; Mitchell et al., Nature Cell Biology, 2023) can faithfully represent old HSC population. The Hoxb5+ old HSC primary and secondary recipient mice data (Fig. 2C and D) support this concern. In addition, they only used young recipients. Considering the importance of inflammatory aged niche in the myeloid-biased lineage output, transplanting young vs old LT-HSCs into aged mice will complete the whole picture.
(2) Authors' molecular data analyses need more rigor with unbiased approaches. They claimed that neither aged LT-HSCs nor aged ST-HSCs exhibited myeloid or lymphoid gene set enrichment but aged bulk HSCs, which are just a sum of LT-HSCs and ST-HSCs by their gating scheme (Fig. 4A), showed the "tendency" of enrichment of myeloid-related genes based on the selected gene set (Fig. 4D). Although the proportion of ST-HSCs is reduced in bulk HSCs upon aging, since ST-HSCs do not exhibit lymphoid gene set enrichment based on their data, it is hard to understand how aged bulk HSCs have more myeloid gene set enrichment compared to young bulk HSCs. This bulk HSC data rather suggest that there could be a trend toward certain lineage bias (although not significant) in aged LT-HSCs or ST-HSCs. Authors need to verify the molecular lineage priming of LT-HSCs and ST-HSCs using another comprehensive dataset.
(3) Although authors could not find any molecular evidence for myeloid-biased hematopoiesis from old HSCs (either LT or ST), they argued that the ratio between LT-HSC and ST-HSC causes myeloid-biased hematopoiesis upon aging based on young HSC experiments (Fig. 6). However, old ST-HSC functional data showed that they barely contribute to blood production unlike young Hoxb5- HSCs (ST-HSC) in the transplantation setting (Fig. 2). Is there any evidence that in unperturbed native old hematopoiesis, old Hoxb5- HSCs (ST-HSC) still contribute to blood production? If so, what are their lineage potential/output? Without this information, it is hard to argue that the different ratio causes myeloid-biased hematopoiesis in aging context.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The study identifies two types of activation: one that is cue-triggered and non-specific to motion directions, and another that is specific to the exposed motion directions but occurs in a reversed manner. The finding that activity in the medial temporal lobe (MTL) preceded that in the visual cortex suggests that the visual cortex may serve as a platform for the manifestation of replay events, which potentially enhance visual sequence learning.
Strengths:
Identifying the two types of activation after exposure to a sequence of motion directions is very interesting. The experimental design, procedures, and analyses are solid. The findings are interesting and novel.
Weaknesses:
It was not immediately clear to me why the second type of activation was suggested to occur spontaneously. The procedural differences in the analyses that distinguished between the two types of activation need to be a little better clarified.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
These experiments are some of the first to assess the role of dopamine release and the activity of D1 and D2 MSNs in pair bond formation in Mandarin voles. This is a novel and comprehensive study that presents exciting data about how the dopamine system is involved in pair bonding. The authors provide very detailed methods and clearly presented results. Here they show dopamine release in the NAc shell is enhanced when male voles encounter their pair bonded partner 7 days after co-habitation. In addition, D2 MSN activity decreases whereas D1 MSN activity increases when sniffing the pair-bonded partner.
The authors do not provide justification for why they only use males in the current study, without discussing sex as a biological variable these data can only inform readers about one sex (which in pair-bonded animals by definition have 2 sexes). In addition, the authors do not use an isosbestic control wavelength in photometry experiments, although they do use EGFP control mice which show no effects of these interventions, a within-subject control such as an isosbestic excitation wavelength could give more confidence in these data and rule out motion artefacts within subjects.
There is an existing literature (cited in this manuscript) from Aragona et al., (particularly Aragona et al., 2006) which has highlighted key differences in the roles of rostral versus caudal NAc shell dopamine in pair bond formation and maintenance. Specifically, they report that dopamine transmission promoting pair bonding only occurs in the rostral shell and not the caudal shell or core regions. Given that the authors have targeted more caudally a discussion of how these results fit with previous work and why there may be differences in these areas is warranted.
The authors could discuss the differences between pair bond formation and pair bond maintenance more deeply.
The authors have successfully characterised the involvement of dopamine release, changes in D1 and D2 MSNs, and projections to the VP in pair bonding voles. Their conclusions are supported by their data and they make a number of very reasonable discussion points acknowledging various limitations.
-
-
usrussiarelations.org usrussiarelations.org
-
internal colonization across a great plain;
How do these compare? How big (square miles) was the Russian Empire in the 18th Century? What about the United States?
Cite your sources.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
The present manuscript by Zhou and colleagues investigates the impact of a new combination of compounds termed CHIR99021 and A-485 on stimulating cardiac cell regeneration. This manuscript fits the journal and addresses an important contribution to scientific knowledge.
Comments on latest version:
The authors have addressed all of our comments.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The study investigates the impact of Clonal Hematopoiesis of Indeterminate Potential (CHIP) on Immune Checkpoint Inhibitor (ICI) therapy outcomes in NSCLC patients, analyzing blood samples from 100 patients pre- and post-ICI therapy for CHIP, and conducting single-cell RNA sequencing (scRNA-seq) of PBMCs in 63 samples, with validation in 180 more patients through whole exome sequencing. Findings show no significant CHIP influence on ICI response, but a higher CHIP prevalence in NSCLC compared to controls and a notable CHIP burden in squamous cell carcinoma. Severely affected CHIP groups showed NF-kB pathway gene enrichment in myeloid clusters.
Strengths:
The study is commendable for analyzing a significant cohort of 100 patients for CHIP and utilizing scRNA-seq on 63 samples, showcasing the use of cutting-edge technology.
The study tackles the vital clinical question of predicting ICI therapy outcomes in NSCLC.
Weaknesses:
The study groups, comprising NSCLC patients and healthy controls, exhibit notable differences in sex distribution and smoking status. Given that smoking is a well-established factor influencing CHIP status, this introduces potential confounding variables that may impact the study's conclusions. The authors have appropriately acknowledged these disparities and provided a transparent discussion of their implications.
Comments on revised submission:
The authors thoroughly addressed all my concerns. Thank you very much for your additional work.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The present work from Velloso and collaborators investigated the transcription profiles of resident and recruited hypothalamic microglia. They found sex-dependent differences between males and females and identified the protective role of chemokine receptor CXCR3 against diet-induced obesity.
Strengths:
(1) Novelty<br /> (2) Relevance, since this work provides evidence about a subset of recruited microglia that has a protective effect against DIO. This provides a new concept in hypothalamic inflammation and obesity.
Comments on revised version:
All my comments have been addressed.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The manuscript by Zhou et al offers new high resolution Cryo-EM structures of two human biotin-dependent enzymes: propionyl-CoA carboxylase (PCC) and methycrotonyl-CoA carboxylase (MCC). While X-ray crystal structures and Cryo-EM structures have previously been reported for bacterial and trypanosomal versions of MCC and for bacterial versions of PCC, this marks one of the first high resolution Cryo-EM structures of the human version of these enzymes. Using the biotin cofactor as an affinity tag, this team purified a group of four different human biotin-dependent carboxylases from cultured human Expi 293F (kidney) cells (PCC, MCC, acetyl-CoA carboxylase (ACC), and pyruvate carboxylase). Following further enrichment by size-exclusion chromatography, they were able to vitrify the sample and pick enough particles of MCC and PCC to separately refine the structures of both enzymes to relatively high average resolutions (the Cryo-EM structure of ACC also appears to have been determined from these same micrographs, though this is the subject of a separate publication). To determine the impact of substrate binding on the structure of these enzymes and to gain insights into substrate selectivity, they also separately incubated with propionyl-CoA and acetyl-CoA and vitrified the samples under active turnover conditions, yielding a set of cryo-EM structures for both MCC and PCC in the presence and absence of substrates and substrate analogues.
Strengths:
The manuscript has several strengths. It is clearly written, the figures are clear and the sample preparation methods appear to be well described. This study demonstrates that Cryo-EM is an ideal structural method to investigate the structure of these heterogeneous samples of large biotin-dependent enzymes. As a consequence, many new Cryo-EM structures of biotin-dependent enzymes are emerging, thanks to the natural inclusion of a built-in biotin affinity tag. While the authors report no major differences between the human and bacterial forms of these enzymes, it remains an important finding that they demonstrate how/if the structure of the human enzymes are or are not distinct from the bacterial enzymes. The MCC structures also provide evidence for a transition for BCCP-biotin from an exo-binding site to an endo-binding site in response to acetyl-CoA binding. This contributes to a growing number of biotin-dependent carboxylase structures that reveal BCCP-biotin binding at locations both inside (endo-) and outside (exo-) of the active site.
Weaknesses:
There are some minor weaknesses. Notably, there are not a lot of new insights coming from this paper. The structural comparisons between MCC and PCC have already been described in the literature and there were not a lot of significant changes (outside of the exo- to endo- transition) in the presence vs. absence of substrate analogues. There are sections of this manuscript that do not sufficiently clarify what represents a new insight from the current set of structures (there are few of them), vs. what is largely recapitulating what has been seen in previous structures.
There is not a great deal of depth of analysis in the discussion. For example, no new insights were gained with respect to the factors contributing to substrate selectivity (the factors contributing to selectivity for propionyl-CoA vs. acetyl-CoA in PCC). The authors acknowledge that they are limited in their interpretations as a consequence of the acyl groups being unresolved in all of the structures. They offer a simple, overarching and not particularly insightful explanation that the longer acyl group in propionyl-CoA may mediate stronger hydrophobic interactions that stabilize the alpha carbon of the acyl group at the proper position. The authors did not take the opportunity to describe the specific interactions that may be responsible for the stronger hydrophobic interaction nor do they offer any plausible explanation for how these might account for an astounding difference in the selectivity for propionyl-CoA vs. acetyl-CoA. Essentially, the authors concede that these cryo-EM structures offer no new insights into the structural basis for substrate selectivity in PCC, confirming that these structures do not yet fully capture the proper conformational states.
Some of these minor deficiencies aside, the overall aim of contributing new cryo-EM structures of the human MCC and PCC has been achieved. While I am not a cryo-EM expert, I see no flaws in the methodology or approach. While the contributions from these structures are somewhat incremental, it is nevertheless important to have these representative examples of the human enzymes and it is noteworthy to see a new example of the exo-binding site in a biotin-dependent enzyme.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
DMS-MaP is a sequencing-based method for assessing RNA folding by detecting methyl adducts on unpaired A and C residues created by treatment with dimethylsulfate (DMS). DMS also creates methyl adducts on the N7 position of G, which could be sensitive to tertiary interactions with that atom, but N7-methyl adducts cannot be detected directly by sequencing. In this work, the authors adopt a previously developed method for converting N7-methyl-G to an abasic site to make it detectable by sequencing and then show that the ability of DMS to form an N7-methyl-G adduct is sensitive to RNA structural context. In particular, they look at the G-quadruplex structure motif, which is dense with N7-G interactions, is biologically important, and lacks conclusive methods for in-cell structural analysis.
Strengths:
- The authors clearly show that established methods for detecting N7-methyl-G adducts can be used to detect those adducts from DMS and that the formation of those adducts is sensitive to structural context, particularly G-quadruplexes.
- The authors assess the N7-methyl-G signal through a wide range of useful probing analyses, including standard folding, adduct correlations, mutate-and-map, and single-read clustering.
- The authors show encouraging preliminary results toward the detection of G-quadruplexes in cells using their method. Reliable detection of RNA G-quadruplexes in cells is a major limitation for the field and this result could lead to a significant advance.
- Overall, the work shows convincingly that N7-methyl-G adducts from DMS provide valuable structural information and that established data analyses can be adapted to incorporate the information.
Weaknesses:
- Most of the validation work is done on the spinach aptamer and it and polyUG RNA are the only RNAs tested that have a known 3D structure. Although it is a useful model for validating this method, it does not provide a comprehensive view of what results to expect across varied RNA structures.
- It's not clear from this work what the predictive power of BASH-MaP would be when trying to identify G-quadruplexes in RNA sequences of unknown structure. Although clusters of G's with low reactivity and correlated mutations seem to be a strong signal for G-quadruplexes, no effort was made to test a range of G-rich sequences that are known to form G-quadruplexes or not. Having this information would be critical for assessing the ability of BASH-MaP to identify G-quadruplexes in cells.
- Although the authors present interesting results from various types of analysis, the code currently available on Github lacks the documentation and examples necessary to be useful to the broader community.
- There are aspects of the DAGGER analysis that could limit its robustness or utility for different RNAs:
(1) Folding of the RNA based on individual reads does not represent single-molecule folding since each read contains only a small fraction of the possible adducts that could have formed on that molecule. As a result, each fold will largely be driven by the naive folding algorithm. The DANCE-MaP algorithm that was also used by the authors addresses this concern.<br /> (2) G residues in a loop will have a different impact on RNA folding than those in a G-quadruplex. This difference could reduce the accuracy of CONTRAfold predictions when forcing G-quadruplex residues to be unpaired. That said, predicting secondary structure around G-quadruplexes is a challenge for folding algorithms.<br /> (3) Incorporation of the G mutations requires prior knowledge of the RNA 3D structure, limiting the utility of the method to predicting alternative conformations in structures that are already well characterized.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Using a knock-out mutant strain, the authors tried to decipher the role of the last gene in the mycofactocin operon, mftG. They found that MftG was essential for growth in the presence of ethanol as the sole carbon source, but not for the metabolism of ethanol, evidenced by the equal production of acetaldehyde in the mutant and wild type strains when grown with ethanol (Fig 3). The phenotypic characterization of ΔmftG cells revealed a growth-arrest phenotype in ethanol, reminiscent of starvation conditions (Fig 4). Investigation of cofactor metabolism revealed that MftG was not required to maintain redox balance via NADH/NAD+, but was important for energy production (ATP) in ethanol. Since mycobacteria cannot grow via substrate-level phosphorylation alone, this pointed to a role of MftG in respiration during ethanol metabolism. The accumulation of reduced mycofactocin points to impaired cofactor cycling in the absence of MftG, which would impact the availability of reducing equivalents to feed into the electron transport chain for respiration (Fig 5). This was confirmed when looking at oxygen consumption in membrane preparations from the mutant and would type strains with reduced mycofactocin electron donors (Fig 7). The transcriptional analysis supported the starvation phenotype, as well as perturbations in energy metabolism, and may be beneficial if described prior to respiratory activity data.<br /> The data and conclusions support the role of MftG in ethanol metabolism.
-
-
www.medrxiv.org www.medrxiv.org
-
Reviewer #1 (Public review):
The authors sought to determine the impact of early antiretroviral treatment on the size, composition, and decay of the HIV latent reservoir. This reservoir represents the source of viral rebound upon treatment interruption and therefore constitutes the greatest challenge to achieving an HIV cure. A particular strength of this study is that it reports on reservoir characteristics in African women, a significantly understudied population, of whom some have initiated treatment within days of acute HIV diagnosis. With the use of highly sensitive and current technologies, including digital droplet PCR and near full-length genome next-generation sequencing, the authors generated a valuable dataset for investigation of proviral dynamics in women initiating early treatment compared to those initiating treatment in chronic infection. The authors confirm previous reports that early antiretroviral treatment restricts reservoir size, but further show that this restriction extends to defective viral genomes, where late treatment initiation was associated with a greater frequency of defective genomes. Furthermore, an additional strength of this study is the longitudinal comparison of viral dynamics post-treatment, wherein early treatment was shown to be associated with a more rapid rate of decay in proviral genomes, regardless of intactness, over a period of one year post-treatment. While it is indicated that intact genomes were not detected after one year following early treatment initiation, sampling depth is noted as a limitation of the study by the authors, and caution should thus be taken with interpretation where sequence numbers are low. Defective genomes are more abundant than intact genomes and are therefore more likely to be sampled. Early treatment was also associated with reduced proviral diversity and fewer instances of polymorphisms associated with cytotoxic T-lymphocyte immune selection. This is expected given that rapid evolution and extensive immune selection are synonymous with HIV infection in the absence of treatment, yet points to an additional benefit of early treatment in the context of immune therapies to restrict the reservoir.
This is one of the first studies to report the mapping of longitudinal intactness of proviral genomes in the globally dominant subtype C. The data and findings from this study therefore represent a much-needed resource in furthering our understanding of HIV persistence and informing broadly impactful cure strategies. The analysis on clonal expansion of proviral genomes may be limited by higher sequence homogeneity in hyperacute infection i.e., cells with different proviral integration sites may have a higher likelihood of containing identical genomes compared to chronic infection.
Overall, these data demonstrate the distinct benefits of early treatment initiation at reducing the barrier to a functional cure for HIV, not only by restricting viral abundance and diversity but also potentially through the preservation of immune function and limiting immune escape. It therefore provides clues to curative strategies even in settings where early diagnosis and treatment may be unlikely.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The present study's main aim is to investigate the mechanism of how VirR controls the magnitude of MEV release in Mtb. The authors used various techniques, including genetics, transcriptomics, proteomics, and ultrastructural and biochemical methods. Several observations were made to link VirR-mediated vesiculogenesis with PG metabolism, lipid metabolism, and cell wall permeability. Finally, the authors presented evidence of a direct physical interaction of VirR with the LCP proteins involved in linking PG with AG, providing clues that VirR might act as a scaffold for LCP proteins and remodel the cell wall of Mtb. Since the Mtb cell wall provides a formidable anatomical barrier for the entry of antibiotics, targeting VirR might weaken the permeability of the pathogen along with the stimulation of the immune system due to enhanced vesiculogenesis. Therefore, VirR could be an excellent drug target. Overall, the study is an essential area of TB biology.
Strengths:
The authors have done a commendable job of comprehensively examining the phenotypes associated with the VirR mutant using various techniques. Application of Cryo-EM technology confirmed increased thickness and altered arrangement of CM-L1 layer. The authors also confirmed that increased vesicle release in the mutant was not due to cell lysis, which contrasts with studies in other bacterial species.
Another strength of the manuscript is that biochemical experiments show altered permeability and PG turnover in the mutant, which fits with later experiments where authors provide evidence of a direct physical interaction of VirR with LCP proteins.
Transcriptomics and proteomics data were helpful in making connections with lipid metabolism, which the authors confirmed by analyzing the lipids and metabolites of the mutant.
Lastly, using three approaches, the authors confirm that VirR interacts with LCP proteins in Mtb via the LytR_C terminal domain.
Altogether, the work is comprehensive, experiments are designed well, and conclusions were made based on the data generated after verification using multiple complementary approaches.
Weaknesses:
The major weakness is that the mechanism of VirR-mediated EV release remains enigmatic. Most of the findings are observational and only associate enhanced vesiculogenesis observed in the VirR mutant with cell wall permeability and PG metabolism. Authors suggest that EV release occurs during cell division when PG is most fragile. However, this has yet to be tested in the manuscript - the AFM of the VirR mutant, which produces thicker PG with more pore density, displays enhanced vesiculogenesis. No evidence was presented to show that the PG of the mutant is fragile, and there are differences in cell division to explain increased vesiculogenesis. These observations, counterintuitive to the authors' hypothesis, need detailed experimental verification.
Transcriptomic data only adds a little substantial. Transcriptomic data do not correlate with the proteomics data. It remains unclear how VirR deregulates transcription. TLCs of lipids are not quantitative. For example, the TLC image of PDIM is poor; quantitative estimation needs metabolic labeling of lipids with radioactive precursors. Further, change in PDIMs is likely to affect other lipids (SL-1, PAT/DAT) that share a common precursor (propionyl- CoA).
The connection of cholesterol with cell wall permeability is tenuous. Cholesterol will serve as a carbon source and contribute to the biosynthesis of methyl-branched lipids such as PDIM, SL-1, and PAD/DAT. Carbon sources also affect other aspects of physiology (redox, respiration, ATP), which can directly affect permeability and import/export of drugs. Authors should investigate whether restoration of the normal level of permeability and EV release is not due to the maintenance of cell wall lipid balance upon cholesterol exposure of the VirR mutant.
Finally, protein interaction data is based on experiments done once without statistical analysis. If the interaction between VirR and LCP protein is expected on the mycobacterial membrane, how SPLIT_GFP system expressed in the cytoplasm is physiologically relevant. No explanation was provided as to why VirR interacts with the truncated version of LCP proteins and not with the full-length proteins.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
In this paper, Hackwell and colleagues performed technically impressive, long-term, GCaMP fiber photometry recordings from Kiss1 neurons in the arcuate nucleus of mice during multiple reproductive states. The data show an immediate suppression of activity of arc Kiss1 neuronal activity during pregnancy that is maintained during lactation. In the absence of any apparent change in suckling stimulus or milk production, mice lacking prolactin receptors in arcuate Kiss1 neurons regained Kiss1 episodic activity and estrous cyclicity faster than control mice, demonstrating that direct prolactin action on Kiss1 neurons is at least partially responsible for suppressing fertility in this species. The effect of loss of prolactin receptors from CamK2a expressing neurons was even greater, indicating either that prolactin sensitivity in Kiss1 neurons of the RP3V contributes to lactational infertility or that other prolactin-sensitive neurons are involved. These data demonstrate the important role of prolactin in suppressing Kiss1 neuron activity and thereby fertility during the lactational period in the mouse.
Strengths:
This is the first study to monitor activity of the GnRH pulse-generating system across different reproductive states in the same animal. Another strength in the study design is that it isolated the effects of prolactin by maintaining normal lactation and suckling (assessed indirectly using pup growth curves). The study also offers insight into the phenomenon of postpartum ovulation in mice. The results showed a brief reactivation of arcuate Kiss1 activity immediately prior to parturition, attributed to falling progesterone levels at the end of pregnancy. This hypothesis will be of interest to the field and is likely to inspire testing in future studies. With the exceptions mentioned below, the conclusions of the paper are well supported by the data and the aims of the study were achieved. This paper is likely to raise the standard for technical expectations in the field and spark new interest in the direct impact of prolactin on Kiss1 neurons during lactation in other species.
Weaknesses:
A weakness in the approach is the use of genetic models that do not offer complete deletion of the prolactin receptor from targeted neuronal populations. A substantial proportion of Kiss1 neurons in both models retains the receptor. As a result, it is not clear whether the partial maintenance of cyclicity during lactation in the genetic models is due to incomplete deletion or to the involvement of other factors. In addition, results showing no impact of progesterone on LH secretion during lactation are surprising, given the effectiveness of progesterone-containing birth control in lactating women. While the authors assert their findings may reflect an important role for prolactin in lactational infertility in other mammalian species, that remains to be seen. Hyperprolactinemia is known to suppress GnRH release, but its importance in the suppression of cyclicity during the lactation is controversial. Indeed, in several species, the stimulus of suckling is considered to be the main driver of lactational fertility suppression. Data from rats shows that exogenous prolactin was unable to suppress LH release in dams deprived of their pups shortly after birth; both suckling and prolactin were necessary to suppress a post-ovariectomy rise in LH levels. The duration of amenorrhea does not correlate with average prolactin levels in humans, and suckling but not prolactin was required to suppress the postpartum rise in LH in the rhesus monkey. The protocol of this or other studies might result in discordant results; alternatively, mice may be an outlier in their mechanism of cycle suppression.
Comments on revised version:
I remain enthusiastic about this article, which has been substantially improved in this revision. However, I didn't feel the authors responded to any of the points I raised previously in my public review (see Weaknesses), for example by adding to the manuscript's discussion section. These are the larger, conceptual issues that speak to the value of the paper in the context of the existing literature. The authors could also state they feel they have addressed the issues raised sufficiently in the text.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
Wang and colleagues presented an investigation of pig-origin bacteria Bacillus velezensis HBXN2020, for its released genome sequence, in vivo safety issue, probiotic effects in vitro, and protection against Salmonella infection in a murine model. Various techniques and assays are performed; the main results are all descriptive, without new insight advancing the field or a mechanistic understanding of the observed protection.
Strengths:
An extensive study on the probiotic properties of the Bacillus velezensis strain HBXN2020
Weaknesses:
The main results are descriptive without mechanistic insight. Additionally, most of the results and analysis parts are separated without a link or a story-telling way to deliver a concise message.
Now the manuscript has made appropriate and considerable improvements.
-
-
www.biorxiv.org www.biorxiv.org
-
Joint Public Review:
When the left-right asymmetry of an animal body is established, a barrier that prevents the mixing of signals or cells across the midline is essential. Such midline barrier preventing the spreading of asymmetric Nodal signaling during early left-right patterning has been identified. However, midline barriers during later asymmetric organogenesis have remained largely unknown, except in the brain. In this study, the authors discovered an unexpected structure in the midline of the developing midgut in the chick. Using immunofluorescence, they convincingly show the chemical composition of this midline structure as a double basement membrane and its transient existence during the left-right patterning of the dorsal mesentery, that authors showed previously to be essential for forming the gut loop and guiding local vasculogenesis. Labelling experiments demonstrate a physical and chemical barrier function, to cell mixing and signal diffusion in the dorsal mesentery. Cell labelling and graft experiments rule out a cellular composition of the midline from dorsal mesenchyme or endoderm origin and rule out an inducing role by the notochord. Based on laminin expression pattern and Ntn4 resistance, the authors propose a model, whereby the midline basement membrane is progressively deposited by the descending endoderm. Observations of a transient midline basement membrane in the veiled chameleon suggest a conserved mechanism in birds and reptiles.
Laterality defects encompass severe malformations of visceral organs, with a heterogenous spectrum that remains poorly understood, by lack of knowledge of the different players of left-right asymmetry. This fundamental work significantly advances our understanding of left-right asymmetric organogenesis, by identifying an organ-specific and stage-specific midline barrier. The complexities of basement membrane assembly, maintenance and function are of importance in several other contexts, as for example in the kidney and brain. Thus, this original work is of broad interest.
Overall, reviewers refer to a strong and elegant paper discovering a novel midline structure, combining classic but challenging techniques, and well thought tools, to show the dynamics, chemical and physical properties of the midline. Reviewers also indicate that further work will be necessary to conclude on the origin and impact of the midline for asymmetric organogenesis. They acknowledge that this is currently technically challenging and that authors have made several attempts to answer these questions by different means. The article includes an interesting discussion about these points and the mechanism of midline breakdown.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #2 (Public review):
The fledgling field of epitranscriptomics has encountered various technical roadblocks with implications as to the validity of early epitranscriptomics mapping data. As a prime example, the low specificity of (supposedly) modification-specific antibodies for the enrichment of modified RNAs, has been ignored for quite some time and is only now recognized for its dismal reproducibility (between different labs), which necessitates the development of alternative methods for modification detection.
Furthermore, early attempts to map individual epitranscriptomes using sequencing-based techniques are largely characterized by the deliberate avoidance of orthogonal approaches aimed at confirming the existence of RNA modifications that have been originally identified.
Improved methodology, the inclusion of various controls, and better mapping algorithms as well as the application of robust statistics for the identification of false-positive RNA modification calls have allowed revisiting original (seminal) publications whose early mapping data allowed making hyperbolic claims about the number, localization and importance of RNA modifications, especially in mRNA. Besides the existence of m6A in mRNA, the detectable incidence of RNA modifications in mRNAs has drastically dropped.
As for m5C, the subject of the manuscript submitted by Zhou et al., its identification in mRNA goes back to Squires et al., 2012 reporting on >10.000 sites in mRNA of a human cancer cell line, followed by intermittent findings reporting on pretty much every number between 0 to > 100.000 m5C sites in different human cell-derived mRNA transcriptomes. The reason for such discrepancy is most likely of a technical nature. Importantly, all studies reporting on actual transcript numbers that were m5C-modified relied on RNA bisulfite sequencing, an NGS-based method, that can discriminate between methylated and non-methylated Cs after chemical deamination of C but not m5C. RNA bisulfite sequencing has a notoriously high background due to deamination artifacts, which occur largely due to incomplete denaturation of double-stranded regions (denaturing-resistant) of RNA molecules. Furthermore, m5C sites in mRNAs have now been mapped to regions that have not only sequence identity but also structural features of tRNAs. Various studies revealed that the highly conserved m5C RNA methyltransferases NSUN2 and NSUN6 do not only accept tRNAs but also other RNAs (including mRNAs) as methylation substrates, which in combination account for most of the RNA bisulfite-mapped m5C sites in human mRNA transcriptomes. Is m5C in mRNA only a result of the Star activity of tRNA or rRNA modification enzymes, or is their low stoichiometry biologically relevant?<br /> In light of the short-comings of existing tools to robustly determine m5C in transcriptomes, other methods, like DRAM-seq, allowing to map m5C independently of ex situ RNA treatment with chemicals, are needed to arrive at a more solid "ground state", from which it will be possible to state and test various hypotheses as to the biological function of m5C, especially in lowly abundant RNAs such as mRNA.
Importantly, the identification of >10.000 sites containing m5C increases through DRAM-Seq, increases the number of potential m5C marks in human cancer cells from a couple of 100 (after rigorous post-hoc analysis of RNA bisulfite sequencing data) by orders of magnitude. This begs the question, whether or not the application of these editing tools results in editing artefacts overstating the number of actual m5C sites in the human cancer transcriptome.
Remaining comments after resubmission:
(1) The use of two m5C reader proteins is likely a reason for the high number of edits introduced by the DRAM-Seq method. Both ALYREF and YBX1 are ubiquitous proteins with multiple roles in RNA metabolism including splicing and mRNA export. It is reasonable to assume that both ALYREF and YBX1 bind to many mRNAs that do not contain m5C.<br /> To substantiate the author's claim that ALYREF or YBX1 binds m5C-modified RNAs to an extent that would allow distinguishing its binding to non-modified RNAs from binding to m5C-modified RNAs, it would be recommendable to provide data on the affinity of these, supposedly proven, m5C readers to non-modified versus m5C-modified RNAs. To do so, this reviewer suggests performing experiments as described in Slama et al., 2020 (doi: 10.1016/j.ymeth.2018.10.020). Mind you that using dot blots like in so many published studies to show modification-specific antibody or protein binding, is insufficient as an argument because no antibody, nor protein encounters nanograms to micrograms of a specific RNA identity in a cell. This issue remains a major caveat in all studies using so-called RNA modification reader proteins as bait for detecting RNA modifications in epitranscriptomics research and becomes a pertinent problem, if used as a platform for base-editing similar to the work presented in this manuscript.
(2) Using sodium arsenite treatment of cells as a means to change the m5C status of transcripts through the downregulation of the two major m5C writer proteins NSUN2 and NSUN6 is problematic and the conclusions from these experiments are not warranted. Sodium arsenite is a chemical that poisons every protein containing thiol groups. Not only do NSUN proteins contain cysteines but also the base editor fusion proteins. Arsenite will inactivate these proteins, hence the editing frequency will drop, as observed in the experiments shown in Figure 5, which the authors explain with fewer m5C sites to be detected by the fusion proteins.
(3) The authors should move high-confidence editing site data contained in Supplementary Tables 2 and 3 into one of the main Figures to substantiate what is discussed in Figure 4A. However, the data needs to be visualized in another way then excel format. Furthermore, Supplementary Table 2 does not contain a description of the columns, while Supplementary Table 3 contains a single row with letters and numbers.
-
-
www.biorxiv.org www.biorxiv.org
-
Reviewer #1 (Public review):
Summary:
The authors use analysis of existing data, mathematical modelling, and new experiments, to explore the relationship between protein expression noise, translation efficiency, and transcriptional bursting.
Strengths:
The analysis of the old data and the new data presented is interesting and mostly convincing.
Weaknesses:
(1) My main concern is the analysis presented in Figure 4. This is the core of mechanistic analysis that suggests ribosomal demand can explain the observed phenomenon. I am both confused by the assumptions used here and the details of the mathematical modelling used in this section. Firstly, the authors' assumption that the fluctuations of a single gene mRNA levels will significantly affect ribosome demand is puzzling. On average the total level of mRNA across all genes would stay very constant and therefore there are no big fluctuations in the ribosome demand due to the burstiness of transcription of individual genes. Secondly, the analysis uses 19 mathematical functions that are in Table S1, but there are not really enough details for me to understand how this is used, are these included in a TASEP simulation? In what way are mRNA-prev and mRNA-curr used? What is the mechanistic meaning of different terms and exponents? As the authors use this analysis to argue ribosomal demand is at play, I would like this section to be very much clarified.
(2) Overall, the paper is very long and as there are analytical expressions for protein noise (e.g. see Paulsson Nature 2004), some of these results do not need to rely on Gillespie simulations. Protein CV (noise) can be written as three terms representing protein noise contribution, mRNA expression contribution, and bursty transcription contribution. For example, the results in panel 1 are fully consistent with the parameter regime, protein noise is negligible compared to transcriptional noise.
-