7,092 Matching Annotations
  1. Last 7 days
    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Quach et al. report a detailed investigation into the defense mechanisms of Caenorhabditis elegans in response to predatory threats from Pristionchus pacificus. Based on principles from predatory imminence and prey refuge theories, the authors delineate three defense modes (pre-encounter, post-encounter, and circa-strike) corresponding to increasing levels of threat proximity. These modes are observed in a controlled but naturalistic setup and are quantified by multiple behavioral outputs defined in time and/or space domains allowing nuanced phenotypic assays. The authors demonstrate that C. elegans displays graded defense behavioral responses toward varied lethality of threats and that only life-threatening predators trigger all three defense modes. The study also offers a narrative on the behavioral strategies and underlying molecular regulation, focusing on the roles of SEB-3 receptors and NLP-49 peptides in mediating responses in these defense modes. They found that the interplay between SEB-3 and NLP-49 peptides appears complex, as evidenced by the diverse outcomes when either or both genes are manipulated in various behavioral modes.

      Strengths:

      The paper presents an interesting story, with carefully designed experiments and necessary controls, and novel findings and implications about predator-induced defensive behaviors and underlying molecular regulation in this important model organism. The design of experiments and description of findings are easy to follow and well-motivated. The findings contribute to our understanding of stress response systems and offer broader implications for neuroethological studies across species.

      Weaknesses:

      Although overall the study is well designed and movitated, the paper could benefit from further improvements on some of the methods descriptions and experiment interpretations.

    1. Reviewer #1 (Public review):

      Cellulose is the major component of the plant cell wall and as such is a major component of all plant biomass on the planet. It is made at the cell surface by a large membrane-bound complex known as the cellular synthase complex. It is the structure of the cellulose synthase complex that determines the structure of the cellulose microfibril, the unit of cellulose found in nature. Consequently, while understanding the molecular structure of individual catalytic subunits that synthesise individual beta 1-4 glucose chains is important, to really understand cellulose synthesis it is necessary to understand the structure of the entire complex.

      In higher plants cellulose is synthesised by a large membrane-bound complex composed of three different CESA proteins. During cellulose synthesis in the primary cell wall this is composed of members of groups CESA1, CESA3 and CESA6. While the authors have previously presented structural data on CESA8, required for cellulose synthesis in the secondary cell wall, here they provide structural and enzymatic analysis of CESA1, CESA3 and CESA6 from soybean.

      The authors have utilised their established protocol to purify trimers for all three classes of CESA proteins and obtain structural information using electron microscopy. The structures reveal some subtle, but interesting differences between the structures obtained in this study and that previously obtained for CESA8. In particular, they identify a change in the position of transmembrane helices 7 that in previous structures formed part of the transmembrane channel. In the structure of CESA1 TM7 is shifted laterally to a position more towards the periphery of the protomer where is stabilised by inter protomer interactions. This creates a large lipid exposed channel opening that is likely encountered by the growing cellulose chain. In the discussion the authors speculate this channel might facilitate lateral movement of cellulose chains in the membrane what would allow them to associate to form the microfibril. There is, however, no explanation for why this might be different for CESA proteins involved in primary and secondary cell wall CESA proteins.

      Interactions within the trimer as stabilised by the plant conserved regions (PCR), while in common with previous studies that class-specific regions (CSR) is not resolved, likely of it being highly disordered as has been suggested in previous studies. As the name suggests these regions are likely to be important for determining how different CESA proteins interact, but it remains to be seen how they achieve this. Similarly, the N-terminal domain (NTD) remains rather intriguing. In the CESA3 structure, the NTD forms a stalk that protrudes into the cytoplasm that was previously observed for CESA8, while it remains unresolved in CESA1 and CESA6. The authors suggest the inability to resolve this region is likely the result of the NTD being able to form multiple conformations. Loss of the NTD does not prevent the formation of trimers and CESA1 and CESA3 are still able to interact. Previous bioinformatic studies suggest that the CSR part of the NTD is also highly class-specific (Carrol et al. 2011 Frontiers in Plant Science 2, 5-5) suggesting it is also likely to participate in interactions between different CESA proteins. This analysis provides little new information on the structure of the NTD or how it functions as part of the cellulose synthase complex.

      The other important point regarding cellulose synthesis is how the different CESA trimers function during cellulose synthesis and complex assembly. The authors provide biochemical evidence that mixed complexes of two different CESA proteins are able to synergistically increase the rate of cellulose synthesis. This increase is not dramatic, around 2-fold as it is unclear what brings about this increase and whether it results from the ability to form larger complexes favouring greater rates of cellulose synthesis.

      It is clear however from electron microscopy that mixing of CESA proteins can lead to the formation of large aggregates not seen with single CESA proteins. The aggregates observed do not form rosette type shapes but appear to be much more random aggregates of different CESA trimers. The authors suggest that this is likely a result of the fact that the complexes are not constrained in two dimensions by the membrane, however if these are biologically relevant interactions that form aggregates is somewhat surprising that they do not form hexameric structures, particularly since that are essentially forming as a single layer.

      Overall the study provides some important data and raises a number of important questions.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates the effects of the explicit recognition of statistical structure and sleep consolidation on the transfer of learned structure to novel stimuli. The results show a striking dissociation in transfer ability between explicit and implicit learning of structure, finding that only explicit learners transfer structure immediately. Implicit learners, on the other hand, show an intriguing immediate structural interference effect (better learning of novel structure) followed by successful transfer only after a period of sleep.

      Strengths:

      This paper is very well written and motivated, and the data are presented clearly with a logical flow. There are several replications and control experiments and analyses that make the pattern of results very compelling. The results are novel and intriguing, providing important constraints on theories of consolidation. The discussion of relevant literature is thorough. In sum, this work makes an exciting and important contribution to the literature.

    1. Reviewer #1 (Public review):

      Summary:

      Multiple compounds that inhibit ATP-sensitive potassium (KATP) channels also chaperone channels to the surface membrane. The authors used an artificial intelligence (AI)-based virtual screening (AtomNet) to identify novel compounds that exhibit chaperoning effects on trafficking-deficient disease-causing mutant channels. One compound, which they named Aekatperone, acts as a low affinity, reversible inhibitor and effective chaperone. A cryoEM structure of KATP bound to Aekatperone showed that the molecule binds at the canonical inhibitory site.

      Strengths and weaknesses:

      The details of the AI screening itself are inevitably opaque, but appear to differ from classical virtual screening in not involving any physical docking of test compounds into the target site. The authors mention criteria that were used to limit the number of compounds, so that those with high similarity to known binders and 'sequence identity' (does this mean structural identity) were excluded. The identified molecules contain sulfonylurea-like moieties. How different are they from other sulfonylureas?

      The experimental work confirming that Aekatperone acts to traffic mutant KATP channels to the surface and acts as a low affinity, reversible, inhibitor is comprehensive and clear, with very convincing cell biological and patch-clamp data, as is the cryoEM structural analysis, for which the group are leading experts. In addition to the three positive chaperone-effective molecules, the authors identified a large number of compounds that are predicted binders but apparently have no chaperoning effect.

      The authors suggest that the novel compound may be a promising therapeutic for treatment of congenital hyperinsulinism due to trafficking defective KATP mutations. Because they are low affinity, reversible, inhibitors. This is a very interesting concept, and perhaps a pulsed dosing regimen would allow trafficking without constant channel inhibition (which otherwise defeats the therapeutic purpose), although it is unclear whether the new compound will offer advantages over earlier low-affinity sulfonylurea inhibitor chaperones. These include tolbutamide which has very similar affinity and effect to Aekatperone. As the authors point out this (as well as other sulfonlyureas) are currently out of favor because of potential adverse cardiovascular effects, but again, it is unclear why Aekatperone should not have the same concerns.

      Comments on revised version:

      The authors have been very responsive to the first reviews. No further comments.

    1. Reviewer #1 (Public review):

      Summary:

      As reported above, this paper by Xu et al reports on a new method to combine the analysis of coevolutionary patterns with dynamic profiles to identify functionally important residues and reveal correlations between binding sites.

      Strengths:

      In general, coevolutionary analysis and MD analysis are carried out separately and while there have been attempts to compare the information provided by the two, no unified framework exists. Here, the authors convincingly demonstrate that integrating signals from Dynamics and coevolution gives information that substantially overcomes the one provided by either method in isolation. While other methods are useful, they do not capture how dynamics is fundamental to define function and thus sculpts coevolution, via the 3D structure of the protein. At the same time, the authors demonstrate how coevolution in turn also influences internal dynamics. The Networks they rebuild unveil information at an even higher level: the model starts pairwise but through network representation the authors arrive to community analysis, reporting on interaction patterns that are larger than simple couples.

      Comments on latest version:

      I have nothing to add to this revision. The paper looks excellent and very interesting.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Hammond et al. study robustness of the vertebrate segmentation clock against morphogenetic processes such as cell ingression, cell movement and cell division to ask whether the segmentation clock and morphogenesis are modular or not. The modularity of these two would be important for evolvability of the segmenting system. The authors adopt a previously proposed 3D model of the presomitic mesoderm (Uriu et al. 2021 eLife) and include new elements; different types of cell ingression, tissue compaction and cell cycles. Based on the results of numerical simulations that synchrony of the segmentation clock is robust, the authors conclude that there is a modularity in the segmentation clock and morphogenetic processes.

      The presented results support the conclusion. The manuscript is clearly written.

      Major comments from the original round of review:

      [Optional] In both the current model and Uriu et al. 2021, coupling delay in phase oscillator model is not considered. Given that several previous studies (e.g. Lewis 2003, Herrgen et al. 2010, Yoshioka-Kobayashi et al. 2020) suggested the presence of coupling delays in Delta-Notch signaling, could the authors analyze the effect of coupling delay on robustness of the segmentation clock against morphogenetic processes?

      Significance:

      Synchronization of the segmentation clock has been studied by mathematical modeling, but most previous studies considered cells in a static tissue without morphogenesis. In the previous study by Uriu et al. 2021, morphogenetic processes such as cell advection due to tissue elongation, tissue shortening, and cell mobility were considered in synchronization. The current manuscript provides methodological advances in this aspect by newly including cell ingression, tissue compaction and cell cycle. In addition, the authors bring a concept of modularity and evolvability to the field of the vertebrate segmentation clock, which is new. On the other hand, the manuscript confirms that the synchronization of the segmentation clock is robust by careful simulations, but it does not propose or reveal new mechanisms for making it robust or modular. The main targets of the manuscript will be researchers working on somitogenesis and evolutionary biologists who are interested in evolution of developmental systems. The manuscript will also be interested by broader audiences, like developmental biologists, biophysicists, and physicists and computer scientists who are working on dynamical systems.

    1. Reviewer #1 (Public review):

      Summary:

      This work shows that a specific adenosine deaminase protein in Dictyostelium generates the ammonia that is required for tip formation during Dictyostelium development. Cells with an insertion in the ADGF gene aggregate but do not form tips. A remarkable result, shown in several different ways, is that the ADGF mutant can be rescued by exposing the mutant to ammonia gas. The authors also describe other phenotypes of the ADGF mutant such as increased mound size, altered cAMP signaling, and abnormal cell type differentiation. It appears that the ADGF mutant has defects in the expression of a large number of genes, resulting in not only the tip defect but also the mound size, cAMP signaling, and differentiation phenotypes.

      Strengths:

      The data and statistics are excellent.

      Weaknesses:

      The key weakness is understanding why the cells bother to use a diffusible gas like ammonia as a signal to form a tip and continue development. The rescue of the mutant by adding ammonia gas to the entire culture indicates that ammonia conveys no positional information within the mound. By the time the cells have formed a mound, the cells have been starving for several hours, and desperately need to form a fruiting body to disperse some of themselves as spores, and thus need to form a tip no matter what. One can envision that the local ammonia concentration is possibly informing the mound that some minimal number of cells are present (assuming that the ammonia concentration is proportional to the number of cells), but probably even a minuscule fruiting body would be preferable to the cells compared to a mound. This latter idea could be easily explored by examining the fate of the ADGF cells in the mound - do they all form spores? Do some form spores? Or perhaps the ADGF is secreted by only one cell type, and the resulting ammonia tells the mound that for some reason that cell type is not present in the mound, allowing some of the cells to transdifferentiate into the needed cell type. Thus elucidating if all or some cells produce ADGF would greatly strengthen this puzzling story.

    1. Reviewer #1 (Public review):

      Summary

      Farkas and colleagues conducted a comparative neuroimaging study with domestic dogs and humans to explore whether social perception in both species is underpinned by an analogous distinction between animate and inanimate entities an established functional organizing principle in the primate and human brain. Presenting domestic dogs and humans with clips of three animate classes (dogs, humans, cats) and one inanimate control (cars), the authors also set out to compare how dogs and humans perceive their own vs other species. Both research questions have been previously studied in dogs, but the authors used novel dynamic stimuli and added animate and inanimate classes, which have not been investigated before (i.e., cats and cars). Combining univariate and multivariate analysis approaches, they identified functionally analogous areas in the dog and human occipito-temporal cortex involved in the perception of animate entities, largely replicating previous observations. This further emphasizes a potentially shared functional organizing principle of social perception in the two species. The authors also describe between-species divergencies in the perception of the different animate classes, arguing for a less generalized perception of animate entities in dogs, but this conclusion is not convincingly supported by the applied analyses and reported findings.

      Strengths

      Domestic dogs represent a compelling model species to study the neural bases of social perception and potentially shared functional organizing principles with humans and primates. The field of comparative neuroimaging with dogs is still young, with a growing but still small number of studies, and the present study exemplifies the reproducibility of previous research. Using dynamic instead of static stimuli and adding new stimuli classes, Farkas and colleagues successfully replicated and expanded previous findings, adding to the growing body of evidence that social perception is underpinned by a shared functional organizing principle in the dog and human occipito-temporal cortex.

      Weaknesses

      The study design is imbalanced, with only one category of inanimate objects vs. three animate entities. Moreover, based on the example videos, it appears that the animate stimuli also differed in the complexity of the content from the car stimuli, with often multiple agents interacting or performing goal-directed actions. Moreover, while dogs are familiar with cars, they are definitely of lower relevance and interest to them than the animate stimuli. Thus, to a certain extent, the results might also reflect differences in attention towards/salience of the stimuli.

      The methods section and rationale behind the chosen approaches were often difficult to follow and lacked a lot of information, which makes it difficult to judge the evidence and the drawn conclusions, and it weakens the potential for reproducibility of this work. For example, for many preprocessing and analysis steps, parameters were missing or descriptions of the tools used, no information on anatomical masks and atlas used in humans was provided, and it is often not clear if the authors are referring to the univariate or multivariate analysis.

      In regard to the chosen approaches and rationale, the authors generally binarize a lot of rich information. Instead of directly testing potential differences in the neural representations of the different animate entities, they binarize dissimilarity maps for, e.g. animate entity > inanimate cars and then calculate the overlap between the maps. The comparison of the overlap of these three maps between species is also problematic, considering that the human RSA was constricted to the occipital and temporal cortex (there is now information on how they defined it) vs. whole-brain in dogs. Considering that the stimuli do differ based on low-level visual properties (just not significantly within a run), the RSA would also allow the authors to directly test if some of the (dis)similarities might be driven by low-level visual features like they, e.g. did with the early visual cortex model. I do think RSA is generally an excellent choice to investigate the neural representation of animate (and inanimate) stimuli, but the authors should apply it more appropriately and use its full potential.

      The authors localized some of the "animate areas" also with the early visual cortex model (e.g. ectomarginal gyrus, mid suprasylvian); in humans, it only included the known early visual cortex - what does this mean for the animate areas in dogs?

      The results section also lacks information and statistical evidence; for example, for the univariate region-of-interest (ROI) analysis (called response profiles) comparing activation strength towards each stimulus type, it is not reported if comparisons were significant or not, but the authors state they conducted t-tests. The authors describe that they created spheres on all peaks reported for the contrast animate > inanimate, but they only report results for the mid suprasylvian and occipital gyrus (e.g. caudal suprasylvian gyrus is missing). Furthermore, considering that the ROIs were chosen based on the contrast animate > inanimate stimuli, activation strength should only be compared between animate entities (i.e., dogs, humans, cats), while cars should not be reported (as this would be double dipping, after selecting voxels showing lower activation for that category). The descriptive data in Figure 3B (pending statistical evidence) suggests there were no strong differences in activation for the three species in dog and human animate areas. Thus, the ROI analysis appears to contradict findings from the binary analysis approach to investigate species preference, but the authors only discuss the results of the latter in support of their narrative for conspecific preference in dogs and do not discuss research from other labs investigating own-species preference.

      The authors also unnecessarily exaggerate novelty claims. Animate vs inanimate and own vs other species perceptions have both been investigated before in dogs (and humans), so any claims in that direction seem unsubstantiated - and also not needed, as novelty itself is not a sign of quality; what is novel, and a sign of theoretical advance besides the novelty, are as said the conceptual extension and replication of previous work.

      Overall, more analyses and appropriate tests are needed to support the conclusions drawn by the authors, as well as a more comprehensive discussion of all findings.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors analyze electrophysiological data recorded bilaterally from the rat hippocampus to investigate the coupling of ripple oscillations across the hemispheres. Commensurate with the majority of previous research, the authors report that ripples tend to co-occur across both hemispheres. Specifically, the amplitude of ripples across hemispheres is correlated but their phase is not. These data corroborate existing models of ripple generation suggesting that CA3 inputs (coordinated across hemispheres via the commisural fibers) drive the sharp-wave component while the individual ripple waves are the result of local interactions between pyramidal cells and interneurons in CA1.

      Strengths:

      The manuscript is well-written, the analyses well-executed and the claims are supported by the data.

      Weaknesses:

      One question left unanswered by this study is whether information encoded by the right and left hippocampi is correlated.

    1. Reviewer #1 (Public review):

      Summary:

      Chen and colleagues describe mechanisms by which UBA7 and UBE2L6 form disulfide bonds, disrupting the ISG15 transfer cascade. As other similar structures are currently available, the authors further note that the spontaneous formation of this disulfide suggests that it is a potential regulatory mechanism. Demonstrating that this mechanism occurs and is modulated in cells would greatly improve the impact of their work.

      Strengths:

      The various biochemical and structural experiments are largely convincing.

      Weaknesses:

      (1) The main point of the paper is that this covalent complex could occur and is potentially regulated in cells is limited. The authors even show an experiment in cells where this complex is formed by expressing UBE2L6-V5 and GFP-UBA7, awkwardly referenced in the discussion.

      The authors should consider attempting an experiment with endogenous proteins and either modulate the formation of this complex in different cellular conditions or downplay this part of their story. For example, this sentence, "This redox-sensitive complex implies a link between oxidative stress and regulation of the immune response, highlighting a potential therapeutic target for modulating immune reactions arising from infections and inflammatory conditions." is in the abstract and should be excluded or rephrased considering the lack of cellular data.

      Also, their one-cell-based experiment is shown in the discussion. This should be in the results as is standard practice but also repeated. It appears that the reduced lanes don't seem to have GFP or the GFP-UBA7. Without those controls, this experiment seems incomplete.

      (2) Their intro sets up the paper to explain the disulfide formation they see in Figure 1, but a more fitting experiment would be to look at the disulfide formation between UBA7 and UBE2L6 at different pHs. It would nicely supplement the biochemical pKa data as this reaction is their focal point.

      (3) While the biochemical data is extensive, it is not concise or easily accessible to a broad readership. The authors should try to clarify and simplify the text overall. Furthermore, many figure callouts are missing, interfering with the clarity of the text.

      Minor

      (1) Because the experiments are pKa dependent, knowing what buffers the proteins were finished in (final SEC purification step) is important. Similarly - for all assays, the buffers were not reported (SEC-MALS, biochemical assays).

      (2) While the CBB and fluorescent gel assays look convincing, more controls are needed for their SEC experiments (Figure 1d), particularly because the authors definitively say the binding is because of S-S bonds. Using a reducing buffer like TCEP or DTT or their catalytic mutants to show reduced co-migration would be helpful. This is even more important given the reported high affinities between UBA7/UBE2L6 in Figure 6.

      (3) Based on the data presented, it is unclear that the kinetic values are taken within initial velocity regimes. Some data in the supplement showing that the single time points represent initial velocities would be appreciated.

      (4) As stated, "Previous experiments reveal an intriguing anomaly during the UBA7-UBE2L6-ISG15 thioester transfer reaction. Despite adding more ISG15 and UBE2L6, the level of UBE2L6~ISG15 remained the same." This experiment should be shown or the statement removed.

      (5) Similarly, "Forty human E2 enzymes are classified in the InterProdatabase (https://www.ebi.ac.uk/interpro/), with the majority interacting with UBA1, whereas UBE2L6 and UBE2Z exclusively interact with UBA7 and UBA6, respectively." Is missing a reference.

    1. Reviewer #1 (Public review):

      Summary:

      The present work studies the coevolution of HIV-1 and the immune response in clinical patient data. Using the Marginal Path Likelihood (MPL) framework, they infer selection coefficients for HIV mutations from time-series data of virus sequences as they evolve in a given patient.

      Strengths:

      The authors analyze data from two human patients, consisting of HIV population sequence samples at various points in time during the infection. They infer selection coefficients from the observed changes in sequence abundance using MPL. Most beneficial mutations appear in viral envelop proteins. The authors also analyze SHIV samples in rhesus macaques, and find selection coefficients that are compatible with those found in the corresponding human samples.

      The manuscript is well-written and organized.

      Weaknesses:

      The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis.

      Although the evolution of broadly neutralizing antibodies (bnAbs) is a motivating question in the introduction and discussion sections (and the title), the relevance of the analysis and results to better understanding how bnAbs arise is not clear. The only result presented in direct connection to bnAbs is Figure 6.

      Questions or suggestions for further discussion:

      I list here a number of points for which I believe the paper would benefit if additional discussion/results were included.

      The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis. In Sohail et al (2022) MBE 39(10), p. msac199 (https://doi.org/10.1093/molbev/msac199) an extension of MPL is developed allowing one to infer epistasis. Can the authors comment on why this was not attempted here?

      I presume one possible reason is that epistasis inference requires considerably more computational effort (and more data). However, since the authors find most beneficial mutations occurring in Env, perhaps restricting the analysis to Env genes only (e.g. the trimer shown in Figure 2) can lead to tractable inference of epistasis within this segment (instead of the full genome).

      Do the authors find correlations in the inferred selection coefficients of the two samples CH505 and CH848? I could not find any discussion of this in the manuscript. Only correlations between Humans and RM are discussed.

    1. Reviewer #1 (Public review):

      The chromophore molecule of animal and microbial rhodopsins is retinal which forms a Schiff base linkage with a lysine in the 7-th transmembrane helix. In most cases, the chromophore is positively charged by protonation of the Schiff base, which is stabilized by a negatively charged counterion. In animal opsins, three sites have been experimentally identified, Glu94 in helix 2, Glu113 in helix 3, and Glu181 in extracellular loop 2, where a glutamate acts as the counterion by deprotonation. In this paper, Sakai et al. investigated molecular properties of anthozoan-specific opsin II (ASO-II opsins), as they lack these glutamates. They found an alternative candidate, Glu292 in helix 7, from the sequences. Interestingly, the experimental data suggested that Glu292 is not the direct counterion in ASO-II opsins. Instead, they found that ASO-II opsins employ a chloride ion as the counterion. In the case of microbial rhodopsin, a chloride ion serves as the counterion of light-driven chloride pumps. This paper reports the first observation of a chloride ion as the counterion in animal rhodopsin. Theoretical calculation using a QM/MM method supports their experimental data. The authors also revealed the role of Glu292, which serves as the counterion in the photoproduct, and is involved in G protein activation.

      The conclusions of this paper are well supported by data, while the following aspects should be considered for the improvement of the manuscript.

      (1) Information on sequence alignment only appears in Figure S2, not in the main figures. Figure S2 is too complicated by so many opsins and residue positions. It will be difficult for general readers to follow the manuscript because of such an organization. I recommend the authors show key residues in Figure 1 by picking up from Figure S2.

      (2) Halide size dependence. The authors observed spectral red-shift for larger halides. Their observation is fully coincident with the chromophore molecule in solution (Blatz et al. Biochemistry 1972), though the isomeric states are different (11-cis vs all-trans). This suggests that a halide ion is the hydrogen-bonding acceptor of the Schiff base N-H group in solution and ASO-II opsins. A halide ion is not the hydrogen-bonding acceptor in the structure of halorhodopsin, whose halide size dependence is not clearly correlated with absorption maxima (Scharf and Engelhard, Biochemistry 1994). These results support their model structure (Figure 4), and help QM/MM calculations.

      (3) QM/MM calculations. According to Materials and Methods, the authors added water molecules to the structure and performed their calculations. However, Figure 4 does not include such water molecules, and no information was given in the manuscript. In addition, no information was given for the chloride binding site (contact residues) in Figure 4. More detailed information should be shown with additional figures in Figure SX.

      (4) Figure 5 clearly shows much lower activity of E292A than that of WT, whose expression levels are unclear. How did the authors normalize (or not normalize) expression levels in this experiment?

      (5) The authors propose the counterion switching from a chloride ion to E292 upon light activation. A schematic drawing on the chromophore, a chloride ion, and E292 (and possible surroundings) in Antho2a and the photoproduct will aid readers' understanding.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Shi et al, has utilized multiple imaging datasets and one set of samples for analyzing serum EV-miRNAs & EV-RNAs to develop an EV miRNA signature associated with disease-relevant radiomics features for early diagnosis of pancreatic cancer. CT imaging features (in two datasets (UMMD & JHC and WUH) were derived from pancreatic benign disease patients vs pancreatic cancer cases), while circulating EV miRNAs were profiled from samples obtained from a different center (DUH). The EV RNA signature from external public datasets (GSE106817, GSE109319, GSE113486, GSE112264) were analyzed for differences in healthy controls vs pancreatic cancer cases. The miRNAs were also analyzed in the TCGA tissue miRNA data from normal adjacent tissue vs pancreatic cancer.

      Strengths:

      The concept of developing EV miRNA signatures associated with disease relevant radiomics features is a strength.

      Weaknesses:

      While the overall concept of developing EV miRNA signature associated with radiomics features is interesting, the findings reported are not convincing for the reasons outlined below:

      (1) Discrepant datasets for analyzing radiomic features with EV-miRNAs: It is not justified how CT images (UMMD & JHC and WUH) and EV-miRNAs (DUH) on different subjects and centers/cohorts shown in Figures 1 &2 were analyzed for association. It is stated that the samples were matched according to age but there is no information provided for the stages of pancreatic cancer and the kind of benign lesions analyzed in each instance.

      (2) The study is focused on low-abundance miRNAs with no adequate explanation of the selection criteria for the miRNAs analyzed.

      (3) While EV-miRNAs were profiled or sequenced (not well described in the Methods section) with two different EV isolation methods, the authors used four public datasets of serum circulating miRNAs to validate the findings. It would be better to show the expression of the three miRNAs in the additional dataset(s) of EV-miRNAs and compare the expressions of the three EV-miRNAs in pancreatic cancer with healthy and benign disease controls.

      (4) It is not clear how the 12 EV-miRNAs in Figure 4C were identified.

      (5) Box plots in Figures 4D-F and G-I of three miRNAs in serum and tissue should show all quantitative data points.

      (6) What is the GBM model in Figure 5?

      (7) What are the AUCs of individual EV-miRNAs integrated as a panel of three EV-miRNAs?

      (8) The authors could have compared the performance of CA19-9 with that of the three EV-miRNAs.

      (9) How was the diagnostic performance of the three EV-miRNAs in the two molecular subtypes identified in Figure 6&7? Do the C1 & C2 clusters correlate with the classical/basal subtypes, staging, and imaging features?

    1. Reviewer #1 (Public review):

      Summary:

      Dad et al. explored the roles of cytosolic carboxypeptidase 5(CCP5)in the development of ependymal multicilia in the brain. CCP family are erasers of polyglutamylation of ciliary-axoneme microtubules. The authors generated a new mutant mouse of Agbl5 gene, which encodes CCP5, with deletion of its N-terminus and partial carboxypeptidase (CP) domain (named AGBL5M1/M1).

      Strengths:

      The mutant mice revealed lethal hydrocephalus due to degeneration of ependymal multicilia. Interestingly, this is in contrast with the phenotype of Agbl5 mutants with disruption solely in the CP domain of CCP5 (named AGBL5M2/M2) that did not develop hydrocephalus despite increased glutamylation levels in ependymal cilia as observed for AGBL5M1/M1 mutants. The study has been well-performed and the findings suggest a unique function of the N-domain of CCP5 in ependymal multicilia stability.

      Weaknesses:

      The content of this article is relatively descriptive and lacks molecular insights.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes a series of lab and field experiments to understand the role of tadpole transport in shaping the microbiome of poison frogs in early life. The authors conducted a cross-foster experiment in which R. variabilis tadpoles were carried by adults of their own species, carried by adults of another frog species, or not carried at all. After being carried for 6 hours, tadpole microbiomes resembled those of their caregiving species. Next, the authors reported higher microbiome diversity in tadpoles of two species that engage in transport-based parental care compared to one species that does not. Finally, they collected tadpoles either from the backs of an adult (i.e., they had recently been transported) or from eggs (i.e., not transported) but did not find significant overlap in microbiome composition between transported tadpoles and their parents.

      Strengths:

      The cross-foster experiment and the field experiment that reared transported and non-transported tadpoles are creative ways to address an important question in animal microbiome research. Together, they imply a small role for parental care in the development of the tadpole microbiome. The manuscript is generally well-written and easy to understand.

      Weaknesses:

      (1) Developmental time series:

      It was not entirely clear how this experiment relates to the rest of the manuscript, as it does not compare any effects of transport within or across species.

      (2) Cross-foster experiment:

      The "heterospecific transport" tadpoles were manually brushed onto the back of the surrogate frog, while the "biological transport" tadpoles were picked up naturally by the parent. It is a little challenging to interpret the effect of caregiver species since it is conflated with the method of attachment to the parent. I noticed that the uptake of Os-associated microbes by Os-transported tadpoles seemed to be higher than the uptake of Rv-associated microbes by Rv-associated tadpoles (comparing the second box from the left to the rightmost boxplot in panel S2C). Perhaps this could be a technical artifact if manual attachment to Os frogs was more efficient than natural attachment to Rv frogs.

      I was also surprised to see so much of the tadpole microbiome attributed to Os in tadpoles that were not transported by Os frogs (25-50% in many cases). It suggests that SourceTracker may not be effectively classifying the taxa.

      (3) Cross-species analysis:

      Like the developmental time series, this analysis doesn't really address the central question of the manuscript. I don't think it is fair for the authors to attribute the difference in diversity to parental care behavior, since the comparison only includes n=2 transporting species and n=1 non-transporting species that differ in many other ways. I would also add that increased diversity is not necessarily an expectation of vertical transmission. The similarity between adults and tadpoles is likely a more relevant outcome for vertical transmission, but the authors did not find any evidence that tadpole-adult similarity was any higher in species with tadpole transport. In fact, tadpoles and adults were more similar in the non-transporting species than in one of the transporting species (lines 296-298), which seems to directly contradict the authors' hypothesis. I don't see this result explained or addressed in the Discussion.

      (4) Field experiment:

      The rationale and interpretation of the genus-level network are not clear, and the figure is not legible. What does it mean to "visualize the microbial interconnectedness" or to be a "central part of the community"? The previous sentences in this paragraph (lines 337-343) seem to imply that transfer is parent-specific, but the genus-level network is based on the current adult frogs, not the previous generation of parents that transported them. So it is not clear that the distribution or co-distribution of these taxa provides any insight into vertical transmission dynamics.

    1. Reviewer #1 (Public review):

      Summary:

      The novel advance by Wang et al is in the demonstration that, relative to a standard extinction procedure, the retrieval-extinction procedure more effectively suppresses responses to a conditioned threat stimulus when testing occurs just minutes after extinction. The authors provide some solid evidence to show that this "short-term" suppression of responding involves engagement of the dorsolateral prefrontal cortex.

      Strengths:

      Overall, the study is well-designed and the results are potentially interesting. There are, however, a few issues in the way that it is introduced and discussed. Some of the issues concern clarity of expression/communication. However, others relate to a theory that could be used to help the reader understand why the results should have come out the way that they did. More specific comments and questions are presented below.

      Weaknesses:

      INTRODUCTION & THEORY

      (1) It is difficult to appreciate why the first trial of extinction in a standard protocol does NOT produce the retrieval-extinction effect. This applies to the present study as well as others that have purported to show a retrieval-extinction effect. The importance of this point comes through at several places in the paper. E.g., the two groups in Study 1 experienced a different interval between the first and second CS extinction trials; and the results varied with this interval: a longer interval (10 min) ultimately resulted in less reinstatement of fear than a shorter interval. Even if the different pattern of results in these two groups was shown/known to imply two different processes, there is nothing in the present study that addresses what those processes might be. That is, while the authors talk about mechanisms of memory updating, there is little in the present study that permits any clear statement about mechanisms of memory. The references to a "short-term memory update" process do not help the reader to understand what is happening in the protocol.

      In reply to this point, the authors cite evidence to suggest that "an isolated presentation of the CS+ seems to be important in preventing the return of fear expression." They then note the following: "It has also been suggested that only when the old memory and new experience (through extinction) can be inferred to have been generated from the same underlying latent cause, the old memory can be successfully modified(Gershman et al., 2017). On the other hand, if the new experiences are believed to be generated by a different latent cause, then the old memory is less likely to be subject to modification. Therefore, the way the 1stand 2ndCS are temporally organized (retrieval-extinction or standard extinction) might affect how the latent cause is inferred and lead to different levels of fear expression from a theoretical perspective." This merely begs the question: why might an isolated presentation of the CS+ result in the subsequent extinction experiences being allocated to the same memory state as the initial conditioning experiences? This is not yet addressed in any way.

      (2) The discussion of memory suppression is potentially interesting but, in its present form, raises more questions than it answers. That is, memory suppression is invoked to explain a particular pattern of results but I, as the reader, have no sense of why a fear memory would be better suppressed shortly after the retrieval-extinction protocol compared to the standard extinction protocol; and why this suppression is NOT specific to the cue that had been subjected to the retrieval-extinction protocol.

      (3) Relatedly, how does the retrieval-induced forgetting (which is referred to at various points throughout the paper) relate to the retrieval-extinction effect? The appeal to retrieval-induced forgetting as an apparent justification for aspects of the present study reinforces points 2 and 3 above. It is not uninteresting but lacks clarification/elaboration and, therefore, its relevance appears superficial at best.

      (4) I am glad that the authors have acknowledged the papers by Chalkia, van Oudenhove & Beckers (2020) and Chalkia et al (2020), which failed to replicate the effects of retrieval-extinction reported by Schiller et al in Reference 6. The authors have inserted the following text in the revised manuscript: "It should be noted that while our long-term amnesia results were consistent with the fear memory reconsolidation literature, there were also studies that failed to observe fear prevention (Chalkia, Schroyens, et al., 2020; Chalkia, Van Oudenhove, et al., 2020; Schroyens et al., 2023). Although the memory reconsolidation framework provides a viable explanation for the long-term amnesia, more evidence is required to validate the presence of reconsolidation, especially at the neurobiological level (Elsey et al., 2018). While it is beyond the scope of the current study to discuss the discrepancies between these studies, one possibility to reconcile these results concerns the procedure for the retrieval-extinction training. It has been shown that the eligibility for old memory to be updated is contingent on whether the old memory and new observations can be inferred to have been generated by the same latent cause (Gershman et al., 2017; Gershman and Niv, 2012). For example, prevention of the return of fear memory can be achieved through gradual extinction paradigm, which is thought to reduce the size of prediction errors to inhibit the formation of new latent causes (Gershman, Jones, et al., 2013). Therefore, the effectiveness of the retrieval-extinction paradigm might depend on the reliability of such paradigm in inferring the same underlying latent cause." Firstly, if it is beyond the scope of the present study to discuss the discrepancies between the present and past results, it is surely beyond the scope of the study to make any sort of reference to clinical implications!!! Secondly, it is perfectly fine to state that "the effectiveness of the retrieval-extinction paradigm might depend on the reliability of such paradigm in inferring the same underlying latent cause..." This is not uninteresting, but it also isn't saying much. Minimally, I would expect some statement about factors that are likely to determine whether one is or isn't likely to see a retrieval-extinction effect, grounded in terms of this theory.

      CLARIFICATIONS, ELABORATIONS, EDITS

      (5) Some parts of the paper are not easy to follow. Here are a few examples (though there are others):

      (a) In the abstract, the authors ask "whether memory retrieval facilitates update mechanisms other than memory reconsolidation"... but it is never made clear how memory retrieval could or should "facilitate" a memory update mechanism.

      (b) The authors state the following: "Furthermore, memory reactivation also triggers fear memory reconsolidation and produces cue specific amnesia at a longer and separable timescale (Study 2, N = 79 adults)." Importantly, in study 2, the retrieval-extinction protocol produced a cue-specific disruption in responding when testing occurred 24 hours after the end of extinction. This result is interesting but cannot be easily inferred from the statement that begins "Furthermore..." That is, the results should be described in terms of the combined effects of retrieval and extinction, not in terms of memory reactivation alone; and the statement about memory reconsolidation is unnecessary. One can simply state that the retrieval-extinction protocol produced a cue-specific disruption in responding when testing occurred 24 hours after the end of extinction.

      (c) The authors also state that: "The temporal scale and cue-specificity results of the short-term fear amnesia are clearly dissociable from the amnesia related to memory reconsolidation, and suggest that memory retrieval and extinction training trigger distinct underlying memory update mechanisms." ***The pattern of results when testing occurred just minutes after the retrieval-extinction protocol was different to that obtained when testing occurred 24 hours after the protocol. Describing this in terms of temporal scale is unnecessary; and suggesting that memory retrieval and extinction trigger different memory update mechanisms is not obviously warranted. The results of interest are due to the combined effects of retrieval+extinction and there is no sense in which different memory update mechanisms should be identified with the different pattern of results obtained when testing occurred either 30 min or 24 hours after the retrieval-extinction protocol (at least, not the specific pattern of results obtained here).

      (d) The authors state that: "We hypothesize that the labile state triggered by the memory retrieval may facilitate different memory update mechanisms following extinction training, and these mechanisms can be further disentangled through the lens of temporal dynamics and cue-specificities." *** The first part of the sentence is confusing around usage of the term "facilitate"; and the second part of the sentence that references a "lens of temporal dynamics and cue-specificities" is mysterious. Indeed, as all rats received the same retrieval-extinction exposures in Study 2, it is not clear how or why any differences between the groups are attributed to "different memory update mechanisms following extinction".

      DATA

      (6A) The eight participants who were discontinued after Day 1 in Study 1 were all from the no reminder group. The authors should clarify how participants were allocated to the two groups in this experiment so that the reader can better understand why the distribution of non-responders was non-random (as it appears to be).

      (6B) Similarly, in study 2, of the 37 participants that were discontinued after Day 2, 19 were from Group 30 min and 5 were from Group 6 hours. The authors should comment on how likely these numbers are to have been by chance alone. I presume that they reflect something about the way that participants were allocated to groups: e.g., the different groups of participants in studies 1 and 2 could have been run at quite different times (as opposed to concurrently). If this was done, why was it done? I can't see why the study should have been conducted in this fashion - this is for myriad reasons, including the authors' concerns re SCRs and their seasonal variations.

      (6C) In study 2, why is responding to the CS- so high on the first test trial in Group 30 min? Is the change in responding to the CS- from the last extinction trial to the first test trial different across the three groups in this study? Inspection of the figure suggests that it is higher in Group 30 min relative to Groups 6 hours and 24 hours. If this is confirmed by the analysis, it has implications for the fear recovery index which is partly based on responses to the CS-. If not for differences in the CS- responses, Groups 30 min and 6 hours are otherwise identical. That is, the claim of differential recovery to the CS1 and CS2 across time may simply an artefact of the way that the recovery index was calculated. This is unfortunate but also an important feature of the data given the way in which the fear recovery index was calculated.

      (6D) The 6 hour group was clearly tested at a different time of day compared to the 30 min and 24 hour groups. This could have influenced the SCRs in this group and, thereby, contributed to the pattern of results obtained.

      (6E) The authors find different patterns of responses to CS1 and CS2 when they were tested 30 min after extinction versus 24 h after extinction. On this basis, they infer distinct memory update mechanisms. However, I still can't quite see why the different patterns of responses at these two time points after extinction need to be taken to infer different memory update mechanisms. That is, the different patterns of responses at the two time points could be indicative of the same "memory update mechanism" in the sense that the retrieval-extinction procedure induces a short-term memory suppression that serves as the basis for the longer-term memory suppression (i.e., the reconsolidation effect). My pushback on this point is based on the notion of what constitutes a memory update mechanism; and is motivated by what I take to be a rather loose use of language/terminology in the reconsolidation literature and this paper specifically (for examples, see the title of the paper and line 2 of the abstract).

    1. Joint Public Review:

      The central theme of the manuscript is the structure of SBPase - an enzyme central to the photosynthetic Calvin-Benson-Bassham cycle. The authors claim that the structure is first of its kind from a chlorophyte Chlamydomonas reinhardtii, a model unicellular green microalga. The authors use a number of methods like protein expression, purification, enzymatic assays, SAXS, molecular dynamics simulations and xray crystallography to resolve a 3.09 A crystal structure of the oxidized and partially reduced state. The results are supported by the claims made in the manuscript. While the structure is the first from a chlorophyte, it is not unique. Several structures of SBPase are available and a comparison has been made between the structure reported here and others that have been previously published.

    1. Reviewer #1 (Public review):

      First, the authors confirm the up-regulation of the main genes involved in the three branches of the Unfolded Protein Response (UPR) system in diet-induced obese mice in AT, observations that have been extensively reported before. Not surprisingly, IRE1a inhibition with STF led to an amelioration of the obesity and insulin resistance of the animals. Moreover, non-alcoholic fatty liver disease was also improved by the treatment. More novel are their results in terms of thermogenesis and energy expenditure, where IRE1a seems to act via activation of brown AT. Finally, mice treated with STF exhibited significantly fewer metabolically active and M1-like macrophages in the AT compared to those under vehicle conditions. Overall, the authors conclude that targeting IRE1a has therapeutical potential for treating obesity and insulin resistance.

      The study has some strengths, such as the detailed characterization of the effect of STF in different fat depots and a thorough analysis of macrophage populations. However, the lack of novelty in the findings somewhat limits the study´s impact on the field.

    1. Reviewer #1 (Public review):

      Bacterial effectors that interfere with the inner molecular workings of eukaryotic host cells are of great biological significance across disciplines. On the one hand they help us to understand the molecular strategies that bacteria use to manipulate host cells. On the other hand, they can be used as research tools to reveal molecular details of the intricate workings of the host machinery that is relevant for the interaction/defence/symbiosis with bacteria. The authors investigate the function and biological impact of a rhizobial effector that interacts with and modifies, and curiously is modified by, legume receptors essential for symbiosis. The molecular analysis revealed a bacterial effectorthat cleaves a plant symbiosis signaling receptor to inhibit signaling and the host counterplay by phosphorylation via a receptor kinase. These findings have potential implications beyond bacterial interactions with plants. Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis.

      Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis. A rhizobial effector is described to directly modify symbiosis-related signaling proteins, altering the outcome of the symbiosis. Overall, the paper presents findings that will have a wide appeal beyond its primary field.

      Out of 15 identified effectors from Sinorhizobium fredii, they focus on the effector NopT, which exhibits proteolytic activity and may therefore cleave specific target proteins of the host plant. They focus on two Nod factor receptors of the legume Lotus japonicus, NFR1 and NFR5, both of which were previously found to be essential for the perception of rhizobial nod factor, and the induction of symbiotic responses such as bacterial infection thread formation in root hairs and root nodule development (Madsen et al., 2003, Nature; Tirichine et al., 2003; Nature). The authors present evidence for an interaction of NopT with NFR1 and NFR5. The paper aims to characterize the biochemical and functional consequences of these interactions and the phenotype that arises when the effector is mutated.

      Evidence is presented that in vitro NopT can cleave NFR5 at its juxtamembrane region. NFR5 appears also to be cleaved in vivo, and NFR1 appears to inhibit the proteolytic activity of NopT by phosphorylating NopT. When NFR5 and NFR1 are ectopically over-expressed in leaves of the non-legume Nicotiana benthamiana, they induce cell death (Madsen et al., 2011, Plant Journal). Bao et al. found that this cell death response is inhibited by the coexpression of nopT. Mutation of nopT alters the outcome of rhizobial infection in L. japonicus. These conclusions are well supported by the data.

      The presented data support the interaction of NopT with NFR1 and NFR5. In particular, there is solid support for cleavage of NFR5 by NopT (Figure 3) and the identification of NopT phosphorylation sites that inhibit its proteolytic activity (Figure 4C). Cleavage of NFR5 upon expression in N. benthamiana (Figure 3A) requires appropriate controls (inactive mutant versions), since Agrobacterium as a closely rhizobia related bacterium might increase defense related proteolytic activity in the plant host cells, and these controls are provided.

      Key results from N. benthamiana appear consistent with data from recombinant protein expression in bacteria. For the analysis in the host legume L. japonicus transgenic hairy roots were included. To demonstrate that the cleavage of NFR5 occurs during the interaction in plant cells, the authors build largely on Western blots. Regardless of whether Nicotiana leaf cells or Lotus root cells are used as the test platform, the Western blots indicate that only a small proportion of NFR5 is cleaved when co-expressed with nopT, and most of the NFR5 persists in its full-length form (Figures 3A-D). The authors discuss how the loss of NFR5 function (loss of cell death, impact on symbiosis) can be explained despite this vast excess of intact NFR5, but do not further explore the impact of this ratio on downstream signaling.

    1. Reviewer #1 (Public review):

      Summary:

      The authors used a subset of a very large, previously generated 16S dataset to: 1) assess age-associated features; and 2) develop a fecal microbiome clock, based on extensive longitudinal sampling of wild baboons for which near-exact chronological age is known. They further seek to understand deviation from age-expected patterns and uncover if and why some individuals have an older or younger microbiome than expected, and the health and longevity implications of such variation. Overall, the authors compellingly achieved their goals to discover age-associated microbiome features and develop a fecal microbiome clock. They also showed clear and exciting evidence for sex and rank-associated variation in the pace of gut microbiome aging and impacts of seasonality on microbiome age in females. These data add to a growing understanding of modifiers of the pace of age in primates, and links among different biological indicators of age, with implications for understanding and contextualizing human variation. However, in the current version there are gaps in the analyses with respect to the social environment, and in comparisons with other biological indicators of age. Despite this, I anticipate this work will be impactful, generate new areas of inquiry and fuel additional comparative studies.

      Strengths:

      The major strengths of the paper are the size and sampling depth of the study population, including ability to characterize of the social and physical environments, and the application of recent and exciting methods to characterize the microbiome clock. An additional strength was the ability of the authors to compare and contrast the relative age-predictive power of the fecal microbiome clock to other biological methods of age estimation available for the study population (dental wear, blood cell parameters, methylation data). Furthermore, the writing and support materials are clear and informative and visually appealing.

      Revisions made following initial review have further improved the content and clarity.

      Weaknesses:

      Revisions to the manuscript clarified some of the analysis decisions and limitations regarding drawing comparisons between the microbiome clock and other metrics of biological age, and on the impact of sociality on microbiome metrics. Hopefully these interesting topics will be further addressed in forthcoming publications.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors sought to build upon their prior work, which suggested the presence of an outer retinal metabolic microenvironment using ex vivo and in vitro systems, by using in vivo methods and a multitude of genetic models. The authors convincingly demonstrate that the retina prefers circulating glucose to some other circulating fuel sources and that photoreceptors are the main consumers of glucose in the retina. However, the claims regarding the ability of photoreceptors to utilize lactate as a fuel source, that lactate exported specifically from photoreceptors is taken up by RPE and further utilized to support the TCA cycle in the RPE are incomplete or inadequate and would benefit from further experimentation to convince the reader of such biological processes. Considering alternative explanations and performing key experiments to confirm or refute these claims would substantially improve the impact of this study.

      Strengths:

      The major strengths of this study are its in vivo infusion methodologies and utilization of mouse models that are devoid of photoreceptors or are photoreceptor-specific conditional knockouts to provide convincing evidence that the retina utilizes circulating glucose to a significant degree and photoreceptors are the main consumers of glucose in the retina. These in vivo studies are complemented by ex vivo experiments in retinal explants.

      Weaknesses:

      While the in vivo infusion methodologies are a clear strength, not utilizing these techniques or other in vivo methodologies with the genetic models that lack photoreceptors or photoreceptor-specific proteins and not providing in vivo metabolomics data from these infusions in the RPE is a major weakness. Also, some circulating fuel sources may not get into the retina in appreciable amounts, impacting some of the authors' claims. Another major weakness is that for many of the claims noted by the authors, alternative explanations have not been considered nor have the proper experiments been conducted to fully support or refute these claims. For example, the authors claim it is photoreceptors that utilize lactate upon knockout of Glut1. However, other cells in the retina, such as Muller glia, may be the ones actually catabolizing lactate based on prior studies and enzyme expression patterns and their kinetics to support photoreceptors via the production of other metabolites from lactate. This alternative has not been considered nor have experiments been conducted to refute this possibility. Additionally, the authors claim lactate exported from photoreceptors is being taken up by RPE. The models used to support this claim lack photoreceptors, or their ability to take up glucose. None of the models specifically address lactate export from photoreceptors. Finally, the authors claim lactate exported from photoreceptors can be oxidized to TCA cycle intermediates in the RPE in vivo. No experiments specifically addressed the downstream path of lactate exported by photoreceptors in RPE TCA cycle metabolism in vivo, so this conclusion is also not well supported. Hence, the claims need to be significantly amended with an acknowledgment of potential alternatives or with some key experiments performed.

    1. Reviewer #1 (Public Review):

      (1) Significance of the findings:

      Cell-to-cell communication is essential for higher functions in bacterial biofilms. Electrical signals have proven effective in transmitting signals across biofilms. These signals are then used to coordinate cellular metabolisms or to increase antibiotic tolerance. Here, the authors have reported for the first time coordinated oscillation of membrane potential in E. coli biofilms that may have a functional role in photoprotection.

      (2) Strengths of the manuscript:

      - The authors report original data.<br /> - For the first time, they showed that coordinated oscillations in membrane potential occur in E. Coli biofilms.<br /> - The authors revealed a complex two-phase dynamic involving distinct molecular response mechanisms.<br /> - The authors developed two rigorous models inspired by 1) Hodgkin-Huxley model for the temporal dynamics of membrane potential and 2) Fire-Diffuse-Fire model for the propagation of the electric signal.<br /> - Since its discovery by comparative genomics, the Kch ion channel has not been associated with any specific phenotype in E. coli. Here, the authors proposed a functional role for the putative gated-voltage-gated K+ ion channel (Kch channel) : enhancing survival under photo-toxic conditions.

      (3) Weakness:

      - Contrarily to what is stated in the abstract, the group of B. Maier has already reported collective electrical oscillations in the Gram-negative bacterium Neisseria gonorrhoeae (Hennes et al., PLoS Biol, 2023).<br /> - The data presented in the manuscript are not sufficient to conclude on the photo-protective role of the Kch channel. The authors should perform the appropriate control experiments related to Fig4D,E, i.e. reproduce these experiments without ThT to rule out possible photo-conversion effects on ThT that would modify its toxicity. In addition, it looks like the data reported on Fig 4E are extracted from Fig 4D. If this is indeed the case, it would be more conclusive to report the percentage of PI-positive cells in the population for each condition. This percentage should be calculated independently for each replicate. The authors should then report the average value and standard deviation of the percentage of dead cells for each condition.<br /> - Although Fig 4A clearly shows that light stimulation has an influence on the dynamics of ThT signal in the biofilm, it is important to rule out possible contributions of other environmental variations that occur when the flow is stopped at the onset of light stimulation. I understand that for technical reasons, the flow of fresh medium must be stopped for the sake of imaging. Therefore, I suggest to perform control experiments consisting in stopping the flow at different time intervals before image acquisition (30min or 1h before). If there is no significant contribution from environmental variations due to medium perfusion arrest, the dynamics of ThT signal must be unchanged regardless of the delay between flow stop and the start of light stimulation.<br /> - To precise the role of K+ in the habituation response, I suggest using the ionophore valinomycin at sub-inhibitory concentrations (5 or 10µM). It should abolish the habituation response. In addition, the Kch complementation experiment exhibits a sharp drop after the first peak but on a single point. It would be more convincing to increase the temporal resolution (1min->10s) to show that there are indeed a first and a second peak. Finally, the high concentration (100µM) of CCCP used in this study completely inhibits cell activity. Therefore, it is not surprising that no ThT dynamics was observed upon light stimulation at such concentration of CCCP.<br /> - Since TMRM signal exhibits a linear increase after the first response peak (Supp Fig1D), I recommend to mitigate the statement at line 78.<br /> - Electrical signal propagation is an important aspect of the manuscript. However, a detailed quantitative analysis of the spatial dynamics within the biofilm is lacking. At minima, I recommend to plot the spatio-temporal diagram of ThT intensity profile averaged along the azimuthal direction in the biofilm. In addition, it is unclear if the electrical signal propagates within the biofilm during the second peak regime, which is mediated by the Kch channel: I have plotted the spatio-temporal diagram for Video S3 and no electrical propagation is evident at the second peak. In addition, the authors should provide technical details of how R^2(t) is measured in the first regime (Fig 7E).<br /> - In the series of images presented in supplementary Figure 4A, no wavefront is apparent. Although the microscopy technics used in this figure differs from other images (like in Fig2), the wavefront should be still present. In addition, there is no second peak in confocal images as well (Supp Fig4B) .<br /> - Many important technical details are missing (e.g. biofilm size, R^2, curvature and 445nm irradiance measurements). The description of how these quantitates are measured should be detailed in the Material & Methods section.<br /> - Fig 5C: The curve in Fig 5D seems to correspond to the biofilm case. Since the model is made for single cells, the curve obtained by the model should be compared with the average curve presented in Fig 1B (i.e. single cell experiments).<br /> - For clarity, I suggest to indicate on the panels if the experiments concern single cell or biofilm experiments. Finally, please provide bright-field images associated to ThT images to locate bacteria.<br /> - In Fig 7B, the plateau is higher in the simulations than in the biofilm experiments. The authors should add a comment in the paper to explain this discrepancy.

    1. Reviewer #1 (Public review):

      This paper presents a comprehensive study of how neural tracking of speech is affected by background noise. Using five EEG experiments and Temporal response function (TRF), it investigates how minimal background noise can enhance speech tracking even when speech intelligibility remains very high. The results suggest that this enhancement is not attention-driven but could be explained by stochastic resonance. These findings generalize across different background noise types, listening conditions, and speech features (envelope onset and envelope), offering insights into speech processing in real-world environments.

      I find this paper well-written, the experiments and results are clearly described.

      Comments on revisions:

      I thank the author for thoughtful revisions and for adequately addressing my comments. The new version is much clearer and improved. I have no further questions.

    1. Joint Public Review:

      This paper examines the role of MLCK (myosin light chain kinase) and MLCP (myosin light chain phosphatase) in axon regeneration. Using loss-of-function approaches based on small molecule inhibitors and siRNA knockdown, the authors explore axon regeneration in cell culture and in animal models from central and peripheral nervous systems. Their evidence shows that MLCK activity facilitates axon extension/regeneration, while MLCP prevents it. Additionally, they show that when the MLCK/MLCP pathway is experimentally intervened, F-actin is redistributed in the growth cone.

      Strengths:

      This manuscript presents a wide range of experimental models to address its hypothesis and biological question. Notably, the use of multiple in vivo models significantly enhances the overall validity of the study.

      What follows is a discussion of the merits and limitations of different claims of the manuscript in light of the evidence presented.

      (1) The authors combine MLCK inhibitors with Bleb (Figure 6), trying to verify if both pairs of inhibitors act on the same target/pathway. MLCK may regulate axon growth independent of NMII activity. However, this has very important implications for the understanding not only on how NMII works and affects axon extension but also in trying to understand what MLCP is doing. One wonders if MLCP actions, which are opposite of MLCK, also independent of NMII activity? The authors try to address this controversial issue in the discussion section. The reviewers consider that it is still an open question, and acknowledge that it would require a significant amount of experimental work to solve the issue, that goes well beyond the main goal of the present study.

      (2) Using western blot and immunohistochemical analyses, authors first show that MLCK expression is increased in DRG sensory neurons following peripheral axotomy, concomitant to an increase in MLC phosphorylation, suggesting a causal effect (Figure 1). The authors claim that it is common that axon growth-promoting genes are upregulated. It would have been interesting at<br /> this point to study in this scenario the regulation of MLCP.

      (3) Using DRG cultures and sciatic nerve crush in the context of MLCK inhibition (ML-7) and down-regulation, authors conclude that MLCK activity is required for mammalian peripheral axon regeneration both in vitro and in vivo (Figure 2). In parallel, the authors show that these treatments affect, as expected, the phosphorylation levels of MLC.

      (4) The authors then examined the role of the phosphatase MLCP in axon growth during regeneration. The authors first use a known MLCP blocker, phorbol 12,13-dibutyrate (PDBu), to show that is able to increase the levels of p-MLC, with a concomitant increase in the extent of axon regrowth of DRG neurons, both in permissive as well as non-permissive substrates. The authors repeat the experiments using the knockdown of MYPT1, a key component of the MLC-phosphatase, and again can observe a growth-promoting effect (Figure 3).

      (5) In the next set of experiments (presented in Figure 4) authors extend the previous observations in primary cultures from the CNS. For that, they use cortical and hippocampal cultures, and pharmacological and genetic loss-of-function using the above-mentioned strategies. The expected results were obtained in both CNS neurons: inhibition or knockdown of the kinase decreases axon growth, whereas inhibition or knockdown of the phosphatase increases growth. A main weakness in this set is that drugs were used from the beginning of the experiment, and hence, they would also affect axon specification. As pointed out in Materials and Method (lines 143-145) authors counted as "axons" neurites longer than twice the diameter of the cell soma, and hence would not affect the variable measured. In any case, to be sure one is only affecting axon extension in these cells, the drugs should have been used after axon specification and maturation, which occurs at least after 3 DIV. Taking this into account, the conclusions with this experimental design are limited.

    1. Reviewer #1 (Public review):

      Summary:

      Desveaux et al. describe human mAbs targeting protein from the Pseudomonas aeruginosa T3SS, discovered by employing single cell B cell sorting from cystic fibrosis patients. The mAbs were directed at the proteins PscF and PcrV. They particularly focused on two mAbs binding the T3SS with the potential of blocking activity. The supplemented biochemical analysis was crystal structures of P3D6 Fab complex. They also compared the blocking activity with mAbs that were described in previous studies, using an assay that evaluated the toxin injection. They conducted mechanistic structure analysis and found that these mAbs might act through different mechanisms by preventing PcrV oligomerization and disrupting PcrVs scaffolding function.

      Strengths:

      The antibiotic resistance crisis requires the development of new solutions to treat infections caused by MDR bacteria. The development of antibacterial mAbs holds great potential. In that context, this report is important as it paves the way for the development of additional mAbs targeting various pathogens that harbor the T3SS. In this report, the authors present a comparative study of their discovered mAbs vs. a commercial mAb currently in clinical testing resulting in valuable data with applicative implications. The authors investigated the mechanism of action of the mAbs using advanced methods and assays for the characterization of antibody and antigen interaction, underlining the effort to determine the discovered mAbs suitability for downstream application.

      Weaknesses:

      Although the information presented in this manuscript is important, previous reports regarding other T3SS structures complexed with antibodies, reduce the novelty of this report. Nevertheless, we provide several comments that may help to improve the report. The structural analysis of the presented mAbs is incomplete and unfortunately, the authors did not address any developability assessment. With such vital information missing, it is unclear if the proposed antibodies are suited for diagnostic or therapeutic usage. This vastly reduces the importance of the possibly great potential of the authors' findings. Moreover, the structural information does not include the interacting regions on the mAb which may impede the optimization of the mAb if it is required to improve its affinity.

    1. Reviewer #1 (Public review):

      Summary:

      Phytophathogens including fungal pathogens such as F. graminearum remain a major threat to agriculture and food security. Several agriculturally relevant fungicides including the potent Quinofumelin have been discovered to date, yet the mechanisms of their action and specific targets within the cell remain unclear. This paper sets out to contribute to addressing these outstanding questions.

      Strengths:

      The paper is generally well-written and provides convincing data to support their claims for the impact of Quinofumelin on fungal growth, the target of the drug, and the potential mechanism. Critically the authors identify an important pyrimidine pathway dihydroorotate dehydrogenase (DHODH) gene FgDHODHII in the pathway or mechanism of the drug from the prominent plant pathogen F. graminearum, confirming it as the target for Quinofumelin. The evidence is supported by transcriptomic, metabolomic as well as MST, SPR, molecular docking/structural biology analyses.

      Weaknesses:

      Whilst the study adds to our knowledge about this drug, it is, however, worth stating that previous reports (although in different organisms) by Higashimura et al., 2022 https://pmc.ncbi.nlm.nih.gov/articles/PMC9716045/ had already identified DHODH as the target for Quinofumelin and hence this knowledge is not new and hence the authors may want to tone down the claim that they discovered this mechanism and also give sufficient credit to the previous authors work at the start of the write-up in the introduction section rather than in passing as they did with reference 25? other specific recommendations to improve the text are provided in the recommendations for authors section below.

    1. Reviewer #1 (Public review):

      Summary and Strengths:

      This work shows that the gene encoding Layilin is expressed preferentially in human skin Tregs, and that the fraction of Tregs expressing Layilin may overexpress genes related to T cell activation and adhesion. Expression of Layilin on Tregs would have no impact on activation markers or in vitro suppressive function. However, activation of Layilin either with a cross-linking antibody or collagen IV, its natural ligand, would promote cell adhesion via LFA1 activation. The in vivo functional role of Layilin in Tregs is studied in a conditional KO mouse model in a model of skin inflammation. Deletion of Layilin in Tregs led to an attenuation of the disease score and a reduction in the cutaneous lymphocyte infiltrate. This work is clearly innovative, but a number of major points limit its interest.

      Weakness and major points:

      (1) The number of panels and figures suggests that this story is quite complete but several data presented in the main figures do not provide essential information for a proper understanding of Layilin's role in Tregs.

      Figures 1I, 1J, and the whole of Figure 2 could be placed as supplementary figures. Also, for Figure 3E, it would be preferable to show the percentage of cells expressing cytokines rather than their absolute numbers. In fact, the drop in the numbers of cytokine-producing cells is probably due solely to the drop in total cell numbers and not to a decrease in the proportion of cells expressing cytokines. If this is the case, these data should be shown in supplementary figures. Finally, Figures 4 and 5 could be merged.

      (2) Some important data are not shown or not mentioned.

      (a) It would be important to show the proportion of Treg, Tconv, and CD8 expressing Layilin in healthy skin and in patients developing psoriasis, as well as in the blood of healthy subjects.<br /> (b) We lack information to be convinced that there is enrichment for migration and adhesion genes in Layilin+ Tregs in the GSEA data. The authors should indicate what geneset libraries they used. Indeed, it is tempting to show only the genesets that give results in line with the message you want to get across. If these genesets come from public banks, the bank used should be indicated, and the results of all gene sets shown in an unbiased way. In addition, it should be indicated whether the analyses were performed on untransformed or pseudobulk scRNAseq data analyses. Finally, it would be preferable to confirm the GSEA data with z-score analyses, as Ingenuity does, for example. Indeed, in GSEA-type analyses, there are genes that have activating but also inhibiting effects on a pathway in a given gene set.<br /> (c) For all FACS data, the raw data should be shown as histograms or dot plots for representative samples.<br /> (d) For Figure 5B, the number of samples analyzed is insufficient to draw clear conclusions.

      (3) For Figs. 4 and 5, the design of the experiment poses a problem. Indeed, the comparison between Layn+ and Layn- cells may, in part, not be directly linked to the expression or absence of expression of this protein. Indeed, Layn+ and Layn- Tregs may constitute populations with different biological properties, beyond the expression of Layn. However, in the experiment design used here, a significant fraction of the sorted Layn- Tregs will be cells belonging to the population that has never expressed this protein. It would have been preferable to sort first the Layn+ Tregs, then knock down this protein and re-sort the Layn- Tregs and Layn+ Tregs. If this experiment is too cumbersome to perform, I agree that the authors should not do it. However, it would be important to mention the point I have just made in the text.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors examined the function of CLIP in exercise-mediate inhibition of osteoarthritis using an ACL transection rat model. The authors rely on rigorous experimental design and methods to demonstrate that CLIP is downregulated in osteoarthritic cartilage tissue and that CLIP expression can be rescued by moderate treadmill exercise. They further show that activation of Nrf2 signaling occurs through CLIP inhibition of Keap1-Nrf2. The results are novel as they suggest a new role for CLIP in OA pathogenesis. The following points need to be addressed in order to bring additional clarity to this work.

      Strengths:

      This is an interesting study that addresses an important global health issue. The significance is high and the work is novel and mechanistic.

      Weaknesses:

      A major concern is that a direct link between exercise and CLIP-mediated inhibition of ferroptosis via Keap1-Nrf2 pathway is not supported by the provided data. The ferroptosis studies were performed in vitro, whereas the effect of exercise was demonstrated in an OA animal model. Therefore, the data suggest a potential correlation between CLIP-Keap1-Nrf2 and exercise. This must be described as a limitation in the discussion section. Consequently, the title of the manuscript needs to better reflect the interpretation of these data.

      Figure 1: Radiomics data are not described in the text. OARSI scoring of damaged and undamaged sections is not presented in the figure.

      Figure 2: Data presentation is very dense in this figure. It is recommended that Figure 2 be split into two figures. Also, the histology and IHC images in Figure 2A are of poor resolution. These data do not sufficiently demonstrate early OA pathology. Clearer images to substantiate the authors' statement need to be provided.

      Figure 3: The superficial zone appears to be misrepresented; it should include only the top 2-3 layers of flat chondrocyte cells.

      Figure 4: This Figure should be listed as supplementary data. CTS is not spelled out in the legend. Also, a rationale for using low, medium, and high CTS needs to be provided.

      Figure 5: Please describe positive and negative controls. Please elaborate on the findings of the yeast hybrid experiment in the results. Please expand KD-02 experimental condition in the legend and results.

      Figure 6: Please move Figure S2 into the main Figures and describe the results in section 2.9 which describes ferroptosis.

      In the results section, it is recommended that the authors describe all panels of the figures appropriately in sequential order. The authors are advised to provide publication-quality figures and, in some cases, to split figure panels into new figures as well as to ensure that the fonts and data are legible. Finally, the use of non-conventional abbreviations (such as G3 for passage-3 chondrocytes, CG for the control condition, and OE for overexpression) may confuse the readership, and describing each abbreviation when used for the first time is required.

    1. Reviewer #2 (Public review):

      Summary:

      Liu et al investigated the performance of a novel imaging technique called RIM-Deep to enhance the imaging depth for cleared samples. Usually, the imaging depth using the classical confocal microscopy sample chamber is limited due to optical aberrations, resulting in loss of resolution and image quality. To overcome this limitation and increase depth, they generated a special imaging chamber, that is affixed to the objective and filled with a solution matching the refractive indices to reduce aberrations. Importantly, the study was conducted using a standard confocal microscope, that has not been modified apart from exchanging the standard sample chamber with the RIM-Deep sample holder. Upon analysing the imaging depth, the authors claim that the RIM-Deep method increased the depth from 2 mm to 5 mm. In summary, RIM-Deep has the potential to significantly enhance imaging quality of thick samples on a low budget, making in-depth measurements possible for a wide range of researchers that have access to an inverted confocal microscope.

      Strengths:

      The authors used different clearing methods to demonstrate the suitability of RIM-Deep for various sample preparation protocols with clearing solutions of different refractive indices. They clearly demonstrate that the RIM-Deep chamber is compatible with all 3 methods. Brain samples are characterized by complex networks of cells and are often hard to visualize. Despite the dense, complex structure of brain tissue, the RIM-Deep method generated high-quality images of all 3 samples given. As the authors already stated, increasing imaging depth often goes hand in hand with purchasing expensive new equipment, exchanging several microscopy parts or purchasing a new microscopy set-up. Innovations, such as the RIM-Deep chamber, hence, might pave the way for cost-effective imaging and expand the applicability of an inverted confocal microscope.

      Weaknesses:

      (1) However, since this study introduces a novel imaging technique, and therefore, aims to revolutionize the way of imaging large samples, additional control experiments would strengthen the data. From the 3 clearing protocol used (CUBIC, MACS and iDISCO), only the brain section from Macaca fascicularis cleared with iDISCO was imaged with the standard chamber and the RIM-Deep method. This comparison indeed shows that the imaging depth thereby increases more than 2-fold, which is a significant enhancement in terms of microscopy. However, it would have been important to evaluate and show the difference of the imaging depth also on the other two samples, since they were cleared with different protocols and, thus, treated with clearing solutions of different refractive indices compared to iDCISCO.

      (2) The description of the figures and figure panels should be improved for a better understanding of the experiments performed and the thus resulting images/data.

      (3) While the authors used a Nikon AX inverted laser scanning confocal microscope, the study would highly benefit from evaluating the performance of the RIM-Deep method using other inverted confocal microscopes or even wide-field microscopes.

      Comments on Revision:

      Regarding point 1)<br /> Within the revised manuscript, Liu et al focussed on a more detailed comparison of the standard vs the RIM-Deep method of samples cleared with the 3 different methods.

      Regarding point 2)<br /> The revised description of the figures results in a better understanding of the data.

      Regarding point 3)<br /> The authors tested their method on different microscopic setups to show the compatibility.

      Summary: the revised manuscript addressed all previously mentioned points.

    1. Reviewer #1 (Public review):

      This study by Popli et al. evaluated the function of Atg14, an autophagy protein, in reproductive function using a conditional knockout mouse model. The authors showed that female mice lacking Atg14 were infertile partly due to defective embryo transport function of the oviduct and faulty uterine receptivity and decidualization using PgrCre/+;Atg14f/f mice. The findings from this work are exciting and novel. The authors demonstrated that a loss of Atg14 led to an excessive pyroptosis in the oviductal epithelial cells that compromises cellular integrity and structure, impeding the transport function of the oviduct. In addition, the authors use both genetic and pharmacological approaches to test the hypothesis. Therefore, the findings from this study are high-impact and likely reproducible.

      Comments on revisions: Thank you for your time revising the manuscript. The authors have addressed all of my previous concerns.

    1. Reviewer #1 (Public review):

      Summary:

      Work by Brosseau et. al. combines NMR, biochemical assays, and MD simulations to characterize the influence of the C-terminal tail of EmrE, a model multi-drug efflux pump, on proton leak. The authors compare the WT pump to a C-terminal tail deletion, delta_107, finding that the mutant has increased proton leak in proteoliposome assays, shifted pH dependence with a new titratable residue, faster-alternating access at high pH values, and reduced growth, consistent with proton leak of the PMF.

      Strengths:

      The work combines thorough experimental analysis of structural, dynamic, and electrochemical properties of the mutant relative to WT proteins. The computational work is well aligned in vision and analysis. Although all questions are not answered, the authors lay out a logical exploration of the possible explanations.

      Weaknesses:

      There are a few analyses that are missing and important data left out. For example, the relative rate of drug efflux of the mutant should be reported to justify the focus on proton leak. Additionally, the correlation between structural interactions should be directly analyzed and the mutant PMF also analyzed to justify the claims based on hydration alone. Some aspects of the increased dynamics at high pH due to a potential salt bridge are not clear.

    1. Reviewer #1 (Public review):

      The origin recognition complex (ORC) is an essential loading factor for the replicative Mcm2-7 helicase complex. Despite ORC's critical role in DNA replication, there have been instances where the loss of specific ORC subunits has still seemingly supported DNA replication in cancer cells, endocycling hepatocytes, and Drosophila polyploid cells. Critically, all tested ORC subunits are essential for development and proliferation in normal cells. This presents a challenge, as conditional knockouts need to be generated, and a skeptic can always claim that there were limiting but sufficient ORC levels for helicase loading and replication in polyploid or transformed cells. That being said, the authors have consistently pushed the system to demonstrate replication in the absence or extreme depletion of ORC subunits.

      Here, the authors generate conditional ORC2 mutants to counter a potential argument with prior conditional ORC1 mutants that Cdc6 may substitute for ORC1 function based on homology. They also generate a double ORC1 and ORC2 mutant, which is still capable of DNA replication in polyploid hepatocytes. While this manuscript provides significantly more support for the ability of select cells to replicate in the absence or near absence of select ORC subunits, it does not shed light on a potential mechanism.

      The strengths of this manuscript are the mouse genetics and the generation of conditional alleles of ORC2 and the rigorous assessment of phenotypes resulting from limiting amounts of specific ORC subunits. It also builds on prior work with ORC1 to rule out Cdc6 complementing the loss of ORC1.

      The weakness is that it is a very hard task to resolve the fundamental question of how much ORC is enough for replication in cancer cells or hepatocytes. Clearly, there is a marked reduction in specific ORC subunits that is sufficient to impact replication during development and in fibroblasts, but the devil's advocate can always claim minimal levels of ORC remaining in these specialized cells.

      The significance of the work is that the authors keep improving their conditional alleles (and combining them), thus making it harder and harder (but not impossible) to invoke limiting but sufficient levels of ORC. This work lays the foundation for future functional screens to identify other factors that may modulate the response to the loss of ORC subunits.

      This work will be of interest to the DNA replication, polyploidy, and genome stability communities.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, Bruter and colleagues report effects of inducible deletion of the genes encoding the two paralogous kinases of the Mediator complex in adult mice. The physiological roles of these two kinases, CDK8 and CDK19, are currently rather poorly understood; although conserved in all eukaryotes, and among the most highly conserved kinases in vertebrates, individual knockouts of genes encoding CDK8 homologues in different species have revealed generally rather mild and specific effects, in contrast to Mediator itself. Here, the authors provide evidence that neither CDK8 nor CDK19 are required for adult homeostasis but they are functionally redundant for maintenance of reproductive tissue morphology and fertility in males.

      Strengths:

      The morphological data on atrophy of the male reproductive system and arrest of spermatocyte meiosis are solid and are reinforced by single cell transcriptomics data, which is a challenging technique to implement in vivo. The main findings are important and will be of interest to scientists in the fields of transcription and developmental biology.

      Weaknesses:

      There are several weaknesses.

      The first is that data comparing general health of mice with single and double knockouts is not shown, and data on effects in other tissues are sparse and very preliminary. The only strong phenotype of double knockouts that is described is in the male reproductive system. Furthermore, data for the genitourinary system in single knockouts are very sparse; data are described for fertility in figure 1E, ploidy and cell number in figure 3B and C, plasma testosterone and luteinizing hormone levels in figure 6C and 6D and morphology of testis and prostate tissue for single Cdk8 knockout in supplementary figure 1E (although in this case the images do not appear very comparable between control and CDK8 KO), but, for example, there is no analysis of different meiotic stages or of gene expression in single knockouts. Given that the authors have shown that CDK8 and CDK19 expression levels differ widely between different cell types, such an analysis would be interesting. This might have provided insight into the sterility of induced CDK8 knockout.

      The second weakness is that the correlation between double knockout and reduced expression of genes involved in steroid hormone biosynthesis is hypothesized to be a causal mechanism for the phenotypes observed. While this is a possibility, there are no experiments performed to provide evidence that this is the case. Furthermore, there is no evidence shown that CDK8 and/or CDK19 are directly responsible for transcription of the genes concerned.

      Finally, the authors propose that the phenotypes are independent of the kinase activity of CDK8 or CDK19 because treatment of mice for a month with an inhibitor does not recapitulate the effects of the knockout, and nor does expression of two steroidogenic genes change in cultured Leydig cells upon treatment with an inhibitor. However, there are no controls for effective target inhibition shown.

      Comments on revisions:

      This manuscript is slightly improved compared to the previous version, though it still does not address the weaknesses that were highlighted in the first version, which largely remain relevant. Please note the typo in the abstract (line 30) and the absence of response to the query of how many crypts and villi were counted in the experiment shown in Suppl Fig 1D.

    1. Reviewer #1 (Public review):

      Summary

      The manuscript by Chen et al. presents a detailed metabolic characterization of male and female WT and Ctrp10 knockout mice. The main finding is that female KO mice become obese on both low-fat and high-fat diets, but without evidence of marked insulin resistance, hepatic steatosis, dyslipidemia, or increased inflammatory markers. The authors performed a detailed transcriptomic analysis and identified differentially-expressed genes that distinguish high-fat diet -fed Ctrp10 KO from WT control mice. They further show that this set of genes exhibits cross correlation in human tissues, and that this is greater in females than in males. The data indicate that the Ctrp10 KO model may be useful to understand how obesity and metabolic dysfuction are coupled to each other, and how this occurs by a sex-biased mechanism.

      Strengths

      The work presents a large amount of data, which has been carefully acquired and is convincing. The transcriptomic analysis will further help to define what pathways are associated with obesity, but not necessarily with metabolic dysfunction. The manuscript will be of interest to investigators studying metabolic diseases, and to those studying sex-specific differences in metabolic physiology. The limitations of the study are acknowledged, including that a whole-body knockout was used. The cause of the increased body weight is not entirely clear, despite the careful and detailed analysis that was performed. Notwithstanding these limitations, the phenotype is interesting, and this work will establish basis for further work to understand the mechanisms that are involved.

      Weaknesses

      The main weaknesses are that no antibody is available to detect Ctrp10, and the knockout is a global knockout since no conditional allele is available. These limitations are discussed in the manuscript. Despite these weaknesses, the current work establishes the intriguing phenotype and its sex-specificity, and will provide a solid foundation for future studies.

    1. Reviewer #1 (Public review):

      Summary:

      In this article, Nedbalova et al. investigate the biochemical pathway that acts in circulating immune cells to generate adenosine, a systemic signal that directs nutrients toward the immune response, and S-adenosylmethionine (SAM), a methyl donor for lipid, DNA, RNA, and protein synthetic reactions. They find that SAM is largely generated through uptake of extracellular methionine, but that recycling of adenosine to form ATP contributes a small but important quantity of SAM in immune cells during the immune response. The authors propose that adenosine serves as a sensor of cell activity and nutrient supply, with adenosine secretion dominating in response to increased cellular activity. Their findings of impaired immune action but rescued larval developmental delay when the enzyme Ahcy is knocked down in hemocytes are interpreted as due to effects on methylation processes in hemocytes and reduced production of adenosine to regulate systemic metabolism and development, respectively. Overall this is a strong paper that uses sophisticated metabolic techniques to map the biochemical regulation of an important systemic mediator, highlighting the importance of maintaining appropriate metabolite levels in driving immune cell biology.

      Strengths:

      The authors deploy metabolic tracing - no easy feat in Drosophila hemocytes - to assess flux into pools of the SAM cycle. This is complemented by mass spectrometry analysis of total levels of SAM cycle metabolites to provide a clear picture of this metabolic pathway in resting and activated immune cells.

      The experiments show that recycling of adenosine to ATP, and ultimately SAM, contributes meaningfully to the ability of immune cells to control infection with wasp eggs.

      This is a well-written paper, with very nice figures showing metabolic pathways under investigation. In particular, the italicized annotations, for example "must be kept low", in Figure 1 illustrate a key point in metabolism - that cells must control levels of various intermediates to keep metabolic pathways moving in a beneficial direction.

      Experiments are conducted and controlled well, reagents are tested, and findings are robust and support most of the authors' claims.

      Weaknesses:

      The authors posit that adenosine acts a sensor of cellular activity, with increased release indicating active cellular metabolism and insufficient nutrient supply. The authors have provided a discussion of how generalizable they think this may be across different cell types or organs, but mechanisms for the role of adenosine in specific cell types, and whether cell autonomous or cell-nonautonomous mechanisms may be employed in sensing, are largely unknown.

    1. Reviewer #1 (Public review):

      Summary:

      Wang et al. created a series of specific FLIM-FRET sensors to measure the activity of different Rab proteins in small cellular compartments. They apply the new sensors to monitor Rab activity in dendritic spines during induction of LTP. They find sustained (30 min) inactivation of Rab10 and transient (5 min) activation of Rab4 after glutamate uncaging in zero Mg. NMDAR function and CaMKII activation are required for these effects. Knock-down of Rab4 reduced spine volume change while knock-down of Rab10 boosted it and enhanced functional LTP (in KO mice). To test Rab effects on AMPA receptor exocytosis, the authors performed FRAP of fluorescently labeled GluA1 subunits in the plasma membrane. Within 2-3 min, new AMPARs appear on the surface via exocytosis. This process is accelerated by Rab10 knock-down and slowed by Rab4 knock-down. The authors conclude that CaMKII promotes AMPAR exocytosis by i) activating Rab4, the exocytosis driver and ii) inhibiting Rab10, possibly involved in AMPAR degradation.

      Strengths:

      The work is a technical tour de force, adding fundamental insights to our understanding of the crucial functions of different Rab proteins in promoting/preventing synaptic plasticity. The complexity of compartmentalized Ras signaling is poorly understood and this study makes substantial inroads. The new sensors are thoroughly characterized, seem to work very well and will be quite useful for the neuroscience community and beyond (e.g. cancer research). The use of FLIM for read-out is compelling for precise activity measurements in rapidly expanding compartments (i.e., spines during LTP). In addition to structural changes, evidence for functional LTP is provided, too.

      Weaknesses:

      The interpretation of the FRAP experiments (Fig. 5, Ext. Data Fig. 13) is not straightforward as spine volume and surface area greatly expand during uncaging. I appreciate the correction for added spine membrane shown in Extended Data Fig. 14i.<br /> Pharmacological experiments were not conducted or analyzed blind, risking bias in the selection/exclusion of experiments for analysis.

    1. Reviewer #1 (Public review):

      SNeuronal activity spatiotemporal fine-tuning of cerebral blood flow balances metabolic demands of changing neuronal activity with blood supply. Several 'feed-forward' mechanisms have been described that contribute to activity-dependent vasodilation as well as vasoconstriction leading to a reduction in perfusion. Involved messengers are ionic (K+), gaseous (NO), peptides (e.g., NPY, VIP) and other messengers (PGE2, GABA, glutamate, norepinephrine) that target endothelial cells, smooth muscle cells, or pericytes. Contributions of the respective signaling pathways likely vary across brain regions or even within specific brain regions (e.g., across cortex) and are likely influenced by the brain's physiological state (resting, active, sleeping) or pathological departures from normal physiology.

      The manuscript "Elevated pyramidal cell firing orchestrates arteriolar vasoconstriction through COX-2-derived prostaglandin E2 signaling" by B. Le Gac, et al. investigates mechanisms leading to activity-dependent arteriole constriction. Here, mainly working in brain slices from mice expressing channelrhodopsin 2 (ChR2) in all excitatory neurons (Emx1-Cre; Ai32 mice), the authors show that strong optogenetic stimulation of cortical pyramidal neurons is leading to constriction that is mediated through the cyclooxygenase-2 / prostaglandin E2 / EP1 and EP3 receptor pathway with contribution of NPY-releasing interneurons and astrocytes releasing 20-HETE. Specifically, using patch clamp, the authors show that 10-s optogenetic stimulation at 10 and 20 Hz leads to vasoconstriction (Figure 1), in line with a stimulation frequency-dependent increase in somatic calcium (Figure 2). The vascular effects were abolished in presence in TTX and significantly reduced in presence of glutamate receptor antagonists (Figure 3). The authors further show with RT-PCR on RNA isolated from patched cells that ~50% of analyzed cells express COX-1 or -2 and other enzymes required to produce PGE2 or PGF2a (Figure 4). Further, blockade of COX-1 and -2 (indomethacin), or COX-2 (NS-398) abolishes constriction. In animals with chronic cranial window that were anesthetized with ketamine and medetomidine, 10-s long optogenetic stimulation at 10 Hz leads to considerable constriction, which is reduced in presence of indomethacin. Blockade of EP1 and EP3 receptors leads to significant reduction of the constriction in slices (Figure 5). Finally, the authors show that blockade of 20-HETE synthesis caused moderate and NPY Y1 receptor blockade a complete reduction of constriction.

      The mechanistic analysis of neurovascular coupling mechanisms as exemplified here will guide further in-vivo studies and has important implications for human neuroimaging in health and disease. Most of the data in this manuscript uses brain slices as experimental model which contrasts with neurovascular imaging studies performed in awake (headfixed) animals. However, the slice preparation allows for patch clamp as well as easy drug application and removal. Further, the authors discuss their results in view of differences between brain slices and in vivo observations experiments, including the absence of vascular tone as well as blood perfusion required for metabolite (e.g., PGE2) removal, and the presence of network effects in the intact brain. The manuscript and figures present the data clearly; regarding the presented mechanism, the data supports the authors conclusions. Some of the data was generated in vivo in head-fixed animals under anesthesia; in this regard, the authors should revise introduction and discussion to include the important distinction between studies performed in slices, or in acute or chronic in-vivo preparations under anesthesia (reduced network activity and reduced or blockade of neuromodulation, or in awake animals (virtually undisturbed network and neuromodulatory activity). Further, while discussed to some extent, the authors could improve their manuscript by more clearly stating if they expect the described mechanism to contribute to CBF regulation under 'resting state conditions' (i.e., in absence of any stimulus), during short or sustained (e.g., visual, tactile) stimulation, or if this mechanism is mainly relevant under pathological conditions; especially in context of the optogenetic stimulation paradigm being used (10-s long stimulation of many pyramidal neurons at moderate-high frequencies) and the fact that constriction leading to undersupply in response to strongly increased neuronal activity seems counterintuitive?

      The authors have addressed all comments, and I appreciate their insightful discussion and revision of the manuscript.

    1. Reviewer #1 (Public review):

      Summary of what the authors were trying to achieve:

      In this manuscript, the authors investigated the role of β-CTF on synaptic function and memory. They report that β-CTF can trigger the loss of synapses in neurons that were transiently transfected in cultured hippocampal slices and that this synapse loss occurs independently of Aβ. They confirmed previous research (Kim et al, Molecular Psychiatry, 2016) that β-CTF-induced cellular toxicity occurs through a mechanism involving a hexapeptide domain (YENPTY) in β-CTF that induces endosomal dysfunction. Although the current study also explores the role of β-CTF in synaptic and memory function in the brain using mice chronically expressing β-CTF, the studies are inconclusive because potential effects of Aβ generated by γ-secretase cleavage of β-CTF were not considered. Based on their findings, the authors suggest developing therapies to treat Alzheimer's disease by targeting β-CTF. While they acknowledge that clinical trials of potent BACE1 inhibitors - which also target β-CTF - have failed to show clinical improvement, their study lacks in vivo evidence directly linking β-CTF to brain function, which weakens its significance.

      Major strengths and weaknesses of the methods and results:

      The conclusions of the in vitro experiments using cultured hippocampal slices were well supported by the data, but aspects of the in vivo experiments need additional clarification.<br /> In contrast to the in vitro experiments in which a γ-secretase inhibitor was used to exclude possible effects of Aβ, this possibility was not examined in in vivo experiments assessing synapse loss and function (Fig. 3) and cognitive function (Fig. 4). The absence of plaque formation (Fig. 4C) is not sufficient to exclude the possibility that Aβ is involved. The potential involvement of Aβ is an important consideration given the 4-month duration of protein expression in the in vivo studies. This issue could be addressed using γ-secretase modulators to avoid the off-target effects of inhibitors. Evidence that the detrimental effects in mice are directly caused by β-CTF rather than indirectly via Aβ is critical to support the authors' conclusion.

      Appraisal of whether the authors achieved their aims, and whether the results support their conclusion:

      See above

      Discussion of likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors' use of sparse expression to examine the role of β-CTF on spine loss could be a useful general tool for examining synapses in brain tissue.

      Any additional context that might help readers interpret or understand the significance of the work:

      The discovery of BACE1 stimulated an international effort to develop BACE1 inhibitors to treat Alzheimer's disease. BACE1 inhibitors block the formation of β-CTF which, in turn, prevents the formation of Aβ and other fragments. Unfortunately, BACE1 inhibitors not only did not improve cognition in patients with Alzheimer's disease, they appeared to worsen it, suggesting that β-CTF could facilitate learning and memory. Therefore, it seems unlikely that the disruptive effects of β-CTF on endosomes plays a significant role in the human disease.

      Comments on revisions:

      The authors may be interested in the study by Ma et al., PNAS 2007 titled "Involvement of β-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity," which provides significant insights into the physiological role of BACE1 in synaptic function. The researchers demonstrated that BACE1-mediated cleavage of amyloid precursor protein (APP) is essential for enhancing learning, memory, and synaptic plasticity in vivo. They observed that overexpression of APP in transgenic mice led to improved spatial memory retention and potentiation of synaptic plasticity, effects that were abolished when one or both copies of the BACE1 gene were eliminated. This suggests that BACE1's cleavage of APP facilitates activity-dependent synaptic modifications, potentially through the production of APP intracellular domain (AICD) via β-CTF, rather than amyloid-β (Aβ) or soluble APPα (sAPPα). These findings highlight a physiological mechanism where BACE1-mediated APP processing leading to β-CTF supports cognitive functions, potentially explaining the detrimental effects of BACE1 inhibitors on cognitive function in clinical trials.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigated the mechanism underlying Congenital NAD Deficiency Disorder (CNDD) using a mouse model with loss of function of the HAAO enzyme which mediates a key step in the NAD de novo synthesis pathway. This study builds on the observation that the kynurenine pathway is required in the conceptus, as HAAO null embryos are sensitive to maternal deficiency of NAD precursors (vitamin B3) and tryptophan, and narrows the window of sensitivity to a 3 day period.

      An important finding is that de novo NAD synthesis occurs in an extra-embryonic tissue, the visceral yolk sac, before the liver develops in the embryo. It is suggested that lack of this yolk sac activity leads to impaired NAD supply in the embryo leading to structural abnormalities found later in development.

      Strengths:

      Previous studies show a requirement for HAOO activity for normal development of the embryos develop abnormalities under conditions of maternal vitamin B3 deficiency, indicating a requirement for NAD synthesis in the conceptus. Analysis of scRNA-seq datasets combined with metabolite analysis of yolk sac tissue shows that the NAD synthesis pathway is expressed and functional in the yolk sac from E10.5 onwards (prior to liver development).

      HAOO enzyme assay enabled quantification of enzyme activity in relevant tissues including liver (from E12.5), embryo, placenta and yolk sac (from E11.5).<br /> Comprehensive metabolite analysis of the NAD synthesis pathway supports the predicted effects of HAOO knockout and provides analysis of yolk sac, placenta and embryo at a series of stages.

      The dietary study (with lower vitamin B3 in maternal diet from E7.5-10.5) is an incremental addition to previous studies which imposed similar restrictions from E7.5-12.5. Nevertheless, this emphasises the importance of the synthesis pathway on the conceptus at stages before liver activity is prominent.

      Weaknesses:

      The current dietary study narrows the period when deficiency can cause malformations (analysed at E18.5), and altered metabolite profiles (eg, increased 3HAA, lower NAD) are detected in yolk sac and embryo at E10.5.

      More importantly, there is still a question of whether in addition to the yolks sac, there is HAAO activity within the embryo itself has been assayed as early as E11.5, with minimal activity prior to E12.5 (when it is assayed in liver). These findings support the hypothesis that within the conceptus (embryo, chorioallantoic placenta and visceral yok sac) the embryo is unlikely to be the site of NAD synthesis prior to liver development.

      Evidence for lack of function of the NAD synthesis pathway in the embryos itself from kynurenine at E7.5-10.5 comes from reanalysis of scRNA-seq. This suggests low or absent expression of HAAO in the embryo prior to E10.5 (corresponding to the period when the authors have demonstrated that de novo NAD synthesis in the conceptus is needed). The caveat to this conclusion is that additional analysis of RNA and/or protein expression in the embryos at E7.5-10.5 has not been performed to validate the scRNA-seq data.

    1. Reviewer #1 (Public review):

      In this paper by Brickwedde et al., the authors observe an increase in posterior alpha when anticipating auditory as opposed to visual targets. The authors also observe an enhancement in both visual and auditory steady-state sensory evoked potentials in anticipation of auditory targets, in correlation with enhanced occipital alpha. The authors conclude that alpha does not reflect inhibition of early sensory processing, but rather orchestrates signal transmission to later stages of the sensory processing stream. However, there are several major concerns that need to be addressed in order to draw this conclusion.

      First, I am not convinced that the frequency tagging method and the associated analyses are adequate for dissociating visual vs auditory steady-state sensory evoked potentials.

      Second, if the authors want to propose a general revision for the function of alpha, it would be important to show that alpha effects in the visual cortex for visual perception are analogous to alpha effects in the auditory cortex for auditory perception.

      Third, the authors propose an alternative function for alpha - that alpha orchestrates signal transmission to later stages of the sensory processing stream. However, the supporting evidence for this alternative function is lacking. I will elaborate on these major concerns below.

      (1) Potential bleed-over across frequencies in the spectral domain is a major concern for all of the results in this paper. The fact that alpha power, 36Hz and 40Hz frequency-tagged amplitude and 4Hz intermodulation frequency power is generally correlated with one another amplifies this concern. The authors are attaching specific meaning to each of these frequencies, but perhaps there is simply a broadband increase in neural activity when anticipating an auditory target compared to a visual target?

      (2) Moreover, 36Hz visual and 40Hz auditory signals are expected to be filtered in the neocortex. Applying standard filters and Hilbert transform to estimate sensory evoked potentials appears to rely on huge assumptions that are not fully substantiated in this paper. In Figure 4, 36Hz "visual" and 40Hz "auditory" signals seem largely indistinguishable from one another, suggesting that the analysis failed to fully demix these signals.

      (3) The asymmetric results in the visual and auditory modalities preclude a modality-general conclusion about the function of alpha. However, much of the language seems to generalize across sensory modalities (e.g., use of the term 'sensory' rather than 'visual').

      (4) In this vein, some of the conclusions would be far more convincing if there was at least a trend towards symmetry in source-localized analyses of MEG signals. For example, how does alpha power in the primary auditory cortex (A1) compare when anticipating auditory vs visual target? What do the frequency-tagged visual and auditory responses look like when just looking at the primary visual cortex (V1) or A1?

      (5) Blinking would have a huge impact on the subject's ability to ignore the visual distractor. The best thing to do would be to exclude from analysis all trials where the subjects blinked during the cue-to-target interval. The authors mention that in the MEG experiment, "To remove blinks, trials with very large eye-movements (> 10 degrees of visual angle) were removed from the data (See supplement Fig. 5)." This sentence needs to be clarified since eye-movements cannot be measured during blinking. In addition, it seems possible to remove putative blink trials from EEG experiments as well, since blinks can be detected in the EEG signals.

      (6) It would be interesting to examine the neutral cue trials in this task. For example, comparing auditory vs visual vs neutral cue conditions would be indicative of whether alpha was actively recruited or actively suppressed. In addition, comparing spectral activity during cue-to-target period on neutral-cue auditory correct vs incorrect trials should mimic the comparison of auditory-cue vs visual-cue trials. Likewise, neutral-cue visual correct vs incorrect trials should mimic the attention-related differences in visual-cue vs auditory-cue trials.

      (7) In the abstract, the authors state that "This implies that alpha modulation does not solely regulate 'gain control' in early sensory areas but rather orchestrates signal transmission to later stages of the processing stream." However, I don't see any supporting evidence for the latter claim, that alpha orchestrates signal transmission to later stages of the processing stream. If the authors are claiming an alternative function to alpha, this claim should be strongly substantiated.

    1. Reviewer #1 (Public review):

      Summary:

      The authors explore associations between plasma metabolites and glaucoma, a primary cause of irreversible vision loss worldwide. The study relies on measurements of 168 plasma metabolites in 4,658 glaucoma patients and 113,040 controls from the UK Biobank. The authors show that metabolites improve the prediction of glaucoma risk based on polygenic risk score (PRS) alone, albeit weakly. The authors also report a "metabolomic signature" that is associated with a reduced risk (or "resilience") for developing glaucoma among individuals in the highest PRS decile (reduction of risk by an estimated 29%). The authors highlight the protective effect of pyruvate, a product of glycolysis, for glaucoma development and show that this molecule mitigates elevated intraocular pressure and optic nerve damage in a mouse model of this disease.

      Strengths:

      This work provides additional evidence that glycolysis may play a role in the pathophysiology of glaucoma. Previous studies have demonstrated the existence of an inverse relationship between intraocular pressure and retinal pyruvate levels in animal models (Hader et al. 2020, PNAS 117(52)) and pyruvate supplementation is currently being explored for neuro-enhancement in patients with glaucoma (De Moraes et al. 2022, JAMA Ophthalmology 140(1)). The study design is rigorous and relies on validated, standard methods. Additional insights gained from a mouse model are valuable.

      Weaknesses:

      Caution is warranted when examining and interpreting the results of this study. Among all participants (cases and controls) glaucoma status was self-reported, determined on the basis of ICD codes or previous glaucoma laser/surgical therapy. This is problematic as it is not uncommon for individuals in the highest PRS decile to have undiagnosed glaucoma (as shown in previous work by some of the authors of this article). The authors acknowledge a "relatively low glaucoma prevalence in the highest decile group" but do not explore how undiagnosed glaucoma may affect their results. This also applies to all controls selected for this study. The authors state that "50 to 70% of people affected [with glaucoma] remain undiagnosed". Therefore, the absence of self-reported glaucoma does not necessarily indicate that the disease is not present. Validation of the findings from this study in humans is, therefore, critical. This should ideally be performed in a well-characterized glaucoma cohort, in which case and control status has been assessed by qualified clinicians.

      The authors indicate that within the top decile of PRS participants with glaucoma are more likely to be of white ethnicity, while they are more likely to be of Black and Asian ethnicity if they are in the bottom half of PRS. Have the authors explored how sensitive their predictions are to ethnicity? Since their cohort is predominantly of European ancestry (85.8%), would it make sense to exclude other ethnicities to increase the homogeneity of the cohort and reduce the risk for confounders that may not be explicitly accounted for?

      The authors discuss the importance of pyruvate, and lactate for retinal ganglion cell survival, along with that of several lipoproteins for neuroprotection. However, there is a distinction to be made between locally produced/available glycolysis end products and lipoproteins and those circulating in the blood. It may be useful to discuss this in the manuscript, and for the authors to explore if plasma metabolites may be linked to metabolism that takes place past the blood-retinal barrier.

    1. Reviewer #1 (Public review):

      Summary:

      The study addresses how faces and bodies are integrated in two STS face areas revealed by fMRI in the primate brain. It builds upon recordings and analysis of the responses of large populations of neurons to three sets of images, that vary face and body positions. These sets allowed the authors to thoroughly investigate invariance to position on the screen (MC HC), to pose (P1 P2), to rotation (0 45 90 135 180 225 270 315), to inversion, to possible and impossible postures (all vs straight), to the presentation of head and body together or in isolation. By analyzing neuronal responses, they found that different neurons showed preferences for body orientation, head orientation, or the interaction between the two. By using a linear support vector machine classifier, they show that the neuronal population can decode head-body angle presented across orientations, in the anterior aSTS patch (but not middle mSTS patch), except for mirror orientation.

      Strengths:

      These results extend prior work on the role of Anterior STS fundus face area in face-body integration and its invariance to mirror symmetry, with a rigorous set of stimuli revealing the workings of these neuronal populations in processing individuals as a whole, in an important series of carefully designed conditions.

      Minor issues and questions that could be addressed by the authors:

      (1) Methods. While monkeys certainly infer/recognize that individual pictures refer to the same pose with varying orientations based on prior studies (Wang et al.), I am wondering whether in this study monkeys saw a full rotation of each of the monkey poses as a video before seeing the individual pictures of the different orientations, during recordings.

      (2) Experiment 1. The authors mention that neurons are preselected as face-selective, body-selective, or both-selective. Do the Monkey Sum Index and ANOVA main effects change per Neuron type?

      (3) I might have missed this information, but the correlation between P1 and P2 seems to not be tested although they carry similar behavioral relevance in terms of where attention is allocated and where the body is facing for each given head-body orientation.

      (4) Is the invariance for position HC-MC larger in aSTS neurons compared to mSTS neurons, as could be expected from their larger receptive fields?

      (5) L492 "The body-inversion effect likely results from greater exposure to upright than inverted bodies during development". Monkeys display more hanging upside-down behavior than humans, however, does the head appear more tilted in these natural configurations?

      (6) Methods in Experiment 1. SVM. How many neurons are sufficient to decode the orientation?

      (7) Figure 3D 3E. Could the authors please indicate for each of these neurons whether they show a main effect of face, body, or interaction, as well as their median corrected correlation to get a flavor of these numbers for these examples?

      (8) Methods and Figure 1A. It could be informative to precise whether the recordings are carried in the lateral part of the STS or in the fundus of the STS both for aSTS and mSTS for comparison to other studies that are using these distinctions (AF, AL, MF, ML).

      Wang, G., Obama, S., Yamashita, W. et al. Prior experience of rotation is not required for recognizing objects seen from different angles. Nat Neurosci 8, 1768-1775 (2005). https://doi-org.insb.bib.cnrs.fr/10.1038/nn1600

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors describe a new computational method (SegPore), which segments the raw signal from nanopore-direct RNA-Seq data to improve the identification of RNA modifications. In addition to signal segmentation, SegPore includes a Gaussian Mixture Model approach to differentiate modified and unmodified bases. SegPore uses Nanopolish to define a first segmentation, which is then refined into base and transition blocks. SegPore also includes a modification prediction model that is included in the output. The authors evaluate the segmentation in comparison to Nanopolish and Tombo, and they evaluate the impact on m6A RNA modification detection using data with known m6A sites. In comparison to existing methods, SegPore appears to improve the ability to detect m6A, suggesting that this approach could be used to improve the analysis of direct RNA-Seq data.

      Strengths:

      SegPore addresses an important problem (signal data segmentation). By refining the signal into transition and base blocks, noise appears to be reduced, leading to improved m6A identification at the site level as well as for single-read predictions. The authors provide a fully documented implementation, including a GPU version that reduces run time. The authors provide a detailed methods description, and the approach to refine segments appears to be new.

      Weaknesses:

      In addition to Nanopolish and Tombo, f5c and Uncalled4 can also be used for segmentation, however, the comparison to these methods is not shown. The overall improvement in accuracy appears to be relatively small. The run time and resources that are required to run SegPore are not shown, however, it appears that the GPU version is essential, which could limit the application of this method in practice. The method was only applied to data from the RNA002 direct RNA-Sequencing version, which is not available anymore, currently, it remains unclear if the methods still work on RNA004.

    1. Reviewer #1 (Public review):

      Summary:

      Insects inhabit diverse environments and have neuroanatomical structures appropriate to each habitat. Although the molecular mechanism of insect neural development has been mainly studied in Drosophila, the beetle, Tribolium castaneum has been introduced as another model to understand the differences and similarities in the process of insect neural development. In this manuscript, the authors focused on the origin of the central complex. In Drosophila, type II neuroblasts have been known as the origin of the central complex. Then, the authors tried to identify those cells in the beetle brain. They established a Tribolium fez enhancer trap line to visualize putative type II neuroblasts and successfully identified 9 of those cells. In addition, they also examined expression patterns of several genes that are known to be expressed in the type II neuroblasts or their lineage in Drosophila. They concluded that the putative type II neuroblasts they identified were type II neuroblasts because those cells showed characteristics of type II neuroblasts in terms of genetic codes, cell diameter, and cell lineage.

      Strengths:

      The authors established a useful enhancer trap line to visualize type II neuroblasts in Tribolium embryos. Using this tool, they have identified that there are 9 type II neuroblasts in the brain hemisphere during embryonic development. Since the enhancer trap line also visualized the lineage of those cells, the authors found that the lineage size of the type II neuroblasts in the beetle is larger than that in the fly. They also showed that several genetic markers are also expressed in the type II neuroblasts and their lineages as observed in Drosophila.

      Comments on revisions:

      The revisions have improved the manuscript greatly. However, I still have some concerns about the lack of examination of the expression of NB markers. Without examining the expression of at least one unequivocal neuroblast marker, no one can say confidently that it is a neuroblast. However, it is acknowledged that such a marker is currently not available for Tribolium.

    1. Reviewer #2 (Public review):

      Summary:

      In the work by Scerbo et al, the authors aim to better understand the open question of what factors constrain cells that are genetically predisposed to form cancer (e.g. those with a potentially cancer-causing mutation like activated Ras) to only infrequently undergo this malignant transformation, with a focus on the influence of embryonic or pluripotency factors (e.g. VENTX/NANOG). Using genetically defined zebrafish models, the authors can inducibly express the KRASG12V oncogene using a combination of Cre/Lox transgenes further controlled by optogenetically inducible Cre-activated (CreER fusion that becomes active with light-induced uncaging of a tamoxifen-analogue in a targeted region of the zebrafish embryo). They further show that transient expression and activation of a pluripotency factor (e.g. Ventx fused to a GR receptor that is activated with addition of dexamethasone) must occur in the model in order for overgrowth of cells to occur. This paper describes a genetically tractable and modifiable system for studying the requirements for inducing cellular hyperplasia in a whole organism by combining overexpression of canonical genetic drivers of cancer (like Ras) with epigenetic modifiers (like specific transcription factors), which could be used to study an array of combinations and temporal relationships of these cancer drivers/modifiers.

      Strengths:

      The combination of Cre/lox inducible gene expression with potentially localized optogenetic induction (CreER and uncaging of tamoxifen analogues) of recombination as well as inducible activation of a transcription factor expressed via mRNA injection (GR-fusion to the TF and dex induction) offers a flexible system for manipulating cell growth, identity, and transcriptional programs. With this system, the authors establish that Ras activation and at least transient Ventx overexpression are together required to induce a hyperproliferative phenotype in zebrafish tissues.

      The ability to live image embryos over the course of days with inducible fluorophores indicating recombination events and transgene overexpression offers a tractable in vivo system for studying hyperplastic cells in the context of a whole organism.

      The transplant experiments demonstrate the ability of the induced hyperplastic cells to grow upon transfer to new host.

      Weaknesses:

      There is minimal quantitation of key aspects of the system, most critically in the efficiency of activation of the Ras-TFP fusion (Fig 1) in, purportedly, a single cell. The authors note "On average the oncogene is then activated in a single cell, identified within ~1h by the blue fluorescence of its nuclear marker) but no additional quantitative information is provided. For a system that is aimed at "a statistically relevant single-cell<br /> tracking and characterization of the early stages of tumorigenesis", such information seems essential.

      The authors indicate that a single cell is "initiated" (Fig 2) using the laser optogenetic technique, but without definitive genetic lineage tracing, it is not possible to conclude that cells expressing TFP distant from the target site near the ear are daughter cells of the claimed single "initiated" cell. A plausible alternative explanation is 1) that the optogenetic targeting is more diffuse (i.e. some of the light of the appropriate wavelength hits other cells nearby due to reflection/diffraction), so these adjacent cells are additional independent "initiated" cells or 2) that the uncaged tamoxifen analogue can diffuse to nearby cells and allow for CreER activation and recombination. In Fig 2B, the claim is made that "the activated cell has divided, giving rise to two cells" - unless continuously imaged or genetically traced, this is unproven. In addition, it appears that Figures S3 and S4 are showing that hyperplasica can arise in many different tissues (including intestine, pancreas, and liver, S4C) with broad Ras + Ventx activation (while unclear from the text, it appears these embryos were broadly activated and were not "single cell activated using the set-up in Fig 1E? This should be clarified in the manuscript). In Fig S7 where single cell activation and potential metastasis is discussed, similar gut tissues have TFP+ cells that are called metastatic, but this seems consistent with the possibility that multiple independent sites of initiation are occurring even when focal activation is attempted.

      Although the hyperplastic cells are transplantable (Fig 4), the use of the term "cells of origin of cancer" or metastatic cells should be viewed with care in the experiments showing TFP+ cells (Fig 1, 2, 3) in embryos with targeted activation for the reasons noted above.

      Comments on latest version:

      The authors have clarified and strengthened a number of important conclusions/claims.

      In Figure 4, the requirement for both kRas and VentX activation for successful transplant and survival of transplanted activated cells does indeed support the need for both MAPK activation and the reprogramming factor. A limitation remains that, as in a tail vein injection in a mouse model, this may be a better measure of the ability of disbursed cells to survive in the embryo, and not "native" metastatic behavior as cells may just lodge in ectopic sites, and survive, but not exhibit complete metastatic potential. Still, these are interesting and important results about the combination effects of an oncogene and a reprogramming factor.

      Further, the addition of Fig 2A and additional explanation in the text on the specificity of the light-induced activation of the Ras and/or VentX supports that transgene induction is indeed limited to one or a few cells. We agree that visual tracking of daughter cells over days is technically challenging and will be a revealing and exciting potential addition in the future.

    1. Reviewer #1 (Public review):

      When different groups (populations, species) are presented with similar environmental pressures, how similar are the ultimate targets (genes, pathways)? This study sought to illuminate this broader question via experimental evolution in D. simulans and quantifying gene-expression changes, specifically in the context of standing genetic variation (and not de novo mutation). Ultimately, the authors showed pleiotropy and standing-genetic variation play a significant role in the "predictability" of evolution.

      The results of this manuscript look at the interplay between pleiotropy, standing genetic variation and parallelism (i.e. predictability of evolution) in gene expression. Ultimately, their results suggest that (a) pleiotropic genes typically have a smaller range in variation/expression, and (b) adaptation to similar environments tends to favor changes in pleiotropic genes, which leads to parallelism in mechanisms (though not dramatically). However, it is still uncertain how much parallelism is directly due to pleiotropy, instead of a complex interplay between them and ancestral variation.

    1. Reviewer #1 (Public review):

      Summary

      The authors conducted a study on one of the fundamental research topics in neuroscience: neural mechanisms of credit assignment. Building on the original studies of Walton and his colleagues and subsequent studies on the same topic, the authors extended the research into the delayed credit assignment problem with clever task design, which compared the non-delayed (direct) and delayed (indirect) credit assignment processes. Their primary goal was to elucidate the neural basis of these processes in humans, advancing our understanding beyond previous studies.

      Major Strengths and Considerations

      Strengths:

      (1) Innovative task design distinguishing between direct and indirect credit assignment.<br /> (2) Use of sophisticated multivariate pattern analysis to identify neural correlates of pending representations.<br /> (3) Well-executed study with clear presentation of results.<br /> (4) Extension of previous research to human subjects, providing valuable comparative insights.

      Considerations for Future Research:

      (1) The task design, while clear and effective, might be further developed to capture more real-world complexity in credit assignment.<br /> (2) There's potential for deeper exploration of the role of task structure understanding in credit assignment processes.<br /> (3) The interpretation of lateral orbitofrontal cortex (lOFC) involvement could be expanded to consider its role in both credit assignment and task structure representation.

      Achievement of Aims and Support of Conclusions

      The authors successfully achieved their aim of investigating direct and indirect credit assignment processes in humans. Their results provide valuable insights into the neural representations involved in these processes. The study's conclusions are generally well-supported by the data, particularly in identifying neural correlates of pending representations crucial for delayed credit assignment.

      Impact on the Field and Utility of Methods

      This study makes a significant contribution to the field of credit assignment research by bridging animal and human studies. The methods, particularly the multivariate pattern analysis approach, provide a robust template for future investigations in this area. The data generated offers valuable insights for researchers comparing human and animal models of credit assignment, as well as those studying the neural basis of decision-making and learning.

      The study's focus on the lOFC and its role in credit assignment adds to our understanding of this brain region's function

      Additional Context and Future Directions

      (1) Temporal ambiguity in credit assignment: While the current design provides clear task conditions, future studies could explore more ambiguous scenarios to further reflect real-world complexity.

      (2) Role of task structure understanding: The difference in task comprehension between human subjects in this study and animal subjects in previous studies offers an interesting point of comparison.

      (3) The authors used a sophisticated method of multivariate pattern analysis to find the neural correlate of the pending representation of the previous choice, which will be used for credit assignment process in the later trials. The authors tend to use expressions that these representations are maintained throughout this intervening period. However the analysis period is specifically at the feedback period, which is irrelevant for the credit assignment of the immediately preceding choice. This task period can interfere with the interference of ongoing credit assignment process. Thus, rather than the passive process of maintaining the information of the previous choice, the activity of this specific period can mean the active process of protecting the information from interfering and irrelevant information. It would be great if the authors could comment on this important interpretational issue.

      (4) Broader neural involvement: While the focus on specific regions of interest (ROIs) provided clear results, future studies could benefit from a whole-brain analysis approach to provide a more comprehensive understanding of the neural networks involved in credit assignment.

      Comments after the revision:

      The authors have adequately addressed the majority of concerns raised in my previous review. The manuscript has demonstrably improved as a result of these revisions and represents a valuable contribution to the literature on credit assignment.

      However, some limitations persist that, while not readily resolvable within the scope of the current study, warrant attention. Specifically, the investigation focuses primarily on the temporal dimension of credit assignment. In real-world scenarios, the complexity of credit assignment extends beyond temporal distance to encompass the inherent ambiguity of causal attribution arising from the presence of multiple potential causal events. Resolving this ambiguity necessitates a form of structural understanding of the environment, a capacity presumably possessed by humans and animals. While the experimental design of this study provides explicit cues regarding the structure of the environment, deciphering such structure in natural settings is a crucial component of the credit assignment process.<br /> Future research should prioritize the investigation of credit assignment within more ecologically valid contexts, focusing on the role of structural understanding in navigating the causal ambiguity inherent in real-world environments. Addressing this aspect will be crucial for developing a more complete and nuanced understanding of credit assignment mechanisms.

      In addition, the newly added whole-brain searchlight decoding analysis provides an important nuance regarding the neural substrates of credit assignment (Figure S7). The results reveal not only activity in the lateral orbitofrontal cortex (lOFC), but also, and more robustly, in the medial orbitofrontal cortex/ventromedial prefrontal cortex (mOFC/vmPFC) specifically during the "indirect transition condition" and not the "direct transition condition." This finding suggests a potentially more significant role for mOFC/vmPFC in processing complex, non-immediate credit assignment scenarios. This nuance should be explicitly noted to appreciate the complexity of the neural mechanisms at play.

    1. Reviewer #2 (Public review):

      This manuscript determines how PA28g, a proteasome regulator that is overexpressed in tumors, and C1QBP, a mitochondrial protein for maintaining oxidative phosphorylation that plays a role in tumor progression, interact in tumor cells to promote their growth, migration and invasion. Evidence for the interaction and its impact on mitochondrial form and function was provided although it is not particularly strong.

      The revised manuscript corrected mislabeled data in figures and provides more details in figure legends. Misleading sentences and typos were corrected. However, key experiments that were suggested in previous reviews were not done, such as making point mutations to disrupt the protein interactions and assess the consequence on protein stability and function. Results from these experiments are critical to determine whether the major conclusions are fully supported by the data.

      The second revision of the manuscript included the proximity ligation data to support the PA28g-C1QBP interaction in cells. However, the method and data were not described in sufficient detail for readers to understand. The revision also includes the structural models of the PA28g-C1QBP complex predicted by AlphaFold. However, the method and data were not described with details for readers to understand how this structural modeling was done, what is the quality of the resulting models, and the physical nature of the protein-protein interaction such as what kind of the non-covalent interactions exist in the interface of the protein complexes. Furthermore, while the interactions mediated by the protein fragments were tested by pull-down experiments, the interactions mediated by the three residues were not tested by mutagenesis and pull-down experiments. In summary, the revision was improved, but further improvement is needed

    1. Reviewer #1 (Public review):

      Summary:

      Barlow and coauthors utilized the high-parameter imaging platform of CODEX to characterize the cellular composition of immune cells in situ from tissues obtained from organ donors with type 1 diabetes, subjects presented with autoantibodies who are at elevated risk, or non-diabetic organ donor controls. The panels used in this important study were based up prior publications using this technology, as well a priori and domain specific knowledge of the field by the investigators. Thus, there was some bias in the markers selected for analysis. The authors acknowledge that these types of experiments may be complemented moving forward with the inclusion of unbiased tissue analysis platforms that are emerging that can conduct a more comprehensive analysis of pathological signatures employing emerging technologies for both high-parameter protein imaging and spatial transcriptomics.

      Strengths:

      In terms of major findings, the authors provide important confirmatory observations regarding a number of autoimmune-associated signatures reported previously. The high parameter staining now increases the resolution for linking these features with specific cellular subsets using machine learning algorithms. These signatures include a robust signature indicative of IFN-driven responses that would be expected to induce a cytotoxic T cell mediated immune response within the pancreas. Notable findings include the upregulation of indolamine 2,3-dioxygenase-1 in the islet microvasculature. Furthermore, the authors provide key insights as to the cell:cell interactions within organ donors, again supporting a previously reported interaction between presumably autoreactive T and B cells.

      Weaknesses:

      These studies also highlight a number of molecular pathways that will require additional validation studies to more completely understand whether they are potentially causal for pathology, or rather, epiphenomenon associated with increased innate inflammation within the pancreas of T1D subjects. Given the limitations noted above, the study does present a rich and integrated dataset for analysis of enriched immune markers that can be segmented and annotated within distinct cellular networks. This enabled the authors to analyze distinct cellular subsets and phenotypes in situ, including within islets that peri-islet infiltration and/or intra-islet insulitis.

      Despite the many technical challenges and unique organ donor cohort utilized, the data are still limited in terms of subject numbers - a challenge in a disease characterized by extensive heterogeneity in terms of age of onset and clinical and histopathological presentation. Therefore, these studies cannot adequately account for all of the potential covariates that may drive variability and alterations in the histopathologies observed (such as age of onset, background genetics, and organ donor conditions). In this study, the manuscript and figures could be improved in terms of clarifying how variable the observed signatures were across each individual donor, with the clear notion that non-diabetic donors will present with some similar challenges and variability.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have thoroughly addressed all my concerns. The revised version of the current manuscript is solid now. It's very interesting that there is bi-potential ability of human CD29/CD56+ myogenic progenitors. The current study substantiates the medical translational potential for human CD29/CD56+ myogenic progenitors in promoting tendon regeneration.

      Strengths:

      CD29+/CD56+ stem/progenitor cells were transplanted into immunodeficient mice with a tendon injury, and human cells expressing tenogenic markers contributed to the repair of the injured tendon. Furthermore, the authors also show better tendon biomechanical properties and plantarflexion force after transplantation.

      Weaknesses:

      None. The authors have thoroughly addressed all my concerns.

    1. Reviewer #1 (Public review):

      The fundamental claim of the manuscript is that rRNA genes experience substitutions much too quickly, given that they are a multi-copy gene system. As clarified by the authors in their response, and as I think is relatively clear in the manuscript, they are collapsing all copies of the rRNA array down. They first quantify polymorphism (in this expanded definition, where polymorphism means variable at a given site across any copy). The authors find elevated levels of heterozygosity in rRNA genes compared to single copy genes, which isn't surprising, given that there is a substantially higher target size; that being said, the increase in polymorphism is smaller than the increase in target size. They then look at substitutions between mouse species and also between human and chimp, and argue that the substitution rate is too fast compared to single copy genes in many cases.

      [Editors' note: we invite readers to consult the review in full from the previous version of the submission: https://doi.org/10.7554/eLife.99992.2.sa1]

    1. Reviewer #1 (Public review):

      The revision by Ruan et al clarifies several aspects of the original manuscript that were difficult to understand, and I think it presents some useful and interesting ideas. I understand that the authors are distinguishing their model from the standard Wright-Fisher model in that the population size is not imposed externally, but is instead a consequence of the stochastic reproduction scheme. Here, the authors chose a branching process but in principle any Markov chain can probably be used. Within this framework, the authors are particularly interested in cases where the variance in reproductive success changes through time, as explored by the DDH model, for example. They argue with some experimental results that there is a reason to believe that the variance in reproductive success does change over time.

      One of the key aspects of the original manuscript that I want to engage with is the DDH model. As the authors point out, their equations 5 and 6 are assumptions, and not derived from any principles. In essence, the authors are positing that that the variance in reproductive success, given by 6, changes as a function of the current population size. There is nothing "inherent" to a negative binomial branching mechanism that results in this: in fact, the the variance in offspring number could in principle be the same for all time. As relates to models that exist in the literature, I believe that this is the key difference: unlike Cannings models, the authors allow for a changing variance in reproduction through time.

      This is, of course, an interesting thing to consider, and I think that the situation the authors point out, in which drift is lower at small population sizes and larger at large population sizes, is not appreciated in the literature. However, I am not so sure that there is anything that needs to be resolved in Paradox 1. A very strong prediction of that model is that Ne and N could be inversely related, as shown by the blue line in Fig 3b. This suggests that you could see something very strange if you, for example, infer a population size history using a Wright-Fisher framework, because you would infer a population *decline* when there is in fact a population *expansion*. However, as far as I know there are very few "surprising population declines" found in empirical data. An obvious case where we know there is very rapid population growth is human populations; I don't think I've ever seen an inference of recent human demographic history from genetic data that suggests anything other than a massive population expansion. While I appreciate the authors empirical data supporting their claim of Paradox 1 (more on the empirical data later), it's not clear to me that there's a "paradox" in the literature that needs explaining so much as this is a "words of caution about interpreting inferred effective population sizes". To be clear, I think those words of caution are important, and I had never considered that you might be so fundamentally misled as to infer decline when there is growth, but calling it a "paradox" seems to suggest that this is an outstanding problem in the literature, when in fact I think the authors are raising a *new* and important problem. Perhaps an interesting thing for the authors to do to raise the salience of this point would be to perform simulations under this model and then infer effective population sizes using e.g. dadi or psmc and show that you could identify a situation in which the true history is one of growth, but the best fit would be one of decline

      The authors also highlight that their approach reflects a case where the population size is determined by the population dynamics themselves, as opposed to being imposed externally as is typical in Cannings models. I agree with the authors that this aspect of population regulation is understudied. Nonetheless, several manuscripts have dealt with the case of population genetic dynamics in populations of stochastically fluctuating size. For example, Kaj and Krone (2003) show that under pretty general conditions you get something very much like a standard coalescent; for example, combining their theorem 1 with their arguments on page 36 and 37, they find that exchangeable populations with stochastic population dynamics where the variance does not change with time still converge to exactly the coalescent you would expect from Cannings models. This is strongly suggestive that the authors key result isn't about stochastic population dynamics per se, but instead related to arguing that variance in reproductive success could change through time. In fact, I believe that the result of Kaj and Krone (2003) is substantially more general than the models considered in this manuscript. That being said, I believe that the authors of this manuscript do a much better job of making the implications for evolutionary processes clear than Kaj and Krone, which is important---it's very difficult to understand from Kaj and Krone the conditions under which effective population sizes will be substantially impacted by stochastic population dynamics.

      I also find the authors exposition on Paradox 3 to be somewhat strange. First of all, I'm not sure there's a paradox there at all? The authors claim that the lack of dependence of the fixation probability on Ne is a paradox, but this is ultimately not surprising---fixation of a positively selected allele depends mostly on escaping the boundary layer, which doesn't really depend on the population size (see Gillespie's book "The Causes of Molecular Evolution" for great exposition on boundary layer effects). Moreover, the authors *use a Cannings-style argument* to get gain a good approximation of how the fixation probability changes when there is non-Poisson reproduction. So it's not clear that the WFH model is really doing a lot of work here. I suppose they raise the interesting point that the particularly simple form of p(fix) = 2s is due to the assumption that variance in offspring is equal to 1.

      In addition, I raised some concerns about the analysis of empirical results on reproductive variance in my original review, and I don't believe that the authors responded to it at all. I'm not super worried about that analysis, but I think that the authors should probably respond to me.

      Overall, I feel like I now have a better understanding of this manuscript. However, I think it still presents its results too strongly: Paradox 1 contains important words of caution that reflect what I am confident is an under appreciated possibility, and Paradox 3 is, as far as I'm concerned, not a paradox at all. I have not addressed Paradox 2 very much because I think that another reviewer had solid and interesting comments on that front and I am leaving it to them. That being said, I do think Paradox 2 actually presents a deep problem in the literature and that the authors' argument may actually represent a path toward a solution.

      This manuscript can be a useful contribution to the literature, but as it's presented at the moment, I think most of it is worded too strongly and it continues to not engage appropriately with the literature. Theoretical advances are undoubtedly important, and I think the manuscript presents some interesting things to think about, but ultimately needs to be better situated and several of the claims strongly toned down.

      References:<br /> Kaj, I., & Krone, S. M. (2003). The coalescent process in a population with stochastically varying size. Journal of Applied Probability, 40(1), 33-48.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Janssens et al. addressed the challenge of mapping the location of transcriptionally unique cell types identified by single nuclei sequencing (snRNA-seq) data available through the Fly Cell Atlas. They identified 100 transcripts for head samples and 50 transcripts for fly body samples allowing identification of every unique cell type discovered through the Fly Cell Atlas. To map all of these cell types, the authors divided the fly body into head and body samples and used the Molecular Cartography (Resolve Biosciences) method to visualize these transcripts. This approach allowed them to build spatial tissue atlases of the fly head and body, to identify the location of previously unknown cell types and the subcellular localization of different transcripts. By combining snRNA-seq data from the Fly Cell Atlas with their spatially resolved transcriptomics (SRT) data, they demonstrated an automated cell type annotation strategy to identify uncharacterized clusters and infer their location in the fly body. This manuscript constitutes a proof-of-principle study to map the location of the cells identified by ever-growing single-cell transcriptomics datasets generated by others.

      Strengths:

      The authors used the Molecular Cartography (Resolve Biosciences) method to visualize 100 transcripts for head samples and 50 transcripts for fly body samples in high resolution. This method achieves high resolution by multiplexing a large number of transcript visualization steps and allows the authors to map the location of unique cell types identified by the Fly Cell Atlas.

      Weaknesses:

      Combining single-nuclei sequencing (snRNA-seq) data with spatially resolved transcriptomics (SRT) data is challenging, and the methods used by the authors in this study cannot reliably distinguish between cells, especially in brain regions where the processes of different neurons are clustered, such as neuropils. This means that a grid that the authors mark as a unique cell may actually be composed of processes from multiple cells.

      Comments on revisions:

      I believe the authors have improved the manuscript by addressing all the concerns and incorporating the suggestions raised by the reviewers. I have no further concerns or suggestions.

    1. Reviewer #1 (Public review):

      Summary:

      The significance of Notch in liver cancer has been inconsistently described to date. The authors conduct a PDX screen using JAG1 ab and identify 2 sensitive tumor models. Further characterization with bulk RNA seq, scRNA seq, and ATAC seq of these tumors was performed.

      Strengths:

      The reliance on an extensive panel of PDXs makes this study more definitive than prior studies.

      Gene expression analyses seem robust.

      Identification of a JAG1-dependent signature associated with hepatocyte differentiation is interesting.

      Weaknesses:

      The introduction is rather lengthy and not entirely accurate. HCC is a single cancer type/histology. There may be variants of histology (allusion to "mixed-lineage" is inaccurate as combined HCC-CCa are not conventionally considered HCC and are not treated as HCC in clinical practice as they are even excluded from HCC trials), but any cancer type can have differences in differentiation. Just state there are multiple molecular subtypes of this disease.

      There is minimal data on the PDXs, despite this being highlighted throughout the text. Clinical and possibly some molecular characterization of these cancers should be provided. It is also odd that the authors include only 35 HCC and then a varied sort of cancer histologies, which is peculiar given their prior statements regarding the heterogeneity of HCC.

      "super-responder" is not a meaningful term, I would eliminate this use as it has no clinical or scientific convention that I am aware of.

      The "expansion" of the PDX screen is poorly described. Why weren't these PDXs included in the first screen? This is quite odd as the responses in the initial screen were underwhelming. What was the denominator number of all PDXs that were assessed for JAG1 and NOTCH2 expression? This is important as it clarifies how relevant JAG1 inhibition would be to an unselected HCC population.

      Was there some kind of determination of the optimal dose or dose dependency for the JAG1 ab? The original description of the JAG1 ab was in mouse lungs, not malignant or liver cells. In addition, supplementary Figure 2D is missing. There needs to be data provided on the specificity of the human-specific JAG1 ab and the anti-NOTCH2 ab. I'm not familiar with these ab, and if they are not publicly accessible reagents, more transparency on this is needed. In addition, given the reliance of the entire paper on these antibodies, I would recommend orthogonal approaches (either chemical or genetic) to confirm the sensitivity and insensitivity of select PDXs to Notch inhibition.

      scRNA-seq data seems to add little to the paper and there is no follow-up of the findings. Are the low-expressing JAG1 cells eventually enriched in treated tumors contributing to disease recurrence?

      The discussion should be tempered. The finding of only 2 PDXs that are sensitive out of 45+ tumors treated or selected for indicates that JAG1/NOTCH2 inhibition is likely only effective in rare HCC.

    1. Reviewer #1 (Public review):

      Summary:

      This article investigates the phenotype of macrophages with a pathogenic role in arthritis, particularly focusing on arthritis induced by immune checkpoint inhibitor (ICI) therapy.

      Building on prior data from monocyte-macrophage coculture with fibroblasts, the authors hypothesized a unique role for the combined actions of prostaglandin PGE2 and TNF. The authors studied this combined state using an in vitro model with macrophages derived from monocytes of healthy donors. They complemented this with single-cell transcriptomic and epigenetic data from patients with ICI-RA, specifically, macrophages sorted out of synovial fluid and tissue samples. The study addressed critical questions regarding the regulation of PGE2 and TNF: Are their actions co-regulated or antagonistic? How do they interact with IFN-γ in shaping macrophage responses?

      This study is the first to specifically investigate a macrophage subset responsive to the PGE2 and TNF combination in the context of ICI-RA, describes a new and easily reproducible in vitro model, and studies the role of IFNgamma regulation of this particular Mф subset.

      Strengths:

      Methodological quality: The authors employed a robust combination of approaches, including validation of bulk RNA-seq findings through complementary methods. The methods description is excellent and allows for reproducible research. Importantly, the authors compared their in vitro model with ex vivo single-cell data, demonstrating that their model accurately reflects the molecular mechanisms driving the pathogenicity of this macrophage subset.

      Weaknesses:

      Introduction: The introduction lacks a paragraph providing an overview of ICI-induced arthritis pathogenesis and a comparison with other types of arthritis. Including this would help contextualize the study for a broader audience.

      Results Section: At the beginning of the results section, the experimental setup should be described in greater detail to make an easier transition into the results for the reader, rather than relying just on references to Figure 1 captions.

      There is insufficient comparison between single-cell RNA-seq data from ICI-induced arthritis and previously published single-cell RA datasets. Such a comparison may include DEGs and GSEA, pathway analysis comparison for similar subsets of cells. Ideally, an integration with previous datasets with RA-tissue-derived primary monocytes would allow for a direct comparison of subsets and their transcriptomic features.

      While it's understandable that arthritis samples are limited in numbers and myeloid cell numbers, it would still be interesting to see the results of PGE2+TNF in vitro stimulation on the primary RA or ICI-RA macrophages. It would be valuable to see RNA-Seq signatures of patient cell reactivation in comparison to primary stimulation of healthy donor-derived monocytes.

      Discussion: Prior single-cell studies of RA and RA macrophage subpopulations from 2019, 2020, 2023 publications deserve more discussion. A thorough comparison with these datasets would place the study in a broader scientific context.<br /> Creating an integrated RA myeloid cell atlas that combines ICI-RA data into the RA landscape would be ideal to add value to the field.<br /> As one of the next research goals, TNF blockade data in RA and ICI-RA patients would be interesting to add to such an integrated atlas. Combining responders and non-responders to TNF blockade would help to understand patient stratification with the myeloid pathogenic phenotypes. It would be great to read the authors' opinion on this in the Discussion section.

      Conclusion: The authors demonstrated that while PGE2 maintains the inflammatory profile of macrophages, it also induces a distinct phenotype in simultaneous PGE2 and TNF treatment. The study of this specific subset in single-cell data from ICI-RA patients sheds light on the pathogenic mechanisms underlying this condition, however, how it compares with conventional RA is not clear from the manuscript.<br /> Given the substantial incidence of ICI-induced autoimmune arthritis, understanding the unique macrophage subsets involved for future targeting them therapeutically is an important challenge. The findings are significant for immunologists, cancer researchers, and specialists in autoimmune diseases, making the study relevant to a broad scientific audience.

    1. Reviewer #2 (Public review):

      Summary:

      The current article presents a new type of analytical approach to the sequential organisation of whale song units.

      Strengths:

      The detailed description of the internal temporal structure of whale songs is something that has been thus far lacking.

      Weaknesses:

      The conceptual and terminological bases of the paper are problematical and hamper comparison with other taxa, including humans. According to signal theory, codas are indexical rather than symbolic. They signal an individual's group identity. Borrowing from humans and linguistics, coda inter-group variation represents a case of accents - phonologically different varieties of the same call - not dialects, confirming they are an index. This raises serious doubt about whether alleged "symbolism" and similarity between whale and human vocal behaviour is factual. The same applies to the difference between ICIs (inter-click interval) and IOIs (inter-onset interval). If the two are equivalent, variation in click duration needs to be shown so small that can be considered negligible. This raises serious doubt about whether the alleged variation in whale codas is indeed rhythmic in nature and prevents future efforts for comparison with the vocal capacities of other species. The scope and relevance of this paper for the broader field is limited.

    1. Reviewer #1 (Public review):

      Weiler, Teichert, and Margrie systematically analyzed long-range cortical connectivity, using a retrograde viral tracing strategy to identify layer and region-specific cortical projections onto the primary visual, primary somatosensory, and primary motor cortices. Their analysis revealed several hundred thousand inputs into each region, with inputs originating from almost all cortical regions but dominated in number by connections within cortical sub-networks (e.g. anatomical modules). Generally, the relative areal distribution of contralateral inputs followed the distribution of corresponding ipsilateral inputs. The largest proportion of inputs originated from layer 6a cells, and this layer 6 dominance was more pronounced for contralateral than ipsilateral inputs, which suggests that these connections provide predominantly feedback inputs. The hierarchical organization of input regions was similar between ipsi- and contralateral regions, except for within-module connections, where ipsilateral connections were much more feed-forward than contralateral. These results contrast earlier studies which suggested that contralateral inputs only come from the same region (e.g. V1 to V1) and from L2/3 neurons. The conclusions of this paper are well-supported by the data and analysis, and useful follow-up analyses and discussions are present in the supplemental figures. Taken together, these results provide valuable data supporting a view of interhemispheric connectivity in which layer 6 neurons play an important role in providing modulatory feedback.

    1. Reviewer #1 (Public review):

      Summary:

      Lejeune et al. demonstrated sex-dependent differences in the susceptibility to MRSA infection. The authors demonstrated the role of the microbiota and sex hormones as potential determinants of susceptibility. Moreover, the authors showed that Th17 cells and neutrophils contribute to the sex hormone-dependent protection in female mice.

      Strengths:

      The role of microbiota was examined in various models (germ-free, co-housing, microbiota transplantation). The identification of responsible immune cells was achieved using several genetic knockouts and cell-specific depletion models. The involvement of sex hormones was clarified using ovariectomy and the FCG model.

      Weaknesses:

      The specific microbial species/strains responsible for the protection, as well as the mechanisms by which these bacteria regulate sex hormone-mediated protection, remain unclear. However, this does not diminish the conceptual significance of the study.

      Comments on revisions:

      The authors have adequately addressed my previous concerns, and the revised manuscript shows significant improvement.

    1. Reviewer #1 (Public review):

      Overall I found the approach taken by the authors to be clear and convincing. It is striking that the conclusions are similar to those obtained in a recent study using a different computational approach (finite state controllers), and lends confidence to the conclusions about the existence of an optimal memory duration. There are a few questions that could be expanded on in future studies:

      (1) Spatial encoding requirements

      The manuscript contrasts the approach taken here (reinforcement learning in a gridworld) with strategies that involve a "spatial map" such as infotaxis. However, the gridworld navigation algorithm has an implicit allocentric representation, since movement can be in one of four allocentric directions (up, down, left, right), and wind direction is defined in these coordinates. Future studies might ask if an agent can learn the strategy without a known wind direction if it can only go left/right/forward/back/turn (in egocentric coordinates). In discussing possible algorithms, and the features of this one, it might be helpful to distinguish (1) those that rely only on egocentric computations (run and tumble), (2) those that rely on a single direction cue such as wind direction, (3) those that rely on allocentric representations of direction, and (4) those that rely on a full spatial map of the environment.

      (2) Recovery strategy on losing the plume

      The authors explore several recovery strategies upon losing the plume, including backtracking, circling, and learned strategies, finding that a learned strategy is optimal. As insects show a variety of recovery strategies that can depend on the model of locomotion, it would be interesting in the future to explore under which conditions various recovery strategies are optimal and whether they can predict the strategies of real animals in different environments.

      (3) Is there a minimal representation of odor for efficient navigation?

      The authors suggest that the number of olfactory states could potentially be reduced to reduce computational cost. They show that reducing the number of olfactory states to 1 dramatically reduces performance. In the future it would be interesting to identify optimal internal representations of odor for navigation and to compare these to those found in real olfactory systems. Does the optimal number of odor and void states depend on the spatial structure of the turbulence as explored in Figure 5?

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Cao et al. examines an important but understudied question of how chronic exposure to heat drives changes in affective and social behaviors. It has long been known that temperature can be a potent driver of behaviors and can lead to anxiety and aggression. However, the neural circuitry that mediates these changes is not known. Cao et al. take on this question by integrating optical tools of systems neuroscience to record and manipulate bulk activity in neural circuits, in combination with a creative battery of behavior assays. They demonstrate that chronic daily exposure to heat leads to changes in anxiety, locomotion, social approach, and aggression. They identify a circuit from preoptic area (POA) to posterior paraventricular thalamus (pPVT) in mediating these behavior changes. The POA-PVT circuit increases activity during heat exposure. Further, manipulation of this circuit can drive affective and social behavioral phenotypes even in the absence of heat exposure. Moreover, silencing this circuit during heat exposure prevents the development of negative phenotypes. Overall the manuscript makes an important contribution to the understudied area of how ambient temperature shapes motivated behaviors.

      Strengths

      The use of state-of-the-art systems neuroscience tools (in vivo optogenetics and fiber photometry, slice electrophysiology), chronic temperature-controlled experiments, and a rigorous battery of behavioral assays to determine affective phenotypes. The optogenetic gain of function of affective phenotypes in the absence of heat, and loss of function in the presence of heat are very convincing manipulation data. Overall a significant contribution to the circuit-level instantiation of temperature induced changes in motivated behavior, and creative experiments.

      Weaknesses

      The authors have fully addressed all of my questions and concerns, with the exception of one comment. They mention that they did carry out measurements of core body temperature as a control during optogenetic experiments and did not see any effects. However, I could only find this reported in the text but could not find the data in the main or supplementary figures.

    1. Joint Public Review:

      Satoshi Yamashita et al., investigate the physical mechanisms driving tissue bending using the cellular Potts Model, starting from a planar cellular monolayer. They argue that apical length-independent tension control alone cannot explain bending phenomena in the cellular Potts Model, contrasting with previous works, particularly Vertex Models. They conclude that an apical elastic term, with zero rest value (due to endocytosis/exocytosis), is necessary to achieve apical constriction and that tissue bending can be enhanced by adding a supracellular myosin cable. Additionally, a very high apical elastic constant promotes planar tissue configurations, opposing bending.

      Strengths:

      - The finding of the required mechanisms for tissue bending in the cellular Potts Model provides a natural alternative for studying bending processes in situations with highly curved cells.

      - Despite viewing cellular delamination as an undesired outcome in this particular manuscript, the model's capability to naturally allow T1 events might prove useful for studying cell mechanics during out-of-plane extrusion.

      [Editors' note: The previous reviews have not been updated, as the changes to the manuscript were restricted to refining the text. The authors addressed all of the minor points raised by the reviewers. Some of the major points such as the lack of a summary quantification still stand. The previous reviews are here: https://doi.org/10.7554/eLife.93496.2.sa1]

    1. Reviewer #1 (Public review):

      Summary:

      Dopamine neurons contribute to motivated and motor behaviors in many ways, and ample recent evidence has suggested that distinct dopamine neuron subclasses support discrete behavioral and circuit functions. Prior studies have subdivided dopamine neurons by spatial localization, gene expression patterns, and physiological properties. However, many of these studies were bound by previous technical limitations that made comprehensive subclassification efforts difficult or impossible. The main goal of this manuscript was to characterize and further define dopamine neuron heterogeneity in the ventral midbrain. The study uses cutting-edge single nucleus RNA-seq (on the 10X Genomics platform) and spatial transcriptomics (on the MERFISH platform) to define dopamine neuron heterogeneity with unprecedented resolution. The result is a convincing and comprehensive subclassification of dopamine neurons into three main families, each with major branches and subtypes. In addition, the study reports comparisons between wild type mice and mice that harbor a G2019S mutation in the Lrrk2 gene, which models a common cause of autosomally dominant Parkinson's Disease in humans. These results, while less robust due to the nature of the group comparisons, nevertheless identify vulnerability within specific dopamine neuron subpopulations. This vulnerability may contribute unique risk to dopamine neuron loss in the context of Parkinson's disease. Overall, the study is careful and rigorous and provides a critical resource for the rapidly evolving knowledge of dopamine neuron subtypes.

      Strengths:

      -The creation of a public-facing app where the snRNA-seq data can be investigated by anyone is a major strength.<br /> -The manuscript includes careful comparisons to prior datasets that have sought to explore dopamine neuron heterogeneity. The result is a useful synthesis of new findings with previously published work, which is helpful for moving the field forward in this area.<br /> -The integration of snRNA-seq with MERFISH results is particularly strong, and enables insight not only into subclassification, but also into how this relates to spatial localization. The careful neuroanatomy reveals important distinctions between Sox6, Calb1, and Gad2 positive dopamine neuron families, with some degree of spatial overlap.

    1. Reviewer #1 (Public review):

      Summary:

      The authors report an inability to reproduce a transgenerational memory of avoidance of the pathogen PA14 in C. elegans. Instead, the authors demonstrate intergenerational inheritance for a single F1 generation, in embryos of mothers exposed to OP50 and PA14, where embryos isolated from these mothers by bleaching are capable of remembering to avoid PA14 in a manner that is dependent on systemic RNAi proteins sid-1 and sid-2. This could reflect systemic sRNAs generated by neuronal daf-7 signaling that are transmitted to F1 embryos. The authors note that transgenerational memory of PA14 was reported by the Murphy group at Princeton, but that environmental or strain variation (worms or bacteria) might explain the single generation of inheritance observed at Harvard. The Hunter group tried different bacterial growth conditions and different worm growth temperatures for independent PA14 strains, which they show to be strongly pathogenic. However, the authors could not reproduce a transgenerational effect at Harvard. This paper honestly alters expectations and indicates that the model that avoidance of PA14 is remembered for multiple generations is not robust enough to be replicated in all laboratories.

      Overall, this paper that demonstrates that one model for transgenerational inheritance in C. elegans is not robust. The author do demonstrate an avoidance memory for F1 embryos that could be a maternal effect, and the authors confirm that this is mediated by a systemic small RNA response. There are several points in the manuscript where a more positive tone might be helpful.

      Strengths:

      The authors note that the high copy number daf-7::GFP transgene used by the Murphy group displayed variable expression and evidence for somatic silencing or transgene breakdown in the Hunter lab, as confirmed by the Murphy group. The authors nicely use single copy daf-7::GFP to show that neuronal daf-7::GFP is elevated in F1 but not F2 progeny with regards to memory of PA14 avoidance, speaking to an intergenerational phenotype.

      The authors nicely confirm that sid-1 and sid-2 are generally required for intergenerational avoidance of F1 embryos of moms exposed to PA14. However, these small RNA proteins did not affect daf-7::GFP elevation in the F1 progeny. This result is unexpected given previous reports that daf-7::GFP is not elevated in F1 progeny of sid mutants.

      The authors studied antisense small RNAs that change in Murphy data sets, identifying 116 mRNAs that might be regulated by sRNAs in response to PA14. The authors show that the maco-1 gene, putatively targeted by piRNAs according to the Kaletsky 2020 paper, displays few siRNAs that change in response to PA14. The authors conclude that the P11 ncRNA of PA14, which was proposed to promote interkingdom RNA communication by the Murphy group, may not affect maco-1 expression in C. elegans, although they did not formally demonstrate this. The authors define 8 genes based on their analysis of sRNAs and mRNAs that might promote resistance to PA14, but they do not further characterize these genes' role in pathogen avoidance. Others might wish to consider following up on these genes and their possible relationship with P11.

      Weaknesses:

      This very thorough and interesting manuscript is at times pugnacious.

      Please explain more clearly what is High Growth media for E. coli in the text and methods, conveying why it was used by the Murphy lab, and if Normal Growth or High Growth is better for intergenerational heritability assays.

      Comments on revisions:

      The authors have done a reasonable job cordially revising this manuscript, and the authors have addressed most reviewer concerns. It is likely that the P11 gene was in some of the PA14 Pseudomonas strains tested, as one was kindly provided by the Murphy group.

    1. Reviewer #2 (Public review):

      The strengths of this paper are clear: The authors are asking a novel question about geometric representation that would be relevant to a broad audience. Their question has a clear grounding in pre-existing mathematical concepts, that have been only minimally explored in cognitive science. Moreover, the data themselves are quite striking, such that my only concern would be that the data seem almost too perfect. It is hard to know what to make of that, however. From one perspective, this is even more reason the results should be published. Yet I am of the (perhaps unorthodox) opinion that reviewers should voice these gut reactions, even if it does not influence the evaluation otherwise. I have a few additional comments:

      (1) The authors have now explained their theoretical position in a much more thorough and accessible way. I applaud them for that.

      (2) Although I continue to believe that the manipulation in Experiment 1 is imperfect, I am convinced by the authors that the subsequent evidence is more convincing, and thus that the merit of this work lies mostly in those data.

      If these results are robust, I believe the authors have discovered something of great value. While this paper stops short of providing definitive evidence in support of the Erlangen program (just as most work in vision science has stopped short of providing definitive evidence in support of its favored view), the data are sufficiently novel and provocative that these theories are worth entertaining further.

    1. Reviewer #1 (Public review):

      Summary:

      This study examined the changes in ATL GABA levels induced by cTBS and its relationship with BOLD signal changes and performance in a semantic task. The findings suggest that the increase in ATL GABA levels induced by cTBS is associated with a decrease in BOLD signal. The relationship between ATL GABA levels and semantic task performance is nonlinear, and more specifically, the authors propose that the relationship is an inverted U-shaped relationship.

      Strengths:

      The findings of the research regarding the increase of GABA and decrease of BOLD caused by cTBS, as well as the correlation between the two, appear to be reliable. This should be valuable for understanding the biological effects of cTBS.

      Weakness:

      I am pleased to see the authors' feedback on my previous questions and suggestions, and I believe the additional data analysis they have added is helpful. Here are my reserved concerns and newly discovered issues.

      (1) Regarding the Inverted U-Shaped Curve In the revised manuscript, the authors have accepted some of my suggestions and conducted further analysis, which is now presented in Figure 3B. These results provide partial support for the authors' hypothesis. However, I still believe that the data from this study hardly convincingly support an inverted U-shaped distribution relationship.<br /> The authors stated in their response, "it is challenging to determine the optimal level of ATL GABA," but I think this is achievable. From Figures 4C and 4D, the ATL GABA levels corresponding to the peak of the inverted U-shaped curve fall between 85 and 90. In my understanding, this can be considered as the optimal level of ATL GABA estimated based on the existing data and the inverted U-shaped curve relationship. However, in the latter half of the inverted U-shaped curve, there are quite few data points, and such a small number of data points hardly provides reliable support for the quantitative relationship in the latter half of the curve. I suggest that the authors should at least explicitly acknowledge this and be cautious in drawing conclusions. I also suggest that the authors consider fitting the data with more types of non-linear relationships, such as a ceiling effect (a combination of a slope and a horizontal line), or a logarithmic curve.

      (2) In Figure 2F, the authors demonstrated a strong practice effect in this study, which to some extent offsets the decrease in behavioral performance caused by cTBS. Therefore, I recommend that the authors give sufficient consideration to the practice effect in the data analysis.<br /> One issue is the impact of the practice effect on the classification of responders and non-responders. Currently, most participants are classified as non-responders, suggesting that the majority of the population may not respond to the cTBS used in this study. This greatly challenges the generalizability of the experimental conclusions. However, the emergence of so many non-responders is likely due to the prominent practice effect, which offsets part of the experimental effect. If the practice effect is excluded, the number of responders may increase. The authors might estimate the practice effect based on the vertex simulation condition and reclassify participants after excluding the influence of the practice effect.<br /> Another issue is that considering the significant practice effect, the analysis in Figure 4D, which mixes pre- and post-test data, may not be reliable.

      (3) The analysis in Figure 3A has a double dipping issue. Suppose we generate 100 pairs of random numbers as pre- and post-test scores, and then group the data based on whether the scores decrease or increase; the pre-test scores of the group with decreased scores will have a very high probability of being higher than those of the group with increased scores. Therefore, the findings in Figure 3A seem to be meaningless.

      (4) The authors use IE as a behavioral measure in some analyses and use accuracy in others. I recommend that the authors adopt a consistent behavioral measure.

    1. Reviewer #1 (Public review):

      Summary:

      This study explores the immune microenvironment of the placenta in preeclampsia (PE), which is often accompanied by gestational diabetes mellitus (GDM). Using CyTOF, they found that placentas from PE cases showed increased frequencies of memory-like Th17 cells, memory-like CD8⁺ T cells, and pro-inflammatory macrophages, alongside decreased levels of anti-inflammatory macrophages and granulocyte myeloid-derived suppressor cells (gMDSCs) compared to normal pregnancies. Further analysis revealed a positive correlation between pro-inflammatory macrophages and the expanded T cell populations, and a negative correlation with gMDSCs. Single-cell RNA sequencing provided mechanistic insights: transferring a specific subset of pro-inflammatory macrophages (F4/80⁺CD206⁻ with a distinct gene expression profile) from the uterus of PE mice to normal pregnant mice induced the formation of pathogenic memory-like Th17 cells via the IGF1-IGF1R pathway. This cellular interplay not only contributed to the development but also to the recurrence of PE. Additionally, these macrophages promoted the production of memory-like CD8⁺ T cells while inhibiting gMDSCs at the maternal-fetal interface, culminating in PE-like symptoms in mice. In conclusion, the study identifies a PE-specific immune cell network regulated by pro-inflammatory macrophages, offering new insights into the pathogenesis of preeclampsia.

      Strengths:

      Utilization of both human placental samples and multiple mouse models to explore the mechanisms linking inflammatory macrophages and T cells to preeclampsia (PE).<br /> Incorporation of cutting-edge and complementary techniques such as CyTOF, scRNA-seq, bulk RNA-seq, and flow cytometry.

      Identification of specific immune cell populations and their roles in PE.<br /> Demonstration of the adverse effects of pro-inflammatory macrophages and T cells on pregnancy outcomes through in vivo manipulations.

      Comments on revised version:

      Several weaknesses were addressed during revision by conducting additional experiments, clarifying the manuscript's text, and incorporating new data that was not initially included.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigated the elasticity of controllability by developing a task that manipulates the probability of achieving a goal with a baseline investment (which they refer to as inelastic controllability) and the probability that additional investment would increase the probability of achieving a goal (which they refer to as elastic controllability). They found that a computational model representing the controllability and elasticity of the environment accounted better for the data than a model representing only the controllability. They also found that prior biases about the controllability and elasticity of the environment were associated with a composite psychopathology score. The authors conclude that elasticity inference and bias guide resource allocation.

      Strengths:

      This research takes a novel theoretical and methodological approach to understanding how people estimate the level of control they have over their environment, and how they adjust their actions accordingly. The task is innovative and both it and the findings are well-described (with excellent visuals). They also offer thorough validation for the particular model they develop. The research has the potential to theoretically inform the understanding of control across domains, which is a topic of great importance.

      Weaknesses:

      An overarching concern is that this paper is framed as addressing resource investments across domains that include time, money, and effort, and the introductory examples focus heavily on effort-based resources (e.g., exercising, studying, practicing). The experiments, though, focus entirely on the equivalent of monetary resources - participants make discrete actions based on the number of points they want to use on a given turn. While the same ideas might generalize to decisions about other kinds of resources (e.g., if participants were having to invest the effort to reach a goal), this seems like the kind of speculation that would be better reserved for the Discussion section rather than using effort investment as a means of introducing a new concept (elasticity of control) that the paper will go on to test.

      Setting aside the framing of the core concepts, my understanding of the task is that it effectively captures people's estimates of the likelihood of achieving their goal (Pr(success)) conditional on a given investment of resources. The ground truth across the different environments varies such that this function is sometimes flat (low controllability), sometimes increases linearly (elastic controllability), and sometimes increases as a step function (inelastic controllability). If this is accurate, then it raises two questions.

      First, on the modeling front, I wonder if a suitable alternative to the current model would be to assume that the participants are simply considering different continuous functions like these and, within a Bayesian framework, evaluating the probabilistic evidence for each function based on each trial's outcome. This would give participants an estimate of the marginal increase in Pr(success) for each ticket, and they could then weigh the expected value of that ticket choice (Pr(success)*150 points) against the marginal increase in point cost for each ticket. This should yield similar predictions for optimal performance (e.g., opt-out for lower controllability environments, i.e., flatter functions), and the continuous nature of this form of function approximation also has the benefit of enabling tests of generalization to predict changes in behavior if there was, for instance, changes in available tickets for purchase (e.g., up to 4 or 5) or changes in ticket prices. Such a model would of course also maintain a critical role for priors based on one's experience within the task as well as over longer timescales, and could be meaningfully interpreted as such (e.g., priors related to the likelihood of success/failure and whether one's actions influence these). It could also potentially reduce the complexity of the model by replacing controllability-specific parameters with multiple candidate functions (presumably learned through past experience, and/or tuned by experience in this task environment), each of which is being updated simultaneously.

      Second, if the reframing above is apt (regardless of the best model for implementing it), it seems like the taxonomy being offered by the authors risks a form of "jangle fallacy," in particular by positing distinct constructs (controllability and elasticity) for processes that ultimately comprise aspects of the same process (estimation of the relationship between investment and outcome likelihood). Which of these two frames is used doesn't bear on the rigor of the approach or the strength of the findings, but it does bear on how readers will digest and draw inferences from this work. It is ultimately up to the authors which of these they choose to favor, but I think the paper would benefit from some discussion of a common-process alternative, at least to prevent too strong of inferences about separate processes/modes that may not exist. I personally think the approach and findings in this paper would also be easier to digest under a common-construct approach rather than forcing new terminology but, again, I defer to the authors on this.

    1. Reviewer #1 (Public review):

      Summary:

      This study identified three independent components of glucose dynamics-"value," "variability," and "autocorrelation", and reported important findings indicating that they play an important role in predicting coronary plaque vulnerability. Although the generalizability of the results needs further investigation due to the limited sample size and validation cohort limitations, this study makes several notable contributions: validation of autocorrelation as a new clinical indicator, theoretical support through mathematical modeling, and development of a web application for practical implementation. These contributions are likely to attract broad interest from researchers in both diabetology and cardiology and may suggest the potential for a new approach to glucose monitoring that goes beyond conventional glycemic control indicators in clinical practice.

      Strengths:

      The most notable strength of this study is the identification of three independent elements in glycemic dynamics: value, variability, and autocorrelation. In particular, the metric of autocorrelation, which has not been captured by conventional glycemic control indices, may bring a new perspective for understanding glycemic dynamics. In terms of methodological aspects, the study uses an analytical approach combining various statistical methods such as factor analysis, LASSO, and PLS regression, and enhances the reliability of results through theoretical validation using mathematical models and validation in other cohorts. In addition, the practical aspect of the research results, such as the development of a Web application, is also an important contribution to clinical implementation.

      Weaknesses:

      The most significant weakness of this study is the relatively small sample size of 53 study subjects. This sample size limitation leads to a lack of statistical power, especially in subgroup analyses, and to limitations in the assessment of rare events. In terms of validation, several challenges exist, including geographical and ethnic biases in the validation cohorts, lack of long-term follow-up data, and insufficient validation across different clinical settings. In terms of data representativeness, limiting factors include the inclusion of only subjects with well-controlled serum cholesterol and blood pressure and the use of only short-term measurement data. In terms of elucidation of physical mechanisms, the study is not sufficient to elucidate the mechanisms linking autocorrelation and clinical outcomes or to verify them at the cellular or molecular level.

    1. Reviewer #1 (Public review):

      Summary:

      This study represents an incremental step toward mitochondrial DNA editing but raises several concerns regarding its impact and broader applicability. The reported in vitro editing efficiency of 17% in mitotic cells, with non-specific editing across multiple A:T sites, offers limited improvement over prior technologies like DdCBE. Editing efficiency for the Mt-Atp6 gene was even lower (~4%), rendering it unlikely to produce functional changes relevant to mitochondrial function or bioenergetics.

      While the modified TadA8e(V28R) mutant alleviated toxicity and enabled sufficient AAV production for in vivo experiments, the low in vivo editing efficiency (~4%) after 4 weeks was disappointing and unlikely to be biologically meaningful. Furthermore, the use of P1 postnatal tissues, which are still developing, raises questions about their suitability as models for postmitotic tissues, especially since the brain - a key organ affected by mitochondrial diseases - was excluded from the analysis.

      Despite demonstrating feasibility for mitochondrial adenine base editing, the study highlights significant limitations, underscoring the need for further optimization. The reviewer also suggests adopting clearer terminology, such as "pathological variant" instead of "mutation," to enhance precision.

      Strengths:

      The study demonstrates the feasibility of adenine base editing in mitochondrial DNA, marking a step forward in expanding mitochondrial genome engineering capabilities. A notable strength is the development of a modified TadA8e(V28R) mutant, which successfully mitigated toxicity and enabled sufficient AAV production for in vivo experiments. This technical advancement addresses a key challenge in mitochondrial gene editing and provides a foundation for improving delivery methods and reducing off-target effects.

      Additionally, the study highlights the potential for targeted mitochondrial DNA modifications using optimized TALEs, achieving A:T to G:C conversions in multiple genes. While the in vitro editing efficiency remains modest, the approach represents an important proof-of-concept for potentially advancing mitochondrial editing technologies, particularly in the context of addressing pathological variants.

      Weaknesses:

      The major weaknesses of the study center around its low editing efficiency, both in vitro and in vivo. In vitro editing achieved only 17% efficiency in mitotic cells, while the efficiency for the Mt-Atp6 gene was even lower, around 4%. This level of editing is unlikely to produce meaningful functional or biological changes, particularly in cells with pathological mtDNA variants. Similarly, in vivo, editing efficiency after a 4-week exposure period remained at approximately 4%, which is insufficient to support claims of effective mitochondrial genome editing. Another significant limitation is the lack of editing specificity, as observed changes occurred at multiple A:T sites within and across the editing window rather than being confined to a single position, raising concerns about precision and off-target effects.

      The use of P1 postnatal mouse tissues also raises questions about the relevance of the model, as these tissues are still undergoing development and may not truly reflect postmitotic states. This casts doubt on whether the findings are transferable to mature tissues, such as the adult brain, which is frequently affected by mitochondrial diseases. Furthermore, the exclusion of brain tissue from the analysis limits the study's applicability to neurological disorders, a key area of mitochondrial disease research. The rationale for excluding brain tissue is not addressed, leaving an important gap in the study's scope.

      The findings also lack novelty, as the reported low efficiency and lack of specificity are consistent with previous studies, making it unclear whether this work represents a significant advancement over existing technologies.

      Collectively, these weaknesses underscore the need for further optimization of the approach, improved targeting specificity, and validation in more relevant models to demonstrate therapeutic potential.

    1. Reviewer #1 (Public review):

      Summary:

      In the article titled "Polyphosphate discriminates protein conformational ensembles more efficiently than DNA promoting diverse assembly and maturation behaviors," Goyal and colleagues investigate the role of negatively charged biopolymers, i.e., polyphosphate (polyP) and DNA, play in phase separation of cytidine repressor (CytR) and fructose repressor (FruR). The authors find that both negative polymers drive the formation of metastable protein/polymer condensates. However, polyP-driven condensates form more gel- or solid-like structures over time while DNA-driven condensates tend to dissipate over time. The authors link this disparate condensate behavior to polyP-induced structures within the enzymes. Specifically, they observe the formation of polyproline II-like structures within two tested enzyme variants in the presence of polyP. Together their results provide a unique insight into the physical and structural mechanism by which two unique negatively charged polymers can induce distinct phase transitions with the same protein. This study will be a welcomed addition to the condensate field and provide new molecular insights into how binding partner-induced structural changes within a given protein can affect the mesoscale behavior of condensates. The concerns outlined below are meant to strengthen the manuscript.

      Strengths:

      Throughout the article, the authors used the correct techniques to probe physical changes within proteins that can be directly linked to phase transition behaviors. Their rigorous experiments create a clear picture of what occurs at the molecular level with CytR and FruR are exposed to either DNA or polyP, which are unique, highly negatively charged biopolymers found within bacteria. This work provides a new view of mechanisms by which bacteria can regulate the cytoplasmic organization upon the induction of stress. Furthermore, this is likely applicable to mammalian and plant cells and likely to numerous proteins that undergo condensation with nucleic acids and other charged biopolymers.

      Weaknesses:

      The biggest weakness of this study is that compares the phase behavior of enzymes driven by negatively charged polymers that have intrinsic differences in net charge and charge density. Because these properties are extremely important for controlling phase separation, any differences may result in the observed phase transitions driven by DNA and polyP. The authors should perform an additional experiment to control for these differences as best they can. The results from these experiments will provide additional insight into the importance of charge-based properties for controlling phase transitions.

    1. Reviewer #1 (Public review):

      In all animals, the fertilized egg is transcriptionally silent, and thus early embryonic development relies on maternally deposited factors. A key mode of regulation is translational control to produce the proteins needed by the developing embryo. In zebrafish as well as other animals, distinct ribosomes, those coming from the maternal pool (maternal ribosomes produced in the germ line/oocytes), and those produced from new transcription after genome activation (somatic ribosomes). In zebrafish, the maternal pool consists of a "maternal" rRNA produced from rDNA on chromosome 4, that has previously been shown to be amplified or expressed specifically in the germ line and in oocytes. The observed sex-specific expression of m-rDNA has led to models that it is involved in sex differentiation and/or maternal control of early embryonic development, both as mediators of translation and as a source of raw materials needed to produce new ribosomes. The work to date in the field indicates that maternal and somatic ribosomes are distinct in their expression profiles but whether they have unique, or gene-specific activities awaits determining if somatic rDNA can functionally replace m-rDNA.

      In this manuscript, the authors investigated the expression profiles, protein composition, and ability of maternal and somatic ribosome components to interact with one another and their association with polysomes. This study reports sequence differences between maternal and somatic ribosomal components as well as proteomics and structural analysis of ribosome composition in oocytes and early development. This analysis shows that ribosome subunit composition changes over developmental time but did not uncover evidence suggesting maternal or somatic ribosome-specific ribosomal protein paralog use. The key findings of this work are:<br /> (1) Observation of hybrid ribosomes composed of subunits of maternal and somatic origin in the embryo.<br /> (2) Detection of both maternal and somatic ribosomes in polysomes, indicating maternal and somatic ribosomes both support translation in the embryos and may not be functionally unique.<br /> (3) Persistent expression of m-rRNA in germ cells, suggesting m-ribosomes, as the main ribosome type present, are important for translation in germ cells. The question of ribosome heterogeneity and the function of maternal versus somatic rDNA and ribosomes is of great interest to the broader scientific community. Overall, the manuscript is clearly written and the solid data provided support the main ideas and conclusions.

      Specific points are detailed below.

      (1) In Figure 1D the m-rRNA abundance goes down at 3dpf, then up again while the s-rRNA steadily increases and peaks at 3dpf then drops thereafter. As presented in the graph it is unclear if this up-then-down trend is consistently observed or not. There are bars on the graph for m-rRNA but not for s-rRNA, thus it is unclear how many times this experiment was performed for the s-rRNA or how variable the results were from sample to sample. Beyond this technical point, if the pattern is consistent, this is an interesting observation as it would signal either a shift in rDNA transcription to silence the somatic locus and/or post-transcriptional targeted degradation of the somatic rRNA in germ cells.

      (2) Although qualified by the authors to some extent, the conclusion regarding maternal ribosomes and specificity related to the translation of germ line-specific transcripts is potentially confusing or misleading. Since the maternal form appears to be the only or predominant form of ribosomes in the germ cells at this stage, these would be the only ribosomes available for translation in germ cells. So, any RNA being translated in the germ cells, even RNAs that are not specifically expressed in the germline would be "enriched in association with" and translated by the maternal ribosomes in germ cells. Additional supporting evidence would be required to support the conclusion that the maternal ribosomes are specifically dedicated to the translation of germ cell-specific RNAs, like nanos3, rather than just general translation in germ cells. Consistent with a more general role for the maternal ribosomes in translation in germ cells, differential codon use has been previously documented for the RNAs produced in oocytes (aka maternal RNAs) (for example Bazzini et al EMBO 2016; Mishima and Tomari Mol Cell 2016), and tRNA genes were recently reported by Wilson and Postlethwait to reside along with the maternal 5S genes and maternal-specific spliceosome components in the region of chromosome 4 that is differentially activated in oocytes and testis (region 2 coding genes are silenced in the ovary but maternal ribosome-related genes are expressed in the ovary; region 4 contains the maternal 45S gene). Further, some of the authors of this manuscript undergo a shift in tRNA repertoire and a change in iso-decoder expression at the onset of gastrulation (Rappol et al, Nucleic Acids Research 2024). Technical limitations pose challenges to definitively testing the hypothesis, but it would be helpful to place the findings here in the context of the published work.

      (3) "An alternate and non-exclusive hypothesis is that the maternal rDNA locus may be involved in PGC fate and sex determination in zebrafish." It would be helpful to further discuss the published evidence supporting this hypothesis. In accord with a potential role for m-rDNA in ovary differentiation, differential methylation of m-rDNA has been previously reported, with high methylation in testis and low methylation in ovaries. Further, several groups have shown that treating fish with broad inhibitors of methyltransferases causes testis-biased differentiation of the gonad. Finally, Moser et al (Philosophical Transactions of the Royal Society B 2024) recently published work in which CRISPR-Cas9 was used to target the 45S m-rDNA promoter and interfere with its expression. The mutants with these promoter mutations developed as fertile males, consistent with a role for m-rDNA in ovary differentiation. A recent paper from Moser et. al. (Philosophical Transactions of the Royal Society B 2024) showing that disrupting the m-rDNA locus leads to male-only development should be discussed. This paper does not exclude the possibility of a maternal role for the ribosomes since only one female was recovered among the 45S-m-rDNA mutants. The expression data in Figure 1D of this manuscript showing that m-rRNA levels go down and then up in PGCs indicates the PGCs are making their own m-rRNA. This observation together with the recovery of fertile males reported in the Moser et al study (Philosophical Transactions of the Royal Society B 2024) doesn't seem to support a requirement for m-rDNA in PGC fate or germ cell-specific translation, at least in testis, since the mutant males produce sperm and are fertile.

      (4) Although the rationale for examining rRNAs in adult tumors, cultured zebrafish cell lines, and during fin regeneration is clear based on the published literature showing elevated embryonic rRNAs, this line of investigation doesn't add much to this study and is a bit of a distraction. That said, the observation that in contrast to published work, neither the maternal (early embryo) nor the specific rRNAs examined are unregulated in these contexts is important and warrants communication with the research community.

      (5) The numbers of embryos and stages are not consistently stated in the manuscript. For example, in the "Isolation of zebrafish ribosome." and "isolation of monosomes" sections of the methods, the stage and number of embryos used for the IPs are not clearly stated in the methods. These important details should be stated throughout the manuscript so that others can perform future studies in a manner that will facilitate comparisons.

      (6) The terminology used for the RiboFLAG experiments is potentially confusing or misleading. Specifically, different terms are used to describe the source of the ribosomes (Figure 5, Figure S7, Figure S8 and in the text). For example, "transmission" is used to describe "maternal transmission" for Mat-RiboFLAG, and "paternal transmission" is used for Som-RiboFLAG, and in Figure 5 and Figure S8 "maternally provided" and "paternally provided" are used. However, these terms may be confusing or unintentionally misleading because transmission and provided refer to two different things. In the case of Mat-RiboFLAG, the terms refer to the maternal Rpl10-FLAG ribosomes, which the progeny receive from their mother independent of whether or not they express the transgene. On the other hand, for Som-RiboFLAG, the terms refer to the transgene rather than the Rpl10-FLAG ribosomes that will be produced by the embryo using the transgene they inherited from their father. Consider instead sticking to "maternal" and "somatic", or alternatively "zygotic expression" and "maternal expression" or "zygotic ribosomes" and "maternal ribosomes".

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates the relationship between climate variables and malaria incidence from monthly records, for rainfall, temperature, and a measure of ENSO, in a lowland region of Kenya in East Africa. Wavelet analyses show significant variability at the seasonal scale at the 6-month scale with some variation in its signal over time, and some additional variability at the 12-month scale for some variables. As conducted, the analyses show weak (non-significant) signals at the interannual time scales (longer than seasonal). Cross-wavelet analysis also highlights the 6-month scale and the association of malaria and climate variables at that scale, with some signal at 12 months, reflecting the role of climate in seasonality. Evidence is presented for some small changes in the lags of the response of malaria to the seasonal climate drivers over time.

      Strengths:

      Although there have been many studies of climate drivers of malaria dynamics in East Africa, these analyses have been largely focused on highlands where these drivers are expected to exhibit the strongest signal of association with disease burden at interannual and longer time scales. It is therefore of interest to take advantage of a relatively long time series of cases to examine the role of climate variables in more endemic malaria in lowlands.

      Weaknesses:

      (1) Major comments:

      The work is not sufficiently placed in the context of what is known about climate variability in East Africa, and the role of climate variables in the temporal variation of malaria cases in this region. This context includes the relationship between large (global/regional) drivers of interannual climate variability such as ENSO (and the Indian Ocean Dipole) and local temporal patterns in rainfall and temperature. There is for example literature on the influence of those drivers and the short and long rains in East Africa. That is, phenomena such as ENSO would influence malaria through those local climate variables. This context should be considered when formulating and interpreting the analyses.

      There are conceptual problems with the design of the analyses which can limit the findings on association. It is not surprising that rainfall would exhibit a clear association at seasonal scales. It is nevertheless valuable to confirm this as the authors have done and to examine the faster than 12-month scale, given the typical pattern of two rainfall seasons in this area. However, the results on temperature are less clear. If rainfall is the main limiting factor for the transmission season, the temperature variation that would matter can be during the rainy periods. One would then see an association with temperature only in particular windows of time during the year, when rainfall is sufficient (see for example, Rodo et al. Nat. Commun. 2022, for this finding in a highland region of Ethiopia). For this situation, there would be no clear association with temperature when all months are considered, and one would not find a significant relationship (or a lagged one) between peak times in this climate factor and malaria's seasonal cases. It would be difficult for the wavelet analysis to reveal such an effect. Another consideration is whether to use an ENSO variable that includes seasonality or to use an ENSO index computed as an anomaly, to focus on interannual variability. That is, it is most relevant to consider how ENSO influences time scales of variation longer than seasonal (the multiannual variation in seasonal epidemics) and for this purpose, one would typically rely on an anomaly. This choice would better enable one to see whether there is a role of ENSO at interannual time scales. It would also make sense to analyze with cross-wavelets the effect of ENSO on local climate factors, temperature, and rainfall, and not only on malaria. This would allow us to establish evidence for a chain of causality, from a global driver of interannual variability to local climate variability to malaria incidence.

      The multiresolution analysis and associated analysis of lag variations were confusing and difficult to follow as presented: (1) the lags chosen by the multiresolution analysis do not match the phase differences of the cross-wavelet analysis if I followed what was presented. On page 8, phase differences are expressed in months. I do not understand then the following statements on page 9: "The phase differences obtained by the cross-wavelet transforms were turned into lags, allowing us to plot the evolution of the lags over time". The resulting lags in Figure 6 are shorter than the phase differences provided in the text on page 8. (2) The phase difference of the cross-wavelet analyses for malaria and temperature is also too long for this climate factor to explain an effect on the vector and then on the disease. (3) In Table 3, the regression results that are highlighted are those for Land Surface Temperatures (LST) and ENSO, with a weak but significant negative linear correlation, and for LST and bednet coverage, and this is considered part of the lag analysis. The previous text and analyses up to that point do not seem to consider the relationship of ENSO and local climate variables, or that between local climate variables and bednets (which would benefit from some context for the causal pathways this would reflect).

      The conclusion in the Abstract: "Our study underlines the importance of considering long-term time scales when assessing malaria dynamics. The presented wavelet approach could be applicable to other infectious diseases" needs to be reformulated. The use of "long-term" time scales for those of ENSO and interannual variability is not consistent with the climate literature, where long-term could be interpreted as decadal and longer. The time scales beyond those of seasonality, especially those of climate variability, have been addressed in many malaria studies. It is not compelling to have the significance of this study be the importance of considering those time scales. This is not new. I recommend focusing on what has been done for lowland malaria and endemic regions (for example, in Laneri et al. PNAS 2015) as there has been less work for those regions than for seasonal epidemic ones of low transmission (e.g. altitude fringes and desert ones, e.g. Laneri et al. PloS Comp. Biol. 2010; Roy et al. Mal. J. 2015). Also, wavelet analyses have been used extensively by now to consider the association of climate variables and infectious diseases at multiple time scales. There is here an additional component of the analysis but the decomposition that underlies the linear regressions is also not that new, as decompositions of time series have been used before in this area. In summary, I recommend a more appropriate and compelling conclusion on what was learned about malaria at this location and what it may tell us about other, similar, locations, but not malaria dynamics everywhere.

      The conversion from monthly cases to monthly incidence needs a better explanation of the Methods, rather than a referral to another paper. This is a key aspect of the data. It may be useful to plot the monthly time series of both variables in the Supplement, for comparison.

      There is plenty of evidence of the seasonal role of rainfall on malaria's seasonality in many regions. The literature cited here to support this well-known association is quite limited. It would be useful to provide a context that better reflects the literature and some context for the environmental conditions of this lowland region that would explain the dominant role of rainfall on malaria seasonality. Two papers (from 2017 and 2019) are cited in the second paragraph of the introduction as showing that "key climatic factors are rainfall and temperatures". This is a misrepresentation of the field. That these factors matter to malaria in general has been known for a very long time given that the vectors are mosquitoes, and the cited studies are particular ones that examine the mechanistic basis of this link for modeling purposes. Either these papers are presented as examples, with a more accurate description of what they add to the earlier literature or earlier literature should be acknowledged. Also, what has been much less studied is the role of these variables at interannual time scales, as potentially mediating the effects of global drivers in teleconnections.

      (2) Minor comments:

      In relation to the conceptual issues raised above, it would be valuable to consider whether the negative association with temperature persists if one considers mean temperature during the rainy seasons only, against the total cases in the transmission season each year (as in Rodó et al. 2021). This would allow one to disentangle whether the negative association reflects a robust result or an artifact of an interaction between temperature and rainfall so that the former matters when the latter is permissive for transmission.

      The conclusion in the Discussion " This suggests that minor climate variations have a limited impact on malaria incidence at shorter time scales, whereas climatic trends may play a more substantial role in shaping long-term malaria dynamics" is unsubstantiated. There is no clear result in the paper on climatic trends that I can see.

      The Abstract writes: "The true impact of climate change...". This paper is not about climate change but about climate seasonality and variability. This text needs to be changed to make it consistent with the content of the paper.

      Page 2, Introduction: The statement on Pascual et al. 2008 is not completely accurate. This paper shows an interplay of climate variability and disease dynamics, but not cycles that are completely independent of climate.

      Page 2, next sentence: "More recently, such cycles have been attributed to global climate drivers such as ENSO (Cazelles et al., 2023)". This writing is also somewhat unclear. Are you referring to the cycles for the same location in Kenya? Or generically, to the interannual variability of malaria?

      There are multiple places in the writing that could be edited.

    1. Reviewer #1 (Public review):

      This work derives a general theory of optimal gain modulation in neural populations. It demonstrates that population homeostasis is a consequence of optimal modulation for information maximization with noisy neurons. The developed theory is then applied to the distributed distributional code (DDC) model of the primary visual cortex to demonstrate that homeostatic DDCs can account for stimulus-specific adaptation.

      What I consider to be the most important contribution of this work is the unification of efficient information transmission in neural populations with population homeostasis. The former is an established theoretical framework, and the latter is a well-known empirical phenomenon - the relationship between them has never been fully clarified. I consider this work to be an interesting and relevant step in that direction.

      The theory proposed in the paper is rigorous and the analysis is thorough. The manuscript begins with a general mathematical setting to identify normative solutions to the problem of information maximization. It then gradually builds towards questions about approximate solutions, neural implementation and plausibility of these solutions, applications of the theory to specific models of neural computation (DDC), and finally comparisons to experimental data in V1. Such a connection of different levels of abstraction is an obvious strength of this work.

      Overall I find this contribution interesting and assess it positively. At the same time, I have three major points of criticism, which I believe the authors should address. I list them below, followed by a number of more specific comments and feedback.

      Major comments:

      (1) Interpretation of key results and relationship between different parts of the manuscript. The manuscript begins with an information-transmission ansatz which is described as "independent of the computational goal" (e.g. p. 17). While information theory indeed is not concerned with what quantity is being encoded (e.g. whether it is sensory periphery or hippocampus), the goal of the studied system is to *transmit* the largest amount of bits about the input in the presence of noise. In my view, this does not make the proposed framework "independent of the computational goal". Furthermore, the derived theory is then applied to a DDC model which proposes a very specific solution to inference problems. The relationship between information transmission and inference is deep and nuanced. Because the writing is very dense, it is quite hard to understand how the information transmission framework developed in the first part applies to the inference problem. How does the neural coding diagram in Figure 3 map onto the inference diagram in Figure 10? How does the problem of information transmission under constraints from the first part of the manuscript become an inference problem with DDCs? I am certain that authors have good answers to these questions - but they should be explained much better.

      (2) Clarity of writing for an interdisciplinary audience. I do not believe that in its current form, the manuscript is accessible to a broader, interdisciplinary audience such as eLife readers. The writing is very dense and technical, which I believe unnecessarily obscures the key results of this study.

      (3) Positioning within the context of the field and relationship to prior work. While the proposed theory is interesting and timely, the manuscript omits multiple closely related results which in my view should be discussed in relationship to the current work. In particular:

      A number of recent studies propose normative criteria for gain modulation in populations:

      - Duong, L., Simoncelli, E., Chklovskii, D. and Lipshutz, D., 2024. Adaptive whitening with fast gain modulation and slow synaptic plasticity. Advances in Neural Information Processing Systems<br /> - Tring, E., Dipoppa, M. and Ringach, D.L., 2023. A power law describes the magnitude of adaptation in neural populations of primary visual cortex. Nature Communications, 14(1), p.8366.<br /> - Młynarski, W. and Tkačik, G., 2022. Efficient coding theory of dynamic attentional modulation. PLoS Biology<br /> - Haimerl, C., Ruff, D.A., Cohen, M.R., Savin, C. and Simoncelli, E.P., 2023. Targeted V1 co-modulation supports task-adaptive sensory decisions. Nature Communications<br /> - The Ganguli and Simoncelli framework has been extended to a multivariate case and analyzed for a generalized class of error measures:<br /> - Yerxa, T.E., Kee, E., DeWeese, M.R. and Cooper, E.A., 2020. Efficient sensory coding of multidimensional stimuli. PLoS Computational Biology<br /> - Wang, Z., Stocker, A.A. and Lee, D.D., 2016. Efficient neural codes that minimize LP reconstruction error. Neural Computation, 28(12),

      More detailed comments and feedback:

      (1) I believe that this work offers the possibility to address an important question about novelty responses in the cortex (e.g. Homann et al, 2021 PNAS). Are they encoding novelty per-se, or are they inefficient responses of a not-yet-adapted population? Perhaps it's worth speculating about.

      (2) Clustering in populations - typically in efficient coding studies, tuning curve distributions are a consequence of input statistics, constraints, and optimality criteria. Here the authors introduce randomly perturbed curves for each cluster - how to interpret that in light of the efficient coding theory? This links to a more general aspect of this work - it does not specify how to find optimal tuning curves, just how to modulate them (already addressed in the discussion).

      (3) Figure 8 - where do Hz come from as physical units? As I understand there are no physical units in simulations.

      (4) Inference with DDCs in changing environments. To perform efficient inference in a dynamically changing environment (as considered here), an ideal observer needs some form of posterior-prior updating. Where does that enter here?

      (5) Page 6 - "We did this in such a way that, for all ν, the correlation matrices, ρ(ν), were derived from covariance matrices with a 1/n power-law eigenspectrum (i.e., the ranked eigenvalues of the covariance matrix fall off inversely with their rank), in line with the findings of Stringer et al. (2019) in the primary visual cortex." This is a very specific assumption, taken from a study of a specific brain region - how does it relate to the generality of the approach?

  2. Mar 2025
    1. Reviewer #1 (Public review):

      Summary:

      In this study, Bu et al examined the dynamics of TRPV4 channel in cell overcrowding in carcinoma conditions. They investigated how cell crowding (or high cell confluence) triggers a mechano-transduction pathway involving TRPV4 channels in high-grade ductal carcinoma in situ (DCIS) cells that leads to large cell volume reduction (or cell volume plasticity) and pro-invasive phenotype.

      In vitro, this pathway is highly selective for highly malignant invasive cell lines derived from a normal breast epithelial cell line (MCF10CA) compared to the parent cell line, but not present in another triple-negative invasive breast epithelial cell line (MDA-MB-231). The authors convincingly showed that enhanced TRPV4 plasmamembrane localization correlates with high-grade DCIS cells in patient tissue samples. Specifically in invasive MCF10DCIS.com cells they showed that overcrowding or over-confluence leads to a decrease in cell volume and intracellular calcium levels. This condition also triggers the trafficking of TRPV4 channels from intracellular stores (nucleus and potentially endosomes), to the plasma membrane (PM). When these over-confluent cells are incubated with a TRPV4 activator, there is an acute and substantial influx of calcium, attesting the fact that there are high number of TRPV4 channels present on the PM. Long-term incubation of these over-confluent cells with the TRPV4 activator results in the internalization of the PM-localized TRPV4 channels.

      In contrast, cells plated at lower confluence primarily have TRPV4 channels localized in the nucleus and cytosol. Long-term incubation of these cells at lower confluence with a TRPV4 inhibitor leads to the relocation of TRPV4 channels to the plasma membrane from intracellular stores and a subsequent reduction in cell volume. Similarly, incubation of these cells at low confluence with PEG 3000 (a hyperosmotic agent) promotes the trafficking of TRPV4 channels from intracellular stores to the plasma membrane.

      Strengths:

      The study is elegantly designed and the findings are novel. Their findings on this mechano-transduction pathway involving TRPV4 channels, calcium homeostasis, cell volume plasticity, motility and invasiveness will have a great impact in the cancer field and potentially applicable to other fields as well. Experiments are well-planned and executed, and the data is convincing. Authors investigated TRVP4 dynamics using multiple different strategies- overcrowding, hyperosmotic stress, pharmacological and genetic means, and showed a good correlation between different phenomena.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Jena et al. addresses important questions on the fundamental mechanisms of genetic adaptation, specifically, does adaptation proceed via changes of copy number (gene duplication and amplification "GDA") or by point mutation. While this question has been worked on (for example by Tomanek and Guet) the authors add several important aspects relating to resistance against antibiotics and they clarify the ability of Lon protease to reduce duplication formation (previous work was more indirect).

      A key finding Jena et al. present is that point mutations after significant competition displace GDA. A second one is that alternative GDA constantly arise and displace each other (see work on GDA-2 in Figure 3). Finally, the authors found epistasis between resistance allele that was contingent on lon. Together this shows an intricate interplay of lon proteolysis for the evolution and maintenance of antibiotic resistance by gene duplication.

      Strengths:

      The study has several important strengths: (i) the work on GDA stability and competition of GDA with point mutations is a very promising area of research and the authors contribute new aspects to it, (ii) rigorous experimentation, (iii) very clearly written introduction and discussion sections. To me, the best part of the data is that deletion of lon stimulates GDA, which has not been shown with such clarity until now.

      Weaknesses:

      Previously raised minor weaknesses and technical questions have been adequately resolved in the revised manuscript. As the experiments and their results are described in great detail the interested reader needs stamina. The details will, however, be informative to the specialist.

    1. Reviewer #1 (Public review):

      Summary:

      The authors conducted a human neuroimaging study investigating the role of context in the representation of fear associations when the contingencies between a conditioned stimulus and shock unconditioned stimulus switch between contexts. The novelty of the analysis centered on neural pattern similarity to derive a measure of context and cue stability and generalization across different regions of the brain. Given the complexity and nuance of the results, it is kind of difficult to provide a concise summary. But during fear and reversal, there was cue generalization (between current CS+ cues) in the canonical fear network, and "item stability" for cues that changed their association with the shock in the IFG and precuneus. Reinstatement was quantified as pattern similarity for items or sets of cues from the earlier phases to the test phases, and they found different patterns in the IFG and dmPFC. A similar analytical strategy was applied to contexts.

      Strengths:

      Overall, I found this to be a novel use of MVPA to study the role of context in the reversal/extinction of human fear conditioning that yielded interesting results. The paper was overall well-written, with a strong introduction and fairly detailed methods and results. The lack of any univariate contrast results from the test phases was used as motivation for the neural pattern similarity approach, which I appreciated as a reader.

      Weaknesses:

      This is quite a complicated protocol and analysis plan. The authors did a decent job explaining it, given the complexity of the approach and the dense results. But it did take reading it a couple of times to start to understand it. I'm not sure if there is a simpler way to describe the approach though. Just an observation. But perhaps there is a better way to explain the density of the different comparisons between the multiple cues and contexts. It can be difficult to totally avoid jargon in a complex scientific article, but the paper is very jargon-y.

      Here are a few more comments and stray observations, in no particular order of importance.

      (1) I had a difficult time unpacking lines 419-420: "item stability represents the similarity of the neural representation of an item to other representations of this same item."

      (2) The authors use the phrase "representational geometry" several times in the paper without clearly defining what they mean by this.

      (3) The abstract is quite dense and will likely be challenging to decipher for those without a specialized knowledge of both the topic (fear conditioning) and the analytical approach. For instance, the goal of the study is clearly articulated in the first few sentences, but then suddenly jumps to a sentence stating "our data show that contingency changes during reversal induce memory traces with distinct representational geometries characterized by stable activity patterns across repetitions..." this would be challenging for a reader to grok without having a clear understanding of the complex analytical approach used in the paper.

      (4) Minor: I believe it is STM200 not the STM2000.

      (5) Line 146: "...could be particularly fruitful as a means to study the influence of fear reversal or extinction on context representations, which have never been analyzed in previous fear and extinction learning studies." I direct the authors to Hennings et al., 2020, Contextual reinstatement promotes extinction generalization in healthy adults but not PTSD, as an example of using MVPA to decipher reinstatement of the extinction context during test.

      (6) This is a methodological/conceptual point, but it appears from Figure 1 that the shock occurs 2.5 seconds after the CS (and context) goes off the screen. This would seem to be more like a trace conditioning procedure than a standard delay fear conditioning procedure. This could be a trivial point, but there have been numerous studies over the last several decades comparing differences between these two forms of fear acquisition, both behaviorally and neurally, including differences in how trace vs delay conditioning is extinguished.

      (7) In Figure 4, it would help to see the individual data points derived from the model used to test significance between the different conditions (reinstatement between Acq, reversal, and test-new).

    1. Reviewer #1 (Public review):

      Summary:

      The authors seek to understand the role of different ratios of excitatory to inhibitory (EI) neurons, which in experimental studies of the cerebral cortex have been shown to range from 4 to 9. They do this through a simulation study of sparsely connected networks of excitatory and inhibitory neurons.

      Their main finding is that the participation ratio and decoding accuracy increase as the E/I ratio decreases. This suggests higher computational complexity.

      This is the start of an interesting computational study. However, there is no analysis to explain the numerical results, although there is a long literature of reduced models for randomly connected neural networks which could potentially be applied here. (For example, it seems that the authors could derive a mean field expression for the expected firing rate and variance - hence CV - which could be used to target points in parameter space (vs. repeated simulation in Figures 1,2).) The paper would be stronger and more impactful if this was attempted.

      Strengths:

      Some issues I appreciated are:

      (1) The use of a publicly available simulator (Brian), which helps reproducibility. I would also request that the authors supply submission or configuration scripts (if applicable, I don't know Brian).

      (2) A thorough exploration of the parameter space of interest (shown in Figure 2).

      (3) A good motivation for the underlying question: other things being equal, how does the E/I ratio impact computational capacity?

      Weaknesses:

      (1) Lack of mathematical analysis of the network model

      Major issues I recommend that the authors address (not sure whether these are "weaknesses"):

      (1) In "Coding capacity in different layers of visual cortex" the authors measure PR values from layers 2/3 and 4 in VISp and find that layer 2/3 has a higher PR than layer 4.

      But in Dahmen et al. 2020 (https://doi.org/10.1101/2020.11.02.365072 ), the opposite was found (see Figure 2d of Dahmen et al.): layer 2 had a lower PR than layer 4. Can the authors explain how that difference might arise? i.e. were they analyzing the same data sets? If so why the different results? Could it have to do with the way the authors subsample for the E/I ratio?

      From the Methods of that paper: "Visual stimuli were generated using scripts based on PsychoPy and followed one of two stimulus sequences ("brain observatory 1.1" and<br /> "functional connectivity"). We focused on spontaneous neural activity registered while the animal was not performing any task. In each session, the spontaneous activity condition lasted 30 minutes while the animal was in front of a screen of mean grey luminance. We, therefore, analyzed 26 of the original 58 sessions corresponding to the "functional connectivity" subdataset as they included such a period of spontaneous activity. " This suggests to me they may have analyzed recordings with the other stimulus sequence; however, the hypothesis that E/I ratio should modulate dimensionality would not seem to "care" about which stimulus sequence was used.

      (2) In Discussion (pg. 20, line 383): "They showed that brain regions closer to sensory input, like the thalamus, have higher dimensionality than those further away, such as<br /> the visual cortex. " How is this consistent with the hypothesis that "higher dimensionality might be linked to more complex cognitive functions"?

      (3) What is the probability of connection between different populations? e.g. the probability of there being a synaptic connection between any two E cells? I could not find a statement about this. It should be included in the Methods.

      (4) pg. 27, line 540: "Synchronicity within the network" For each cell pair, the authors use the maximum cross-correlation over time lag. I don't think I have seen this before. Can the authors explain why they use this measurement, vs (a) integrated cross-correlation or (b) cross-correlation at some time scale? Also, it seems like this fails to account for neuron pairs for which there is a strong inhibitory correlation.

      (5) "When stimulated, a time-varying input, μext(t), is applied to 2,000 randomly selected excitatory neurons. " I would guess that computing PR would depend on the overlap of the 500 neurons analyzed and this population. Do the authors check or control for that?

      5b) Related: to clarify, are the 500 neurons chosen from the analysis equally likely to be E or I neurons?

    1. Reviewer #1 (Public review):

      This manuscript presents a pipeline incorporating a deep generative model and peptide property predictors for the de novo design of peptide sequences with dual antimicrobial/antiviral functions. The authors synthesized and experimentally validated three peptides designed by the pipeline, demonstrating antimicrobial and antiviral activities, with one leading peptide exhibiting antimicrobial efficacy in animal models.

      Overall, the authors have addressed each major comment through new experiments, particularly by validating 24 peptides, clarifying alignment methods, and demonstrating sequence novelty. These additions have strengthened the manuscript. To further refine the work, it would be helpful to briefly describe any steps taken to mitigate GAN pathologies (such as mode collapse), provide a short rationale for the use of five AVP classifiers and how they complement each other, and clearly present the expanded experimental data (including MIC values and antiviral results) in the main text. Finally, the authors should also compare their approach with recently described deep-learning-enabled antibiotic discovery methods.

    1. Joint Public Review:

      This is an interesting, timely, and high-quality study on the potential neuroprotective capabilities of C-C chemokine receptor type 5 (CCR5) antagonists in ischemic stroke. The focus is on preclinical investigations.

      An outstanding feature is that stroke patient representatives have directly participated in the work. Although this is often called for, it is hardly realized in research practice, so the work goes beyond established standards.

      The included studies were assessed regarding the therapeutic impact and their adherence to current quality assurance guidelines such as STAIR and SRRR, another important feature of this work. While overall results were promising, there were some shortcomings regarding guideline adherence.

      The paper is very well written and concise yet provides much highly useful information. It also has very good illustrations, and extremely detailed and transparent supplements.

      [Editors' note: The authors have responded appropriately to the comments shared by the reviewers. The authors have provided a good academic justification for not needing to update the literature search, as one of the reviewers had suggested.]

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript entitled "Phosphodiesterase 1A Physically Interacts with YTHDF2 and Reinforces the Progression of Non-Small Cell Lung Cancer" explores the role of PDE1A in promoting NSCLC progression by binding to the m6A reader YTHDF2 and regulating the mRNA stability of several novel target genes, consequently activating the STAT3 pathway and leading to metastasis and drug resistance.

      Strengths:

      The study addresses a novel mechanism involving PDE1A and YTHDF2 interaction in NSCLC, contributing to our understanding of cancer progression.

    1. Reviewer #1 (Public review):

      Summary:

      The authors demonstrate with a simple stochastic model that the initial composition of the community is important in achieving a target frequency during the artificial selection of a community.

      Strengths:

      To my knowledge, the intra-collective selection during artificial selection has not been seriously theoretically considered. However, in many cases, the species dynamics during the incubation of each selection cycle is important and relevant to the outcome of the artificial selection experiment. Stochasticity from birth and death (demographic stochasticity) plays a big role in these species' abundance dynamics. This work uses a simple framework to tackle this idea meticulously.

      This work may or may not be related to hysteresis (path dependency). If this is true, maybe it would be nice to have a discussion paragraph talking about how this may be the case. Then, this work would even attract the interest of people studying dynamical systems.

      Weaknesses:

      (1) Connecting structure and function.<br /> In typical artificial selection literature, most of them select the community based on collective function. Here in this paper, the authors are selecting a target composition. Although there is a schematic cartoon illustrating the relationship between collective function (y-axis) and the community composition in the main figure 1, there is no explicit explanation or justification of what may be the origin of this relationship. I think giving the readers a naïve idea about how this structure-function relationship arises in the introduction section would help. This is because the conclusion of this paper is that the intra-collective selection makes it hard to artificially select for a community that has an intermediate frequency of f (or s). If there is really evidence or theoretical derivation from this framework that indeed the highest function comes from the intermediate frequency of f, then the impact of this paper would increase because the conclusions of this stochastic model could allude to the reasons for the prevalent failures of artificial selection in literature.

      (2) Explain intra-collective and inter-collective selection better for readers.<br /> The abstract, the introduction, and the result section use these terms or intra-collective and inter-collective selection without much explanation. For the wide readership of eLife, a clear definition in the beginning would help the audience grasp the importance of this paper, because these concepts are at the core of this work.

      (3) Achievable target frequency strongly depending on the degree of demographic stochasticity.<br /> I would expect that the experimentalists would find these results interesting and would want to consider these results during their artificial selection experiments. The main figure 4 indicates that the Newborn size N0 is a very important factor to consider during the artificial selection experiment. This would be equivalent to how much bottleneck you impose on the artificial selection process in every iteration step (i.e., the ratio of serial dilution experiment). However, with a low population size, all target frequencies can be achieved, and therefore in these regimes, the initial frequency now does not matter much. It would be great for the authors to provide what the N0 parameter actually means during the artificial selection experiments. Maybe relative to some other parameter in the model. I know this could be very hard. But without this, the main result of this paper (initial frequency matters) cannot be taken advantage of by the experimentalists.

      (4) Consideration of environmental stochasticity.<br /> The success (gold area of Figure 2d) in this framework mainly depends on the size of the demographic stochasticity (birth-only model) during the intra-collective selection. However, during experiments, a lot of environmental stochasticity appears to be occurring during artificial selection. This may be out of the scope of this study. But it would definitely be exciting to see how much environmental stochasticity relative to the demographic stochasticity (variation in the Gaussian distribution of F and S) matters in succeeding in achieving the target composition from artificial selection.

      (5) Assumption about mutation rates<br /> If setting the mutation rates to zero does not change the result of the simulations and the conclusion, what is the purpose of having the mutation rates \mu? Also, is the unidirectional (S -> F -> FF) mutation realistic? I didn't quite understand how the mutations could fit into the story of this paper.

      (6) Minor points<br /> In Figure 3b, it is not clear to me how the frequency difference for the Intra-collective and the Inter-collective selection is computed.<br /> In Figure 5b, the gold region (success) near the FF is not visible. Maybe increase the size of the figure or have an inset for zoom-in. Why is the region not as big as the bottom gold region?

      Comments on revisions:

      I thank the authors for addressing many points raised by the reviewers. Overall, the readability of the manuscript has improved with more context provided around why they were solving this specific problem. However, I've found many of the responses to be too terse. It would have been nicer if there had been more discussion and description of the thought process that led up to the conclusions they made for each comment or question. Instead, many of the responses only showed the screenshot of the text they added.

      Most of my comments or questions were answered. Below are my comments on some of the authors' responses.

      (2) Explain intra-collective and inter-collective selection better for readers.<br /> In the Abstract and Introduction, you've added more sentences about the intra-collective or inter-collective selection. However, these are either making analogies to the waterfall or just describing the result of the intra/inter-collective selection. I would still appreciate a proper definition of those terms, which is paramount for readers to understand the entire paper.

      (4) Consideration of environmental stochasticity.<br /> I think providing the reason 'why' the paper focuses on demographic stochasticity and not environmental stochasticity will greatly justify the paper's work. For example, citing papers that actually performed artificial selection and pointing out that your model captures the stochasticity from those kinds of experiments would be great.

      (5) Assumption about mutation rates.<br /> It would be great if you could add a citation in the added sentence to support your claim: "This scenario is encountered in biotechnology: .....".

  3. Feb 2025
    1. Reviewer #1 (Public review):

      Summary:

      This paper presents a compelling and comprehensive study of decision-making under uncertainty. It addresses a fundamental distinction between belief-based (cognitive neuroscience) formulations of choice behavior with reward-based (behavioral psychology) accounts. Specifically, it asks whether active inference provides a better account of planning and decision making, relative to reinforcement learning. To do this, the authors use a simple but elegant paradigm that includes choices about whether to seek both information and rewards. They then assess the evidence for active inference and reinforcement learning models of choice behavior, respectively. After demonstrating that active inference provides a better explanation of behavioral responses, the neuronal correlates of epistemic and instrumental value (under an optimized active inference model) are characterized using EEG. Significant neuronal correlates of both kinds of value were found in sensor and source space. The source space correlates are then discussed sensibly, in relation to the existing literature on the functional anatomy of perceptual and instrumental decision-making under uncertainty.

      Comments on revisions:

      Many thanks for attending to my previous comments. I think your manuscript is now easier to read - and your new (Bayesian) analyses are described clearly.

    1. Reviewer #2 (Public review):

      Summary:

      Juvenile hormone (JH) is a pleiotropic terpenoid hormone in insects that mainly regulates their development and reproduction. In particular, its developmental functions are described as the "status quo" action, as its presence in the hemolymph (the insect blood) prevents metamorphosis-initiating effects of ecdysone, another important hormone in insect development, and maintains the juvenile status of insects.

      While such canonical functions of JH are known to be mediated by its intracellular receptor complex composed of Met and Tai, there have been multiple reports suggesting the presence of cell membrane receptor(s) for JH, which mediate non-genomic effects of this terpenoid hormone. In particular, the presence of receptor tyrosine kinases (RTKs) that phosphorylate Met/Tai in response to JH and thus indirectly affect the canonical JH signaling pathway has been strongly suggested. Given the importance of JH in insect physiology and the fact that the JH signaling pathway is a major target of insect growth regulators, elucidating the identify and functions of putative JH membrane receptors is of great significance form both basic and applied perspectives.

      In the present study, the authors identified candidate receptors for such cell membrane JH receptors, CAD96CA and FGFR1, in the cotton bollworm, Helicoverpa armigera.

      Strengths:

      Their in vitro analyses are conducted thoroughly using multiple methods, which overall support their claim that these receptors can bind to JH and mediate their non-genomic effects.

      Their CRISPR-Cas-mediated mutagenesis in vivo shows that mutation of the two RTKs causes acceleration of pupation, which is consistent with the mutant phenotype of the intracellular JH receptor, Met1. Although this is different from the typical phenotype one would expect from JH signaling deficiency in lepidopteran insects (i.e. precocious metamorphosis), the results overall support their claim that these two RTKs modulate genomic JH effects by phosphorylating the intracellular receptors.

      Weaknesses:

      Although their loss-of-function analyses suggest that the two RTKs likely have redundant functions in vivo, it is unclear whether they have any different functions in mediating JH functions in different physiological contexts. It also remains unknown whether other endogenous ligands for these RTKs affect canonical, genomic JH signaling in vivo.

    1. Reviewer #1 (Public review):<br /> <br /> Summary:

      Juvenile Hormone (JH) plays a key role in insect development and physiology. Although the intracellular receptor for JH was identified long ago, a number of studies have shown that part of JH functions should be fulfilled through binding to an unknown membrane receptor, which was proposed to belong to the RTK family. In this study, the authors screened all RTKs from the H. armigera genome for their ability to mediate responses to JH III treatment both in cultured cells and in developping animals. They also present convincing evidence that CAD96CA and FGFR1 directly bind JH III, and that their role might be conserved in other insect species.

      Strengths:

      Altogether, the experimental approach is very complete and elegant, providing evidence for the role of CAD96CA and FGFR1 in JH signalling using different techniques and in different contexts. I believe that this work will open new perspectives to study the role of JH and better understand what is the contribution of signalling through membrane receptors for JH-dependent developmental processes.

      Weaknesses:

      Unfortunately, the revised manuscript does not show significant improvement. While the identification of the receptors is highly convincing, important issues about the biological relevance remain unaddressed.

      First, the main point I raised about the first version of this article is that the redundancy and/or specificity of the two receptors should be clarified, even though I understand that it cannot be deeply investigated here. I believe that this point, shared by all reviewers, is highly relevant for the scope of this work. In this revised version, it is still unclear how to reconcile gain and loss-of-function experiments and the different expression profiles of the receptors.

      Second, the newly added explanations and pieces of discussion provided about the mild in vivo phenotypes of early pupation upon Cad96ca or Fgfr1 knock-out do not clarify the issue but instead put emphasis on methodological issues. Indeed, it is not clear whether the mild phenotypes reflect the biological role of Cad96ca and Fgfr1, or the redundancy of these two RTKs (and/or others), or some issue with the knock-out strategy (partial efficiency, mosaicism...).

      Finally, parts of the updated discussion and the modifications to the figures are confusing.

    1. Reviewer #1 (Public review):

      Summary:

      This work is meant to help create a foundation for future studies of the Central Complex, which is a critical integrative center in the fly brain. The authors present a systematic description of cellular elements, cell type classifications, behavioral evaluations and genetic resources available to the Drosophila neuroscience community.

      Strengths:

      The work contributes new, useful and systematic technical information in compelling fashion to support future studies of the fly brain. It also continues to set a high and transparent standard by which large-scale resources can be defined and shared.

      Weaknesses:

      Manuscript revisions by the authors addressed all proposed weaknesses from the original version.

    1. Reviewer #4 (Public review):

      Summary:

      This is an important study that underscores that reproduction-survival trade-offs are not manifested (contrary to what generally accepted theory predicts) across a range of studies on birds. This has been studied by a meta-analytical approach, gathering data from a set of 46 papers (30 bird species). The overall conclusion is that there are no trade-offs apparent unless experimental manipulations push the natural variability to extreme values. In the wild, the general pattern for within-species variation is that birds with (naturally) larger clutches survive better.

      Likely impact:

      I think this is an important contribution to a slow shift in how we perceive the importance of trade-offs in ecology and evolution in general. While the current view still is that one individual excelling in one measure of its life history (i.e. receiving benefits) must struggle (i.e. pay costs) in another part. However, a positive correlation between all aspects of life history traits is possible within an individual (such as due to developmental conditions or fitting to a particular environment). Simply, some individuals can perform generally better (be of good quality than others).

    1. Reviewer #2 (Public review):

      Summary:

      The authors investigated the expression profile of enterochromaffine (EC) cells after creating a new tryptophan hydroxylase 1 (Tph1) GFP-reporter mouse using scRNAseq and confirmative RNAscope analysis. They distinguish 14 clusters of Tph1+ cells found along the gut axis. The manuscript focuses on two of these, (i) a multihormonal cell type shown to express markers of pathogen/toxin and nutrient detection in the proximal small intestine, and (ii) on a EC-cluster in the distal colon, which expresses Piezo2, rendering these cells mechanosensitive. In- and ex- vivo data explore the role of the mechanosensitive EC population for intestinal/colonic transit, using chemogenetic activation, diptheria-toxin receptor dependent cell ablation and conditional gut epithelial specific Piezo2 knock-out. Whilst some of these data are confirmative of previous reports - Piezo2 has been implicated in mechanosensitive serotonin release previously, as referred to by the authors - the data are solid and emphasize the importance of mechanosensitive serotonin release for colonic propulsion. The transcriptomic data will guide future research.

      Strengths:

      The transcriptomic data, whilst confirmative, is more granular than previous data sets. Employing new tools to establish a role of mechanosensitive EC cells for colonic and thus total intestinal transit.

      Weaknesses:

      (1) The proposed villus/crypt distribution of the14 cell types is not verified adequately. The RNAscope and immunohistochemistry samples presented do not allow assessment if this interpretation is correct - spatial transcriptomics, now approaching single cell resolution, likely will help to verify this claim.

      (2) The physiological function and/or functionality of most of the transcriptomically enriched gene products has not been assessed. Whilst a role for Piezo2 expressing cells for colonic transit is convincingly demonstrated the nature of the mechanical stimulus or the stimulus-secretion coupling downstream of Piezo2 activation is not clear.

      Comments on revisions: I am happy with the manuscript as is.

    1. Reviewer #1 (Public review):

      Summary:

      The objective of this study was to infer the population dynamics (rates of differentiation, division, and loss) and lineage relationships of clonally expanding NK cell subsets during an acute immune response.

      Strengths:

      A rich dataset and thorough analysis of a particular class of stochastic models.

      Weaknesses:

      The stochastic models used are quite simple; each population is considered homogeneous with first-order rates of division, death, and differentiation. In Markov process models such as these, there is no dependence of cellular behavior on its history of divisions. In recent years models of clonal expansion and diversification, in the settings of T and B cells, have progressed beyond this picture. So I was a little surprised that there was no mention of the literature exploring the role of replicative history in differentiation (e.g. Bresser Nat Imm 2022), nor of the notion of family 'division destinies' (either in division number or the time spent proliferating, as described by the Cyton and Cyton2 models developed by Hodgkin and collaborators; e.g. Heinzel Nat Imm 2017). The emerging view is that variability in clone (family) size may arise predominantly from the signals delivered at activation, which dictate each precursor's subsequent degree of expansion, rather than from the fluctuations deriving from division and death modeled as Poisson processes.

      As you pointed out, the Gerlach and Buchholz Science papers showed evidence for highly skewed distributions of family sizes and correlations between family size and phenotypic composition. Is it possible that your observed correlations could arise if the propensity for immature CD27+ cells to differentiate into mature CD27- cells increases with division number? The relative frequency of the two populations would then also be impacted by differences in the division rates of each subset - one would need to explore this. But depending on the dependence of the differentiation rate on division number, there may be parameter regimes (and time points) at which the more differentiated cells can predominate within large clones even if they divide more slowly than their immature precursors. One might not then be able to rule out the two-state model. I would like to see a discussion or rebuttal of these issues.

    1. Reviewer #1 (Public review):

      Summary:

      This study introduces a novel therapeutic strategy for patients with high-risk HER2-positive breast cancer and demonstrates that the incorporation of pyrotinib into adjuvant trastuzumab therapy can improve invasive disease-free survival.

      Strengths:

      The study features robust logic and high-quality data. Data from 141 patients across 23 centers were analyzed, thereby effectively mitigating regional biases and endowing the research findings with high applicability.

      Weaknesses:

      (1) Introduction and Discussion: Update the literature regarding the efficacy of pyrotinib combined with trastuzumab in treating HER2-positive advanced breast cancer.<br /> (2) Did all the data have a normal distribution? Expand the description of statistical analysis.<br /> (3) The novelty and innovative potential of your manuscript compared to the published literature should be described in more detail in the abstract and discussion section.<br /> (4) Figure legend should provide a bit more detail about what readers should focus on.<br /> (5) P-values should be clarified for the analysis.<br /> (6) The order (A, B, and C) in Figure 3 should be labeled in the upper left corner of the Figure.

      Comments on revisions:

      The authors responded well to my questions.

    1. Reviewer #1 (Public review):

      The authors aim to assess the effect of salt stress on root:shoot ratio, identify the underlying genetic mechanisms, and evaluate their contribution to salt tolerance. To this end, the authors systematically quantified natural variations in salt-induced changes in root: shoot ratio. This innovative approach considers the coordination of root and shoot growth rather than exploring biomass and development of each organ separately. Using this approach, the authors identified a gene cluster encoding eight paralog genes with a domain-of-unknown-function 247 (DUF247), with the majority of SNPs clustering into SR3G (At3g50160). In the manuscript, the authors utilized an integrative approach that includes genomic, genetic, evolutionary, histological, and physiological assays to functionally assess the contribution of their genes of interest to salt tolerance and root development.

      Comments on latest version:

      The authors have largely addressed my concerns and comments. I have no additional comments for this round of review.

    1. Reviewer #1 (Public review):

      Summary:

      In this study by Fang et al., the authors show how STAMBPL1 promotes TNBC angiogenesis via a feed-forward GRHL3/HIF1a/VEGFA axis. They demonstrate that STAMBPL1 interacts with FOXO1, define the required domains in each protein, and illustrate that this interaction facilitates FOXO1 transcriptional factor activity, which then activates GRHL3/HIF1a/VEGFA signaling. Lastly, they show that the combination of VEGFR and FOXO1 inhibitors can synergistically suppress STAMBPL1-overexpressing TNBC.

      Strengths:

      The manuscript is clearly written, and the results are well explained. The observation that STAMBPL1 mediates GRHL3 transcription through its interaction with FOXO1 is novel. The findings also have important translational potential.

    1. Reviewer #1 (Public review):

      Summary:

      This paper provide a resource for researchers studying the marine annelid Platynereis dumerilii. It is only the third whole body connectome to be assembled and thus provides a comparison with those less complex animals: the nematode Caenorhabditis elegans and the tunicate Ciona intestinialis. The paper catalogs all cells in the body, not just neurons, and details how sensory neurons, interneurons, motor neurons, and effector organs are connected. From this, the authors are able to extract information about the organization of different aspects of the nervous system. These include the extent of recurrent connectivity, unimodal and multimodal sensory processing, and long-range and short-range connectivity.

      Several interesting conclusion are drawn, including the concept that circuit evolution might have proceeded by duplication and diversion of cell types, much as it has been posited that gene evolution has occurred. It also informs the understanding of the evolution of segmental body plans in annelids by mapping and comparing cells in each segment.

      Strengths:

      This paper contains a wealth of data. The raw dataset is available. The codes and scripts are provided to allow interested readers to utilize this dataset.

      The analysis is painstakingly meticulous. The diagrams are organized to orient the reader to the complexities this overwhelming analysis

      Weaknesses:

      The strength of the paper is also its weakness. It contains so much data and analysis that it is burdensome to read and understand. There are 16 multi-panel data figures in the main text and another 38 supplemental figures and 5 videos.

      The impact of the paper is diminished by its size and depth. The paper could be broken up into smaller thematic papers that would be more accessible to researchers interested in particular topics. For example, there could be a single paper on the mushroom body and another paper on the segmental organization.

      Comments on revisions:

      The authors have addressed all of my concerns.

    1. Reviewer #1 (Public review):

      This study presents a refined approach to enhance the sensitivity of PCR for detecting Trypanosoma cruzi in blood by employing DNA fragmentation and deep sampling, involving multiple replicate PCR reactions. Combined with serial blood sampling, these methods enabled consistent detection of the parasite in infected humans, non-human primates, and dogs, including hosts with very low parasitemia levels.

      Inspired by earlier methods that cleaved kinetoplast DNA (kDNA) to improve target distribution, this study targets nuclear satellite DNA repeats, which are tandemly arranged in T. cruzi chromosomes. By fragmenting DNA prior to PCR, the authors reduced subsampling errors, breaking large fragments into smaller, evenly distributed units. This improved the frequency of positive reactions and reduced variability among replicate Cq values.

      Using contrived blood samples, the study demonstrated that this approach significantly enhances PCR positivity. Moreover, the findings suggest that cell pellets from blood yield higher concentrations of parasite DNA compared to whole blood, prompting a reevaluation of current diagnostic practices, which predominantly use whole blood lysates.

      The study also highlights the importance of deep sampling. Serial testing across multiple blood samples mitigated the variability in parasitemia, addressing challenges first noted in early xenodiagnosis studies (Cerisola et al., 1977).

      The proposed DNA extraction and amplification procedures effectively captured parasitemia dynamics, achieving detection sensitivities with quantification limits as low as ~0.00025 parasite equivalents/mL, approaching the detection of a single target copy per reaction.

      This work underscores the utility of deep-sampling PCR in monitoring parasitemia dynamics and guiding treatment strategies, especially in chronic infections. It also stresses the importance of treating individuals with low parasitic loads, as immune control may change over time.

      Strengths:

      The strategies used for increasing PCR sensitivity offer the potential for enhancing treatment monitoring and understanding the dynamics of parasite-host interactions in chronic Chagas disease.

      Weaknesses:

      While the study offers valuable insights for research in T.cruzi infection dynamics and monitoring of trypanocidal drugs efficacy, its broader adoption depends on the development of cost-effective and scalable alternatives to labor-intensive techniques such as sonication, currently required for DNA fragmentation. Additionally, the reliance on blood cell pellets and the DNA fragmentation protocol introduces extra processing steps, which may not be feasible for many clinical laboratories, particularly in resource-limited endemic areas that require simpler and more streamlined procedures.

    1. Reviewer #1 (Public review):

      Summary:

      Jirouskova and colleagues in their study have carried out an in depth proteomic characterization of the dynamics of the liver fibrotic response and the resulting resolution in two distinct models of liver injury: CCl4-induced model of hepatotoxicity and pericentral/bridging liver fibrosis and the DDC feeding model of obstructive cholestasis and periportal fibrosis. They focussed on both the insoluble extracellular matrix (ECM) components as well as the soluble secreted factors produced by hepatic stellate cells (HSCs) and/or portal fibroblasts (PFs). They identified compartment- and time-resolved proteomic signatures in the two models with disease-specific factors or matrisomes. Their study also identified phenotypic differences between the models such as that while the CCl4-induced model induced profound hepatotoxicity followed by resolution, the DDC model induced more lasting liver damage and proteomic changes that resembled advanced human liver fibrosis favouring hepatocarcinogenesis.

      Overall, this comprehensive and very well conducted study is rigorous and well planned. The conclusions are supported by compelling studies and analyses. One caveat is the lack of mechanistic experiments to prove causality, but this can be carried out in follow-up studies.

      Strengths:

      • A major strength in the study is that the experiments are rigorous and very well conducted. For instance, the authors utilized two models of liver fibrosis to study different aspects of the pathology - hepatotoxicity vs cholestasis. In addition, 4 time points for each model were investigated - 2 for fibrosis development and 2 for fibrosis resolution. They have taken 3 components for proteomic analyses - total lysates, insoluble ECM components as well as the soluble secreted factors. Thus, the authors provide a comprehensive overview of the fibrosis and resolution process in these models.

      • Another great strength of the study is that the methodology utilized was able to dissect unique pathways relevant for each model as well as common targets. For example, the authors identified known pathways such as mTOR signalling to be differentially regulated in the CCl4 vs DDC model. mTOR signalling was increased in the DDC model that is associated with hyperproliferation. Thus showing that the approach taken is specific enough to distinguish between the two similar (both induce fibrosis) but distinct mechanisms (hepatotoxicity vs cholestasis) is a strong point of the study.

      Weaknesses:

      • A caveat of the study is that the authors have not conducted mechanistic (gain of function/loss of function) studies from any of their identified targets to truly prove causality. This remains one of the limitations of this study. Thus, future studies should investigate this point in detail. For instance, it would have been intriguing to dissect if knocking out specific genes involved in one specific model or genes common to both would yield distinct phenotypic outcomes.

    1. Reviewer #1 (Public review):

      The paper by Gao et al. describes the effect of capsaicin on the NRF2/KEAP1 pathway. The authors carried out a set of in vitro and in vivo experiments that addressed the mechanisms of the protective effect of capsaicin on ethanol-induced cytotoxicity.

      The authors conclude that capsaicin activates NRF2, which leads to the induction of cytoprotective genes, preventing oxidative damage. The paper shows that capsaicin may directly bind to KEAP1 and that it is a noncovalent modification of the Kelch domain.

      The authors also designed new albumin-coated capsaicin nanoparticles, which were tested for the therapeutic effect in vivo.

      I appreciate the authors' experimental efforts to strengthen the study's conclusions. However, in my opinion, the paper is still not fully technically sound, which weakens the strength of the evidence.

    1. Reviewer #1 (Public review):

      Summary:

      This study reports the effects of psilocin on iPSC-derived human cortical neurons.

      Strengths:

      The characterization was comprehensive, involving immunohistochemistry of various markers, 5-HT2A receptors, BDNF, and TrkB, transcriptomics analyses, morphological determination, electrophysiology, and finally synaptic protein measurements. The results are in close agreement with prior work (PMID 29898390) on rat-cultured cortical neurons. Nevertheless, there is value in confirming those earlier findings and furthermore demonstrating the effects in human neurons, which are important for translation. The genetic, proteomics, and cell structure analyses used in this paper are its major strengths. The study supports the value of using iPSC-derived human cortical neurons for drug development involving psychedelics-related compounds.

      Weaknesses:

      (1) Line 140: 5-HT2A receptor expression was found via immunocytochemistry to reside in the somatodendritic and axonal compartments. However, prior work from ex vivo tissue using electron microscopy has found predominantly 5-HT2A receptor expression in the somatodendritic compartment (PMID: 12535944). Was this antibody validated to be 5-HT2A receptor-specific? Can the authors reason why the discrepancy may arise, and if the axonal expression is specific to the cultured neurons?

      (2) Line 143: It would be helpful to specify the dose of psilocin tested, and describe how this dose was chosen.

      (3) Figure 1: The interpretation is that the differential internalization in the axonal and somatodendritic compartments is time-dependent. However, given that only one dose is tested, it is also possible that this reflects dose dependence, with the longer time exposure leading to higher dose exposure, so these variables are related. That is, if a higher dose is given, internalization may also be observed after 10 minutes in the dendritic compartment.

      (4) Figure 3 & 4: What is the 'control' here? A more appropriate control for the 24 hours after psilocin application would be 24 hours after vehicle application. Here the authors are looking at before and after, but the factor of time elapsed and perturbation via application is not controlled for.

      (5) The sample size was not clearly described. In the figure legend, N = the number of neurites is provided, but it is unclear how many cells have been analyzed, and then how many of those cells belong to the same culture. These are important sample size information that should be provided. Relatedly, statistical analyses should consider that the neurites from the same cells are not independent. If the neurites indeed come from the same cells, then the sample size is much smaller and a statistical analysis considering the nested nature of the data should be used.

    1. Reviewer #2 (Public review):

      Summary:

      The paper attempts to elucidate how feral (wild) pigs cause distortion of the environment in over 54 countries of the world, particularly Australia.

      The paper displays proof that over $120 billion worth of facilities were destroyed annually in the United States of America.

      The authors have tried to infer that the findings of their work were fundamental and possessing a compelling strength of evidence.

      Strengths:

      (1) Clearly stating feral (wild) pigs as a problem in the environment.

      (2) Stating how 54 countries were affected by the feral pigs.

      (3) Mentioning how $120 billion was lost in the US, annually, as a result of the activities of the feral pigs.

      (4) Amplifying the fact that 14 species of animals were being driven into extinction by the feral pigs.

      (5) Feral pigs possessing zoonotic abilities.

      (6) Feral pigs acting as reservoirs for endemic diseases like brucellosis and leptospirosis.

      (7) Understanding disease patterns by the social dynamics of feral pig interactions.

      (8) The use of 146 GPS-monitored feral pigs to establish their social interaction among themselves.

      Weaknesses:

      None, as the weaknesses had been already addressed.

    1. Reviewer #1 (Public review):

      In Pech et al. the authors take advantage of a genetic model organism to investigate the convergent impact of multiple mutations linked to Parkinson's Disease (PD). To investigate this question they leverage Drosophila genetics to create wild type and mutant alleles for five different mutations linked to PD. An additional novel focus of this work is an examination of the animals in an early phase before apparent dopaminergic degeneration. Having generated this resource, authors discover apply an impressive array of experiments including behavioural assays, calcium imaging and single-cell profiling. They also cross-validate their findings in human PD brains. Strikingly, the authors discover common dysregulated genes between fly and human that converges on synaptic dysregulation. Finally, they demonstrate that even in early timepoints, there is extensive dysfunction of olfactory projection neuron calcium.

      This is a fantastic, comprehensive, timely and landmark pan-species work that demonstrates the convergence of multiple familial PD mutations onto a synaptic program. It is extremely well written and the authors have addressed all my comments in this review. I recommend this work be published as soon as possible.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript extends previous research by this group by relating variation in pupil size to the endpoints of saccades produced by human participants under various conditions including trial-based choices between pairs of spots and search for small items in natural scenes. Based on the premise that pupil size is a reliable proxy of "effort", the authors conclude that less costly saccade targets are preferred. Finding that this preference was influenced by the performance of a non-visual, attention-demanding task, the authors conclude that a common source of effort animates gaze behavior and other cognitive tasks.

      Strengths:

      Strengths of the manuscript include the novelty of the approach, the clarity of the findings, and the community interest in the problem.

      Weaknesses:

      Enthusiasm for this manuscript is reduced by the following weaknesses:

      (1) A relationship between pupil size and saccade production seems clear based on the authors' previous and current work. What is at issue is the interpretation. The authors test one, preferred hypothesis, and the narrative of the manuscript treats the hypothesis that pupil size is a proxy of effort as beyond dispute or question. The stated elements of their argument seem to go like this:<br /> PROPOSITION 1: Pupil size varies systematically across task conditions, being larger when tasks are more demanding.<br /> PROPOSITION 2: Pupil size is related to the locus coeruleus.<br /> PROPOSITION 3: The locus coeruleus NE system modulates neural activity and interactions.<br /> CONCLUSION: Therefore, pupil size indexes the resource demand or "effort" associated with task conditions.<br /> How the conclusion follows from the propositions is not self-evident. Proposition 3, in particular, fails to establish the link that is supposed to lead to the conclusion.

      (2) The authors test one, preferred hypothesis and do not consider plausible alternatives. Is "cost" the only conceivable hypothesis? The hypothesis is framed in very narrow terms. For example, the cholinergic and dopamine systems that have been featured in other researchers' consideration of pupil size modulation are missing here. Thus, because the authors do not rule out plausible alternative hypotheses, the logical structure of this manuscript can be criticized as committing the fallacy of affirming the consequent.

      (3) The authors cite particular publications in support of the claim that saccade selection is influenced by an assessment of effort. Given the extensive work by others on this general topic, the skeptic could regard the theoretical perspective of this manuscript as too impoverished. Their work may be enhanced by consideration of other work on this general topic, e.g, (i) Shenhav A, Botvinick MM, Cohen JD. (2013) The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 2013 Jul 24;79(2):217-40. (ii) Müller T, Husain M, Apps MAJ. (2022) Preferences for seeking effort or reward information bias the willingness to work. Sci Rep. 2022 Nov 14;12(1):19486. (iii) Bustamante LA, Oshinowo T, Lee JR, Tong E, Burton AR, Shenhav A, Cohen JD, Daw ND. (2023) Effort Foraging Task reveals a positive correlation between individual differences in the cost of cognitive and physical effort in humans. Proc Natl Acad Sci U S A. 2023 Dec 12;120(50):e2221510120.

      (4) What is the source of cost in saccade production? What is the currency of that cost? The authors state (page 13), "... oblique saccades require more complex oculomotor programs than horizontal eye movements because more neuronal populations in the superior colliculus (SC) and frontal eye fields (FEF) [76-79], and more muscles are necessary to plan and execute the saccade [76, 80, 81]." This statement raises questions and concerns. First, the basis of the claim that more neurons in FEF and SC are needed for oblique versus cardinal saccades is not established in any of the publications cited. Second, the authors may be referring to the fact that oblique saccades require coordination between pontine and midbrain circuits. This must be clarified. Second, the cost is unlikely to originate in extraocular muscle fatigue because the muscle fibers are so different from skeletal muscles, being fundamentally less fatigable. Third, if net muscle contraction is the cost, then why are upward saccades, which require the eyelid, not more expensive than downward? Thus, just how some saccades are more effortful than others is not clear.

      (5) The authors do not consider observations about variation in pupil size that seem to be incompatible with the preferred hypothesis. For example, at least two studies have described systematically larger pupil dilation associated with faster relative to accurate performance in manual and saccade tasks (e.g., Naber M, Murphy P. Pupillometric investigation into the speed-accuracy trade-off in a visuo-motor aiming task. Psychophysiology. 2020 Mar;57(3):e13499; Reppert TR, Heitz RP, Schall JD. Neural mechanisms for executive control of speed-accuracy trade-off. Cell Rep. 2023 Nov 28;42(11):113422). Is the fast relative to the accurate option necessarily more costly?

      (6) The authors draw conclusions based on trends across participants, but they should be more transparent about variation that contradicts these trends. In Figures 3 and 4 we see many participants producing behavior unlike most others. Who are they? Why do they look so different? Is it just noise, or do different participants adopt different policies?

      Comments on revisions:

      The authors have addressed the concerns and questions raised in the original review.

    1. Reviewer #1 (Public review):

      Summary:

      In this valuable study, the authors found that the macrolide drug rapamycin, which is an important pharmacological tool in the clinic and the research lab, is less specific than previously thought. They provide solid functional evidence that rapamycin activates TRPM8 and begin to develop an NMR method to measure the specific binding of a ligand to a membrane protein.

      Strengths:

      The authors use a variety of complementary experimental techniques in several different systems, and their results support the conclusions drawn.

      Weaknesses:

      The proposed location of the rapamycin binding pocket within the membrane means that molecular docking approaches designed for soluble proteins alone do not provide solid evidence for a rapamycin binding pocket location in TRPM8, but the authors are appropriately careful in stating that the model is consistent with their functional experiments. The novel STTD method is intriguing and supportive of the functional results and docking predictions, but further validation of this method is needed.

      Impact:

      This work provides still more evidence for the polymodality of TRP channels, reminding both TRP channel researchers and those who use rapamycin in other contexts that the adjective "specific" is only meaningful in the context of what else has been explicitly tested.

      Comments on revisions:

      The authors have addressed my major concerns from the previous round of revision, and I agree that those things that remain un-done are outside the scope of this manuscript.

    1. Joint Public Review:

      Summary:

      In this manuscript, the authors investigate how different domains of the presynaptic protein UNC-13 regulate synaptic vesicle release in the nematode C. elegans. By generating numerous point mutations and domain deletions, they propose that two membrane-binding domains (C1 and C2B) can exhibit "mutual inhibition," enabling either domain to enhance or restrain transmission depending on its conformation. The authors also explore additional N-terminal regions, suggesting that these domains may modulate both miniature and evoked synaptic responses. From their electrophysiological data, they present a "functional switch" model in which UNC-13 potentially toggles between a basal state and a gain-of-function state, though the physiological basis for this switch remains partly speculative.

      Strengths:

      (1) The authors conduct a thorough exploration of how mutations in the C1, C2B, and other regulatory domains affect synaptic transmission. This includes single, double, and triple mutations, as well as domain truncations, yielding a large, informative dataset.

      (2) The study includes systematically measuring both spontaneous and evoked synaptic currents at neuromuscular junctions, under various experimental conditions (e.g., different Ca²⁺ levels), which strengthens the reliability of their functional conclusions.

      (3) Findings that different domain disruptions produce distinct effects on mEPSCs, mIPSCs, and evoked EPSCs suggest UNC-13 may adopt an elevated functional state to regulate synaptic transmission.

      Weaknesses:

      It remains unclear whether the various domain alterations truly converge on a single "gain-of-function" state or instead represent multiple pathways for enhancing UNC-13 activity. Different mutations selectively affect spontaneous or evoked release, suggesting that each variant may not share the same underlying mechanism. Moreover, many conclusions rely on combining domain deletions or point mutations, yet the electrophysiological data show distinct outcomes across EPSCs, IPSCs, mini, and evoked responses. This raises questions about whether these manipulations all act on the same pathway and whether their observed additivity or suppression genuinely reflects a single mechanistic process. A unifying model-or at least a clearer explanation of why the authors infer one mechanistic state across different domain manipulations would strengthen the paper's conclusions.

      The manuscript proposes that UNC-13 toggles from a basal to a "gain-of-function" state under normal synaptic activity. However, it does not address when or how this switch might occur in vivo, since it is demonstrated principally via artificial mutations. Providing direct evidence or additional discussion of such switching under physiological conditions would be particularly informative.

      What is the physiological significance of the proposed gain-of-function state? The data suggest that certain mutants (e.g., HK+D1-5N) lacking the gain-of-function state can still support synaptic transmission at wild-type levels. How do the authors reconcile this with the idea that the gain-of-function state plays a critical role at the synapse?

      The authors determined the fluorescence intensity of mApple-tagged UNC-13 variants (Figure 1J-K and Figure 7J-K), finding no significant changes compared to the wild-type. However, a more detailed analysis of the density or distribution of fluorescent puncta in axons could clarify whether certain mutations alter the localization of UNC-13 at synapses. Demonstrating colocalization with wild-type UNC-13 (or another presynaptic marker) would help rule out mislocalization effects.

      The study mainly relies on extrachromosomal transgenes, which can show variable copy numbers and expression levels among individual worm strains. This variability might complicate interpretation, as differences in expression could mask or exaggerate certain phenotypes.

      Finally, the discussion is somewhat diffused. Streamlining the text to focus on the most direct connections would help readers pinpoint the key conclusions and open questions.

    1. Reviewer #1 (Public review):

      This is an interesting and timely computational study using molecular dynamics simulation as well as quantum mechanical calculation to address why tyrosine (Y), as part of an intrinsically disordered protein (IDP) sequence, has been observed experimentally to be stronger than phenylalanine (F) as a promoter for biomolecular phase separation. Notably, the authors identified the aqueous nature of the condensate environment and the corresponding dielectric and hydrogen bonding effects as a key to understanding the experimentally observed difference. This principle is illustrated by the difference in computed transfer free energy of Y- and F-containing pentapeptides into a solvent with various degrees of polarity. The elucidation offered by this work is important. The computation appears to be carefully executed, the results are valuable, and the discussion is generally insightful. However, there is room for improvement in some parts of the presentation in terms of accuracy and clarity, including, e.g., the logic of the narrative should be clarified with additional information (and possibly additional computation), and the current effort should be better placed in the context of prior relevant theoretical and experimental works on cation-π interactions in biomolecules and dielectric properties of biomolecular condensates. Accordingly, this manuscript should be revised to address the following, with added discussion as well as inclusion of references mentioned below.

      (1) Page 2, line 61: "Coarse-grained simulation models have failed to account for the greater propensity of arginine to promote phase separation in Ddx4 variants with Arg to Lys mutations (Das et al., 2020)". As it stands, this statement is not accurate, because the cited reference to Das et al. showed that although some coarse-grained models, namely the HPS model of Dignon et al., 2018 PLoS Comput did not capture the Arg to Lys trend, the KH model described in the same Dignon et al. paper was demonstrated by Das et al. (2020) to be capable of mimicking the greater propensity of Arg to promote phase separation than Lys. Accordingly, a possible minimal change that would correct the inaccuracy of this statement in the manuscript would be to add the word "Some" in front of "coarse-grained simulation models ...", i.e., it should read "Some coarse-grained simulation models have failed ...". In fact, a subsequent work [Wessén et al., J Phys Chem B 126: 9222-9245 (2022)] that applied the Mpipi interaction parameters (Joseph et al., 2021, already cited in the manuscript) showed that Mpipi is capable of capturing the rank ordering of phase separation propensity of Ddx4 variants, including a charge scrambled variant as well as both the Arg to Lys and the Phe to Ala variants (see Figure 11a of the above-cited Wessén et al. 2022 reference). The authors may wish to qualify their statements in the introduction to take note of these prior results. For example, they may consider adding a note immediately after the next sentence in the manuscript "However, by replacing the hydrophobicity scales ... (Das et al., 2020)" to refer to these subsequent findings in 2021-2022.

      (2) Page 8, lines 285-290 (as well as the preceding discussion under the same subheading & Figure 4): "These findings suggest that ... is not primarily driven by differences in protein-protein interaction patterns ..." The authors' logic in terms of physical explanation is somewhat problematic here. In this regard, "Protein-protein interaction patterns" appear to be a straw man, so to speak. Indeed, who (reference?) has argued that the difference in the capability of Y and F in promoting phase separation should be reflected in the pairwise amino acid interaction pattern in a condensate that contains either only Y (and G, S) and only F (and G, S) but not both Y and F? Also, this paragraph in the manuscript seems to suggest that the authors' observation of similar contact patterns in the GSY and GSF condensates is "counterintuitive" given the difference in Y-Y and F-F potentials of mean force (Joseph et al., 2021); but there is nothing particularly counterintuitive about that. The two sets of observations are not mutually exclusive. For instance, consider two different homopolymers, one with a significantly stronger monomer-monomer attraction than the other. The condensates for the two different homopolymers will have essentially the same contact pattern but very different stabilities (different critical temperatures), and there is nothing surprising about it. In other words, phase separation propensity is not "driven" by contact pattern in general, it's driven by interaction (free) energy. The relevant issue here is total interaction energy or the critical point of the phase separation. If it is computationally feasible, the authors should attempt to determine the critical temperatures for the GSY condensate versus the GSF condensate to verify that the GSY condensate has a higher critical temperature than the GSF condensate. That would be the most relevant piece of information for the question at hand.

      (3) Page 9, lines 315-316: "...Our ε [relative permittivity] values ... are surprisingly close to that derived from experiment on Ddx4 condensates (45{plus minus}13) (Nott et al., 2015)". For accuracy, it should be noted here that the relative permittivity provided in the supplementary information of Nott et al. was not a direct experimental measurement but based on a fit using Flory-Huggins (FH), but FH is not the most appropriate theory for a polymer with long-spatial-range Coulomb interactions. To this reviewer's knowledge, no direct measurement of relative permittivity in biomolecular condensates has been made to date. Explicit-water simulation suggests that the relative permittivity of Ddx4 condensate with protein volume fraction ≈ 0.4 can have a relative permittivity ≈ 35-50 (Das et al., PNAS 2020, Fig.7A), which happens to agree with the ε = 45{plus minus}13 estimate. This information should be useful to include in the authors' manuscript.

      (4) As for the dielectric environment within biomolecular condensates, coarse-grained simulation has suggested that whereas condensates formed by essentially electric neutral polymers (as in the authors' model systems) have relative permittivities intermediate between that of bulk water and that of pure protein (ε = 2-4, or at most 15), condensates formed by highly charged polymers can have relative permittivity higher than that of bulk water [Wessén et al., J Phys Chem B 125:4337-4358 (2021), Fig.14 of this reference]. In view of the role of aromatic residues (mainly Y and F) in the phase separation of IDPs such as A1-LCD and LAF-1 that contain positively and negatively charged residues (Martin et al., 2020; Schuster et al., 2020, already cited in the manuscript), it should be useful to address briefly how the relationship between the relative phase-separation promotion strength of Y vs F and dielectric environment of the condensate may or may not be change with higher relative permittivities.

      (5) The authors applied the dipole moment fluctuation formula (Eq.2 in the manuscript) to calculate relative permittivity in their model condensates. Does this formula apply only to an isotropic environment? The authors' model condensates were obtained from a "slab" approach (page 4 and thus the simulation box has a rectangular geometry. Did the authors apply Equation 2 to the entire simulation box or only to the central part of the box with the condensate (see, e.g., Figure 3C in the manuscript). If the latter is the case, is it necessary to use a different dipole moment formula that distinguishes between the "parallel" and "perpendicular" components of the dipole moment (see, e.g., Equation 16 in the above-cited Wessén et al. 2021 paper). A brief added comment will be useful.

      (6) With regard to the general role of Y and F in the phase separation of biomolecules containing positively charged Arg and Lys residues, the relative strength of cation-π interactions (cation-Y vs cation-F) should be addressed (in view of the generality implied by the title of the manuscript), or at least discussed briefly in the authors' manuscript if a detailed study is beyond the scope of their current effort. It has long been known that in the biomolecular context, cation-Y is slightly stronger than cation-F, whereas cation-tryptophan (W) is significantly stronger than either cation-Y and cation-F [Wu & McMahon, JACS 130:12554-12555 (2008)]. Experimental data from a study of EWS (Ewing sarcoma) transactivation domains indicated that Y is a slightly stronger promoter than F for transcription, whereas W is significantly stronger than either Y or F [Song et al., PLoS Comput Biol 9:e1003239 (2013)]. In view of the subsequent general recognition that "transcription factors activate genes through the phase-separation capacity of their activation domain" [Boija et al., Cell 175:1842-1855.e16 (2018)] which is applicable to EWS in particular [Johnson et al., JACS 146:8071-8085 (2024)], the experimental data in Song et al. 2013 (see Figure 3A of this reference) suggests that cation-Y interactions are stronger than cation-F interactions in promoting phase separation, thus generalizing the authors' observations (which focus primarily on Y-Y, Y-F and F-F interactions) to most situations in which cation-Y and cation-F interactions are relevant to biomolecular condensation.

      (7) Page 9: The observation of weaker effective F-F (and a few other nonpolar-nonpolar) interactions in a largely aqueous environment (as in an IDP condensate) than in a nonpolar environment (as in the core of a folded protein) is intimately related to (and expected from) the long-recognized distinction between "bulk" and "pair" as well as size dependence of hydrophobic effects that have been addressed in the context of protein folding [Wood & Thompson, PNAS 87:8921-8927 (1990); Shimizu & Chan, JACS 123:2083-2084 (2001); Proteins 49:560-566 (2002)]. It will be useful to add a brief pointer in the current manuscript to this body of relevant resources in protein science.

    1. Reviewer #1 (Public review):

      Summary:

      Wang and Colleagues present a study aimed at demonstrating the feasibility of repeated ultrasound localization microscopy (ULM) recording sessions on mice chronically implanted with a cranial window transparent to US. They provided quantitative information on their protocol, such as the required number of Contrast enhancing microbubbles (MBs) to get a clear image of the vasculature of a brain coronal section. Also, they quantified the co-registration quality over time-distant sessions and the vasodilator effect of isoflurane.

      Strengths:

      Strengths: the study showed a remarkable performance in recording precisely the same brain coronal section over repeated imaging sessions. In addition, it sheds light on the vasodilator effect of isoflurane (an anesthetic whose effects are not fully understood) on the different brain vasculature compartments, although, as the Authors stated, some insights in this aspect have already been published with other imaging techniques. The experimental setting and protocol are very well described.

      Wang and co-authors submitted a revised version of their study, which shows improvements in the clarity of the data description.<br /> However, the flaws and limitations of this study are substantially unchanged.

      The main issues are:<br /> - Statistics are still inadequate. The TOST test proposed in this revised version is not equivalent to an ANOVA. Indeed, multivariate analyses should be the most appropriate, given that some quantifications were probably made on multiple vessels from different mice. The 3 reviewers mentioned the flaws in statistics as the primary concern.<br /> - No new data has been added, such as testing other anesthetics.<br /> - The Authors still insist on using the term Vascularity which they define as: 'proportion of the pixel count occupied by blood vessels within each ROI, obtained by binarizing the ULM vessel density maps and calculating the percentage of the pixels with MB signal.'. Why not use apparent cerebral blood volume or just CBV? Introducing an unnecessary and redundant term is not scientifically acceptable. In this revised version, vascularity is also used to indicate a higher vascular density (Line 275), which does not make sense: blood vessels do not generate from the isoflurane to the awake condition in a few minutes. Rev2 also raised this point.<br /> - The long-term recordings mentioned by the Authors refer to the 3-week time frame analyzed in this study. However, within each acquisition, the time available from imaging is only a few minutes (< 10', referring to most of the plots showing time courses) after the animals' arousal from isoflurane and before bubbles disappear. This limitation should be acknowledged.<br /> - The more precise description of the number of mice and blood vessels analyzed in Figure 6 makes it apparent the limited number of independent samples used to support the findings of this work. A limitation that should be acknowledged. The newly provided information added as Supplementary Figure 1 should be moved to the main text, eventually in the figure legends. The limited data in support of the findings was also highlighted by Rev2 and, indirectly, by Rev3.

    1. Reviewer #1 (Public review):

      Summary:

      This paper proposes a neural mechanism underlying the perception of ambiguous images: neuromodulation changes the gain of neural circuits promoting a switch between two possible percepts. Converging evidence for this is provided by indirect measurements of neuromodulatory activity and large-scale brain dynamics which are linked by a neural network model. However, both the data analysis as well as the computational modeling are incomplete and would benefit from a more rigorous approach.

      This is a revised version of the manuscript which, in my view, is a considerable step forward compared to the original submission.

      In particular, the authors now model phasic gain changes in the RNN, based on the network's uncertainty. This is original and much closer to what is suggested by the phasic pupil responses. They also show that switching is actually a network effect because switching times depend on network configuration (Fig 2). This resolves my main comments 1 and 2 about the model.

      The mechanism, as I understand it, is different from what the authors described before in the RNN with tonic gain changes. As uncertainty increases, the network enters a regime in which the two excitatory populations start to oscillate. My intuition is that this oscillation arises from the feedback loop created by the new gain control mechanism. If my intuition is correct, I think it would be worth to explain this mechanism in the paper more explicitly.

      Overall, the modeling part of the paper has changed quite a lot and I think it is now more solid which is why I have updated my "strength of evidence" rating.

    1. Reviewer #1 (Public Review):

      This study reports that spatial frequency representation can predict category coding in the inferior temporal cortex. The original conclusion was based on likely problematic stimulus timing (33 ms which was too brief). Now the authors claim that they also have a different set of data on the basis of longer stimulus duration (200 ms).

      One big issue in the original report was that the experiments used a stimulus duration that was too brief and could have weakened the effects of high spatial frequencies and confounded the conclusions. Now the authors provided a new set of data on the basis of a longer stimulus duration and made the claim that the conclusions are unchanged. These new data and the data in the original report were collected at the same time as the authors report.

      The authors may provide an explanation why they performed the same experiments using two stimulus durations and only reported one data set with the brief duration. They may also explain why they opted not to mention in the original report the existence of another data set with a different stimulus duration, which would otherwise have certainly strengthened their main conclusions.

    1. Reviewer #1 (Public review):

      (1) Summary of the Paper:

      This paper by Chen et al. examines the cellular composition and gene expression of the hypothalamic medial preoptic area (MPOA) in two closely related deer mouse species (P. maniculatus and P. polionotus) that exhibit distinct social behaviors. Through single-nucleus RNA sequencing (snRNA-seq), Chen et al., identify sex- and species-specific neuronal cell types that likely contribute to differences in mating and parental care. By comparing monogamous and promiscuous species, the study provides insights into how neuronal diversity and gene expression changes in the MPOA might underlie the evolution of social behaviors.

      (2) Strengths of the Paper:

      The paper excels in several areas. First, the data presentation is clear and well-organized, making the complex findings easy to follow. The writing is straightforward and highly accessible, which enhances the overall readability. The experimental design is innovative, particularly in how they combined samples from different species into the same dataset and then used post-hoc identification to distinguish cell types by species. This dramatically controls for potential batch effects in my opinion. Additionally, the authors contextualize their findings within the framework of previously published studies on Mus musculus, providing a strong comparative analysis that enhances the significance of their work.

      (3) Weaknesses of the Paper:

      The major limitation of the study is the absence of causal experiments linking the observed changes in MPOA cell types to species-specific social behaviors. While the study provides valuable correlational data, it lacks functional experiments that would demonstrate a direct relationship between the neuronal differences and behavior. For instance, manipulating these cell types or gene expressions in vivo and observing their effects on behavior would have strengthened the conclusions, although I certainly appreciate the difficulty in this, especially in non-musculus mice. Without such experiments, the study remains speculative about how these neuronal differences contribute to the evolution of social behaviors.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Guo and Uusisaari describes a series of experiments that employ a novel approach to address long-standing questions on the inferior olive in general and the role of the nucleo-olivary projection specifically. For the first time, they optimized the ventral approach to the inferior olive to facilitate imaging in this area that is notoriously difficult to reach. Using this approach, they are able to compare activity in two olivary regions, the PO and DAO, during different types of stimulation. They demonstrate the difference between the two regions, linked to Aldoc-identities of downstream Purkinje cells, and that there is co-activation resulting in larger events when they are clustered. Periocular stimulation also drives larger events, related to co-activation. Using optogenetic stimulation they activate the nucleo-olivary (N-O) tract and observe a wide range of responses, from excitation to inhibition. Zooming in on inhibition they test the assumption that N-O activation can be responsible for suppression of sensory-evoked events. Instead, they suggest that the N-O input can function to suppress background activity while preserving the sensory-driven responses.

      Strengths:

      This is an important study, tackling the long-standing issue of the impossibility to do imaging in the inferior olive and using that novel method to address the most relevant questions. The experiments are technically very challenging, the results are presented clearly and the analysis is quite rigorous. There is quite a lot of room for interpretation, see weaknesses, but the authors make an effort to cover many options.

      Weaknesses:

      The heavy anesthesia that is required during the experiment could severely impact the findings. Because of the anesthesia, the firing rate of IO neurons is found to be ~0.1 Hz, significantly lower than the 1 Hz found in non-anesthetized mice. This is mentioned and discussed, but what the consequences could be cannot be understated and should be addressed more. Although the methods and results are described in sufficient detail, there are a few points that, when addressed, would improve the manuscript.

    1. Reviewer #1 (Public review):

      This study provides a thorough analysis of Nup107's role in Drosophila metamorphosis, demonstrating that its depletion leads to developmental arrest at the third larval instar stage due to disruptions in ecdysone biosynthesis and EcR signaling. Importantly, the authors establish a novel connection between Nup107 and Torso receptor expression, linking it to the hormonal cascade regulating pupariation.

      However, some contradictory results weaken the conclusions of the study. The authors claim that Nup107 is involved in the translocation of EcR from the cytoplasm to the nucleus. However, the evidence provided in the paper suggests it more likely regulates EcR expression positively, as EcR is undetectable in Nup107-depleted animals, even below background levels. Additionally, the link between Nup107 and Torso is not fully substantiated. While overexpression of Torso appears to rescue the lack of 20E production in the prothoracic gland, the distinct phenotypes of Torso and Nup107 depletion-developmental delay in the former versus complete larval arrest in the latter complicate understanding of Nup107's precise role.

      To clarify these discrepancies, further investigation into whether Nup107 interacts with other critical signaling pathways related to the regulation of ecdysone biosynthesis, such as EGFR or TGF-β, would be beneficial and could strengthen the findings.

      In summary, although the study presents some intriguing observations, several conclusions are not well-supported by the experimental data.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors propose a "unifying method to evaluate inter-areal interactions in different types of neuronal recordings, timescales, and species". The method consists of computing the variance explained by a linear decoder that attempts to predict individual neural responses (firing rates) in one area based on neural responses in another area.

      The authors apply the method to previously published calcium imaging data from layer 4 and layers 2/3 of 4 mice over 7 days, and simultaneously recorded Utah array spiking data from areas V1 and V4 of 1 monkey over 5 days of recording. They report distributions over "variance explained" numbers for several combinations: from mouse V1 L4 to mouse V1 L2/3, from L2/3 to L4, from monkey V1 to monkey V4, and from V4 to V1. For their monkey data, they also report the corresponding results for different temporal shifts. Overall, they find the expected results: responses in each of the two neural populations are predictive of responses in the other, more so when the stimulus is not controlled than when it is, and with sometimes different results for different stimulus classes (e.g., gratings vs. natural images).

      Strengths:

      (1) Use of existing data.

      (2) Addresses an interesting question.

      Weaknesses:

      Unfortunately, the method falls short of the state of the art: both generalized linear models (GLMs), which have been used in similar contexts for at least 20 years (see the many papers, both theoretical and applied to neural population data, by e.g. Simoncelli, Paninsky, Pillow, Schwartz, and many colleagues dating back to 2004), and the extension of Granger causality to point processes (e.g. Kim et al. PLoS CB 2011). Both approaches are substantially superior to what is proposed in the manuscript, since they enforce non-negativity for spike rates (the importance of which can be seen in Figure 2AB), and do not require unnecessary coarse-graining of the data by binning spikes (the 200 ms time bins are very long compared to the time scale on which communication between closely connected neuronal populations within an area, or between related areas, takes place).

      In terms of analysis results, the work in the manuscript presents some expected and some less expected results. However, because the monkey data are based on only one monkey (misleadingly, the manuscript consistently uses the plural "monkeys"), none of the results specific to that monkey, nor the comparison of that one monkey to mice, are supported by robust data. One of the main results for mice (bimodality of explained variance values, mentioned in the abstract) does not appear to be quantified or supported by a statistical test and is only present in two out of three mice. Moreover, the two data sets differ in too many aspects to allow for any conclusions about whether the comparisons reflect differences in species (mouse vs. monkey), anatomy (L2/3-L4 vs. V1-V4), or recording technique (calcium imaging vs. extracellular spiking).

    1. Reviewer #1 (Public review):

      Summary:

      Epiney et al. use single-nuclei RNA sequencing (snRNA-seq) to characterize the lineage of Type-2 (T2) neuroblasts (NBs) in the adult Drosophila brain. To isolate cells born from T2 NBs, the authors used a genetic tool that specifically allows the permanent labeling of T2-derived cell types, which are then FAC-sorted for snRNA-seq. This effective labeling approach also allows them to compare the isolated T2 lineage cells with T1-derived cell types by a simple exclusion method. The authors begin by describing a transcriptomic atlas for all T1 and T2-derived neuronal and glia clusters, reporting that the T2-derived lineage comprises 161 neuronal clusters, in contrast to the T1 lineage which comprises 114 of them. The authors then use the expression of VAChT, VGlut, Gad1, Tbh, Ple, SerT, and Tdc2 to show that T2 neuroblasts generate all major neuron classes of fast-acting neurotransmitters. Strikingly, they show that a subset of glia and neuronal clusters have disproportionate enrichment in males or females, suggesting that T2 neuroblasts generate sex-biased cell types. The authors then proceed to characterize neuropeptide expression across T2-derived neuronal clusters and argue that the same neuropeptide can be expressed across different cell types, while similar cell types can express distinct neuropeptides. The functional implication of both observations, however, remains to be tested. Furthermore, the authors describe combinatorial transcription factor (TF) codes that are correlated with neuropeptide expression for T2-derived neurons along with an overall TF code for all T2-derived cell types, both of which will serve as an important starting point for future investigations. Finally, the authors map well-studied neuronal types of the central complex to the clusters of their T2-derived snRNA-seq dataset. They use known marker combinations, bulk RNA-seq data and highly specific split-GAL4 driver lines to annotate their T2-derived atlas, establishing a comprehensive transcriptomic atlas that would guide future studies in this field.

      Strengths:

      This study provides an in-depth transcriptomic characterization of neurons and glia derived from Type-2 neuroblast lineages. The results of this manuscript offer several future directions to investigate the mechanisms of diversifying neuronal identity. The datasets of T1-derived and T2-derived cells will pave the way for studies focused on the functional analysis of combinatorial TF codes specifying cell identity, sex-based differences in neurogenesis and gliogenesis, the relationship between neuropeptide (co)expression and cell identity, and the differential contributions of distinct progenitor populations to the same cell type.

      Weaknesses:

      The study presents several important observations based on the characterization of Type II neuroblast-derived lineages. However, a mechanistic insight is missing for most observations. The idea that there is a sex-specific bias to certain T2-derived neurons and glial clusters is quite interesting, however, the functional significance of this observation is not tested or discussed extensively. Finally, the authors do not show whether the combinatorial TF code is indeed necessary for neuropeptide expression or if this is just a correlation due to cell identity being defined by TFs. Functional knockdown of some candidate TFs for a subset of neuropeptide-expressing cells would have been helpful in this case.

    1. Reviewer #1 (Public review):

      Summary:

      Detecting unexpected epistatic interactions among multiple mutations requires a robust null expectation - or neutral function - that predicts the combined effects of multiple mutations on phenotype, based on the effects of individual mutations. This study assessed the validity of the product neutrality function, where the fitness of double mutants is represented as the multiplicative combination of the fitness of single mutants, in the absence of epistatic interactions. The authors utilized a comprehensive dataset on fitness, specifically measuring yeast colony size, to analyze epistatic interactions.

      The study confirmed that the product function outperformed other neutral functions in predicting the fitness of double mutants, showing no bias between negative and positive epistatic interactions. Additionally, in the theoretical portion of the study, the authors applied a well-established theoretical model of bacterial cell growth to simulate the growth rates of both single and double mutants under various parameters. The simulations further demonstrated that the product function was superior to other functions in predicting the fitness of hypothetical double mutants. Based on these findings, the authors concluded that the product function is a robust tool for analyzing epistatic interactions in growth fitness and effectively reflects how growth rates depend on the combination of multiple biochemical pathways.

      Strengths:

      By leveraging a previously published extensive dataset of yeast colony sizes for single- and double-knockout mutants, this study validated the relevance of the product function, commonly used in genetics to analyze epistatic interactions. The finding that the product function provides a more reliable prediction of double-mutant fitness compared to other neutral functions offers significant value for researchers studying epistatic interactions, particularly those using the same dataset.

      Notably, this dataset has previously been employed in studies investigating epistatic interactions using the product neutrality function. The current study's findings affirm the validity of the product function, potentially enhancing confidence in the conclusions drawn from those earlier studies. Consequently, both researchers utilizing this dataset and readers of previous research will benefit from the confirmation provided by this study's results.

      Weaknesses:

      This study exhibits several significant logical flaws, primarily arising from the following issues: a failure to differentiate between distinct phenotypes, instead treating them as identical; an oversight of the substantial differences in the mechanisms regulating cell growth between prokaryotes and eukaryotes; and the adoption of an overly specific and unrealistic set of assumptions in the mutation model. Additionally, the study fails to clearly address its stated objective-investigating the mechanistic origin of the multiplicative model. Although it discusses conditions under which deviations occur, it falls short of achieving its primary goal. Moreover, the paper includes misleading descriptions and unsubstantiated reasoning, presented without proper citations, as if they were widely accepted facts. Readers should consider these issues when evaluating this paper. Further details are discussed below.

      (1) Misrepresentation of the dataset and phenotypes

      The authors analyze a dataset on the fitness of yeast mutants, describing it as representative of the Malthusian parameter of an exponential growth model. However, they provide no evidence to support this claim. They assert that the growth of colony size in the dataset adheres to exponential growth kinetics; in contrast, it is known to exhibit linear growth over time, as indicated in [Supplementary Note 1 of https://doi.org/10.1038/nmeth.1534]. Consequently, fitness derived from colony size should be recognized as a different metric and phenotype from the Malthusian parameter. Equating these distinct phenotypes and fitness measures constitutes a fundamental error, which significantly compromises the theoretical discussions based on the Malthusian parameter in the study.

      (2) Misapplication of prokaryotic growth models

      The study attempts to explain the mechanistic origin of the multiplicative model observed in yeast colony fitness using a bacterial cell growth model, particularly the Scott-Hwa model. However, the application of this bacterial model to yeast systems lacks valid justification. The Scott-Hwa model is heavily dependent on specific molecular mechanisms such as ppGpp-mediated regulation, which plays a crucial role in adjusting ribosome expression and activity during translation. This mechanism is pivotal for ensuring the growth-dependency of the ribosome fraction in the proteome, as described in [https://doi.org/10.1073/pnas.2201585119]. Unlike bacteria, yeast cells do not possess this regulatory mechanism, rendering the direct application of bacterial growth models to yeast inappropriate and potentially misleading. This fundamental difference in regulatory mechanisms undermines the relevance and accuracy of using bacterial models to infer yeast colony growth dynamics.

      If the authors intend to apply a growth model with macroscopic variables to yeast double-mutant experimental data, they should avoid simply repurposing a bacterial growth model. Instead, they should develop and rigorously validate a yeast-specific growth model before incorporating it into their study.

      (3) Overly specific assumptions in the theoretical model

      The theoretical model in question assumes that two mutations affect only independent parameters of specific biochemical processes, an overly restrictive premise that undermines its ability to broadly explain the occurrence of the multiplicative model in mutations. Additionally, experimental evidence highlights significant limitations to this approach. For example, in most viable yeast deletion mutants with reduced growth rates, the expression of ribosomal proteins remains largely unchanged, in direct contradiction to the predictions of the Scott-Hwa model, as indicated in [https://doi.org/10.7554/eLife.28034]. This discrepancy emphasizes that the Scott-Hwa model and its derivatives do not reliably explain the growth rates of mutants based on current experimental data, suggesting that these models may need to be reevaluated or alternative theories developed to more accurately reflect the complex dynamics of mutant growth.

      (4) Lack of clarity on the mechanistic origin of the multiplicative model

      The study falls short of providing a definitive explanation for its primary objective: elucidating the "mechanistic origin" of the multiplicative model. Notably, even in the simplest case involving the Scott-Hwa model, the underlying mechanistic basis remains unexplained, leaving the central research question unresolved. Furthermore, the study does not clearly specify what types of data or models would be required to advance the understanding of the mechanistic origin of the multiplicative model. This omission limits the study's contribution to uncovering the biological principles underlying the observed fitness patterns.

    1. Reviewer #1 (Public review):

      This study is focused on identifying unique, innovative surface markers for mature Achilles tendons by combining the latest multi-omics approaches and in vitro evaluation, which would address the knowledge gap of the controversial identity of TPSCs with unspecific surface markers. The use of multi-omics technologies, in vivo characterization, in vitro standard assays of stem cells, and in vitro tissue formation is a strength of this work and could be applied for other stem cell quantification in musculoskeletal research. The evaluation and identification of Cd55 and Cd248 in TPSCs have not been conducted in tendons, which is considered innovative. Additionally, the study provided solid sequencing data to confirm co-expressions of Cd55 and Cd248 with other well-described surface markers such as Ly6a, Tpp3, Pdgfra, and Cd34. Generally, the data shown in the manuscript support the claims that the identified surface antigens mark TPSCs in juvenile tendons.

      However, there are missing links between scientific questions aimed to be addressed in Introduction and Methodology/Results. If the study focuses on unsatisfactory healing responses of mature tendons and understanding of mature TPSCs, at least mature Achilles tendons from more than 12-week-old mice and their comparison with tendons from juvenile/neonatal mice should be conducted. However, either 2-week or 6-week-old mice, used for characterization here, are not skeletally mature, Additionally, there is a lack of complete comparison of TPSCs between 2-week and 6-week-old mice in the transcriptional and epigenetic levels.

      In order to distinguish TPSCs and characterize their epigenetic activities, the authors used scRNA-seq, snRNA-seq, and snATAC-seq approaches. The integration, analysis, and comparison of sequencing data across assays and/or time points is confusing and incomplete. For example, it should be more comprehensive to integrate both scRNA-seq and snRNA-seq data (if not, why both assays were used for Achilles tendons of both 2-week and 6-week timepoints). snRNA-seq and snATAC-seq data of 6-week-old mice were separately analyzed. No comparison of difference and similarity of TPSCs of 2-week and 6-week-old mice was conducted.

      Given the goal of this work to identify specific TPSC markers, the specificity of Cd55 and Cd248 for TPSCs is not clear. First, based on the data shown here, Cd55 and Cd248 mark the same cell population which is identified by Ly6a, TPPP3, and Pdgfra. Although, for instance, Cd34 is expressed by other tissues as discussed here, no data/evidence is provided by this work showing that Cd55 and Cd248 are not expressed by other musculoskeletal tissues/cells. Second, the immunostaining of Cd55 and Cd248 doesn't support their specificity. What is the advantage of using Cd55 and Cd248 for TPSCs compared to using other markers?

    1. Reviewer #1 (Public review):

      This manuscript presents an interesting new framework (VARX) for simultaneously quantifying effective connectivity in brain activity during sensory stimulation and how that brain activity is being driven by that sensory stimulation. The core idea is to combine the Vector Autoregressive model that is often used to infer Granger-causal connectivity in brain data with an encoding model that maps the features of a sensory stimulus to that brain data. The authors do a nice job of explaining the framework. And then they demonstrate its utility through some simulations and some analysis of real intracranial EEG data recorded from subjects as they watched movies. They infer from their analyses that the functional connectivity in these brain recordings is essentially unaltered during movie watching, that accounting for the driving movie stimulus can protect one against misidentifying brain responses to the stimulus as functional connectivity, and that recurrent brain activity enhances and prolongs the putative neural responses to a stimulus.

      This manuscript presents an interesting new framework (VARX) for simultaneously quantifying effective connectivity in brain activity during sensory stimulation and how that brain activity is being driven by that sensory stimulation. Overall, I thought this was an interesting manuscript with some rich and intriguing ideas. That said, I had some concerns also - one potentially major - with the inferences drawn by the authors on the analyses that they carried out.

      Main comments:

      (1) My primary concern with the way the manuscript is written right now relates to the inferences that can be drawn from the framework. In particular, the authors want to assert that, by incorporating an encoding model into their framework, they can do a better job of accounting for correlated stimulus-driven activity in different brain regions, allowing them to get a clearer view of the underlying innate functional connectivity of the brain. Indeed, the authors say that they want to ask "whether, after removing stimulus-induced correlations, the intrinsic dynamic itself is preserved". This seems a very attractive idea indeed. However, it seems to hinge critically on the idea of fitting an encoding model that fully explains all of the stimulus-driven activity. In other words, if one fits an encoding model that only explains some of the stimulus-driven response, then the rest of the stimulus-driven response still remains in the data and will be correlated across brain regions and will appear as functional connectivity in the ongoing brain dynamics - according to this framework. This residual activity would thus be misinterpreted. In the present work, the authors parameterize their stimulus using fixation onsets, film cuts, and the audio envelope. All of these features seem reasonable and valid. However, they surely do not come close to capturing the full richness of the stimuli, and, as such, there is surely a substantial amount of stimulus-driven brain activity that is not being accounted for by their "B" model and that is being absorbed into their "A" model and misinterpreted as intrinsic connectivity. This seems to me to be a major limitation of the framework. Indeed, the authors flag this concern themselves by (briefly) raising the issue in the first paragraph of their caveats section. But I think it warrants much more attention and discussion.

      (2) Related to the previous comment, the authors make what seems to me to be a complex and important point on page 6 (of the pdf). Specifically, they say "Note that the extrinsic effects captured with filters B are specific (every stimulus dimension has a specific effect on each brain area), whereas the endogenous dynamic propagates this initial effect to all connected brain areas via matrix A, effectively mixing and adding the responses of all stimulus dimensions. Therefore, this factorization separates stimulus-specific effects from the shared endogenous dynamic." It seems to me that the interpretation of the filter B (which is analogous to the "TRF") for the envelope, say, will be affected by the fact that the matrix A is likely going to be influenced by all sorts of other stimulus features that are not included in the model. In other words, residual stimulus-driven correlations that are captured in A might also distort what is going on in B, perhaps. So, again, I worry about interpreting the framework unless one can guarantee a near-perfect encoding model that can fully account for the stimulus-driven activity. I'd love to hear the authors' thoughts on this. (On this issue - the word "dominates" on page 12 seems very strong.)

      (3) Regarding the interpretation of the analysis of connectivity between movies and rest... that concludes that the intrinsic connectivity pattern doesn't really differ. This is interesting. But it seems worth flagging that this analysis doesn't really account for the specific dynamics in the network that could differ quite substantially between movie watching and rest, right? At the moment, it is all correlational. But the dynamics within the network could be very different between stimulation and rest I would have thought.

      (4) I didn't really understand the point of comparing the VARX connectivity estimate with the spare-inverse covariance method (Figure 2D). What was the point of this? What is a reader supposed to appreciate from it about the validity or otherwise of the VARX approach?

      (5) I think the VARX model section could have benefitted a bit from putting some dimensions on some of the variables. In particular, I struggled a little to appreciate the dimensionality of A. I am assuming it has to involve both time lags AND electrode channels so that you can infer Granger causality (by including time) between channels. Including a bit more detail on the dimensionality and shape of A might be helpful for others who want to implement the VARX model.

      (6) A second issue I had with the inferences drawn by the authors was a difficulty in reconciling certain statements in the manuscript. For example, in the abstract, the authors write "We find that the recurrent connectivity during rest is largely unaltered during movie watching." And they also write that "Failing to account for ... exogenous inputs, leads to spurious connections in the intrinsic "connectivity".

    1. Reviewer #1 (Public review):

      Summary:

      This work seeks to predict differences in neural function and behavior between male and hermaphrodite C. elegans by comparing their nervous system maps of synaptic wiring. The authors then seek to validate some of their predictions by measuring differences in neural activity or behavior, including in response to neuron-specific genetic manipulations. In particular, the authors focus on the role of neuron AVA which has notable differences in its connectivity between the male and hermaphrodite, and they use this and behavior measurements to argue for a role of AVA in mate-searching behavior in males.

      Strengths:

      A major strength of this work is its approach to investigating differences in wiring between males and hermaphrodites in a systematic and quantitative way. The work laudably takes advantage of recently available comprehensive connectomes, including across sexes of the same species, and applies concepts from network science to mining their differences. Another strength of the work is that it supplements network analysis with measurements of behavior, including with cell-specific genetic manipulations. The measurements and analysis will be of value to the scientific community.

      Weaknesses:

      The evidence to support conclusions about the special relationship between differences in AVA's wiring and male mate-finding appears incomplete. The authors selected AVA based on changes in wiring and then observed a decrease in male chemotaxis towards hermaphrodites for animals in which neuron AVA is inhibited. This is presented as evidence that specifically AVA is important for mate-finding, and therefore that changes in wiring inform changes in function. But given AVA's known role in all reversal-related locomotion, it is important to more forcefully rule out an alternative hypothesis that the observed deficits in mate-finding could be explained by any reversal circuitry motor defect (including those without wiring differences), rather than specifically attributed to AVA and its wiring. Similarly, more evidence is needed to show that deficits in reversal circuitry preferentially affect mate-seeking compared to other goal-directed navigation behaviors.

      There are some areas where methods would benefit from further justification or clarification. For example, the work would benefit from better justification for selecting sub-networks to study, or for combining bilaterally symmetric neurons. More details are also needed to better interpret calcium imaging studies, such as details about the indicator and illumination wavelength and intensity.

      Finally, there are some weaknesses inherent to the entire field of connectomic analysis that are necessarily also present here. For example, it is unclear how to weight the relative contributions of chemical versus electrical gap junctions when performing analyses of the wiring diagram, and the choice could potentially influence results. The wiring diagram also lacks information about timescales of neural dynamics or the role of neuromodulators or other molecular details that may influence the strength or function of various connections, and this poses a major challenge for predicting neural dynamics from neural wiring. For example, in their neural dynamics simulation, the authors assume that all neurons have the same conductance and reversal potentials - a standard practice - despite known diversity among neurons that limits the usefulness of this approach. It will be helpful to further acknowledge these limitations of the broader field.

    1. Reviewer #2 (Public review):

      Summary:

      This study presents an important finding that the activation of TFEB by sulforaphane (SFN) could promote lysosomal exocytosis and biogenesis in NPC, suggesting a potential mechanism by SFN for the removal of cholesterol accumulation, which may contribute to the development of new therapeutic approaches for NPC treatment.

      Strengths:

      The cell-based assays are convincing, utilizing appropriate and validated methodologies to support the conclusion that SFN facilitates the removal of lysosomal cholesterol via TFEB activation.

      Comments on revisions:

      The authors have addressed most of my questions. I have only one minor technical point to emphasize, which does not affect the overall strength of the evidence for this project.

      The pKa values of pHrodo Green (P35368, pKa=6.757) and pHrodo Red-Dex (P10361, pKa=6.816) are very similar. Prof. Xu's article, cited in the response letter (Hu, Li et al. 2022), is an excellent example of lysosomal pH measurement. He used LysoTracker Red DND-99 for a rough estimation of lysosomal acidity, and for accurate monitoring of lysosomal pH, he employed the ratiometric OG488-dex (pKa 4.6).

    1. Reviewer #1 (Public review):

      Fuchs describes a novel method of enzymatic protein-protein conjugation using the enzyme Connectase. The author is able to make this process irreversible by screening different Connectase recognition sites to find an alternative sequence that is also accepted by the enzyme. They are then able to selectively render the byproduct of the reaction inactive, preventing the reverse reaction, and add the desired conjugate with the alternative recognition sequence to achieve near-complete conversion. I agree with the authors that this novel enzymatic protein fusion method has several applications in the field of bioconjugation, ranging from biophysical assay conduction to therapeutic development. Previously the author has published on the discovery of the Connectase enzymes and has shown its utility in tagging proteins and detecting them by in-gel fluorescence. They now extend their work to include the application of Connectase in creating protein-protein fusions, antibody-protein conjugates, and cyclic/polymerized proteins. As mentioned by the author, enzymatic protein conjugation methods can provide several benefits over other non-specific and click chemistry labeling methods. Connectase specifically can provide some benefits over the more widely used Sortase, depending on the nature of the species that is desired to be conjugated. Overall, this method provides a novel, reproducible way to enzymatically create protein-protein conjugates.

      The manuscript is well-written and will be of interest to those who are specifically working on chemical protein modifications and bioconjugation.

      Comments on revisions:

      The authors have improved the manuscript significantly by clarifying the questions raised adding new text, providing additional references and/or adding additional data. The thorough study and efficiency of the method for enzymatic protein-protein conjugation using the enzyme Connectase warrants publication of this manuscript in its current form.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Fuchsberger et al. demonstrate a set of experiments which ultimately identifies the de novo synthesis of GluA1-, but not GluA2-containing Ca2+ permeable AMPA receptors as a key driver of dopamine-dependent LTP (DA-LTP) during conventional post-before-pre spike-timing dependent (t-LTD) induction. The authors further identify adenylate cyclase 1/8, cAMP, and PKA as the crucial mitigators of these actions. While some comments have been identified below, the experiments presented are thorough and address the aims of the manuscript, figures are presented clearly (with minor comments), and experimental samples sizes and statistical analyses are suitable. Suitable controls have been utilized to confirm the role of Ca2+ permeable AMPAR. This work provides a valuable step forward built on convincing data towards understanding the underlying mechanisms of spike-timing dependent plasticity and dopamine.

      Strengths:

      Appropriate controls were used.

      The flow of data presented is logical and easy to follow.

      The quality of the data is solid.

      Weaknesses:

      Our concerns raised within the first round of review have been appropriately addressed by the authors.

    1. Reviewer #1 (Public review):

      Summary:

      The paper presents a model for sequence generation in the zebra finch HVC, which adheres to cellular properties measured experimentally. However, the model is fine-tuned and exhibits limited robustness to noise inherent in the inhibitory interneurons within the HVC, as well as to fluctuations in connectivity between neurons. Although the proposed microcircuits are introduced as units for sub-syllabic segments (SSS), the backbone of the network remains a feedforward chain of HVC_RA neurons, similar to previous models.

      Strengths:

      The model incorporates all three of the major types of HVC neurons. The ion channels used and their kinetics are based on experimental measurements. The connection patterns of the neurons are also constrained by the experiments.

      Weaknesses:

      The model is described as consisting of micro-circuits corresponding to SSS. This presentation gives the impression that the model's structure is distinct from previous models, which connected HVC_RA neurons in feedforward chain networks (Jin et al 2007, Li & Greenside, 2006; Long et al 2010; Egger et al 2020). However, the authors implement single HVC_RA neurons into chain networks within each micro-circuit and then connect the end of the chain to the start of the chain in the subsequent micro-circuit. Thus, the HVC_RA neuron in their model forms a single-neuron chain. This structure is essentially a simplified version of earlier models.

      In the model of the paper, the chain network drives the HVC_I and HVC_X neurons. The role of the micro-circuits is more significant in organizing the connections: specifically, from HVC_RA neurons to HVC_I neurons, and from HVC_I neurons to both HVC_X and HVC_RA neurons.

      How useful is this concept of micro-circuits? HVC neurons fire continuously even during the silent gaps. There are no SSS during these silent gaps.

      A significant issue of the current model is that the HVC_RA to HVC_RA connections require fine-tuning, with the network functioning only within a narrow range of g_AMPA (Figure 2B). Similarly, the connections from HVC_I neurons to HVC_RA neurons also require fine-tuning. This sensitivity arises because the somatic properties of HVC_RA neurons are insufficient to produce the stereotypical bursts of spikes observed in recordings from singing birds, as demonstrated in previous studies (Jin et al 2007; Long et al 2010). In these previous works, to address this limitation, a dendritic spike mechanism was introduced to generate an intrinsic bursting capability, which is absent in the somatic compartment of HVC_RA neurons. This dendritic mechanism significantly enhances the robustness of the chain network, eliminating the need to fine-tune any synaptic conductances, including those from HVC_I neurons (Long et al 2010).

      Why is it important that the model should NOT be sensitive to the connection strengths?

      First, the firing of HVC_I neurons is highly noisy and unreliable. HVC_I neurons fire spontaneous, random spikes under baseline conditions. During singing, their spike timing is imprecise and can vary significantly from trial to trial, with spikes appearing or disappearing across different trials. As a result, their inputs to HVC_RA neurons are inherently noisy. If the model relies on precisely tuned inputs from HVC_I neurons, the natural fluctuations in HVC_I firing would render the model non-functional. The authors should incorporate noisy HVC_I neurons into their model to evaluate whether this noise would render the model non-functional.

      Second, Kosche et al. (2015) demonstrated that reducing inhibition by suppressing HVC_I neuron activity makes HVC_RA firing less sparse but does not compromise the temporal precision of the bursts. In this experiment, the local application of gabazine should have severely disrupted HVC_I activity. However, it did not affect the timing precision of HVC_RA neuron firing, emphasizing the robustness of the HVC timing circuit. This robustness is inconsistent with the predictions of the current model, which depends on finely tuned inputs and should, therefore, be vulnerable to such disruptions.

      Third, the reliance on fine-tuning of HVC_RA connections becomes problematic if the model is scaled up to include groups of HVC_RA neurons forming a chain network, rather than the single HVC_RA neurons used in the current work. With groups of HVC_RA neurons, the summation of presynaptic inputs to each HVC_RA neuron would need to be precisely maintained for the model to function. However, experimental evidence shows that the HVC circuit remains functional despite perturbations, such as a few degrees of cooling, micro-lesions, or turnover of HVC_RA neurons. Such robustness cannot be accounted for by a model that depends on finely tuned connections, as seen in the current implementation.

      The authors examined how altering the channel properties of neurons affects the activity in their model. While this approach is valid, many of the observed effects may stem from the delicate balancing required in their model for proper function.

      In the current model, HVC_X neurons burst as a result of rebound activity driven by the I_H current. Rebound bursts mediated by the I_H current typically require a highly hyperpolarized membrane potential. However, this mechanism would fail if the reversal potential of inhibition is higher than the required level of hyperpolarization. Furthermore, Mooney (2000) demonstrated that depolarizing the membrane potential of HVC_X neurons did not prevent bursts of these neurons during forward playback of the bird's own song, suggesting that these bursts (at least under anesthesia, which may be a different state altogether) are not necessarily caused by rebound activity. This discrepancy should be addressed or considered in the model.

      Some figures contain direct copies of figures from published papers. It is perhaps a better practice to replace them with schematics if possible.

    1. Reviewer #1 (Public review):

      Summary:

      Structural colors (SC) are based on nanostructures reflecting and scattering light and producing optical wave interference. All kinds of living organisms exhibit SC. However, understanding the molecular mechanisms and genes involved may be complicated due to the complexity of these organisms. Hence, bacteria that exhibit SC in colonies, such as Flavobacterium IR1, can be good models.

      Based on previous genomic mining and co-occurrence with SC in flavobacterial strains, this article focuses on the role of a specific gene, moeA, in SC of Flavobacterium IR1 strain colonies on an agar plate. moeA is involved in the synthesis of the molybdenum cofactor, which is necessary for the activity of key metabolic enzymes in diverse pathways.

      The authors clearly showed that the absence of moeA shifts SC properties in a way that depends on the nutritional conditions. They further bring evidence that this effect was related to several properties of the colony, all impacted by the moeA mutant: cell-cell organization, cell motility and colony spreading, and metabolism of complex carbohydrates. Hence, by linking SC to a single gene in appearance, this work points to cellular organization (as a result of cell-cell arrangement and motility) and metabolism of polysaccharides as key factors for SC in a gliding bacterium. This may prove useful for designing molecular strategies to control SC in bacterial-based biomaterials.

      Strengths:

      The topic is very interesting from a fundamental viewpoint and has great potential in the field of biomaterials.

      The article is easy to read. It builds on previous studies with already established tools to characterize SC at the level of the flavobacterial colony. Experiments are well described and well executed. In addition, the SIBR-Cas method for chromosome engineering in Flavobacteria is the most recent and is a leap forward for future studies in this model, even beyond SC.

      Weaknesses:

      The paper appears a bit too descriptive and could be better organized. Some of the results, in particular the proteomic comparison, are not well exploited (not explored experimentally). In my opinion, the problem originates from the difficulty in explaining the link between the absence of moeA and the alterations observed at the level of colony spreading and polysaccharide utilization, and the variation in proteomic content.

      First, the effect of moeA deletion on molybdenum cofactor synthesis should be addressed.

      Second, as I was reading the entire manuscript, I kept asking myself if moeA (and by extension molybdenum cofactor) was really involved in SC or it was an indirect effect. For example, what if the absence of moeA alters the cell envelope because the synthesis of its building blocks is perturbed, then subsequently perturbates all related processes, including gliding motility and protein secretion? It would help to know if the effects on colony spreading and polysaccharide metabolism can be uncoupled. I don't think the authors discussed that clearly.

    1. Reviewer #1 (Public review):

      Summary:

      The authors isolated and cultured pulmonary artery smooth muscle cells (PASMC) and pulmonary artery adventitial fibroblasts (PAAF) of the lung samples derived from the patients with idiopathic pulmonary arterial hypertension (PAH) and the healthy volunteers. They performed RNA-seq and proteomics analyses to detail the cellular communication between PASMC and PAAF, which are the main target cells of pulmonary vascular remodeling during the pathogenesis of PAH. The authors revealed that PASMC and PAAF retained their original cellular identity and acquired different states associated with the pathogenesis of PAH, respectively.

      Strengths:

      Although previous studies have shown that PASMC and PAAF cells each have an important role in the pathogenesis of PAH, there have been scarce reports focusing on the interactions between PASMC and PAAF. These findings may provide valuable information for elucidating the pathogenesis of pulmonary arterial hypertension.

      Comments on revisions:

      The authors adequately responded to my concerns and revised their manuscript to elaborate on the new data from new experiments and address my queries. Although some of the issues I initially raised could not be fully resolved, the revised manuscript has been significantly improved. This manuscript provides essential insights into the communications across the PASMCs and PAAFs in PAH. This would greatly interest various researchers in both basic and clinical fields.

    1. Reviewer #2 (Public review):

      Summary:

      This paper from Sutlief et al. focuses on an apparent contradiction observed in experimental data from two related types of pursuit-based decision tasks. In "forgo" decisions, where the subject is asked to choose whether or not to accept a presented pursuit, after which they are placed into a common inter-trial interval, subjects have been shown to be nearly optimal in maximizing their overall rate of reward. However, in "choice" decisions, where the subject is asked which of two mutually-exclusive pursuits they will take, before again entering a common inter-trial interval, subjects exhibit behavior that is believed to be sub-optimal. To investigate this contradiction, the authors derive a consistent reward-maximizing strategy for both tasks using a novel and intuitive geometric approach that treats every phase of a decision (pursuit choice and inter-trial interval) as vectors. From this approach, the authors are able to show that previously-reported examples of sub-optimal behavior in choice decisions are in fact consistent with a reward-maximizing strategy. Additionally, the authors are able to use their framework to deconstruct the different ways the passage of time impacts decisions, demonstrating the time cost contains both an opportunity cost and an apportionment cost, as well as examine how a subject's misestimation of task parameters impacts behavior.

      Strengths:

      The main strength of the paper lies in the authors' geometric approach to studying the problem. The authors chose to simplify the decision process by removing the highly technical and often cumbersome details of evidence accumulation that is common in most of the decision-making literature. In doing so, the authors were able to utilize a highly accessible approach that is still able to provide interesting insights into decision behavior and the different components of optimal decision strategies.

      Weaknesses:

      The authors have made great improvements to the strength of their evidence through revision, especially concerning their treatment of apportionment cost. However, I am concerned that the story this paper tells is far from concise, and that this weakness may limit the paper's audience and overall impact. I would strongly suggest making an effort to tighten up the language and structure of the paper to improve its readability and accessibility.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate the role of HSPA2 during mouse preimplantation development. Knocking down HSPA2 in zygotes, the authors describe lower chances of developing into blastocysts, which show a reduced number of inner cell mass cells. They find that HSPA2 mRNA and protein levels show some heterogeneity among blastomeres at the 4-cell stage and propose that HSPA2 could contribute to skewing their relative contribution to embryonic lineages. To test this, the authors try to reduce HSPA2 expression in one of the 2-cell stage blastomere and propose that it biases their contribution to towards extra-embryonic lineages. To explain this, the authors propose that HSPA2 would interact with CARM1, which controls chromatin accessibility around genes regulating differentiation into embryonic lineage.

      Strengths:

      (1) The study offers simple and straightforward experiments with large sample sizes.

      (2) Unlike most studies in the field, this research often relies on both mRNA and protein levels to analyse gene expression and differentiation.

      Weaknesses:

      (1) Image and statistical analyses are not well described.

      (2) The functionality of the overexpression construct is not fully validated.

      (3) Tracking of KD cells in embryos injected at the 2-cell stage with GFP is unclear.

      (4) A key rationale of the study relies on measuring small differences in the levels of mRNA and proteins using semi-quantitative methods to compare blastomeres. As such, it is not possible to know whether those subtle differences are biologically meaningful. For example, the lowest HSPA2 level of the embryo with the highest level is much higher than the top cell from the embryo with the lowest level. What does this level mean then? Does this mean that some blastomeres grafted from strong embryos would systematically outcompete all other blastomeres from weaker embryos? That would be very surprising. I think the authors should be more careful and consider the lack of quantitative power of their approach before reaching firm conclusions. Although to be fair, the authors only follow a long trend of studies with the same intrinsic flaw of this approach.

      (5) Some of the analyses on immunostaining do not take into account that this technique only allows for semi-quantitative measurements and comparisons.<br /> a) Some of the microscopy images are shown with an incorrect look-up table.<br /> b) Some of the schematics are incorrect and misleading.

    1. Reviewer #1 (Public review):

      Summary:

      Boldt et al test several possible relationships between trandiagnostically-defined compulsivity and cognitive offloading in a large online sample. To do so, they develop a new and useful cognitive task to jointly estimate biases in confidence and reminder-setting. In doing so, they find that over-confidence is related to less utilization of reminder-setting, which partially mediates the negative relationship between compulsivity and lower reminder-setting. The paper thus establishes that, contrary to the over-use of checking behaviors in patients with OCD, greater levels of transdiagnostically-defined compulsivity predicts less deployment of cognitive offloading. The authors offer speculative reasons as to why (perhaps it's perfectionism in less clinically-severe presentations that lowers the cost of expending memory resources), and sets an agenda to understand the divergence in cognitive between clinical and nonclinical samples. Because only a partial mediation had robust evidence, multiple effects may be at play, whereby compulsivity impacts cognitive offloading via overconfidence and also by other causal pathways.

      Strengths:

      The study develops an easy-to-implement task to jointly measure confidence and replicates several major findings on confidence and cognitive offloading. The study uses a useful measure of cognitive offloading - the tendency to set reminders to augment accuracy in the presence of experimentally manipulated costs. Moreover, the utilizes multiple measures of presumed biases -- overall tendency to set reminders, the empirically estimated indifference point at which people engage reminders, and a bias measure that compares optimal indifference points to engage reminders relative to the empirically observed indifference points. That the study observes convergenence along all these measures strengthens the inferences made relating compulsivity to the under-use of reminder-setting. Lastly, the study does find evidence for one of several a priori hypotheses and sets a compelling agenda to try to explain why such a finding diverges from an ostensible opposing finding in clinical OCD samples and the over-use of cognitive offloading.

      Weaknesses:

      Although I think this design and study are very helpful for the field, I felt that a feature of the design might reduce the tasks's sensitivity to measuring dispositional tendencies to engage cognitive offloading. In particular, the design introduces prediction errors, that could induce learning and interfere with natural tendencies to deploy reminder-setting behavior. These PEs comprise whether a given selected strategy will be or not be allowed to be engaged. We know individuals with compulsivity can learn even when instructed not to learn (e.g., Sharp, Dolan and Eldar, 2021, Psychological Medicine), and that more generally, they have trouble with structure knowledge (eg Seow et al; Fradkin et al), and thus might be sensitive to these PEs. Thus, a dispositional tendency to set reminders might be differentially impacted for those with compulsivity after an NPE, where they want to set a reminder, but aren't allowed to. After such an NPE, they may avoid moreso the tendency to set reminders. Those with compulsivity likely have superstitious beliefs about how checking behaviors lead to a resolution of catastrophes, that might in part originate from inferring structure in the presence of noise or from purely irrelevant sources of information for a given decision problem.<br /> It would be good to know if such learning effects exist, if they're modulated by PE (you can imagine PEs are higher if you are more incentivized - e.g., 9 points as opposed to only 3 points - to use reminders, and you are told you cannot use them), and if this learning effect confounds the relationship between compulsivity and reminder-setting.

      A more subtle point, I think this study can be more said to be an exploration than a deductive of test of a particular model -> hypothesis -> experiment. Typically, when we test a hypothesis, we contrast it with competing models. Here, the tests were two-sided because multiple models, with mutually exclusive predictions (over-use or under-use of reminders) were tested. Moreover, it's unclear exactly how to make sense of what is called the direct mechanism, which is supported by the partial (as opposed to complete) mediation.

      Comments on revisions:

      I have the following final comments for your manuscript revisions:

      To improve the clarity of the work, I suggest a final note to the authors to say more explicitly that objective accuracy has a finer resolution *due to the number of "special circles" per trial* in their task. This task detail got lost in my read of the manuscript, and confused me with respect to the resolution of each accuracy measure. Similarly for clarification, they could point out that their exclusion criteria removes subjects that have lower OIP than their AIP analysis allows (which is good for comparison between OIP and AIP). Thus, it removes the possibility that very poor performing subjects (OIP) are forced to have a higher than actual AIP due to the range).

    1. Reviewer #1 (Public review):

      Summary:

      You, Zhang et al. comprehensively characterize the long-term fates of mouse HSCs in the unperturbed setting using transposon-based lineage tracing for up to 2 years post-labeling. Their analyses reveal a complex heterogeneity of long-term fates, dominated by two behaviors: i) long-lived differentiation-biased clones, and ii) self-renewal & platelet-biased clones. They further identify two categories of multipotent progenitor clones, with one group showing a markedly reduced differentiation activity.

      Strengths:

      You et al. present a very comprehensive and high-resolution characterization of mouse hematopoietic clonal dynamics, with robust replicates, and technical prowess. The manuscript is beautifully written, with in-depth and clear explanations of the logic behind experimental design choices, and very well-thought-out interpretations of results.

      Some of the results integrate well with past observations in the field, whereas many of them are quite unique and novel.

      This will surely be a highly impactful study in the field of hematopoiesis and stem cell biology.

      Weaknesses:

      The authors trace hematopoiesis in situ, in a fully unbiased way for almost 2-years. They compare this time course with the last few years of Cre-LoxP-based tracing studies and they make an assumption that most hematopoiesis will be derived from some type of HSC at that point in time. They then use this assumption to support that what is being measured in their model are the long-term fates of HSCs (or at least cells that were HSC at the point of labeling). While this is a generally valid assumption, the short-lived nature of certain populations (myeloid cells, megakaryocytes) means that these cells are being produced in the context of a relatively aged environment by the time of sampling, which might change the properties of the system. In other words, the "steady-state" is always changing. It is important to read and interpret this manuscript with this in consideration.

    1. Reviewer #1 (Public review):

      Summary

      Pyrazinamide (PZA) is a key drug in the anti-TB arsenal, yet despite over 50 years of clinical use, its precise mechanism of action remains unclear. This study offers valuable insights into the in vitro potentiating effect of PZA when used with exogenous oxidative agents. The authors suggest that oxidative stress, specifically thiol oxidation, may be a primary driver of PZA/POA's bactericidal activity. Although the work is substantial, conceptually innovative, and timely, the evidence supporting the authors' conclusions requires further investigation with additional controls and experiments to fully validate the proposed mechanism of action. Once revised, this work will undoubtedly be of significant interest to the TB drug discovery community and researchers focusing on mycobacterial diseases.

      Strengths

      The authors have long-standing experience in the field of PZA mode of action, with several publications that have been highly relevant to the field. They are particularly well aware of the literature, and this is clearly visible in the introduction of the manuscript which is beautifully articulated. The biological question(s) and their hypotheses are also well-formulated in the introduction section.

      The understanding of PZA mode of action is a long-lasting question in the TB community, therefore studies reporting well-conducted research that aims at deciphering the underlying mechanism responsible for PZA peculiar activity is always appreciated. Since PZA/POA are poorly active in conventional 7H9 media, but very potent in cellulo or in vivo; looking at host-mediated stress that can eventually lead to an increased vulnerability is extremely relevant. In that context, most of the work has been focused on host-cell endolysosomal pH but very little information is available on other stress. Thus, investigating the contribution of oxidative stress and ROS as specific host environments that might contribute to PZA/POA activity is overall novel and conceptually very interesting.

      To address this question, the authors combine multiple approaches including conventional antimicrobial susceptibility profiling, CFU-based counting, and checkerboard assays to report the potentiating effect of PZA pre-treatment on hydrogen peroxide- and diamide-mediated antibacterial action. The use of multiple reference strains including Mtb H37Ra, Mtb H37Rv, M.bovis BCG, and M.bovis BCG::pncA is a great asset of the manuscript, even though they might have been more appropriately used to get further mechanistical insights on the proposed model of action. The findings are reported in 4 major figures that are clear and in an order that appears logical for the understanding of the story.

      Weaknesses

      Although the manuscript is conceptually very interesting and contains intriguing results, it sometimes fails to fully convince and some additional controls/experiments might help to better back up the authors' claims and really strengthen the study. Indeed, some conclusions seem premature therefore leading to some molecular assumptions regarding a potential mode of action that is not fully supported by the presented data.<br /> The rationale behind some of the experiments is not always clearly explained which makes difficult to follow the authors ideas, the biological hypothesis/model that they test, and therefore the overall scientific story.

      The authors conclude their study by proposing a mechanism by which the active form of the drug POA acts in concert with exogenous ROS to promote cellular oxidative damage. This is tested within two models of macrophage infection where they propose that IFN-γ mediated ROS production is essential for PZA activity. Unfortunately, the in cellulo part presents some weaknesses and inconsistencies that the authors need to carefully address.

      Finally, the in vitro experiments performed in this manuscript mainly report that PZA pre-treatment increases H2O2-mediated killing or inhibition. There is no direct evidence that clearly shows that oxidative stress drives the potent bactericidal activity of PZA. In these settings, the oxidative stress is always applied after PZA pre-treatment and is therefore likely displaying the major lethal effect.

    1. Reviewer #1 (Public review):

      Summary:

      The question of how central nervous system (CNS) lamination defects affect functional integrity is an interesting topic, though it remains a subject of debate. The authors focused on the retina, which is a relatively simple yet well-laminated tissue, to investigate the impact of afadin - a key component of adherens junctions on retinal structure and function. Their findings show that the loss of afadin leads to significant disruptions in outer retinal lamination, affecting the morphology and localization of photoreceptors and their synapses, as illustrated by high-quality images. Despite these severe changes, the study found that some functions of the retinal circuits, such as the ability to process light stimuli, could still be partially preserved. This research offers new insights into the relationship between retinal lamination and neural circuit function, suggesting that altered retinal morphology does not completely eliminate the capacity for visual information processing.

      Strengths:

      The retina serves as an excellent model for investigating lamination defects and functional integrity due to its relatively simple yet well-organized structure, along with the ease of analyzing visual function. The images depicting outer retinal lamination, as well as the morphology and localization of photoreceptors and their synapses, are clear and well-described. The paper is logically organized, progressing from structural defects to functional analysis. Additionally, the manuscript includes a comprehensive discussion of the findings and their implications.

      Weaknesses:

      While this work presents a wealth of descriptive data, it lacks quantification, which would help readers fully understand the findings and compare results with those from other studies. Furthermore, the molecular mechanisms underlying the defects caused by afadin deletion were not explored, leaving the role of afadin and its intracellular signaling pathways in retinal cells unclear. Finally, the study relied solely on electrophysiological recordings to demonstrate RGC function, which may not be robust enough to support the conclusions. Incorporating additional experiments, such as visual behavior tests, would strengthen the overall conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, Derkaloustian et. al look at the important topic of what affects fine touch perception. The observations that there may be some level of correlation with instabilities are intriguing. They attempted to characterize different materials by counting the frequency (occurrence #, not of vibration) of instabilities at various speeds and forces of a PDMS slab pulled lengthwise over the material. They then had humans make the same vertical motion to discriminate between these samples. They correlated the % correct in discrimination with differences in frequency of steady sliding over the design space as well as other traditional parameters such as friction coefficient and roughness. The authors pose an interesting hypothesis and make an interesting observation about the occurrences of instability regimes in different materials while in contact with PDMS, which is interesting for the community to see in the publication. It should be noted that the finger is complex, however, and there are many factors that may be quite oversimplified with the use of the PDMS finger, and the consideration and discounting of other parameters are not fully discussed in the main text or SI. Most importantly, however, the conclusions as stated do not align with the primary summary of the data in Figure 2.

      Strengths:

      The strength of this paper is in its intriguing hypothesis and important observation that instabilities may contribute to what humans are detecting as differences in these apparently similar samples.

      Weaknesses:

      The most important weakness is that the findings do not support the statements of findings made in the abstract. Of specific note in this regard is the primary correlation in Figure 2B between SS (steady sliding) and percent correct discrimination. While the statistical test shows significance (and is interesting!), the R-squared value is 0.38, while the R-squared value for the "Friction Coefficient vs. Percent Correct" plot has an R-squared of 0.6 and a p-value of < 0.01 (including Figure 2B). This suggests that the results do not support the claim in the abstract: "We found that participant accuracy in tactile discrimination was most strongly correlated with formations of steady sliding, and response times were negatively correlated with stiction spikes. Conversely, traditional metrics like surface roughness or average friction coefficient did not predict tactile discriminability." This is the most fundamental weakness of this paper.

      Along the same lines, other parameters that were considered such as the "Percent Correct vs. Difference in Sp" and "Percent Correct vs. Difference in SFW" were not plotted for consideration in the SI. It would be helpful to compare these results with the other three metrics in order to fully understand the relationships. Other parameters such as stiction magnitude and differences in friction coefficient over the test space could also be important and interesting.

      Beyond this fundamental concern, there is a weakness in the representativeness of the PDMS finger, the vertical motion, and the speed of sliding to real human exploration. The real finger has multiple layers with different moduli. In fact, the stratum corneum cells, which are the outer layer at the interface and determine the friction, have a much higher modulus than PDMS. In addition, the slanted position of the finger can cause non-uniform pressures across the finger. Both can contribute to making the PDMS finger have much more stick-slip than a real finger. In fact, if you look at the regime maps, there is very little space that has steady sliding. This does not represent well human exploration of surfaces. We do not tend to use a force and velocity that will cause extensive stick-slip (frequent regions of 100% stick-slip) and, in fact, the speeds used in the study are on the slow side, which also contributes to more stick-slip. At higher speeds and lower forces, all of the materials had steady sliding regions. Further, on these very smooth surfaces, the friction and stiction are more complex and cannot dismiss considerations such as finger material property change with sweat pore occlusion and sweat capillary forces. Also, the vertical motion of both the PDMS finger and the instructed human subjects is not the motion that humans typically use to discriminate between surfaces. Finally, fingerprints may not affect the shape and size of the contact area, but they certainly do affect the dynamic response and detection of vibrations.

      This all leads to the critical question, why are friction, normal force, and velocity not measured during the measured human exploration and in a systematic study using the real human finger? The authors posed an extremely interesting hypothesis that humans may alter their speed to feel the instability transition regions. This is something that could be measured with a real finger but is not likely to be correlated accurately enough to match regime boundaries with such a simplified artificial finger.

    1. Reviewer #1 (Public review):

      This manuscript by Ori and colleagues investigates the role of Lmod1 in muscle stem cell activation and differentiation. The study begins with a time-course mass spectrometry analysis of primary muscle stem cells, identifying Lmod1 as a pro-myogenic candidate (Figure 1). While the initial approach is robust, the subsequent characterization lacks depth and clarity. Although the data suggest that Lmod1 promotes myogenesis, the underlying mechanisms remain vague, and key experiments are missing. Please find my comments below.

      (1) The authors mainly rely on coarse and less-established readouts such as myotube length and spherical Myh-positive cells. More comprehensive and standard analyses, such as co-staining for Pax7, MyoD, and Myogenin, would allow quantification of quiescent, activated, and differentiating stem cells in knockdown and overexpression experiments. The exact stage at which Lmod1 functions (stem cell, progenitor, or post-fusion) is unclear due to the limited depth of the analysis. Performing similar experiments on cultured single EDL fibers would add valuable insights.

      (2) In supplementary Figure 2E, the distinction between Hoechst-positive cells and total cell counts is unclear. The authors should clarify why Hoechst-positive cells increase and relabel "reserve cells," as the term is confusing without reading the legend.

      (3) The specificity of Lmod1 and Sirt1 immunostaining needs validation using siRNA-treated samples, especially as these data form the basis of the mechanistic conclusions.

      (4) The authors must test the effect of Lmod1 siRNA on Sirt1 localization, as only overexpression experiments are shown.

      (5) In Figure S3, the biotin signal in LMOD2 samples appears weak. The authors need to address whether comparing LMOD1 and LMOD2 is valid given the apparent difference in reaction efficiency. It would also help to highlight where Sirt1 falls on the volcano plot in S3B.

      (6) The immunostaining data suggest that Lmod1 remains cytoplasmic throughout differentiation, whereas Sirt1 shows transient cytoplasmic localization at day 1 of differentiation. The authors should explain why Sirt1 is not constantly sequestered if Lmod1's cytoplasmic localization is consistent. It is also unclear whether day 1 is the key time point for Lmod1 function, as its precise role during myogenesis remains ambiguous.

      (7) The introduction does not sufficiently establish the motivation or knowledge gap this work aims to address. Instead, it reads like a narration of disparate topics in a single paragraph. The authors should clarify the statement in line 150, "since this protein has been...,".

      Overall, while the identification of Lmod1 as a pro-myogenic factor is convincing, the mechanistic insights are insufficient, and the manuscript would benefit from addressing these concerns.

    1. Reviewer #1 (Public review):

      Summary:

      The authors introduce a denoising-style model that incorporates both structure and primary-sequence embeddings to generate richer embeddings of peptides. My understanding is that the authors use ESM for the primary sequence embeddings, take resolved structures (or use structural predictions from AlphaFold when they're not available), then develop an architecture to combine these two with a loss that seems reminiscent of diffusion models or masked language model approaches. The embeddings can be viewed as ensemble-style embedding of the two levels of sequence information, or with AlphaFold, an ensemble of two methods (ESM+AlphaFold). The authors also gather external datasets to evaluate their approach and compare it to previous approaches. The approach seems promising and appears to out-compete previous methods at several tasks. Nonetheless, I have strong concerns about a lack of verbosity as well as exclusion of relevant methods and references.

      Advances:

      I appreciate the breadth of the analysis and comparisons to other methods. The authors separate tasks, models, and sizes of models in an intuitive, easy-to-read fashion that I find valuable for selecting a method for embedding peptides. Moreover, the authors gather two datasets for evaluating embeddings' utility for predicting thermostability. Overall, the work should be helpful for the field as more groups choose methods/pretraining strategies amenable to their goals, and can do so in an evidence-guided manner.

      Considerations:

      Primarily, a majority of the results and conclusions (e.g., Table 3) are reached using data and methods from ProteinGym, yet the best-performing methods on ProteinGym are excluded from the paper (e.g., EVE-based models and GEMME). In the ProteinGym database, these methods outperform ProtSSN models. Moreover, these models were published over a year---or even 4 years in the case of GEMME---before ProtSSN, and I do not see justification for their exclusion in the text.

      Secondly, related to comparison of other models, there is no section in the methods about how other models were used, or how their scores were computed. When comparing these models, I think it's crucial that there are explicit derivations or explanations for the exact task used for scoring each method. In other words, if the pre-training is indeed the important advance of the paper, the paper needs to show this more explicitly by explaining exactly which components of the model (and previous models) are used for evaluation. Are the authors extracting the final hidden layer representations of the model, treating these as features, then using these features in a regression task to predict fitness/thermostability/DDG etc.? How are the model embeddings of other methods being used, since, for example, many of these methods output a k-dimensional embedding of a given sequence, rather than one single score that can be correlated with some fitness/functional metric. Summarily, I think the text is lacking an explicit mention of how these embeddings are being summarized or used, as well as how this compares to the model presented.

      I think the above issues can mainly be addressed by considering and incorporating points from Li et al. 2024[1] and potentially Tang & Koo 2024[2]. Li et al.[1] make extremely explicit the use of pretraining for downstream prediction tasks. Moreover, they benchmark pretraining strategies explicitly on thermostability (one of the main considerations in the submitted manuscript), yet there is no mention of this work nor the dataset used (FLIP (Dallago et al., 2021)) in this current work. I think a reference and discussion of [1] is critical, and I would also like to see comparisons in line with [1], as [1] is very clear about what features from pretraining are used, and how. If the comparisons with previous methods were done in this fashion, this level of detail needs to be included in the text.

      To conclude, I think the manuscript would benefit substantially from a more thorough comparison of previous methods. Maybe one way of doing this is following [1] or [2], and using the final embeddings of each method for a variety of regression tasks---to really make clear where these methods are performing relative to one another. I think a more thorough methods section detailing how previous methods did their scoring is also important. Lastly, TranceptEVE (or a model comparable to it) and GEMME should also be mentioned in these results, or at the bare minimum, be given justification for their absence.

      [1] Feature Reuse and Scaling: Understanding Transfer Learning with Protein Language Models, Francesca-Zhoufan Li, Ava P. Amini, Yisong Yue, Kevin K. Yang, Alex X. Lu bioRxiv 2024.02.05.578959; doi: https://doi.org/10.1101/2024.02.05.578959<br /> [2] Evaluating the representational power of pre-trained DNA language models for regulatory genomics, Ziqi Tang, Peter K Koo bioRxiv 2024.02.29.582810; doi: https://doi.org/10.1101/2024.02.29.582810

      Comments on revisions:

      My concerns have been addressed. What seems to remain are some semantical disagreements and I'm not sure that these will be answered here. Do MSAs and other embedding methods lead to some notable type of data leakage? Does this leakage qualify as "x-shot" learning under current definitions?

    1. Reviewer #1 (Public review):

      This manuscript makes a significant contribution to the field by exploring the dichotomy between chemical synaptic and gap junctional contributions to extracellular potentials. While the study is comprehensive in its computational approach, adding experimental validation, network-level simulations, and expanded discussion on implications would elevate its impact further.

      Strengths:

      Novelty and Scope:<br /> The manuscript provides a detailed investigation into the contrasting extracellular field potential (EFP) signatures arising from chemical synapses and gap junctions, an underexplored area in neuroscience.<br /> It highlights the critical role of active dendritic processes in shaping EFPs, pushing forward our understanding of how electrical and chemical synapses contribute differently to extracellular signals.

      Methodological Rigor:<br /> The use of morphologically and biophysically realistic computational models for CA1 pyramidal neurons ensures that the findings are grounded in physiological relevance.<br /> Systematic analysis of various factors, including the presence of sodium, leak, and HCN channels, offers a clear dissection of how transmembrane currents shape EFPs.

      Biological Relevance:<br /> The findings emphasize the importance of incorporating gap junctional inputs in analyses of extracellular signals, which have traditionally focused on chemical synapses.<br /> The observed polarity differences and spectral characteristics provide novel insights into how neural computations may differ based on the mode of synaptic input.

      Clarity and Depth:<br /> The manuscript is well-structured, with a logical progression from synchronous input analyses to asynchronous and rhythmic inputs, ensuring comprehensive coverage of the topic.

      Weaknesses and Areas for Improvement:

      Generality and Validation:<br /> The study focuses exclusively on CA1 pyramidal neurons. Expanding the analysis to other cell types, such as interneurons or glial cells, would enhance the generalizability of the findings.<br /> Experimental validation of the computational predictions is entirely absent. Empirical data correlating the modeled EFPs with actual recordings would strengthen the claims.

      Role of Active Dendritic Currents:<br /> The paper emphasizes active dendritic currents, particularly the role of HCN channels in generating outward currents under certain conditions. However, further discussion of how this mechanism integrates into broader network dynamics is warranted.

      Analysis of Plasticity:<br /> While the manuscript mentions plasticity in the discussion, there are no simulations that account for activity-dependent changes in synaptic or gap junctional properties. Including such analyses could significantly enhance the relevance of the findings.

      Frequency-Dependent Effects:<br /> The study demonstrates that gap junctional inputs suppress high-frequency EFP power due to membrane filtering. However, it could delve deeper into the implications of this for different brain rhythms, such as gamma or ripple oscillations.

      Visualization:<br /> Figures are dense and could benefit from more intuitive labeling and focused presentations. For example, isolating key differences between chemical and gap junctional inputs in distinct panels would improve clarity.

      Contextual Relevance:<br /> The manuscript touches on how these findings relate to known physiological roles of gap junctions (e.g., in gamma rhythms) but does not explore this in depth. Stronger integration of the results into known neural network dynamics would enhance its impact.

      Suggestions for Improvement:

      Broader Application:<br /> Simulate EFPs in multi-neuron networks to assess how the findings extend to network-level interactions, particularly in regions with mixed synaptic connectivity.

      Experimental Correlation:<br /> Collaborate with experimental groups to validate the computational predictions using in vivo or in vitro recordings.

      Mechanistic Insights:<br /> Provide a more detailed mechanistic explanation of how specific ionic currents (e.g., HCN, sodium, leak) interact during gap junctional vs. chemical synaptic inputs.

      Implications for Neural Coding:<br /> Discuss how the observed differences in EFP signatures might influence neural coding, especially in circuits with heavy gap junctional connectivity.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript reports a comparison of microbial traits and host response traits in a laboratory model of infected granuloma using Mtb strains from different lineages. The authors report increased bacillary growth and granuloma formation, inversely associated with T cell activation that is characterized by CXCL9, granzyme B and TNF expression. They therefore infer that these T cell responses are likely to be host-protective and that the greater virulence of modern Mtb lineages may be driven by their ability to avoid triggering these responses.

      Strengths:

      The comparison of multiple Mtb lineages in a granuloma model that enables evaluation of the potential role of multiple host cells in Mtb control, offers a valuable experimental approach to study the biological mechanisms that underpin differential virulence of Mtb lineages that has been previously reported in clinical and epidemiological studies.

      Weaknesses:

      The study is rather limited to descriptive observations, and lacks experiments to test causal relationships between host and pathogen traits. Some of the presentation of the data are difficult to interpret, and some conclusions are not adequately supported by the data.

      Comments on revisions:

      The authors have addressed my previous comments with appropriate revisions and explanations.

    1. Reviewer #1 (Public review):

      Summary:

      Chen and Phillips describe the dynamic appearance of cytoplasmic granules during embryogenesis analogous to SIMR germ granules, and distinct from CSR-1-containing granules, in the C. elegans germline. They show that the nuclear Argonaute NRDE-3, when mutated to abrogate small RNA binding, or in specific genetic mutants, partially colocalizes to these granules along with other RNAi factors, such as SIMR-1, ENRI-2, RDE-3, and RRF-1. Furthermore, NRDE-3 RIP-seq analysis in early vs. late embryos is used to conclude that NRDE-3 binds CSR-1-dependent 22G RNAs in early embryos and ERGO-1-dependent 22G RNAs in late embryos. These data lead to their model that NRDE-3 undergoes small RNA substrate "switching" that occurs in these embryonic SIMR granules and functions to silence two distinct sets of target transcripts - maternal, CSR-1 targeted mRNAs in early embryos and duplicated genes and repeat elements in late embryos.

      Strengths:

      The identification and function of small RNA-related granules during embryogenesis is a poorly understood area and this study will provide the impetus for future studies on the identification and potential functional compartmentalization of small RNA pathways and machinery during embryogenesis.

      Weaknesses:

      (1) The authors acknowledge the following issue that loss of SIMR granules have no significant impact on NRDE-3 small RNA loading weakens the functional relevance of these structures. However, this point is clearly discussed and, as they note in their Discussion, it is entirely possible that these embryonic granules may be "incidental condensates."

    1. Reviewer #1 (Public review):

      Summary:

      The works seeks to investigate the efficacy of linalool as a natural alternative for combating Saprolegnia parasitica infections, which would provide great benefit to aquaculture. This paper shows the effect of linalool in vitro using a variety of techniques including changes in S. parasitica membrane integrity following linalool exposure and alterations in cell metabolism and ribosome function. Additionally, this work goes on to show that prophylactic and concurrent treatment of linalool at the time of S. parasitica infection can improve survival and tissue damage in vivo in their grass carp infection model. The conclusions of the paper are partially supported by the data with the corrections done by the authors improving clarity such that I believe there is merit in the work.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Wang et al. investigates the relationship between Streptococcus Suis (S. Suis) growth phases and levels of virulence factor, capsular polysaccharide (CPS), in the bacterial cell wall. They use an understudied mouse intranasal infection model to connect growth phase related CPS abundance to the pathogenicity of the bacteria in the nose, blood, and other organs. Adoptive transfer of serum against either CPS or V5 (five other virulence factors) reinforces their discovery of CPS levels on S. Suis in different organs and stages of infection. Vaccination against bacterial infections can be difficult, and understanding how the serotype of a bacterial pathogen changes between infection sights and systemic disease is critical. Further, understanding host-pathogen interactions at early time points in the upper respiratory tract may have broad implications for vaccine development. While some of the results are interesting and compelling, others are not supported by the data and require further experimental work.

      Strengths:

      The model of intranasal infection is compelling to expand upon work previously done in vitro and with systemic routes of infection. The histology and fluorescent imaging of the olfactory epithelium and olfactory bulb complement work in Figure 2 about the attachment of S. suis to epithelial cells and the bacterial burden over time in different organs of Figure 3. Histology was performed at 1 hour and 9 days after intranasal infection with stationary phase S. suis and drives home that this pathogen can invade the olfactory nerve and may potentially cause bacterial meningitis seen in some infected swine.

      The adoptive transfer of either anti-CPS or anti-V5 to mice before infection at both longer (12 hr), and shorter (0.5 hr) time points is useful to demonstrate that the changes in cell wall composition between the NALT/CSF and blood compartments result in different efficacy in clearing bacteria from those locations. This is fundamental for the development of vaccines for the swine industry and begs those developing other bacterial vaccines to consider what virulence factors are the most useful as neutralizing antibody targets at the sight of bacterial invasion.

      Demonstrating that the amount of CPS within the cell wall of S. Suis is related to the growth phase of the bacteria is an important consideration for vaccine development. While others had previously shown that CPS levels were higher in the blood than in the CNS, and that CPS decreases the invasion of epithelial cells, the close look at the olfactory epithelium at an early time point ties together in vitro findings. The control of a CPS-negative strain was critical to understanding their findings. The location and the microbial community that bacterial pathogens live within may change the growth phase and therefore also the cell wall components.

      Weaknesses:

      The authors present compelling data that is relevant to the development of anti-bacterial vaccinations and show a relationship between CPS levels and pathogenicity. However, the use of a laboratory murine model requiring acetic acid pre-treatment and a high i.n. dose. Therefore, the findings presented may not represent what occurs in swine. Furthermore, several conclusions are not supported by the data and require substantial new experimental support. Thus, major concerns remain that impact the validity of the findings.

      Major concerns for the manuscript:

      The intranasal infections were done with S. Suis in the stationary phase which has been shown to have less CPS on the cell wall. While this mimics the literature that shows S. Suis to have less CPS in the CNS, the difference in the pathogenesis of a log phase vs. stationary phage intranasal infection would be interesting. Especially because the bacteria is a part of the natural microbial community of swine tonsils, it is curious if the change in growth phase and therefore CPS levels may be a causative reason for pathogenic invasion in some pigs. To take this line of thought a step further, the authors should consider taking the bacteria from NALT/CSF and blood and compare the lag times bacteria from different organs take to enter a log growth phase to show whether the difference in CPS is because S. Suis in each location is in a different growth phase. If log phase bacteria were intranasally delivered, would it adapt a stationary phase life strategy? How long would that take? Lastly, the authors should be cautious about claims about S. suis downregulating CPS in the NALT for increased invasion and upregulating CPS to survive phagocytosis in blood. While it is true that the data shows that there are different levels of CPS in these locations, the regulation and mechanism of the recorded and observed cell wall difference is not investigated past the correlation to the growth phase. While mechanistic work is outside the scope of the current work, readers should keep in mind that these results may be explained multiple ways. In addition, the mouse model is used rather than the usual host of a pig. The NALTs of conventional pigs and SPF mice certainly have unique microbial communities and this may affect the pathogenesis of S. suis in the mouse, therefore influencing the results. Because the authors show a higher infection rate in the mouse with acetic acid, they may want to consider investigating what the mouse NALT microenvironment is naturally doing to exclude more bacterial invasion in future studies. Is it simply a host mismatch or is there something about the microbiome or steady-state immune system in the nose of mice that is different from pigs?

    1. Reviewer #1 (Public review):

      The authors have strengthened their conclusions by providing additional information about the specificity of their antibodies, but at the same time the authors have revealed concerning information about the source of their antibodies.

      It appears that many of the antibodies used in this study have been discontinued because the supplier company was involved in a scandal of animal cruelty and all their goats and rabbits Ab products were sacrificed. The authors acknowledge that this is unfortunate but they also claim that the issue is out of their hands.

      The authors' statement is false; the authors ought to not use these antibodies, just as the providing company chose to discontinue them, as<br /> those antibodies are tied to animal cruelty. The issue that the authors feel OK with using them is of concern. In short, please remove any results from unethical antibodies.

      Removal of such results also best serves science. That is, any of their results using the discontinued antibodies means that the authors' results are non-reproducible and we should be striving to publish good, reproducible science.

      For the antibodies that do not have unethical origins the authors claim that their antibodies have been appropriately validated, by "testing in positive control tissue and/or Western blot or in situ hybridization". This is good but needs to be expanded upon. It is a strong selling point that the Abs are validated and I want to see additional information in their Supplementary Table 2 stating for each Ab specifically:

      (1) What +ve control tissue was used in the validation of each Ab and which species that +ve control came from. Likewise, if competition assays to confirm validity was used, please also specify.

      (2) Which assay was the Ab validated for (WB, IHC, ELISA, all etc)

      (3) For Antibodies that were validated for, or using WBs please let the reader know if there were additional bands showing.

      (4) Include references to the literature that supports these validations. That is, please make it easy for the reader to appreciate the hard work that went into the validation of the Antibodies.

      Finally, for the Abs, when the authors write that "All antibodies used have been validated by testing in positive control tissue and/or Western blot or in situ hybridization" I fail to understand what in situ hybridisation means in this context. I am under the impression that in situ hybridisation is some nucleic acid -hybridising-to-organ or tissue slice. Not polypeptide binding.

    1. Reviewer #3 (Public review):

      In this study, the authors tested a dietary intervention focused on improving meal regularity. Participants first utilized a smartphone application to track their meal frequencies, and then they were asked to restrict their meal intake to times when they most often eat to enhance meal regularity for six weeks. This, supposedly, resulted in some weight loss, supposedly independent of changes in caloric intake.

      The concept is appealing, and it is interesting to use a smartphone app in participants' typical everyday environment to regularize food intake. It asks from participants to stick to meal intake times that are supported in many cultures, and it asks them not to eat outside of what are likely unhealthy habits such as grazing a refrigerator late at night. In essence, this is a restrictive diet, not restricting caloric intake but the timing of food intake, and it has many parallel to time restricted feeding. It is important to note that there are many restrictive diets, and a common problem with restrictive diets is that while they allow one to lose a couple of pounds for a couple of months just as with this diet, the long-term success is very poor because they depend on restriction. This issue is still not discussed.

      Further, why the participants lose weight, whether this is indeed due to a reduction in food intake as implied, or if the weight loss occurred without a reduction in caloric intake as first stated by the authors and now suggested remains to be determined as the method of food diary as a method to assess caloric intake lacks rigor as has been well established and has been shown again and again to be misleading even though many readers without that knowledge draw conclusions from such studies and they should best have been omitted.

      The authors hypothesize that the intervention improves metabolism by improving circadian rhythmicity. That's plausible, but the study provides only a subjective questionnaire and lacks more objective measures such as actigraphy.

      While the authors now state now that this as a pilot study, the study falls short of providing mechanistic insights into what underlies the weight loss and the many correlations provided do not make up for this weakness.

      Overall, while this pilot study introduces an interesting approach to meal regularity, its limitations highlight the need for more rigorous studies to validate these findings.

      (1) Unreliable method of caloric intake

      The trial's reliance on self-reported caloric intake is problematic, as participants tend to underreport intake. As pointed out earlier by me and now cited in the revised manuscript, the NEJM paper (DOI: 10.1056/NEJM199212313272701) reported that some participants underreported caloric intake by approximately 50%, rendering such data unreliable and hence misleading. The question is, why include such unreliable data that is more misleading than informative at all? These data should have been omitted. More rigorous methods for assessing food intake should have been utilized. I understand this requires more effort, such as providing participants with meals, or using better methods that photograph and weigh the meals, etc., but it is certainly feasible. It has been done many times in other studies. Further, the control group was not asked to restrict their diet in any way, and hence, asking for a restriction in timing in the treatment group may be sufficient to reduce caloric intake and induce weight loss.<br /> Merely acknowledging the unreliability of self-reported caloric intake is insufficient, as it still leaves the reader with the impression that this weight loss is independent of caloric intake when, in reality, we actually have no idea if food intake contributes to it. A more robust approach to assessing food intake is imperative. Even if a decrease in caloric intake is observed through rigorous measurement, as I am convinced a more rigorous study would unveil testing this paradigm, this intervention may merely represent another restrictive diet among countless others that show that one may lose weight by going on a diet. Seemingly, any restrictive diet works for a few months. The trouble is they do not work long-term because they depend on restriction. I agree with the authors that their intervention seems common sense and has little downside, but one also needs to be realistic about the prospects of this intervention.

      (2) Lack of objective data regarding circadian rhythm

      The assessment of circadian rhythm using the MCTQ, a self-reported measure of chronotype, is subjective. More objective methods like actigraphy would have strengthened the study.

      Actigraphy is considered better than a sleep questionnaire for assessing circadian rhythms because it provides objective data on activity patterns over time, offering a more accurate picture of sleep-wake cycles compared to subjective self-reported information from a questionnaire.

      The authors' responses to my prior review are misleading.

      I understand that this is a pilot study. Is it appropriate to point out weaknesses and flaws in the conclusion drawn from a pilot study? Absolutely, that is the reviewer's job.

      I also understand that food intake can affect circadian rhythm, which was part of the rationale behind the study. Is it appropriate to criticize the study for not examining the effect of the intervention on circadian rhythm using objective measures provided by actigraphy? Yes, it is, as this would have provided mechanistic insights that are more rigorous. I understand that this was not the declared goal, but it should have been examined in a pilot study. To jump to the conclusion that based on prior studies, the intervention will improve circadian rhythms as the authors do is not rigorous and hence a weakness.

      A less rigorous method, such as a food questionnaire, to assess caloric intake can result in inadequately supported and potentially misleading conclusions. By including it, the reader may conclude that there was no change in caloric intake when indeed we do not know. I disagree with the authors that this is a minor issue. The associations and correlations the authors provide do not solve the issue. Hence, to make it very clear, it remains to be studied if this intervention reduces weight by reducing caloric intake or other mechanisms. Including this data reduces the study's rigor as it suggests that there is no difference in food intake.

      I did not suggest to only use an actimeter (which is a device); I suggested actigraphy. Actigraphy is widely recognized in the field for its utility in circadian rhythm research and provides objective data, while the questionnaire used is subjective. The authors do quote papers comparing their survey to actigraphy by correlation analysis, but the fundamental difference of the two approaches remains. Does an objective measure increase rigor compared to a subjective assessment? Yes, it does.

      Similarly, I did not state "that any form of imposed diet appears to lead to weight loss over several months." I said that many forms of restrictive diets do induce weight loss of a similar magnitude to this diet.

      The authors should have discussed the fundamental confounder of the study in that the treatment group is asked to restrict food intake to specific times while the control group is not asked to restrict in any way and the potential contribution of this to the weight loss observed.

    1. Reviewer #1 (Public review):

      Summary:

      The authors found that IL-1b signaling is pivotal for hypoxemia development and can modulate NETs formation in LPS+HVV ALI model.

      Strengths:

      They used IL1R1 ko mice and proved that IL1R1 is involved in ALI model proving that IL1b signalling leads towards ARDS. In addition, hypothermia reduces this effect, suggesting a therapeutic option.

      Weaknesses:

      (1) IL1R1 binds IL1a and IL1b. What would be the role of IL1a in this scenario?

      (2) The authors depleted neutrophils using anti-Ly6G. What about MDSCs? Do these latter cells be involved in ARDS and VILI?

      (3) The authors found that TH inhibited IL-1β release from macrophages led to less NETs formation and albumin leakage in the alveolar space in their lung injury model. A graphical abstract could be included suggesting a cellular mechanism.

      (4) If Macrophages are responsible for IL1b release that via IL1R1 induces NETosis, what happens if you deplete macrophages? what is the role of epithelial cells?

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigated the role of an E3 ubiquitin ligase ITCH in regulating the viral life cycle of SARS-CoV-2. The authors showed that ITCH mediates ubiquitination of the membrane (M) and envelope (E) proteins of SARS-CoV-2. Ubiquitination of E and M results in enhanced interactions between the structural proteins and redistribution of the structural proteins into autophagosomes. The authors claim that the enhanced interactions between structural proteins and trafficking of the structural proteins into autophagosomes contribute to SARS-CoV-2 replication and egress, prompting ITCH as a potential antiviral target. ITCH also alters the cellular distribution of host proteases important for spike cleavage which protect and stabilize spike with cleavage. The authors also demonstrated that SARS-CoV-2 replication is augmented by ITCH in which virus replication is significantly impaired in cells lacking ITCH expression.

      Strengths:

      The authors provided high-quality data with appropriate experimental controls to justify their claims and conclusions. The mechanistic analyses are excellent and presented in a logical manner. The investigation of the role of ubiquitination in coronavirus assembly and egress is novel as most previous studies focused on its role in mediating innate immune responses.

      Weaknesses:

      Although the authors showed that ITCH ubiquitinates E and M proteins, the claim that such ubiquitination promotes virion assembly and egress is circumstantial. The enhanced interaction between the structural proteins and targeting of ubiquitinated structural proteins into autophagosomes does not necessarily result in increased virion production and release as suggested by the authors. There is a disconnect between the ubiquitination of structural proteins and the role of ITCH in augmenting virus replication as shown in Fig. 6A and B. In addition, the authors showed that the catalytic activity of ITCH is important for the localization and maturation of host proteases. However, the mechanism behind is unknown. Also, it is unclear how protection of spike from cleavage conferred by ITCH explains its role in promoting replication as a lack of spike cleavage would inevitably compromise entry. The major weakness of the manuscript is the lack of experimental data that explains the molecular role of ITCH in relation to its phenotype observed during SARS-CoV-2 infection.

    1. Reviewer #1 (Public review):

      This study uses structural and functional approaches to investigate the regulation of the Na/Ca exchanger NCX1 by an activator, PIP2, and an inhibitor, SEA0400.

      State-of-the-art methods are employed, and the data are of high quality and presented very clearly. The manuscript combines two rather different studies (one on PIP2; and one on SEA0400) neither of which is explored in the depth one might have hoped to form robust conclusions and significantly extend knowledge in the field.

      The novel aspect of this work is the study of PIP2. Unfortunately, technical limitations precluded structural data on binding of the native PIP2, so an unnatural short-chained analog, di-C8 PIP2, was used instead. This raises the question of whether these two molecules, which have similar but very distinctly different profiles of activation, actually share the same binding pocket and mode of action. In an effort to address this, the authors mutate key residues predicted to be important in forming the binding site for the phosphorylated head group of PIP2. However, none of these mutations prevent PIP2 activation. The only ones that have a significant effect also influence the Na-dependent inactivation process independently of PIP2, thus casting doubt on their role in PIP2 binding, and thus identification of the PIP2 binding site. A more extensive mutagenic study, based on the di-C8 PIP2 binding site, would have given more depth to this work and might have been more revealing mechanistically.

      The SEA0400 aspect of the work does not integrate particularly well with the rest of the manuscript. This study confirms the previously reported structure and binding site for SEA0400 but provides no further information. While interesting speculation is presented regarding the connection between SEA0400 inhibition and Na-dependent inactivation, further experiments to test this idea are not included here.

    1. Reviewer #1 (Public review):

      DiPeso et al. develop two tools to i) classify micronucleated (MN) cells, which they call VCS MN, and ii) segment micronuclei and nuclei with MNFinder. They then use these tools to identify transcriptional changes in MN cells.

      The strengths of this study are:

      - Developing highly specialized tools to speed up the analysis of specific cellular phenomena such as MN formation and rupture is likely valuable to the community and neglected by developers of more generalist methods.

      - A lot of work and ideas have gone into this manuscript. It is clearly a valuable contribution.

      - Combining automated analysis, single-cell labeling, and cell sorting is an exciting approach to enrich for phenotypes of interest, which the authors demonstrate here.

      The authors addressed my original concerns related to the first version of this manuscript.

    1. Reviewer #2 (Public review):

      The fledgling field of epitranscriptomics has encountered various technical roadblocks with implications as to the validity of early epitranscriptomics mapping data. As a prime example, the low specificity of (supposedly) modification-specific antibodies for the enrichment of modified RNAs, has been ignored for quite some time and is only now recognized for its dismal reproducibility (between different labs), which necessitates the development of alternative methods for modification detection. Furthermore, early attempts to map individual epitranscriptomes using sequencing-based techniques are largely characterized by the deliberate avoidance of orthogonal approaches aimed at confirming the existence of RNA modifications that have been originally identified.

      Improved methodology, the inclusion of various controls, and better mapping algorithms as well as the application of robust statistics for the identification of false-positive RNA modification calls have allowed revisiting original (seminal) publications whose early mapping data allowed making hyperbolic claims about the number, localization and importance of RNA modifications, especially in mRNA. Besides the existence of m6A in mRNA, the detectable incidence of RNA modifications in mRNAs has drastically dropped.

      As for m5C, the subject of the manuscript submitted by Zhou et al., its identification in mRNA goes back to Squires et al., 2012 reporting on >10.000 sites in mRNA of a human cancer cell line, followed by intermittent findings reporting on pretty much every number between 0 to > 100.000 m5C sites in different human cell-derived mRNA transcriptomes. The reason for such discrepancy is most likely of a technical nature. Importantly, all studies reporting on actual transcript numbers that were m5C-modified relied on RNA bisulfite sequencing, an NGS-based method, that can discriminate between methylated and non-methylated Cs after chemical deamination of C but not m5C. RNA bisulfite sequencing has a notoriously high background due to deamination artifacts, which occur largely due to incomplete denaturation of double-stranded regions (denaturing-resistant) of RNA molecules. Furthermore, m5C sites in mRNAs have now been mapped to regions that have not only sequence identity but also structural features of tRNAs. Various studies revealed that the highly conserved m5C RNA methyltransferases NSUN2 and NSUN6 do not only accept tRNAs but also other RNAs (including mRNAs) as methylation substrates, which in combination account for most of the RNA bisulfite-mapped m5C sites in human mRNA transcriptomes. Is m5C in mRNA only a result of the Star activity of tRNA or rRNA modification enzymes, or is their low stoichiometry biologically relevant?

      In light of the short-comings of existing tools to robustly determine m5C in transcriptomes, other methods, like DRAM-seq, aiming to map m5C independently of ex situ RNA treatment with chemicals, are needed to arrive at a more solid "ground state", from which it will be possible to state and test various hypotheses as to the biological function of m5C, especially in lowly abundant RNAs such as mRNA.

      Importantly, the identification of >10.000 sites containing m5C increases through DRAM-Seq, increases the number of potential m5C marks in human cancer cells from a couple of 100 (after rigorous post-hoc analysis of RNA bisulfite sequencing data) by orders of magnitude. This begs the question, whether or not the application of these editing tools results in editing artefacts overstating the number of actual m5C sites in the human cancer transcriptome.

    1. Reviewer #1 (Public review):

      Summary:

      The paper begins with phenotyping the DGRP for post-diapause fecundity, which is used to map genes and variants associated with fecundity. There are overlaps with genes mapped in other studies and also functional enrichment of pathways including most surprisingly neuronal pathways. This somewhat explains the strong overlap with traits such as olfactory behaviors and circadian rhythm. The authors then go on to test genes by knocking them down effectively at 10 degrees. Two genes, Dip-gamma and sbb are identified as significantly associated with post-diapause fecundity, which they also find the effects to be specific to neurons. They further show that the neurons in the antenna but not arista are required for the effects of Dip-gamma and sbb. They show that removing antenna has a diapause specific lifespan extending effect, which is quite interesting. Finally, ionotropic receptor neurons are shown to be required for the diapause associated effects.

      Strengths:

      Overall I find the experiments rigorously done and interpretations sound. I have no further suggestions except an ANOVA to estimate heritability of the post-diapause fecundity trait, which is routinely done in the DGRP and offers a global parameter regarding how reliable phenotyping is.

      Weaknesses:

      A minor point is I cannot find how many DGRP lines are used.

    1. Reviewer #1 (Public review):

      Summary:

      Gao et al. has demonstrated that the the pesticide emamectin benzoate (EB) treatment of brown plathopper (BPH) leads to increased egg laying in the insect, which is a common agricultural pest. The authors hypothesize that EB upregulates JH titer resulting in increased fecundity.

      Strengths:

      The finding that a class of pesticide increases fecundity of brown planthopper is interesting.

      Weaknesses:

      (1) EB is an allosteric modulator of GluCl. That means it EB physically interacts with GluCl initiating a structural change in the cannel protein. Yet the authors here central hypothesis is about how EB can upregulate the mRNA of GluCl. I do not know whether there is any evidence that an allosteric modulator can function as a transcriptional activator for the same receptor protein. The basic premise of the paper sounds counterintuitive. This is a structural problem and should be addressed by the authors by giving sufficient evidence about such demonstrated mechanisms before.<br /> (2) I am surprised to see a 4th instar larval application or treatment with EB results in upregulation of JH in the adult stages. Complicating the results further is the observation that a 4th instar EB application results in an immediate decrease in JH titer. There is a high possibility that this late JH titer increase is an indirect effect.<br /> (3) The writing quality of the paper needs improvement. Particularly with respect to describing processes, and abbreviations. In several instances authors have not adequately described the processes they have introduced, thus confusing the readers.<br /> (4) In the section 'EB promotes ovarian development' the authors have shown that EB treatment results in increased detention of eggs which contradicts their own results which show that EB promotes egg laying. Again, this is a serious contradiction that nullifies their hypothesis.<br /> (5) Furthermore, the results suggest that oogenesis is not affected by EB application. The authors should devote a section to discussing how they are observing increased egg numbers in EB-treated insects while not impacting Oogenesis.<br /> (6) Met is the receptor of JH and to my understanding, remains mostly constant in terms of its mRNA or protein levels throughout various developmental periods in many different insects. Therefore, the presence of JH becomes the major driving factor for physiological events and not the presence of the receptor Met. Here the authors have demonstrated an increase in Met mRNA as a result of EB treatment. Their central hypothesis is that EB increases JH titer to result in enhanced fecundity. JH action will not result in the activation of Met. Although not contradictory to the hypothesis, the increase in mRNA content of Met is contrary to the findings of the JH field thus far.<br /> (7) As pointed out before, it is hard to rationalize how a 4th instar exposure to EB can result in upregulation of key genes involved in JH synthesis at the adult stage. The authors must consider providing a plausible explanation and discussion in this regard.<br /> (8) I have strong reservations against such an irrational hypothesis that Met (the receptor for JH) and JH-Met target gene Kr-h1 regulates JH titer (Line 311, Fig 3 supplemental 2D). This would be the first report of such an event on the JH field and therefore must be analysed to depth before it may go to publication. I strongly suggest the authors remove such claims from the manuscript without substantiating it.<br /> (9) Kr-h1 is JH/Met target gene. The authors demonstrate that silencing of Kr-h1 results in inhibition of FAMeT, which is a gene involved in JH synthesis. The feedback loop in JH synthesis is unreported. Authors must go ahead with a mechanistic detail of Kr-h1 mediated JH upregulation before this can be concluded. Mere qPCR experiments are not sufficient to substantiate a claim that is completely contrary to the current understanding of JH signalling pathway.<br /> (10) Authors have performed knockdowns of JHAMT, Met and Kr-h1 to demonstrate the effect of these factors on fecundity n BPH. Additionally, they have performed rescue experiments with EB application on these knockdown insects (Figure 3K-M). This I believe is a very flawed experiment. The authors demonstrate EB works through JHAMT in upregulating JH titer. In the absence of JHAMT, EB application is not expected to rescue the phenotype. But authors have reported a complete rescue here. In the absence of Met, the receptor of JH, either EB or JH is not expected to rescue the phenotype. But a complete rescue has been reported. These two experimental results contradict their own hypothesis.<br /> (11) A significant section of the paper deals with how EB upregulates JH titer. JH is a hormone synthesized in the Corpora Allata. Yet the authors have chosen to use the whole body for all of their experiments. Changes in the whole body for mRNA of those enzymes involved in JH synthesis does may not reflect on the situation in Corpora Allata. Although working with corpora Allata is challenging, discarding the abdomen and thorax region and working with the head and neck region of the insect is easily doable. Results from such sampling is always more convincing when it comes to JH synthesis studies.<br /> (12) The phenomenon reported was specific for BPH and not found in other insects. This limits the implications of the study.<br /> (13) Overall, the molecular experiments are very poorly designed and can at best be termed superficial. There are several contradictions within the paper and no discussion or explanation has been provided for that.

      Comments on revisions:

      (1) The onus of making the revisions understandable to the reviewers lies with the authors. In its current form, how the authors have approached the review is hard to follow, in my opinion. Although the authors have taken a lot of effort in answering the questions posed by reviewers, parallel changes in the manuscript are not clearly mentioned. In many cases, the authors have acknowledged the criticism in response to the reviewer, but have not changed their narrative, particularly in the results section.<br /> (2) In the response to reviewers, the authors have mentioned line numbers in the main text where changes were made. But very frequently, those lines do not refer to the changes or mention just a subsection of changes done. The problem is throughout the document making it very difficult to follow the revision and contributing to the point mentioned above.<br /> (3) The authors need to infer the performed experiments rationally without over interpretation. Currently, many of the claims that the authors are making are unsubstantiated. As a result of the first review process, the authors have acknowledged the discrepancies, but they have failed to alter their interpretations accordingly.<br /> (4) I would like to point to the fact that there are significant experimental modifications added to the manuscript. The decision from the first cycle of review was given on 8th Nov 2024. The authors re-submitted the manuscript on 20th Nov 2024. It just beats my understanding, how so many experiments can be done in such a short time. The rush in resubmission is evident in the writing quality as well. Which I think is now poorer than the original version.<br /> (5) The writing quality is still extremely poor.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to confirm the association between the human leukocyte antigen (HLA)-II region and tuberculosis (TB) susceptibility within admixed African populations. Building upon previous findings from the International Tuberculosis Host Genetics Consortium (ITHGC), this study sought to address the limitations of small sample size and the inclusion of admixed samples by employing the Local Ancestry Allelic Adjusted (LAAA) model, as well as identify TB susceptibility loci in an admixed South African cohort.

      Strengths:

      The major strengths of this study include the use of multiple TB case-control datasets from diverse South African populations and ADMIXTURE for global ancestry inference.

      Weaknesses:

      The major weakness of this study include insufficient significant novel discoveries and reliance on cross-validation. The use of existing models did not add value to this study.

      Appraisal:<br /> The authors achieved their aims. However, the results still needed to be further validated in the future.

      Impact:<br /> The innovative use of the LAAA model and the comprehensive dataset in this study may make contributions to the field of genetic epidemiology.

    1. Reviewer #1 (Public review):

      Summary:

      The authors of this study sought to define a role for IgM in responses to house dust mites in the lung.

      Strengths:

      Unexpected observation about IgM biology.<br /> Combination of experiments to elucidate function.

      Weaknesses:

      Would love more connection to human disease

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript performs a comprehensive biochemical, structural, and bioinformatic analysis of TseP, a type 6 secretion system effector from Aeromonas dhakensis that includes identification of a domain required for secretion and residues conferring target organism specificity. Through targeted mutations, they have expanded the target range of a T6SS effector to include a gram-positive species, which are not typically susceptible to T6SS attack. Although this is not the first dual domain effector to be described, this is the first time anyone has been able to modify a T6SS effector to have an expanded target species range.

      Strengths:

      The thorough dissection of TseP activity and modulation of target specificity represent a novel contribution to the field of antibacterial research.

      Weaknesses:

      Although the mechanistic activity of TseP is fully dissected here, there are some unaddressed questions regarding the importance/evolution of the dual activity domain organization. For example, does the modified Gram-positive targeting TseP effector still kill Gram-negative bacteria in bacterial mixtures? And if so, what is the evolutionary benefit of having a TseP that cannot target Gram-positives? And can something be inferred about the biology of Aeromonas from this?

      Comments on revisions:

      The comments and critiques from the initial submission have been addressed. However, some of them have only been addressed in the author's rebuttal. Some of the discussion particularly regarding the validity of using E. coli PG, the ability for TseP_C4+ to still kill E. coli, and the advantages of having dual domain function effectors probably should be present in the actual manuscript.

    1. Reviewer #2 (Public review):

      Summary

      In this extensive comparative study, Moreno-Borrallo and colleagues examine the relationships between plasma glucose levels, albumin glycation levels, diet and life-history traits across birds. Their results confirmed the expected positive relationship between plasma blood glucose level and albumin glycation rate but also provided findings that are somewhat surprising or contrast with findings of some previous studies (positive relationships between blood glucose and lifespan, or absent relationships between blood glucose and clutch mass or diet). This is the first extensive comparative analysis of glycation rates and their relationships to plasma glucose levels and life history traits in birds that is based on data collected in a single study, with blood glucose and glycation measured using unified analytical methods (except for blood glucose data for 13 species collected from a database).

      Strengths

      This is an emerging topic gaining momentum in evolutionary physiology, which makes this study a timely, novel and important contribution. The study is based on a novel data set collected by the authors from 88 bird species (67 in captivity, 21 in the wild) of 22 orders, except for 13 species, for which data were collected from a database of veterinary and animal care records of zoo animals (ZIMS). This novel data set itself greatly contributes to the pool of available data on avian glycemia, as previous comparative studies either extracted data from various studies or a ZIMS database (therefore potentially containing much more noise due to different methodologies or other unstandardised factors), or only collected data from a single order, namely Passeriformes. The data further represents the first comparative avian data set on albumin glycation obtained using a unified methodology. The authors used LC-MS to determine glycation levels, which does not have problems with specificity and sensitivity that may occur with assays used in previous studies. The data analysis is thorough, and the conclusions are substantiated. Overall, this is an important study representing a substantial contribution to the emerging field evolutionary physiology focused on ecology and evolution of blood/plasma glucose levels and resistance to glycation.

      Weaknesses

      Unfortunately, the authors did not record handling time (i.e., time elapsed between capture and blood sampling), which may be an important source of noise because handling-stress-induced increase in blood glucose has previously been reported. Moreover, the authors themselves demonstrate that handling stress increases variance in blood glucose levels. Both effects (elevated mean and variance) are evident in Figure ESM1.2. However, this likely makes their significant findings regarding glucose levels and their associations with lifespan or glycation rate more conservative, as highlighted by the authors.

    1. Reviewer #1 (Public review):

      Summary:

      This work introduces the differentiable Gillespie algorithm, DGA, which is a differentiable variant of the celebrated (and exact) Gillespie algorithm commonly used to perform stochastic simulations across numerous fields, notably in the life sciences. The proposed DGA approximates the exact Gillespie algorithm using smooth functions yielding a suitable approximate differentiable stochastic system as a proxy for the underlying discrete stochastic system, where DGA stochastic reactions have continuous reaction index and the species abundances. To illustrate their methodology, the authors specifically consider in detail the case of a well-studied two-state promoter gene regulation system that they analyze using a machine learning approach, and by combining simulation data with analytical results. For the two-state promoter gene system, the DGA is benchmarked by accurately reproducing the results of the exact Gillespie algorithm. For this same simple system, the authors also show how the DGA can be used for estimating kinetic parameters of both simulated and real noisy experimental data. This lets them argue convincingly that the DGA can become a powerful computation tool for applications in quantitative and synthetic biology. In order to argue that the DGA can be employed to design circuits with ad-hoc input-output relations, these considerations are then extended to a more complex four-state promoter model of gene regulation. The main strength of the paper is its clarity and its pedagogical presentation of the simulation methods.

      Strengths:

      The main strength of the paper is its clarity and its pedagogical presentation of the simulation methods.

      Weaknesses:

      It would have been useful to have a brief discussion, based on a concrete example, of what can be achieved with the DGA and is totally beyond the reach of the Gillespie algorithm and the numerous existing stochastic simulation methods. A more comprehensive and quantitative analysis of the limitations of the DGA, e.g. for rare events, and how it might be used for stochastic spatial systems would have also been helpful. However, this is arguably beyond the scope of this study whose primary goal is to introduce the DGA and demonstrate that it can achieve tasks like parameter estimation and network design.

      Comments on revisions:

      The authors have made a sound effort to address many of the comments raised in the previous reports. This has helped improve the clarity of the discussion.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript puts forward a statistical method to more accurately report the significance of correlations within data. The motivation for this study is two-fold. First, the publication of biological studies demands the report of p-values, and it is widely accepted that p-values below the arbitrary threshold of 0.05 give the authors of such studies justification to draw conclusions about their data. Second, many biological studies are limited by the number of replicate samples that are feasible, with replicates of less than 5 typical. The authors report a statistical tool that uses a permute-match approach to calculate p-values. Notably, the proposed method reduces p-values from around 0.2 to 0.04 as compared to a standard permutation test with a small sample size. The approach is clearly explained, including detailed mathematical explanations and derivations. The advantage of the approach is also demonstrated through analysis of computer-generated synthetic data with specified correlation and analysis of previously published data related to fish schooling. The authors make a clear case that this method is an improvement over the more standard approach currently used, and also demonstrate the impact of this methodology on the ability to obtain p-values that are the standard for biological research. Overall, this paper is very strong. While the subject matter seems somewhat specialized, I would make the case that this will be an important study that has broad general interest to readers. The findings are very general and applicable to many research contexts. Experimentalists also want to report accurate p-values in their work and better understand how these values are calculated. Although I believe the previous statement is true, I am not sure that many research groups doing biological work are reading specialized statistics journals regularly. Therefore a useful and broadly applicable statistical tool is well placed in this journal.<br /> Strengths:

      The proposed method is broadly applicable to many realistic datasets in many experimental contexts.

      The power of this method was demonstrated with both real experimental data and "synthetic" data. The advantages of the tool are clearly reported. The zebrafish data is a great example dataset.

      The method solves a real-life problem that is frequently encountered by many experimental groups in the biological sciences.

      The writing of the paper is surprisingly clear, given the technical nature of the subject matter. I would not at all consider myself a statistician or mathematician, but I found the text easy to follow. The authors did an impressive job guiding the reader through material that would often be difficult to grasp. The introduction was also well-written and clearly motivated the goals of the study.

      Weaknesses:

      A few changes could be made if the manuscript is revised. I would consider all of these points minor, but the paper could be improved if these points were addressed.

      (1) The caption of Figure 2 doesn't seem to mention panel D. Figure A-2 also does not mention C in the caption.

      (2) Figure 2D is a little hard to follow. First, the definition of "Power" is not clear, and I couldn't find the precise definition in the text. Second, the legend for the different lines in 2D is only given in Figure A-2. Perhaps a portion of the caption for Figure 2 is missing?

      (3) The concept of circular variance for the fish data was heard to understand/visualize. The equation on line 326 did not help much. If there is a very simple picture that could be added near line 326 that helps to explain Ct and theta, that could be a big help for some readers who do not work on related systems. The analysis performed is understandable, the reader just has to accept that circular variance captions the degree of alignment of the fish.

      (4) For the data discussed in Figure 3, I wasn't 100% sure how the time windows were selected. In the caption, it says "time series to different lengths starting from the first frame". So the 20 s time window was from t=0 to t= 20 s. Would a different result be obtained if a different 20 s window was chosen (from t = 4 min to t = 4 min 20 s just to give a specific example). I suppose by chance one of the time windows would give a p-value less than the target 0.05, that wouldn't be surprising. Maybe a random time window should be selected (although I am not indicating what was reported was incorrect)? A little more discussion on this aspect of the study may be helpful.

    1. Reviewer #1 (Public review):

      Summary:

      Meteorin proteins were initially described as secreted neurotrophic factors. In this manuscript, Eggeler et al. demonstrate a novel role for Meteorins in establish left-right axis formation in the zebrafish embryo. The authors generated null mutations in each of the three zebrafish meteorin genes - metrn, metrnla, and metrnlab. Triple mutant embryos displayed phenotypes strongly associated with left-right defects such as heart looping and visceral organ placement, and disrupted expression of Nodal-responsive genes, as did single mutants for metrn and metrnla. The authors then go on to demonstrate that these defects in left-right asymmetry are likely to due to defects in Kupffer's Vesicle and the progenitor dorseal forerunner cells including impaired lumen formation and reduced fluid flow, reduced clustering among DFCs, impaired DFC migration, mislocalization of apical proteins ZO-1 and aPKC, and detachment of DFCs from the EVL. Notably, the authors found that expression of marker genes sox32 and sox17 were not affected, suggesting Meteorins are required for DFC/KV morphogenesis but not necessarily fate specification. Finally, the authors show genetic interaction between Meteorins and integrin receptors, which were previously implicated in left-right patterning. In a supplemental figure, the manuscript also presents data showing expression of meteorin genes around the chick Hensen's node, suggesting that the left-right patterning functions may be conserved among vertebrates.

      Strengths:

      Strengths of this study include the generation of a triple mutant line that targets all known zebrafish meteorin family members. The experiments presented in this study were rigorous, especially with respect to quantification and statistical analysis.

      Weaknesses:

      Although the authors convincingly demonstrate a role for Meteorins in zebrafish left-right patterning, data supporting a conserved role in other vertebrates is compelling but limited to one supplemental figure.

    1. Reviewer #1 (Public review):

      Summary:

      For each of the three key transcription factor (TF) proteins in E. coli, the authors generate a large library of TF binding site (TFBS) sequences on plasmids, such that each TFBS is coupled to the expression of a fluorescence reporter. By sorting the fluorescence of individual cells and sequencing their plasmids to identify each cell's TFBS sequence (sort-seq), they are able to map the landscape of these TFBSs to the gene expression level they regulate. The authors then study the topographical features of these landscapes, especially the number and distribution of local maxima, as well as the statistical properties of evolutionary paths on these landscapes. They find the landscapes to be highly rugged, with about as many local peaks as a random landscape would have, and with those peaks distributed approximately randomly in sequence space. The authors find that there are a number of peaks that produce regulation stronger than that of the wild-type sequence for each TF and that it is not too unlikely to reach one of those "high peaks" from a random starting sequence. Nevertheless, the basins of attractions for different peaks have significant overlap, which means that chance plays a major role in determining which peak a population will evolve to.

      Strengths:

      (1) The experiments and analysis of this paper are very well-executed and, by and large, very thorough (with an important exception identified below). I appreciated the systematic nature of the project, both the large-scale experiments done on three TFs with replicates and the systematic analysis of the resulting landscapes. This not only makes the paper easy to follow but also inspires confidence in their results since there is so much data and so many different ways of analyzing it. It's a great recipe for other studies of genotype-phenotype landscapes to follow.

      (2) Considering how technical the project was, I am really impressed at how easy to read I found the paper, and the authors deserve a lot of credit for making it so. They do a great job of building up the experiments and analyses step-by-step and explaining enough of the basics of the experimental design and the essence of each analysis in the main text without getting too complicated with details that can be left to the Methods or SI. Compared to other big data papers, this one was refreshingly not overwhelming.

      Weaknesses:

      (1) The main weakness of this paper, in my view, is that it felt disconnected from the larger body of work on fitness and genotype-phenotype landscapes, including previous data on TFBSs in E. coli, genotype-phenotype maps of TFBSs in other systems, protein sequence landscapes (e.g., from mutational scans or combinatorially-complete libraries), and fitness landscapes of genomic mutations (e.g., combinatorially-complete landscapes of antibiotic resistance alleles). I have no doubt the authors are experts in this literature, and they probably cite most of it already given the enormous number of references. But they don't systematically introduce and summarize what was already known from all that work, and how their present study builds on it, in the Abstract and Introduction, which left me wondering for most of the paper why this project was necessary. Eventually, the authors do address most of these points, but not until the end, in the Discussion. Readers who have no familiarity with this literature might read this paper thinking that it's the first paper ever to study topography and evolutionary paths on genotype-phenotype landscapes, which is not true.

      There were two points that made this especially confusing for me. First, in order to choose which nucleotides in the binding sites to vary, the authors invoke existing data on the diversity of these sequences (position-weight matrices from RegulonDB). But since those PWMs can imply a genotype-phenotype map themselves, an obvious question I think the authors needed to have answered right away in the Introduction is why it is insufficient for their question. They only make a brief remark much later in the Results that the PWM data is just observed sequence diversity and doesn't directly reflect the regulation strength of every possible TFBS sequence. But that is too subtle in my opinion, and such a critical motivation for their study that it should be a major point in the Introduction.

      The second point where the lack of motivation in the Introduction created confusion for me was that they report enormous levels of sign epistasis in their data, to the point where these landscapes look like random uncorrelated landscapes. That was really surprising to me since it contrasts with other empirical landscape data I'm familiar with. It was only in the Discussion that I found some significant explanation of this - namely that this could be a difference between prokaryotic TFBSs, as this paper studies, and the eukaryotic TFBSs that have been the focus of many (almost all?) previous work. If that is in fact the case - that almost all previous studies have focused on eukaryotic TFBSs or other kinds of landscapes, and this is the first to do a systematic test of prokaryotic TFBS, then that should be a clear point made in the Abstract and Introduction. (I find a comparable statement only in the very last paragraph of the Discussion.) If that's the case, then I would also find that point to be a much stronger, more specific conclusion of this paper to emphasize than the more general result of observing epistasis and contingency (as is currently emphasized in the Abstract), which has been discussed in tons of other papers. This raises all sorts of exciting questions for future studies - why do the landscapes of prokaryotic TFBSs differ so dramatically from almost all the other landscapes we've observed in biology? What does that mean for the evolutionary dynamics of these different systems?

      (2) I am a bit concerned about the lack of uncertainties incorporated into the results. The authors acknowledge several key limitations of their approach, including the discreteness of the sort-seq bins in determining possible values of regulation strength, the existence of a large number of unsampled sequences in their genotype space, as well as measurement noise in the fluorescence readouts and sequencing. While the authors acknowledge the existence of these factors, I do not see much attempt to actually incorporate the effect of these uncertainties into their conclusions, which I suspect may be important. For example, given the bin size for the fluorescence in sort-seq, how confident are they that every sequence that appears to be a peak is actually a peak? Is it possible that many of the peak sequences have regulation strengths above all their neighbors but within the uncertainty of the fluorescence, making it possible that it's not really a peak? Perhaps such issues would average out and not change the statistical nature of their results, which are not about claiming that specific sequences are peaks, just how many peaks there are. Nevertheless, I think the lack of this robustness analysis makes the results less convincing than they otherwise would be.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Cupollilo et al describes the development, characterization, and application of a novel activity labeling system; fast labelling of engram neurons (FLEN). Several such systems already exist but this study adds additional capability by leveraging an activity marker that is destabilized (and thus temporally active) as well as being driven by the full-length promoter of cFos. The authors demonstrate the activity-dependent induction and time course of expression, first in cultured neurons and then in vivo in hippocampal CA3 neurons after one trial of contextual fear conditioning. In a series of ex vivo experiments, the authors perform patch clamp analysis of labeled neurons to determine if these putative engram neurons differ from non-labelled neurons using both the FLEN system as well as the previously characterized RAM system. Interestingly the early labelled neurons at 3 h post CFC (FLEN+) demonstrated no differences in excitability whereas the RAM-labelled neurons at 24h after CFC had increased excitability. Examination of synaptic properties demonstrated an increase in sEPCS and mEPSC frequencies as well as those for sIPSCs and mIPSCs which was not due to a change in the mossy fiber input to these neurons.

      Strengths:

      Overall the data is of high quality and the study introduces a new tool while also reassessing some principles of circuit plasticity in the CA3 that have been the focus of prior studies.

      Weaknesses:

      No major weaknesses were noted.

    1. Reviewer #1 (Public review):

      Summary:

      After mating, male mice undergo a behavioral switch from infanticide to parental behavior (postmating switch). The neural mechanisms underlying this switch are still largely unknown. Studies performed in different mouse strains have also resulted in mixed evidence for whether mating (specifically: ejaculation) itself is sufficient for this switch, or whether subsequent cohabitation with the pregnant female, and parental experience with pups is required. Recent work found that while lesions to the central part of the medial preoptic area (cMPOA) promote infanticidal behavior, lesions to the rhomboid nucleus of the bed nucleus of the stria terminalis (BSTrh) inhibit infanticide. The current work convincingly adds to this evidence by showing that mating and cohabitation lead to reduced inhibition from Cart-positive medial amygdala neurons onto cMPOA neurons, and that this synaptic change is in fact critical for the postmating switch. Further, the authors demonstrate that parental experience increases inhibitory synaptic transmission onto BSTrh neurons. The male postmating switch thus appears to rely on two sequential stages of synaptic plasticity.

      Strengths:

      (1) The behavioral characterization is thorough and the authors nicely manage to disentangle the relative contributions of mating, cohabitation, and parental experience to the postmating switch. Their finding of dissociable plasticity mechanisms underlying mating/cohabitation vs pup experience is intriguing.

      (2) Most conclusions are based on complementary evidence from different experimental approaches and are compelling.

      Weaknesses:

      (1) The authors do not provide an explicit synthesis/model of the circuit-level changes underlying this switch. For instance, how does cMPOA-to-BSTrh connectivity change in fathers, and how does the necessity of the cMPOA for the exposure/sensitisation effect square with the effect being postsynaptic in the BSTrh?

      (2) The presentation of the manuscript (clarity of language, grammar, reporting of stats in figures etc.) needs to be improved.

    1. Reviewer #1 (Public review):

      The propagation of electrical signals within neuronal circuits is tightly regulated by the physical and molecular properties of neurons. Since neurons vary in size across species, the question arises whether propagation speed also varies to compensate for it. The present article compares numerous speed-related properties in human and rat neurons. They found that the larger size of human neurons seems to be compensated by a faster propagation within dendrites but not axons of these neurons. The faster dendritic signal propagation was found to arise from wider dendritic diameters and greater conductance load in human neurons. In addition, the article provides a careful characterization of human dendrites and axons, as the field has only recently begun to characterize post-operative human cells. There are only a few studies reporting dendritic properties and these are not all consistent, hence there is added value of reporting these findings, particularly given that the characterization is condensed in a compartmental model.

      Strengths

      The study was performed with great care using standard techniques in slice electrophysiology (pharmacological manipulation with somatic patch-clamp) as well as some challenging ones (axonal and dendritic patch-clamp). Modeling was used to parse out the role of different features in regulating dendritic propagation speed. The finding that propagation speed varies across species is novel as previous studies did not find a large change in membrane time constant nor axonal diameters (a significant parameter affecting speed). A number of possible, yet less likely factors were carefully tested (Ih, membrane capacitance). The main features outlined here are well known to regulate speed in neuronal processes. The modeling was also carefully done to verify that the magnitude of the effects is consistent with the difference in biophysical properties. Hence, the findings appear very solid to me.

      Weaknesses

      The role of diameter in regulating propagation speed is well known in the axon literature.

      Comment on the revised version: the authors have now made clearer that the role of diameter was well known in the manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      Davenport et al have investigated how a masculinizing dose of estrogen changes the transcriptomes of several key song nuclei song and adjacent brain areas in juvenile zebra finches of both sexes. Only male zebra finches sing, learn song, and normally have a fully developed song control circuitry, so the study was aimed at further understanding how genetic and hormonal factors contribute to the dimorphism in song behavior and related brain circuitry in this species. Using WGCNA and follow-up correlations to re-analyze published transcriptome datasets, the authors provide evidence that the main variance of several identified gene co-expression modules significantly correlates with one or some of the factors examined, including sex, estrogen treatment, regional neuroanatomy, chromosomal placement, or vocal learning, noting that the latter is largely based on inference due to expression in song control nuclei.

      Strengths:

      Among the main strengths are the thorough gene co-expression module and correlation analyses, and the inclusion of both song nuclei and adjacent areas, the latter serving as sort of controls for areas that are not dimorphic and likely broadly present in birds in general. In situ hybridization data discussed in a previous publication (Choe et al., Hormones and Behavior, 2021) provides some support for the neuroanatomical specializations of gene expression. It is also significant that the transcriptome re-analysis was performed with an improved genome assembly that also includes the sex chromosomes, thus expanding the Z/W chromosome gene analyses in Friedrich et al, Cell Reports, 2022. The most relevant finding is arguably the identification of some modules where gene expression variation within song nuclei correlates with hormonal effects and/or gene location on sex chromosomes, which are present at different dosages between sexes. Sex differences in gene expression in areas that are not song nuclei may also bring insights into functions other than song behavior or vocal learning. The study also shows how a published RNA-seq dataset can be reanalyzed in novel and informative ways.

      Weaknesses:

      The validation of the inferred direction of regulation in the identified co-expression modules is limited to the in situ data mentioned above. Further evidence that representative genes in the main modules differ in expression when comparing sexes or E2- vs VEH-treated tissues using independent samples and/or methods would provide further validation and enhance rigor. Most importantly, E2 is known to exert various actions on brain physiology and neuronal function. Because there was no manipulation of candidate genes, nor assessment/manipulation of vocal behavior or vocal learning, an involvement of the identified candidate genes in setting up the sexual dimorphism of the song system or song behavior was not directly tested in this study. For the latter reason, the implication of the Title (..."gene expression associated with vocal learning...") is not well supported. While novel insights were gained into brain expression of Z chromosome genes, it cannot be excluded that the higher male expression of some Z genes may not affect brain cell function and thus may not require active compensation (as discussed for nucleus RA in Friedrich et al, Cell Reports, 2022).

    1. Reviewer #2 (Public review):

      Summary:

      The authors provide an open-source graphic user interface (GUI) called Heron, implemented in Python, that is designed to help experimentalists to:

      (1) Design experimental pipelines and implement them in a way that is closely aligned with their mental schemata of the experiments<br /> (2) Execute and control the experimental pipelines with numerous interconnected hardware and software on a network.

      The former is achieved by representing an experimental pipeline using a Knowledge Graph and visually representing this graph in the GUI. The latter is accomplished by using an actor model to govern the interaction among interconnected nodes through messaging, implemented using ZeroMQ. The nodes themselves execute user-supplied code in, but not limited to, Python.

      Using three showcases of behavioral experiments on rats, the authors highlighted four benefits of their software design:

      (1) The knowledge graph serves as a self-documentation of the logic of the experiment, enhancing the readability and reproducibility of the experiment,<br /> (2) The experiment can be executed in a distributed fashion across multiple machines that each has different operating system or computing environment, such that the experiment can take advantage of hardware that sometimes can only work on a specific computer/OS, a commonly seen issue nowadays,<br /> (3) The users supply their own Python code for node execution that is supposed to be more friendly to those who do not have a strong programming background,<br /> (4) The GUI can also be used as an experiment control panel for users to control/update parameters on the fly.

      Strengths:

      (1) The software is light-weight and open-source, provides a clean and easy-to-use GUI,<br /> (2) The software answers the need of experimentalists, particularly in the field of behavioral science, to deal with the diversity of hardware that becomes restricted to run on dedicated systems. It can also be widely adopted in many other experimental settings.<br /> (3) The software has a solid design that seems to be functionally reliable and useful under many conditions, demonstrated by a number of sophisticated experimental setups.<br /> (4) The software is well documented. The authors pay special attention to documenting the usage of the software and setting up experiments using this software.

      Comments on revisions: The authors have addressed my concerns from the initial review.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors report that activation of excitatory DREADDs in the mid-cervical spinal cord can increase inspiratory activity in mice and rats. This is an important first step toward an ultimate goal of using this, or similar, technology to drive breathing in disorders associated with decreased respiratory motor output, such as spinal injury or neurodegenerative disease. Strengths to this study include a comparison of non-specific DREADD expression in the mid-cervical spinal cord versus specific targeting to ChAT-positive neurons, and the measurement of multiple respiratory-related outcomes, including phrenic inspiratory output, diaphragm EMG activity and ventilation. The data show convincingly that DREADDs can be used to drive phrenic inspiratory activity, which in turn increases diaphragm EMG activity and ventilation.

      Comments on revisions: All of my prior comments have been sufficiently addressed.

    1. Reviewer #2 (Public review):

      Summary:

      Using in vivo fiber-photometry the authors first establish that DA release when contacting their partner mouse increases with days of cohabitation while this increase is not observed when contacting a stranger mouse. Similar effects are found in D1-MSNs and D2-MSNs with the D1-MSN responses increasing and D2-MSN responses decreasing with days of cohabitation. They then use slice physiology to identify underlying plasticity/adaptation mechanisms that could contribute to the changes in D1/D2-MSN responses. Last, to address causality the authors use chemogenetic tools to selectively inhibit or activate NAc shell D1 or D2 neurons that project to the ventral pallidum. They found that D2 inhibition facilitates bond formation while D2 excitation inhibits bond formation. In contrast, both D1-MSN activation and inhibition inhibits bond formation.

      Strengths:

      The strength of the manuscript lies in combining in vivo physiology to demonstrate circuit engagement and chemogenetic manipulation studies to address circuit involvement in pair bond formation in a monogamous vole.

      Weaknesses:

      Weaknesses include that a large set of experiments within the manuscript are dependent on using short promoters for D1 and D2 receptors in viral vectors. As the authors acknowledge this approach can lead to ectopic expression and the presented immunohistochemistry supports this notion. It seems to me that the presented quantification underestimates the degree of ectopic expression that is observed by eye when looking at the presented immunohistochemistry. However, given that Cre transgenic animals are not available for Microtus mandarinus and given the distinct physiological and behavioral outcomes when imaging and manipulating both viral-targeted populations this concern is minor.

      The slice physiology experiments provide some interesting outcomes but it is unclear how they can be linked to the in vivo physiological outcomes and some of the outcomes don't match intuitively (e.g. cohabitation enhances excitatory/inhibitory balance in D2-MSNs but the degree of contact-induced inhibition is enhanced in D2-MSN).

      One interesting finding is that the relationship between D2-MSN and pair bond formation is quite clear (inhibition facilitates while excitation inhibits pair bond formation). In contrast, the role of D1-MSNs is more complicated since both excitation and inhibition disrupts pair bond formation. This is not convincingly discussed.

      It seemed a missed opportunity that physiological read out is limited to males. I understand though that adding females may be beyond the scope of this manuscript.

      Comments on revised version:

      The authors addressed most of my comments, some would still need to be addressed.

      (1) Previous comment: "The authors do not use an isosbestic control wavelength in photometry experiments, although they do use EGFP control mice which show no effects of these interventions, a within-subject control such as an isosbestic excitation wavelength could give more confidence in these data and rule out motion artefacts within subjects."

      The authors should include a paragraph in the discussion addressing the limitations of not using an internal control for the fiberphotometric measurements.

      (2) Previous Comment: The slice physiology experiments provide some interesting outcomes but it is unclear how they can be linked to the in vivo physiological outcomes and some of the outcomes don't match intuitively (e.g. cohabitation enhances excitatory/inhibitory balance in D2-MSNs but the degree of contact-induced inhibition is enhanced in D2-MSN).

      My comment may not have been clear and the response didn't address my comment. What is missing in the discussion is an explanation of why a relative increase in excitation of D2-MSNs in the slice (Fig. 4J) is associated with an increased inhibition in vivo (Fig. 2H)?

      (3) Previous Comment: One interesting finding is that the relationship between D2-MSN and pair bond formation is quite clear (inhibition facilitates while excitation inhibits pair bond formation). In contrast, the role of D1-MSNs is more complicated since both excitation and inhibition disrupt pair bond formation. This is not convincingly discussed.

      Similarly, here the response provided does not address my question. Please focus on discussing why both excitation and inhibition of D1-MSNs can disrupt pair bond formation (Figure 7).

    1. Reviewer #1 (Public review):

      The authors demonstrated that NINJ1 promotes TF-positive MV release during pyroptosis and thereby triggers coagulation. Coagulation is one of the risk factors that can cause secondary complications in various inflammatory diseases, making it a highly important therapeutic target in clinical treatment. This paper effectively explains the connection between pyroptosis and MV release with Ninj1, which is a significant strength. It provides valuable insight into the potential of targeting Ninj1 as a therapeutic strategy.

      Although the advances in this paper are valuable, several aspects need to be clarified. Some comments are discussed below.

      (1) Since it is not Ninj1 directly regulating coagulation but rather the MV released by Ninj1 playing a role, the title should include that. The current title makes it seem like Ninj1 directly regulates inflammation and coagulation. It would be better to revise the title.

      (2) Ninj1 is known to be an induced protein that is barely expressed in normal conditions. As you showed in "Fig1G" data, control samples showed no detection of Ninj1. However, in "Figure S1", all tissues (liver, lung, kidney and spleen) expressed Ninj1 protein. If the authors stimulated the mice with fla injection, it should be mentioned in the figure legend.

      (3) In "Fig3A", the Ninj1 protein expression was increased in the control of BMDM +/- cell lysate rather than fla stimulation. However, in MV, Ninj1 was not detected at all in +/- control but was only observed with Fla injection. The authors need to provide an explanation for this observation. Additionally, looking at the MV β-actin lane, the band thicknesses appear to be very different between groups. It seems necessary to equalize the protein amounts. If that is difficult, at least between the +/+ and +/- controls.

      (4) Since the authors focused Ninj1-dependent microvesicle (MV) release, they need to show MV characterizations (EM, NTA, Western for MV markers, etc...).

      (5) To clarify whether Ninj1-dependent MV induces coagulation, the authors need to determine whether platelet aggregation is reduced with isolated +/- MVs compared to +/+ MVs.

      (6) Even with the authors well established experiments with haploid mice, it is a critical limitation of this paper. To improve the quality of this paper, the authors should consider confirming the findings using mouse macrophage cell lines, such as generating Ninj1-/- Raw264.7 cell lines, to examine the homozygous effect.

      (7) There was a paper reported in 2023 (Zhou, X. et al., NINJ1 Regulates Platelet Activation and PANoptosis in Septic Disseminated Intravascular Coagulation. Int. J. Mol. Sci. 2023) that revealed the relationship between Ninj1 and coagulation. According to this paper, inhibition of Ninj1 in platelets prevents pyroptosis, leading to reduced platelet activation and, consequently, the suppression of thrombosis. How about the activation of platelets in Ninj1 +/- mice? The author should add this paper in the reference section and discuss the platelet functions in their mice.

    1. Reviewer #2 (Public review):

      Summary:

      Golamalamdari, van Schaik, Wang, Kumar Zhang, Zhang and colleagues study interactions between the speckle, nucleolus and lamina in multiple cell types (K562, H1, HCT116 and HFF). Their datasets define how interactions between the genome and the different nuclear landmarks relate to each other and change across cell types. They also identify how these relationships change in K562 cells in which LBR and LMNA are knocked out.

      Strengths:

      Overall, there are a number of datasets that are provided, and several "integrative" analyses performed. This is a major strength of the paper, and I imagine the datasets will be of use to the community to further probed and the relationships elucidated here further studied. An especially interesting result was that specific genomic regions (relative to their association with the speckle, lamina, and other molecular characteristics) segregate relative to the equatorial plane of the cell.

      Weaknesses:

      The experiments are primarily descriptive, and the cause-and-effect relationships are limited (though the authors do study the role of LMNA/LBR knockdown with their technologies).

    1. Reviewer #1 (Public review):

      Summary:

      The drug Ivermectin is used to effectively treat a variety of worm parasites in the world, however resistance to Ivermectin poses a rising challenge for this treatment strategy. In this study, the authors found that loss of the E3 ubiquitin ligase UBR-1 in the worm C. elegans results in resistance to Ivermectin. In particular, the authors found that ubr-1 mutants are resistant to the effects of Ivermectin on worm viability, body size, pharyngeal pumping and locomotion. The authors previously showed that loss of UBR-1 disrupts homeostasis of the amino acid and neurotransmitter glutamate resulting in increased levels of glutamate in C. elegans. Here, the authors found that the sensitivity of ubr-1 mutants to Ivermectin can be restored if glutamate levels are reduced using a variety of different methods. Conversely, treating worms with exogenous glutamate to increase glutamate levels also results in resistance to Ivermectin supporting the idea that increased glutamate promotes resistance to Ivermectin. The authors found that the primary known targets of Ivermectin, glutamate-gated chloride channels (GluCls), are downregulated in ubr-1 mutants providing a plausible mechanism for why ubr-1 mutants are resistant to Ivermectin. Although it is clear that loss of GluCls can lead to resistance to Ivermectin, this study suggests that one potential mechanism to decrease GluCl expression is via disruption of glutamate homeostasis that leads to increased glutamate. This study suggests that if parasitic worms become resistant to Ivermectin due to increased glutamate, their sensitivity to Ivermectin could be restored by reducing glutamate levels using drugs such as Ceftriaxone in a combination drug treatment strategy.

      Strengths:

      - The use of multiple independent assays (i.e., viability, body size, pharyngeal pumping, locomotion and serotonin-stimulated pharyngeal muscle activity) to monitor the effects of Ivermectin<br /> - The use of multiple independent approaches (got-1, eat-4, ceftriaxone drug, exogenous glutamate treatment) to alter glutamate levels to support the conclusion that increased glutamate in ubr-1 mutants contributes to Ivermectin resistance

      Weaknesses:

      - The primary target of Ivermectin is GluCls so it is not surprising that alteration of GluCl expression or function would lead to Ivermectin resistance<br /> - It remains to be seen what percent of Ivermectin resistant parasites in the wild have disrupted glutamate homeostasis as opposed to mutations that more directly decrease GluCl expression or function.

      Comments on revisions: All my concerns have been addressed by the authors.

    1. Reviewer #1 (Public review):

      Summary:

      Joshua G. Medina-Feliciano et al. investigated the single-cell transcriptomic profile of holoturian regenerating intestine following evisceration, a process used to expel their viscera in response to predation. Using single-cell RNA-Sequencing and standard analysis such as "Find cluster markers", "Enrichment analysis of Gene Ontology" and "RNA velocity", they identify 13 cell clusters and their potential cell identity. Based on bioinformatic analysis they identified potentially proliferating clusters and potential trajectories of cell differentiation. This manuscript represents a useful dataset that can provide candidate cell types and cell markers for more in-depth functional analysis of the holoturian intestine regeneration.

      The conclusions of this paper are supported only by bioinformatic analyses since the in vivo validation through HCR is not sufficient to support them.

      Strengths:

      - The Authors are providing a single-cell dataset obtained from sea cucumbers regenerating their intestines. This represents the first fundamental step to an unbiased approach to better understand this regeneration process and the cellular dynamics taking part in it.

      - The Authors run all the standard analyses providing the reader with a well digested set of information about cell clusters, potential cell types, potential functions and potential cell differentiation trajectories.

      Weaknesses:

      - The Authors frequently report the percentage of cells with a specific feature (either labelled or expressing a certain gene or belonging to a certain cluster). This number can be misleading since that is calculated after cell dissociation and additional procedures (such as staining or sequencing and dataset cleanup) that can heavily bias the ratio between cell types. Similarly, the Authors cannot compare cell percentage between anlage and mesentery samples since that can be affected by technical aspects related to cell dissociation, tissue composition and sequencing depth.

      - The Authors did not validate all the clusters.

      - There is no validation of the trajectory analysis and there is no validation of the proliferating cluster with H3P or EdU co-labeling.

    1. Joint Public Review:

      Páramo et al. used 3D geometric morphometric analyses of the articulated femur, tibia, and fibula of 17 macronarian taxa (known to preserve these three skeletal elements) to investigate morphological changes that occurred in the hind limb through the evolutionary history of this sauropod clade. A principal components analysis was completed to understand the distribution of the morphological variation. A supertree was constructed to place evolutionary trends in morphological variation into phylogenetic context, and hind limb centroid size was used to investigate potential relationships between skeletal anatomy and gigantism. The majority of the results did not yield statistically significant differences, but they did identify interesting shape-change trends, especially within subclades of Titanosauria. Many previous studies have attempted to elucidate a link between wide-gauge posture and gigantism, which in this study Páramo et al. investigate among several titanosaurian subclades. They propose that morphologies associated with wide-gauge posture arose in parallel with increasing body size among basal members of Macronaria and that this connection became less significant once wide-gauge posture was acquired within Titanosauria. The authors also suggest that other biomechanical factors influenced the independent evolution of subclades within Titanosauria and that these influences resulted in instances of convergent evolution. Therefore, they infer that, overall, wide-gauge posture was not significantly correlated with gigantism, though some morphological aspects of hind limb skeletal anatomy appear to have been associated with gigantism. Their work also supports previous findings of a decrease in body size within Titanosauriformes (which they found to be not significant with shape variables but significant with Pagel's lambda). Collectively, their results support and build on previous work to elucidate more specifics on the evolution of this enigmatic clade. Further study will show if their hypotheses stand or if the inclusion of additional specimens and taxa yields alternative results.

      [Editors' note: One of the original reviewers, Reviewer 2, reviewed this revised version of the manuscript; they reported satisfaction with the changes made by the authors in response to the original reviewer comments.]

    1. Reviewer #1 (Public review):

      In this paper, the authors had 2 aims:

      (1) Measure macaques' aversion to sand and see if its' removal is intentional, as it likely in an unpleasurable sensation that causes tooth damage.

      (2) Show that or see if monkeys engage in suboptimal behavior by cleaning foods beyond the point of diminishing returns, and see if this was related to individual traits such as sex and rank, and behavioral technique.

      They attempted to achieve these aims through a combination of geochemical analysis of sand, field experiments, and comparing predictions to an analytical model.

      The authors' conclusions were that they verified a long-standing assumption that monkeys have an aversion to sand as it contains many potentially damaging fine grained silicates, and that removing it via brushing or washing is intentional.

      They also concluded that monkeys will clean food for longer than is necessary, i.e. beyond the point of diminishing returns, and that this is rank-dependent.

      High and low-ranking monkeys tended not to wash their food, but instead over-brushed it, potentially to minimize handling time and maximize caloric intake, despite the long-term cumulative costs of sand.

      This was interpreted through the *disposable soma hypothesis*, where dominants maximize immediate needs to maintain rank and increase reproductive success at the potential expense of long-term health and survival.

      # Strengths

      The field experiment seemed well designed, and their quantification of the physical and mineral properties of quartz particles (relative to human detection thresholds) seemed good relative to their feret diameter and particle circularity (to a reviewer that is not an expert in sand). The *Rank Determination* and *Measuring Sand* sections were clear.

      In achieving Aim 1, the authors validated a commonly interpreted, but unmeasured function, of macaque and primate behavior-- a key study/finding in primate food processing and cultural transmission research.

      I commend their approach in trying to develop a quantitative model to generate predictions to compare to empirical data for their second aim.<br /> This is something others should strive for.

      I really appreciated the historical context of this paper in the introduction and found it very enjoyable and easy to read.

      I do think that interpreting these results in the context of the *disposable soma hypothesis* and the potential implications in the *paleolithic matters* section about interpreting dental wear in the fossil record are worthwhile.

      # Weaknesses

      Several of my concerns in an earlier review were addressed in revision, which I appreciate. One thing I think could strengthen this paper is a clearer link to social foraging theory to explore heterogeneity in handling times (as the currency they are trying to maximize).

      I am satisfied with the improvements in statistics and that I can access the code and data.

      I am still struck that there was an analysis of only trials where <3 individuals are present. If rank was important, I would imagine that behavior might be different in social contexts when theft, scrounging, policing, aggression, or other distractions might occur-- where rank would have effects on foraging behavior. Maybe lower rankers prioritize rapid food intake then. If rank should be related to investment in this behavior, we might expect this to be magnified (or different) in social contexts where it would affect foraging. It might just be that the data was too hard to score or process in those settings, or the analysis was limited. Additionally, I think that more robust metrics of rank from more densely sampled focal follow data would be a better measure, but I acknowledge the limitations in getting the ideal . Since rank is central to the interpretation of these results, I think that reduced social contexts in which rank was analyzed and the robustness of the data from which rank was calculated and analyzed are the main weaknesses of the evidence presented in this paper.

      While some of the boxes about raccoons and Concorde Fallacy were interesting, they did feel like a bit of a distraction from the main message in the paper.

    1. Reviewer #1 (Public review):

      Summary:

      In their manuscript, Gomez-Frittelli and colleagues characterize the expression of cadherin6 (and -8) in colonic IPANs of mice. Moreover, they found that these cdh6-expressing IPANs are capable of initiating colonic motor complexes in the distal colon, but not proximal and midcolon. They support their claim by morphological, electrophysiological and optogenetic, and pharmacological experiments.

      Strengths:

      The work is very impressive and involves several genetic models and state-of-the-art physiological setups including respective controls. It is a very well-written manuscript that truly contributes to our understanding of GI-motility and its anatomical and physiological basis. The authors were able to convincingly answer their research questions with a wide range of methods without overselling their results.

      Weaknesses:

      The authors put quite some emphasis on stating that cdh6 is a synaptic protein (in the title and throughout the text), which interacts in a homophilic fashion. They deduct that cdh6 might be involved in IPAN-IPAN synapses (line 247ff.). However, Cdh6 does not only interact in synapses and is expressed by non-neuronal cells as well (see e.g., expression in the proximal tubuli of the kidney). Moreover, cdh6 does not only build homodimers, but also heterodimers with Chd9 as well as Cdh7, -10, and -14 (see e.g., Shimoyama et al. 2000, DOI: 10.1042/0264-6021:3490159). It would therefore be interesting to assess the expression pattern of cdh6-proteins using immunostainings in combination with synaptic markers to substantiate the authors' claim or at least add the possibility of cell-cell-interactions other than synapses to the discussion. Additionally, an immunostaining of cdh6 would confirm if the expression of tdTomato in smooth muscle cells of the cdh6-creERT model is valid or a leaky expression (false positive).

      Comments on revisions:

      The authors have updated their manuscript and have provided insights and discussions to my remarks.

    1. Reviewer #1 (Public review):

      Summary:

      Asthenospermia, characterized by reduced sperm motility, is one of the major causes of male infertility. The "9 + 2" arranged MTs and over 200 associated proteins constitute the axoneme, the molecular machine for flagellar and ciliary motility. Understanding the physiological functions of axonemal proteins, particularly their links to male infertility, could help uncover the genetic causes of asthenospermia and improve its clinical diagnosis and management. In this study, the authors generated Ankrd5 null mice and found that ANKRD5-/- males exhibited reduced sperm motility and infertility. Using FLAG-tagged ANKRD5 mice, mass spectrometry, and immunoprecipitation (IP) analyses, they confirmed that ANKRD5 is localized within the N-DRC, a critical protein complex for normal flagellar motility. However, transmission electron microscopy (TEM) and cryo-electron tomography (cryo-ET) of sperm from Ankrd5 null mice did not reveal any structural abnormalities.

      Strengths:

      The phenotypes observed in ANKRD5-/- mice, including reduced sperm motility and male infertility, are conversing. The authors demonstrated that ANKRD5 is an N-DRC protein that interacts with TCTE1 and DRC4. Most of the experiments are thoughtfully designed and well executed.

      Weaknesses:

      The cryo-FIB and cryo-ET analyses require further investigation, as detailed below. The molecular mechanism by which the loss of ANKRD5 affects sperm flagellar motility remains unclear. The current conclusion that Ankrd5 knockout reduces axoneme stability is not well-supported. Specifically, are other axonemal proteins diminished in Ankrd5 knockout sperm? Conducting immunofluorescence analyses and revisiting the quantitative proteomics data may help address these questions.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors examined the role of Afadin, a key adaptor protein associated with cell-adhesion molecules, in retinal development. Using a conditional knockout mouse line (Six3-Cre; AfadinF/F), the authors successfully characterized a disorganized pattern of various neuron types in the mutant retinae. Despite these altered distributions, the retinal neurons maintained normal cell numbers and seemingly preserved some synaptic connections. Notably, tracing results indicated mistargeting of retinal ganglion cell (RGC) axon projections to the superior colliculus, and electroretinography (ERG) analyses suggested deficits in visual functions.

      Strengths:

      This compelling study provides solid evidence addressing the important question of how cell-adhesion molecules influence neuronal development. Compared to previous research conducted in other parts of the central nervous system (CNS), the clearly defined lamination of cell types in the retina serves as a unique model for studying the aberrant neuronal localizations caused by Afadin knockout. The data suggest that cell-cell interactions are critical for retinal cellular organization and proper axon pathfinding, while aspects of cell fate determination and synaptogenesis remain less understood. This work has broad implications not only for retinal studies but also for developmental biology and regenerative medicine.

      Weaknesses:

      While the phenotypes observed in the Afadin knockout (cKO) mice are intriguing, I would expect to see evidence confirming that Afadin is indeed knocked out in the retina through immunostaining. Specifically, is Afadin knocked out only in certain retinal regions and not others, as suggested by Figures 4A-B? Are Afadin levels different among distinct neuron types, which could mean that its knockout may have a more pronounced impact on certain cell types, such as rods compared to others?

      The authors suggest that synapses may form between canonical synaptic partners, based on the proximity of their processes (Figure 2). However, more solid evidence is needed to verify these synapses through the use of synaptic marker staining or transsynaptic labeling before drawing further conclusions.

      Although the Afadin cKO mice displayed dramatic phenotypes, additional experiments are necessary to clarify the details of this process. By manipulating Afadin levels in specific cell types or at different developmental time points, we could gain a better understanding of how Afadin regulates accurate retinal lamination and axonal projection.

    1. Reviewer #1 (Public review):

      Summary:

      The authors address the role of the centromere histone core in force transduction by the kinetochore.

      Strengths:

      They use a hybrid DNA sequence that combines CDEII and CDEIII as well as Widom 601 so they can make stable histones for biophysical studies (provided by the Widom sequence) and maintain features of the centromere (CDE II and III).

      Weaknesses:

      The main results are shown in one figure (Figure 2). Indeed the Centromere core of Widom and CDE II and III contribute to strengthening the binding force for the OA-beads. The data are very nicely done and convincingly demonstrate the point. The weakness is that this is the entire paper. It is certainly of interest to investigators in kinetochore biology, but beyond that, the impact is fairly limited in scope.

    1. Reviewer #2 (Public review):

      Summary:

      Casas-Tinto et al., provide new insight into glial plasticity using a crush injury paradigm in the ventral nerve cord (VNC) of adult Drosophila. The authors find that both astrocyte-like glia (ALG) and ensheating glia (EG) divide under homeostatic conditions in the adult VNC and identify ALG as the glial population that specifically ramps up proliferation in response to injury, whereas the number of EGs decreases following the insult. Using lineage-tracing tools, the authors interestingly observe interconversion of glial subtypes, especially of EGs into ALGs, which occurs independent of injury and is dependent on the availability of the transcription factor Prospero in EGs, adding to the plasticity observed in the system. Finally, when tracing the progeny of glia, Casas-Tinto and colleagues detect cells of neuronal identity and provide evidence that such glia-derived neurogenesis is favored following ventral nerve cord injury, which puts forward a remarkable way in which glia can respond to neuronal damage.

      Strengths:

      This study highlights a new facet of adult nervous system plasticity at the level of the ventral nerve cord, supporting the view that proliferative capacity is maintained in the mature CNS and stimulated upon injury.

      The injury paradigm is well chosen, as the organization of the neuromeres allows specific targeting of one segment, compared to the remaining intact and with the potential to later link observed plasticity to behavior such as locomotion.

      Numerous experiments have been carried out in 7-day old flies, showing that the observed plasticity is not due to residual developmental remodeling or a still immature VNC.

      Different techniques are used to observe proliferation in the VNC.

      By elegantly combining different methods, the authors show glial divisions including with mitotic-dependent tracing and find that the number of generated glia is refined by apoptosis later on.

      The work identifies prospero in glia as important coordinator of glial cell fate, from development to the adult context, which draws further attention to the upstream regulatory mechanisms.

      Weaknesses:

      The authors do not discuss their results on gliogenesis or neurogenesis in the adult VNC to previous findings made in the context of the injured adult brain.

      The authors speculate about the role of glial inter-conversion for tissue homeostasis or regeneration, but no supportive evidence is cited or provided. Further experiments will be required to test the function of the described glial plasticity.

      Elav+ cells originating from glia do not express markers for mature neurons at the analysed time-point. If they will eventually differentiate<br /> or what type of structure is formed by them will have to be followed up in future studies.

      Context/Discussion

      Highlighting some differences in the reactiveness of glia in the VNC compared to the brain could reveal important differences in repair strategies in different areas of the CNS.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigated sleep and circadian rhythm disturbances in Fmr1 KO mice. Initially, they monitored daily home cage behaviors to assess sleep and circadian disruptions. Next, they examined the adaptability of circadian rhythms in response to photic suppression and skeleton photic periods. To explore the underlying mechanisms, they traced retino-suprachiasmatic connectivity. The authors further analyzed the social behaviors of Fmr1 KO mice and tested whether a scheduled feeding strategy could mitigate sleep, circadian, and social behavior deficits. Finally, they demonstrated that scheduled feeding corrected cytokine levels in the plasma of mutant mice.

      Strengths:

      (1) The manuscript addresses an important topic-investigating sleep deficits in an FXS mouse model and proposing a potential therapeutic strategy.

      (2) The study includes a comprehensive experimental design with multiple methodologies, which adds depth to the investigation.

      Weaknesses:

      (1) The first serious issue in the manuscript is the lack of a clear description of how they performed the experiments and the missing definitions of various parameters in the results. Given that monitoring and analyzing sleep behaviors are the key experiments of this manuscript, I use the "Immobility-Based Sleep Behavior" section of Methods as an example to elaborate:

      Incomplete or Incorrect Description of Tracking Threshold:<br /> o The phrase "tracked the (40 sec or greater as previously described" is incomplete and does not clarify what is being tracked. This appears to be an error in writing or editing.<br /> Unclear Relationship Between Threshold and EEG Validation:<br /> o The threshold "40 sec or greater" is mentioned without context or explanation of what it represents (e.g., sleep bout duration, inactivity, or another parameter). The reference to Fisher et al. (2016) and "99% correlation with EEG-defined sleep" seems misaligned with the paragraph's content.

      Confusing Definition of Sleep Bout:<br /> o The definition of a sleep bout is unclear. Sleep bouts should logically be based on periods of inactivity, not activity. The sentence suggesting sleep is measured by "activity staying above the threshold" is confusing. The phrase "3 counts of sleep per minute for longer than one minute" requires clarification.

      Unclear Data Selection for Analysis:<br /> o The phrase "2 days with the best recording quality" is vague and does not specify how "best" was determined or why only two days out of five were analyzed.

      Awkward Grammar and Structure:<br /> o Phrases like "Acquiring data were exported in 1-min bins" are grammatically awkward. "Acquiring" should be "Acquired." Some sentences are overly long and lack clarity, making the text harder to follow.<br /> In addition to this section, the authors should review all paragraphs in the Methods section to improve readability.

      (2) Although the manuscript has a relatively long Methods section, some essential information is missing. For instance, the definition of sleep bout, as described above, is unclear. Additional missing information includes:

      Figure 2: "Rhythmic strength (%)" and "Cycle-to-cycle variability (min)."<br /> Figure 3: "Activity suppression."<br /> Figure 4: "Rhythmic power (V%)" (is this different from rhythmic strength (%)?) and "Subjective day activity (%)."<br /> Figure 5: Clear labeling of the SCN's anatomical features and an explanation for quantifying only the ventral part instead of the entire SCN. Alternatively, the authors should consider quantifying the whole SCN.<br /> Figure 6: Inconsistencies in terms like "Sleep frag. (bout #)" and "Sleep bouts (#)." Consistent terminology throughout the manuscript is essential.

      (3) Figure 1A shows higher mouse activity during ZT13-16. It is unclear why the authors scheduled feeding during ZT15-21, as this seems to disturb the rhythm. Consistent with this, the body weights of WT and Fmr1 KO mice decreased after scheduled feeding. The authors should explain the rationale for this design clearly.

      (4) The interpretation of social behavior results in Figure 6 is questionable. The authors claim that Fmr1 KO mice cannot remember the first stranger in a three-chamber test, writing, "The reduced time in exploring and staying in the novel-mouse chamber suggested that the Fmr1 KO mutants were not able to distinguish the second novel mouse from the first now-familiar mouse." However, an alternative explanation is that Fmr1 KO mice do remember the first stranger but prefer to interact with it due to autistic-like tendencies. Data in Table 5 show that Fmr1 KO mice spent more time interacting with the first stranger in the 3-chamber social recognition test, which support this possibility. Similarly, in the five-trial social test, Fmr1 KO mice's preference for familiar mice might explain the reduced interaction with the second stranger.

      In Figure 6C (five-trial social test results), only the fifth trial results are shown. Data for trials 1-4 should be provided and compared with the fifth trial. The behavioral features of mice in the 5-trial test can then be shown completely. In addition, the total interaction times for trials 1-4 (154 {plus minus} 15.3 for WT and 150 {plus minus} 20.9 for Fmr1 KO) suggest normal sociability in Fmr1 KO mice (it is different from the results of 3-chamber). Thus, individual data for trials 1-4 are required to draw reliable conclusions.

      In Table 6 and Figure 6G-6J, the authors claim that "Sleep duration (Figures 6G, H) and fragmentation (Figures 6I, J) exhibited a moderate-strong correlation with both social recognition and grooming." However, Figure 6I shows a p-value of 0.077, which is not significant. Moreover, Table 6 shows no significant correlation between SNPI of the three-chamber social test and any sleep parameters. These data do not support the authors' conclusions.

      (5) Figure 7 demonstrates the effect of scheduled feeding on circadian activity and sleep behaviors, representing another critical set of results in the manuscript. Notably, the WT+ALF and Fmr1 KO+ALF groups in Figure 7 underwent the same handling as the WT and Fmr1 KO groups in Figures 1 and 2, as no special treatments were applied to these mice. However, the daily patterns observed in Figures 7A, 7B, 7F, and 7G differ substantially from those shown in Figures 2B and 1A, respectively. Additionally, it is unclear why the WT+ALF and Fmr1 KO+ALF groups did not exhibit differences in Figures 7I and 7J, especially considering that Fmr1 KO mice displayed more sleep bouts but shorter bout lengths in Figures 1C and 1D.

      Furthermore, it is not specified whether the results in Figure 7 were collected after two weeks of scheduled feeding (for how many days?) or if they represent the average data from the two-week treatment period.

      The rationale behind analyzing "ZT 0-3 activity" in Figure 7D instead of the parameters shown in Figures 2C and 2D is also unclear.

      In Figure 7F, some data points appear to be incorrectly plotted. For instance, the dark blue circle at ZT13 connects to the light blue circle at ZT14 and the dark blue circle at ZT17. This is inconsistent, as the dark blue circle at ZT13 should link to the dark blue circle at ZT14. Similarly, it is perplexing that the dark blue circle at ZT16 connects to both the light blue and dark blue circles at ZT17. Such errors undermine confidence in the data. The authors need to provide a clear explanation of how these data were processed.

      Lastly, in the Figure 7 legend, Table 6 is cited; however, this appears to be incorrect. It seems the authors intended to refer to Table 7.

      (6) Similar to the issue in Figure 7F, the data for day 12 in Supplemental Figure 2 includes two yellow triangles but lacks a green triangle. It is unclear how the authors constructed this chart, and clarification is needed.

      (7) In Figure 8, a 5-trial test was used to assess the effect of scheduled feeding on social behaviors. It is essential to present the results for all trials (1 to 4). Additionally, it is unclear whether the results for familial mice in Figure 8A correspond to trials 1, 2, 3, or 4.<br /> The legend for Figure 8 also appears to be incorrect: "The left panels show the time spent in social interactions when the second novel stranger mouse was introduced to the testing mouse in the 5-trial social interaction test. The significant differences were analyzed by two-way ANOVA followed by Holm-Sidak's multiple comparisons test with feeding treatment and genotype as factors." This description does not align with the content of the left panels. Moreover, two-way ANOVA is not the appropriate statistical analysis for Figure 8A. The authors need to provide accurate details about the analysis and revise the figure legend accordingly.

      (8) The circadian activity and sleep behaviors of Fmr1 KO mice have been reported previously, with some findings consistent with the current manuscript, while others contradict it. Although the authors acknowledge this discrepancy, it seems insufficiently thorough to simply state that the reasons for the conflicts are unknown. Did the studies use the same equipment for behavior recording? Were the same parameters used to define locomotor activity and sleep behaviors? The authors are encouraged to investigate these details further, as doing so may uncover something interesting or significant.

      (9) Some subtitles in the Results section and the figure legends do not align well with the presented data. For example, in the section titled "Reduced rhythmic strength and nocturnality in the Fmr1 KOs," it is unclear how the authors justify the claim of altered nocturnality in Fmr1 KO mice. How do the authors define changes in nocturnality? Additionally, the tense used in the subtitles and figure legends is incorrect. The authors are encouraged to carefully review all subtitles and figure legends to correct these errors and enhance readability.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript presents a comprehensive structure-guided secretome analysis of gall-forming microbes, providing valuable insights into effector diversity and evolution. The authors have employed AlphaFold2 to predict the 3D structures of the secretome from selected pathogens and conducted a thorough comparative analysis to elucidate commonalities and unique features of effectors among these phytopathogens.

      Strengths:

      The discovery of conserved motifs such as 'CCG' and 'RAYH' and their central role in maintaining the overall fold is an insightful finding. Additionally, the discovery of a nucleoside hydrolase-like fold conserved among various gall-forming microbes is interesting.

      Weaknesses:

      Important conclusions are not verified by experiments.

    1. Reviewer #1 (Public review):

      Summary:

      The goal of this study was to overcome the apparent difficulty in constructing structural models of the open state of the CFTR chloride channel. While several CFTR structural models at near-atomic resolution have been published under a variety of conditions, none of them have demonstrated a pore open across the full dimension of the plasma membrane. Instead, these have routinely been referred to as "near-open" models. In the present study, the authors extended their findings from a prior paper from their group that investigated a series of brief MD simulations, a small number of which exhibited permeation events where chloride ions permeated the pore. This study included massively repeated simulations initiated from these aforementioned Cl permeable conformations. Extensive analysis of the data identified a novel penta-helical structure that comprises the channel pore. This comprehensive study attempted to explain several features of conducting CFTR channels, including single-channel conductance, selectivity, and the mechanisms linking the ATP-induced dimerization of the cytosolic nucleotide-binding domains (NBDs) to the opening of the channel pore (a.k.a., "pore-gating".

      Strengths:

      The major strength of this study is its comprehensive nature. The approaches applied are cutting-edge and beyond, and are used to explain many different aspects of channel function in CFTR. The strength of evidence is very strong. The paper is extremely well-written, and the arguments are well-supported.

      Weaknesses:

      The major weakness is that none of the novel conclusions (i.e., those arising solely from this study and not previously published (have been supported by experimental confirmation. That is typical of computational studies such as this.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript described a structure-guided approach to graft important antigenic loops of the neuraminidase to a homotypic but heterologous NA. This approach allows the generation of well-expressed and thermostable recombinant proteins with antigenic epitopes of choice to some extent. The loop-grafted NA was designated hybrid.

      Strengths:

      The hybrid NA appeared to be more structurally stable than the loop-donor protein while acquiring its antigenicity. This approach is of value when developing a subunit NA vaccine which is difficult to express. So that antigenic loops could be potentially grafted to a stable NA scaffold to transfer strain-specific antigenicity.

      Weaknesses:

      However, major revisions to better organize the text, and figure and make clarifications on a number of points, are needed. There are a few cases in which a later figure was described first, data in the figures were not sufficiently described, or where there were mismatched references to figures.

      More importantly, the hybrid proteins did not show any of the advantages over the loop-donor protein in the format of VLP vaccine in mouse studies, so it's not clear why such an approach is needed to begin with if the original protein is doing fine.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigated the dynamic self-assembly of branched actin networks and the relation between the nonequilibrium features of the dynamics with the thermodynamic cost. The authors constructed a chain model to describe the self-assembly process of a branched actin network, including events like nucleation, polymerization, and capping. The forward and backward transition rates associated with the events allowed them to investigate the entropy production rate of the dynamics. They then used the fact that the entropy production rate has to be greater than zero to derive inequalities that set bounds for the maximum force produced by the branched actin network. The idea is similar to estimating the polymerization force of actin filament via the equation F_{max} = dG/delta, which sets a bound on the maximum force by the thermodynamic potential dG which is the chemical energy associated with ATP hydrolysis and delta is the length increment upon monomer insertion. Furthermore, they speculated the dissipative cost beyond what is necessary to move the load may be necessary to maintain an adaptive steady state.

      Strengths:

      The authors developed a simple model that is capable of qualitatively reproducing some mechanical phenomena for a branched actin network. The model has captured the essential dynamic elements in the branched actin network and built connections between the maximum load and the adaptation behavior with the energetic cost. It is an interesting study that provides a new perspective to look at the mechanical response of the branched actin network.

      Weaknesses:

      The text needs to be improved, particularly in the model introduction part. It is unclear to me what happens to the state when the reverse reaction in Figure 2 occurs.

      Furthermore, what the authors have done is similar to estimate the polymerization force of actin filaments but in a more complicated scenario. Their conclusion that "dissipative cost in the system beyond what is necessary to move the load may be necessary to maintain an adaptive steady state" is skeptical. The branched actin network is a nonequilibrium system driven by active processes like ATP hydrolysis that converts chemical energy into mechanical work. There has to be a gap between the actual E-C_f curve and that when dissipation rate dot{S} = 0. If the authors want to make the claim, they have to decompose the dissipation into different parts and show that a particular part is associated with adaption. Otherwise, the conclusion about the gap is baseless.

    1. Reviewer #1 (Public review):

      Summary:

      Li et al describe a novel form of melanosome based iridescence in the crest of an Early Cretaceous enantiornithine avialan bird from the Jehol Group.

      Strengths:

      Novel set of methods applied to the study of fossil melanosomes.

      Weaknesses:

      (1) Firstly, several studies have argued that these structures are in fact not a crest, but rather the result of compression. Otherwise, it would seem that a large number of Jehol birds have crests that extend not only along the head but the neck and hindlimb. It is more parsimonious to interpret this as compression as has been demonstrated using actuopaleontology (Foth 2011).<br /> (2) The primitive morphology of the feather with their long and possibly not interlocking barbs also questions the ability of such feathers to be erected without geologic compression.<br /> (3) The feather is not in situ and therefore there is no way to demonstrate unequivocally that it is indeed from the head (it could just as easily be a neck feather)<br /> (4) Melanosome density may be taphonomic; in fact, in an important paper that is notably not cited here (Pan et al. 2019) the authors note dense melanosome packing and attribute it to taphonomy. This paper describes densely packed (taphonomic) melanosomes in non-avian avialans, specifically stating, "Notably, we propose that the very dense arrangement of melanosomes in the fossil feathers (Fig. 2 B, C, and G-I, yellow arrows) does not reflect in-life distribution, but is, rather, a taphonomic response to postmortem or postburial compression" and if this paper was taken into account it seems the conclusions would have to change drastically. If in this case the density is not taphonomic, this needs to be justified explicitly (although clearly these Jehol and Yanliao fossils are heavily compressed).<br /> (5) Color in modern birds is affected by the outer keratin cortex thickness which is not preserved but the authors note the barbs are much thicker (10um) than extant birds; this surely would have affected color so how can the authors be sure about the color in this feather?<br /> (6) Authors describe very strange shapes that are not present in extant birds: "...different from all other known feather melanosomes from both extant and extinct taxa in having some extra hooks and an oblique ellipse shape in cross and longitudinal sections of individual melanosome" but again, how can it be determined that this is not the result of taphonomic distortion?<br /> (7) The authors describe the melanosomes as hexagonally packed but this does not appear to be in fact the case, rather appearing quasi-periodic at best, or random. If the authors could provide some figures to justify this hexagonal interpretation?<br /> (8) One way to address these concerns would be to sample some additional fossil feathers to see if this is unique or rather due to taphonomy<br /> (9) On a side, why are the feet absent in the CT scan image?

    1. Reviewer #1 (Public review):

      Summary:

      Nahas et al. investigated the roles of herpes simplex virus 1 (HSV-1) structural proteins using correlative cryo-light microscopy and soft X-ray tomography. The authors generated nine viral variants with deletions or mutations in genes encoding structural proteins. They employed a chemical fixation-free approach to study native-like events during viral assembly, enabling observation of a wider field of view compared to cryo-ET. The study effectively combined virology, cell biology, and structural biology to investigate the roles of viral proteins in virus assembly and budding.

      Strengths:

      (1) The study presented a novel approach to studying viral assembly in cellulo.

      (2) The authors generated nine mutant viruses to investigate the roles of essential proteins in nuclear egress and cytoplasmic envelopment.

      (3) The use of correlative imaging with cryoSIM and cryoSXT allowed for the study of viral assembly in a near-native state and in 3D.

      (4) The study identified the roles of VP16, pUL16, pUL21, pUL34, and pUS3 in nuclear egress.

      (5) The authors demonstrated that deletion of VP16, pUL11, gE, pUL51, or gK inhibits cytoplasmic envelopment.

      (6) The manuscript is well-written, clearly describing findings, methods, and experimental design.

      (7) The figures and data presentation are of good quality.

      (8) The study effectively correlated light microscopy and X-ray tomography to follow virus assembly, providing a valuable approach for studying other viruses and cellular events.

      (9) The research is a valuable starting point for investigating viral assembly using more sophisticated methods like cryo-ET with FIB-milling.

      (10) The study proposes a detailed assembly mechanism and tracks the contributions of studied proteins to the assembly process.

      (11) The study includes all necessary controls and tests for the influence of fluorescent proteins.

      Weaknesses:

      Overall, the manuscript does not have any major weaknesses, just a few minor comments:

      (1) The gel quality in Figure 1 is inconsistent for different samples, with some bands not well resolved (e.g., for pUL11, GAPDH, or pUL20).

      (2) The manuscript would benefit from a summary figure or table to concisely present the findings for each protein. It is a large body of manuscript, and a summary figure showing the discovered function would be great.

      (3) Figure 2 lacks clarity on the type of error bars used (range, standard error, or standard deviation). It says, however, range, and just checking if this is what the authors meant.

      (4) The manuscript could be improved by including details on how the plasma membrane boundary was estimated from the saturated gM-mCherry signal. An additional supplementary figure with the data showing the saturation used for the boundary definition would be helpful.

      (5) Additional information or supplementary figures on the mask used to filter the YFP signal for Figure 4 would be helpful.

      (6) The figure legends could include information about which samples are used for comparison for significance calculations. As the color of the brackets is different from the compared values (dUL34), it would be great to have this information in the figure legend.

      (7) In Figure 5B, the association between YFP and mCherry signals is difficult to assess due to the abundance of mCherry signal; single-channel and combined images might improve visualization.

      (8) In Figure 6D, staining for tubulin could help identify the cytoskeleton structures involved in the observed virus arrays.

      (9) It is unclear in Figure 6D if the microtubule-associated capsids are with the gM envelope or not, as the signal from mCherry is quite weak. It could be made clearer with the split signals to assess the presence of both viral components.

      (10) The representation of voxel intensity in Figure 8 is somewhat confusing. Reversion of the voxel intensity representation to align brighter values with higher absorption, which would simplify interpretation.

      (11) The visualization in panel I of Figure 8 might benefit from a more divergent colormap to better show the variation in X-ray absorbance.

      (12) Figure 9 would be enhanced by images showing the different virus sizes measured for the comparative study, which would help assess the size differences between different assembly stages.

      Overall, this is an excellent manuscript and an enjoyable read. It would be interesting to see this approach applied to the study of other viruses, providing valuable insights before progressing to high-resolution methods.

    1. Reviewer #2 (Public review):

      Summary:

      The authors identified ORMDL3 as a negative regulator of the RLR pathway and anti-tumor immunity. Mechanistically, ORMDL3 interacts with MAVS and further promotes RIG-I for proteasome degradation. In addition, the deubiquitinating enzyme USP10 stabilizes RIG-I and ORMDL3 disturbs this process. Moreover, in subcutaneous syngeneic tumor models in C57BL/6 mice, they showed that inhibition of ORMDL3 enhances anti-tumor efficacy by augmenting the proportion of cytotoxic CD8-positive T cells and IFN production in the tumor microenvironment (TME).

      Strengths:

      The paper has a clearly arranged structure and the English is easy to understand. It is well written. The results clearly support the conclusion.

      Comments on revisions:

      All questions have been answered.

    1. Reviewer #1 (Public review):

      The study investigates light chains (LCs) using three distinct approaches, with a focus on identifying a conformational fingerprint to differentiate amyloidogenic light chains from multiple myeloma light chains. The study's major contribution is the identification of a low-populated "H state," which the authors propose as a unique marker for AL-LCs. While this finding is promising, the review highlights several strengths and weaknesses. Strengths include the valuable contribution of identifying the H state and the use of multiple approaches, which provide a comprehensive understanding of LC structural dynamics. Weaknesses include a lack of physical insights explaining the changes.

    1. Reviewer #2 (Public review):

      Miyazaki et al. established three distinct BMD mouse models by deleting different exon regions of the dystrophin gene, observed in human BMD. The authors demonstrated that these models exhibit pathophysiological changes, including variations in body weight, muscle force, muscle degeneration, and levels of fibrosis, alongside underlying molecular alterations such as changes in dystrophin and nNOS levels. Notably, these molecular and pathological changes progress at different rates depending on the specific exon deletions in dystrophin gene. Additionally, the authors conducted extensive fiber typing, revealing a site-specific decline in type IIa fibers in BMD mice, which they suggest may be due to muscle degeneration and reduced capillary formation around these fibers.

      Strengths:

      The manuscript introduces three novel BMD mouse models with different dystrophin exon deletions, each demonstrating varying rates of disease progression similar to the human BMD phenotype. The authors also conducted extensive fiber typing across different muscles and regions within the muscles, effectively highlighting a site-specific decline in type IIa muscle fibers in BMD mice.

      Comments on revisions:

      The authors did an excellent job addressing all or most of the concerns I raised in my previous review and have incorporated the necessary changes into the manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors reveal that GIF/MT-3 regulates the zinc homeostasis depending on the cellular redox status. The manuscript technically sounds, and their data concretely suggest that the recombinant MTs, not only GIF/MT-3 but also canonical MTs such as MT-1 and MT-2, contain sulfane sulfur atoms for the Zn-binding. The scenario proposed by the authors seems to be reasonable to explain the Zn homeostasis by the cellular redox balance.

      Strengths:

      The data presented in the manuscript solidly reveal that recombinant GIF/MT-3 contains sulfane sulfur.

      Weaknesses:

      It remains unclear whether native MTs, in particular induced MTs in vivo contain sulfane sulfur or not.

      Comments on revisions:

      Although the authors have revealed the sulfane sulfur content in native MT-3, my question, namely, whether canonical MT-1 and MT-2 contained sulfane sulfur after the induction has been left.<br /> The authors argue that the biological significance of sulfane sulfur in MTs lies in its ability to contribute to metal binding affinity, provide a sensing mechanism against oxidative stress, and aid in the regulation of the protein. Due to their biological roles, induced MT-1 and MT-2 could contain sulfane sulfur in their molecules. Thus, I expect the authors to evaluate or explain the sulfane sulfur content in induced MT-1 and MT-2.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses the eye lens as a model to investigate basic mechanisms in the Fgf signaling pathway. Understanding Fgf signaling is of broad importance to biologists as it is involved in the regulation of various developmental processes in different tissues/organs and is often misregulated in disease states. The Fgf pathway has been studied in embryonic lens development, namely with regards to its involvement in controlling events such as tissue invagination, vesicle formation, epithelium proliferation and cellular differentiation, thus making the lens a good system to uncover the mechanistic basis of how the modulation of this pathway drives specific outcomes. Previous work has suggested that proteins, other than the ones currently known (e.g., the adaptor protein Frs2), are likely involved in Fgfr signaling. The present study focuses on the role of Shp2 and Shc1 proteins in the recruitment of Grb2 in the events downstream of Fgfr activation.

      Strengths:

      The findings reveal that the juxtamembrane region of the Fgf receptor is necessary for proper control of downstream events such as facilitating key changes in transcription and cytoskeleton during tissue morphogenesis. The authors conditionally deleted all four Fgfrs in the mouse lens that resulted in molecular and morphological lens defects, most importantly, preventing the upregulation of the lens induction markers Sox2 and Foxe3 and the apical localization of F-actin, thus demonstrating the importance of Fgfrs in early lens development, i.e. during lens induction. They also examined the impact of deleting Fgfr1 and 2, on the following stage, i.e. lens vesicle development, which could be rescued by expressing constitutively active KrasG12D. By using specific mutations (e.g. Fgfr1ΔFrs lacking the Frs2 binding domain and Fgfr2LR harboring mutations that prevent binding of Frs2), it is demonstrated that the Frs2 binding site on Fgfr is necessary for specific events such as morphogenesis of lens vesicle. Further, by studying Shp2 mutations and deletions, the authors present a case for Shp2 protein to function in a context-specific manner in the role of an adaptor protein and a phosphatase enzyme. Finally, the key surprising finding from this study is that downstream of Fgfr signaling, Shc1 is an important alternative pathway - in addition to Shp2 - involved in the recruitment of Grb2 and in the subsequent activation of Ras. The methodologies, namely, mouse genetics and state-of-the-art cell/molecular/biochemical assays are appropriately used to collect the data, which are soundly interpreted to reach these important conclusions. Overall, these findings reveal the flexibility of the Fgf signaling pathway and it downstream mediators in regulating cellular events. This work is expected to be of broad interest to molecular and developmental biologists.

      Weaknesses:

      A weakness that needs to be discussed is that Le-Cre depends on Pax6 activation, and hence its use in specific gene deletion will not allow evaluation of the requirement of Fgfrs in the expression of Pax6 itself. But since this is the earliest Cre available for deletion in the lens, mentioning this in the discussion would make the readers aware of this issue.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors investigate the effect of mitochondrial transplantation on post-cardiac arrest myocardial dysfunction (PAMD), which is associated with mitochondrial dysfunction. The authors demonstrate that mitochondrial transplantation enhances cardiac function and increases survival rates after the return of spontaneous circulation (ROSC). Mechanistically, they found that myocardial tissues with transplanted mitochondria exhibit increased mitochondrial complex activity, higher ATP levels, reduced cardiomyocyte apoptosis, and lower myocardial oxidative stress post-ROSC.

      Strengths:

      Previous studies have reported that mitochondrial transplantation can improve myocardial recovery after regional ischemia, but its potential for treating myocardial injury following cardiac arrest has not been tested yet. Therefore, the findings are somewhat novel. Remarkably, the increased survival in mitochondria treated group post ROSC is very promising and highlights its translational potential.

      Comments on revisions:

      My concerns are adequately addressed.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript investigates a mechanism between the histone reader protein YEATS2 and the metabolic enzyme GCDH, particularly in regulating epithelial-to-mesenchymal transition (EMT) in head and neck cancer (HNC).

      Strengths:

      Great detailing of the mechanistic aspect of the above axis is the primary strength of the manuscript.

      Weaknesses:

      Several critical points require clarification, including the rationale behind EMT marker selection, the inclusion of metastasis data, the role of key metabolic enzymes like ECHS1, and the molecular mechanisms governing p300 and YEATS2 interactions.

      Major Comments:

      (1) The title, "Interplay of YEATS2 and GCDH mediates histone crotonylation and drives EMT in head and neck cancer," appears somewhat misleading, as it implies that YEATS2 directly drives histone crotonylation. However, YEATS2 functions as a reader of histone crotonylation rather than a writer or mediator of this modification. It cannot itself mediate the addition of crotonyl groups onto histones. Instead, the enzyme GCDH is the one responsible for generating crotonyl-CoA, which enables histone crotonylation. Therefore, while YEATS2 plays a role in recognizing crotonylation marks and may regulate gene expression through this mechanism, it does not directly catalyse or promote the crotonylation process.

      (2) The study suggests a link between YEATS2 and metastasis due to its role in EMT, but the lack of clinical or pre-clinical evidence of metastasis is concerning. Only primary tumor (PT) data is shown, but if the hypothesis is that YEATS2 promotes metastasis via EMT, then evidence from metastatic samples or in vivo models should be included to solidify this claim.

      (3) There seems to be some discrepancy in the invasion data with BICR10 control cells (Figure 2C). BICR10 control cells with mock plasmids, specifically shControl and pEGFP-C3 show an unclear distinction between invasion capacities. Normally, we would expect the control cells to invade somewhat similarly, in terms of area covered, within the same time interval (24 hours here). But we clearly see more control cells invading when the invasion is done with KD and fewer control cells invading when the invasion is done with OE. Are these just plasmid-specific significant effects on normal cell invasion? This needs to be addressed.

      (4) In Figure 3G, the Western blot shows an unclear band for YEATS2 in shSP1 cells with YEATS2 overexpression condition. The authors need to clearly identify which band corresponds to YEATS2 in this case.

      (5) In ChIP assays with SP1, YEATS2 and p300 which promoter regions were selected for the respective genes? Please provide data for all the different promoter regions that must have been analysed, highlighting the region where enrichment/depletion was observed. Including data from negative control regions would improve the validity of the results.

      (6) The authors establish a link between H3K27Cr marks and GCDH expression, and this is an already well-known pathway. A critical missing piece is the level of ECSH1 in patient samples. This will clearly delineate if the balance shifted towards crotonylation.

      (7) The p300 ChIP data on the SPARC promoter is confusing. The authors report reduced p300 occupancy in YEATS2-silenced cells, on SPARC promoter. However, this is paradoxical, as p300 is a writer, a histone acetyltransferase (HAT). The absence of a reader (YEATS2) shouldn't affect the writer (p300) unless a complex relationship between p300 and YEATS2 is present. The role of p300 should be further clarified in this case. Additionally, transcriptional regulation of SPARC expression in YEATS2 silenced cells could be analysed via downstream events, like Pol-II recruitment. Assays such as Pol-II ChIP-qPCR could help explain this.

      (8) The role of GCDH in producing crotonyl-CoA is already well-established in the literature. The authors' hypothesis that GCDH is essential for crotonyl-CoA production has been proven, and it's unclear why this is presented as a novel finding. It has been shown that YEATS2 KD leads to reduced H3K27cr, however, it remains unclear how the reader is affecting crotonylation levels. Are GCDH levels also reduced in the YEATS2 KD condition? Are YEATS2 levels regulating GCDH expression? One possible mechanism is YEATS2 occupancy on GCDH promoter and therefore reduced GCDH levels upon YEATS2 KD. This aspect is crucial to the study's proposed mechanism but is not addressed thoroughly.

      (9) The authors should provide IHC analysis of YEATS2, SPARC alongside H3K27cr and GCDH staining in normal vs. tumor tissues from HNC patients.

    1. Reviewer #1 (Public review):

      Summary:

      It is essential for Mycobacterium tuberculosis (Mtb) to scavenge trace metals from its host to survive. In this study, the authors explore the effects of copper limitation on Mtb. Mtb synthesizes small molecular diisonitrile lipopeptides termed chalkophores, that chelate host copper for import, whereby the copper is incorporated into Mtb metalloproteins. However, the role of chalkophores in Mtb biology and their targeted metalloproteins are unknown. This study investigates Mtb proteins that require chalkophores for copper incorporation and their effect on Mtb virulence. It is known that the nrp operon is induced by copper deprivation and encodes the synthesis of chalkophores. A genetic analysis revealed transcriptional differences for WT and Mtb∆nrp when exposed to the copper chelator tetrathiomolybdate (TTM). The authors found that copper chelation results in upregulation of genes in the chalkophore cluster as well as genes involved in the respiratory chain: specifically, components of the heme-dependent oxidase CytBD and subunits of the bcc:aa3 heme-copper oxidase. Interestingly, treatment of Mtb∆nrp with an inhibitor of the QcrB subunit of the bcc:aa3 oxidase (Q203) resulted in similar transcriptional changes. The bcc:aa3 oxidase and CytBD are functionally redundant, and while both utilize heme as a cofactor, only the first utilizes heme and copper. Utilizing Mtb∆nrp, Mtb∆cydAB and MtbΔnrpΔcydAB along with single gene complementation, the authors showed that copper starvation survival requires diisonitrile chalkophore synthesis and that copper starvation results in dysfunctional bcc:aa3 oxidase. Further genetic analysis combined with inhibitor studies indicate that bcc:aa3 oxidase is the only target impacted by copper starvation. By monitoring oxygen consumption for mutants in combination with inhibitors, the authors show that copper deprivation inhibits respiration through the bcc:aa3 oxidase. Similarly, they show that TTM or Q203 treatment inhibits ATP production in MtbΔnrpΔcydAB, but not in WT, showing that chalkophores maintain oxidative phosphorylation. Lastly, the authors compare the virulence of WT Mtb, Mtb∆nrp and MtbΔnrpΔcydAB strains in mice spleen and lung. The Mtb∆nrp strain showed mild attenuation, but virulence in MtbΔnrpΔcydAB was severely attenuated, and complementation with the chalkophore biosynthetic pathway restored Mtb virulence. These results suggest that chalkophore mediated protection of the respiratory chain is critical to Mtb virulence, and the that redundant respiratory oxidases within Mtb provides respiratory chain flexibility that may promote host adaptation.

      Strengths:

      Overall, the paper is very clear and well-written, with thorough and well-thought-out experimentation.

      The methods are all quite standard, so there are no weaknesses identified with regard to methodology.

    1. Reviewer #2 (Public review):

      In this revised manuscript, Klemm et al., build on top of past published findings (Klemm et al., 2021) to characterize caspase activation in distal cells following necrotic tissue damage within the Drosophila wing imaginal disc. Previously in Klemm et al., 2021, the authors describe necrosis-induced-apoptosis (NiA) following the development of a genetic system to study necrosis that is caused by the expression of a constitutive active GluR1 (Glutamate/Ca2+ channel), and they discovered that the appearance of NiA cells were important for promoting regeneration.

      In this manuscript, the authors investigate how tissues regenerate following necrotic cell death. They find that:

      (1) the cells of the wing pouch are more likely to have non-autonomous caspase activation than other regions within the wing imaginal disc (hinge and notum),

      (2) two signaling pathways that are known to be upregulated during regeneration, Wnt (wingless) and JAK/Stat signaling, act to prevent additional NiA in pouch cells, and may partially explain the region specificity,

      (3) the presence of NiA (and/or NiCP) cells promotes regenerative proliferation in the late stages of regeneration,

      (4) not all caspase-positive cells are cleared from the epithelium (these cells are then referred to as Necrosis-induced Caspase Positive (NiCP) cells), these NiCP cells continue to live and promote proliferation in adjacent cells,

      (5) the initiator caspase Dronc is important for creating NiA/NiCP cells and for these cells to promote proliferation. Animals heterozygous for a Dronc null allele show a decrease in regeneration following necrotic tissue damage. In the revised manuscript, the authors provide improvements through additional data quantifications and text changes to better explain NiA/NiCP lineage tracing methods.

      The study has the potential to be broadly interesting due to the insights into how tissues differentially respond to necrosis as compared to apoptosis to promote regeneration. The paper raises many interesting questions for future investigation, including what is the nature of the signaling between the damaged tissue and the NiA/NiCP responsive areas (such as the identity of the DAMPs)? What determines if these cells at a distance undergo apoptosis or remain viable in the tissue as caspase-positive cells? And since the authors have data that indicates that the phenomenon is distinct from 'undead cells', what are the mechanisms by which these cells promote local proliferation?

    1. Reviewer #1 (Public review):

      Summary:

      This is a very creative study using modeling and measurement of neoblast dynamics to gain insight into the mechanism that allows these highly potent cells to undergo fate-switching as part of their differentiation and self-renewal process. The authors estimate growth equation parameters for expanding neoblast clones based on new and prior experimental observations. These results indicate neoblast likely undergo much more symmetric self-amplifying division than loss of the population through symmetric differentiation, in the case of clone expansion assays after sublethal irradiation. Neoblasts take on multiple distinct transcriptional fates related to their terminally differentiated cell types, and prior work indicated neoblasts have a high plasticity to switch fates in a way linked to cell cycle progression and possibly through a random process. Here, the authors explore the impact of inhibition of key transcription factors defining such states (ie "fate specifying transcription factors", FSTFs) plus measurement and modeling in the clone expansion assay, to find that inhibition of factors like zfp1 likely cause otherwise zfp1-fated neoblasts to fail to proliferate and differentiation without causing compensatory gains in other lineages. A mathematical model of this process assuming that neoblasts do not retain a memory of prior states while they proliferate, and transition across specified states can mimic the experimentally determined decreased sizes of clones following inhibition of zfp1. Complementary approaches to inhibit more than one lineage (muscle plus intestine) supports the idea that this is a more general process in planarian stem cells. These results provide an important advance for understanding the fate-switching process and its relationship to neoblast growth.

      Overall I find the evidence very well presented and the study compelling. It offers an important new perspective on the key properties of neoblasts. I do have some comments to clarify the presentation and significance of the work.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to elucidate the molecular mechanisms underlying HIV-1 persistence and host immune dysfunction in CD4+ T cells during early infection (<6 months). Using single-cell multi-omics technologies-including scRNA-seq, scATAC-seq, and single-cell multiome analyses-they characterized the transcriptional and epigenomic landscapes of HIV-1-infected CD4+ T cells. They identified key transcription factors (TFs), signaling pathways, and T cell subtypes involved in HIV-1 persistence, particularly highlighting KLF2 and Th17 cells as critical regulators of immune suppression. The study provides new insights into immune dysregulation during early HIV-1 infection and reveals potential epigenetic regulatory mechanisms in HIV-1-infected T cells.

      Strengths:

      The study excels through its innovative integration of single-cell multi-omics technologies, enabling detailed analysis of gene regulatory networks in HIV-1-infected cells. Focusing on early infection stages, it fills a crucial knowledge gap in understanding initial immune responses and viral reservoir establishment. The identification of KLF2 as a key transcription factor and Th17 cells as major viral reservoirs, supported by comprehensive bioinformatics analyses, provides robust evidence for the study's conclusions. These findings have immediate clinical relevance by identifying potential therapeutic targets for HIV-1 reservoir eradication.

      Weaknesses:

      Despite its strengths, the study has several limitations. By focusing exclusively on CD4+ T cells, the study overlooks other relevant immune cells such as CD14+ monocytes, NK cells, and B cells. Additionally, while the authors generated their own single-cell datasets, they need to validate their findings using other publicly available single-cell data from HIV-1-infected PBMCs.

    1. Reviewer #2 (Public review):

      Summary:

      In the article, the authors describe their software package in R for visualizing metabolite ratio pairs. I think the work would be of interest to the mass spectrometry community.

      Strengths:

      The authors describe a software that would be of use to those performing MALDI MSI. This software would certainly add to the understanding metabolomics data and enhance the identification of critical metabolites.

      Weaknesses:

      The figures are difficult to interpret/ analyze in their current state but are significantly better in the revision.

    1. Joint Public Review:

      This study comprehensively presents data from single nuclei sequencing of Heigai pig skeletal muscle in response to conjugated linoleic acid supplementation. The authors identify changes in myofiber type and adipocyte subpopulations induced by linoleic acid at depth previously unobserved. The authors show that linoleic acid supplementation decreased the total myofiber count, specifically reducing type II muscle fiber types (IIB), myotendinous junctions, and neuromuscular junctions, whereas type I muscle fibers are increased. Moreover, the authors identify changes in adipocyte pools, specifically in a population marked by SCD1/DGAT2. To validate the skeletal muscle remodeling in response to linoleic acid supplementation, the authors compare transcriptomics data from Laiwu pigs, a model of high intramuscular fat, to Heigai pigs. The results verify changes in adipocyte subpopulations when pigs have higher intramuscular fat, either genetically or diet-induced. Targeted examination using cell-cell communication network analysis revealed associations with high intramuscular fat with fibro-adipogenic progenitors (FAPs). The authors then conclude that conjugated linoleic acid induces FAPs towards adipogenic commitment. Specifically, they show that linoleic acid stimulates FAPs to become SCD1/DGAT2+ adipocytes via JNK signaling. The authors conclude that their findings demonstrate the effects of conjugated linoleic acid on skeletal muscle fat formation in pigs, which could serve as a model for studying human skeletal muscle diseases.

      [Editors' note: the authors have responded to the previous rounds of review: https://doi.org/10.7554/eLife.99790.1.sa1 and https://doi.org/10.7554/eLife.99790.2.sa1]

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates the role of macrophage lipid metabolism in the intracellular growth of Mycobacterium tuberculosis. By using a CRISPR-Cas9 gene-editing approach, the authors knocked out key genes involved in fatty acid import, lipid droplet formation, and fatty acid oxidation in macrophages. Their results show that disrupting various stages of fatty acid metabolism significantly impairs the ability of Mtb to replicate inside macrophages. The mechanisms of growth restriction included increased glycolysis, oxidative stress, pro-inflammatory cytokine production, enhanced autophagy, and nutrient limitation. The study demonstrates that targeting fatty acid homeostasis at different stages of the lipid metabolic process could offer new strategies for host-directed therapies against tuberculosis.

      The work is convincing and methodologically strong, combining genetic, metabolic, and transcriptomic analyses to provide deep insights into how host lipid metabolism affects bacterial survival.

      Strengths:

      The study uses a multifaceted approach, including CRISPR-Cas9 gene knockouts, metabolic assays, and dual RNA sequencing, to assess how various stages of macrophage lipid metabolism affect Mtb growth. The use of CRISPR-Cas9 to selectively knock out key genes involved in fatty acid metabolism enables precise investigation of how each step-lipid import, lipid droplet formation, and fatty acid oxidation-affects Mtb survival. The study offers mechanistic insights into how different impairments in lipid metabolism lead to diverse antimicrobial responses, including glycolysis, oxidative stress, and autophagy. This deepens the understanding of macrophage function in immune defense.<br /> The use of functional assays to validate findings (e.g., metabolic flux analyses, lipid droplet formation assays, and rescue experiments with fatty acid supplementation) strengthens the reliability and applicability of the results.<br /> By highlighting potential targets for HDT that exploit macrophage lipid metabolism to restrict Mtb growth, the work has significant implications for developing new tuberculosis treatments.

      Weaknesses:

      The experiments were primarily conducted in vitro using CRISPR-modified macrophages. While these provide valuable insights, they may not fully replicate the complexity of the in vivo environment where multiple cell types and factors influence Mtb infection and immune responses. Yet, I agree that the Hoxb8 in vitro model provides a powerful genetic tool to interrogate host-Mtb interactions using primary macrophages that represent the bone marrow-derived macrophage lineage, instead of using cell lines.

      Comments on revisions: The authors have addressed my comment satisfactorily.

    1. Reviewer #1 (Public review):

      Summary:

      This is a very creative study using modeling and measurement of neoblast dynamics to gain insight into the mechanism that allows these highly potent cells to undergo fate-switching as part of their differentiation and self-renewal process. The authors estimate growth equation parameters for expanding neoblast clones based on new and prior experimental observations. These results indicate neoblast likely undergo much more symmetric self-amplifying division than loss of the population through symmetric differentiation, in the case of clone expansion assays after sublethal irradiation. Neoblasts take on multiple distinct transcriptional fates related to their terminally differentiated cell types, and prior work indicated neoblasts have a high plasticity to switch fates in way linked to cell cycle progression and possibly through a random process. Here, the authors explore the impact of inhibition of key transcription factors defining such states (ie "fate specifying transcription factors", FSTFs) plus measurement and modeling in the clone expansion assay, to find that inhibition of factors like zfp1 likely cause otherwise zfp1-fated neoblasts to fail to proliferate and differentiation, without causing compensatory gains in other lineages. A mathematical model of this process assuming that neoblasts do not retain a memory of prior states while they proliferate and transition across specified states can mimic the experimentally determined decreased sizes of clones following inhibition of zfp1. Complementary approaches to inhibit more than one lineage (muscle plus intestine) supports the idea that this is a more general process in planarian stem cells. These results provide an important advance for understanding the fate-switching process and its relationship to neoblast growth.

      Overall I find the evidence very well presented and the study compelling, and offers an important new perspective on the key properties of neoblasts. I have some comments to clarify the presentation and significance of the work.

      Comments on revisions:

      In this revised version, the authors nicely address all of my comments and I find the work makes a strong case for its main conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigated if/how distractor suppression derived from statistical learning may be implemented in early visual cortex. While in a scanner, participants conducted a standard additional singleton task in which one location more frequently contained a salient distractor. The results showed that activity in EVC was suppressed for the location of the salient distractor as well as for neighbouring neutral locations. This suppression was not stimulus specific - meaning it occurred equally for distractors, targets and neutral items - and it was even present in trials in which the search display was omitted. Generally, the paper was clear, the experiment was well-designed, and the data are interesting.

      The authors addressed all of my concerns and the revised manuscript will make a beautiful addition to the literature.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.

      They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are co-repressed than co-activated by BMP signaling and PRDM16. They focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.

      Strengths:

      Understanding context-dependent responses to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.

      Main weaknesses of the experimental setup:

      (1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels are very different from endogenous levels (as explicitly shown in Supplementary Figure 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo.

      (2) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.)

      Other experimental weaknesses that make the evidence less convincing:

      (1) The authors show in Figure 2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. Does this appear inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Figure1C?

      (2) Figure 3: The authors use H3K4me3 to measure gene activity. This is however, very indirect, with bulk RNA-seq providing the most direct readout and polymerase binding (ChIP-seq) another more direct readout. Transcription can be regulated without expected changes in histone methylation, see e.g. papers from Josh Brickman. They verify their H3K4me3 predictions with qPCR for a select number of genes, all related to the kinetochore, but it is not clear why these genes were picked, and one could worry whether these are representative.

      (3) Line 256: The overlap of 31 genes between 184 BMP-repressed genes and 240 PRDM16-repressed genes seems quite small.

      (4) The Wnt7b H3K4me3 track in Fig. 3G is not discussed in the text but it shows H3K4me3 high in _KO and low in _E regardless of BMP4. This seems to contradict the heatmap of H3K4me3 in Figure 3E which shows H3K4me3 high in _E no BMP4 and low in _E BMP4 while omitting _KO no BMP4. Meanwhile CDKN1A, the other gene shown in 3G, is missing from 3E.

      (5) The authors use PRDM16 CUT&TAG on dissected dorsal midline tissues to determine if their 31 identified PRDM16-BMP4 co-repressed genes are regulated directly by PRDM16 in vivo. By manual inspection, they find that "most" of these show a PRDM16 peak. How many is most? If using the same parameters for determining peaks, how many genes in an appropriately chosen negative control set of genes would show peaks? Can the authors rigorously establish the statistical significance of this observation? And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.

      (6) In comparing RNA in situ between WT and PRDM16 KO in Figure 7, the authors state they use the Wnt2b signal to identify the border between CH and neocortex. However, the Wnt2b signal is shown in grey and it is impossible for this reviewer to see clear Wnt2b expression or where the boundaries are in Figure 7A. The authors also do not show where they placed the boundaries in their analysis. Furthermore, Figure 7B only shows insets for one of the regions being compared making it difficult to see differences from the other region. Finally, the authors do not show an example of their spot segmentation to judge whether their spot counting is reliable. Overall, this makes it difficult to judge whether the quantification in Figure 7C can be trusted.

      (7) The correlation between mKi67 and Axin2 in Figure 7 is interesting but does not convincingly show that Wnt downstream of PRDM16 and BMP is responsible for the increased proliferation in PRDM16 mutants.

      Weaknesses of the presentation:

      Overall, the manuscript is not easy to read. This can cause confusion.

    1. Reviewer #1 (Public review):

      Summary:

      This research focuses on C. elegans klinotaxis, a chemotactic behavior characterized by gradual turning, aiming to uncover the neural circuit mechanism responsible for the context-dependent reversal of salt concentration preference. The phenomenon observed is that the preferred salt concentration depends on the difference between the pre-assay cultivation conditions and the current environmental salt levels.

      The authors propose that a synaptic-reversal plasticity mechanism at the primary sensory neuron, ASER, is critical for this memory- and context-dependent switching of preference. They build on prior findings regarding synaptic reversal between ASER and AIB, as well as the receptor composition of AIY neurons, to hypothesize that similar "plasticity" between ASER and AIY underpins salt preference behavior in klinotaxis. This plasticity differs conceptually from the classical one as it does not rely on any structural changes but rather synaptic transmission is modulated by the basal level of glutamate, and can switch from inhibitory to excitatory.

      To test this hypothesis, the study employs a previously established neuroanatomically grounded model [4] and demonstrates that reversing the ASER-AIY synapse sign in the model agent reproduces the observed reversal in salt preference. The model is parameterized using a computational search technique (evolutionary algorithm) to optimize unknown electrophysiological parameters for chemotaxis performance. Experimental validity is ensured by incorporating constraints derived from published findings, confirming the plausibility of the proposed mechanism.

      Finally. the circuit mechanism allowing C. elegans to switch behaviour to an exploration run when starved is also investigated. This extension highlights how internal states, such as hunger, can dynamically reshape sensory-motor programs to drive context-appropriate behaviors.

      Strengths and weaknesses:

      The authors' approach of integrating prior knowledge of receptor composition and synaptic reversal with the repurposing of a published neuroanatomical model [4] is a significant strength. This methodology not only ensures biological plausibility but also leverages a solid, reproducible modeling foundation to explore and test novel hypotheses effectively.

      The evidence produced that the original model has been successfully reproduced is convincing.

      The writing of the manuscript needs revision as it makes comprehension difficult.

      One major weakness is that the model does not incorporate key findings that have emerged since the original model's publication in 2013, limiting the support for the proposed mechanism. In particular, ablation studies indicate that AIY is not critical for chemotaxis, and other interneurons may play partially overlapping roles in positive versus negative chemotaxis. These findings challenge the centrality of AIY and suggest the model oversimplifies the circuit involved in klinotaxis.

      Reference [1] also shows that ASER neurons exhibit complex, memory- and context-dependent responses, which are not accounted for in the model and may have a significant impact on chemotactic model behaviour.

      The hypothesis of synaptic reversal between ASER and AIY is not explicitly modeled in terms of receptor-specific dynamics or glutamate basal levels. Instead, the ASER-to-AIY connection is predefined as inhibitory or excitatory in separate models. This approach limits the model's ability to test the full range of mechanisms hypothesized to drive behavioral switching.

      While the main results - such as response dependence on step inputs at different phases of the oscillator - are consistent with those observed in chemotaxis models with explicit neural dynamics (e.g., Reference [2]), the lack of richer neural dynamics could overlook critical effects. For example, the authors highlight the influence of gap junctions on turning sensitivity but do not sufficiently analyze the underlying mechanisms driving these effects. The role of gap junctions in the model may be oversimplified because, as in the original model [4], the oscillator dynamics are not intrinsically generated by an oscillator circuit but are instead externally imposed via $z_\text{osc}$. This simplification should be carefully considered when interpreting the contributions of specific connections to network dynamics. Lastly, the complex and context-dependent responses of ASER [1] might interact with circuit dynamics in ways that are not captured by the current simplified implementation. These simplifications could limit the model's ability to account for the interplay between sensory encoding and motor responses in C. elegans chemotaxis.

      Appraisal:

      The authors show that their model can reproduce memory-dependent reversal of preference in klinotaxis, demonstrating that the ASER-to-AIY synapse plays a key role in switching chemotactic preferences. By switching the ASER-AIY connection from excitatory to inhibitory they indeed show that salt preference reverses. They also show that the curving/turn rate underlying the preference change is gradual and depends on the weight between ASER-AIY. They further support their claim by showing that curving rates also depend on cultivated (set-point).

      Thus within the constraints of the hypothesis and the framework, the model operates as expected and aligns with some experimental findings. However, significant omissions of key experimental evidence raise questions on whether the proposed neural mechanisms are sufficient for reversal in salt-preference chemotaxis.

      Previous work [1] has shown that individually ablating the AIZ or AIY interneurons has essentially no effect on the Chemotactic Index (CI) toward the set point ([1] Figure 6). Furthermore, in [1] the authors report that different postsynaptic neurons are required for movement above or below the set point. The manuscript should address how this evidence fits with their model by attempting similar ablations. It is possible that the CI is rescued by klinokinesis but this needs to be tested on an extension of this model to provide a more compelling argument.

      The investigation of dispersal behaviour in starved individuals is rather limited to testing by imposing inhibition of the SMB neurons. Although a circuit is proposed for how hunger states modulate taxis in the absence of food, this circuit hypothesis is not explicitly modelled to test the theory or provide novel insights.

      Impact :

      This research underscores the value of an embodied approach to understanding chemotaxis, addressing an important memory mechanism that enables adaptive behavior in the sensorimotor circuits supporting C. elegans chemotaxis. The principle of operation - the dependence of motor responses to sensory inputs on the phase of oscillation - appears to be a convergent solution to taxis. Similar mechanisms have been proposed in Drosophila larvae chemotaxis [2], zebrafish phototaxis [3], and other systems. Consequently, the proposed mechanism has broader implications for understanding how adaptive behaviors are embedded within sensorimotor systems and how experience shapes these circuits across species.

      Although the reported reversal of synaptic connection from excitatory to inhibitory is an exciting phenomenon of broad interest, it is not entirely new, as the authors acknowledge similar reversals have been reported in ASER-to-AIB signaling for klinokinesis ( Hiroki et al., 2022). The proposed reversal of the ASER-to-AIY synaptic connection from inhibitory to excitatory is a novel contribution in the specific context of klinotaxis. While the ASER's role in gradient sensing and memory encoding has been previously identified, the current paper mechanistically models these processes, introducing a hypothesis for synaptic plasticity as the basis for bidirectional salt preference in klinotaxis.

      The research also highlights how internal states, such as hunger, can dynamically reshape sensory-motor programs to drive context-appropriate behaviors.

      The methodology of parameter search on a neural model of a connectome used here yielded the valuable insight that connectome information alone does not provide enough constraints to reproduce the neural circuits for behaviour. It demonstrates that additional neurophysiological constraints are required.

      Additional Context

      Oscillators with stimulus-driven perturbations appear to be a convergent solution for taxis and navigation across species. Similar mechanisms have been studied in zebrafish phototaxis [3], Drosophila larvae chemotaxis [2], and have even been proposed to underlie search runs in ants. The modulation of taxis by context and memory is a ubiquitous requirement, with parallels across species. For example, Drosophila larvae modulate taxis based on current food availability and predicted rewards associated with odors, though the underlying mechanism remains elusive. The synaptic reversal mechanism highlighted in this study offers a compelling framework for understanding how taxis circuits integrate context-related memory retrieval more broadly.

      As a side note, an interesting difference emerges when comparing C. elegans and Drosophila larvae chemotaxis. In Drosophila larvae, oscillatory mechanisms are hypothesized to underlie all chemotactic reorientations, ranging from large turns to smaller directional biases (weathervaning). By contrast, in C. elegans, weathervaning and pirouettes are treated as distinct strategies, often attributed to separate neural mechanisms. This raises the possibility that their motor execution could share a common oscillator-based framework. Re-examining their overlap might reveal deeper insights into the neural principles underlying these maneuvers.

      (1) Luo, L., Wen, Q., Ren, J., Hendricks, M., Gershow, M., Qin, Y., Greenwood, J., Soucy, E.R., Klein, M., Smith-Parker, H.K., & Calvo, A.C. (2014). Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron, 82(5), 1115-1128.

      (2) Antoine Wystrach, Konstantinos Lagogiannis, Barbara Webb (2016) Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae eLife 5:e15504.

      (3) Wolf, S., Dubreuil, A.M., Bertoni, T. et al. Sensorimotor computation underlying phototaxis in zebrafish. Nat Commun 8, 651 (2017).

      (4) Izquierdo, E.J. and Beer, R.D., 2013. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS computational biology, 9(2), p.e1002890.

    1. Reviewer #1 (Public review):

      Summary:

      The study investigates the role of vascular mural cells, specifically pericytes and vascular smooth muscle cells (vSMCs), in maintaining blood-brain barrier (BBB) integrity and regulating vascular patterning. Analyzing zebrafish pdgfrb mutants that lack brain pericytes and vSMCs, they show that mural cell deficiency does not impair BBB establishment or maintenance during larval and early juvenile stages. However, mural cells seem to be crucial for preventing vascular aneurysms and hemorrhage in adulthood as focal leakage, basement membrane disruption, and increased caveolae formation are observed in adult zebrafish at aneurysm hotspots. The authors challenge the paradigm that mural cells are essential for BBB regulation in early development while highlighting their importance for long-term vascular stability.

      Strengths:

      Previous studies have established that the zebrafish BBB shares molecular and morphological homology with e.g. the mammalian BBB and therefore represents a suitable model. By examining mural cell roles across different life stages - from larval to adult zebrafish - the study provides an unprecedented comprehensive developmental analysis of brain vascular development and of how mural cells influence BBB integrity and vascular stability over time. The use of live imaging, whole-brain clearing, and electron microscopy offers high-resolution insights into cerebrovascular patterning, aneurysm development, and structural changes in endothelial cells and basement membranes. By analyzing "leakage hotspots" and their association with structural endothelial defects in adults the presented findings add novel insights into how mural cell loss may lead to vascular instability.

      Weaknesses:

      The study uses quantitative tracer assays with multiple molecular weight dyes to evaluate blood-brain barrier (BBB) permeability. The study normalizes the intensity of tracer signals (e.g., 10 kDa, 70 kDa dextrans) in the brain parenchyma to the vascular signal of a 2000 kDa dextran tracer (assumed to remain within vessels). Intensity normalization is used to control for variations in tracer injection efficiency or vascular density. This method doesn't directly assess the absolute amount of tracer present in the parenchyma, potentially underestimating leakage severity. As the lack of BBB impairment is a "negative" finding, more rigorous controls or other methods might be needed to corroborate it.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors employed Saturated Transposon Analysis in Yeast (SATAY) in the model yeast Saccharomyces cerevisiae to uncover mutations conferring resistance to 20 different antifungal compounds. These screens revealed novel resistance mechanisms and the modes of action for the antifungal compounds Chitosan and HTI-2307. The authors discovered that Chitosan electrostatically interacts with cell wall mannosylphosphate and identified Hol1 as the transporter of HTI-2307.

      Strengths:

      The study highlights the power of SATAY in uncovering drug-resistance mechanisms, modes of action, and cellular processes influencing fungal responses to drugs. Identifying novel resistance mechanisms and modes of action for various compounds in this model yeast provides valuable insights for further investigating these compounds in fungal pathogens and developing antifungal strategies. This study thus represents a significant resource for exploring cellular responses to chemical stresses.

      The manuscript is well-written and highly clear.

      Weaknesses:

      As the study was conducted using highly modified non-pathogenic laboratory yeast strains, verification of the findings in fungal pathogens would greatly enhance its relevance and applicability.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates whether pupil dilation reflects prediction error signals during associative learning, defined formally by Kullback-Leibler (KL) divergence, an information-theoretic measure of information gain. Two independent tasks with different entropy dynamics (decreasing and increasing uncertainty) were analyzed: the cue-target 2AFC task and the letter-color 2AFC task. Results revealed that pupil responses scaled with KL divergence shortly after feedback onset, but the direction of this relationship depended on whether uncertainty (entropy) increased or decreased across trials. Furthermore, signed prediction errors (interaction between frequency and accuracy) emerged at different time windows across tasks, suggesting task-specific temporal components of model updating. Overall, the findings highlight that pupil dilation reflects information-theoretic processes in a complex, context-dependent manner.

      Strengths:

      This study provides a novel and convincing contribution by linking pupil dilation to information-theoretic measures, such as KL divergence, supporting Zénon's hypothesis that pupil responses reflect information gained during learning. The robust methodology, including two independent datasets with distinct entropy dynamics, enhances the reliability and generalisability of the findings. By carefully analysing early and late time windows, the authors capture the temporal dynamics of prediction error signals, offering new insights into the timing of model updates. The use of an ideal learner model to quantify prediction errors, surprise, and entropy provides a principled framework for understanding the computational processes underlying pupil responses. Furthermore, the study highlights the critical role of task context - specifically increasing versus decreasing entropy - in shaping the directionality and magnitude of these effects, revealing the adaptability of predictive processing mechanisms.

      Weaknesses:

      While this study offers important insights, several limitations remain. The two tasks differ significantly in design (e.g., sensory modality and learning type), complicating direct comparisons and limiting the interpretation of differences in pupil dynamics. Importantly, the apparent context-dependent reversal between pupil constriction and dilation in response to feedback raises concerns about how these opposing effects might confound the observed correlations with KL divergence. Finally, subjective factors such as participants' confidence and internal belief states were not measured, despite their potential influence on prediction errors and pupil responses.

    1. Reviewer #1 (Public review):

      Summary:

      The investigators in this study analyzed the dataset assembly from 540 Salmonella isolates, and those from 45 recent isolates from Zhejiang University of China. The analysis and comparison of the resistome and mobilome of these isolates identified a significantly higher rate of cross-region dissemination compared to localized propagation. This study highlights the key role of the resistome in driving the transition and evolutionary history of S. Gallinarum.

      Strengths:

      The isolates included in this study were from 16 countries in the past century (1920 to 2023). While the study uses S. Gallinarun as the prototype, the conclusion from this work will likely apply to other Salmonella serotypes and other pathogens.

    1. Reviewer #2 (Public review):

      Summary:

      Translation of CGG repeats leads to accumulation of poly G, which is associated with neurological disorders. This is an important paper in which the authors sought out proteins that modulate RAN translation. They determined which proteins in Hela cells were enriched on CGG repeats and affected levels of polyG encoded in the 5'UTR of the FMR1 mRNA. They then showed that siRNA depletion of ribosomal protein RPS26 results in less production of FMR1polyG than in control. Experiments were performed in several cell lines and with several reporters with differences in repeats and transfection methods to increase confidence that changes were occurring. New data and details of the methods increase confidence that reporter translation but not global translation is diminished by RPS26 knockdown as concluded. The manuscript has been improved by data showing that new proteins are being synthesized in cells following RPS26 knockdown, and that near-cognate start codon usage is diminished in lines when RPS26 is knocked down, but the mechanism by which RPS26 depletion affects translation is still unclear.

      Strengths:

      - The authors have proteomics data that show enrichment of a set of proteins on FMR1-polyG RNA but not a related RNA.<br /> - Knockdown of RPS26, which was enriched on the FMR1 RNA, led to decreases in cell growth, but surprisingly did not strongly affect global translation, as assessed by puromycin incorporation<br /> - There is some new evidence that near-cognate start codon selection is affected by RPS26 knockdown

      Weaknesses:

      - The mechanism for RPS26 knockdown affecting translation of the polyG sequences is unclear, whether knockdown is affecting ribosome levels, extra ribosomal RPS26 or ribosome composition is not known.

    1. Reviewer #2 (Public review):

      Summary

      The authors use a tree biodiversity experiment to evaluate the effects of tree community and canopy cover on communities of cavity-nesting Hymenoptera and their parasitoids and the interactions between these two guilds. They find that multiple measures of tree diversity influence the hosts, parasitoids, and their interactions. In addition, host-parasitoid interactions show a phylogenetic signal.

      Strength

      The authors use a massive, long-term data set, meaningful community descriptors, and a solid set of analyses to explore the impacts of tree communities on host-parasitoid networks. It is rare to have such detailed data from multiple different trophic levels.

      Weakness

      Even though the data expands over several seasons, this is not considered in the analyses, but communities sampled at different years are pooled at the plot level. A more detailed analysis of the variations between years could reveal underlaying patterns as currently the differences in the communities and their structure between the years are ignored (e.g., when estimating the phylogenetic compositions not all the species pooled together actually coexist in time).<br /> Also, the precision of the writing should be improved as it was not always easy to follow the text and the thoughts.