9,384 Matching Annotations
  1. Jul 2025
    1. eLife Assessment

      This study presents useful findings that explore the prognostic and immunotherapeutic relevance of specific immune-related genes (CALR, IL1R1, IFNB1, and IFNG) in the bladder cancer tumor microenvironment. While the analysis highlights potentially meaningful associations with survival and treatment response, the strength of evidence is incomplete, as some claims lack sufficient experimental or mechanistic validation. Further refinement and validation of the predictive models would enhance the impact and generalizability of the conclusions.

    1. eLife Assessment

      This study describes a genetic screen to identify deubiquitinases (DUBs) that counteract the activity of small-molecule degraders (PROTACs). The presented data are valuable, identifying OTUD6A and UCHL5 as DUBs that impact the efficacy and potency of PROTACs. While the conclusions are broadly supported and the methods employed are solid, the mechanistic depth and validation are incomplete. Overall, these findings merit further evaluation by the targeted protein degradation community when developing and optimizing PROTACs.

    1. eLife Assessment

      In this important contribution, Yan and colleagues describe a powerful and compelling strategy to generate concatamers of the BK channel and their fusion constructs with the auxiliary gamma subunits, which allows exploring contributions of individual subunits of the tetrameric channel to its gating and the study of heteromeric channel complexes of defined composition. Distinct examples are presented, which illustrate great diversity in the stoichiometric control of BK channel gating, depending on the site and nature of molecular perturbations. The molecular approaches could be extended to other membrane proteins whose N and C termini face opposite sides of the membrane.

    1. eLife Assessment

      This manuscript reports a high-quality genome assembly of the European cuttlefish, Sepia officinalis, a representative species of the Cephalopod lineage. The data are based on current best practices for sequencing and genome assembly, including PacBio HiFi long reads and Hi-C chromatin conformation capture; the analysis is currently in parts incomplete, as further analyses are required to confirm the correct chromosome number. This genome will be a useful resource for the community of researchers interested in cuttlefish biology and comparative genomics in general.

    1. eLife Assessment

      This important study systematically investigates the effects of calnexin, an endoplasmic reticulum chaperone, on the drug response of approximately 230 disease-causing variants of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Through deep mutational scanning, interactome profiling, and functional assays, the findings provide convincing evidence that calnexin significantly influences both CFTR expression and the efficacy of corrector drugs in a variant-specific manner. These insights advance our understanding of how cellular quality control machinery shapes the pharmacological responsiveness of CFTR variants, which are broadly relevant for researchers in protein folding and genetic disease therapeutics.

    1. eLife Assessment

      This valuable study presents computational analyses of over 5,000 predicted extant and ancestral nitrogenase structures. The data analyses are convincing, it offers unique insights into the relationship between structural evolution and environmental and biological phenotypes. The data generated in this study provide a vast resource that can serve as a starting point for studies of reconstructed and extant nitrogenases.

    1. eLife Assessment

      The macromolecular organization of photosynthetic complexes within the thylakoids of higher plant chloroplasts has been a topic of significant debate. Using in situ cryo-electron tomography, this study reveals the native thylakoid architecture of spinach thylakoid membranes with single-molecule precision. The experimental methods are unique and compelling, providing important information for understanding the structural features that impact photosynthetic regulation in vascular plants and addressing several long-standing questions about the organization and regulation of photosynthesis.

    1. Editors Assessment:

      This paper presents Chevreul, a new open-source R Bioconductor (meta-)package for processing and integration of scRNA-seq data from cDNA end-counting, full-length short-read or long-read protocols. Alongside a R Shiny app for easy visualization, formatting, and analysis for exploratory analyses of scRNA-seq data processed in the SingleCellExperiment Bioconductor or Seurat formats. The name of the tool is inspired by the colour theorist Michel-Eugène Chevreul and the optical illusion of the same name. To demonstrate the use of Chevreul, the authors provide a sample analysis, which helps to demonstrate how users can visualize a wide range of parameters, enabling transparent and reproducible scRNA-seq analyses. Peer review also pushing the author to provide extensive guidance materials to assist with use. Being implemented in R, the R package and integrated Shiny application are freely available under an open-source MIT license in Bioconductor and their GitHub page here: https://github.com/cobriniklab/chevreul

      This evaluation refers to version 1 of the preprint

    1. eLife Assessment

      This manuscript provides valuable evidence comparing the performance of mathematical models and opinions from experts engaged in outbreak response in forecasting the spatial spread of an Ebola epidemic. The evidence supporting the conclusions is convincing. It will be of interest to disease modellers, infectious disease epidemiologists, policy-makers, and those who need to inform policy-makers during an outbreak.

    1. eLife Assessment

      This important work substantially advances our understanding of the interaction among gut microbiota, lipid metabolism, and the host in type 2 diabetes. The evidence supporting the claims of the authors is convincing. The work will be of interest to medical biologists working on microbiota and diabetes.

    1. eLife Assessment

      This is a valuable study that explores the role of the conserved transcription factor POU4-2 in the maintenance, regeneration, and function of planarian mechanosensory neurons. The authors provide solid evidence provided by gene expression and functional studies to demonstrate that POU4-2 is required for the maintenance and regeneration of functional mechanosensory neurons in planarians. Furthermore, the authors identify conserved genes associated with human auditory and rheosensory neurons as potential targets of this transcription factor.

    1. eLife Assessment

      This study offers useful findings demonstrating the cartilage-protective effects of osteoactivin in inflammatory experimental models. The study provides compelling evidence that osteoactivin may serve as a promising therapeutic target for inflammatory joint diseases.

    1. eLife Assessment

      This valuable study investigates the role of HIF1a signaling in epicardial activation and neonatal heart regeneration in mice. Through a combination of genetic and pharmacological approaches, the authors show that stabilization of HIF1a enhances epicardial activation and extends the regenerative capacity of the heart beyond the typical neonatal window following myocardial infarction (MI). However, several aspects of the study remain incomplete and would benefit from further clarification and additional experimental support to solidify the conclusions.

    1. eLife Assessment

      This study introduces a useful method to estimate the probability that a malaria case is imported and to identify the geographic origin of parasites by using a Bayesian approach that integrates epidemiological, travel, and genetic data. The authors provide convincing evidence that the approach can reliably identify the main sources of malaria imports. This work will be of great interest to the area of genomic epidemiology and public health strategies aiming to eliminate malaria.

    1. eLife Assessment

      This study presents an important finding that ant nest structure and digging behavior depend on ant age demographics for a ground-dwelling ant species (Camponotus fellah). By asking whether ants employ age-polyethism in excavation, the authors address a long-standing question about how individuals in collectives determine the overall state of the task they must perform, and their results may prove to be a key consideration for interpreting results from other studies in the field of social insect behavior. The experimental evidence that the age of the ants and the group composition affect the digging of tunnels is solid, although some aspects of the modeling and certain analyses may benefit from further clarification regarding their added value to the core findings.

    1. eLife Assessment

      The medicinal leech preparation is an amenable system in which to understand the neural basis of locomotion. Here a previously identified non-spiking neuron was studied in leech and found to alter the mean firing frequency of a crawl-related motoneuron, which fires during the contraction phase of crawling. The findings are valuable and the experiments were diligently done and generally solid; The results lay a foundation for additional studies in this system.

    1. eLife Assessment

      The paper presents a new behavioral assay for Drosophila aggression and demonstrates that social experience influences fighting strategies, with group-housed males favoring high-intensity but low-frequency tussling over aggressive lunging observed in isolated males. This paper is important for researchers studying the impact of social isolation on aggression, while the description of tussling behavior and the interpretation of the link between tussling and mating success are incomplete.

    1. eLife Assessment

      This important study examines the role of endothelin signaling in nerve regeneration, providing convincing evidence that it functions as a default brake on axon regrowth. Inhibiting endothelin signaling with Bosentan promotes regeneration and counteracts the decline in regenerative potential caused by aging. Since Bosentan is an FDA-approved drug, these findings could have therapeutic value in clinical settings where peripheral nerve regeneration is not adequate or seriously impaired, as is often the case in older individuals.

    1. eLife Assessment

      This study presents a valuable finding about how receptor-ligand binding pathways with multi-site phosphorylation can show non-monotonic responses to increasing ligand affinity and to kinase activity. The authors provide convincing evidence through a simple ordinary differential equation model of such signaling networks with the key new ingredient of ligand-induced receptor degradation. The work will be of interest to physicists and biologists working on signal transduction and biological information processing.

    1. eLife Assessment

      This important work provides mechanistic insights into the development of cardiac arrhythmia and establishes a new experimental use case for optogenetics in studying cardiac electrophysiology. The agreement between computational models and experimental observations provides a convincing level of evidence that wave train-induced pacemaker activity can originate in continuously depolarized tissue, with the limitation that there may be differences between depolarization arising from constant optogenetic stimulation, as opposed to pathophysiological tissue depolarization. Future experiments in vivo and in other tissue preparations would extend the generality of these findings.

    1. eLife Assessment

      This manuscript presents a valuable methodological approach for investigating context-dependent activity of cis-regulatory elements within defined genomic loci. The authors combine a locus-specific massively parallel reporter assay, enabling unbiased and high-coverage profiling of enhancer activity across large genomic regions, with a degenerate reporter assay to identify nucleotides critical for enhancer function. The data supporting the conclusions are solid, highlighted by the successful identification and characterization of both previously known and new regulatory elements across multiple developmental stages, cell types, and species; however, concerns regarding assay sensitivity, statistical rigor in distinguishing active regions, and limitations inherent to the design of the reporter assays remain to be addressed. With strengthened quantitative analysis, statistical validation, and additional functional experiments to directly establish regulatory element-gene relationships, this study will be of broad interest to researchers investigating gene regulation mechanisms in development and disease.

    1. eLife Assessment

      This important study offers substantial technical advancements for neural circuit tracing in larval zebrafish, a model for systems and developmental neurobiology. The enhanced rabies virus-based retrograde transneuronal tracing improves efficiency and provides a method for combined structural and functional brain mapping. The supporting evidence is solid, and there is strong confidence in the technique's utility for neurobiologists working with zebrafish.

    1. eLife Assessment

      This manuscript presents solid experimental data using Fmr1 knockout mice to explore the fundamental role of Fmr1 in sleep regulation. The study supports the hypothesis that scheduled feeding can improve circadian rhythm and behavior in a mouse model of Fragile X syndrome. These findings may offer new insights into neurodevelopmental disorders and their potential treatment strategies.

    1. eLife Assessment

      This important work advances our understanding of DNA methylation and its consequences for susceptibility to DNA damage. This work presents evidence that DNA methylation can accentuate the genomic damage propagated by DNA damaging agents as well as potentially being an independent source of such damage. The experimental results reported are sound but the evidence presented to support the conclusions drawn is incomplete and other interpretations are possible. The work will be of broad interest to biochemists, cell and genome biologists.

    1. eLife Assessment

      This study provides novel and convincing evidence that both dopamine D1 and D2 expressing neurons in the nucleus accumbens shell are crucial for the expression of cue-guided action selection, a fundamental component of decision-making. The research is systematic and rigorous in using optogenetic inhibition of either D1- or D2-expressing medium spiny neurons in the NAc shell to reveal attenuation of sensory-specific Pavlovian-Instrumental transfer, while largely sparing value-based decision on an instrumental task. Findings in this report build on prior research and resolve some conflicts in the literature regarding decision making.

    1. eLife Assessment

      The findings are valuable, given that they highlight the flexible and future-oriented nature of working memory. However, the evidence for the claims about context/color generalization, behavioural relevance of context decoding, dimensionality reduction, neural geometry, the XOR representation, and the specific contribution of working memory is incomplete. The work could be reframed in terms of prospective remapping.

    1. eLife Assessment

      This study provides potentially important findings on the understanding of circannual timing in mammals, for which iodothyronine deiodinases (DIOs) have been suggested to be of critical importance, yet functional genetic evidence has been missing. The authors aim to implicate dio3, the major inactivator of the biologically active thyroid hormone T3, in circannual timing in Djungarian hamsters, using a combination of correlative and gene knock-out experiments. Currently, several questions have been raised concerning either the methodological description and/or the design of the experiments, and so the experimental evidence is considered incomplete.

    1. eLife Assessment

      Avoidance of UV and blue light by the nematode C. elegans is mediated by the unusual transmembrane protein LITE-1, a non-canonical photoreceptor. In this valuable work, the authors provide convincing evidence that LITE-1 function is also required for avoidance of very high concentrations of the food-associated cue diacetyl, suggesting that it may also function as a diacetyl chemoreceptor. While the evidence for this idea is incomplete, these intriguing findings suggest an unexpected complexity in the function of this unusual photoreceptor.

    1. eLife Assessment

      This study examines how the neuronal cytoskeleton contributes to the formation of the axonal membrane-associated periodic skeleton (MPS) in embryonic dorsal root ganglia (DRG) neurons, using STED imaging. Conclusions are supported by convincing methods, data, and analyses. This useful work confirms previous data and improves our understanding of the roles of microtubules and actin dynamics in the chronological recruitment of MPS components.

    1. eLife Assessment

      These findings are among some of the first to identify a behavioral and neurobiological substrate that disentangles nonassociative from associative fear responses following stress, providing a fundamental push forward in the field. The evidence supporting this is convincing and uses a variety of conceptual and technological approaches. This investigation will be of interest to neuroscientists and behaviourists broadly, as well as clinicians for its relevance to post-traumatic stress disorder.

    1. eLife Assessment

      The authors show that innate defensive behavior in mice is shaped by threat intensity, reward value, and social hierarchy, highlighting how value and social context influence instinctive decisions. The authors provide useful behavioural findings supported by strong data, yet the evidence is incomplete due to ambiguities about methodology and the computational model that remains largely descriptive.

    1. eLife Assessment

      This is a methodologically rich manuscript that is important for elucidating the neural mechanisms of expectation in perception. The analyses are convincing in extending analogous findings in attention and working memory. With further clarification, the findings will be of broad interest to vision researchers.

    1. eLife Assessment

      This valuable study presents a theoretical framework for building continuous attractor networks that integrate with a wide range of topologies, which are of increasing relevance to neuroscientists. While the work offers solid evidence for most claims, the evidence supporting biological plausibility and key claims - such as the existence of a continuum of stable states and robustness across geometries - is currently incomplete and would benefit from further analysis or discussion. The study will be of interest to computational and systems neuroscientists working on neural dynamics and network models of cognition.

    1. eLife Assessment

      This study provides valuable insights into humans' ability to generalize knowledge of learned graph structures to new experiences that share the same structure but are built from different stimuli. However, the evidence for the authors' claims is incomplete, with the main claims of structural generalization and compositionality only partially supported by MEG and behavioral data. This study will be of interest to cognitive neuroscientists studying structure learning and generalization.

    1. eLife Assessment

      This study introduces a valuable simulation-based inference (SBI) framework to identify degenerate compensatory mechanisms that stabilize network activity despite neuronal hyperexcitability, a feature common to many brain disorders. By estimating posterior distributions of network parameters, the authors highlight factors such as threshold potential and interneuron-to-principal cell connectivity as key compensators for increased intrinsic excitability and interneuron loss. While the approach is promising and could become a key tool for probing network degeneracy, the study is currently incomplete. To fully realize its potential, the framework requires improved scalability and more rigorous cross-validation.

    1. eLife Assessment

      This valuable short paper is an ingenious use of clinical patient data to address an issue in imaging neuroscience. The authors clarify the role of face-selectivity in human fusiform gyrus by measuring both BOLD fMRI and depth electrode recordings in the same individuals; furthermore, by comparing responses in different brain regions in the two patients, they suggested that the suppression of blood oxygenation is associated with a decrease in local neural activity. The methods are solid and provide a rare dataset of potentially general importance.

    1. eLife Assessment

      In their study, Diana et al. introduce a novel method for spike inference from calcium imaging data using a Monte Carlo-based approach, emphasizing the quantification of uncertainties in spike time estimates through a Bayesian framework. This method employs particle Gibbs sampling for estimating model parameter probabilities, offering accuracy comparable to existing methods with the added benefit of directly assessing uncertainties. The presentation of the underlying methods and its characterization is convincing and it presents a valuable advancement for neuroscientists interested in new approaches for parameter estimation from calcium imaging data.

    1. eLife Assessment

      These useful findings assigned a novel functional implication of histone acylation, crotonylation. Mechanistic insights have been provided in great detail regarding the role of the YEATS2-GCDH axis in modulating epithelial-to-mesenchymal transition (EMT) in head and neck cancer, and overall the strength of evidence is solid.

    1. eLife Assessment

      In this work, the authors intend to assess the existence of a redox potential across germline stem cells and neighboring somatic stem cells in the Drosophila testis. Some aspects of the manuscript are solid, like the clear effect of SOD KD on cyst cell differentiation state. Other conclusions of the work, such as the non-autonomous effect of this KD in germ cells are not sufficiently supported by the data. The work is potentially useful if the critiques of the reviewers are fully addressed; the strength of the evidence of the manuscript as it stands is incomplete.

    1. eLife Assessment

      This study provides valuable insights into the influence of sex on bile acid metabolism and the risk of hepatocellular carcinoma (HCC). The data to support that there are inter-relationships between sex, bile acids, and HCC in mice are convincing, although this is a largely descriptive study. Future studies are needed to understand the interaction of sex hormones, bile acids, and chronic liver diseases and cancer at a mechanistic level. Also, there is not enough evidence to determine the clinical significance of the findings given the differences in bile acid composition between mice and men.

    1. eLife Assessment

      This study presents data on sex differences in gene expression across organs of four mice taxa. The authors have generated a unique and convincing dataset that fills a gap left by previous studies. They claim that sex-biased expression in the soma can overlap between genetic males and females, and that the relevant patterns both turn over quickly over short evolutionary times and do so faster in somatic than gonadal tissues. These conclusions could largely have been predicted by extrapolating from previous findings in the field, but nevertheless demonstrating them directly is a fundamental advance.

      [Editorial note: The work was originally assessed by colleagues who are active in the field of evolution of sex differences or in areas adjacent to this field (see initial assessment at https://doi.org/10.7554/eLife.99602.2). The appeals process involved consultation with experts working in other areas of evolutionary biology. The above assessment synthesises the opinions of both sets of reviewers.]

    1. eLife Assessment

      This study investigated the role of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) in the renal glomerular podocytes by characterizing the mice with dual deletion of both receptors in vivo as well as the cultured murine podocytes with induced deletion of both receptors in vitro. The solid data presented in this paper demonstrated the critical requirement of both IR and IGF1R signaling in normal podocyte physiology in mice, albeit a more detailed characterization of the mouse model is desired. Interestingly, long-range sequencing revealed significant retention of introns in mRNAs, due to an altered spliceosome level resulted from the loss of IR and IGF1 signaling in cultured podocytes. This new finding suggests an essential role of IR and IGF1R signaling in regulating RNA metabolism in podocyte, which provides useful information for the understanding of physiology and metabolism of podocytes. However, the underlying molecular mechanism for such a regulation is still unclear and awaits further studies.

      [Editors' note: this paper was reviewed by Review Commons.]

    1. eLife Assessment

      In their important manuscript, Gangadharan, Kober and Rice focus on how Stu2/XMAP215-family microtubule polymerases use their TOG domains to catalytically promote microtubule growth, testing whether their mechanism follows an enzyme-like kinetic model similar to that of actin polymerases. The authors integrate measurements including microtubule polymerization rates and TOG-tubulin binding kinetics to convincingly show that Stu2 follows an enzyme-like model where tight tubulin binding enables efficient polymerization, revealing a shared mechanism with actin polymerases despite their evolutionary divergence. This work will be of general interest to the cell biology and biophysics communities.

    1. eLife Assessment

      This valuable study provides new insights into the movement of ions through the bacterial pump KdpFABC, which regulates intracellular potassium concentration, by solving a 2.1 Å cryo-EM structure of the nanodisc-embedded active wild-type protein, and carrying out mutagenesis and activity assays. Although the structural data and analysis are solid, additional information about other structural classes identified in the EM data, as well as a discussion of relevant work done by others, would further strengthen these findings. The description of the activity assays is currently incomplete because more information is required to rigorously assess these experiments. This work will be of interest to the membrane transporter and channel communities and to microbiologists interested in osmoregulation and potassium homeostasis.

    1. Abraham Lincoln’s Second Inaugural Address, 1865

      As I take up this office a statement must be properly made. There is not new current information to present but I hope to encourage a better future. Four years ago we were worried about a war, both parties were in social conflict. The Union divided over the legality and morality of slavery and war came. Slaves who mainly lived in the south knew this rising conflict was in relation to them. Neither party had expected the war to be this long, brutal and that it would continue even after the resolution of slavery in Congress. How could both sides be under the same God, the same religion and still have both of their prayers left unanswered.

      Slavery is now an offence to god and he wishes it to be removed. He shall pray for justice to be brought upon corrupt slave owners and the freed slaves they have hurt through emotional and physical toil; He shall pray for the end of this war. What was said three thousand years ago, must still be said. "the judgments of the Lord are true and righteous altogether.”

      With malice toward none; with charity for all; with firmness in the right, as God gives us to see the right, let us strive on to finish the work we are in. To bind up the nation’s wounds; to care for him who shall have borne the battle, and for his widow, and his orphan — to do all which may achieve and cherish, a just and a lasting peace, among ourselves, and with all nations.

    1. eLife Assessment

      This study presents an important computational framework, FLiSimBA (Fluorescence Lifetime Simulation for Biological Applications), for modeling experimental limitations in Fluorescence Lifetime Imaging Microscopy (FLIM). FLiSimBA is readily available in MATLAB and Python, enables users to simulate effects of noise and varying sensor expression levels, and provides practical guidance for both lifetime imaging experiments and biosensor development. The analyses are robust, and the evidence supporting the tool's utility in distinguishing between multiple lifetime signals is compelling, indicating strong potential for multiplexed dynamic imaging. However, users should also consider that the tool's effectiveness depends on the suitability of a two-component discrete exponential model.

    1. eLife Assessment

      This study presents important findings on increased ground beetle diversity in strip cropping compared with crop monocultures. Solid methods are used to analyze data from multiple sites with heterogeneous systems of mixed crops, allowing broad conclusions, albeit at the expense of lacking taxonomic specificity. The work will be of interest to all those applying plant diversity treatments to improve the diversity of associated animals in agricultural fields.

    1. eLife Assessment

      This study shows, for the first time, the structure and snapshots of the dynamics of the full-length soluble Angiotensin-I converting enzyme dimer. The combination of structural and computational analyses provides compelling evidence that reveals the conformational dynamics of the complex and key regions mediating the conformational change. This fundamental work illustrates how conformational heterogeneity can be used to gain insights into protein function.

    1. eLife Assessment

      This important study provides a potential framework for understanding the regulatory mechanisms of DON toxin biosynthesis in F. graminearum and identifies potential molecular targets for Fusarium head blight control. While FgDML1 remains under-explored with an unclear role in the biology of filamentous fungi, the supporting evidence in this study is incomplete. Providing details on methods and adding controls will strengthen the work.

    1. eLife Assessment

      This work presents potentially important findings suggesting that a combination of transcranial stimulation approaches applied for a short period could improve memory performance. However, the evidence supporting the conclusions is currently incomplete. In particular, the claims relating to the specific neural mechanisms and anatomical sites of action underlying effects were viewed as overstated in the current version. The results potentially have implications for non-invasive enhancement of cognitive functions.

    1. eLife Assessment

      In this valuable study, the authors show the physiological response and molecular pathway mediating the effect of quinofumelin, a developed fungicide with an unknown mechanism. The authors present convincing data suggesting the involvement of the uridine/uracil biosynthesis pathway, by combining in vivo microbiology characterization as well as in vitro biochemical binding results.

    1. eLife Assessment

      This important study reveals how Drosophila may be used to investigate the role of missense variants in the PLCG1 phospholipase gene in human diseases. The experimental evidence is compelling and brings together rigorous analysis of clinical and model organism phenotypes with a structural analysis of the PLCG1 protein.

    1. eLife Assessment

      This useful study characterizes the evolution of medial prefrontal cortex activity during the learning of an odor-based choice task. While the evidence for an increase in task-informative cells with learning, the emergence of population sequences, and the presence of replay events is intriguing, it remains incomplete; notably, the study does not adequately consider the extensive literature on the role of olfactory and hippocampal networks in similar odor-guided tasks. Furthermore, the experimental design appears insufficient to support strong conclusions regarding pre-existing representations or the functional relevance of neural sequences. The study will be of interest to neuroscientists investigating learning and decision-making processes.

    1. eLife Assessment

      This important study presents JABS, an open-source platform that integrates hardware and user-friendly software for standardized mouse behavioral phenotyping. The work has practical implications for improving reproducibility and accessibility in behavioral neuroscience, especially for linking behavior to genetics across diverse mouse strains. The strength of evidence is convincing, with validation of key platform components, although incomplete methodological details and limited documentation, particularly around pose estimation and classifier generalizability, currently limit its interpretability and broader adoption.

    1. eLife Assessment

      This carefully conducted study aims to understand how the early visual experience of premature infants induces lasting deficits, including compromised motion processing. The authors address this important question in a ferret animal model, exposing the developing visual system prematurely to patterned visual input by opening one or both eyes at a time when both retinal waves and light traveling through closed lids can drive sensory responses. Convincing evidence is presented, suggesting that eye opening at this time impacts temporal frequency tuning and elevates spontaneous firing rates. These findings will have great relevance for neuroscientists studying visual system development, particularly in the context of premature birth.

    1. eLife Assessment

      This important study uses long-term behavioural observations to understand the factors that influence female-on-female aggression in gorilla social groups. The evidence supporting the claims is convincing, as it includes novel methods of assessing aggression and considers other potential factors. The work will be of interest to broad biologists working on the social interactions of animals.

    1. eLife Assessment

      In this important study, the authors model reinforcement-learning experiments using a recurrent neural network. The work examines if the detailed credit assignment necessary for back-propagation through time can be replaced with random feedback. The authors provide solid evidence that the solution is adequate within relatively simple tasks.

    1. eLife Assessment

      This work investigates ZC3H11A as a cause of high myopia through the analysis of human data and experiments with genetic knockout of Zc3h11a in mouse, providing a useful model of myopia. The evidence supporting the conclusion is still incomplete in the revised manuscript as the concerns raised in the previous review were not fully addressed. The article would benefit from a more robust genetic analysis and comprehensive presentation of human phenotypic data to clarify the modes of inheritance in the families, currently limited by loss of patient follow-up and addressing whether there is a reduction in bipolar cell number or decreased marker protein expression through cell counts or quantifiable, less saturated Western blots. The work will be of interest to ophthalmologists and researchers working on myopia

    1. eLife Assessment

      This important study provides convincing evidence that the Kinesin protein family member KIF7 regulates the development of the cerebral cortex and its connectivity and the specificity of Sonic Hedgehog signaling by controlling the details of Gli repressor vs activator functions. This study provides new insights into general aspects of cortical development.

    1. eLife Assessment

      This study presents useful findings on the application of HPV cfDNA as a marker for monitoring treatment response and prognosis in patients with recurrent or metastatic cervical cancer. The evidence supporting the claims of the authors is solid, although inclusion of a larger number of patient samples would have strengthened the study. The work will be of interest to medics and biologists working on cervical cancer.

    1. eLife Assessment

      This valuable study introduces a modern and accessible PyTorch reimplementation of the widely used SpliceAI model for splice site prediction. The authors provide solid evidence that their OpenSpliceAI implementation matches the performance of the original while improving usability and enabling flexible retraining across species. These advances are likely to be of broad interest to the computational genomics community.

    1. eLife Assessment

      The manuscript by Hawes et al. provides important findings on how striatal projection neurons regulate spontaneous locomotion speed in the context of implicit motivation and distinct contextual valence. The supporting evidence for the findings is convincing. This work will be of broad interest to neuroscientists in the fields of basal ganglia, movement control, and cognition.

    1. eLife Assessment

      This important study is the first characterization of the phenotype caused by a lack of Eml3 expression in mice. Mutant animals present a disrupted pial basement membrane, leading to focal extrusions from the cerebral cortex, called ectopias. The methodology is convincing and the conclusions are solid, although further investigations on the mechanisms and inclusion of the experiments performed, but not presented, will improve the manuscript. This work would be of interest to neural development biologists and human geneticists working on brain disorders.

    1. eLife Assessment

      This paper presents the important finding that BNIP3/NIX, a mitophagy receptor, and its binding to ATG18 are required for mitophagy during muscle cell reorganization in Drosophila. Although the involvement of the BNIP3-ATG18/WIPI axis in mitophagy induction has been reported in mammalian cell culture systems, this study provides the first compelling evidence for this pathway in vivo in animals. The physiological significance of this BNIP3-dependent mitophagy will require further investigation.

    1. eLife Assessment

      Understanding how neural circuits mediate decision-making is a core problem in neuroscience. In this interesting and important work, the authors use detailed behavioral analysis and rigorous quantitative modeling to convincingly support the idea that the nematode C. elegans uses an "accept-reject" behavioral strategy, based on learned features of its environment, to make decisions upon encountering food patches. The work expands our understanding of the behavioral repertoire of this species, providing a foundation for future mechanistic studies in this powerful model system.

    1. eLife Assessment

      This is a well-written study that presents a solid genetic screen to identify regulators of adipose morphology and remodeling in zebrafish. The authors generated a rigorous screening platform based on live, whole animal imaging and statistical methods that revealed both novel and known genes critical for adipose regulation. This work is valuable because it provides several candidate genes relevant to metabolic health and a quantitative screening pipeline that will be beneficial for future studies. A limitation of the study is that it precludes a definitive distinction between developmental and remodeling effects.

    1. eLife Assessment

      This paper makes a valuable contribution to our understanding of the tradeoffs in eye design - specifically between improvements in optics and in photoreceptor performance. The authors successfully build a formal theory that enables comparisons across a wide range of species and eye types. One notable example is that how space should be allocated to optics and photoreceptors depends on eye type - with particularly notable differences between compound and simple eyes. The framework introduced to compare different design properties is convincing and provides a nice example of how to study tradeoffs in seemingly disparate design properties.

    1. eLife Assessment

      This work is a important resource for hypothesis testing of candidate upstream transcriptional regulatory factors that control the spatiotemporal expression of selector genes and their targets for GABAergic vs glutamatergic neuron fate in the anterior brainstem. Extensive high-quality datasets were generated and state of the art computational methods were convincingly implemented to identify candidate regulatory elements. The work will be of interest to biologists working to understand neuronal gene regulatory networks.

    1. eLife Assessment

      This valuable study reports the physiological function of a putative transmembrane UDP-N-acetylglucosamine transporter called SLC35G3 in spermatogenesis. The conclusion that SLC35G3 is a new and essential factor for male fertility in mice and probably in humans is supported by convincing data. This study will be of interest to reproductive biologists and physicians working on male infertility.

    1. eLife Assessment

      Qiu et al. present multiple dimeric structures of GPR3, which reveal the binding mode of the inverse agonist AF64394. The findings provide important insights into the regulation of GPCR3 and potentially other related orphan GPCRs. The authors present convincing evidence of their claims through thoughtful analysis of their cryo-EM structures, mutagenesis, and cell-based assays. This work will be of interest to GPCR investigators, especially those studying the signaling of orphan receptors.

    1. eLife Assessment

      This study provides valuable insights into the crosstalk between ATG2A with components of the early secretory pathway, namely RAB1A and ARFGAP1. The evidence supporting the claims is convincing. However, the manuscript would benefit from a more in-depth exploration of the details of the role of RAB1A in autophagy and the functional implications of its interaction with ATG2A. In addition, the molecular details of the role of ARFGAP1 in this complex need further clarification

    1. eLife Assessment

      This important study is of relevance for the fields of predictive processing, perception and learning, with a well-designed paradigm allowing the authors to avoid several common confounds in investigating predictions, such as adaptation. Using a state-of-the-art multivariate EEG approach, the authors test the opposing process theory and find evidence in support of it - i.e., the persuasive within trial effects. However, the interactions across block are not well motivated and much less persuasive, such that the support for the conclusions is only incomplete at present.

    1. eLife Assessment

      This valuable manuscript addresses the longstanding question of how the brain maintains serial order in working memory, proposing a biologically grounded model based on synaptic augmentation mechanisms that operates on longer time scales than facilitation. The authors show that augmentation provides a mechanism by which this order can be maintained in memory thanks to a temporal gradient of synaptic efficacies. Although the evidence remains incomplete at present, it can be made stronger by demonstrating robustness to network heterogeneity, spiking, and threshold values for encoding the working memory.

    1. eLife Assessment

      This important paper takes a novel approach to the problem of automatically reconstructing long-range axonal projections from stacks of images. The key innovation is to separate the identification of sections of an axon from the statistical rules used to constrain global structure. The authors provide compelling evidence that their method is a significant improvement over existing measures in circumstances where the labelling of axons and dendrites is relatively dense.

    1. eLife Assessment

      This important work substantially advances our understanding of the interaction among gut microbiota, lipid metabolism, and the host in type 2 diabetes. The evidence supporting the claims of the authors is solid, although additional experiments for the control FMT are not yet satisfactory. The work will be of interest to medical biologists working on microbiota and diabetes.

    1. eLife Assessment

      This study provides valuable evidence indicating that SynGap1 regulates the synaptic drive and membrane excitability of parvalbumin- and somatostatin-positive interneurons in the auditory cortex. Since haplo-insufficiency of SynGap1 has been linked to intellectual disabilities without a well-defined underlying cause, the central question of this study is timely. The experimental data is solid, as in their revisions the authors successfully addressed questions related to changes in thalamocortical presynaptic excitability, the contradiction between spontaneous and mini EPSCs data, and the anatomical analysis of excitatory synapses.

    1. eLife Assessment

      This paper describes the structure and connectivity of brain neurons that send descending connections to motor neurons and muscle in the fruit fly nerve cord, using a synapse-resolution connectome. This important work provides a wealth of hypotheses and predictions for future experimentation and modelling. Using state-of-the-art methods, the authors provide solid evidence for their conclusions.

    1. eLife Assessment

      In this useful study, ectopic expression and knockdown strategies were used to assess the effects of increasing and decreasing Cyclic di-AMP on the developmental cycle in Chlamydia. The authors convincingly demonstrate that overexpression of the dacA-ybbR operon results in increased production of c-di-AMP and early expression of the transitionary gene hctA and late gene omcB. Whilst the authors have attempted to revise the submission, the model currently proposed is not fully supported by the data presented.

    1. eLife Assessment

      This important study presents a new framework (ASBAR) that combines open-source toolboxes for pose estimation and behavior recognition to automate the process of categorizing behaviors in wild apes from video data. The authors present compelling evidence that this pipeline can categorize simple wild ape behaviors from out-of-context video at a similar level of accuracy as previous models, while simultaneously vastly reducing the size of the model. The study's results should be of particular interest to primatologists and other behavioral biologists working with natural populations.

    1. eLife Assessment

      The authors present a useful agent-based model to study the tensile force generated by myosin mini-filaments in actin systems (bundles and networks); by numerically solving a mechanical model of myosin-II filaments, the authors provide insights into how the geometry of the molecular components and their elastic responses determine the force production. This work is of interest to biophysicists (in particular theoreticians) investigating force generation of motor molecules from a biomechanical engineering and physics perspective. The authors convincingly show that cooperative effects between multiple myosin filaments can enhance the total force generated, but not the efficiency of force generation (force per myosin) if passive cross-linkers are present. This work would benefit from a more extensive discussion of the physiological relevance of the results in view of the existing experimental literature, and how the principles that govern the behavior could be different for different motor proteins.

    1. eLife Assessment

      This useful study examines excitation/inhibition (E/I) balance in the CA3-CA1 circuit of the hippocampus. Experimental and computational modeling results are presented, but these results provide incomplete evidence to support the paper's main claims due to shortcomings in the experimental and modeling approaches, as well as concerns about the neurobiological relevance of the results.

    1. eLife Assessment

      This valuable study provides evidence that the integration of the nuclear envelope into the endoplasmic reticulum provides a mechanism for mechanical integration across this continuous membrane system. If robustly demonstrated, this work would open up new avenues for studying organelle membrane tension homeostasis. While the evidence is largely convincing and carefully quantified, a key limitation is the absence of data demonstrating that microinjection of cytoskeleton-depolymerizing drugs locally disrupts the target network.

    1. eLife Assessment

      This important study identifies a novel CRF-positive projection from the central amygdala and BNST to dorsal striatal cholinergic interneurons, revealing a previously unrecognized pathway by which stress signals modulate striatal function. The authors present strong and convincing evidence for the anatomical and functional connectivity of this circuit and demonstrate that alcohol disrupts CRF-mediated cholinergic activity, supporting its relevance to alcohol use disorder.

    1. eLife Assessment

      This important study presents a meta-analysis confirming a statistically significant association between slow oscillation-spindle coupling and memory formation, although the reported effects are limited (~0.5% of variance). The evidence is overall convincing, but the statistical methods may be difficult to follow for readers unfamiliar with advanced techniques. This work will be of particular interest to neuroscientists studying the neural mechanisms of sleep and memory.

    1. eLife Assessment

      This well-designed study combining psychophysical and fMRI data presents a valuable finding regarding how adaptation alters spatial frequency processing in the cortex. The evidence supporting the claims of the authors is solid, although inclusion of more participants and better quality of the fMRI data would have strengthened the study. The study will be of interest to cognitive and perceptual neuroscientists working on human and non-human primates.

    1. eLife Assessment

      This work presents potentially important findings suggesting that a combination of transcranial stimulation approaches applied for a short period could improve memory performance. However, the evidence supporting the conclusions is currently incomplete. In particular, the claims relating to the specific neural mechanisms and anatomical sites of action underlying effects were viewed as overstated in the current version. The results potentially have implications for non-invasive enhancement of cognitive functions.

    1. eLife Assessment

      This useful study employs optogenetics, genetically-encoded dopamine and serotonin sensors, and patch-clamp electrophysiology to investigate modulations of neurotransmitter release between striatal dopamine and serotonin neurons - a topic of interest to neuroscientists studying the basal ganglia. The results suggest that the dopamine and serotonin systems operate largely in parallel, with the activation of serotonin neurons resulting in a small, transient dopamine release. The authors suggest that this interaction occurs via glutamate release in the ventral tegmental area, findings that are closely related to previous work. Some conclusions are incomplete requiring larger samples-sizes and controls.

    1. eLife Assessment

      This valuable paper introduces the Dyadic Interaction Platform, an experimental setup that enables researchers to study real-time social interactions between two participants in a controlled environment while maintaining direct face-to-face visibility. The evidence supporting the platform's effectiveness is convincing, with demonstrations of distinct experimental paradigms showing how transparency and continuous access to partners' actions can influence strategic coordination, decision-making, and learning. The work will be of broad interest to researchers studying social cognition across humans and non-human primates, providing a versatile tool that bridges the gap between naturalistic social interactions and controlled laboratory experiments.

    1. eLife Assessment

      This fundamental study presents a compelling and comprehensive analysis of the newly defined Lipocone superfamily, offering unprecedented insights into the evolutionary origins of Wnt proteins. The authors provide evidence that this superfamily evolved from membrane proteins. The work is exemplary in its use of sequence analysis and structural modeling and will be of broad interest to researchers studying protein evolution and enzymology.

      [Editors' note: this paper was reviewed by Review Commons.]

    1. eLife Assessment

      This valuable paper uses a quantitative modeling approach to explore a well-studied transition in motor behavior in the nematode C. elegans. The authors provide convincing evidence that this transition, which has been interpreted as a two-state behavior, can instead be described as a process whose parameters are smoothly modulated within a single state. This finding provides insight into the relationships between latent internal states and observable behavioral states, and suggests that relatively simple neuronal mechanisms can drive behavioral sequences that appear more complex.

    1. eLife Assessment

      This useful study describes distinctive characteristics of dentate gyrus granule cells and semilunar cells that are recruited during contextual memory processing. The study provides solid evidence to suggest mechanisms that may be involved in the recruitment of neurons into memory engrams in the dentate gyrus.

    1. eLife Assessment

      This valuable work explores the timely idea that aperiodic activity in human electrophysiology recordings is dynamically modulated in response to task events in a manner that may be relevant for behavioral performance. Moreover, the authors present solid evidence that, in some circumstances, these aperiodic changes might be misinterpreted as oscillatory changes. While many aspects of the manuscript were intriguing, there was a sense that some of the interpretations were overstated - for instance the claim that aperiodic activity distorts interpretations of theta specifically, versus having a more nuanced impact on the time-frequency representation. Softening some of the language may further improve the manuscript.

    1. eLife Assessment

      This study concerns how macaque visual cortical area MT represents stimuli composed of more than one speed of motion. The study is valuable because little is known about how the visual pathway segments and preserves information about multiple stimuli, and the study involves perceptual reports from both humans and one monkey regarding whether there are one or two speeds in the stimulus. The study presents compelling evidence that (on average) MT neurons shift from faster-speed-takes-all at low speeds to representing the average of the two speeds at higher speeds. Ultimately, this study raises intriguing questions about how exactly the response patterns in visual cortical area MT might preserve information about each speed, since such information could potentially be lost in an average response as described here, depending on assumptions about how MT activity is evaluated by other visual areas.

    1. eLife Assessment

      This valuable study uses tools of population and functional genomics to examine long non-coding RNAs (lncRNAs) in the context of human evolution. Analyses of computationally predicted human-specific lncRNAs and their genomic targets lead to the development of hypotheses regarding the potential roles of these genetic elements in human biology. The conclusions regarding evolutionary acceleration and adaptation, however, only incompletely take data and literature on human/chimpanzee genetics and functional genomics into account.

    1. eLife Assessment

      This important study presents a well-constructed multiscale simulation framework to investigate ATP-driven DNA translocation by prokaryotic SMC complexes, supporting a segment-capture mechanism. The strength of evidence is convincing, highlighting the necessity of a precise balance between electrostatic interactions and hydrogen bonding, as well as the critical role of kleisin asymmetry in ensuring unidirectional movement.

    1. eLife Assessment

      Research on push-pull systems has often focused on controlled environments, leaving significant gaps in our understanding of how these systems function under real-world conditions. This important and solid study makes a substantial contribution by investigating the volatile emissions and behavioral effects of Desmodium in natural and semi-field contexts which offer insights of broad interest for sustainable agriculture and pest management. While the authors rightly acknowledge some remaining limitations, the revised manuscript now provides a well-supported and transparent assessment of the ecological role of Desmodium volatiles in push-pull systems.

    1. eLife Assessment

      This is a valuable study on how past sensory experiences shape perception across multiple time scales. Using a behavioural task and reanalysed EEG data, the authors identify two unifying mechanisms across time scales: a process resulting in faster responses to expected stimuli modulated by attention to task, and reduced early decoding precision for expected inputs interpreted as dampened feedforward processing. The manipulation to dissociate task-related and unrelated history effects over multiple timescales is novel and promising, but the evidence is incomplete and could be strengthened by clarifying the measures, justifying analyses choices, and the relationship to other work.

    1. eLife Assessment

      The authors study how apolipoprotein L1 variants impact inflammation and lipid accumulation in macrophages. The findings will be useful for researchers investigating macrophage metabolism and inflammation. The discovery that the polyamine spermidine in part mediates such effects is interesting, but the supporting evidence for a physiologically relevant role is currently incomplete due to the lack of relevant in vivo studies.

    1. eLife Assessment

      This study presents a valuable finding of novel markers that may potentially identify resident tendon stem/progenitor cells (TSPCs). The study also presents a comprehensive single-cell transcriptional dataset that will be of value to the field. The evidence supporting the identification of novel markers of a TSPC is incomplete, requiring clarification of current analyses and additional validation experiments to demonstrate that these markers are indeed specific and these cells are indeed TSPCs. This work will be of interest to biologists and engineers focused on tendons and ligaments.

    1. eLife Assessment

      This study reanalyzed previously published scRNA-seq and TCR-seq data to examine the proportion and characteristics of dual-TCR-expressing Treg cells in mice, presenting some useful insights into TCR diversity and immune regulation. However, the evidence is incomplete, particularly with respect to data interpretation, statistical rigor, and the functionality of dual -TCR Treg cells. The study is potentially of interest to immunologists studying T-cell biology.

    1. eLife Assessment

      This study provides an important perspective on the influence of parental care in the establishment of the amphibian microbiome. Through a combination of cross-fostering experimental work, comparative analysis, and developmental time series, the authors provide compelling evidence that vertical transmission through care is possible, and solid but somewhat preliminary evidence that it plays a significant role in shaping frog skin microbiomes in nature or across time. This work will be of interest to researchers studying the evolution of parental care and microbiomes in vertebrates.

    1. eLife Assessment

      This study demonstrates the application of END-seq, originally developed to study genomewide DNA double-strand breaks, to telomere biology; the work packs a punch, concisely demonstrating the utility of this approach and the new insights that can be gained. The authors confirm that telomeres in telomerase-positive cells terminate with 5'-ATC in a Pot1-dependent manner, and demonstrate that this principle holds true in telomerase-negative ALT cells as well. S1-END-seq is similarly developed for telomeres, showing that ALT cells harbor several regions of ssDNA. The study is well-executed and convincing, the new insights are fundamental and compelling, and the optimized END-seq approaches will be widely utilized. The work will prompt additional studies that the reviewers look forward to, including combining telomeric END-seq with long-read sequencing to address the distribution and origin of variant telomere repeats and ssDNA along telomeres in ALT and telomerase-positive settings.

    1. eLife Assessment

      This important study addresses the role of non-genetic factors in individual differences in phenotype. Using C. elegans, the study finds that non-genetic differences in gene expression, partly influenced by the environment, correlate with individual differences in two reproductive traits. This supports the use of gene expression data as a key intermediate for understanding complex traits. The clever study design makes for compelling evidence.

    1. eLife Assessment

      The authors address a fundamental question for cell and tissue biology. They use the skin epidermis as a paradigm and ask how stratifying self-renewing epithelia induce differentiation and upward migration in basal dividing progenitor cells to generate suprabasal barrier-forming cells that are essential for a functional barrier formed by such an epithelium. The authors provide compelling evidence time that an increase in intracellular actomyosin contractility, a hallmark of barrier-forming keratinocytes, is sufficient to trigger terminal differentiation, providing in vivo evidence of the interdependency of cell mechanics and differentiation. To illustrate their points, the authors use a combination of genetic mouse models, RNA sequencing, and immunofluorescence analysis. Precisely how the changes in gene expression, cell morphology, mechanics, and cell position are instructive and whether consecutive changes in differentiation are required still remain unclear, but the paper takes a nice step in advancing our knowledge of the process.

    1. eLife assessment

      This convincing study advances our understanding of the physiological consequences of the strong overexpression of non-toxic proteins in baker's yeast. The findings suggest that a massive protein burden results in nitrogen starvation and a shift in metabolism likely regulated via the TORC1 pathway, as well as defects in ribosome biogenesis in the nucleolus. The study presents findings and tools that are important for the cell biology and protein homeostasis fields.

    1. eLife Assessment

      The authors attempt to identify which patients with benign lesions will progress to cancer using a liquid biomarker. Although the study is valuable, the evidence provided for the liquid biopsy EV miRNA signature developed based on radiomics features remains incomplete. There remain key details missing and validation experiments that would better support the conclusions of the study.

    1. eLife Assessment

      This study on the loss of DEGS1 in the developing larval brain convincingly shows the accumulation of dihydroceramide in the CNS which induces severe alterations in the morphology of glial subtypes as well as a reduction in glial number. The localization of DEGS1/ifc primarily to the ER is also compelling and interesting, and the loss of DEGS1/ifc clearly drives ER expansion and reduces the levels of TGs. This is an important contribution to the role of lipid metabolism in neural development and disease.

    1. eLife Assessment

      This study is important as it highlighted how IL-4 regulates the reactive state of a specific microglial population by increasing the proportion of CD11c+ microglial cells and ultimately suppressing neuropathic pain. The study employs a combination of behavioral assays, pharmacogenetic manipulation of microglial populations, and characterization of microglial markers to address these questions. It provided convincing evidence for the proposed mechanism of IL-4-mediated microglial regulation in neuropathic pain.

    1. eLife Assessment

      This study provides valuable findings regarding potential correlates of protection against the African swine fever virus. The evidence supporting the claims is solid, although analysis using a higher number of animals and other virus strains will be required to further evaluate the relevance of the immune parameters associated to protection. The work will be of broad interest to veterinary immunologists, and particularly those working on African swine fever.

    1. eLife Assessment

      This study presents a potentially fundamental analysis of a fossil feather from a 125-million-year-old enantiornithine bird. Using sophisticated 3D microscopic and numerical methods, the authors conclude that the feather was iridescent and brightly colored, possibly indicating that this was a male bird that used its crest in sexual displays. At present, the strength of evidence supporting the conclusions is considered incomplete based on methodological shortcomings and questions about taphonomy.

    1. eLife Assessment

      This important study explores the regulation of collective cell migration and tissue patterning in the zebrafish posterior lateral line primordium by SoxB1 transcription factors. The authors provide evidence that SoxB1 genes interact with Wnt and Fgf signaling pathways to control neuromast deposition and spacing, a process central to sensory organ development. The work offers mechanistic insight into the self-organization of migrating tissues and adds to the understanding of how transcriptional networks integrate with signaling pathways during morphogenesis. However, the strength of the evidence supporting several key conclusions is incomplete due to insufficient validation of mutant and knockdown tools, lack of quantitative analysis, and unclear experimental design details; additional quantification and more rigorous verification of gene knockdown or loss-of-function tools are needed to support the proposed model.

    1. eLife Assessment

      This study provides an important method to model the statistical biases of hypermutations during the affinity maturation of antibodies. The authors show convincingly that their model outperforms previous methods with fewer parameters; this is made possible by the use of machine learning to expand the context dependence of the mutation bias. They also show that models learned from nonsynonymous mutations and from out-of-frame sequences are different, prompting new questions about germinal center function. Strengths of the study include an open-access tool for using the model, a careful curation of existing datasets, and a rigorous benchmark; it is also shown that current machine-learning methods are currently limited by the availability of data, which explains the only modest gain in model performance afforded by modern machine learning.

    1. eLife Assessment

      This study presents a valuable finding on the delivery of a nuclear envelop protein to lysosomes and the impact of C-terminal tagging on its traffic. The authors provide solid evidence for the potential artifacts introduced by large terminal tags, particularly in the context of membrane protein localization and stability.

    1. eLife Assessment

      This study shows, for the first time, the structure and snapshots of the dynamics of the full-length soluble Angiotensin-I converting enzyme dimer. The combination of structural and computational analyses provides compelling evidence that reveals the conformational dynamics of the complex and key regions mediating the conformational change. This fundamental work illustrates how conformational heterogeneity can be used to gain insights into protein function.

    1. eLife Assessment

      Arecchi et al. demonstrate that polarized second-harmonic generation microscopy can be used to probe the ON/OFF states of myosin in both permeabilized and intact muscle, making this key measurement accessible to a greater number of labs. This has the potential to help with the study of disease-causing mutations and our understanding of drug function. The methodology is well defined, and the results are important; however, whilst this is overall a convincing study, there are some limitations to the interpretation of the data.

    1. eLife Assessment

      This important study demonstrates that yeast populations can rapidly evolve freeze-thaw tolerance by converging on a trehalose-rich, quiescence-like state, illuminating a general physiological route to extreme-stress adaptation. The evidence is solid, combining rigorous experimental-evolution design with multi-scale phenotyping, biophysical measurements, whole-genome sequencing, and quantitative modeling that together support the mechanistic conclusions. Questions about the novelty relative to prior growth/stress tolerance links, the precise genetic versus non-genetic drivers of trehalose up-regulation, and the breadth of independently evolved lines. These are areas for clarification, but these do not substantially weaken the overall contribution.

    1. eLife Assessment

      This study reports the important development and characterization of next-generation analogs of the molecule AA263, which was previously identified for its ability to promote adaptive ER proteostasis remodeling. The evidence supporting the conclusions is convincing, with rigorous assays used to benchmark the changes in potency and efficacy of the AA263 analogs as well as AA263 targets. The ability of AA263 analogs to restore the loss of function associated with disease-associated proteins prone to misfolding will be of interest to pharmacologists, chemical biologists, and cell biologists, as well as those working on protein misfolding disorders.

    1. eLife Assessment

      This article presents valuable findings on how the timing of cooling affects the timing of autumn bud set in European beech saplings. The study leverages extensive experimental data and provides an interesting conceptual framework of the various ways in which warming can affect bud set timing. The support for the findings is incomplete, though extra justifications of the experimental settings, clarifications of the interpretation of the results, and alternative statistical analyses can make the conclusions more robust.

    1. eLife Assessment

      This landmark study describes the structure of the human RAD51 filament with a recombination intermediate called the displacement loop (D-loop). Using cryogenic structural, biochemical, and single-molecule analyses, the authors provide compelling evidence on how the RAD51 filament promotes strand exchange between single-stranded and double-stranded DNAs. The findings are highly relevant to the fields of homologous recombination, DNA repair, and genome stability.

    1. eLife Assessment

      This paper examines selection on induced epigenetic variation ("Lamarckian evolution") in response to herbivory in Arabidopsis thaliana. The authors find weak evidence for such adaptation, which contrasts with a recently published study that reported extensive heritable variation induced by the environment. The authors convincingly demonstrate that the findings of the previous study were confounded by mix-ups of genetically distinct material, so that standing genetic variation was mistaken for acquired (epigenetic) variation. Given the controversy surrounding the influence of heritable epigenetic variation on phenotypic variation and adaptation, this study is an important, clarifying contribution; it serves as a timely reminder that sequence-based verification of genetic material should be prioritized when either genetic identity or divergence is of importance to the conclusions.

    1. eLife Assessment

      This useful study presents a real-time transcriptomics analysis, with the aim of providing rapid access to sequenced data to reduce the costs associated with Oxford Nanopore long-read technology. The revised manuscript demonstrates the utilities with four sets of experiments with convincing evidence.

    1. eLife Assessment

      This useful study uses brain stimulation and electroencephalography to study speech-gesture integration. It investigates the role of frontotemporal regions in integrating linguistic and extra-linguistic information during communication, focusing on the inferior frontal gyrus and posterior middle temporal gyrus. Reliance on activation patterns of tightly-coupled brain regions over short timescales leads to incomplete support for the study's conclusions due to conceptual and methodological limitations.

    1. eLife Assessment

      This study uses all-optical electrophysiology methods to provide a valuable insight into the organization of cortical networks and their ability to balance the activity of groups of neurons with similar functional tuning. The all-optical approach used in this study is impressive and the claim that the effects of optical stimulation correspond to a specific homeostatic mechanism is solid. The work will be of interest to neurobiologists and to developers of optical approaches for interrogating brain function.

    1. eLife Assessment

      In this manuscript, Lim and collaborators present an important system for developing self-amplifying RNA with convincing evidence that it does not provoke a strong host inflammatory response in cultured cells. This approach could be further strengthened going forward by testing these self-amplying RNAs in an in vivo system.

    1. eLife Assessment

      This important work introduces a splitGFP-based labeling tool with an analysis pipeline for the synaptic scaffold protein bruchpilot, with tests in the adult Drosophila mushroom bodies, a learning center in the Drosophila brain. The evidence supporting the conclusions is solid. However, additional controls, validation of synapse-specificity, validation of activity-dependence, details on image processing, and additional functional experiments are needed to strengthen the study.

    1. eLife Assessment

      This study identifies astrocyte-intrinsic mechanisms by which the LRRK2 G2019S, a mutation linked to familial Parkinson's disease, disrupts synaptic integrity in the anterior cingulate cortex. The findings are convincing, as they rely on a comprehensive set of in vivo and in vitro genetic, biochemical, proteomic, and electrophysiological approaches. They are important because of their translational value, being validated in both mouse models and post-mortem human samples.

    1. eLife Assessment

      In this manuscript, Park et al. developed a multiplexed CRISPR construct to genetically ablate the GABA transporter GAT3 in the mouse visual cortex, with effects on population-level neuronal activity. This work is important, as it sheds light on how GAT3 controls the processing of visual information. The findings are compelling, leveraging state-of-the-art gene CRISPR/Cas9, in vivo two-photon laser scanning microscopy, and advanced statistical modeling.

    1. eLife Assessment

      This study offers important insights into the development of infants' responses to music based on the exploration of EEG neural auditory responses and video-based movement analysis. The convincing results revealed that evoked responses emerge between 3 and 12 months of age, but data analysis requires further refinement to fully complement the findings related to movement in response to music. This study will be of significant interest to developmental psychologists and neuroscientists, as well as researchers interested in music processing and in the translation of perception into action.

    1. eLife Assessment

      This paper undertakes an important investigation to determine whether movement slowing in microgravity is due to a strategic conservative approach or rather due to an underestimation of the mass of the arm. While the experimental dataset is unique and the coupled experimental and computational analyses comprehensive, the authors present incomplete results to support the claim that movement slowing is due to mass underestimation. Further analysis is needed to rule out alternative explanations.

    1. eLife Assessment

      The authors proposed two hypotheses: first, that methamphetamine induces neuroinflammation, and second, that it alters neuronal stem cell differentiation. These are valuable hypotheses, and the authors provided in vivo observations of the methamphetamine response in mice. However, concerns remain regarding the interpretation of the data, and the current evidence is incomplete, requiring substantial experimental validation.

    1. eLife Assessment

      This valuable study investigates the neural basis of bidirectional communication between the cortex and hippocampus during learning. The evidence supporting the identification of specific circuits and functional cell types involved is convincing. However, certain aspects of the behavioral analysis and statistical interpretation remain incomplete. Overall, the work will be of interest to neuroscientists studying learning and memory.

    1. eLife Assessment

      This revised paper provides valuable findings that altruistic tendency during moral decision-making is gain/loss context-dependent and oxytocin can restore the absence of altruistic choices in the loss domain. The methods and analyses are solid, yet the study could still benefit from better overall framing and more clarity and precision in the definition of key constructs, as pointed out by reviewers. If these concerns are addressed, this study would be of interest to social scientists and neuroscientists who work on moral decision-making and oxytocin.

    1. eLife Assessment

      This important study suggests that adolescent mice exhibit less accuracy than adult mice in a sound discrimination task when the sound frequencies are very similar. The evidence supporting this observation is solid and suggests that it arises from cognitive control differences between adolescent and adult mice. The adolescent period is largely understudied, despite its contribution to shaping the adult brain, which makes this study interesting for a broad range of neuroscientists.

    1. eLife Assessment

      This study presents valuable findings on the role of dopamine receptor D2R in dopaminergic neurons DAN-c1 and mushroom body neurons (Y201-GAL4 pattern) on aversive and appetitive conditioning. The evidence supporting the claims of the authors is solid in the context of their behavioural paradigm. Controls using a reciprocal training protocol would have broadened the scope of their conclusions. The work will be of interest to researchers studying the role of dopamine during learning and memory.

    1. eLife Assessment

      In this highly innovative study, Carpenet C et al explore the use of nanobody-based PET imaging to track proliferative cells after in vivo transplantation in mice, in a fully immunocompetent setting. The development of a unique set of PET tracers and mouse strains to track genetically-unmodified transplanted cells in vivo is an important novel asset that could potentially facilitate cell tracking in different research fields. The evidence provided is compelling as the new method proposed might facilitate overcoming certain limitations of alternative approaches, such as full sized immunoglobulins and small molecules.

    1. eLife Assessment

      This study focuses on a previously reported positive correlation between translational efficiency and protein noise. Using mathematical modeling and analysis of experimental data the authors reach the valuable conclusion that this phenomenon arises due to ribosomal demand. While some aspects of the work appear to be incomplete, the results have the potential to be of value and interest to the field of gene expression.

    1. eLife Assessment

      Floeder and colleagues provide an important investigation that describes the experimental conditions that systematically produce "ramps" in dopamine signaling in the striatum. This somewhat nebulous feature of dopamine has been a significant part of recent theoretical and computational debates attempting to formally describe the different timescales on which dopamine functions. The current results are convincing and add context to that ongoing work.

    1. eLife Assessment

      This valuable study by Wu and Zhou combines neurophysiological recordings and computational modelling to address an interesting question regarding the sequence of events from sensing to action. Neurophysiological evidence remains incomplete: explicit mapping of saccade-related activity in the same neurons and a better understanding of the influence of the spatial configuration of stimulus and targets would be required to pinpoint whether such activity might contribute, even partially, to the observed results and interpretations. These results are of interest for neuroscientists investigating decision-making.

    1. eLife Assessment

      The manuscript by Russell et al. investigates an important problem: the current lack of methods for early and accurate N. fowleri diagnosis, which is >95% fatal. The authors provide solid evidence that a small RNA secreted by N. fowleri is detectable in biological fluids like blood and urine in a mouse model, and is present in cerebrospinal fluid and blood for a limited number of patient samples. This could potentially help with earlier diagnosis, which could save lives.

    1. eLife Assessment

      This convincing study, which is based on a survey of researchers, finds that women are less likely than men to submit articles to elite journals. It also finds that there is no relation between gender and reported desk rejection. The study is an important contribution to work on gender bias in the scientific literature.

    1. eLife Assessment

      In this useful study, the authors perform voltage imaging of CA1 pyramidal cells in head-fixed mice running on a track while local field potentials (LFPs) were recorded in the contralateral hemisphere. The authors conclude that synchronous ensembles of neurons are associated with theta rhythms but not with contralateral sharp wave-ripples. However, evidence for some of the paper's primary claims remains incomplete, due to limitations of the experimental approach.

    1. eLife Assessment

      This valuable study reveals surprising morphological diversity of Drosophila sensory neurons. Using serial block-face electron microscopy, the authors created detailed 3D reconstructions of large neuronal populations, convincingly finding significant structural variation both within and across distinct classes. These results form the basis for testable hypotheses on how neuronal arborization is optimized for particular sensory functions. This research will be highly relevant to biologists in the fields of physiology, insect chemosensation, and neuroscience.

    1. eLife Assessment

      This important work develops C. elegans as a model organism for studying effort-based discounting by asking the worms to choose between easy and hard to digest bacteria. The authors provide convincing evidence that the nematodes are effort-discounting. However, evidence regarding the role of dopamine is incomplete and this weakens the authors connection of the behavior in C. elegans with mammals.

    1. eLife Assessment

      This study provides compelling evidence that action potential (AP) broadening is not a universal feature of homeostatic plasticity in response to chronic activity deprivation. By leveraging state-of-the-art methods across multiple brain regions and laboratories, the authors demonstrate that AP half-width remains largely stable, challenging previous assumptions in the field. These important findings help resolve longstanding inconsistencies in the literature and significantly advance our understanding of neuronal network homeostasis.

    1. eLife Assessment

      This valuable work investigates cooperative behaviors in adolescents using a repeated Prisoner's Dilemma game. The computational modeling approach used in the study is solid and well established, yet evidence supporting certain claims remains incomplete. The work could be strengthened with the consideration of additional experimental contexts, non-linear relationships between age and observed behavior, and modeling details. If these concerns are addressed, the results will be of interest to developmental psychologists, economists, and social psychologists.

    1. eLife Assessment

      The authors investigated the potential role of IgG N-glycosylation in Haemorrhagic Fever with Renal Syndrome (HFRS), which may offer significant insights for understanding molecular mechanisms and for the development of therapeutic strategies for this infectious disease. The findings are useful to the field, although the strength of evidence to support the findings is incomplete. Several issues need to be addressed, including more detail on the background, methods, and results. Additional statistical tests should be performed, and the conclusions should reflect the correlational findings of the paper.

    1. eLife Assessment

      This study presents a valuable technical advance in the long-term live imaging of limb regeneration at cellular resolution in Parhyale hawaiensis. The authors develop and carefully validate a method to continuously image entire regenerating legs over several days while minimizing photodamage and optimizing conditions for robust cell tracking, together with post-hoc in situ identification of cell types. The data are convincing, the methodology is rigorous and clearly documented, and the results will be of interest to researchers in regeneration biology, developmental biology, and advanced live imaging and cell tracking software development.

      [Editors' note: this paper was reviewed by Review Commons.]

    1. eLife Assessment

      This fundamental study demonstrates how a left-right bias in the relationship between numerical magnitude and space depends on brain lateralization. The evidence is compelling and will be of interest to researchers studying numerical cognition, brain lateralization, and cognitive brain development more broadly.

    1. eLife Assessment

      This important study introduces a powerful imaging approach that enables deep-tissue visualization in gastruloids using two-photon microscopy, combined with spectral imaging and unmixing to achieve four-color 3D image acquisition. The evidence is compelling that many of the established methods are very helpful (e.g., registration, corrections, signal normalisation, lazy loading bioimage visualisation, spectral decomposition analysis), facilitate the development of quantitative research, and would be of interest to the wider scientific community.

    1. eLife Assessment

      The findings of this important study substantially advance our understanding of the transcription factors that can induce hair cell-like cells from human pluripotent stem cells. The presented evidence supporting these findings is compelling, including rigorous characterization of the effects of hair cell induction using both single-cell RNA sequencing and electrophysiological assessments.

    1. eLife Assessment

      This important study examines the relationship between cognition and mental health and investigates how brain, genetics, and environmental measures mediate that relationship. The methods and results are compelling and well-executed. Overall, this study will be of interest in the field of population neuroscience and in studies of mental health.

    1. eLife Assessment

      This important manuscript introduces a genetic tool utilizing mutant mitfa-Cas9 expressing zebrafish to knockout genes to analyze melanocyte function in development and tumorigenesis. The data are convincing and the authors cover potential caveats from their model that might impact its utility for future work. This work significantly adds to the existing approaches in the field, as the mitfa:Cas9 strategy taken here provides a roadmap for generating similar platforms for using other tissue-specific regulators and Cas proteins in the future.

    1. eLife Assessment

      This important study reveals that Excitatory Amino Acid Transporters play a role in chromatic information processing in the retina. The combination of (double) mutants, behavioral assays, immunohistochemistry, and electroretinograms provides solid evidence supporting the appropriately conservative conclusions. The work will be of interest to neurobiologists working on color vision or retinal processing.

    1. eLife Assessment

      This study proposes a useful assay to identify relative social ranks in mice incorporating the competitive drive for two basic resources - food and living space. Using this new protocol, the authors provide solid evidence of stable ranking among male and female pairs, while reporting more fluctuant hierarchies among triads of males. The evidence is, however, limited by the lack of ethologically based validation, assessment of the influence of competitor recognition, and proof of concept of application to neuroscience. This manuscript may be of interest to those interested in social behavior and related neuroscience.

    1. eLife Assessment

      In this study Wang et. al. mined publicly available RNA-seq data from The Genotype-Tissue Expression (GTEx) database spanning multiple tissues to ask the question of how transcriptomes are changed with age and in both sexes. The authors provide solid evidence reporting widespread gene expression changes and alternative splicing events that vary in an age- and sex-dependent manner. An important finding is that many of these changes coincide with the time sex hormones begin to decline; additionally, the rate of aging is faster in males than in females.

    1. eLife Assessment

      Peukes et al. report compelling ultrastructures of excitatory synapses in the mouse forebrain that will serve as a reference for future work in the field. Their important findings using correlated fluorescence and cryo-electron tomography challenge the textbook view of synaptic structure that emerged from chemically fixed and metal-stained tissues. Instead of a post-synaptic density, these authors reveal the architecture of the cytoskeletal, neurotransmitter receptor clusters, and organelles in the 'synaptoplasm'.

    1. eLife Assessment

      This paper is an important overview of the currently published literature on low-intensity focussed ultrasound stimulation (TUS) in humans, providing a meta-analysis of this literature that explores which stimulation parameters might predict the directionality of the physiological stimulation effects. The overall synthesis, except for the section on TPS and AD, is convincing though could be streamlined at places. The database proposed by the paper has the potential to become a key community resource if carefully curated and developed.

    1. eLife Assessment

      This important study presents a new method for longitudinally tracking cells in two-photon imaging data that addresses the specific challenges of imaging neurons in the developing cortex. It provides compelling evidence demonstrating reliable longitudinal identification of neurons across the second postnatal week in mice. The study should be of interest to development neuroscientists engaged in population-level recordings using two-photon imaging.

    1. eLife Assessment

      This is an important study providing molecular insight into how cross-talk between histone modifications regulates the histone H3K36 methyltransferase SETD2. The manuscript contains excellent quality data, and the conclusions are convincing and justified. This work will be of interest to many biochemists working in the field of chromatin biology and epigenetics.

    1. eLife Assessment

      In this important manuscript, Cassell and colleagues set out on a mechanistic and pharmacological exploration of an engineered chimeric small conductance calcium-activated potassium channel 2 (SK2). They show convincing evidence that the SK2 channel possesses a unique extracellular structure that modulates the conductivity of the selectivity filter, and that this structure is the target for the SK2 inhibitor apamin. While the interpretations are sound and the writing is clear, the manuscript would be strengthened by providing more detailed information for the electrophysiological experiments and the structural analyses attempted, in addition to relating dilation of the filter to mechanisms of inactivation in other potassium channels. This high-quality study will be of interest to membrane protein structural biologists, ion channel biophysicists, and chemical biologists, and will inform future drug development targeting SK channels.

    1. eLife Assessment

      This is a potentially useful study that provides solid, yet confirmatory structural findings about the complex (FtsEX) that controls peptidoglycan remodeling during bacterial cell division. The authors capitalize on the fact that ATP binding stabilizes the FtsEX complex allowing structural characterization for this system. A model is then developed to explain ATP regulation but there is a gap between the model presented here and in vivo data reported previously.

    1. eLife Assessment

      This valuable work used molecular biology, cell biology, and genetic approaches to unravel individual genes and potential pathways that contribute to paternal mitochondrial inheritance using C. elegans as the model organism. Their microscopy method is cutting edge, with sufficient biological replicates, proper control, and appropriate statistics. These findings are convincing and are of general interest for understanding mitochondrial inheritance in C. elegans, which could have implications for understanding similar biological processes in other organisms.

    1. eLife Assessment

      This valuable study addresses the structural basis of voltage-activation of BK channels using atomistic simulations of several microseconds, to assess conformational changes that underlie both voltage-sensing and gating of the pore. The findings, including movement of specific charged residues, combined with the degree to which these movements are coupled to pore movements, provide a solid basis for understanding voltage-gating mechanisms in this class of channels. This paper will likely be of interest to ion channel biologists and biophysicists focused on voltage-dependent channel gating mechanisms.

    1. eLife Assessment

      The open-source software Chromas tracks and analyses cephalopod chromatophore dynamics. The software features a user-friendly interface alongside detailed instructions for its application, with compelling exemplary applications to two widely divergent cephalopod species, a squid and a cuttlefish, over time periods large enough to encompass new chromatophore development among existing ones. It demonstrates accurate tracking of the position and identity of each chromatophore. The software and methods outlined therein will become an important tool for scientists tracking dynamic signaling in animals.

    1. eLife Assessment

      This study presents a rather valuable finding that a combination of arginine methyltransferase inhibitors synergize with PARP inhibitors to kill ovarian and triple negative cancer cells. The evidence supporting the claims of the authors is solid, although some comments and elaborations in the main text would have enhanced the comprehension and clarity of the data. The work will be of interest to scientists working in the field of breast cancer.

    1. eLife Assessment

      This study presents a valuable finding that the biomechanical force of heart contractility is required for robust endocardial id2b expression, which in return promotes valve development and myocardial function through upregulation of Neuregulin 1. The data were collected and analyzed using solid methodology and can be used as a starting point for deeper mechanistic insights into the genetic programs regulating endocardial-myocardial crosstalk during heart development.

    1. eLife Assessment

      This important study combines agent-based modelling and in vivo experiments in medaka embryos to provide new insights into the role of the thymic niche in T cell development. The modelling yields some interesting and solid findings regarding the importance of thymic epithelial cells. This study would be of interest to oncologists, immunologists, and mathematical modelers.

    1. eLife Assessment

      The authors investigate arrestin2-mediated CCR5 endocytosis in the context of clathrin and AP2 contributions. Using an extensive set of NMR experiments, and supported by microscopy and other biophysical assays, the authors provide convincing data on the roles of AP2 and clathrin in CCR5 endocytosis. This important work will appeal to an audience beyond those studying chemokine receptors, including those studying GPCR regulation and trafficking. The distinct role of AP2 and not clathrin will be of particular interest to those studying GPCR internalization mechanisms.

    1. eLife Assessment

      In this manuscript, Franco and colleagues present compelling evidence that fecal extracts containing high concentrations of indole, a known repellent, enhance rather than protect against invasion of colonic tissue by Salmonella. The authors describe important findings that lead to the conclusion that the competing effects of attractants present in fecal matter, including L-serine, also sensed by the Tsr chemoreceptor that senses indole, override the repulsive effect of indole.

    1. eLife Assessment

      This study introduces ambisim, a rigorously validated and well-documented simulation framework that enables the generation of synthetic, genotype-aware single-cell RNA and ATAC sequencing datasets under realistic conditions. The authors provide solid evidence of its utility by benchmarking multiple demultiplexing methods and proposing a new variant consistency metric. While the tool is valuable for guiding method selection, the interpretation of the new metric requires further clarification.

    1. eLife Assessment

      This study dissects the function of 3 outputs of a specific population of modulatory neurons, dorsal raphe dopamine neurons, in social and affective behavior. It provides valuable information that both confirms prior results and provides new insights. The strength of the evidence is convincing, based on cutting-edge approaches and analysis. This study will be of interest to behavioral and systems neuroscientists, especially those interested in social and emotional behavior.

    1. eLife Assessment

      This paper reports on an important study that aims to move beyond current experimental approaches in speech production by (1) investigating speech in the context of a fully interactive task and (2) employing advanced methodology to record intracranial brain activity. Together these allow for examination of the unfolding temporal dynamics of brain-behaviour relationships during interactive speech. This approach and the analyses presented in support of the authors' claims pose convincing evidence.

    1. eLife Assessment

      This important study introduces a Bayesian method to determine bacterial counts that accounts for the experimental noise inherent to dilution and plating methods, and distinguishes it from biological uncertainty. The evidence supporting the conclusions is convincing, combining simulated data and experimental data. The method will be of interest to microbial ecologists, and potentially to the broader community interested in inference from biological data, even more so if the domain of application and the limitations are further clarified.

    1. eLife Assessment

      This valuable study addresses a gap in our understanding of how the size of the attentional field is represented within the visual cortex. The evidence supporting the role of visual cortical activity is convincing, based on a novel modeling analysis of fMRI data. The results will be of interest to psychologists and cognitive neuroscientists.

    1. eLife Assessment

      This important work offers a fresh perspective central to merozoite surface biology and potential implications on vaccine design, challenging the dogma that MSPs are indispensable invasion engines. Although the authors only deleted bp 132-819, the data based on Western blot, IFA, and RNA‐seq provide compelling evidence that while MSP2 is dispensable for growth, it serves as an immune modulator for AMA1. This work will be of particular interest to scientists working on different aspects of Plasmodium biology and vaccinology.

    1. eLife Assessment

      This valuable work explores how synaptic activity encodes information during memory tasks. All reviewers agree that the work is of very high quality and that the methodological approach is praiseworthy. Although the experimental data support the possibility that phospholipase diacylglycerol signaling and synaptotagmin 7 (Syt7) dynamically regulate the vesicle pool required for presynaptic release, concerns remain that the central finding of paired-pulse depression at very short intervals may be more likely due to Ca²⁺ channel inactivation rather than vesicle pool depletion. Overall, this is a solid study although the results warrant consideration of alternative interpretations.

    1. eLife Assessment

      This important study presents an evaluation of several tools used for detecting Identity-By-Descent (IBD) segments in highly recombining genomes, using simulated data to replicate the high recombination and low marker density of Plasmodium falciparum, the parasite responsible for malaria. The evidence presented by the authors is convincing demonstrating that users should be cautious calling IBD when SNP density is low and recombination rate is high. This study will be of interest to scientists working in the field of genome evolution and infectious diseases

    1. eLife Assessment

      This important study investigates the role of Drp1 in early embryo development. The authors have addressed most of the original comments and the work now presents convincing evidence on how this protein influences mitochondrial localization and partitioning during the first embryonic divisions. The research employs the Trim-Away technique to eliminate Drp1 in zygotes, revealing critical insights into mitochondrial clustering, spindle formation, and embryonic development.

    1. eLife Assessment

      This valuable manuscript describes cryo-EM structures of archaeal proteasomes that reveal insights into how occupancy of binding pockets on the 20S proteasome regulates proteasome gating. The evidence supporting these claims is convincing, although the extrapolation of these findings to the more complex eukaryotic proteasome may prove challenging. This work will be of high interest to researchers interested in proteasome structure and regulation.

    1. eLife Assessment

      This useful study describes expression profiling by scRNA-seq of thousands of cells of recombinant yeast genotypes from a system that models natural genetic variation. The rigorous new method presented here shows promise for improving the efficiency of genotype-to-phenotype mapping in yeast, providing convincing evidence for its efficacy. This manuscript focuses on overcoming technical challenges with this approach and identifies several new biological insights that build upon the field of genotype-to-phenotype mapping, a central question of interest to geneticists and evolutionary biologists.

    1. eLife Assessment

      This important study provides convincing evidence that the Kinesin protein family member KIF7 regulates the development of the cerebral cortex and its connectivity and the specificity of Sonic Hedgehog signaling by controlling the details of Gli repressor vs activator functions. This study provides new insights into general aspects of cortical development.

    1. eLife Assessment

      This manuscript by Li, Lu et al., presents important findings on the role of cDC1 in atherosclerosis and their influence on the adaptive immune system. Using Xcr1Cre-Gfp Rosa26LSL-DTA ApoE-/- mouse models, these data convincingly reveal an unexpected, non-redundant role of the XCL1-XCR1 axis in mediating cDC1 contributions to atherosclerosis.

    1. eLife Assessment

      This valuable study presents an innovative noninvasive immunotherapeutic strategy for hepatocellular carcinoma by combining ultrasound stimulation with calcium-loaded nanodroplets to activate splenic immune responses. The authors provide solid preclinical data, including single-cell transcriptomic analyses and evidence of tumor growth suppression, supported by a creative and well-executed methodology. Further validation of the calcium signaling mechanisms and assessment of long-term safety will strengthen the translational potential of this approach. The work will be of broad interest to researchers in oncology, immunotherapy, and biomedical engineering.

    1. eLife Assessment

      This study presents a valuable finding on the neural representation of time from two distinct egocentric and allocentric reference frames. The presentation of evidence in the version of the original submission is incomplete, as further conceptual clarifications, methodological details, and addressing potential confounds would strengthen the study. The work will be of interest to cognitive neuroscientists working on the perception and memory of time.

    1. eLife Assessment

      This important study describes a computational model of the rat spinal locomotor circuits and how they could be plastically reconfigured after lateral hemisection or contusion injuries to replicate gaits observed experimentally in vivo. Overall, the simulation results convincingly mirror the gait parameters observed experimentally. The model suggests the emergence of detour circuits after lateral hemisection, whereas after a midline contusion, the model suggests plasticity of left-right and sensory inputs below the injury.

    1. eLife Assessment

      This useful manuscript addresses some key molecular mechanisms on the neuroprotective roles of soluble TREM2 in neurodegenerative diseases. The study will advance our understanding of TREM2 mutations, particularly on the damaging effect of known TREM2 mutations, and also provides solid evidence why soluble TREM2 can antagonize Aβ aggregation.

    1. eLife Assessment

      This study convincingly demonstrates that odors evoke a feeding response in Drosophila, mediated by gustatory receptors and observed as a proboscis extension. The evidence is comprehensive, encompassing behavior, functional imaging and electrophysiology. This important results on the molecular and cellular basis of multimodal integration across olfaction and gustation will be of interest for the study of chemosensation, sensory biology, and animal behavior.

    1. eLife Assessment

      This study reports important new insights into the roles of a long noncoding RNA, lnc-FANCI-2, in the progression of cervical cancer induced by a type of human papillomavirus. Through a blend of cell biological, biochemical, and genetic analyses of RNA and protein expression, protein-protein interaction, cell signaling, and cell morphology, the authors provide convincing evidence that lnc-FANCI-2 affects cervical cancer outcome by regulating the RAS signaling pathway. These findings will be of interest to scientists in the fields of cervical cancer, long noncoding RNA, and cell signaling.

    1. eLife Assessment

      The paper addresses the question of gene epistasis and asks what is the correct null model for which we should declare no epistasis. By reanalyzing synthetic gene array datasets regarding single and double-knockout yeast mutants, and considering two theoretical models of cell growth, the authors reach the valuable conclusion that the product function is a good null model. While the justification of some assumptions is incomplete, the results have the potential to be of value to the field of gene epistasis.

    1. eLife Assessment

      This paper highlights an important physiological function of PGAM in the differentiation and suppressive activity of Treg cells by regulating serine synthesis. This role is proposed to intersect with glycolysis and one-carbon metabolism. The study's conclusion is supported by solid evidence from in-vitro cellular and in-vivo mouse models.

    1. eLife Assessment

      This important study fills an gap in our knowledge of the evolution of GPCRs in holozoans, as well as the phylogeny of associated signaling pathway components such as G proteins, GRKs, and RIC8 proteins. The evidence supporting the conclusions is compelling, with the analysis of extensive new genomic data from choanoflagellates and other non-animal holozoans. Overall, the study is thorough and well-executed. It will be a resource for researchers interested in both the comparative genomics of multicellularity and GPCR biology more broadly, especially given the importance of GPCRs as highly druggable targets.

    1. eLife Assessment

      This important theoretical study examines the possibility of encoding genomic information in a collective of short overlapping strands (e.g., the Virtual Circular Genome (VCG) model). The study presents convincing theoretical arguments, simulations and comparisons to experimental data to point at potential features and limitations of such distributed collective encoding of information. The work should be of relevance to colleagues interested in molecular information processing and to those interested in pre-Central Dogma or prebiotic models of self-replication.

    1. eLife Assessment

      This is a valuable study that uses single-cell RNA sequencing to define tumor-intrinsic transcriptional programs that characterize distinct types of small intestine neuroendocrine tumors. The evidence supporting the claims of the authors is solid, but would benefit from a larger sample size. The work will be of interest to cancer biologists studying neuroendocrine tumors, as well as those studying tumor heterogeneity more broadly.

    1. eLife Assessment

      This study offers a valuable assessment of the impact of antibiotics on the human gut microbiota across diverse observational cohorts. The findings presented are convincing, despite the observational design and residual confounding that may still contribute to discrepancies between the cross-sectional and longitudinal data. The work is relevant for researchers and clinicians interested in antimicrobial resistance and the impact of antibiotics on the host.

    1. eLife Assessment

      This study provides important insights into the evolution of pesticide resistance, demonstrating that resistance can arise rapidly and repeatedly, which complements prior work on parallel evolution across species. The combination of extensive temporal sampling in the field, experimental evolution, and genomics makes for compelling findings. The authors are to be commended for acknowledging the main limitations of their study in the Discussion. Framing the work in a broader context of resistance beyond arthropod pests would further increase the appeal of the study, which is of relevance for both agronomic practitioners and evolutionary biologists.

    1. eLife Assessment

      This valuable study reports the first characterization of the CG14545 gene in Drosophila melanogaster, which the authors name "Sakura." Acting during germline stem cell fate and differentiation, Sakura is required for both oogenesis and female fertility, although some mechanistic details require further investigation. This solid study presents a wide-ranging and well-controlled characterization of Sakura, and accordingly the findings and associated reagents described will be of use to scientists interested in oogenesis and early development.

    1. eLife Assessment

      This valuable study identifies a population of CD81-positive fibroblasts showing senescence signatures that can activate neutrophils through the C3/C3aR1 axis, hence contributing to the inflammatory response in periodontitis. Solid evidence, combining in vitro and in vivo analyses and mouse and human data, supports these findings. The revised manuscript has addressed many concerns significantly. The work would be of interest to researchers working in the senescence and oral medicine fields.

    1. eLife Assessment

      This is a valuable study showing that differentiated cells of the zebrafish skin form membrane protrusions called cytonemes that contact and likely transmit Notch signals to cells of the undifferentiated layer below. The data are convincing that cytoneme like protrusions from the periderm are required for proper periderm structure, proliferation, gene expression, and Notch signaling. Evidence that inflammatory signaling through IL-17 affects epidermal differentiation, Notch and cytoneme formation is solid, but whether these are through a single common or two parallel pathways requires further investigation.

    1. eLife Assessment

      This fundamental manuscript presents a practical modification of the orthogonal hybridization chain reaction (HCR) technique, a promising yet underutilized method with broad potential for future applications across various fields. The authors advance this technique by integrating peptide ligation technology and nanobody-based antibody mimetics-cost-effective and scalable alternatives to conventional antibodies-into a DNA-immunoassay framework that merges oligonucleotide-based detection with immunoassay methodologies. Notably, they demonstrate with compelling evidence that this approach facilitates a modified ELISA platform capable of simultaneously quantifying multiple target protein expression levels within a single protein mixture sample.

    1. eLife Assessment

      With a computational analysis of a neuroanatomical network model in C. elegans, this valuable work investigates the synaptic mechanism for memory-dependent klinotaxis, i.e., salt concentration chemotaxis. By incorporating experimental data altering the ASER neuron's basal glutamate release into their model, the authors demonstrate the possibility of a transition between excitatory and inhibitory signaling at the ASER-AIY synapse, depending on environmental and cultivated salt concentrations. These solid findings offer a proposal for how synaptic plasticity plays a role in sensorimotor navigation, and will be of interest to worm biologists and theoretical neuroscientists.