Reviewer #1 (Public review):
Summary:
The study investigates how neuropeptidergic signaling affects sleep regulation in Drosophila larvae. The authors first conduct a screen of CRISPR knock-out lines of genes encoding enzymes or receptors for neuropeptides and monoamines. As a result of this screen, the authors follow up on one hit, the hugin receptor, PK2-R1. They use genetic approaches, including mutants and targeted manipulations of PK2-R1 activity in insulin-producing cells (IPCs) to increase total sleep amounts in 2nd instar larvae. Similarly, dilp3 and dilp5 null mutants and genetic silencing of IPCs show increases in sleep. The authors also show that hugin mutants and thermogenetic/optogenetic activation of hugin-expressing neurons caused reductions in sleep. Furthermore, they show through imaging-based approaches that hugin-expressing neurons activate IPCs. A key finding is that wash-on of hugin peptides, Hug-γ and PK-2, in ex vivo brain preparations activates larval IPCs, as assayed by CRTC::GFP imaging. The authors then examine how the PK2-R1, hugin, and IPC manipulations affect adult sleep. Finally, the authors examine how Ca2+ responses through CRTC::GFP imaging in adult IPCs are influenced by the wash-on of hugin peptides. The conclusions of this paper are somewhat well supported by data, but some aspects of the experimental approach and sleep analysis need to be clarified and extended.
Strengths:
(1) This paper builds on previously published studies that examine Drosophila larval sleep regulation. Through the power of Drosophila genetics, this study yields additional insights into what role neuropeptides play in the regulation of Drosophila larval sleep.
(2) This study utilizes several diverse approaches to examine larval and adult sleep regulation, neural activity, and circuit connections. The impressive array of distinct analyses provides new understanding into how Drosophila sleep-wake circuitry in regulated across the lifespan.
(3) The imaging approaches used to examine IPC activation upon hugin manipulation (either thermogenetic activation or wash-on of peptides) demonstrate a powerful approach for examining how changes in neuropeptidergic signaling affect downstream neurons. These experiments involve precise manipulations as the authors use both in vivo and ex vivo conditions to observe an effect on IPC activity.
Weaknesses:
Although the paper does have some strengths in principle, these strengths are not fully supported by the experimental approaches used by the authors. In particular:
(1) The authors show total sleep amount over an 18-hour period for all the measures of 2nd instar larval sleep throughout the paper. However, published studies have shown that sleep changes over the course of 2nd instar development, so more precise time windows are necessary for the analyses in this study.
(2) Previously published reports of sleep metrics in both Drosophila larvae and adults include the average number of sleep episodes (bout number) and the average length of sleep episodes (bout length). Neither of these metrics is included in the paper for either the larval sleep or adult sleep data. Not including these metrics makes it difficult for readers to compare the findings in this study to previously published papers in the established Drosophila sleep literature.
(3) Because Drosophila adult & larval sleep is based on locomotion, the authors need to show the activity values for the experiments supporting their key conclusions. They do show travel distances in Figure 2 - Figure Supplement 1, however, it is not clear how these distances were calculated or how the distances relate to the overall activity of individual larvae during sleep experiments. It is also concerning that inactivation of the PK2-R1-expressing neurons causes a reduction in locomotion speed. This could partially explain the increase in sleep that they observe.
(4) The authors rely on homozygous mutant larvae and adult flies to support many of their conclusions. They also rely on Gal4 lines with fairly broad expression in the Drosophila brain to support their conclusions. Adding more precise tissue-specific manipulations, including thermogenetic activation and inhibition of smaller populations of neurons in the study would be needed to increase confidence in the presented results. Similarly, demonstrating that larval development and feeding are not affected by the broad manipulations would strengthen the conclusions.
(5) Many of the experiments presented in this study would benefit from genetic and temperature controls. These controls would increase confidence in the presented results.
(6) The authors claim that their findings in larvae uncover the circuit basis for larval sleep regulation. However, there is very little comparison to published studies demonstrating that neuropeptides like Dh44 regulate larval sleep. Because hugin-expressing neurons have been shown to be downstream of Dh44 neurons, the authors need to include this as part of their discussion. The authors also do not explain why other neuropeptides in the initial screen are not pursued in the study. Given the effect that these manipulations have on larval sleep in their initial screen, it seems likely that other neuropeptidergic circuits regulate larval sleep.