1 Matching Annotations
  1. Dec 2022
    1. One of the things that concern me is copper. So we need about 4.3 billion tons of copper for the first generation of electrical, non-renewable technology systems. Including everything's stitched together. So 4.3 billion tons. 01:04:25 Nate Hagens: And if we relax your assumption of four weeks of buffer and that we have some hybrid system of depleting fossil fuels with some renewables, that 4.3 billion tons could be relaxed to 3.3 or 2.2 billion tons? Simon Michaux: I think it's 2.2 billion tons. It substantially does reduce. However, we are producing for copper say 24 million tons a year now. 01:04:53 So we've got to run at 180 years to hit that point. So existing at- Nate Hagens: It's not going to happen. It's not going to happen. And here's the other thing, and I'm sorry to interrupt. But Olivia Lazard is going to be on this show in a few weeks and her work is the countries where this stuff comes from. 01:05:17 And not only are they war-torn and have inequality issues, but there are also many of the countries that are going to be influenced dramatically in the near term from higher wet bulb risk to humans climate impacts. And we won't even be able to extract in these countries because of social and environmental 01:05:45 reasons. I can send you some info on that. Simon Michaux: Yes, please. But these are the things we need to get our arms around. So our copper reserves at the moment are at 880 million tons. Now existing growth, that's according to the USGS, US Geological Survey. So prior to 2020, humanity mined 700 million tons of copper back to 4,000 BC. 01:06:10 And that sounds like a lot. But to keep up with copper growth, copper demand growth, just the way we are now without electrifying, we will do the same in the next 22 years. So the last 4,000 years will be compressed into 22 years to keep up with the economic growth as it's increasing. And so the first generation, let's say the 4.3 billion tons is correct. 01:06:33 That is 6.2 times the historical mining rate back to 4,000 BC. So if we are right and we can shrink that buffer down, we are still three times the historical rate. Nate Hagens: Not the historical rate. The historical total cumulative

      !- Futures Thinking : Maslow's Hierarchy framing for Minerals - There just isn't enough copper to meet the target of full electrification - We would need 6.2x the copper we've mined since 4000 BC. - At current mining extraction rates, it would take 180 years to mine all this material, if it existed in the first place!