4 Matching Annotations
  1. Jul 2016
    1. I always found it incredible. He would start with some problem, and fill up pages with calculations. And at the end of it, he would actually get the right answer! But he usually wasn’t satisfied with that. Once he’d gotten the answer, he’d go back and try to figure out why it was obvious. And often he’d come up with one of those classic Feynman straightforward-sounding explanations. And he’d never tell people about all the calculations behind it. Sometimes it was kind of a game for him: having people be flabbergasted by his seemingly instant physical intuition, not knowing that really it was based on some long, hard calculation he’d done.

      Straightforward intuition isn't just intuition.

  2. Mar 2016
    1. It reminds me of the New Math of the 1960s, which fashioned mathematics in a dramatically more abstract, more analytic way than before. And if Johnny Can’t Add with the new math, maybe Jenny Won’t Code with an overly abstract presentation of computing. Papert points us in the opposite direction

      It’s a source of power to do something and figure things out, in a dance between the computer and our thoughts. The inversion, starting with computing as a formal thing to understand and then come to the application later, takes away its power.

    2. One striking comment follows a couple of pages later, where the phrase “computer-aided instruction” evokes in Papert the unappealing idea that “the computer is being used to program the child” — his vision, of course, is that the child must program the computer.
    3. In 1980, Seymour Papert published the book “Mindstorms: Children, Computers, and Powerful Ideas” [2]. Papert was co-director, under Marvin Minsky, of the MIT Artificial Intelligence Laboratory from 1967 to 1981. Previously, he had worked with Jean Piaget in Geneva. Piaget was a developmental psychologist best known for pioneering the learning theory known as constructivism: simply put, that learners construct new knowledge (in their minds) from the interaction of their experiences with previous knowledge. Papert, in turn, developed the theory of constructionism, adding the notion that learning is enhanced when the learner is engaged in “constructing a meaningful product.”